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ABSTRACT

The main purpose of this study is to compare a semi-analytical method and numerical method
namely the homotopy perturbation method (HPM) and finite difference method (FDM)
respectively. These methods were employed for solving the nonlinear problem of the
magnetohydrodynamic (MHD) couette flow of third-grade fluid between the two parallel plates.
The comparison was made between a solution of HPM and FDM against a solution obtained from
regular perturbation and the results are tabulated. From a computational viewpoint, it is revealed
that the HPM is more reliable and efficient than FDM. Also, the results show that the FDM requires
slightly more computational effort than the HPM, although the HPM yields more accurate results
than the FDM.

Keywords: Third grade fluid, Magnetohydrodynamics flow, Non-Newtonian fluid, Homotopy,
Perturbation method, Semi-analytical method.

1. INTRODUCTION
On the grounds that fluids are different in nature, there have been a lot of proposal of models by
many researchers to report their flow or movement under different conditions or forms. In recent
years considerable effort has been made to study the commonly fluid, which is non-Newtonian
fluids, but because of its little or no application in the industry for its inadequacy to predict, analyze
and stimulate its movement, it is of more importance to study the flow of non-Newtonian fluid.
The non-Newtonian fluids are commonly used in everyday life. In industries, for production of
custard, starch, melted butter, shampoo, paint etc. It is also used in chemical engineering and other
fluids compared to Newtonian fluid because of its complexities and complication in the analysis
and of the behavior in motion. Among the recent proposal models of non-Newtonian fluids are
fluid of third grade and fluids of differential type, the fluid of differential type is more remarkable
than the fluids of third grade.

It has been noticed that researchers such as Hayat et al. (2003); Conte and Boor (2017);
and Khan et al. (2007) used several methods used in solving problem related to this, but many

ended up making little or more error and spending much more time because of its complexities
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and more efficient in computation especially in the non-linear differential equations which is
believed that do not have exact solution. However, Siddiqui et al. (2010b); Aiyesimi et al. (2014);
and Lawal et al. (2022) used semi-analytical method because of its suitability and exactness over
numerical methods.

Recently, Siddiquie et al. (2010a) compared Adomian Decomposition method (ADM) and
Homotopy Perturbation Method (HPM) in solving MHD couette and poiseuille flow of a third-
grade fluids; although it shows that HPM is less computation compared to ADM but less accurate
in result compared to ADM.

Recently, Barikbin et al. (2014) used Ritz-Galerkin method (which is numerical method)
to solve governing equations of MHD Couette flow of non-Newtonian fluid flow between two
parallel plates. They applied properties of the Bernstein polynomials together with the Ritz-
Galerkin method to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a
porous medium to the solution of algebraic equations.

Abdulhameed et al. (2014) employed a new analytical algorithm based on modified
homotopy perturbation transform method to study the transient flow of third grade fluid in a porous
channel generated by an oscillating upper wall. They compare their results with the solution
obtained from Homotopy analysis method (HAM) and it reveals that the proposed algorithm is
highly accurate.

Abdellatif and Naj (2017) investigate the unsteady MHD flow of an electrically conducting
incompressible viscous fluid through porous medium between two parallel plates in the presence
of a transverse magnetic field and hall effect using finite element method. Results obtained from
their test cases are compared with previous published work using FDM. Xiaohang and Yunxing
(2019) analyzed the problem of an unsteady squeezing flow of fluid between two parallel plates
under the influence of an inclined magnetic field. The transformed nonlinear governing equation
are solved numerically by fourth order Runge Kutta method.

