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ABSTRACT 

In topological dynamical systems (TDS), recurrence (periodic–like recurrence) is one of the 

important concepts in its studies but one major problem is the inability to demonstrate and/or 

illustrate its formation in the orbit structure of system from a topological point of view. In this 

paper, the logistic function was applied to demonstrate the periodic point as a recurrent 

formation (periodic–like recurrence) in the topological dynamical system and dynamical 

system. The Wolfram Alpha computational knowledge engine was used in obtaining the tables 

and the figures for the study through various examples of the logistic function. The study shows 

that period–2 recurrence is formed when the trajectory of the function is made up of two 

different values that keep repeating after successive iterations as a result of the period – 2 orbits 

when the parameter of the function is between 3 and 3.45. The study again shows that when 

the parameter of the function is greater than 3.83 there is a period –3 point hence the formation 

of other periodic points. Convincingly, beyond this period –3 is another subsequent period 

called the period-doubling cascade leading into chaos. This period-doubling asserts that other 

periodic – like recurrences are also present, hence period – 𝑛 recurrent exists. 

 

Keywords:  Iterations, Parameter, Orbit, Logistic function, Formation, Periodic orbits, Period-

doubling.  

 

1. INTRODUCTION 

A dynamical system is mainly made up of two (2) different parts, where each describes a given 

state of the system namely, a time-discrete map and time-continuous nonlinear differential 

equation. According to Klages (2008), one state begins from the time-continuous differential 

equations to the time-discrete maps. Similarly, it also starts from the time-discrete maps and 

builds up slowly to the time-continuous differential equation.  

A dynamical system as a state of a system in mathematics is an evolution that is 

dependent on time (Ott, 1993). It is the only system in the mathematical research field that 

focuses on how systems evolve through time. It is built out of a phase space, where each point 

describes a given state of the system. The idea of recurrence as a concept in dynamical systems 

is very important in its study as a key and central throughout. That is in additive combinatorics, 

it serves as the main tool for the correct and exact result in dynamics. 

Recurrence as a system has grown into having several definitions through the 

motivation of Birkoff Recurrence Theorem. One of the critical roles it plays as a proof is the 
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sets that mapped into themselves under the transformation. In some sense, recurrence is when 

a point is in its future.  

However, many concepts of recurrence which are different are derived from different 

interpretations of this unclear description. Recurrence in its simplest way occurs in a periodic 

orbit. Periodic points in their state represent the simplest form of recurrence, but not every 

dynamical system has periodic orbits (Ahmadi, 2018; Das and Thakkar, 2013; Mensah et al., 

2016; Conley and Zehnder, 1984; Lloyd, 1988; Markus, 1980; Neumann, 1987; Rabinowitz, 

1987; Sacker and Sell, 1972) 

A periodic orbit is when points in the orbit return endlessly often to each point on the 

orbits. The concept of recurrence has become broad per the notion of the future of a point and 

in topological dynamics, it is recurrence behavior being one of the most important concepts. 

The concept of recurrence and how it operates motivated this research and we apply the logistic 

function (Reiser, 2020) to demonstrate the periodic point as a recurrent formation in the 

topological dynamical system. The outcome was that these behaviors depend on the initial 

condition and the parameter of the function, and they were confirmed.  

 

2. PRELIMINARY DEFINITIONS 

Definition 1: Periodic Points 

If 𝐹𝑛(𝑥0) = 𝑥0, the point 𝑥0 is a periodic point of period 𝑛 of 𝐹. 𝑥0 = 𝐹𝑛(𝑥0) where 𝑛 > 0, 

that is, 𝑛 is at least positive. Hence 𝐹𝑛(𝑥0) = 𝑥0 is called the prime period of 𝑥0. The set of 

periodic points is denoted by 𝑃𝑒𝑟𝑛(𝐹). The periodic orbit is formed from the set of all iterates 

of a periodic point. Prime period is defined as; Given 𝐹𝑛(𝑥0) = 𝑥0, then 𝐹2(𝑥0) =

𝐹(𝐹(𝑥0)) = 𝐹(𝑥0) = 𝑥0.  

