
Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 258

Navigation and Guidance for Autonomous
Quadcopter Drones Using Deep Learning on Indoor

Corridors

Ahmad Wilda Yulianto1, Dandhi Yudhit Yuniar2, Yoyok Heru Prasetyo3

1,2,3Digital Telecommunication Network Study Program,
Department of Electrical Engineering, State Polytechnic of Malang, 65141, Indonesia

1ahmadwildan@polinema.ac.id, 2dhandi.yudhit@gmail.com, 3yoyok.heru@polinema.ac.id

Abstract—Autonomous drones require accurate navigation and localization algorithms to carry out their duties. Outdoors
drones can utilize GPS for navigation and localization systems. However, GPS is often unreliable or not available at all
indoors. Therefore, in this research, an autonomous indoor drone navigation model was created using a deep learning
algorithm, to assist drone navigation automatically, especially in indoor corridor areas. In this research, only the Caddx
Ratel 2 FPV camera mounted on the drone was used as an input for the deep learning model to navigate the drone forward
without a collision with the wall in the corridor. This research produces two deep learning models, namely, a rotational
model to overcome a drone's orientation deviations with a loss of 0.0010 and a mean squared error of 0.0009, and a
translation model to overcome a drone's translation deviation with a loss of 0.0140 and a mean squared error of 0.011. The
implementation of the two models on autonomous drones reaches an NCR value of 0.2. The conclusion from the results
obtained in this research is that the difference in resolution and FOV value in the actual image captured by the FPV camera
on the drone with the image used for training the deep learning model results in a discrepancy in the output value during
the implementation of the deep learning model on autonomous drones and produces low NCR implementation values.

Keywords—Quadcopter, ResNet50V2, CNN, deep learning, python, TensorFlow.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) or drones are flying
vehicles that can be operated remotely by the pilot or can control
themselves (autonomous). Over the last few decades, drone
technology has been widely used by research institutes as
research objects because of the flexibility and performance of
drones that can be utilized for various human purposes, such as
in agriculture, mining, construction, geology, archaeology,
surveys, inspections, firefighting, photography, and other
sectors. Drones can be classified based on several factors such
as size, average takeoff weight, control configuration, and
degree of autonomy. One of the popular drones is the
quadcopter. A quadcopter is a type of drone that uses a four-
rotor drive. Quadcopters are also included in multi-rotor drones
which generally fall under the category of vertical-takeoff-and-
landing (VTOL) vehicles with the ability to hover in place [1].

In carrying out their duties as utilization for humans, drones
require accurate navigation and localization methods and
algorithms [2], both drones with remote manual control and
autonomous drones. In most outdoor environments, autonomous
drone navigation has been successfully carried out by utilizing
a global positioning system (GPS). The Global Positioning
System (GPS) helps obtain the drone's position and orientation,
aiding in navigation [3]. On the other hand, the disadvantage of
GPS is that it is often unreliable or unavailable at all in most
indoor environments, such as inside buildings, urban
environments, and underwater. This makes the drone task
difficult and complex to navigate.

Several solutions have been proposed for indoor
autonomous navigation. One of them is Simultaneous
Localization and Mapping (SLAM). Using a laser range finder,
RGB-D sensor, or single camera, a 3-D map of an unknown

indoor environment and its position on the map can be inferred
for autonomous flight [4]. Another solution is based on stereo
vision. By calculating the disparity between stereo images, depth
can be estimated [5]. The SLAM method is not practical for
drones because it requires heavy computing to build 3D models.
In addition, 3D structures that are built often do not perform well
in environments without traceable features (e.g., walls). The
depth estimated by stereo vision shows poor performance in
areas without texture and may suffer from specular reflection.
The fact that most publicly available quadcopters only have one
internal camera makes the solution impractical [6].