Here we employ RPM, HPM and FDM to solve the problem. The first two methods are
based on series expansions while FDM transforms the fourth order implicit nonlinear differential
equation that govern the flow into a set of algebraic equations that are solved iteratively. One of
the major advantages of these methods is that they do not require small parameters and avoid
linearization and physically unrealistic assumptions. The comparison between the three methods

shows that the FDM is more reliable, and efficient than HPM from a computational viewpoint.
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2. BASIC EQUATIONS
The equation governing MHD flow of an incompressible fluid are
V-i=0 1)

p%:divf+j><§+pf, where, J=0(E +0xB) (2)

Where, G is the velocity of the fluid, p is the fluid density, J is the current density, E
represent the total electric field which is neglected (i.e. E =0), Bis the magnetic induction in

which B=B,+Db(B,and b are applied and induced magnetic fields respectively), ois the

electrical conductivity of the fluid, % is the material time derivative, f denote the external body

force and 7 is the Cauchy stress tensor which satisfies the following constitutive equation in a third

grade fluid.
T==pl+ 1A +a A, + N+ A+ B(AA + AA) + B (AT A ©)
pl is the isotropic stress due to constraint incompressibility , x is the dynamics viscosity
,a,,a,, B, B, and B, are the material constants, and A, A,, A, are the first three Rivlin-Ericken
tensors given by
A =V + (Vo)

DA
A = T:‘l +A W+(W)'A, forn>2 (4)

L indicate the matrix transpose, A, A,, A, are the first three Rivlin-Ericken tensor and
A, =1is the identity tensor which is | . The Clausius-Duhem inequality and the result that specific

Helmholtz free energy is minimum when the fluid is at rest provide the following constraints [10]

120,020, oy + | <\24pup,, B =p,=0, f;20. (5)

3. PROBLEM FORMULATION

We consider the steady laminar flow of an electrically conducting non-Newtonian fluid that obeys
the third grade fluid model. We choose the Cartesian coordinate system to model the problem with
x-axis parallel to the direction of the flow, and y-axis being in the transverse direction of the flow.
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The rigid channel walls are represented by equations y = £h . We confine our study to the region
0 <y <h by considering the flow to be symmetric about the center line (y =0) of the channel.
The flow is driven by constant pressure gradient in the direction of the flow and by the imposition
of a uniform magnetic field of strength B, along the transverse direction. The velocity field for

the flow is 0 = (u(y),0,0) with the above assumption , momentum equations that govern the flow

is given by;
AT auYou .,
_&"'ﬂy"'fs(ﬂz"'ﬂa 5 —5 —oBu=0 (6)
p 0 ouY’
B (2a1+a2{—] =0 (7
ay oy oy
op
F_0
oz 8
with the following boundary conditions
u(y)=0at y=h (9)
u(y)=0at y=-h (10)
Introducing the generalized pressure P
2
A ou
p=-p(x y)+(2a +a, )[—j (12)
oy
oA . _ dp o A a
Substituting P in equation (7), we find that d_y = 0,indicating that P = P(X), consequently (6)
reduces to the single equation,
b d2u au) du
-—+ +64| — —oBju=0
dx ' dy’ ﬂ( dy J @y’ (12)

For the simplicity we have introduced & =, + B;. Equation (12) is a second order nonlinear
differential equation. This equation governs the unidirectional flow of a non-Newtonian third grade

fluid between two parallel plates.

By introducing the non-dimensional parameters

' ! ﬂ ! X ’ ph 12 OBOZhZ
y==, f="%, X==, pl="r, MP =2
h ph? h u M
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Invoking above equations in equation (9), (10) and (12) and then omitting the prime for brevity,

we obtain

2 2 12
d_l:+6ﬁ(d_uj d_L:_MZU= P

dy dy ) dy (14)
with the following boundary conditions
u@@)=0, u(-1)=0 (15)

4. SOLUTION OF PROBLEM
In order to solve the system of equation (14) semi-analytically we use two methods namely: The

Regular perturbation method and the Homotopy perturbation method

4.1. Solution by Regular Perturbation Method (RPM)

Let us assume B = ¢ as asmall parameter in equation (14) and by this method, we expand

U(Yag):uo(y)+5ul(y)+52u2(Y)+---- (16)
Substituting equation (16) into equation (14) and (15) and rearrange base on power of € we
obtain

d®u
0. _
£ .F;’—Muwp—o (17)
U(-1)=0, wu,(1)=0 (18)
The solution of equation (17) with boundary condition (18) is given by
u, =e"™vc, +¢, — ﬁp (19)
2 2 12
JERA RV (20)
dy dy ) dy
w(-1)=0, u(1)=0 (21)

The solution of equation (20) with boundary condition (21) is given by

- cz(My + %Njcfezmy - czz(My —%Njcle“my
u =e™c, +e ™, —JMe® " (22)

