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Abstract
Background: The coronavirus pandemic has resulted in complex challenges worldwide, and the Southern African Develop-
ment Community (SADC) region has not been spared. The region has become the epicentre for coronavirus in the African 
continent. Combining forecasting techniques can help capture other attributes of  the series, thus providing crucial information 
to address the problem.
Objective: To formulate an effective model that timely predicts the spread of  COVID-19 in the SADC region.
Methods: Using the Quantile regression approaches; linear quantile regression averaging (LQRA), monotone composite quan-
tile regression neural network (MCQRNN), partial additive quantile regression averaging (PAQRA), among others, we combine 
point forecasts from four candidate models namely, the ARIMA (p, d, q) model, TBATS, Generalized additive model (GAM) 
and a Gradient Boosting machine (GBM).
Results: Among the single forecast models, the GAM provides the best model for predicting the spread of  COVID-19 in the 
SADC region. However, it did not perform well in some periods. Combined forecasts models performed significantly better with 
the MCQRNN being the best (Theil’s U statistic=0.000000278).
Conclusion: The findings present an insightful approach in monitoring the spread of  COVID-19 in the SADC region. The 
spread of  COVID-19 can best be predicted using combined forecasts models, particularly the MCQRNN approach.
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Introduction
Coronaviruses, a large family of  viruses, can cause ill-
nesses that range from the common colds to much more 
severe diseases like SARS, Middle East respiratory syn-
drome, and COVID-191. Signs of  the COVID-19 disease 
may include fever, cough, shortness of  breath and gen-
eral breathing difficulties, organ failure, and even death. 
Some Chinese health authorities stated that coronavirus 
is likely to be transmitted from one person to another 
even before any symptoms (spread during the incubation 
period), making the epidemic difficult to prevent and 
control. This poses a severe threat to society as a whole.

The Southern Africa region has been hit hardest by the 
COVID-19 pandemic in Africa, thus the epicentre of  
the coronavirus in the African continent2. Sixteen coun-
tries in the southern part of  Africa constitute the SADC 
region namely Angola, Botswana, Eswatini, Comoros, 
Democratic Republic of  Congo (DRC), Lesotho, Mad-
agascar, Malawi, Mauritius, Mozambique, Namibia, Sey-
chelles, South Africa, Tanzania, Zambia, and Zimbabwe. 
By February 2021 the SADC region had accounted for 
half  of  the reported cases in Africa. Of  the five African 
countries accounting for close to 76% of  new infections, 
three are members of  the SADC, namely South Africa, 
Zambia, and Namibia3.
Forecasting is a part of  statistical modelling widely used 
in various fields because of  its benefits in decision mak-
ing4. Forecasting is related to the formulation of  models 
and methods that can be used to predict the future trend 
of  uncertain situations. In most cases, one model is se-
lected based on selection criteria, for example, the AICc, 
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hypothesis testing and/or graphical inspection5. The 
model is considered to have the best performance accu-
racy forecast future values. However, this concept is only 
true if  the model's premises are valid when applying it to 
the data. following Martinez et al.6: forecast models are 
based on the assumption that “the most reliable way to 
predict the future is to understand the present,” and, for 
this reason, these models do not say what will happen in 
the future, but say what can happen if  the conditions ob-
served in the present do not change. Thus, a bad model 
may casually predict the future better than a good model 
if  the observed conditions in the present change radically 
in the future. A single technique cannot efficiently use a 
great deal of  information due to the complexity of  some 
time series. According to Bates and Granger,7 forecasting 
techniques have high accuracy when performing com-
bination is achieved. Individual forecasting techniques 
based on different approaches capture distinctive char-
acteristics of  the series and allow for the combination to 
benefit from such characteristics8. A combined forecast 
allows for gathering available information, hence increas-
ing the accuracy of  the final forecast9.
ARIMA models have commonly been used in time series 
data analysis and forecasting and in predicting COVID-19 
spread in particular10,11. Even though the ARIMA model is 
useful and powerful in time series analysis, sometimes it is 
difficult or rather cumbersome to identify the appropriate 
model for the data12. Recent results in machine learning 
show an improved performance of  the final model not by 
choosing the model structure expected to predict the best 
but by creating a model whose results is the combination 
of  the output of  models having different formats. The 
various machine learning techniques applied are:

• Generalized Additive Model (GAM): These models 
assume that the mean of  the response variable depends 
on an additive predictor through a link function. GAMs 
permit the response probability distribution to be any 
member of  the exponential family of  distributions.
• Gradient Boosting Machine (GBM): A decision tree 
model is chosen typically as a base model; however, an 
ensemble of  such prediction model is chosen
• Quantile Regression (QR) Models: Standard linear 
regression focuses on finding a conditional mean func-
tion describing a linear relationship between the predictor 
and the independent variable(s). QR models look at dif-
ferent quantiles of  the response defined by the condition-
al quantile function.

i. Linear Quantile Regression (LQR) model: The quantile re-
gression model was introduced by Koenker and Bassett39, 
which models the relationship between predictor and 

the conditional quantiles of    given  . The linear 
quantile regression model complements the linear mean 
regression model if  the error terms in the mean regres-
sion model are heteroscedastic.
ii. Quantile Regression Neural Network (QRNN) Model: the 
theoretical support for the use of  quantile regression 
within an Artificial Neural Network to estimate potential-
ly nonlinear quantile models.
iii. Monotone Composite Quantile Regression Neural Network 
(MCQRNN) model: estimates simultaneously multiple 
non-crossing quantile functions and allows optional 
monotonicity constraints
iv. Partial Additive Quantile Regression (PLAQR) averag-
ing: Estimation, prediction, thresholding, transformation, 
and plotting for partial linear additive quantile regression
.
• Online Prediction by ExpeRt Aggregation (OP-
ERA): Considers a sequence of  observations from a 
bounded time series to be predicted step by step. At each 
instant t, a finite set of  experts, provides predictions x of  
the next observation in y.
Forecast combination methods exist and previous studies 
on forecasting show that combining forecasts generated 
from different models can considerably improve forecast-
ing performance over single forecast models13. Accord-
ing to Zou and Yang5 combined forecasting improves 
accuracy performance. A fact confirmed by Adhikari 
and Agrawal14 is that combined forecasts lower fore-
cast errors than individual models14. To the best of  our 
knowledge. There is relatively no evidence of  forecast 
combination in the context of  COVID-19. This study 
introduces an efficient, flexible nonlinear quantile regres-
sion model, the monotone composite quantile regression 
neural network model to the modelling of  the spread of  
COVID-19 in the SADC region.

In the next section we outline the methodology used in 
the study as well as formulation of  the model. This is 
followed by the Results section where we explore the 
COVID-19 data for the SADC region and interpret re-
sults from fitted models. Lastly, we discuss and make con-
clusion based on the findings.  
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Methods
Data
In this study, we use an openly available daily number 
of  confirmed cases of  COVID-19 reported by Our 

World in Data (https://www.ourworldindata/coronavi-
rus-source-data) from 7 March 2020 to 25 August 2021. 
We extract data from the daily confirmed cases for the 
SADC region. The SADC region is presented in Figure 
1 below.

Figure 1: The spread of  COVID-19 in the SADC region

Modelling and prediction of  the spread of  COVID-19 in 
the SADC region are done using the R packages: 'fore-
cast'15 for fitting the ARIMA and TBATS models, 'gam'16 

for fitting the generalized additive models, 'gbm’17 for fit-
ting the stochastic gradient boosting model, ‘qrnn’18 for 

fitting the linear quantile regression averaging and mono-
tone composite quantile regression neural network mod-
el, ‘plaqr’19 and ‘opera’20. Figure 2 provides a schematic 
summary of  the analysis procedure for predicting the 
spread of  COVID-19 in the SADC region.  

Figure 2: Schema for predicting the spread of  COVID-19 in the SADC region.
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Single Forecasting Methods
Non-Seasonal Autoregressive Integrated Moving 
Average (ARIMA) models
The growth of  daily COVID-19 disease cases for the 
SADC region falls into the category of  time series data, 
easily captured by an integrated model such as the ARI-
MA21. ARIMA models describe series that exhibit a trend 
that differencing can remove.