Then 𝑥0  ∈ 𝑃𝑒𝑟1(𝐹) ⇒  𝑥0  ∈ 𝑃𝑒𝑟2 (𝐹)  ⇒  𝑥0 ∈ 𝑃𝑒𝑟𝑛(𝐹) ∀ 𝑛 ∈ 𝑁. 

NOTE: An Eventually Periodic point of period 𝑛 is a point 𝑥 if it is Not periodic but there exist 

𝑚 > 0, 𝑚 is positive such that for all 𝑖 ≥ 𝑚, 𝐹𝑛+𝑖(𝑥) = 𝐹𝑖(𝑥)⇒ 𝐹𝑖(𝑥) = 𝑝 is periodic for 𝑖 ≥

𝑚, 𝐹𝑛(𝑝) = 𝑝. 

Example 1: Given: 𝐹(𝑥) = 𝑥2  

Let 𝑥 = 1 ⇒ 𝐹(1) = (1)2 = 1, hence 𝐹(1) = 1 is a fixed point. 

Let 𝑥 = −1 ⇒ 𝐹(−1) = 1, Hence 𝐹(−1) = 1 is not a fixed point but is eventually periodic 

which is relative to a fixed point. 

The trajectory of a given system that is not periodic in nature but approaches a periodic orbit 

after many iterations are called an Eventually Periodic Orbit/Trajectory. 
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Definition 2: Let a topological dynamical system be (𝑋, Ƭ, 𝑇) then the point 𝑥 ∈ 𝑋 is  

a. Invariant if 𝑇𝑥 = 𝑥 

b. Periodic if 𝑇𝑛(𝑥) = 𝑥 for some 𝑛 ∈ 𝑍|{0} 

c. Recurrent if for every open neighborhood 𝑈 of 𝑥, an infinite number of iterates of 𝑥 

falls in 𝑈 

d. Transient if it is not recurrent 

 

Definition 3: Given a topological system(𝑋, 𝑇), 𝑥 ∈ 𝑋, is recurrent when 𝑥 returns to a 

neighborhood of 𝑥 again and again for several iterations. 

If 𝑥 ∈ 𝑋 is a point, then 𝑥 is;  

a. Recurrent if for every open neighborhood 𝑈of 𝑥, there is 𝑚 ∈ 𝑁such that 𝑇𝑚(𝑥) ∈ 𝑈 

b. Uniformly recurrent if for every open neighborhood 𝑈of 𝑥, the set of return times 

{𝑚 ∈ 𝑁: 𝑇𝑚(𝑥) ∈ 𝑈} has bound spaces/intervals. 

c. Periodic, ∃𝑚 ∈ 𝑁 such that 𝑇𝑚(𝑥) = 𝑥. 

NOTE: Almost periodic is when a point is uniformly recurrent, the periodic or uniformly 

recurrent points of a topological dynamical system in which homeomorphism is recurrent.  

Theorem 1: (Tanja et al., 2015): Let (𝑋, Ƭ) be a topological space and 𝑥 ∈ 𝑋, then the 

following are equivalent; 

i. 𝑥 is uniformly recurrent 

ii. (𝑂𝑟𝑏̅̅ ̅̅ ̅
+(𝑥), Ƭ) is normal 

iii. 𝑥 is a minimal subsystem of (𝑋, Ƭ) 

Definition 4:  𝝎 − 𝒍𝒊𝒎𝒊𝒕 and 𝜶 − 𝒍𝒊𝒎𝒊𝒕 (Das and Thakkar, 2013)  

Let (𝑋, 𝑑) be a metric space and a sequence 𝐹 = {𝐹𝑛}𝑛=0
∞  be a time-varying homeomorphism 

on  𝑋.  