Therefore, in this research, an autonomous drone navigation
model will be designed that allows the quadcopter to
automatically navigate indoors, especially in the corridor area.
This model does not require a proximity sensor but uses a single
camera for navigation determination [7]. The approach is to train
the regression model by utilizing one of the Deep learning
algorithms, Convolutional Neural Network (ConvNet), from the
corridor image data set [8]. The model's output in this study is a
value that is a reference measure for the direction of the
quadcopter when flying. System implementation begins when
the ground station consistently receives visual input images from
the camera mounted on the quadcopter and then returns flight
commands (yawing, pitching, and rolling) from the results of the
trained model. The quadcopter is expected to be able to fly from
end to end of various types of corridors without colliding with
the corridor walls.

II. METHODS

A. System Workflow
In the system flowchart in Fig.1. shows the system workflow

design. First, after the drone and GCS are connected, the program

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 259

on the GCS will make the drone fly vertically as high as one
meter. At the same time, the drone will also send images
captured by the FPV camera to the GCS. The image received by
the GCs will be processed by the deep learning model, and the
output of the model will issue a command for the next action to
be carried out by the drone. The command will then be sent to
the drone. commands can be drone move forward, roll right, roll
left, yaw right, yaw left, and land. The process of sending
images by drones, processing images, and sending commands
by GCS will continue to be carried out until a landing command
is issued by GCS.

Figure 1. System Workflow

B. System Block Diagram

The block diagram of the system shows the overall system
design, where there are two places for information processing,
namely the vehicle and the ground control station. The vehicle
is equipped with a camera module connected to a computer
using telemetry, Pixhawk as flight control, electronic speed
controller as a speed controller for the four brushless motors. At
the Ground Control Station, there is a ROTG, the liaison
between the camera and the computer, and different telemetry
to send navigation commands from the deep learning model
output to the quadcopter. The block diagram of the system is
shown in Fig. 2.

Figure 2. System Block Diagram

C. Quadcopter Manufacturing Planning
In this study, an assembled quadcopter is used to apply the

deep learning model that has been created. The use of an
assembled quadcopter can provide advantages in future
development. The assembled quadcopter design can be seen in
Fig. 3. and Fig. 4. Explanation of the parts on the assembled
quadcopter as follows:
1. Propeller as a quadcopter propulsion in order to fly.
2. Frame as the body frame on the quadcopter to put all the

components.

3. Electronic Speed Controller (ESC) as a regulator of motor
rotation speed.

4. Flight Controller (FC) Pixhawk as the main controller of the
quadcopter.

5. FPV camera to get a picture that is in front of the quadcopter
6. Motors.
7. Lidar sensor as a sensor to determine the height of the

quadcopter.
8. Optical Flow sensor to help stabilize the quadcopter.

Figure 3. Top view quadcopter design

Figure 4. Bottom view quadcopter design

D. Dataset

The dataset used in this study is named NITRCorrV1 which
has been created and used in this study [2], the data used for this
study amounted to 21000 training images and 600 testing images
for the translation model and used 21000 training images and 300
testing images for the rotation model. This dataset provides
ground truth in terms of deviations with respect to the Central
bisector line (CBL) corridor. The CBL line is used to measure
the translation deviation and rotation of the quadcopter at the
center of the corridor. Fig. 5. is an example of images on the
dataset used.

Figure 5. Images on dataset

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 260

E. Proposed Model Deep Learning Architecture
1) Architecture

Figure 6. Architecture Model

The model architecture in this study uses the Pre-Trained
Model Resnet50V2 which has been provided in the TensorFlow
framework. The architecture of the model can be seen in Fig. 6.
When using Transfer Learning Techniques, it takes changes to
the top layer or layer classification in the model used and
changes to the input layer according to research needs. The input
layer is changed according to the existing dataset and in
accordance with the research objectives. The shape of the input
layer will be changed to (3, 180, 320) with the format (channel
image, height, width) and rescaling is carried out to change the
input scale to [-1,1]. The choice of ResNet50V2 was because in
previous studies [2] ResNet50 produced MSE, MAE and MRE
values as the second smallest evaluation metrics after
DenseNet-161. ResNet50V2 is a development of ResNet50 with
a smaller internal size of 103 compared to ResNet 50 of 107, has
a better Top-1 Accuracy and Top-5 Accuracy [9].
2) Optimizer