SARIMA Model
We have the general SARIMA model represented analyt-
ically as:
 
                                             
 
where   represents the SADC confirmed daily cases on 

day  ,   ,   is the error term at time  , is 
the seasonal length,  is a backshift operator (  
).   is the non-seasonal autore-
gressive (AR) operator,   is 
the seasonal AR operator,   
is the non-seasonal moving average (MA) operator, 

 is the seasonal MA op-
erator.  and  are the non-seasonal and seasonal dif-
ference operators of  order and respectively, where    

and .
 
TBATS model
The TBATS model uses the Box-Cox transformation, 
exponential smoothing, trigonometric seasonality and 
ARMA errors1. It is generally used for forecasting time 
series with complex seasonal patterns. The components 
of  the model are:
(i) The Box-Cox transformation

                                                           (2)

where  is the confirmed daily cases on day  ,  is the 
transformation parameter and   denotes the natural log-
arithm.             
(ii) Deterministic and stochastic trend

    

                                                         (3)

where denotes the number of  seasonal patterns  is 

the local trend in period  ,   represents the long-run 

trend,  denotes the short-run trend in period ,   

represents the   seasonal component at time  ,  

 denotes the ARMA (p, q) process and   and ф are 
smoothing parameters.
 
(iii) Trigonometric seasonality

                                         (4)

wher  and  are smoothing parameters and   

with  representing the period of  the seasonal cycle.
(iv) ARMA errors

                                                           (5)
where   denote the autoregressive and moving aver-
age parameters, respectively and  is a white noise pro-
cess.
The components (i) – (iv) put together give the TBATS 
model.
 
Generalized additive models

Let  denotes the SADC confirmed daily cases on 

day  ,   with the corresponding covariates 

 , where represent the number of  vari-
ables.  The generalized additive model is then written as:
 
                                                                      (6)

where   is a constant parameter,   are smooth func-

tions and  are independent and identically distributed (

) error terms. Equation (1) is estimated using penal-
ized cubic splines22,23 given as:
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(7)
The penalty parameter controls the degree of  smooth-
ness which is optimized using the gen-
eralized cross-validation criterion (GCV)23. The smooth 

function, , is a sum of  basis functions,  , togeth-

er with their regression coefficients  and is given by 

, where  denotes the basis dimen-
sion.
 
Variable Selection
To reduce the problem of  multicollinearity amongst the 
predictor variables we use the least absolute shrinkage 
and selection operator (Lasso). Lasso formulation is giv-
en as24,25:

                         
(8)
where λ is the shrinkage factor. The shrinkage factor, 
which lies between 0 and 1, is given by      

 . See Tibshirani24 and Friedman et al.25 for a 
detailed discussion of  Lasso.
 
Stochastic Gradient Boosting Method (SGBM)
Gradient boosting (GB) is a machine learning technique 
that fits an additive model in a
stage-wise way. The additive model can take the form giv-
en in Equation (8)26.

 
                                                             (9)
where  are functions of   which are char-
acterised by the expansion parameters  . The pa-
rameters  and  are fitted in a stage-wise way, a pro-
cess which slows down over-fitting26. Stochastic gradient 
boosting (SGB) is an extension of  GB in which a random 
sample of  the training data set is taken without replace-
ment.  See Friedman for a detailed discussion of  the gra-
dient boosting method27.
 
Combining Forecasts
Combining forecasts was first developed by Bates and 
Granger7, who argued that combined forecasts improve 
forecast over the single model forecast. Suppose the point 

forecasts from the ARIMA, TBATS, GAM, and SGBM 
models are combined so that we have a vector

 
                                (10)
Then, the combined forecasts for this vector are obtained 
using the LQRA, MCQRNN, PLAQR, and OPERA ap-
proaches. The accuracy of  the performance of  these 
models is checked by comparing their respective RMSE, 
MAPE and Theil’s U statistics.
 
