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ABSTRACT 

The main purpose of this study is to compare a semi-analytical method and numerical method 

namely the homotopy perturbation method (HPM) and finite difference method (FDM) 

respectively. These methods were employed for solving the nonlinear problem of the 

magnetohydrodynamic (MHD) couette flow of third-grade fluid between the two parallel plates. 

The comparison was made between a solution of HPM and FDM against a solution obtained from 

regular perturbation and the results are tabulated. From a computational viewpoint, it is revealed 

that the HPM is more reliable and efficient than FDM. Also, the results show that the FDM requires 

slightly more computational effort than the HPM, although the HPM yields more accurate results 

than the FDM. 

 

Keywords: Third grade fluid, Magnetohydrodynamics flow, Non-Newtonian fluid, Homotopy, 

Perturbation method, Semi-analytical method.  
 

1. INTRODUCTION 

On the grounds that fluids are different in nature, there have been a lot of proposal of models by 

many researchers to report their flow or movement under different conditions or forms. In recent 

years considerable effort has been made to study the commonly fluid, which is non-Newtonian 

fluids, but because of its little or no application in the industry for its inadequacy to predict, analyze 

and stimulate its movement, it is of more importance to study the flow of non-Newtonian fluid. 

The non-Newtonian fluids are commonly used in everyday life. In industries, for production of 

custard, starch, melted butter, shampoo, paint etc. It is also used in chemical engineering and other 

fluids compared to Newtonian fluid because of its complexities and complication in the analysis 

and of the behavior in motion. Among the recent proposal models of non-Newtonian fluids are 

fluid of third grade and fluids of differential type, the fluid of differential type is more remarkable 

than the fluids of third grade. 

It has been noticed that researchers such as Hayat et al. (2003); Conte and Boor (2017); 

and Khan et al. (2007) used several methods used in solving problem related to this, but many 

ended up making little or more error and spending much more time because of its complexities 



Lawal, O. W., Erinle-Ibrahim, L. M and Okunoye, O. S (MEJS)                         Volume 14(2):149-162, 2022 

 

© CNCS, Mekelle University                                  150                                            ISSN: 2220-184X 
 

and more efficient in computation especially in the non-linear differential equations which is 

believed that do not have exact solution. However, Siddiqui et al. (2010b); Aiyesimi et al. (2014); 

and Lawal et al. (2022) used semi-analytical method because of its suitability and exactness over 

numerical methods. 

Recently, Siddiquie et al. (2010a) compared Adomian Decomposition method (ADM) and 

Homotopy Perturbation Method (HPM) in solving MHD couette and poiseuille flow of a third-

grade fluids; although it shows that HPM is less computation compared to ADM but less accurate 

in result compared to ADM. 

Recently, Barikbin et al. (2014) used Ritz-Galerkin method (which is numerical method) 

to solve governing equations of MHD Couette flow of non-Newtonian fluid flow between two 

parallel plates. They applied properties of the Bernstein polynomials together with the Ritz-

Galerkin method to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a 

porous medium to the solution of algebraic equations. 

Abdulhameed et al. (2014) employed a new analytical algorithm based on modified 

homotopy perturbation transform method to study the transient flow of third grade fluid in a porous 

channel generated by an oscillating upper wall. They compare their results with the solution 

obtained from Homotopy analysis method (HAM) and it reveals that the proposed algorithm is 

highly accurate.  

Abdellatif and Naj (2017) investigate the unsteady MHD flow of an electrically conducting 

incompressible viscous fluid through porous medium between two parallel plates in the presence 

of a transverse magnetic field and hall effect using finite element method. Results obtained from 

their test cases are compared with previous published work using FDM. Xiaohang and Yunxing 

(2019) analyzed the problem of an unsteady squeezing flow of fluid between two parallel plates 

under the influence of an inclined magnetic field. The transformed nonlinear governing equation 

are solved numerically by fourth order Runge Kutta method. 

