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ABSTRACT 

In this dissertation, we examine two dimensions of domestic aviation - demand and delay - that 

directly influence economic impact of the sector. We conduct a comprehensive analysis of airline 

demand employing airline data compiled by Bureau of Transportation Statistics. The demand 

analysis is conducted in three steps.  First, we propose a novel modeling approach for modeling 

airline demand evolution over time. Specifically, we develop a joint panel group generalized 

ordered probit (GGOP) model system for modeling air passenger arrivals and departures in a 

discretized framework that subsumes the traditional linear regression approach. Further, we 

consider the influence of observed and unobserved effects on airline demand across multiple time 

periods. Second, we explore the impact of Coronavirus disease 2019 (COVID-19) on domestic 

airline demand in the US. The effect of COVID-19 on airline demand is identified by considering 

global and local COVID-19 transmission, temporal indicators of pandemic start and progress, and 

interactions of airline demand predictors with global and local COVID-19 indicators. Based on the 

results, we present a blueprint for airline demand recovery using three hypothetical scenarios of 

COVID-19 transmission rates – expected, pessimistic and optimistic. Finally, we build on the 

novel airline demand modeling framework by accommodating for observed and unobserved spatial 

and temporal effects. Specifically, we develop spatial lag model and spatial error model 

formulations of the GGOP model proposed in the first step. The second part of the dissertation is 

focused on flight level delay analysis. In this part, we identify the factors affecting flight level 

airline delay by jointly modeling departure and arrival delays. Towards this end, we develop a 

novel copula-based group generalized ordered logit model system that accommodates for the 

influence of common observed and unobserved effects on flight departure and arrival delays.  

Keywords: Airline Demand, COVID-19, Demand Recovery, Spatial Dependency, Airline Delay  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

In the United States, commercial aviation sector is a significant contributor to the economy. About 

7.3% of the US job sector is attributed to commercial aviation sector contributing about 5.2% of 

US Gross Domestic Product (FAA, 2022). Further, airline industry is closely intertwined with 

tourism, hospitality, and related auxiliary business (such as rental cars). An important metric to 

examine the health of the aviation sector is passenger demand – arrivals and departures - at airports. 

Thus, understanding the factors influencing air passenger demand is important for long term 

planning and operational decisions. While airline passenger demand and revenue have steadily 

increased at an annualized growth rate of 2.9% and 5.4% respectively between 2009 and 2019, 

airline industry has experienced a significant shock in passenger demand worldwide due to the 

recent outbreak of Coronavirus disease 2019 (COVID-19). COVID-19, as of January 29th, 2022, 

with a reported 370.10 million cases and 5.67 million fatalities, has affected nearly every country 

in the world (Worldometer, 2022). In the United States, 73.51 million cases and 876.63 thousand 

fatalities have been reported (CDC, 2022). The pandemic has affected every facet of life in the 

world significantly burdening social, health and economic systems. Among these affected 

industries, airline industry ranks as one of the worst affected industries (S & P global, 2020). The 

estimated annual drop in global passenger demand and revenue amounts to 2.70 billion passenger 

trips and 372 billion dollars respectively (ICAO, 2022). The US airline domestic passenger 

demand reduced by 476 million in 2020 compared to the previous year (BTS, 2022a). Airline 

demand in the recent months has started to recover from April 2020 lows as precautions at airports, 

access to testing and mask mandates has encouraged some air travel. However, the magnitude of 
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the challenge facing the airline industry is highlighted by the current state of operations. Airline 

demand in December 2020 still represents only 39.1% of the demand in December 2019. The 

emergency use authorization of vaccines offers promise in curbing the pandemic and supporting 

the recovery. As the recovery begins airlines and airports would need to address supply side 

shortages with growing demand. This is particularly critical as airline supply (flights) has reduced 

by about 70% relative to the previous year (BTS, 2020). Therefore, understanding the potential 

path to recovery will allow airlines, airport management agencies to design plans for increasing 

flight availability and hiring staff for airline and airport operations.  

Given the importance of understanding airline demand, earlier studies examined airline 

demand at different spatial (airport level and regional level) and temporal (year, quarter, and 

month) resolutions. Traditionally, airports are mapped to spatial units such as metropolitan 

statistical area (MSA), county, or region in airport-level demand analysis. In such studies, 

characteristics of spatial unit of analysis including socio-demographics (population, education, age 

distribution), socio-economic factors (income, unemployment rate, GDP), built environment 

characteristics (number of trade centers, tourist attractions), level of service factors (average air 

fare and distance) and lag variables (historical demand) are considered to affect airline demand. 

But there might be some observed and unobserved factors associated with closely linked spatial 

units that may cause demand correlation among the airports. Neglecting the presence of such 

observed and unobserved spatial correlations in demand modelling may result in biased estimates. 