Optimizer in this study using Adam. Previously, training
experiments were carried out only on the rotational model and
not the entire model using Adam, RMSprop and SGD with the
same model architecture and model parameters as in Table I.
The results of loss, loss validation, evaluation metrics and
validation evaluation metrics on Adam are the smallest as
shown in Fig. 7, Fig. 8., and Fig. 9.
3) Loss Function

The loss function in this study will use two loss functions,
namely Mean Absolute Error (MAE) and Mean Squared Error
(MSE). Both loss functions will be trained as a whole to choose
the smallest loss before being implemented on the quadcopter.
4) Metrics

The Metrics Model in this study uses the Mean Squared
Error (MSE) which is recommended from this study [10]. MSE
was chosen because it was in accordance with the
considerations, namely because this study compared several
different predictions, using the same value and scale and there
was a zero value in the prediction.

Figure 7. Model results using Adam Optimizer

Figure 8. Model results using the RMSprop Optimizer

Figure 9. Model results using the SGD Optimizer

5) Parameters

TABLE I
PARAMETERS MODEL

Parameter Model Value
Number of Epoch 50

Learning Rate 0.0001
Number of Epoch Fine-Tuning 10

Learning Rate Fine-Tuning 0.00001
Optimizer Adam

Evaluation Metrics MSE
Loss Function MAE and MSE
Size of Batch 50

Re-scaling 1/127.5

The model parameter is a value that forms a model, all the

parameters in Table I can be changed according to the research
objectives. In this study using Adam as the optimizer, MSE as
evaluation metrics, learning rates of 0.0001, batch size of 50,
number of epochs of 50 and rescaling to make a range of values
from -1 to 1. Only one loss function was chosen to be applied to
the quadcopter of the two. The loss function used is MAE and
MSE.

III. RESULTS AND DISCUSSION

A. Quadcopter Planning Results
The results of the quadcopter planning include assembling all

the components used to make the quadcopter such as flight
controller, motor, ESC, battery, FPV camera. The placement of
each component is shown in Fig. 10 and Fig. 11.

Figure 10. Quadcopter front view

Explanation of the parts on the assembled quadcopter as follows:
1. Flight Controller (FC) Pixhawk 2.4.8.
2. Holybro 100 MW 915 MHz Telemetri Radio V3.
3. Propeller type 1045.
4. Motor Brushless 920Kv.
5. FPV Camera Caddx Ratel 2.
6. Battery Lippo 4S.
7. Frame 450 Multicopter.
8. Race Ranger VTX FPV Transmitter

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 261

9. PX4Flow.
10. Lidar sensor.
11. Electronic Speed Controller (ESC) 40A Spider.

Figure 11. Quadcopter bottom view

B. Model Results with MSE loss function

The choice of loss function in the model lies in the model
compiler section. In the compiler model section, there is the use
of the Adam optimizer which functions as a model learning tool
to minimize losses caused by the MSE loss function. The
evaluation metric used is the same as the loss function, MSE.

Figure 12. Model performance results with loss function MSE before fine-
tuning. Rotational model (1), Translation model (2)

The top and bottom left images are the results of the metrics
used, while the right images are the results of the loss function.
The right and left images look the same because the loss
function and evaluation metrics used are the same, using MSE.
Fig. 12. (1) is the result of the rotation model with a loss value
of 0.0017, a validation loss of 0.0139, a mean squared error of
0.0017, and a validation of the mean squared error of 0.0139.

Fig. 12. (2) is the result of the translation model with a loss
value of 0.0168, a validation loss of 0.1827, a mean squared
error of 0.0168, and a validation of a mean squared error of
0.1827. The difference in the validation values generated by the
two models can identify overfitting or can be caused by a lack
of epochs in training.