+ % JM (eemycﬁ + cf)
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2 2 12 2
g9y, g Qo | QU gpd U QU Ay,
dy ) dy dy® dy dy

uz(_l)zoi uz(l)zo
The solution of equation (23) together with boundary condition (24) is given by

1 ., s s 3 I , 1cl’pM?, 6Mpcic, | ,
=—M M a —e"™YMpe,c, + = 3 — o
u2 240 y + y a1+ 2y + ﬂG 2+2 (emy)Z emy y
24 fa,c.c N IV N ]
—ﬁ+06+(e My)zcgﬂMc3+4e MY Ba,c,ce +12e"MY VM fBelic,
+ — — y
_12 I\/IIBCZZCl +6C1:B Ma, _6(e«/ﬁy)zczﬁ 'M a
emy (emy)z 1 3

a,

- +cC
4.2. Solution by Homotopy Perturbation Method (HPM)

The problem under consideration i.e. equation (14) can be written as

L(v)— L(uy)+qL(u, )+ q[6ﬂ[j—;j2 g—;\z/ ~Mv - p] =0,

2

where L = %

let  v=v,+qv, +q°,

(23)

(24)

(25)

(26)

(27)

Substitute equation (27) into (26) and equating the coefficient of same powers of 9 (=11 which

is the embedding parameter, we have
o.d?y  d’u
Cdy?  dy?
Vo(_l) = O,Vo(l): 0

q

And the solution of equation (28) with boundary condition (29) is given by

v, = emyc2 + e‘myc1 +C, Y +Cq

0

d3, d% dv. ' dv

(28)

(29)

(30)

(31)
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v,(-1)=0, v(1)=0 (32)
The solution of equation (31) with boundary condition (32) is given by

_ _ 2
=ae ™™ +ae’™ —3c,vM feier™ +3c,c° VM pe MY —gﬂMc;’e?’Ny

(33)
—%cfl\/lﬂe‘smy +%Mcﬂ6y3 +C,y2 +CLY +Cy
2 2
q?: 9V 45 Mo d‘£+12 Qo M, AV gy~ (34)
dy dy ) dy dy dy dy
v,(-1)=0, v,(1)=0 (35)
The solution of equation (34) with boundary condition (35) is given by
_ \ }
2 2 2
—GeHMﬂc ¢+ 3¢l pM?c,  BMpec,
1 1 2 (ry)z oYMy ,
Vo=~ y C15+ My Gy +Cﬂy + € y
120 12 3 3
E(emy)zcgﬁ'vl 206 —Cp
| _ 24paccq 3 ¢, AMc, ]
eﬁ R Stc,+ ( T y)zc2 PMc, + (eﬁl\/yl )Z + 2™ Y fa,c,C, +12e™ M. M fclc,
+ \/_ ) ) \/_ y (36)
_12yM fege, | 6 fvMa; o R e
ot (emy)z G(e )ch SIMa,
My My Cp C, Ny My My Cy
+(e )zczo+e Cy + FV+W+CZ4( )5+025(e )4+026(e )3+ iy

4.3. Solution by Finite Difference Method (FDM)

The resulting equation arising from equation (14) with the boundary condition in (15) subject to
an external magnetic field is nonlinear in nature and does not admit an exact analytical solution;
therefore, we make use of numerical solutions of the problem under consideration. For simplicity,

stability, accuracy and efficiency, we make use of finite difference techniques to discretization