 In addition to the airline demand challenges due to COVID-19, flight delays at airports 

have become recurrent events in recent years causing significant economic loss to commercial 

aviation industry. According to Bureau of Transportation Statistics (BTS), 20.79% of all flights 

operated in the US arrived late by 15 minutes or more in 2019 (the highest such percentage since 
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2014) (BTS, 2022b). Airline delays cause both direct and indirect costs to several components of 

the industry. The cost of airline delays attributed to passengers is estimated at $18.1 billion in 2019 

(FAA, 2019). Costs attributed to airlines from additional expenses for crews, fuel and maintenance 

is estimated at $8.3 billion (FAA, 2019) not considering the impact of the worsening customer 

experience on airline attractiveness (Suzuki, 2000). Airline delays also cause indirect costs to 

different business sectors amounting to nearly $4.2 billion (FAA, 2019). Given such negative 

impacts of airline delays on aviation industry, it is important to identify the key factors of airline 

delays and quantify their impacts to plan policies for reducing or mitigating the delays.  

 

1.2 Motivation for the Study 

Given the importance of the airline industry to US economy, understanding the factors affecting 

airline demand at US airports is important for long-term planning (such as airport runway and 

terminal design and expansion, intermodal transportation facilities) and operational decisions 

(such as crew management for airport services). Also, analyzing how airline demand at airports 

evolved over time in presence of external/health shocks and identifying the factors contributing to 

this evolution will allow us to build a template of a possible recovery path in the future months. 

This will allow airlines, airport management agencies to design plans for increasing flight 

availability and hiring staff for airline and airport operations. Moreover, it is important to 

accommodate spatial and temporal dependencies between the spatial units (airport) in air 

passenger demand modeling. Neglecting such dependencies, when they actually exist, may result 

in biased estimates. Finally, given the substantial negative impacts of airline delays on the US 

economy, understanding the factors influencing airline on time performance will allow airlines to 
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improve their on-time performance or mitigate the delays by increasing and reallocating their 

resources such as aircrafts, crews, and staff. 

 While earlier research identifying the factors of airline travel demand has offered 

significant insights, there is still scope for enhancing our understanding of factors influencing 

airline demand. First, it is possible to enhance spatial and temporal data for airline demand 

analysis. While most of the earlier studies analyzed airline demand at aggregate levels such as 

country or region, airport level disaggregate analysis may better incorporate the local factors in 

modeling airline demand. In addition, earlier studies that conducted airport level prediction 

analysis have employed a small number of airports in the US. Spatially, our aim is to consider a 

large set of airports across the country. Temporally, our aim is to examine airline demand at a 

quarterly level for multiple years. Also, while previous studies focus on only one dimension of 

airline demand, we focus on two airport level variables - arrivals and departures. Given the obvious 

interaction between these two variables, we are motivated towards developing a bivariate multiple 

time period framework that recognizes the influence of common unobserved factors. Second, it is 

important to examine the appropriate hierarchy of unobserved factors that affect airline demand. 

The inclusion of observed factors within the model framework is reasonably straightforward. 

However, unobserved effects in the current context provide multiple levels of hierarchies including 

airport level, airport – year, airport – quarter, quarter only, departures and arrivals. Finally, earlier 

research has predominantly considered linear regression and its variants as a framework for such 

analysis. This is expected due to continuous nature of airline demand variables (such as natural 

logarithm of airline demand). However, linear regression models impose a linear restriction on 

parameter impacts for independent variables. While these restrictions can be addressed to some 

extent by considering indicator variables and/or polynomial terms, the restrictions still exist. 
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Further, it is far from straightforward to test for polynomial terms for all variables. To address this 

limitation, we are motivated towards recasting a recently developed model structure referred to as 

the grouped response framework for developing a non-linear regression framework that is 

analogous to the linear regression model system without the restrictions of linear regression (Tirtha 

et al., 2020; Bhowmik et al., 2019; Rahman et al., 2019). 

Due to the outbreak of COVID-19 pandemic, airline industry has experienced a significant 

shock in passenger demand. The emergency use authorization of vaccines offers promise in 

curbing the pandemic and supporting the recovery. As the recovery begins, airlines and airports 

would need to address supply side shortages with growing demand. Therefore, it is important to 

examine the impact of local and global COVID-19 factors to build a template of the possible 

demand recovery path. However, the earlier research efforts on measuring the impact of shocks 

(external or health) on airline demand focused on a retrospective analysis as opposed to offering 

insights for the potential recovery of demand in response to the shock. While earlier research 

provides the building blocks of demand prediction systems and some insights on modeling demand 

in the presence of shocks, these frameworks have not been employed to study demand recovery 

patterns. Thus, there are research opportunities for enhancing our understanding of the impact of 

the pandemic and identifying potential recovery path. First, research on COVID-19 impact on 

airline industry is in the nascent stages and has predominantly focused on global or regional effects. 

Therefore, it is important to examine the influence of COVID-19 at the disaggregate resolutions 

to incorporate the interplay of local and global factors on airline demand. Second, the research 

study is motivated towards employing a robust modeling framework to analyze airline demand 

variable. An exhaustive specification exercise can be conducted to evaluate the impact of various 

COVID-19 factors while controlling for other attributes affecting airline demand. Finally, policy 
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analysis based on different hypothetical scenarios can be effective to provide a blueprint to the 

path to recovery for airline demand. 