Fig. 13 is the result of the performance of the rotation and
translation model using the loss function MSE after fine-tuning.
The rotation model got a loss value of 0.0010, a validation loss

of 0.0009, a mean squared error of 0.0010, and a validation of
the mean squared error of 0.0009, there was a much better
improvement after fine-tuning each validation value. These
results indicate an overfitting problem before the fine-tuning can
be completed.

Figure 13. Model performance results with loss function MSE after fine-tuning.
Rotational model (1), Translation model (2)

In the translation model from Fig. 13, the model gets a loss

value of 0.0140, a validation loss of 0.0114, a mean squared error
of 0.0140, and a validation of the mean squared error of 0.0114.
These results make the model much better than before fine-
tuning, just like the rotation model, the overfitting problem can
be solved.

C. Model Results with MAE loss function

In this section, the model uses MAE loss function and
evaluation metrics uses MSE and the same parameter settings as
in the model with MSE loss function.

v
Figure 14. Model performance results with loss function MAE before fine-tuning.
Rotational model (1), Translation model (2)

Results of the model in this section can be seen in Fig. 14.

The image on the left is the result of the metrics used, while the
image on the right is the result of the loss function. Fig. 14. (1) is
the result of the rotation model with a loss value of 0.0293, a loss
validation of 0.0633, a mean squared error of 0.0018 and a
validation of the mean squared error of 0.0153. Fig. 14. (2) is the
result of the translation model with a loss value of 0.0908, a loss
validation of 0.2528, a mean squared error of 0.0177 and a

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 262

validation of the mean squared error of 0.2199. The difference
in the validation values generated by the two models can
identify overfitting or can be caused by a lack of epochs in
training.

Figure 15. Model performance results with loss function MAE after fine-tuning.
Rotational model (1), Translation model (2)

Fig. 15. is the result of the performance of the rotation and

translation model using the loss function mae after fine-tuning.
The rotation model gets a loss value of 0.0277, a validation loss
of 0.0181, a mean absolute error of 0.0015 and a validation of
the mean absolute error of 0.0007. These results are much better
than the model before fine-tuning, the value of each validation
is close to the loss value and the error indicates overfitting
indications can be overcome.

In the translation model from Fig. 15., the loss value is
0.0803, the validation loss is 0.0486, the mean absolute error is
0.0148 and the mean absolute error validation is 0.0079. These
results make the model much better than before fine-tuning, just
like the rotation model, the overfitting problem can be solved.

TABLE II
OVERALL PERFORMANCE RESULTS OF MODEL

Model

MAE MSE

Loss Error Loss Error

Val loss Val error Val loss Val error

Rotation
0.0293 0.0018 0.0017 0.0017

0.0633 0.0153 0.0139 0.0139

Rotation after
Fine Tuning

0.0277 0.0015 0.0010 0.0010

0.0181 0.0007 0.0009 0.0009

Translation
0.0908 0.0177 0.0168 0.0168

0.2528 0.2199 0.1827 0.1827

Translation
after Fine
Tuning

0.0803 0.0148 0.0140 0.0140

0.0486 0.0079 0.0114 0.0114

Table II shows the overall performance results of all models

using both MAE and MSE loss functions and the model results
before and after fine-tuning. Loss, error and validation values
are obtained from the two smallest values in the model using the
MSE loss function. Therefore, a model with an MSE loss
function was chosen to be implemented on a quadcopter as a
tool to generate navigation commands.

D. Results of Model Implementation on Quadcopter
The model and quadcopter that have been made will be tested

in the corridor of the 3rd floor of the Electrical Building of the
State Polytechnic of Malang.

Figure 16. Display on GCS during model implementation on quadcopter

Quadcopter will be controlled autonomously starting from

take-off to landing at the end of the corridor. The success
parameter of this test is using NCR (No-Collision-Ratio). NCR
is the number of quadcopter tests that managed to pass through
the corridor without a collision divided by the number of tests
performed.

