Review of core stability exercise versus conventional exercise in the management of chronic low back pain

Obinna Dickson Nwodo¹, Peter Olanrewaju Ibikunle², Nnenna Linda Ogbonna³, Kenneth Umezulike Ani², Arinze Christain Okonkwo², Chinenye Joy Eze⁴, Chukwudi Uchenna Onwudiwe¹, Godwin Uroko Ezeja¹, Ifeoma Adaobi Maduanusi¹

- 1. Department of Physiotherapy, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria.
- 2. Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria.
- 3. Department of Medical Laboratory, Enugu State University of science and Technology Teaching Hospital, Enugu, Enugu State, Nigeria.
- 4. Department of Pharmaceutical Science, University of Nigeria, Nsukka, Enugu State, Nigeria.

Author emails:

Obinna Dickson Nwodo: obinna.dickson10@gmail.com; Peter Olanrewaju Ibikunle: po.ibikunle@unizik.edu.ng; Nnenna Linda Ogbonna: Lynnmaris01@gmail.com; Kenneth Umezulike Ani: uk.ani@unizik.edu.ng; Arinze Christain Okonkwo: Ach.okonkwo@unizik.edu.ng; Chinenye Joy Eze: Joihkings@gmail.com; Chukwudi Uchenna Onwudiwe: Chuksniwe@gmail.com; Godwin Uroko Ezeja: godexy2ke@gmail.com; Ifeoma Adaobi Maduanusi: Ifeomamaduanusi7@gmail.com

Abstract

Exercise has been proven to be effective in the management of chronic low back pain. Over the years, core stability exercise (CSE) has gained popularity however there is lack of consensus on the best exercise treatment.

Aims: To review the effectiveness of core stability exercises or conventional exercises in the management of chronic low back pain (CLBP).

Methods: This study is a systematic review of randomized clinical trials which examined studies regarding core stability and conventional exercise by using Google scholar, Medline, PEDro and Cochrane from 2010 to 2021. The Methodological quality was evaluated using the PEDro scale. The included studies randomized participants into two different exercise groups.

Results: From the 58 potentially relevant trials, a total of 14 trials were included in the current analysis. The data indicated that core stability exercise was better than conventional exercise for short term pain relief. Ten studies included self reported back specific functional status, and compared to conventional exercise, core stability exercise resulted in significant improvement in function

Conclusion: Compared to conventional exercise, core stability exercise is more effective in pain reduction and improved physical function in individuals with CLBP in the short term however, only two trials carried out follow-up assessments post intervention.

Keywords: Core stability exercise; conventional exercise; chronic low back pain.

DOI: https://dx.doi.org/10.4314/ahs.v22i4.19

Cite as: Nwodo OD, Ibikunle PO, Ogbonna NL, Ani KU, Okonkwo AC, Eze CJ, et al. Review of core stability exercise versus conventional exercise in the management of chronic low back pain. Afri Health Sci. 2022;22(4). 148-167. https://dx.doi.org/10.4314/ahs.v22i4.19

Corresponding author:

Obinna Dickson Nwodo,

Department of Physiotherapy, Alex Ekwueme Federal University Teaching Hospital, Abakaliki,

Ebonyi State, Nigeria. Tel: +234-7037855171

Email: obinna.dickson10@gmail.com

Introduction

Low back pain (LBP) is the single biggest cause of years lived with disability worldwide and a major problem to global health system. Low back pain by definition is pain in the region between the lower margin of the 12th rib and the gluteal folds with or without distal radiation to the lower extremity. In western countries, the estimated lifetime prevalence of LBP ranges from 30% to 79.2%

© 2022 Nwodo OD et al. Licensee African Health Sciences. This is an Open Access article distributed under the terms of the Creative commons Attribution License (https://creativecommons.org/licenses/BY/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

whilst the lifetime prevalence of low back pain in Africa ranged from 28% to 74% and was almost correspondent to the rates in the Western societies.3 There is evidence that the prevalence and costs of LBP are rising around the globe due to ageing and expanding world population.⁴ More so, it has been asserted that the risk of low back pain is twice as high once a history of the condition have been established.⁵ Despite this, the most appropriate intervention to LBP remains elusive.6 The causes of LBP are complex and not clearly understood; although some risk factors are implicated.7 Individuals with LBP commonly present with decreased flexibility in the lumbar region and functional status. The latest clinical practice guidelines recommend that patients remain physically active, as long period of physical inactivity contributes negatively to recovery and the general wellbeing.8 Many exercise techniques have been developed for the treatment of CLBP. Their aims are pain decrease, muscular strengthening in flexion or extension.9 Core stability training is fast becoming a popular rehabilitation regimen in the management of CLBP, as it involves the restoration of the ability of the neuromuscular system to control and protect the spine from injury or re-injury. 10,111 Bronfort et al¹² found that supervised core stability training improves pain severity, disability level and general health after some weeks of treatment. More so, a meta-analysis by Wang et al 13 found that core stability exercises produced better outcomes than routine exercise therapy during the initial three months of intervention for low back pain. Conventional exercise has been in use for long period of time and also has been established to be effective in pain reduction and improved strength.¹⁴ Consensus on the most effective types of exercises for the treatment of CLBP has not been reached yet. Hence, the objective of the review was to investigate the effectiveness of core stability training and conventional exercise in patients with low back pain measured in randomized controlled trials on pain and disability outcomes.

Methodology Study Design

We conducted and reported this systematic review according to the PRISMA guidelines, with a protocol defined a priori. We identified randomized controlled trials (RCTs) by electronically searching the following databases: Physiotherapy Evidence Database (PEDRo), Medline, Cochrane, Google scholar, and others. Furthermore, we conducted a hand-searching of the reference lists of the

articles found from the databases and journals to identify additional relevant articles. Briefly, the following medical subject headings (MeSH) were included: low back pain, sciatica, lumbo-sacral region, exercise, and chronic pain. We restricted our searches to only studies published in English language between the years 2010 to 2021. We arrived at the decision so as to eliminate the cost of language translations and to ensure that the identified and included articles in this review would not be studies that are too staled. The keywords used were RCTs, double-blind method, single-blind method, random allocation, pelvic girdle pain, motor control, exercise therapy, stability, stabilization, traditional exercise, conventional exercise, specific exercise, and physical therapy. We removed duplicates that were identified in multiple database searches. Reference lists of the included articles were also manually searched for relevant studies. All the literature searches in the afro-mentioned databases and journals were performed between March and August, 2021.