Given the importance of understanding airline demand, earlier studies examined airline 

demand at different spatial (airport level and regional level) and temporal (year, quarter, and 

month) resolutions. Traditionally, airports are mapped to spatial units such as metropolitan 

statistical area (MSA), county, or region in airport-level demand analysis. In such studies, 

characteristics of spatial unit of analysis including socio-demographics (population, education, age 

distribution), socio-economic factors (income, unemployment rate, GDP), built environment 

characteristics (number of trade centers, tourist attractions), level of service factors (average air 

fare and distance) and lag variables (historical demand) are considered to affect airline demand. In 

addition to these observed factors of airline demand, several unobserved factors associated with 

the spatial unit can possibly influence airport-level demand. For instance, consider multiple 

airports in proximally located MSAs. It is plausible that observed characteristics of these MSAs 

such as population and employment can impact demand across these airports. These impacts can 

be considered by generating these variables considering larger catchment areas for demand 

prediction (as opposed to using MSA attributes only). In addition, there might be some unobserved 

factors associated with closely linked spatial units that may cause demand correlation among the 

airports. For example, closer airports share passenger behavior trends that are less likely to be 

captured by attributes. For example, variations across how pandemic guidelines were considered 

and implemented is likely to be similar within proximal airports. Neglecting the presence of such 

unobserved spatial correlations in demand modelling may result in biased estimates. While earlier 

research efforts on airline demand modeling have neglected to adequately consider for such spatial 

interactions, in this dissertation, we are motivated to address this gap by developing spatio-
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temporal models (spatial lag and spatial error) of monthly air passenger departures at the airport 

level that explicitly accommodates the spatial interactions between the proximally located airports. 

In recent years, a significant proportion of all flights in the US have been delayed. Airline 

delay causes significant economic loss to different components of commercial aviation industry 

including passengers, airlines, business sectors, etc. Moreover, events like flight delays adversely 

affect carrier schedule reliability. Given the adverse effect of such delays on the US economy, 

understanding the factors affecting on time performance of the airlines at the flight level is 

important to plan policies (including but not limited to prioritizing certain regions/airports, 

resource allocation, expansion of facilities) to reduce the delays and subsequent economic loss. In 

this dissertation, we focus on formulating a mathematical model of airline delay (departure delay 

and arrival delay) at a disaggregate level of flight to identify the factors of such delays and quantify 

their impacts. In this dissertation, we are motivated to enhance flight delay data for delay analysis. 

The flight delay data we employed is sourced from 2019 marketing carrier on time performance 

dataset compiled by BTS. The flight delay data are augmented with a comprehensive set of 

independent variables sourced from secondary data sources including Automated Surface 

Observing System (ASOS) dataset (sourced from Iowa Environment Mesonet) and FAA’s 

Aviation System Performance Metrics (ASPM). Using the ASOS dataset, we focus on building a 

detailed process that allows us to generate weather conditions for the entire duration of the flight. 

Subsequently, we employ ASPM data to determine air traffic conditions at the origin and 

destination airports in the hours preceding the flight’s departure and arrival, respectively. The data 

for our analysis is also augmented with other independent variables including (a) trip specific 

factors (carrier and flight distance), (b) spatial factors (region of origin and destination airports) 

and (c) temporal factors (season, day of the week and time of the day). While earlier research 



 

8 

 

efforts mostly analyzed arrival delay, we focus on analyzing both delay categories – departure 

delay and arrival delay in this research. Given the obvious interactions between two types of delay 

variables, we focus on developing a joint model framework that accommodates for the influence 

of common observed and unobserved effects on flight departure and arrival delays. 

1.3 Objective of the Dissertation 

The first objective of this dissertation is to identify the factors of quarterly air passenger arrivals 

and departures at the airport level and quantify their impact. Towards achieving this goal, the 

current research develops a joint panel group generalized ordered probit model system with 

observed thresholds for modeling air passenger arrivals and departures while accommodating for 

the influence of observed and unobserved effects on airline demand across multiple time periods. 

The proposed model system is estimated using airline demand data from Bureau of Transportation 

Statistic (BTS) for 510 airports at quarterly level for 5 years (2010, 2012, 2014, 2016, and 2018). 

In preparation of dependent variables, we discretize log-transformed quarterly air passenger 

arrivals and departures into 14 demand categories (≤3; >3-4; >4-5, >5-6, >6-7, >7-8, >8-9, >9-10, 

>10-11, >11-12, >12-13, >13-14, >14-15 and >15). For the selected airports, we augmented the 

airline demand data with a host of independent variables including demographic characteristics 

and built environment characteristics at metropolitan statistical area (MSA), spatial and temporal 

factors. Demographic factors include population, household median income, employment, out of 

state employment and education level of the residents in the corresponding metropolitan statistical 

area (MSA). Built environmental characteristics include number of airports in 50 mile buffer area 

around the airport of interest and tourism ranking of the corresponding state. Spatial factors include 

location of the airport in terms of region including south, north-east, west, mid-west and pacific 
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region. Temporal factors include year and quarter of the analysis. The current study also performs 

a validation exercise to compare the performance of the proposed model with traditional linear 

regression model. Finally, an elasticity analysis is undertaken to quantify impact of the factors of 

airline demand.  