a. By 𝝎 − 𝒍𝒊𝒎𝒊𝒕 set of a point 𝑥 ∈ 𝑋, the set is; 𝜔(𝑥) = {𝑦 ∈ 𝑋| lim
𝑘⟶∞

𝑑(𝐹𝑛𝑘
(𝑥), 𝑦) = 0} 

where, 𝑛𝑘  are positive integers. 

b. The 𝜶 − 𝒍𝒊𝒎𝒊𝒕 set of point 𝑥 ∈ 𝑋 is the set {y ∈ X|lim
𝑘⟶∞

𝑑(𝐹𝑛𝑘
(𝑥), 𝑦) = 0} where 𝑛𝑘 ∈ 𝑍− 

NOTE: In a metric sense, A point 𝑥 ∈ 𝑋 is recurrent if 𝑥 ∈ 𝛼(𝑥)⋂𝜔(𝑥). 

 

3. RESULTS AND DISCUSSION 

3.0 Major definitions 

This section is about major definitions related to the main of work under study.  
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Definition 3.1: Let (𝑿, 𝑻) be a compact topological dynamical space and 𝑻𝒏: 𝑿 → 𝑿 be a 

continuous sequence, 𝒏 = 𝟎, 𝟏, 𝟐, …  𝒙𝟎 ∈ 𝑿 is said to be a periodic point of {𝑻𝒏}𝒏=𝟎
∞  if the 

orbit of 𝒙𝟎 is periodic. 

Definition 3.2: Let (𝑿, 𝑻) be a compact topological dynamical system. The point 𝒙𝟎 ∈ 𝑿 is a 

periodic recurrent point if 𝑻 is continuous such that; 

                         ⋃ ≔ {𝒏 ∈ 𝑹: 𝑻𝒏(𝑼) ≠ ∅}  𝑎𝑛𝑑  𝑻𝒏(𝒙) = 𝒙. 

Conjecture 1: If 𝑓: 𝑋 → 𝑋 or 𝑋𝑛 → 𝑋𝑛+1 be a map defined on [0,1], then a sequence of 

periodic points is a period – N recurrent, If   𝑋𝑛+1 = ⋃ {𝑓(𝑥𝑛)}∞
𝑛=0 , where 𝑓(𝑥𝑛) = 𝛼(𝑥 −  𝑥2), 

⩝  𝜶 > 𝟑 

let 𝛼 = 3.0 and an initial condition of 𝒙𝟎 = 
2

3
 on the function. 

Then lim
 𝑥0→ 

2

3

𝑓(𝑥) = lim
 𝑥0→ 

2

3

3(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

 

Table 1: Iteration of lim 𝑓(𝑥) when 𝛼 = 3.0   

𝒏 0 1 2 3 4 

𝒙𝒏 0.66667 0.66667 0.66667 0.66667 0.66667 

 

 

 

Figure 1. Cobweb and linear stability graph of the logistic map when 𝛼 = 3.0. 

 

The outcome of the map when 𝛼 = 3.0 as shown in table 1 and figure 1 is a repeated 

fixed value that shows stable continuity throughout the process. The limiting behavior is a fixed 

point, that shows stable for its linear stability irrespective of the number of iterations.  At the 

eigenvalue −𝛼 + 2, the attractor is one – point attractor when using different initial values at 

𝛼 = 3.0.  
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Figure 2. The bifurcation diagram of the logistic map when 𝛼 = 3.0. 

 

Figure 2 shows the bifurcation nature of the map after iterating it 100 times through 

150 for 𝛼 = 3.0. The periodic point of the map is at zero when 𝛼 < 1,  hence the point attractor 

for 𝛼 < 1 is zero (0). When 1 < 𝛼 < 3, the system/map still have a one – point attractor which 

begins to increase when the parameter increases. In Figure 2 above at 𝛼 = 3 bifurcation begins 

to occur beyond the critical value as indicated with a red vertical line. The fixed point when 

𝛼 = 3 produces a period – 2 orbits which is unstable. Beyond this parameter value is the 

beginning of the structural changes of the system ‘period doubling bifurcation’. This type of 

bifurcation is the pitchfork bifurcation. In other words, it shows a flip in the periodic points at 

𝛼 = 3.0 and beyond that is the formation of period doubling (flip) bifurcation of period – 2 and 

other period – N orbits.  