Here we employ RPM, HPM and FDM to solve the problem. The first two methods are 

based on series expansions while FDM transforms the fourth order implicit nonlinear differential 

equation that govern the flow into a set of algebraic equations that are solved iteratively. One of 

the major advantages of these methods is that they do not require small parameters and avoid 

linearization and physically unrealistic assumptions. The comparison between the three methods 

shows that the FDM is more reliable, and efficient than HPM from a computational viewpoint. 
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2. BASIC EQUATIONS 

The equation governing MHD flow of an incompressible fluid are  

 0= u


                                                                                                                                                    (1) 
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+=                     (2)                                                                                     

Where, u


is the velocity of the fluid,  is the fluid density, J


 is the current density, E


represent the total electric field which is neglected (i.e. 0=E


), B


is the magnetic induction in 

which 00 (BbBB
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+= and b


are applied and induced magnetic fields respectively),  is the 

electrical conductivity of the fluid, 
Dt

D
is the material time derivative, f denote the external body 

force and 


is the Cauchy stress tensor which satisfies the following constitutive equation in a third 

grade fluid. 
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pI  is the isotropic stress due to constraint incompressibility ,  is the dynamics viscosity 

, 1 , 2 , 1  , 2  and 3  are the material constants, and 321 ,, AAA  are the first  three Rivlin-Ericken 

tensors given by 

        
⊥+= )(1 uuA
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⊥ indicate the matrix transpose, 321 ,, AAA  are the first  three Rivlin-Ericken tensor and 

10 =A is the identity tensor which is I . The Clausius-Duhem inequality and the result that specific 

Helmholtz free energy is minimum when the fluid is at rest provide the following constraints [10] 

 ,0,24,0,0 213111 ==+  .03            (5)  

 

3.  PROBLEM FORMULATION                                       

We consider the steady laminar flow of an electrically conducting non-Newtonian fluid that obeys 

the third grade fluid model. We choose the Cartesian coordinate system to model the problem with 

x-axis parallel to the direction of the flow, and y-axis being in the transverse direction of the flow. 
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The rigid channel walls are represented by equations hy = . We confine our study to the region 

hy 0  by considering the flow to be symmetric about the center line )0( =y  of the channel. 

The flow is driven by  constant pressure gradient in the direction of the flow and by the imposition 

of a uniform magnetic field of strength 0B  along the transverse direction. The velocity field for 

the flow is )0,0),(( yuu =


 with the above assumption , momentum equations that govern the flow 

is given by; 
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with the following boundary conditions 

( ) 0=yu at hy =                 (9) 

             ( ) 0=yu at hy −=                   (10)                                                                                                                         

Introducing the generalized pressure p̂  
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Substituting p̂ in equation  (7), we find that ,0=
dy

dp
indicating that ),(ˆˆ xpp = consequently (6) 

reduces to the single equation,  
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For  the simplicity we have introduced 32  += . Equation (12) is a second order nonlinear 

differential equation. This equation governs the unidirectional flow of a non-Newtonian third grade 

fluid between two parallel plates.  

By introducing the non-dimensional parameters      
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Invoking above equations in equation (9), (10) and (12) and then omitting the prime for brevity, 

we obtain
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with the following boundary conditions 

      ( ) 01 =u ,    ( ) 01 =−u              (15)                                                                                                                                  

 

4.  SOLUTION OF PROBLEM 

In order to solve the system of equation (14) semi-analytically we use two methods namely: The 

Regular perturbation method and the Homotopy perturbation method 

 

4.1. Solution by Regular Perturbation Method (RPM) 

Let us assume  =  as a small parameter in equation (14) and by this method, we expand 

( ) ( ) ( ) ( ) ...., 2

2

10 +++= yuyuyuyu 
                                                                                   (16) 

Substituting equation (16) into equation (14) and (15) and rearrange base on power of 


,  we 

obtain   
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0
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               (17) 

      
( ) ( ) 01,01 00 ==− uu              (18) 

The solution of equation (17) with boundary condition (18) is given by 
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The solution of equation (20) with boundary condition (21) is given by 
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       ( ) ( ) 01,01 22 ==− uu              (24) 