Quantile Regression Averaging (QRA)
In the standard QR setting, individual point forecasts are 
used as independent variables and the corresponding tar-
get variable as the dependent variable28. The relationship 
between the predictor and the independent variable(s) is 
not described with a single slope parameter just like in lin-
ear regression models, but a set of  parameters  depen-

dent on the quantile  must be estimated. We define the  

regression quantile ( ) as any solution, to the quantile 
regression minimization problem29:

 
                                                     (11)

where  is a function of   and 
. This kind of  loss function is most often 

called check or pinball loss function and is defined as fol-
lows:

 
                                                                       (12) 

where  denotes a sequence of  explanatory 

variable and  is formulated as a linear function 
of  parameters. The LQRA model is given by

 
                                                   (13)
where 
and  is the probability mass of  interest.   is a vec-
tor of  covariates for the  forecasted value from the 
fitted ARIMA model, TBATS model, GAM, and SGBM, 
i.e., multivariate quantile regression model. The unknown 
parameter vectors appearing in the above equation can be 
solved from the following optimization problem:

                      (14)
where  is the 
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check function. Figure 3 presents a schematic expression 
of  the quantile regression average.

 

Figure 3 shows the link between the individual point fore-
casts through the quantile regression to the combined in-
terval forecast.

Figure 3: Quantile regression averaging.

Monotone Composite Quantile Regression Neural 
Network (MCQRNN)
MCQRNN is a novel form of  quantile regression that can 
be used to simultaneously estimate multiple non-cross-
ing. It combines elements drawn from the QRNN mod-
el30,31, the monotone multilayer perception (MMPP)32, the 
composite QRNN33, the expectable regression network34 

and the generalized additive neural network35. Cannon18 
gives an elaborate explanation on the formulation of  the 
MCQRNN.

Combining prediction intervals
Robust prediction intervals are known to be produced 
from combining prediction limits from various mod-
els36,37,38. We use the simple average and median methods 
for combining the prediction limits. The simple average 
method uses the arithmetic means of  the prediction lim-
its from the forecasting models. Thus, expressed as
 

                             (15)
 
The median method is known to be less sensitive to out-
liers and is given in Equation 16
 .                         

         (16)
For each of  the models,   , we compute the 
prediction interval widths (PIWs),
which we denote by   and  cal-
culate as

  
where   and   are the upper and lower limits of  the 
prediction interval, respectively. Various indices are used 

to evaluate the reliability of  prediction intervals (PIs). In 
this study we use the prediction interval normalised av-
erage width (PINAW). We express the PINAW, an index 
that check if  the required value is covered by the predic-
tion interval as

   (17)                  
Using PINAW we compare different models and then 
determine the one that possesses the smallest percentage 
value.

Empirical Results
Exploratory data analysis
We use an openly available daily number of  confirmed 
cases of  COVID- 19 reported by Our World in Data 
(www.ourworldindata/coronavirus-source-data) from 7 
March 2020 to 25 August 2021. The number of  daily re-
ported cases for the SADC region ranged from 0 to 32 
321. From 7 March 2020 to 3 August 2021, the average 
number of  reported cases was 6 581 per day.
We further perform a univariate data analysis for the re-
ported daily COVID-19 cases by plotting the time series 
data and the density plot, normal Q-Q plot and the Box 
plot as shown in Figure 4. The plots check for the nor-
mality assumption in the time series data.
Figure 4(a) presents the time series trend for the daily 
COVID-19 cases in three phases. The first phase has the 
lowest peak and the peaks increase with time, with the 
third phase having the highest peak. Figure 4(b) presents 
the density plot, which shows that the series is positive-
ly skewed, thus, not normally distributed. Figure 4(c) is 
the Q-Q plot. The deviations from the diagonal line in 
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the normal Q-Q plot imply that the data extend farther 
out than expected under normality. A correlation matrix 
showed some highly correlated variables (see the correla-
tion matrix given in the supplementary material). We use 
Lasso (discussed in Section 2.2.4) to reduce the multicol-

linearity problem in variable selection.
Predictive modelling for the reported daily COVID-19 
cases in the SADC region
The series is relatively long and can be divided into train 
and test sets. The training set constitutes the first 520 ob-

Figure 4: Normality checks for the daily COVID-19 series

servations and 521 to 535 represent the test set. In the 
next section, we fit the ARIMA model, TBATS, Gener-
alized Additive Model and Stochastic Gradient Boosting 
for the training set and use the fitted models to check if  
they fit the test set well.