Therefore, the parameter when it is at exactly 𝛼 = 3.0 forms periodic orbits or 

trajectories which is within its own neighborhood, this indicates that the periodic points within 

the orbits exhibit recurrent behaviors. 

3.1. The Period – N Recurrent Point 

Under this section, the logistic function is used to show the existence of the other recurrent 

(period – N recurrent) points by considering the period – 2, period – 4 and period – 3 orbits.  

3.1.2. Illustrating Period-n as a Recurrent Formation 

To show the existence of other periodic recurrent formations, the period – 2, period – 4 and 

period – 3 are considered. 

3.1.2.1. The period – 2 orbits as a period – 2 recurrence 

The logistic function 𝒇(𝒙) = 𝜶(𝒙 − 𝒙𝟐) generate period – 2 orbits when the outcome of the 

map alternates between two values or figures after successive iterations, and the control 
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parameter takes values greater or equal to 3, that is 𝜶 ≥ 𝟑 is very significant in the iteration 

process.  

Recurrence occurs when a system returns to its original or starting point after successive 

iterations for a specific time.  

Hence, period – 2 recurrence is formed when an initial value in a function 𝑓(𝑥) produces a 

different value (another figure) and after several/successive iterations the initial value and the 

second value forms the orbits of the function. In other words when the trajectory of a function 

are two different values that keeps appearing repeatedly after successive iterations, then period 

– 2 recurrence is formed.  

Example 3.1: Let 𝛼 = 3.2 and an initial condition of 𝒙𝟎 = 0.5 be on the function. 

Then lim
 𝑥0→0.50

𝑓(𝑥) = lim
 𝑥0→0.50

3.2(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

 

Table 2. Iteration of lim 𝒇(𝒙) 𝑤𝑖𝑡ℎ 𝜶 =  𝟑. 𝟐, at 𝑥0 = 0.50 

 

 

                                                     

  

 

 

 

 

 

 

Figure 3. Graphical display of the iteration of  f(xn) = 3.2(xn − x2
n). 

 

Table 2 and figure 3 shows the successive iteration of the function 4 times and 50 times 

respectively, with an initial condition of 𝑥0 = 0.5 producing two fluctuating values 0.51 and 

0.80. There is a back and forth of these two values (trajectories) after several iterations without 

changing hence making the system stable. The periodic points of the map at 𝛼 = 3.2 with 

different initial conditions form orbits or trajectories which repeat themselves continuously 

with the neighborhood of the space. The set of orbits are recurrent in nature.   

 

𝒏 0 1 2 3 4 5 6 7 8 9 

𝒙𝒏 0.50000 0.80000 0.51200 0.79954 0.51288 0.79947 0.51302 0.77946 0.51304 0.79946 
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Table 3. Stability table of the Periodic Nature. 

 

 

 

 

Table 3 shows that the periodic nature of the system at 𝛼 = 3.2 when there is a period 

doubling bifurcation, for period – 2 the linear stability of the map is linear. Therefore period – 

2 recurrence occurs when a system behaves as period – 2 cycles. During this period the system 

begins to double up showing the same points that form the orbit or trajectory repeatedly. 

                 

  Figure 4. Graphical display of the map 𝑓(𝑥𝑛)  when 𝛼 = 3.2. 

 

Figure 4 shows the plot of 50 times successive iteration of the function with an initial 

condition of 𝑥0 = 0.5, the horizontal axis counts the number of iterations. The plot produces 

two fluctuating sequence or alternating values 0.51 and 0.80 of the horizontal and the vertical 

axes as the main orbits of 0.50. The back and forth of these two values (trajectories) after 

several iterations without changing make the system stable as they infinitely return to the same 

neighborhood, hence showing a recurrent formation called period – 2 recurrence.  