Inclusion Criteria

Literature search was conducted through several steps. First, the objective of this study was defined with population, intervention, comparison, and outcome (PICO) techniques. These techniques were determined to establish the eligibility criteria for this study as follows.

Types of studies: Only RCTs examining the effects of core stability exercise versus conventional exercise for the treatment of patients with chronic LBP were included. Types of participants: We included articles with both female and male subjects (over 18 years of age) who had chronic LBP (longer than 3 months). We excluded articles that included participants with LBP evoked by specific conditions or pathologies.

Types of interventions: We included articles that compared a control group, which received conventional exercise, and treatment group, which received core stability exercise training. A core stability training program could be described as the reinforcement of the ability to ensure stability of the neutral spine position.¹⁰

Types of outcome measures: The primary outcomes of interest were pain intensity and back-specific functional status.

Selection of Studies

Two reviewers (Nwodo Obinna and Onwudiwe Chukwudi) were used for the pre-specified criteria to screen for relevant titles, abstracts and full papers. Articles were removed once inclusion criteria were not met. In conflicting situations, a third reviewer (Ogbonna Linda Nnenna) was consulted

Exclusion Criteria

Exclusion criteria were listed as follows: title keywords unrelated to research topics; unclear articles; and incomplete study, study protocols, abstract, and review articles.

Data Extraction

We extracted the following data from the included articles: study design, subject information, description of interventions between the core stability exercise and conventional exercise group, follow-up period, and outcome measures (Table 1). These data were then compiled into a standard table. The two reviewers (Nwodo Obinna and Onwudiwe Chukwudi) who selected the appropriate studies also extracted the data and evaluated the risk of bias. It was necessary to consult an arbiter (Ogbonna Linda Nnenna) to reconcile any disagreements.

Table 1: Characteristics of included studies

	Authors and country	Variables	Study population	Sample size	Sourced databases	Participants characteristics	Aims of the study	Main finding
1.	Javadian et al ¹⁷ (2012) Ira n		Lumbar Segmental Instability, a subgroup of non specific low back pain	N = 30 Core stability group: 15. Convention al group: 15.	Cochrane Library	Core stability exercise group: Bracing and hollowing treatment in supine, Bridging, kneeling, sitting and standing positions. Routine exercise group: Single and double leg knee to chest, Bridging, Interval lower limb raising, supine cycling, heel and leg slide, lower abdominal crunch	The purpose of the study was to determine the effect of core stabilization exercises on pain, functional disability and muscle endurance in patients with Lumbar segmental instability.	Core stabilization exercises plus routine exercises are more effective than the routine exercise alone in decreasing pain, increasing functional disability and muscle endurance of patients with signs and symptoms of lumbar segmental instability
2.	You et al ¹⁸ (2013) Republic of South Korea	Pain and Physical function	Chronic low back pain	N = 40 Core stability group: 20	MEDLINE Cochrane	Core stability group: adding ankle dorsiflexion to drawing in the abdominal wall.	To identify the effect of a novel augmented core	After intervention, core stability exercise group showed significant

2.	You et al ¹⁸ (2013) Republic of South Korea	Pain and Physical function	Chronic low back pain	N = 40 Core stability group: 20 Convention al group: 20	MEDLINE Cochrane	Core stability group: adding ankle dorsiflexion to drawing in the abdominal wall. Conventional exercise group: gentle massage, Passive range of motion, treadmill gait training.	To identify the effect of a novel augmented core stability exercise technique on physical function, pain and core stability in patients with chronic low back pain.	After intervention, core stability exercise group showed significant greater improvement at two months compared with convent ional exercise group
3.	Ebrahimi et a l ¹ (2014) Iran	Pain, function, abdominal and back muscle endurance	Chronic low back pain due to disc herniati on	N = 30 Core stability group: 15. Convention al treatment group: 15.	Medline Cochrane	Core stability group: received d ifferent stretching and strengthening exercises. Conventional treatment group: received traditional Physiotherapy treatment.	The aim of the study was to investigate the effect of core stabilization exercises on low back pain and abdominal and back muscle endurance in patients	Core stabilization exercises in improving lo w back pain, abdominal and back muscle endurance in patients with chronic low back pain caused by disc herniatio
3.	Ebrahimi et a l ¹⁹ (2014) Iran	Pain, function, abdominal and back muscle endurance	Chronic low back pain due to disc herniati on	N = 30 Core stability group: 15. Convention al treatment group: 15.	Medline Cochrane	Core stability group: received d ifferent stretching and strengthening exercises. Conventional treatment group: received traditional Physiotherapy treatment.	The aim of the study was to investigate the effect of core stabilization exercises on low back pain and abdominal and back muscle endurance in patients with chronic low back pain caused by disc Herniation.	Core stabilization exercises in improving lo w back pain, abdominal and back muscle endurance in patients with chronic low back pain caused by disc herniation have been effective.
4.	Cho et al ²⁰ (2014) Republic of Korea	Pain, range of motion and function	Chronic low back pain	N = 30 Core stability group: 15 Convention al group: 15	Google scholar Cochrane	Core stability exercise group: Were administered in three parts; warm up, conditioning and cool down as described in brills book(ref) Conventional exercise group: r	The study aimed to identify the effects of the CORE exercise program on pain and active range of motion (AROM) in patients	The study demonstrated that the core exercise program is effective in decreasing pain and increasing AROM in patients with

4.	Cho et al ²⁰ (2014) Republic of Korea	range of motion and function	Chronic low back pain	N = 30 Core stability group: 15 Convention al group: 15	Google scholar Cochrane	Core stability exercise group: Were administered in three parts; warm up, conditioning and cool down as described in brills book(ref) Conventional exercise group: r eceived routine care	The study aimed to identify the effects of the CORE exercise program on pain and active range of motion (AROM) in patients with chronic low back pain	The study demonstrated that the core exercise program is effective in decreasing pain and increasing AROM in patients with chronic low back pain.
5.	Alp et al ²¹ (2014). Turkey	Pain, Quality of life, abdominal and back muscle endurance	Chronic lo w back pain	N = 48 females Core stability group: 24. Home based conventiona l exercise group: 24.	Cochrane Library Google scholar	Core stability exercise group: Were administered in three parts; warm up, stretching and stabilization exercises Conventional exercise group: r eceived routine care	The purpose of the study was to investigate the efficacy of corestabilization exercise (SE) and to compare it with homebased conventional exercise (HE) in patients with chronic low-back pain (LBP)	Though both of the exercise programs were both found to be effective concerning the areas of pain, endurance, function, and daily living in patients with chronic LBP, the SE group was superior to the HE group in the endurance of dorsal extensors and in the improvement of physical role limitation exercises