TABLE III
TEST RESULTS OF DEEP LEARNING MODEL AND QUADCOPTER IN THE

CORRIDOR

Test Place Take-off
Through the

corridor
Flight

distance

1st
Corridor
3rd floor

Succeed Not successful 1 meter

2nd
Corridor
3rd floor

Succeed Not successful 0 meter

3rd
Corridor
3rd floor

Succeed Not successful 0 meter

4th
Corridor
3rd floor

Succeed Succeed 5 meters

5th
Corridor
3rd floor

Succeed Succeed 5 meters

6th
Corridor
3rd floor

Succeed Not successful 0 meter

7th
Corridor
3rd floor

Succeed Not successful 0 meter

8th
Corridor
3rd floor

Succeed Not successful 0 meter

9th
Corridor
3rd floor

Succeed Not successful 0 meter

10th
Corridor
3rd floor

Succeed Not successful 0 meter

Based on Table III, the test was carried out ten times and the

quadcopter successfully passed the corridor twice, then the NCR
value was 0.2.

E. Analysis of Model Implementation Results on Quadcopter

The analysis is carried out on each model output with a
different image input, image input from the fpv camera and
image input from the cellphone camera. The images from the
FPV camera have a field of view (FOV) value of 165 degrees,
while the cellphone camera has no FOV value.

The image from the cellphone camera resembles the image
used to train each model. The resolution on the fpv camera is
1200 TVL or the equivalent of 1.2 megapixels, while the images
from the cellphone camera are 13 megapixels and the image
resolution used to train the model is 0.05 megapixels. Each test
image will have the same ground truth as the reference using the

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 263

CBL line. Images with the same ground truth mean the location
and direction of facing the same quadcopter as in Fig. 17.

Figure 17. (a) FPV camera results, (b) Mobile camera results

This test is carried out in order to find out which parts are

not in line with expectations and cause failure in the whole
system. Fig. 17. is an image from an FPV camera and an image
from a cellphone camera with identical CBL lines. The CBL
lines in both images form a 90 degrees angle and divide the
image into two nearly equal planes. The calculation for the
rotation model is counting the number of pixels from the CBL
line to the left side of the image and normalization is carried out
so that the values are in the range 0 to 1, both images are
expected to get the output value of the rotation model close to
0.5 or from 0.4 to 0.6. The calculation for the translation model
is to calculate the angle produced by the CBL line with the
bottom side of the image and normalize it so that the value is in
the range 0 to 3.14, both images are expected to get the output
value of the translation model from 1.47 to 1.67.

Figure 18. Testing using mobile phone image input on the rotation model

Fig. 18. shows the results of the model for rotation and

produces an output of 0.5. The calculation for the rotation model
and the suitability of the image with the label shows the correct
results. The input image is shown in Fig. 17. which shows the
quadcopter right in the middle of the corridor. The calculation
for the rotation model is to calculate the number of pixels from
the CBL line to the left side of the image with a value range
between 0 to 1 after normalization. In this result, the CBL
imaginary line will stretch to divide the two image planes
equally and produce almost the same number of pixels. The
pixel values will be normalized and produce a value of 0.5
which means the model produces the correct output.

Fig. 19. shows the results of the model for translation and
produces an output of 1.54. The calculation for the translation
model and the suitability of the image with the label shows the
correct results. The input image is shown in Fig. 17. which
shows the quadcopter right in the middle of the corridor. The
calculation for the translation model is to calculate the angle
produced by the CBL line with the left side of the image with a
range of values from 0 to 3.14 after normalization. In this result,
the CBL imaginary line will stretch to divide the two image

planes equally and produce an angle value of 90 degrees. The
angle value will be normalized and produce a value of 1.54 which
means the model produces the correct output.