 

                               

  

 

 

 

 

 

Figure 5. Period doubling pitchfork bifurcation diagram when 𝛼 = 3.2. 

Period  Iterates Linear stability 

1 0. Unstable  

1 0.6875 Unstable 

2 0.513045,0.799455 Stable  
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The bifurcation diagram (Fig 5) when 𝛼 = 3.2 is a supercritical pitchfork bifurcation 

showing a double up in split of the structure with a red vertical line through the parameter. The 

limiting behavior of the map is a limit cycle with period 2. Its representation is a period 

doubling bifurcation with the two oscillating points as stable limit cycles representing a Hopf 

bifurcation. 

Let 𝛼 = 3.4 and an initial condition of 𝑥0 = 0.1 

Then lim
 𝑥0→0.1

𝑓(𝑥) = lim
 𝑥0→0.1

3.4(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

                                

Table 4. Iteration of lim 𝒇(𝒙) with 𝜶 = 𝟑. 𝟒, at 𝑥0 = 0.1, 

 

 

      

 

 

Figure 6. The linear stability and the Cobweb graph of the map when 𝛼 = 3.4. 

 

                                                  

 

 

 

 

 

 

 

Figure 7. Period doubling pitchfork bifurcation diagram when 𝛼 = 3.4. 

 

In table 4 and figures 6 and 7, the map shows the limiting behavior, the linear stability 

(the cobweb graph of the map) and the bifurcation diagram when 𝛼 = 3.4. Its limiting behavior 

𝒏 0 1 2 3 4 

𝒙𝒏 0.10000 0.30600 0.72204 0.68238 0.73691 
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as the periodic points builds up shows a limit cycle of period 2. Again, it is a supercritical 

pitchfork bifurcation showing a double effect in the split of its structure as indicated with a red 

vertical line through the parameter 𝛼 = 3.4. Its representation is a period doubling bifurcation 

with two oscillating points as stable limit cycles representing a Hopf bifurcation. 

3.1.2.2. The period – 4 orbits as a period – 4 recurrence 

Let 𝛼 = 3.5 and an initial condition of 𝒙𝟎 = 0.5 on the function. 

Then lim
 𝑥0→0.5

𝑓(𝑥) = lim
 𝑥0→0.5

3.5(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

 

Table 5. Iteration of lim 𝒇(𝒙), at 𝑥0 = 0.5. 

 

 

 

   

Figure 8. The cobweb and linear stability graph of the logistic map when 𝛼 = 3.5. 

 

In table 5 and figure 8, the cobweb and the time graph show that the solutions within 

the orbits after successive iterations of the map when  𝛼 = 𝟑. 𝟓 shows a limiting behavior which 

is stable. The limiting points are attractors and repulsive.  

  

Figure 9. Bifurcation diagram of the logistic map 𝛼 = 3.5. 

 

𝒏 0 1 2 3 4 

𝒙𝒏 0.50000 0.87500 0.38281 0.82693 0.50090 
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Figure 9 is a representation of a period doubling bifurcation with four oscillating points. 

Its limiting periodic behavior is a stable limit cycles of period 4 representing a Hopf bifurcation. 

The structural change of the system as it split open with a continuous constant value 

approximately within four periodic points is a supercritical pitchfork bifurcation. Moreover, 

the bifurcation when 𝛼 = 3.5 its limiting behavior of the periodic points forming a set of orbits 

which are recurrent in nature. 

3.2. Summary of Results  

Recurrence occurs when a system returns to its original or starting point after successive 

iterations for a specific time.  Therefore, period – 2 recurrence occurs when a system behaves 

as period – 2 cycles and period – 4 recurrence occurs when the limit cycle of the system is 

period – 4. During this period the system begins to double up showing the same points or 

alternating sequence that forms the orbits or trajectories repeatedly. In the forming of the 

various periodic cycles as the parameter is increased beyond 3, periodic – like recurrence are 

also formed as a result of the structural changes of the map/system. The system becomes stable 

during this period. Hence, periodic is naturally recurrent irrespective of the type of periodic 

cycle available. 