The second objective of this dissertation is to identify the impact of COVID-19 on domestic 

airline demand in the US and provide a blueprint of recovery path in the upcoming months. 

Towards achieving this broad objective, the current study develops a model for analyzing airport 

level passenger demand data characterized as monthly departures at the airport level. In this current 

study, we consider monthly airline demand for 380 airports in the US for 24 months from January 

2019 through December 2020. The dependent variable is sourced from T-100 Domestic Market 

dataset provided by Bureau of Transportation Statistics (BTS). Flight passenger counts are 

aggregated over origin airports for each month to generate the dependent variable. In preparation 

of the dependent variable, we perform log-transformation of monthly air passenger departures at 

the airport level. We employ a linear mixed modeling method that examines the continuous 

monthly airport level passenger demand, and the model system is estimated with a host of 

independent variables including (a) global and local COVID-19 factors, (b) county level 

demographic characteristics, (c) built environment characteristics, (d) airport specific factors, (e) 

spatial factors, (f) temporal factors, and (g) adjoining county attributes. The model developed is 

employed to generate predictions for airline demand under various scenarios of future COVID-19 

transmission in response to vaccinations and other guidelines. The research develops a potential 

band of airline demand recovery over time by considering expected, pessimistic and optimistic 

scenarios. 
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The third objective of this dissertation is to analyze monthly air passenger departures at an 

aggregate level of airport while accommodating for spatial and temporal interactions (observed 

and unobserved). To achieve this goal, airline demand data for 5 years (2010, 2012, 2014, 2016 

and 2018) sourced from the Bureau of Transportation Statistics (BTS) is employed to model 

monthly air passenger departures at the airport level. Air passenger demand data in its discretized 

form is augmented with several exogenous attributes including Metropolitan Statistical Area 

(MSA) specific demographic characteristics, built environment characteristics, airport specific 

factors, spatial factors, and temporal factors. The proposed research effort allows us to examine 

the impact of these aforementioned factors on airline demand while incorporating the spatial 

dependencies between spatially linked airports. Traditional approaches employing linear 

regression frameworks inherently impose a linear restriction on parameter impacts for independent 

variables. While these restrictions can be addressed to some extent by considering indicator 

variables and/or polynomial terms, the restrictions still exist. We recast the recently developed 

generalized group ordered probit (GGOP) framework to model the ordinal airline demand variable. 

In our first objective, we will present that the proposed non-linear system subsumes the traditional 

linear regression model system. In the proposed GGOP framework, we accommodate for spatial 

correlations among the airports. We consider two variants of spatial models, namely spatial lag 

model and spatial error model in our study. The spatial lag model incorporates the correlation using 

the dependent variables at multiple airports (excluding the current airport) in the form of spatially 

lagged dependent variables. The spatial error model captures the correlation using the error terms 

through the autocorrelated error term. Further, as we are considering spatial models in the discrete 

outcome paradigm, maximum likelihood approaches are infeasible (see Bhat et al., 2010 for a 

discussion). In the presence of complex spatial and temporal dependencies across observations, it 
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is very difficult to estimate the model using full likelihood approach. Hence, we draw on recent 

advances in spatial econometrics employing composite maximum likelihood (CML) methods to 

examine airline demand. In the CML approach, we maximize a surrogate log-likelihood function 

by computing pairwise joint probabilities of the observations. The GGOP model with CML is 

estimated using a host of independent variables including demographic characteristics, built 

environment characteristics, airport specific factors, spatial factors, and temporal factors. The 

model results offer intuitive and useful insights on airline demand. Finally, a validation exercise 

is conducted to present the value of the proposed models by comparing them with traditional model 

that does not consider any spatial dependency. 

The fourth objective of this study is to formulate a copula based joint model system to 

identify important determinants of flight departure delay and arrival delay as well as quantifying 

their impact. In this study, we develop a novel copula-based group generalized ordered logit 

(GGOL) model of flight delay at the flight level. Departure delay and arrival delay (in minutes) 

are sourced from the BTS 2019 non-stop domestic marketing carrier on time performance dataset. 

In preparation of the dependent variables, departure delay and arrival delay are categorized (in 

minutes) into 6 groups (0-5, 5-10, 10-15, 15-30, 30-60, >60 minutes). The flight delay data is also 

augmented with a host of independent variables including (a) airport level traffic conditions, (b) 

trip level attributes, (c) weather factors, (d) spatial factors, and (e) temporal factors. The current 

research effort will allow us to examine the impact of these aforementioned factors on on-time 

flight performance. Further, the value of the proposed model system is illustrated by comparing 

predictive performance of the proposed model relative to independent models of flight departure 

and arrival on a holdout sample (records not used in estimation). Finally, we conduct an application 

analysis to present the policy implications of the current research. The illustration provides a 
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mechanism for employing the proposed model as a tool for airline carrier level or airport level 

delay prediction analysis using weather forecasts. 