Figure 19. Testing using mobile phone image input on the translation model

Figure 20. Testing using FPV camera image input on the rotation model

Fig. 20. shows the results of the model for rotation and
produces an output of 0.85. The calculation for the rotation
model and the fit of the image with the label shows wrong results.
The input image is shown in Fig. 17. which shows the quadcopter
right in the middle of the corridor. In this result, the CBL
imaginary line will stretch to divide the two image planes equally
and produce the same number of pixels. The pixel value will be
normalized and produce a value of 0.85 which means the model
produces an incorrect output.

Figure 21. Testing using FPV camera image input on the translation model

Fig. 21. shows the results of the model for translation and

produces an output of 0.88. The calculation for the translation
model and the suitability of the image with the label shows the
wrong result. The input image is as shown in Fig. 17. which
shows the quadcopter right in the middle of the corridor. In this
result, the CBL imaginary line will spread the two image planes
equally and produce an angle value of 90 degrees. The angle
value will normalize and produce a value of 0.88, which means
the model produces an incorrect output.

IV. CONCLUSION

Based on the background, problems, planning,
implementation, testing, and discussion, it is concluded that the
results of the implementation of the two models on the

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 12, No.4 (2022)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 264

quadcopter get a low NCR value of 0.2. These results are
influenced by differences in the image processed by the model
from the camera image on the quadcopter with the image used
for model training. The difference between the two images is the
FOV value and resolution of the image. The image produced by
the Caddx Ratel 2 FPV camera has an FOV of 165 degrees and
has a resolution of 1.2 megapixels, while the images used for
deep learning model training have no FOV value and have a
resolution of 0.05 megapixels.

REFERENCES

[1] T. Elmokadem, “Advanced Algorithms of Collision Free
Navigation and Flocking for Autonomous UAVs,” no.
October, 2021, [Online]. Available:
http://arxiv.org/abs/2111.00166.

[2] R. P. Padhy, S. Ahmad, S. Verma, S. Bakshi, and P. K. Sa,
“Localization of unmanned aerial vehicles in corridor
environments using deep learning,” Proc. - Int. Conf.
Pattern Recognit., pp. 9423–9428, 2020, doi:
10.1109/ICPR48806.2021.9412096.

[3] K. Gryte, J. M. Hansen, T. A. Johansen, and T. I. Fossen,
“Robust navigation of UAV using inertial sensors aided by
UWB and RTK GPS,” AIAA Guid. Navig. Control Conf.
2017, 2017, doi: 10.2514/6.2017-1035.

[4] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid,
“RSLAM: A system for large-scale mapping in constant-
time using stereo,” Int. J. Comput. Vis., vol. 94, no. 2, pp.
198–214, 2011, doi: 10.1007/s11263-010-0361-7.

[5] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy,
“Stereo vision and laser odometry for autonomous
helicopters in GPS-denied indoor environments,”
Unmanned Syst. Technol. XI, vol. 7332, p. 733219, 2009,
doi: 10.1117/12.819082.

[6] D. K. Kim and T. Chen, “Deep Neural Network for Real-
Time Autonomous Indoor Navigation.”

[7] B. Bender, M. E. Atasoy and F. Semiz, "Deep Learning-
Based Human and Vehicle Detection in Drone Videos,"
2021 6th International Conference on Computer Science
and Engineering (UBMK), 2021, pp. 446-450, doi:
10.1109/UBMK52708.2021.9558888.

[8] D. K. Behera and A. Bazil Raj, "Drone Detection and
Classification using Deep Learning," 2020 4th
International Conference on Intelligent Computing and
Control Systems (ICICCS), 2020, pp. 1012-1016, doi:
10.1109/ICICCS48265.2020.9121150.

[9] “Keras Applications.” https://keras.io/api/applications/
(accessed Jul. 21, 2022).

[10] A. Jierula, S. Wang, T. M. Oh, and P. Wang, “Study on
accuracy metrics for evaluating the predictions of damage
locations in deep piles using artificial neural networks with
acoustic emission data,” Appl. Sci., vol. 11, no. 5, pp. 1–
21, 2021, doi: 10.3390/app11052314.