y, =ihy i =123, N

Yo =0, Yy,1 =0, y, :U(yi)’ U, =0, Uy, =0. (37)
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By Euler’s forward difference scheme in the boundary conditions at the initial point i =0, we
. . . . du d’u
obtain U =1. The following central difference scheme is used for discretization of —and ——
dy  dy
at the nodes i1 =1,2........ ,N
d_u _ Uiy —Uiy (38)
dy 2h
2 -_ . .
d l: — ui-¢—1 2lil +u|—l (39)
dy h
Then, we expressed the resulting algebraic system of equations in residual form as;
rr=0 i=12,...N (40)
where the residuals are given as follows;
3
= %Uz + (— 3pu, — %quug + (hz +6,8u,U, — 3ﬂ2u0 on —2h%u, + h’u, @)
—34uu, +3pu; — Mhu, = ph*
3 -3 3 1 (6puu, , 3 2u,
= 2_hﬂ4ui3+1 + ( h4ﬂ U — z_hﬂzui—ljuiil F + (% - Z_rﬁui—lJuH-l - F
(42)
+%—i—€uiufl +%ufl ~p—Mu, =0
3 3ph’ 3
' = 718UN+1 + (_ 3puy _pTuNljuiul + [hz +6 Uy Uy _gualjuN - 2hZuN
(43)

3
+h%u,_, —38u Uy, +%— Mh*u, = ph*

In order to obtain the solution of non-linear system of algebraic equation (40) Damped Newton
method [7] was employed to stabilize the convergence an initial stage of iteration and it is given

as
Uy =0, — 4, J _1(Uk)r(uk)a k=012,.... (44)

where T =(u,,u,,..u, ) represent the column vector of unknown 0< 4, <1 is the k™ damping

parameter which fulfills the criteria ||r(T,, )| <[r(G, JJand J (T, ) is the Jacobian matrix evaluated

at the k™ iterated whose element is given by
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or .
i=—5% Where i,j=12,...N (45)
ou;
in other to determine u(y), a good initial guess is necessary for the convergence of the damped

Newton’s method and fast solution of the iterative process. For this problem the convergence of
the damped Newton method is gotten when,

|97 @), -0 (@), <10, k=012,. (46)

5. RESULTS AND DISCUSSION
Semi-analytical and numerical solutions for a third grade non- Newtonian fluid between two
parallel fixed plates in the presence of magnetic field have been found. Regular perturbation,
homotopy perturbation and finite difference method are used in solving the governing non- linear
ordinary differential equation.
In order to illustrate the comparison, we use RPM as bench mark and as a guide for solving
governing equation and the results are compared and illustrated in a tables below.
From the result we notice the following:

Tables 1 and 2 shows that HPM is closer to the RPM as the errors generated are smaller

compared to FDM at small value of 3

Table 1. Maximum pointwise error obtained between RPM u(y) ,HPM v(y) and FDM T(y)when
p=0.LM =1,5=0.01at various value of y

y max [u(y)-v(y) maxu(y)-u(y) max(v(y)-u(y)
-1 0 1.213501x107** 2.391681x10™
-0.8 7.063010x10° 1.015510x10” 1.722202 %107
—-0.6 1.264711x107 1.668002 x10~ 2.932710x1077
-04 1066902 x10°’ 2.064213x10°" 3.733104x10°’
-0.2 1.913821x10°’ 2.275311x1077 4.189101x10°7
0 1.995501x10°’ 2.448405%x10™* 2.450420x107*
0.2 1.913820x10°7 2.492903x107* 2.494906 x10™*
0.4 1.669101x10°7 2.572201x10™* 2.573912x10™*
0.6 1.264710x10°’ 2.503029x107* 2.501611x10™*
0.8 7.063010x10°® 1.887601x10™* 1.888310x10™*
1.0 0 1.001127 x10™** 1.899708 x107*
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Table 2. Maximum pointwise error obtained between RPM u(y) ,HPM v(y) and FDM T(y)when

P=0.1M =1 g =1at various value of y

Volume 14(2):149-162, 2022

Vo mexu(y)-vy)  mexu(y)-uly]  mexpy)-u(y)
-1 8.736016x107"* 0 8.736101x10*
-0.8 7.394191x10°° 2.175709x107° 7.176601x10°°
-0.6 1.305605x10™* 2.271821x10° 1.282811x10™*
-04 1.711002x10™* 2.041501x10°° 1.690521x10™*
-0.2 1.955670x10°* 1.885501x10°° 1.936821x10°*
0 2.037512x10™* 1.981910x10™ 4019410107
0.2 1.955610x10~* 1.104512x10°* 9.089811x10°*
0.4 1.711002x10™* 1.326711x10™* 3.842601x10°°
0.6 1.305663x10™* 1.295001x107* 1.056310x10°°
0.8 7.394102x10°° 0.862701x10°° 2.468512x10°
1.0 8.123880x 10 0 8.123810x10™*

In tables 3 and 4, at large value of /£, the FDM generates more errors that HPM. Therefore,

the HPM is closer to the RPM compared to FDM at larger values of . Furthermore, it is notice

that as /# increase, the solution by FDM get imperfectly exacerbate while HPM solution sustain

its accuracy.