Time series ARIMA model
We start by testing for the stationarity of  the original time 
series data and that of  the differenced time series data. 
This is done using the augmented Dickey-Fuller (ADF) 

test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
test at a 5% level of  significance. ADF test: the null hy-
pothesis is that the data are non-stationary and non-sea-
sonal. KPSS test: the null hypothesis is that the data are 
stationary and non-seasonal. A plot of  the residuals auto-
correlation function (ACF) is also used to investigate the 
stationarity of  the original time series. Figure 5 present 
the results. 

The ACF plot shows that all autocorrelations are outside 
the threshold limit. This indicates that the original series 
is not white noise. A Scatter plot of  residuals shows that 
yt is correlated to yt-1.
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Figure 5: Display of  the time series for the daily COVID-19 cases in the SADC region.

Further diagnostic of  residuals using the Box-Pierce 
test and the Box-Ljung test return small p-values <2.2e-
16, suggesting that the original series is not white noise. 
The ADF (-2.2052, p-value=0.4915) and the KPSS tests 
(1.9668, p-value=0.01) show that the original time series 
is not stationary. After the first difference of  the data, 
both the ADF and KPSS test show that the differenced 
series is stationary in its mean and variance at 5% level, 
p-values= 0.01 and 0.1 respectively.  Therefore, we adopt 
d = 1 for ARIMA (p, d, q) model.
The ACF and PACF charts for the differenced time se-
ries, though not shown, were used to help select the can-
didate ARIMA models by observing the spikes in the 
ACF and PACF. The spikes in the PACF plot suggest an 
AR7 and ACF suggest a MA7. Thus, the initial candidate 
model takes the form of  ARIMA7,1,7. We consider sever-
al ARIMA models, including the auto-selected ARIMA 
model and assess the accuracy of  their performance, 
based on the AICc. The ARIMA14,1,8  with the lowest 
AICc (AICc=9102.03) compared to all the other ARIMA 
models is considered the best ARIMA model for predict-
ing the spread of  COVID-19 in the SADC region. At 5% 
significance level, the Box-Ljung test ( -squared = 8.9064, 
df  = 20, p-value = 0.984) shows that the residuals for the 
fitted ARIMA14,1,8  model are stationary.

TBATS

The best TBATS model for the confirmed daily COVID 
cases for the SADC region is a BATS (1, {3,2}, 0.886, -) 
where Box-Cox transformation is 1 (doing nothing).

Generalized additive model
Before fitting the GAM and the GBM we created some 
covariates where  

 

The model for the GAM and GBM is:

              
(18)
Before fitting using Lasso shrinkage approach discussed 
in Section 2.2.4, we fitted the GAM because it does not 
have an inbuilt mechanism for variable selection. Table 1 
presents the results for the fitted model (18). 
Table 1
The results in Table 1 show that the variables , 

,   and   do not contrib-
ute significantly to the GAM and hence exclude them in 
the building of  the GAM model. Figure 6 presents plots 
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that check for the normality assumptions in the fitting of  
GAM.
The graphs in Figure 6 theoretical quantile plot's tails. 
This suggests a rather heavy tail distribution, different 
from a normal distribution. In addition, the plot of  resid-
uals shows strong heteroscedasticity.

Stochastic Gradient boosting method (SGBM)
Unlike the GAM, the SGBM has an inbuilt mechanism 
for selecting variables.  Table 2 shows the influence of  the 
variables on the fitted SGBM. The variables are ranked 

Figure 6: Normality checks for the fitted Generalized Additive Model

Table 1: Selection of variables for the GAM via the Lasso approach 

Variable Regression coefficient 

 

3360 

 

178 

 

-0.498 

 

. 

 

. 

 

-1880 

 

0.961 

 

-2.24 

 

. 

 

0.00008 

 

. 

 

0.242 

 

0.461 
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from the most influential to those that do not influence 
the fitted model.
Table 2 results show that the variables  , and   have a zero 

influence on the fitted model.
We display the predicting outputs for all the fitted models 
namely the ARIMA (14,1,8), TBATS, GAM and Stochas- 

Table 2: Selection of variables for the SGBM 

Variable Relative Influence 

 

29.46118 

 

19.03578 

 

16.43531 

 

15.35461 

 

8.49682 

 

5.958118 

 

2.630775 

 

1.43863 

 

0.679078 

 

0.509696 

 

0 

 

0 
  

tic gradient boosting model (SGBM) in Table 3. Included 
in the table are the forecast performance measures name-
ly the RMSE, MAE, MAPE and Theil’s U results.  