6.	Cho e al ² (2015) Republic o Korea	and lumbar lor dosis angle	Chronic low back pain	N = 30 Core stability group: 15. Convention al group: 15.	Cochrane PEDRO	Core stability group: received lumbar stabilization exercises Conventional group: Received hot pack, Interferential current therapy and ultrasound therapy.	The study examined the effects of lumbar stabilization exercises on the functional disability and lumbar lord osis angles in patients with chronic low back pain.	Lumbar stabilization exercise is more effective than conservative treatment for improving functional disability and lumbar lordos is angles.
7.	Reddy e al ²³ (2015) India	Pain and function	Chronic mechanical low back pain	N = 40 Core stabilit y group: 20. Convention al group: 20.	Medline Cochrane PEDRO	Conventional group: Supine lying – Leg lifts Abdomin al crunches in crook lying. Prone lying – Leg lifts Prone lying – Trunk lifts. Core stability group: Stabilizati on exercises using medicine ball	To compare the outcome of conventiona l and core stabilization exercises in chronic mechanical low back pain.	Core stabilization group registered a significant improvement when compared to conventional back care exercises in improving function and relieving pain when compared to conventional back care exercises in improving function and in relieving pain.

8.	Akhtar et	Pain and	Non	N = 120	Google	Core stability	The study	Core
	al ²⁴ (2017)	physical	specific low		scholar, PEDro,	group: received	was	stabilization
	Pakistan	function	back pain	Core	Cochrane	only core	designed to	exercise is
				stability		stability eg. Multi	compare the	more
				group: 60.		fidus exercise,	effectivenes	effective than
				C		Frontal & Side	s of specific	routine
				Convention		Plank exercise, Pelvic floor	stabilization exercises	physical
				al group: 60.		exercises, Wobble	with routine	therapy exercise in
				00.		board oblique	physical	terms
						twist, etc	therapy	of greater
						,	exercise	reduction in
						Conventional	provided in	pain in
						group:	patients	patients with
						Received routine	with	non-specific
						physical	nonspecific	low back pain
						therapy eg back, h	chronic mechanical	
						amstring, calf and hip flexors	low back	
						stretches,	pain.	
						Abdominal curl	puiii.	
						up exercises		
						etc along with		
						ultrasound		
						and Transcutaneo		
						us electrical nerve		
9.	Ali et	Pain and	Chronic low	N = 40	Cochrane Library	stimulation.	То	Lumbar
9.	al 25 (2017).	functional	back pain	N = 40	Cociliane Library	Core stability exercise plus	determine	stabilization
	Pakistan	disability	онск раш	Core		conventional	the effect of	exercises in
				stability		Physiotherapy	lumbar	addition to
				plus		group: TENS,	stabilization	conventional
				conventiona		Hot Pack, spinal	exercises on	physiotherap
				1		mobilization,	pain, range	y were found
				Physiothera		Stretching	of motion	more
				py group:		exercises and Lumbar	and functional	effective in chronic low
				20.		Stabilization	disability in	back pain
				Convention		Exercises	the	management
				al			managemen	as compared
				Physiothera		Conventional	t of chronic	to
				py group:		Physiotherapy	low back	conventional
				20.		group: TENS,	pain.	physiotherap
						Hot Pack, spinal		y alone in
						mobilization and		terms of
						Stretching exercises.		reducing pain and
						CACICISCS.		functional dis
								ability.
1	l]	I			<u>l</u>]	aviiity.

10.	Ghorbanpour et al ²⁶ (2018). Iran	Pain, range of motion and functional disability	Chronic non specific low back pain	N = 34 Mcgill core stability group: 17. Conventional Physiotherap y group: 17.	Cochrane Library Google Scholar	Core stability group: Curl up, Side Bridge, Bird Dog with one hand or one foot and one hand and the opposite leg. Conventional Physiotherapy group: single and double knee to chest, prone lying with pillow with one leg sliding, cycling in supine and bridging	To compare the effects of "McGill stabilization exercises" and "conventional physiotherapy" on pain, functional disability and active back flexion and extension range of motion in patients with chronic nonspecific low back pain.	The results indicated that McGill stabilization exercises and conventional physiotherapy provided approximatel y similar improvement in pain, functional disability, and active back range of motion in patients with chronic nonspecific low back pain. However, it appears that McGill stabilization exercises provide an additional benefit to patients with chronic non-specific low back, especially in pain and functional disability.
11.	Noormoham madpour et al ²⁷ (2018). Iran	Pain, quality of life and functi on disability	Chronic low back pain	N = 38 female nurses Core stability group: 18 Conventional group: 18	Google scholar Cochrane	exercises. Core stability group: Received mult i-step core stability exercise program Conventional exercise group: Not reported	To evaluate the effects of a multistep core stability exercise program in nurses with chronic low back pain (CLBP).	improvement This study showed that a multi-step core stability exercise program is a helpful treatment option for improving quality of life and reducing disability and pain in female nurses with CLBP.
12.	Waseem et al ² (2018). Pakistan	Pain, function, abdominal and back muscle endurance	Chronic low back pain due to disc her niation	N = 30 Core stability group: 15. Conventional treatment group: 15.	Medline Cochrane	Core stability group: receive d different stret ching and strengthening exercises. Conventional treatment group: receive d traditional Physiotherapy treatment.	The aim of the study was to investigate the effect of core stabilization exercises on low back pain and abdominal and back muscle endurance in patients with chronic low back pain caused by disc Herniation.	Core stabilization exercises in improving low back pain, abdominal and back muscle endurance in patients with chronic low back pain caused by disc herniation have been effective.