The solution of equation (23) together with boundary condition (24) is given by 
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4.2. Solution by Homotopy Perturbation Method (HPM) 

The problem under consideration i.e. equation (14) can be written as  
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Substitute equation (27) into (26) and equating the coefficient of same powers of   )1,1(−q which  

is the embedding parameter, we have 
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And the solution of equation (28) with boundary condition (29) is given by 
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      ( ) ( ) 01,01 11 ==− vv              (32) 

The solution of equation (31) with boundary condition (32) is given by 
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   The solution of equation (34) with boundary condition (35) is given by 
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4.3. Solution by Finite Difference Method (FDM) 

The resulting equation arising from equation (14) with the boundary condition in (15) subject to 

an external magnetic field is nonlinear in nature and does not admit an exact analytical solution; 

therefore, we make use of numerical solutions of the problem under consideration. For simplicity, 

stability, accuracy and efficiency, we make use of finite difference techniques to discretization  

ihyyi =  Ni ,.......,3,2,1=  

,00 =y  ,01 =+Ny
 

( )ii yuu = , ,00 =u   .01 =+Nu
      (37) 
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By Euler’s forward difference scheme in the boundary conditions at the initial point i = 0, we 

obtain .11 =u  The following central difference scheme is used for discretization of 
dy
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Then, we expressed the resulting algebraic system of equations in residual form as; 
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where the residuals are given as follows; 
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In order to obtain the solution of non-linear system of algebraic equation (40) Damped Newton 

method [7] was employed to stabilize the convergence an initial stage of iteration and it is given 

as 

),()(1

1 kkkkk uruJuu
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+ −=     ,........2,1,0=k      (44) 

where ( )TNuuuu ,..., 21=


 represent the column vector of unknown 10  k  is the kth damping 

parameter which fulfills the criteria ( ) ( )kk urur


+1 and ( )kuJ


 is the Jacobian matrix evaluated 

at the 
thk  iterated whose element is given by 
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in other to determine ),(yu a good initial guess is necessary for the convergence of the damped 

Newton’s method and fast solution of the iterative process. For this problem the convergence of 

the damped Newton method is gotten when, 
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5.  RESULTS AND DISCUSSION 

Semi-analytical and numerical solutions for a third grade non- Newtonian fluid between two 

parallel fixed plates in the presence of magnetic field have been found. Regular perturbation, 

homotopy perturbation and finite difference method are used in solving the governing non- linear 

ordinary differential equation.  

In order to illustrate the comparison, we use RPM as bench mark and as a guide for solving 

governing equation and the results are compared and illustrated in a tables below. 

From the result we notice the following: 

Tables 1 and 2 shows that HPM is closer to the RPM as the errors generated are smaller 

compared to FDM at small value of  . 

 

Table 1. Maximum pointwise error obtained between RPM )(yu ,HPM )(yv  and FDM )( yu when

01.0,1,1.0 === Mp at various value of y . 
y  ( ) ( )yvyu −max  ( ) ( )yuyu −max  ( ) ( )yuyv −max  

1−  0  1110213501.1 −  
-1110391681.2   

8.0−  -810 7.063010  
-710 1.015510     

-7101.722202  

6.0−  -7101.264711  
-710  1.668002   

710932710.2 −  

4.0−  7101066902 −  
710064213.2 −  

710733104.3 −  

2.0−  710913821.1 −  
710275311.2 −  

710189101.4 −  

0  710995501.1 −  
410448405.2 −  

410450420.2 −  

2.0  710913820.1 −  
410492903.2 −  

410494906.2 −  

4.0  710669101.1 −  
410572201.2 −  

410573912.2 −  

6.0  710264710.1 −  
410503029.2 −  

410501611.2 −  

8.0  810063010.7 −  
410887601.1 −  

410888310.1 −  

0.1  0  1110001127.1 −  
1110899708.1 −  
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Table 2. Maximum pointwise error obtained between RPM )(yu ,HPM )(yv  and FDM )( yu when 

1,1,1.0 === MP at various value of y . 