Among the four models, the GAM performed best in the 
prospective forecasting of  daily COVID-19 cases over 
the following 15 days, with the smallest values of  RMSE 
(1459.164), MAE (1158.378) and MAPE (7.81968). The 

Table 3: Forecast performance measures for the single forecast models 

Model RMSE MAE MAPE Theil's U 
SGBM 1906.75 1658.871 10.54381 0.3356 

GAM 
1459.164 1158.378 7.81968 0.2387 

TBATS 2610.837 2091.848 14.19489 0.3880 
ARIMA 
(14,1,8) 2602.141 2372.979 16.2012 0.4747 

 

 SGBM showed better goodness of  fit than the ARI-
MA14,1,8  and TBATS models. For the forecast accuracy, 
the ARIMA14,1,8  showed a greater RMSE (2602.141) than 
the GBM (1906.75), as well as a greater MAE (2372.979 
vs. 1658.871) and MAPE (16.2012 vs. 10.54381).
 
Table 4 presents the forecasting results from the fitted 

ARIMA14,1,8 , TBATS, GAM and SGBM models.
The results in Table 4 show that the GAM, the model 
that performs the best compared to the rest, predicts the 
lowest number of  COVID-19 cases than all the other 
models.
Figure 7 (a-d) displays comparison plots of  the 15-days 
forecast from the training set and the test set (observed 
series) of  the fitted models. The black line represents 
observed/actual values of  the test set.  Figure 7(a) pres-
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Table 4: Forecasting from the ARIMA (14,1,8), TBATS, GAM and SGBM 

         

Forecasts(h) 1 15011.18 18366.55 17254.98 14445.34 
2 24344.25 20869.12 24742.36 21662.12 
3 20593.48 20632.58 23556.69 18847.04 
4 18784.38 18209.17 17652.61 13026.52 
5 15970.79 15357.42 17374.73 11163.43 
6 18708.81 14073.74 17915.55 14706.16 
7 15575.50 15146.23 20528.35 16241.85 
8 15556.11 17594.13 21731.04 17235.09 
9 23111.45 19438.31 24227.89 18920.46 
10 19832.68 19204.77 17110.47 14820.07 
11 18226.37 17019.44 17652.61 13729.31 
12 14903.75 14480.82 17374.73 10198.84 
13 17213.17 13430.18 18457.68 12865.33 
14 15787.95 14563.86 16915.97 13778.62 
15 15048.45 16932.37 18629.08 15226.46 

  

 

 

ents the forecast from the training set for the ARIMA14,1,8 

model and the test set, (the observed series). Figure 7(b) 
presents the prediction from the TBATS model. Figure 
7(c) presents the prediction from the SGBM and Figure 
7(d) represents the prediction from the GAM.
Figure 7(a-d) plots show that prediction from the GAM 
gives a better fit of  the test set (observed set) followed by 
the SGBM, the ARIMA14,1,8  and lastly the TBATS model. 
Although the GAM is the best of  the four fitted models, 

it does not perform well in certain periods while other 
models perform better in other periods. Therefore, we 
suggest combining forecasts from the ARIMA14,1,8  mod-
el, TBATS, GAM, and the SGBM to improve forecasts 
over individual models.
Combining forecasts
Let the vector of  forecasters from the ARIMA (14,1,8) 
model, TBATS model, GAM and SGBM be

Figure 7: Plot of  the 15-day forecast from the training set (predicted values) and 
the test set, the black line represents observed/actual values of  the test set
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We combine the forecasters using four different meth-
ods namely the Linear Quantile Regression (LQR) model, 
Monotone Composite Quantile Regression Neural Net-
work (MCQRNN) model, Partial Linear Additive Quan-
tile Regression (PLAQR) averaging, and Opera. For the 
first three (LQR, MCQRNN, and PLAQR) the value of  
the conditional quantile,   gives better forecasts. Table 5 
presents results of  the comparison of  the RMSE, MAE, 
MAPE, and Theil’s U statistic for the fitted models, used 
to check the accuracy of  the performance of  the com-
bined forecasts.