 

1.4 Outline of the Dissertation 

The remainder of the dissertation is divided into six chapters. In chapter 2 through chapter 5, we 

focus on objective 1 through objective 4, respectively. In the last chapter, we provide important 

concluding remarks based on our findings in this dissertation and discuss contributions and 

limitations of this research, and future research scope. 

Chapter two contributes to objective one by modeling air passenger travel demand using a 

joint panel group generalized ordered probit model system. First, this chapter describes relevant 

earlier research and positions the current study. Next, modeling approach and details of the dataset 

employed in the research are presented. The proposed model system is estimated using origin and 

destination survey data provided by BTS for 510 airports in the US. In preparation of dependent 

variables, we performed log transformation of arrivals and departures, and then considered 14 

categories of the transformed variables. The following sections presents model selection procedure 

and estimation results. In the next section, we undertake a validation exercise to compare 

performance of the proposed model with traditional linear regression model. The results of 

elasticity analysis are presented in the following section.  Finally, summary of this chapter is 

presented in the last section. 

Chapter three contributes to objective two by identifying the impact of COVID-19 on 

domestic airline demand in the US. First, this chapter describes relevant earlier research and 

positions the current study. Then, modeling approach and details of the dataset employed in the 

research are presented. The proposed model system is estimated using T-100 domestic market 
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dataset provided by BTS for 380 airports in the US. In preparation of dependent variables, we 

performed log transformation of airport level monthly departures. The following section presents 

the model estimation results. In the next section, we undertake a validation exercise to compare 

observed and predicted demand to evaluate the model performance. The results of policy analysis 

are presented in the next section.  Finally, summary of this chapter is presented in the last section. 

Chapter four contributes to objective three by developing novel spatial GGOP models 

(spatial lag and spatial error) of airport level monthly air passenger departures while capturing for 

spatial interactions of airports in close proximity. First, this chapter discusses earlier studies in 

airline demand modeling and presents research efforts for capturing spatial interactions. Also, 

contributions of the current research are highlighted. Next, econometric methodology and dataset 

description are provided in subsequent sections. The next section presents model selection steps 

and estimation results. In the following section, we undertake a validation exercise to evaluate the 

model performance of the alternative models. Finally, the last section summarizes the chapter. 

Chapter five contributes to objective four by developing a novel copula based GGOL 

model of flight departure and arrival delays. First, this chapter discuss earlier studies in airline 

delay literature and positions the current study. The next section provides discussions on the 

methodology and estimation process of the proposed model. Next, data preparation procedures 

and description of the dataset employed for model estimation are presented. In the following 

section, we select the best copula model by comparing of the performance of independent GGOL 

models and joint models with different dependency structures. Then, the results of the best Copula 

model in terms of data fit are presented and discussed in detail. The next two sections conduct 

model validation and policy analysis, respectively. In the last section, we summarize the findings 

from this chapter. 
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Finally, Chapter six summarizes this dissertation with some concluding remarks. First, we 

present the objectives, methodologies, and key findings from chapter 2 through chapter 5. Next, 

we discuss the contributions of this dissertation. Finally, we present the limitations and scope for 

future research.  
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CHAPTER 2: UNDERSTANDING THE FACTORS AFFECTING 

AIRPORT LEVEL AIRLINE DEMAND  

 

Commercial aviation industry significantly contributes to the US economy and air passenger 

demand (arrivals and departures) is a key indicator of the health of this industry. Understanding 

the factors of air passenger demand is important for long-term planning and operational decisions. 

This chapter presents a novel modeling approach for modeling air passenger arrivals and 

departures at the disaggregate resolution of airport. The proposed model is developed using a large 

set of airports across the US and analogous to linear regression model without the restrictions of 

linear regression. A validation exercise is undertaken to evaluate the performance of the proposed 

model. Finally, an elasticity analysis is performed to quantify the impact of the key factors.  

 

2.1 Earlier Studies 

To be sure, several studies have examined airline passenger demand. Table 2.1 provides a 

summary of earlier research efforts related to air passenger travel demand modeling with 

information on the study, study region, demand resolution, study objectives, methodology and 

independent variables considered1. From Table 2.1, we can make several important observations. 