Table 3. Maximum pointwise error obtained between RPM u(y) ,HPM v(y) and FDM U (y)when
P=0.1M =1 g =2atvarious value of y

y mex u(y)-v(y)  maxju(y)-a(y) mexv(y)—u(y)
-1 0 1x10™ 5.265011x10™*
-0.8 1.546032x10*  8.792681x10° 1.458105x10™
—-0.6 2.693585x10™*  9.428923x10°° 2.599295x10™*
-04 3.506857x10“  8.670040x10°° 3.420156x10™*
-0.2 3.996379x10*  8.11743x10° 3.9152056 %10~
0 4.160102x10"  1.533413x10™* 2.877226x107*
0.2 3.996379x10*  1.306581x10™* 2.689798x10™
0.4 3.5068572x10" 1.350559x10°* 2.1562974x107*
0.6 2.693585x10*  1.3207269x10°* 1.372858x10™*
0.8 1.546032x10*  1.010032x10™* 5.360001x10°°
1.0 0 1x107™ 4.184646 %107
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Table 4. Maximum pointwise error obtained between RPM u(y) ,HPM v(y) and FDM T(y)when

P=01M =2, 4 =2atvarious value of y
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y max [u(y)-v(y) mex|u(y)-u(y) mex|v(y)-a(y)
-1 0 2x107™ 1.035401x107"
-0.8 5.816917x10°  2.556381x10° 6.072555x10°°
-0.6 1.032721x10*  2.343544x10° 1.056156x107*
-04 1.344329x10*  1.944071x10° 1.363770x10™
-0.2 1.525905x10™*  1.718111x10°° 1.543086x10™
0 1.5854755x10*  1.650421x10° 1.601979x10™*
0.2 1.525905x10™*  1.718119x10° 1.543086x107*
0.4 1.344329x10*  1.944076x10° 1.363770x10™
0.6 1.032721x10*  2.343540x10°° 1.056156x107*
0.8 5.816917 x10™°  2.556382x10°° 6.072554 x10°°
1.0 0 2.230109x10™™ 4.003570x107*2

6. CONCLUSION

In this research, the comparison of semi analytical HPM and numerical solutions FDM of a third
grade non-Newtonian fluid between two fixed parallel plates has been done. It was found that the
solutions obtained by HPM is closer to the exact at the smaller value of S and as the value of g
increases, HPM solution is closer to the exact compared to FDM. This showed that the HPM is
more reliable, accurate and efficient than FDM from comparison and computational point of view
although both HPM and RPM infinite  series  form.

provide solution in
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Appendix
C = e"p

M (em + e‘m)
C,=— e

M (em + r)

(4M 2073 c2e2M _ M ¥%e~ M3 _ oM I2%e Mg,
] 3 1 —2M¥%e Mo, —MI2%e M 4 2M Y2 M e oM
==

4M (em + efm) —2M¥%e M c2e?™M 1 3M I2e M 2 1 aM 2V ¢Zc oM
_3M 3/ze—3fcse6f)

(4l\/| e SFC C2e2F+2M3/2e 3FCZC e4f 2M3/2 -3JM

3 1 - _
C=7 c,cle®™ +3M¥%e M3 1 AM 203 M c2c,etM 3 273 M c3etM

+2M¥%c2ce™ +2M¥?c2c,e™ + MIcle +M3/2c§em)

(246-’5NM 7/2e4\/ﬁCl + 486’5NM 7/2 4NC n 488’5NM 7/2 GN
4 24 5YM V] T/2e8VM . — 24e -5VM M 3e 4FC + 24 5YM M 3e8VM ¢

i 1 _ 36e75FM 3,2VM 75\/7M 3 8«/7 _15675«/7'\/' 5/2e2«/7c4

c, +36e
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