Results in Table 5 indicate that the RMSE and MAPE for 
combination forecast models (LQR, MCQRNN, PAQR, 
OPERA) are lower than the RMSE and MAPE for the 
single forecast models (ARIMA, TBATS, GAM, GBM). 
Thus, forecast combinations improve the accuracy over 
the single forecast models for the daily COVID-19 cas-
es for the SADC region. The MCQRNN has the lowest 
RMSE=380.931 and MAPE=0.808865, compared to the 
other models. Theil's U statistic for the MCQRNN mod-
el is close to 0 suggesting a perfect fit for the forecast.
Figure 8 shows a further comparison of  the performance 
of  the combination forecast models.  We visualize how 
good forecasts from the training data set fits the testing 

Table 5: Forecast performance measures for the combined forecast models 
 

Forecast 
combination model RMSE MAE MAPE 

 
Theil's U 

LQR 1196.701 703.655 4.014866 0.1896 

MCQRNN 
0.001323 0.001049 

 

 

PLAQR 351.5644 111.6311 0.72325 0.0611 

OPERA 1244.245 936.4002 6.264443 0.1970 
 

 set. The testing set represents the original series, which as 
explained earlier constitutes the last 15 of  the observed 
data.

Figure 8 results reveal that the MCQRNN model fits 
the observed series (test set) well. The plot of  the MC-
QRNN shown in black is closer to the plot of  the test 

Figure 8: The comparison of  forecasts from combined forecast models where the red line represents the
 predicted values from the training set and the black line represents observed/actual values of  the test set

set. Although the PLAQR also gives a better fit, it does 
not provide a good prediction for 10-12 days. Thus, the 
MCQRNN model outperforms all the other combination 

models hence, the preferable model.
Out of  sample forecasts
We use the developed models for out-of-sample predic-
tion of  the confirmed daily cases of  COVID-19. Table 6 
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presents the instances of  the predicted cases for the next 
14 days, ranging from 26-08-2021 to 08-09-2021.

Results in Table 6 indicate that the number of  new con-
firmed COVID-19 cases fluctuates between 1297 and 
23000 for the next 14 days, that is from 26 August 2021 

to 8 September 2021. A downward trend in the number 
of  confirmed cases is occurring.

Evaluation of  Prediction Intervals
We also assess the sharpness of  the predictive distribu-
tions by calculating the prediction intervals normalized  

Table 6: Predicted cases for the next 15 days (26-08-2021 to 08-09-2021) 

     

L.95_med 
 

U.95_med 
536 19600.88 17649.11 24652.49 22166 14218.63 22194.46 26630.79 
537 17038.81 17263.71 18486.34 15722 13427.25 16764.91 21100.17 
538 18070.16 15091.17 16263.04 13946 10971 15600.43 19211.35 
539 12547.15 12715.74 13962.07 12528 8436.59 10831.03 16994.88 
540 13526.01 11844.08 15577.29 13104 7452.54 12911.73 16235.62 
541 15958.47 13039.32 16688.39 15052 8495.5 14541.09 17583.14 
542 15992.99 15326.47 16723.41 18052 10509.49 13252.8 20143.45 
543 19571.18 16944.35 20527.88 21879 11727.81 17673.14 22160.89 
544 16607.93 16664.65 17424.34 17328 11034.46 14654.66 22294.83 
545 18057.55 14690.51 16490.99 16624 8746.95 14684.7 20634.07 
546 13177.78 12477.85 14171.26 14983 6332.65 10319.51 18623.05 
547 13531.66 11632.73 14617.19 15061 5334.77 10981.04 17930.69 
548 15887.62 12719.35 14933.97 16719 6240.52 11805.66 19198.17 
549 15984.92 14862.81 16581.5 17837 8109.93 13189.7 21615.69 