First, earlier research on air travel demand can be categorized into two groups based on the spatial 

unit of demand data analyzed: (a) airport level and (b) regional level. In the former category, 

 

1 The reader would note that we focused on earlier research examining airline demand. For studies exploring itinerary 

shares or individual level airline survey data analysis see Li & Wan, 2019; Chi, 2014; Carson et al., 2011; Wei & 

Hansen, 2006 and Coldren et al., 2003. 
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studies analyze passenger demand data for individual airports while in the latter category, the 

analysis is conducted by aggregating demand at a regional level. From the review, a majority of 

earlier research focused on analyzing aggregate demand (we found only three studies that explored 

data at the airport level). Second, the factors identified to affect airline demand have been 

consistent including socio-demographic factors (population, education, age distribution), socio-

economic factors (income, unemployment rate, GDP), built environment (number of trade centers, 

tourist attractions), level of service factors (average air fare and distance) and lag variables 

(historical demand). Third, in terms of mathematical frameworks employed for analyzing data, we 

found two predominant approaches: (a) prediction methods using data and (b) distribution or 

assignment methods. The majority of prediction methods focused on one dimension – trip 

departures from the spatial unit of interest. Thus, these studies resorted to employing univariate 

models of passenger demand such as regression models and their variants such as repeated 

measures models and regression trees, Artificial neural networks and Fuzzy models. The second 

set of studies employ approaches to match the pairwise origin destination demand using 

approaches such as gravity models, bi-level optimization and continuous equilibrium approach. 

Finally, studies of air travel demand have primarily employed cross-sectional data for estimating 

demand. In fact, we only found 3 studies (Li & Wan, 2019; Suryani et al., 2010; Loo et al., 2005) 

that considered air travel demand at the airport level employing data from multiple time points.  

 

2.2 Contributions of the Current Study 

While earlier research has offered significant insights on airline travel demand, there is scope for 

enhancing our understanding of factors influencing airline demand. The first contribution of our 

study to the literature arises from spatial and temporal data enhancement of airline demand data 
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from Bureau of Transportation Statistic (BTS). Spatially, the proposed research is conducted at the 

disaggregate resolution of airport to better incorporate the local factors in modeling airline 

demand. Earlier studies that conducted airport level prediction analysis have employed a small 

number of airports in the US (with the highest number of airports considered being 1762). In our 

study, we conduct our analysis considering 510 airports across the country. For these airports, we 

augmented the airline demand data with a host of independent variables including demographic 

characteristics and built environment characteristics at metropolitan statistical area (MSA), spatial 

and temporal factors. Temporally, the current study examines airline demand at a quarterly level 

for five annual time points (2010, 2012, 2014, 2016 and 2018). Thus, for every airport, we have 

20 observations (5 years * 4 quarters per year). Also, in our study we consider two airport level 

variables - arrivals and departures. Given the obvious interaction between these two variables, we 

develop a bivariate multiple time period framework that recognizes the influence of common 

unobserved factors.  

The presence of multiple dependent variables and repeated observations requires the 

analysis methodology to accommodate for the influence of observed and unobserved factors 

affecting airline demand. The inclusion of observed factors within the model framework is 

reasonably straightforward. However, unobserved effects in the current context provide multiple 

levels of hierarchies including airport level, airport – year, airport – quarter, quarter only, 

departures and arrivals. The reader would note that in some cases there is an apparent nesting 

across the hierarchies while in other cases there is some overlap. The second contribution of the 

 

2 Li & Wan, 2019 considered 449 airports in their analysis. However, their approach involved a bi-level optimization 

model that is different from the proposed data driven exercise.   
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research is on empirically examining the appropriate hierarchy of unobserved factors that affect 

airline demand. Finally, earlier research has predominantly considered linear regression and its 

variants as a framework for such analysis. This is expected due to continuous nature of airline 

demand variables (such as natural logarithm of airline demand). However, linear regression 

models impose a linear restriction on parameter impacts for independent variables. While these 

restrictions can be addressed to some extent by considering indicator variables and/or polynomial 

terms, the restrictions still exist. Further, it is far from straightforward to test for polynomial terms 

for all variables. To address this limitation, we recast a recently developed model structure referred 

to as the grouped response framework for developing a non-linear regression framework that is 

analogous to the linear regression model system without the restrictions of linear regression (Tirtha 

et al., 2020; Bhowmik et al., 2019; Rahman et al., 2019). The proposed non-linear system is a 

recasting of the group generalized ordered probit (GGOP) model. In the traditional GGOP model, 

the ordered alternatives are modeled by estimating the threshold parameters that demarcate the 

different alternatives. For identification reasons, the variance of the GGOP error term is 

normalized to 1. However, in our current context, the data is a continuous value, and the 

demarcations can be predefined. To elaborate, we are translating the scale of the latent propensity 

to actual observed data. Thus, in the proposed approach, with observed thresholds, we can estimate 

the variance of the error term. The only data processing required is categorizing the data 

appropriately. If the data are finely categorized the model will represent a non-linear version of 

the traditional linear regression. In fact, we can establish that the proposed non-linear system 

subsumes the linear regression model system. Further, the proposed framework can be employed 

to generate a prediction output that is analogous to the linear regression model (details presented 

in Section 2.3). 
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Table 2.1 Summary of Literature Review 

Study  

(Study region) 

Demand resolution 

(dependent variable 

definition) 

Objectives Methodology 

Independent Variables Considered 

Socio-

Demo. 

Socio-

Econ. 

Built 

Env. 