10		D 1	~1 ·	3.7 O.0	~ 1	I a	T :1 :2	
13.	Akter et	· · · · · · · · · · · · · · · · · · ·	Chronic	N = 30	Google	Segmental	To identify	This research showed
	al ²⁹ (2020).	functional	low	G	scholar	stabilization	whether	that segmental
	Bangladesh	disability	back	Segmental	Cochrane	exercise with	segmental	stabilization exercises
			pain	stabilization		conventional	stabilization	combined with
				exercise with		therapy	exercise with	conventional therapy
				conventional		group:	conventional	was more
				therapy		Received	therapy program	effective than only
				group: 15		stabilization	or only	conventional therapy
						exercises	conventional	for patients with
				Conventional		alongside	therapy program	chronic low back pain.
				therapy		conventional	is more effective	
				group: 15		therapy.	for the treatment	
							of chronic low	
						Conventional	back pain	
						therapy	patients.	
						group: receive		
						d conventional		
						therapy		
							I 0 I	
14.	Yangma et	,	Mechan	N = 40	Google	Core stability	The purpose of	It is concluded that
	al ³⁰ (2021)	Range of	ical lo		scholar	exercise	this study is to	subjects in the group
	India	motion	w back	Core stability		group: administ	compare the	who received Core
		and	pain	group: 20		ered	effectiveness of	muscles activation
		functional				stabilization	core muscles	exercises are more
		disability		Conventional		exercises	activation over	effective as compared
				exercise		using swiss ball	conventional	to the group who
				group: 20			exercises in	received Conventional
						Conventional	reduction of pain	exercise in reducing
						exercise group:	and increasing	pain, increasing the
						received Crook	Range of Motion	ROM and improving
						received Crook lying with	Range of Motion of trunk in	
						received Crook lying with Crunches,	Range of Motion of trunk in subjects with	ROM and improving
						received Crook lying with Crunches, supine with leg	Range of Motion of trunk in	ROM and improving
						received Crook lying with Crunches,	Range of Motion of trunk in subjects with	ROM and improving
						received Crook lying with Crunches, supine with leg	Range of Motion of trunk in subjects with Mechanical low	ROM and improving
						received Crook lying with Crunches, supine with leg lifts, Prone lying	Range of Motion of trunk in subjects with Mechanical low	ROM and improving

Critical Appraisal Instruments

The Physiotherapy Evidence Database (PEDro) scale was the critical appraisal instrument used in this study. The tool comprised eleven elements, and each element required a dichotomous yes/no response: 1 point was given to yes and 0 was allocated to no. The total score for the PEDro scale was 10. PEDro scores were excellent (9-10), good (6–8), fair (4-5), and poor (less than 4) Foley et al.¹⁵

Risk of bias assessment

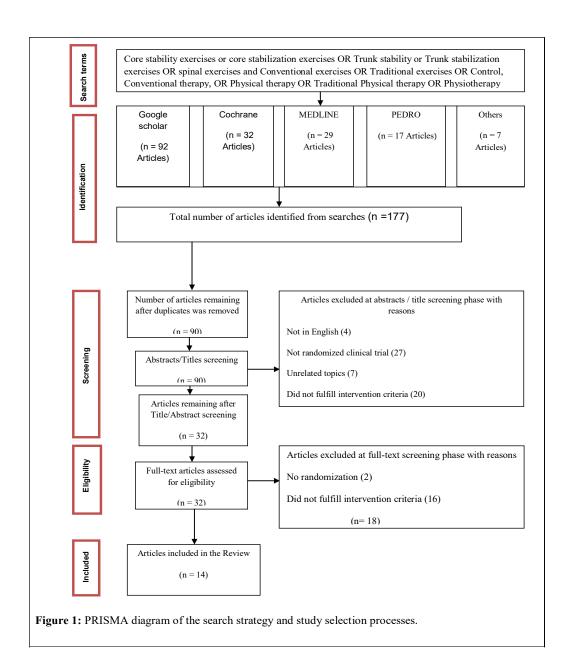

The risks of bias within and across the study were assessed by using the Cochrane Effective Practice and Organization of Care risk of bias tool (Cochrane Effective Practice and Organization of Care Group). This tool comprised nine items, namely, random sequence generation, allocation concealment, similar baseline outcome, similar baseline characteristics, incomplete outcome data, blinding, contamination, selective outcome reporting, and other biases. All of the items were given a score of high risk, low risk, or unclear (Table 2).

Table 2: Appraisal of risk of bias, according to Cochrane Effective Practice and Organization of Care risk of bias tool.

Criterion/articles	Random sequence generation	Allocation concealment	Similar baseline outcome	Similar baseline characteristics	Incomplete outcome data	Blinding	Contamination	Selective outcome reporting	Other bias
Javadian et al ¹⁷ 2012	Low	Unclear	Low	Low	Low	Unclear	High	Unclear	Unclear
You et alis 2013.	Low	Low	Low	Low	Low	Low	High	Unclear	Unclear
Ebrahimi et al ¹⁹ 2014	Unclear	Unclear	Unclear	Low	Unclear	Unclear	High	Unclear	Unclear
Cho et al ²⁰ 2014.	Low	Unclear	Low	Low	Low	Unclear	Low	Unclear	Unclear
Alp et al ²¹ 2014.	Low	Low	Low	Low	Low	Low	Low	Unclear	Unclear
Cho et al ²² 2015	Unclear	Unclear	Low	Low	Low	Unclear	Low	Low	Unclear
Reddy et al ²³ 2015	Low	Unclear	Unclear	Unclear	Low	Unclear	High	Low	Unclear
Akhtar et al ²⁴ 2017.	Low	Low	Low	Low	Low	Low	Low	Low	Unclear
Ali et al ²⁵ 2017.	Low	Unclear	Low	Low	Low	Unclear	Low	Low	Unclear
Ghorbanpour et al ²⁶ 2018	Low	Low	Low	Low	Low	Low	Low	Low	Unclear
Noormohammadpo Et Al ²⁷ 2018.	our Lo	ow Low	Low	Low	Low Lo	w Low		Low	Unclear
Waseem et al ²⁸ 2018.	Low	Low	Low	Low	Low	Low	Low	Low	Unclear
Akter et al ²⁹ 2020	Low	Low	Low	Low	Low	Low	High	Low	Unclear
Yangma et al ³⁰ 2021.	Low	Low	Low	Low	Low	Low	Low	Unclear	Unclear

Results Search Results

The process of identifying eligible studies was outlined in figure 1. One hundred and seventy-seven records were initially identified through the Cochrane, Medline, Google scholar, PEDro and others. Of these, 58 potentially eligible articles were included based on their title and abstract. After reviewing these 58 potential articles, only 14 articles fulfilled the inclusion criteria. The remaining 44 articles were removed because the trials included was not randomized, did not compare core stability exercise with conventional exercise, or the original data were not available from the authors.