 

average width (PINAW) using the methods discussed in 
Section 2.3.2, i.e., from simple average and median. All 
the prediction intervals are at the 95% level. The com-
puted PINAWs for the models are 2.5795 and 1.8285 for 
the simple average and median, respectively. The medi-
an has a narrower prediction interval than the average. 
Figure 9 presents plot of  the confirmed cases including 

forecasted cases for the period 26-08-2021 to 08-09-2021 
with the 95% prediction interval. The prediction intervals 
are from the median combination method for combining 
prediction limits. 
Discussion
Improvement of  time series forecasting accuracy through 
combining forecasts from multiple time series candidate 
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Figure 9: Plot of  the confirmed cases including forecasted cases for the period 26-08-2021 to 
08-09-2021 with the 95% prediction interval. The prediction intervals are from the median 

combination method for combining prediction limits  

models is an important and dynamic area of  research. In 
this study, we predict the spread of  COVID-19 in the 
SADC region using confirmed daily cases from the 7th 

of  March 2020 to the 25th of  August 2021, yielding 535 
observations. Since the data set is relatively large, training 
using the first 520 observations is done, then testing using 
the last 15 observations followed by a 14-forecast using 
the candidate models.
The single forecast models used in this study are the ARI-
MA models, TBATS model, GAM and the SGBM ap-
proaches. The GAM outperforms all the other models 
since has the lowest RMSE, MAPE and Theil’s U statistic 
from these approaches. On testing the model's perfor-
mance using plots, we discovered that the performance 
of  the GAM was not outright. The GAM could not per-
form well from 18th August, 2021, to the 20th August, 
2021. However, the SGBM and the TBATS models per-
form better in this interval. Thus, we decided to combine 
forecasts from the ARIMA, TBATS, GAM, and SGBM 
to ensure the final model's accuracy.
The forecasts from the single technique models are com-
bined using the Quantile regression approaches, i.e., 
linear quantile regression averaging (LQR), Monotone 
Composite Quantile Regression Neural Network mod-
el (MCQRNN), PLAQR and the OPERA. The MC-
QRNN is a novel approach to nonlinear quantile regres-
sion modelling that: 1) simultaneously estimates multiple 
non-crossing, nonlinear conditional quantile functions, 2) 

allows for optional monotonicity, positivity and general-
ized additive model constraints, 3) can be adapted to esti-
mate standard least-squares regression and non-crossing 
expectile regression functions18.
The combined forecasts models show an increased per-
formance accuracy compared to the performance accura-
cies for the single forecast models. This is in congruen-
cy with findings from studies on combining time series, 
which purports that combining forecasts from different 
models effectively reduces the prediction errors and pro-
vides considerably increased accuracy9,14,39. Cross-valida-
tion results suggest that MCQRNN is more robust than all 
the other models (RMSE=0.00132, MAPE=0.00000614, 
Theil’s U=0.000000278). Its Theil’s U statistic is close to 
zero, indicating a perfect fit. The closer the Theil inequal-
ity coefficient is to 0, the smaller the difference between 
the predicted value and the real value will be, which indi-
cates the better fitting degree of  the prediction model40. 
A study on non-crossing nonlinear regression quantiles 
by MCQRNN on rainfall extremes also confirms the ro-
bustness of  the MCQRNN approach compared to other 
baseline models18

We developed a quantile regression average model to per-
form a 14-day out of  sample forecast. The model pre-
dicted a fairly decreasing trend from 22194 on the 26th 

of  August 2021 to 13189 on the 8th of  September 2021, 
on the number of  confirmed cases in the SADC region. 
We further investigated the sharpness of  the fitted mod-
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els using the PINAWs from simple average and median 
at 95% level. The median showed a narrower prediction 
interval. Considering this as the first study conducted us-
ing the combined forecast approach to predict the spread 
of  COVID-19, our findings significantly predict the pan-
demic. The approach allows for the timely forecasting of  
the spread of  COVID-19, hence informing of  the intro-
duction of  effective interventions in the SADC region. 
 
Conclusion
Forecasting plays an important role in decision making, 
particularly in this period where the COVID-19 pandemic 
is challenging the entire world. However, single forecasts 
techniques do not perform well in predicting the spread 
of  COVID-19 in the SADC region. Combined forecasts 
models using quantile regression averaging increases ac-
curacy in predicting COVID-19 cases. A prediction of  a 
downward trend for the next 14 days in the COVID-19 
cases is shown from the fitted combined forecast mod-
el. The findings present an insightful approach in mon-
itoring the spread of  COVID-19 in SADC region. The 
spread of  COVID-19 in the SADC region can best be 
predicted using combined forecasts models, particularly 
the MCQRNN approach.
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