Service 

Factors 

Lag 

Variable 

Li & Wan, 2019 

(US; 2017) 
Airport (Departures) 

Model originating air 

travel demand and its 

geographical distribution 

Bi-level 

optimization 

model 

Yes Yes No No No 

Mostafaeipour et 

al., 2018 (Iran; 

2011-2015) 

Regional (Pairwise; 

total passenger) 
Predict air travel demand 

Artificial neural 

network 
Yes Yes No No No 

Zhou et al., 2018 

(22 airports, 

Western Australia; 

2016-2017) 

Airport (Pairwise; 

total available seats) 

Model air travel demand 

and find the effects of 

catchment area on the 

factors 

Gravity model Yes Yes Yes Yes No 

Valdes, 2015 (32 

middle income 
countries; 2002-

2008) 

Regional (Total 
passenger) 

Find air travel demand 
determinants 

Linear regression No Yes No No No 

Chang, 2014 

(Countries in 

APEC region; 

2006-2007) 

Regional (Pairwise; 

total passenger) 

Identify determinants of air 

passenger flows 

Non-parametric 

multivariate 

adaptive 

regression spline 

No Yes No Yes No 

Chi, 2014 (US and 

11 other countries; 

2012) 

Regional (Arrivals and 

departures) 

Identify socio-economic 

factors on air travel 

demand 

Autoregressive 

lag modeling 

approach 

No Yes No No Yes 

Kalić et al., 2014 

(Serbia, 2001-

2011) 

Regional (Pairwise; 

Total passengers) 

Model trip generation and 

trip distribution 
Fuzzy models Yes Yes No No No 

Li et al., 2013 (US; 

1995) 

Airport (Pairwise; 

total passengers) 

Estimate historical air 

travel demand 

Route-based 

optimization 

model 

No No No Yes No 

Ba-Fail et al., 2000 

(Soudi Arabia; 

1971-1994) 

Regional (Total 

passengers) 

Estimate domestic air 

travel demand 

Regression 

analysis 
Yes Yes No No No 

Hwang & Shiao, 

2011 (Taiwan; 
2007) 

Airport (Pairwise; air 

cargo) 

Determine the factors of 

international air cargo 
flows 

Gravity model 

 

 

Yes Yes No Yes No 
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Study  

(Study region) 

Demand resolution 

(dependent variable 

definition) 

Objectives Methodology 

Independent Variables Considered 

Socio-

Demo. 

Socio-

Econ. 

Built 

Env. 

Service 

Factors 

Lag 

Variable 

Carson et al., 

2011) (US; 1990-

2004) 

Regional and airport 

(logarithm of 

departures/population) 

Forecast originating air 

travel demand 

Quasi-AIM 

approach 
No Yes No No Yes 

Suryani et al., 2010 

(Taiwan; 1996-

2007) 

Airport (Total 

passengers) 

Forecast air passenger 

demand  

System dynamics 

model 
Yes Yes No Yes No 

Endo, 2007 (US 

and Japan; 2000-

1992) 

Regional (Pairwise; 

import and export) 

Identify effect of bi-lateral 

aviation framework on air 

service imports 

Regression 

analysis 
No Yes No Yes No 

Grosche et al., 

2007 (Germany 

and 28 European 

countries; 2004) 

Regional (Pairwise, 

total passengers) 

Model air passenger 

volume between cities 
Gravity model Yes Yes No Yes No 

Loo et al., 2005 

(Hong Kong–Pearl 

River Delta region; 

2000)  

Airport 

(passengers/year) 

Model geography of air 

passenger flows 

Continuous 

equilibrium 

approach 

No Yes No No No 

Wei & Hansen, 

2006 (Hub 
Airports, US; 

2000) 

Airport and airlines 

(Pairwise; logarithm 
of departures) 

Model aggregate air 
passenger traffic  

Log-linear 
demand model 

Yes Yes No Yes No 

Matsumoto, 2004 

(Asia and outside 

Asia; 1998) 

Regional (Pairwise; 

Total passengers and 

cargo) 

Identify the pattern of 

international air passenger 

and cargo flows 

Gravity model Yes Yes No Yes No 

Coldren et al., 

2003) (US; 2000) 

Air carrier (Pairwise; 

Total passengers) 

Model market share of air 

carriers 

Aggregate 

multinomial logit 
No No No Yes No 

Abed et al., 2001 

(Saudi Arabia; 

1971-1992) 

Regional (Total 

passengers) 

Model the demand for 

international air travel 

Stepwise 

regression 

analysis 

No Yes No No No 

Rengaraju & 

Arasan, 1992 (40 

city pairs, India; 

1986) 

Regional (Pairwise; 

total passenger) 
Model demand of air travel 

Stepwise multiple 

linear regression 
Yes Yes No No No 
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2.3 Econometric Methodology 

2.3.1 Model Formulation 

Let q (q = 1, 2,…, Q) be an index to represent airports, r represent the demand dimension (r =1 

represents arrivals and r =2 represents departures), t (t = 1, 2, 3,…, T = 5) represent the different 

years, l (l=1, 2, 3,…., L = 4)  represent different quarters and j (j = 1, 2, 3,…, J = 14) be an index 

to represent the logarithm of quarterly passenger arrivals or departures data. We consider fourteen 

categories for the air travel demand analysis and these categories are: Bin 1 = ≤3; Bin 2 = 3-4; Bin 