Included studies

Studies were included if they were RCTs on efficacy of core stability exercise and conventional exercises in CLBP management, published in English between 2010 and 2021. Included patients were between the age of 18 and 60 years. Below are the individual characteristics of the included studies.

Intervention

CSE is the exercise that involves the spine and core muscles (mostly the transversus abdominis or multifidus),

where the core muscles are tightened to while the spine is being stabilized and then progressed to functional activity.²⁴ Conventional exercises are traditional exercises that are not specifically targeted to the core muscle of the spine.²⁴

Data synthesis/extraction

Data synthesis involved the combination and summary of findings of the studies selected for the review. The synthesis of the data was done by the descriptive synthesis using the extraction form designed by the reviewer to outline characteristics of the studies.

Table 3: Outline of each studies Physiotherapy evidence database score

Article	Random allocation	Allocation concealm ent	Blinding of participants /Therapist/ Accessor	Participants characteristics	Measure of outcome	Intention to treat analysis	Statistical comparison	Measurable variable
Javadian et al ¹⁷ 2012	YES	UNCLEAR	NO/NO/NO	NO	YES	YES	YES	YES
You et alis 2013	YES	YES	YES/YES/YES	YES	YES	YES	YES	YES
Ebrahimi et al ¹⁹ 2014	YES	UNCLEAR	UNCLEAR/NO/No	NO	YES	YES	YES	YES
Cho et al ²⁰ 2014.	YES	UNCLEAR	NO/NO/NO	YES	YES	YES	YES	YES
Alp et al ²¹ 2014.	YES	YES	YES/NO/YES	YES	YES	YES	YES	YES
Cho et al22 2015.	YES	UNCLEAR	NO/NO/NO	YES	YES	YES	YES	YES
Reddy et al ²³ 2015	YES	NO	NO/NO/NO	NO	YES	YES	YES	YES
Akhtar et al ²⁴ 2017.	YES	YES	YES/NO/YES	YES	YES	YES	YES	YES
Ali et al ²⁵ 2017.	YES	YES	UNCLR/NO/NO	YES	YES	YES	YES	YES
Ghorbanpour et al ²⁶ 2018	YES	YES	YES/UNCLR/UNCLR	YES	YES	YES	YES	YES
Noormohammadpour et al ²⁷ 2018	YES	YES	YES/NO/YES	YES	YES	YES	YES	YES
Waseem et al ²⁸ 2018.	YES	YES	YES/NO/NO	YES	YES	YES	YES	YES
Akter et als 2020	YES	YES	YES/YES/YES	YES	YES	YES	YES	YES
Yangma et al ³⁰ 2021.	YES	NO	UNCLR/NO/NO	YES	YES	YES	YES	YES

Data analysis

The selected studies for the review were appraised using the PEDro scale. The methodological quality of all selected studies for the review was strictly assessed by two independent reviewers (Nwodo Obinna and Onwudiwe Chukwudi) with blinding.

Outcome measures Pain Intensity

Twelve out of the fourteen included study assessed pain

intensity using visual analogue scale, of the other two trials, one examined pain intensity using Numerical Pain Rating Scale and the other did not assess pain intensity (Table 4).

Disability

Ten studies included assessed disability level. Of these, seven used Oswestry Disability Index; two used Rolland Morris Disability Questionnaire and one utilized Quebec Low Back Pain Disability Index (Table 4).

 Table 4: Outcome measure and time point

References	Outcome measure	Statistical tests	Time point
Javadian et al ¹⁷ , 2012	Visual Analogue scale Modified schober's test Oswestry disability index Endurance time for trunk flexors and extensors	Intra correlation coefficient, Standard error of measurement, Kolmogorov Smirnov test, Repeated measure ANOVA, Independent t-test.	8 weeks (Intervention) 3 months (Follow up)
You et al¹s, 2012	Visual Analogue scale Pain disability index Pain rating scale Active straight leg raise Oswestry disability index Rolland Morris disability questionnaire	Repeated measure ANOVA Independent t-test Post hoc Bonferroni test	8 weeks (Intervention) 2 months (Follow up)
Ebrahimi et al ¹⁹ , 2014	Visual analog scale Back extensor muscles endurance Abdominal muscle endurance	Kolmogorov Smirnov test, ANCOVA, Dependent t-test	8 weeks
Cho et al ²⁰ 2014	Visual analogue scale Pain pressure threshold using an algometer	Independent t test Descriptive Statistics	4weeks
Alps et al ²¹ 2014	Visual analogue scale Roland Morris Back Pain Disability Question Short Form 36 health survey Kraus-weber test Sorensen test	Descriptive Statistics shapiro-wilk test Mann Whitney U test Wilcoxon signed rank tes Student test	6 week:
Cho et al ²² 2015	Visual analogue scale Modified Oswestry Disability Index (ODI)	Paired t test Independent t test	6 weeks
Reddy et al ²³ 2015	Visual Analogue scale Roland Morris Back Pain Disability Questionnaire Lumbar range of motion	One way ANOVA, Independent t-test.	6 weeks
Akhtar et al ²⁴ 2017	Visual Analogue scale	Friedman ANOVA Mann Whitney U test	8 weeks

Akhtar et al ²⁴ 2017	Visual Analogue scale	Friedman ANOVA Mann Whitney U test Wilcoxon test	8 weeks
Ali et al ²⁵ 2017	Numerical pain rating scale Oswestry disability index Lumbar range of motion Trunk flexors and extensors time	Descriptive statistics Mann Whitney U test Wilcoxon test	2 weeks
Ghorbanpour et al ²⁶ 2018	Visual analogue scale Quebec low back pain disability scale Lumbar range of motion using inclinometer	Independent t test Descriptive Statistics er Paired t test	2 weeks
Noormohammadpour et al ²⁷ 2018	Visual analogue scale Roland Morris Back Pain Disability Quest Short Form 36 health survey Lateral abdominal muscle diameter via Ul	Paired t test	8 weeks
Waseem et al ²⁸ 2018	Modified Oswestry Disability Index (ODI	Friedman ANOVA, Mann Whitney U test	6 weeks
Akter et al ²⁹ 2020	Visual Analogue scale Oswestry disability Index Oxford muscle strength scale	Descriptive Statistics Mann Whitney U test Wilcoxon test	6 weeks
Yangma et al³º 2021	Visual Analogue scale Oswestry disability Index	Descriptive statistics Paired sample t test Independent sample test	12 weeks

Duration of intervention

Dropouts

The duration of the interventions in the studies included in this review were about 30 min per each session, twice a week for at least two weeks to twelve weeks.