As opined by Mensah et al. (2016), different orbits are formed as periodic orbits when 

the parameter 𝜶 is increased beyond 3. This is very true when the parameter is beyond 3.2 

which shows doubling behavior indicating new period formation and the effect of this is when 

they move back to their starting point habitually. Confidently, in periodic doubling recurrence 

are formed under the effect of the parameter when it is been changed beyond 3 and 

approximately at 3.45, 3.54, 3.564, 3.569, etc. At interval 3 < 𝛼 < 3.45, the period doubling 

bifurcation specifically period – 2 orbits are stable but for the interval 3.45 < 𝛼 ≤ 4 the period 

doubling is unstable.  

Let 𝛼 = 3.57 and an initial condition of 𝒙𝟎 = 0.1 on the function. 

Then lim
 𝑥0→0.1

𝑓(𝑥) = lim
 𝑥0→0.1

3.57(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

 

Table 6. Iteration of lim 𝒇(𝒙), 𝛼 = 𝟑. 𝟓𝟕, at 𝑥0 = 0.1. 

 

 

In table 6, the limiting behavior of the map at this parameter value is chaotic in nature. 

Its periodic points are not recurrent as they show uncorrelated behavior along the path. The 

possible limit cycles for this parameter in its linear stability is unstable.  

𝒏 0 1 2 3 4 

𝒙𝒏 0.10000 0.32130 0.77850 0.61561 0.84479 
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Figure 10. Bifurcation diagram of the logistic map when 𝛼 = 3.57. 

 

The bifurcation diagram of the map when the parameter is 3.57 indicates that beyond 

this value, the system moves from periodicity to aperiodicity as indicated in figure 10. Even 

though one may see the aperiodic behavior of the map when the parameter is beyond 𝛼 = 3.57, 

it is not always chaotic when 𝛼 > 3.57 as shown in the diagram above. At this point the 

happenings of period doubling bifurcation begins to end as the system transitioned into chaotic 

region.  

3.2.1. The Logistic function illustration of period-3 orbit as period-3 recurrence 

Theorem 3.1: Let 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] be continuous, if 𝑓 has a 3 – periodic point, the 𝑓 has N – 

periodic points for all positive integers N. 

According to Nicholas et al. (2013), period – 3 starts forming when 𝛼 ≈ 3.83 and after several 

iterations the periodic points of the orbits obtained are three different values which are constant 

throughout the process. 

Example 3.2: If 𝜶 = 𝟑. 𝟖𝟑 and 𝒙𝟎 = 0.5 as an initial condition for the function. 

Then lim
 𝑥0→0.50

𝑓(𝑥) = lim
 𝑥0→0.50

3.83(𝑥𝑛 − 𝑥2
𝑛) , 𝑛 = 0, 1, 2, … 

 

Table 7. Iteration of (𝑥) = 3.83(𝑥𝑛 − 𝑥2
𝑛), at𝑥0 = 0.50000. 

                              

In table 7 and figure 11, the map/function produces a sequence of orbits that give values 

oscillating through three numbers approximately {0.50, 0.96, 0.16, …}. These three points 

form the orbits when 𝛼 = 3.83. They are stable and equilibrium in nature as they oscillate 

continuously after successive iterations in figure 8, hence the three – points are period – 3 and 

attractors. 

𝑛 0 1 2 3 4 5 6 7 8 9 

𝑥𝑛 0.5000 0.95750 0.15586 0.50390 0.95744 0.15606 0.50443 0.95742 0.15612 0.50459 
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Figure 11. The Graph of period-3 cycle of the logistic function (when 𝛼 = 3.83, 𝑥0 = 0.50000). 

 

                                 

Figure 12. The cobweb graph of the logistic function when 𝛼 = 3.83. 

 

Figure 12 shows that when the parameter of the map is 𝛼 = 3.83, the limiting behavior 

is a limit cycle with period 3. This indicates that the map continuously goes through these 

specific values approximately within the same neighborhood of the space. The deep black line 

shows the limit cycle of the map at 𝛼 = 3.83, which are recurrent in nature.   