y  ( ) ( )yvyu −max  ( ) ( )yuyu −max  ( ) ( )yuyv −max  

1−  1110736016.8 −  0  
1110736101.8 −  

8.0−  
510394191.7 −  

610175709.2 −  
510176601.7 −  

6.0−  
410305605.1 −  

610271821.2 −  
410282811.1 −  

4.0−  
410711002.1 −  

610041501.2 −  
410690521.1 −  

2.0−  
410955670.1 −  

610885501.1 −  
410936821.1 −  

0  
410037512.2 −  

410981910.1 −  
410019410.4 −  

2.0  
410955610.1 −  

310104512.1 −  
410089811.9 −  

4.0  
410711002.1 −  

410326711.1 −  
510842601.3 −  

6.0  
410305663.1 −  

410295001.1 −  
610056310.1 −  

8.0  
510394102.7 −  

510862701.9 −  
510468512.2 −  

0.1  
1110123880.8 −  0  

1110123810.8 −  

 

In tables 3 and 4, at large value of  , the FDM generates more errors that HPM. Therefore, 

the HPM is closer to the RPM compared to FDM at larger values of . Furthermore, it is notice 

that as  increase, the solution by FDM get imperfectly exacerbate while HPM solution sustain 

its accuracy.  

 

Table 3. Maximum pointwise error obtained between RPM )(yu ,HPM )(yv  and FDM )( yu when 

2,1,1.0 === MP at various value of y . 

y  ( ) ( )yvyu −max  ( ) ( )yuyu −max  ( ) ( )yuyv −max  

1−  0 11101 −  
1110265011.5 −  

8.0−  
410546032.1 −  

610792681.8 −  
410458105.1 −  

6.0−  
410693585.2 −  

610428923.9 −  
410599295.2 −  

4.0−  
410506857.3 −  

610670040.8 −  
410420156.3 −  

2.0−  
410996379.3 −  

61011743.8 −  
4109152056.3 −  

0  
410160102.4 −  

410533413.1 −  
410877226.2 −  

2.0  
410996379.3 −  

410306581.1 −  
410689798.2 −  

4.0  
4105068572.3 −  

410350559.1 −  
4101562974.2 −  

6.0  
410693585.2 −  

4103207269.1 −  
410372858.1 −  

8.0  
410546032.1 −  

410010032.1 −  
510360001.5 −  

0.1  0 11101 −  
1110184646.4 −  

 






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Table 4. Maximum pointwise error obtained between RPM )(yu ,HPM )(yv  and FDM )( yu when 

2,2,1.0 === MP at various value of y . 

y  ( ) ( )yvyu −max  ( ) ( )yuyu −max  ( ) ( )yuyv −max  

1−  0 11102 −  1110035401.1 −  

8.0−  
510816917.5 −  610556381.2 −  510072555.6 −  

6.0−  
410032721.1 −  610343544.2 −  410056156.1 −  

4.0−  
410344329.1 −  610944071.1 −  410363770.1 −  

2.0−  
410525905.1 −  610718111.1 −  410543086.1 −  

0  
4105854755.1 −  610650421.1 −  410601979.1 −  

2.0  
410525905.1 −  610718119.1 −  410543086.1 −  

4.0  
410344329.1 −  

610944076.1 −  
410363770.1 −  

6.0  
410032721.1 −  

610343540.2 −  
410056156.1 −  

8.0  
510816917.5 −  

610556382.2 −  
510072554.6 −  

0.1  0 1110230109.2 −  
1210003570.4 −  

 

6.  CONCLUSION 

In this research, the comparison of semi analytical HPM and numerical solutions FDM of a third 

grade non-Newtonian fluid between two fixed parallel plates has been done. It was found that the 

solutions obtained by HPM is closer to the exact at the smaller value of   and as the value of    

increases, HPM solution is closer to the exact compared to FDM. This showed that the HPM is 

more reliable, accurate and efficient than FDM from comparison and computational point of view 

although both HPM and RPM provide solution in infinite series form. 
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