Of the fourteen studies included, five reported dropout of participants during the study period (Table 5).

Table 5: Duration of intervention and withdrawal

First author	Duration of intervention (week)	Follow up intervention	Number of participant withdrawal	Reasons for the withdrawal
Javadian et al 172012	8 weeks (twice per week)	3 months	None	None
You et al 18 2013	8 weeks (thrice per week)	Two months	None	None
Ebrahimi et al ¹⁹ 2014	8 weeks (thrice per week)	No follow up	None	None
Cho et al ²⁰ 2014	4 weeks (thrice per week)	No follow up	None	None
Alp et al21 2014	6weeks (thrice per week)	3 months	None	None
Reddy et al ²² 2015	6 weeks (thrice per week)	None	None	None
Cho et al ²³ 2015	6 weeks (thrice per week)	None	None	None
Akhtar et al ²⁴ 2017	6 weeks (once per week)	No follow up	Twelve (12)	1.Lost to death: 2 2.Moved to another city: 6 3.Discontinued intervention: 1 4.Unable to make time commitment: 3
Ali et al ²⁵ 2017	2 weeks (four times per week)	No follow up	Two (2)	None
Ghorbanpour et al ²⁶ 2018	6 weeks (thrice per week)	No follow up	Four (4)	Unwilling to continue due to family related problem
Noormohammadpour et al ²⁷ 2018	8 weeks	No follow up	Sixteen (16)	 Two became Pregnant. Two moved out of the city. Four had problem with work schedule interfering with participation. Two had retired. Six had withdrawn themselves to find another treatment option.
Waseem et al ²⁸ 2018	6 weeks (twice per week)	No follow up	Twelve (12)	1.Lost to Death: 2 2. Moved out of the city: 6 3. Unable to make time commitment: 3 4. Unable to continue with intervention: 1
Akter et al ²⁹ 2020	4 weeks (three times per week)	No follow up	None	None
Yangmaet al ³⁰ 2021	12 weeks	No follow up	None	None

Collating, summarizing and reporting the results. Descriptive summary of the results

Fourteen peer reviewed studies were included in this review. The studies were published in seven countries; Paki-

stan, Iran, Republic of Korea, Turkey, India, Republic of South Korea and Bangladesh.

Research designs used by the included studies

The research designs adopted by the included studies were randomized clinical trial study (Table 6).

Table 6: Characteristics of the included studies

Author	Study design	Sample	Mean age	Experimental	Intervention	Pedro
		size		and control group	time (week)	score
Javadian et al ¹⁷ 2012	RCT	CSE grp: 15	Nil	Stability exercise plus	Two times per	5
				routine exercises	week for eight	
		Routine grp:15	Nil	group versus routine	weeks	
				exercises group		
You et	RCT	CSE grp: 20	50.35	Core stability techniq	40 minutes,	10
al18 2013				ue group	three times a	
		Con.PT grp 20	51.30	versus Conventional	week for	
				Physical	eight weeks	
				therapy group		
Ebrahimi	RCT	CSE grp: 15		Core stability exercise	30 minutes, three times a	5
et al19 2014			48.55	group versus Convent	week for	
		Con.grp: 15		ional therapy group	eight weeks	
Cho et al ²⁰ 2014	RCT	CSE grp: 15	38.1	Core exercise	30minutes,	6
				program versus Contr	three times per	
		Control grp: 15	36.5	ol group	week for four	
					weeks	
Alp et	RCT	CSE grp: 24	48	Core stabilization	60 minutes,	9
al ²¹ 2014				exercise group versus	Three times per	
		Home based	51	Home based	week for	
		Con. Exer: 24		conventional exercise	six weeks	
				group		
Reddy et al ²² 2015	RCT	CSE grp: 20	Nil	Core stabilization	30minutes,	5
				exercise group	three times a	
		Con.	Nil	versus Conventional	week for six	
		Back Exer grp:		back exercise group	weeks	
		20				
Cho et al ²³ 2015	RCT	CSE grp: 15	Nil	Core stabilization	30minutes,	6
	1101	552 g.p. 10	1112	exercise group	three times a	
		Con.	Nil	versus Conventional	week for six	
			INII		weeks	
		Back Exer grp:		back exercise group	Weeks	
	DCT	15	46.20	C (1.11)		0
	RCT	CSE grp:60	46.39	Core stabilization	Once per	9
Akhtar et al ²⁴ 2017			1	exercise group versus	week for six	
		Routine Exer.	45.5	the routine	weeks	
		grp:30		exercise group		
Ali et al ²⁵ 2017	RCT	LSE grp: 20	31.75	Lumbar stabilization	Four times per	7
				exercise group versus	week for	
		Con.PT grp: 20	46	Conventional	two weeks	
				Physiotherapy group		
Ghorbanpo	RCT	Megill Stability	23.8	Mcgill stabilization	Three times a	8
ur		Exer grp: 15		exercise group versus	week for	
et al ²⁶ 2018				Conventional	six weeks	
		Con.PT grp: 15				
		- 5-P. 10	20.90	,F.) 82.00P		
		Con.PT grp: 15	20.90	Physiotherapy group	SIA WCCKS	

Noormohammadpo ur et al ²⁷ 2018	RCT	Multi-step Core stability grp: 10	43.3	Multi-step core stability exercise	Eight weeks	9
				group versus Control		
		Control grp: 10		group		
			41.3			
Waseem et al ²⁸ 2018	RCT	CSE grp: 53	46.39	Core Stabilization	Two times per	8
				exercise	week for six	
		Routine PT grp:	45.5	program versus Routi	weeks	
		55		ne Physical therapy		
				group		
Akter et al ²⁹ 2 020	RCT	SSE plus Con.	36.40	Segmental	30 minutes,	10
		therapy: 15		stabilization exercise	Three times per	
		Con. therapy: 15		plus Con. Therapy	week for	
			39.27	group	four weeks	
				versus Conventional		
				therapy group		
Yangma et a 1 ³⁰ 2021	RCT	CSE grp: 20	Nil	Core stability	Twelve weeks	6
				exercise grp versus		
		Con. Exer grp:	Nil	Conventional		
		20		exercise grp.		