  

Figure 13. Bifurcation diagram of the logistic map when 𝛼 = 3.83. 
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Figure 13 shows the splitting of the system as it produces these three numbers after 

several and continuous iterations showing the existence of period – 3, hence period – 3 

recurrent. The red vertical line shows the periodicity region. This region when it blows up 

shows period doubling sequence for each window. This period doubling sequence even-though 

are repulsive, they are recurrent. With period – 3 window the period doubling cascade is 3 →

2 × 3 → 22 × 3 → 24 × 3 → 2𝑛 × 3 → 𝑟3,∞. Now at this point 𝑟3,∞ as the accumulation point 

of the period – 3 period doubling cascade becomes aperiodic (chaotic).  Hence, period 3 

doubling cascade is leads to chaos. 

 

Table 8. Stability of the Periodic Nature. 

 

 

 

 

 

 

As indicated in table 8, the periodic nature of the map in terms of its stability (linear stability) 

is unstable. That the linear stability of the map is linear and stable which shows period – 3 

recurrence in the iterates 0.16357, 0.524001, 0.955294. 

3.3. Summary of Results  

The study has clearly shown that in a dynamical system, recurrence depends on the parameter 

of a given rule for its formation. Moreover, the formation of a periodic cycle occurs when a 

giving parameter is altered constantly and, the system tends to be stable or unstable if the 

parameter is within a particular range. Convincingly, beyond this period – 3 is other subsequent 

periods called the period-doubling cascade leading into chaos. 

Finally, periodicity is naturally recurrent irrespective of the type of periodic cycle.  

 

4. CONCLUSION 

The study clearly shows that in dynamical system, recurrence (periodic – like recurrence) 

depends on the parameter of a given rule for its formation. The formation of a periodic cycle 

occurs when a giving parameter is altered constantly and, the system tends to be stable or 

unstable if the parameter is within a particular range. At 𝜶 ≥ 𝟑, period doubling bifurcation 

Period  Iterates Linear stability 

1 0. Unstable  

1 0.738903 Unstable 

2 0.369161, 0.891935 Unstable   

3 0.156149, 0.504666, 0.957417 Stable  

3 0.16357, 0.524001, 0.955294 Unstable   

4 0.299162,0.803014,0.60584,0.914596 Unstable  
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begins to happen at specific and certain intervals of 𝜶.  This type of bifurcation is called the 

pitchfork bifurcation as there is a split of the solution beyond the critical value, specifically 

starting from 𝛼 = 3 

Confidently, periodic doubling recurrence are formed under the effect of the parameter 

when it is being changed beyond 3 and approximately at 3.45, 3.54, 3.564, 3.569, etc. At 

interval 3 < 𝛼 < 3.45, the period doubling bifurcation specifically period – 2 orbits are stable 

but for the interval 3.45 < 𝛼 ≤ 4 the period doubling is unstable.  

The study explained that with the existence of period – 2, period – 4, period – 3 

recurrent, other periodic recurrence also exist. Hence, the formation of the period – N recurrent 

exists when period – N orbits/points (period-doubling) are present. These behaviors depend on 

the initial condition and the parameter of the function. Beyond 3.83 is the presence of other 

periods called period-doubling bifurcation which confirms that other periodic recurrent ‘period 

– N recurrent’ also exist. That is a recurrence formation (periodic – like recurrence) which is 

as a result of the doubling behavior of the system.   

Finally, the study has shown that when period – 3 orbits exist then the formation of the 

period – 3 recurrence also exists which confirms that other periodic recurrence especially 

‘period – N recurrent formation’ may also exist. However, at this point 𝑟3,∞ as the accumulation 

point of the period – 3 period doubling cascade becomes aperiodic (chaotic). Hence, beyond 

this period – 3 is other subsequent periods called the period-doubling cascade leading into 

chaos.    
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