KEY

CSE grp: Core stability exercise group LSE: Lumbar stabilization exercise SSE: Segmental stabilization exercise RCT: Randomized clinical trial

Con: Conventional PT: Physiotherapy

Core Stability Exercise versus Conventional Exercise on Pain Intensity

In total, fourteen trials were included in the study, twelve of which assessed pain intensity using visual analogue scale^{17-24, 26, 27, 29, 30} one of the two trials examined pain intensity using Numerical Pain Rating Scale²⁵ and the other trial did not evaluate pain intensity²⁸. The data indicated that core stability exercise was better than conventional exercise for short term pain relief. Only two trials out of the fourteen evaluated pain intensity at three months post intervention, and found core stability exercise to be more beneficial in pain reduction than conventional exercise.

Core Stability Exercise versus Conventional Exercise on disability

Eleven studies included self reported back specific functional status.^{17, 18, 21, 22, 23, 24, 25-30} Of these, seven used Oswestry Disability Index.^{17, 18, 22, 24, 28-30} Three used Rolland

Morris Disability Questionnaire ^{21, 23, 27} and one utilized Quebec Low Back Pain Disability Index. ²⁶ Compared to conventional exercise, core stability exercise resulted in significant improvement in functional status.

Discussion

This review, which included fourteen studies, ¹⁷⁻³⁰ compared the effects of core stability and conventional exercises on chronic low back pain. The risk of bias was examined for each article using the Cochrane collaboration recommendations. The results of this review indicate that core stability exercise is better than conventional exercise for pain relief and improving back specific function in the short term however Intermediate and long-term effects were not determined as there were no follow-up periods beyond three months. The primary results of this review are consistent with the findings of a meta- analysis of core stability exercise versus general exercise for chronic

low back pain. 13 The results of the meta-analysis indicated that core stability exercises are more effective than other types of exercise in improving back-specific functional status in the short term. Four other systematic reviews³¹⁻³⁴ also reported that specific stabilization exercise was better than ordinary medical care and treatment by a general practitioner for reducing pain over the short term and intermediate term. Compared to the prior reviews, all the articles included in the current study were new, spanning from 2010 to 2020, and all of the articles in the current analysis considered only patients with chronic LBP (duration of pain >12 weeks). Based on these characteristics, this review is considered to be robust. Core stability is the ability to control the position and movement of the central portion of the body.³⁵ Popular fitness programs, such as Tai Chi, Yoga, and Pilates, are based on core stability exercise principles. There are several different approaches currently in use for core stability exercise for LBP, which could lead to different results. A systematic review of different core stability exercises for LBP should be conducted to determine the optimal treatment approach.

Limitation

The quality of this review may have been affected negatively due to inability to include other studies that were reported in other languages other than English and the year of publication which was restricted to the year 2010 and 2021. Numerous articles did not contain adequate information for evaluating the quality and clinical relevance of the data. Another limitation was the probability of publication bias, which we attempted to diminish via a substantial database search. However, unpublished articles were not searched.

Conclusion

In this study, core stability exercise and conventional exercises for the lumbar region were both found to be beneficial in remission of pain and back specific function on chronic low back pain in the short term however; only two of these studies carried out follow up assessment for a period of three month which also showed that core stability was still more beneficial. Although this review may not be comprehensive however, it demonstrates deeper understanding of the use of core stability and conventional exercises in the management of CLBP.

Implications for Research

Articles that are methodologically sound and sufficiently

powered are required to confirm the effects of core stability exercises and conventional exercises on pain relief and functional improvements in patients with chronic LBP. More so, the effects of core stability exercise and conventional exercises should be evaluated over a period of time post intervention.

Statement of authors' contributions

- 1)Obinna Dickson Nwodo contributed to literature searches and review, manuscript design and preparations. 2)Peter Olanrewaju Ibikunle, Kenneth Umezulike Ani, and Arinze Christain Okonkwo contributed to the manuscript preparations.
- 3) Nnenna Linda Ogbonna, Chinenye Joy Eze, and Ifeoma Adaobi Maduanusi contributed to literature searches, and preparations.
- 4)Chukwudi Uchenna Onwudiwe and Godwin Uroko Ezeja contributed to literature searches and reviews.

Declaration of interest

There is no conflict of interest.

Source of Funding

None.

References

- 1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N. Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study. *Lancet*. 2017; 10(392):1789–1858.
- 2. Hoy D, Smith E, Cross M, Sanchez-Riera L, Buchbinder R, Blyth F. The global burden of musculoskeletal conditions for 2010: estimates from the global burden of disease 2010 study. *Annals of Rheumatology Diseases*. 2014; 273: 968–974.
- 3. Louw QA, Morris LD, Grimmer-Somers K. The prevalence of low back pain in Africa: A systematic review. *BMC Musculoskeletal Disorder*. 2007; 8:105.
- 4. Clark S, Horton R. Chronic Low back pain: A major global challenge. *Lancet*. 2018; 391 (10137):2302. doi: 10.1016/S0140-6736(18)30725-6.
- 5. Shivalika AN, Jagmohan S, Sabyasachi B. To compare the effect of core stability exercises and muscle energy techniques on low back pain patients. *Journal of Sports and Physical Education*. 2013; 1(2): 09-15.

- 6. Mayer J, Mooney V, Dagenais S. Evidence-informed management of chronic low back pain with lumbar extensor strengthening exercises. Spine. 2008; 8: 96–113.
- 7. Demirel R, Ucok K., Kavuncu V, Gecicid O, Evcike D, Dundar U. Effects of balneotherapy with exercise in patients with low back pain. *Journal of Back and Musculo-skeletal Rehabilitation*. 2008; 21:263-272.
- 8. Stochkendahl MJ, Kjaer P, Hartvigsen J. National Clinical Guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. *European Spine Journal*. 2018; 27(1):60–75. https://doi.org/10.1007/s00586-017-5099-2.
- 9. Kapetanovic A, Jerkovic S, Avdic D. Effect of core stabilization exercises on functional disability in patients with chronic low back pain. *Journal of Health Sciences*. 2016; 6(1): 59-66.
- 10. Akuthota V, Ferreiro A, Moore T, Fredericson M. Core Stability ExercisePrinciples. *Curr Sports Med Rep.* 2008; 7: 39–44 PubMed .
- 11. Delitto A, George SZ, Van Dillen L, Whitman JM, Sowa GA, Shekelle P, Denninger TR, Godges JJ. Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association. *Orthopaedic and Sports Physical Therapy*, 2012; 42(4), A1–57.
- 12. Bronfort G, Maiers M, Evans R, Schuiz AC. (2011). Supervised exercise, spinal manipulation, and home exercise for chronic low back pain: A randomized clinical trial. *Journal of North American Spine Society*. 2011;11(7), 585-598.
- 13. Wang XQ, Zheng JJ, Yu ZW, Bi X, Lou SJ, Liu J, Cai B, Hua YH, Wu M, Wei ML, Shen HM, Chen Y, Pan YJ, Xu GH Chen PJ. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. *Plos One journal*. 2012; 7(12): e52082.
- 14. Karnat VPN, kumar S, Reddy R. Core stabilization program and conventional exercises in the patients with low back pain"-a comparative study. *International Journal of Physiotherapy*. 2015; 2(1): 352-360.
- 15. Foley NC, Bhogal SK, Teasell R, Bureau Y, Speechley MR. Estimates of Quality and Reliability with the Physiotherapy Evidence-Based Database Scale to Assess the Methodology of Randomized Controlled Trials of Pharmacological and Non-pharmacological Interventions. *Physical Therapy.* 2006; 86(6):817-824.
- 16. Cochrane Effective Practice and Organization of Care Group Draft Risk of Bias Tool, http://epoc.cochrane.

- org/sites/epoc.cochrane.org/files/uploads/14%20Suggested%20risk%20of%20bias%20criteria%20for%20 EPOC%20reviews%202015%2009%2002.pdf.
- 17. Javadian Y, Behtash H, Akbaric M, Taghipour-Darzia M, Zekavat H. The effects of stabilizing exercises on pain and disability of patients with lumbar segmental instability. *Journal of Back and Musculoskeletal Rehabilitation*. 2012; 25:149–155.
- 18. You JH, Kim SY, Oh D, Chon S. The effect of a novel core stabilization technique on managing patients with chronic low back pain: a randomized, controlled, experimenter-blinded study. Clinical Rehabilitation published online 18 November 2013. DOI: 10.1177/0269215513506231.
- 19. Ebrahimi H, Balouchi R, Eslami R, Shahrokhi M. Effect of 8-Week Core Stabilization Exercises on Low Back Pain, Abdominal and Back Muscle Endurance in Patients with Chronic Low Back Pain due to Disc Herniation. *Physical Treatments*. 2014; 4:1.
- 20. Cho HY, Kim EH, Kim J. Effects of the CORE exercise program on pain and active range of motion in patients with chronic low back pain. *J Phys Ther Sci*, 2014, 26: 1237–1240.
- 21. Alp A, Mengi G, Avsaroglu AH, Mert M, Sigirli D. Efficacy of core stabilization exercise and its comparison with home based conventional exercise in low back patients. *Turkey Journal of Physical Medical Rehabilitation*. 2014; 60(1s), 36-42.
- 22 Cho I, Jeon C, Lee S, Lee D, Hwangbo G. Effects of lumbar stabilization exercise on functional disability and lumbar lordosis angle in patients with chronic low back pain. *J Phys Ther Sci*, 2015. 27: 1983–1985.
- 23. Reddy ASB, Jerome EN. Effects of core stabilization program and conventional exercises in the management of patients with chronic mechanical low back pain. *International Journal of Physiotherapy.* 2015; 2(2): 441-447.
- 24. Akhtar MW, Karimi H, Gilani SA. Effectiveness of core stabilization exercises and routine exercise therapy in the management of pain in chronic non-specific low back pain: A randomized controlled clinical trial. *Pakistan Journal of Medical Sciences*. 2017;33(4):1002-1006.
- 25. Ali S, Sajjad GA, Keramat KU, Darian H. Chronic Low Back Pain; Effects of the lumbar stabilization exercises on pain, range of motion and functional disability in the management. *Professional Med J.* 2017;24(4):526-533.
- 26. Ghorbanpour A, Azghani MR, Taghipour M, Ghade SF, Oskouei AE. Effects of McGill stabilization exercises and conventional physiotherapy on pain, functional dis-

- ability and active back range of motion in patients with chronic non-specific low back pain. *The Journal of Physical Therapy Science*. 2018; 30: 481–485.
- 27. Noormohammadpour PN, Kordi M, Mansournia MA, Akbari-Fakhrabadi M, Kordi R. The Role of a Multi-Step Core Stability Exercise Program in the Treatment of Nurses with Chronic Low Back Pain: A Single-Blinded Randomized Controlled Trial. *Asian Spine Journal*. 2008;12 (3):490-502. doi:10.4184/asj.2018.12.3.490. Epub 2018 Jun 4. PMID:29879777.
- 28. Waseem M, Karimia H, Gilania SA, Hassan. Treatment of disability associated with chronic non-specific low back pain using core stabilization exercises in pakistani population. *Journal of Back and Musculoskeletal Rehabilitation*. 2018;1:1–6.
- 29. Akter M, Hossain MA, Dasl RK., Begum MR. The Effectiveness of Segmental Stabilization Exercise with Conventional Therapy and Only Conventional Therapy for Chronic Low Back Pain Patients". *EC Orthopaedics*. 2020;11(5): 42-49.
- 30. Yangma K, Rajak S, Baruah TS, Dutta A. A com-

- parative study to find the effectiveness of core muscles activation over conventional exercises in subjects with mechanical low back pain. *International Journal of Life Science and Pharma Research*. 2021; 11(1): 255-260.
- 31. Ferreira PH, Ferreira ML, Maher CG, Herbert RD, Refshauge K. Specific stabilisation exercise for spinal and pelvic pain: a systematic review. *Aust J Physiother*. 2006; 52:79–88.
- 32. Rackwitz B, de Bie R, Limm H, von Garnier K, Ewert T, Stucki G. Segmental stabilizing exercises and low back pain. What is the evidence? A systematic review of randomized controlled trials. *Clin Rehabil.* 2006; 20: 553–67.
- 33. Macedo LG, Maher CG, Latimer J, McAuley JH. Motor control exercise for persistent, nonspecific low back pain: a systematic review. *Phys Ther.* 2009; 89: 9–25.
- 34. Smith EB, Littleword C, May S. An update of Stabilization exercises for low back pain: A systematic review with meta-analysis. *BMC Musculoskeletal Disorders*. 2014; 15:416
- 35. Omkar SN, Vishwas S, Tech B. Yoga techniques as a means of core stability training. *J Bodyw Mov Ther.* 2009;13: 98–103.