3 = 4-5, Bin 4 = 5-6, Bin 5 = 6-7, Bin 6 = 7-8, Bin 7 = 8-9, Bin 8 = 9-10, Bin 9 = 10-11, Bin 10 = 

11-12, Bin 11 = 12-13, Bin 12 = 13-14, Bin 13= 14-15 and Bin 14 = >15. Then, the equation 

system for modeling demand may be written as follows: 

𝐷𝑞𝑟𝑡𝑙
∗  = (𝛼𝑟

′  + 𝛾𝑞𝑟
′ )𝑥𝑞𝑟𝑡𝑙 + (𝜂𝑘)𝑥𝑞𝑟𝑡𝑙 + 휀𝑞𝑟𝑡 , 𝐷𝑞𝑟𝑡𝑙 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝐷𝑞𝑟𝑡𝑙

∗ ≤ 𝜓𝑗   (2.1) 

In equation 2.1, 𝐷𝑞𝑟𝑡𝑙
∗  is the latent (continuous) propensity for total airline demand 

dimension r at airport q, for the year t and quarter l. This latent propensity 𝐷𝑞𝑟𝑡𝑙
∗  is mapped to the 

actual demand category j by the 𝜓 thresholds, in the usual ordered-response modeling framework. 

In our case, we consider J = 14 and thus the 15 𝜓 values are as follows: -∞, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15 and +∞. 𝑥𝑞𝑟𝑡𝑙 is a matrix of attributes that influence passenger arrivals and 

departures (including the constant); 𝛼 is the vector of coefficients corresponding to the attributes 

and 𝛾𝑞  is a vector of coefficients representing the impact of unobserved factors moderating the 

influence of corresponding element of 𝑥𝑞𝑡𝑙. Further, 휀𝑞𝑟𝑡 is an idiosyncratic random error term 

assumed independently normally distributed with variance 𝜆𝐷𝑟
2 . 



 

22 

 

The variance vectors for arrivals and departures are parameterized as a function of 

independent variables as follows: 𝜆𝐷𝑟 = exp (𝜃′𝑟𝑥𝑞𝑟𝑡𝑙) . The parameterization allows for the 

variance to be different across the airports accommodating for heteroscedasticity. Finally, to allow 

for alternative specific effects, we also introduce threshold specific deviations in the model as 

𝜌𝑗𝑟 =  𝜏′
𝑗𝑟𝑥𝑞𝑟𝑡𝑙.  

𝜂𝑘  represents the vector of coefficients representing the impact of common unobserved 

factors that jointly influence quarterly passenger arrivals and departures across repetition level k. 

As discussed earlier, in the current study context, we estimate 𝜂𝑘  for different levels (k) of 

repetition measures including airport specific, year specific, quarter specific, airport-year specific, 

airport-quarter specific and year-quarter specific. The flexibility offered by testing for unobserved 

heterogeneity enhances the model development exercise. In accommodating unobserved effects at 

different repetition levels, random numbers are assigned to the appropriate observations of the 

repetition measures. For example, at airport level, we have 510 airports. Thus, in evaluating 

unobserved effect at the airport level, 510 sets of different random numbers are generated specific 

to 510 airports and assigned to the data records based on their airport ID. The random numbers are 

assigned for other repetition levels following the same analogy in estimating the model. The reader 

would note that the multiple levels identified here also allows for the joint correlation across the 

two dependent variables (arrivals and departures). For instance, at observational level (airport-

year-quarterly), this 𝜂𝑘  will be different across the observations but same across the two dependent 

variables which implies that the unobserved factors that increase the propensity for arrivals for a 

given reason, also increase the propensity for departures. Thus, the proposed framework by 

allowing for additional flexibility allows the analyst to avoid conflation of unobserved effects on 

quarterly arrivals and departures at an airport for different years.  
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To complete the model structure of the Equation 2.1 and Equation 2.2, it is necessary to 

define the structure for the unobserved vectors 𝛾𝑞𝑟  and 𝜂𝑘 . In this paper, we assume that the three 

vectors are independent realizations from normal distributions as follows: 𝛾𝑞𝑟  ~𝑁(0, 𝜎𝑟
2) and 

𝜂𝑘  ~𝑁(0, 𝜚2). 

With these assumptions, the probability expressions for the air travel demand category may 

be derived. Conditional on 𝛾𝑞𝑟  and 𝜂𝑘  the probability for airport q to have arrivals and departures 

in category j in year, t and quarter, l is given by: 

𝑃(𝐷𝑞𝑟𝑡𝑙)|𝛾, 𝜂 =  Λ [
𝜓𝑗−((𝛼𝑟

′ +𝛾𝑞𝑟
′ )𝑥𝑞𝑟𝑡𝑙+(𝜂𝑘)𝑥𝑞𝑟𝑡𝑙+𝜌𝑗𝑟

′ )

𝜆𝐷𝑟
] −

 Λ [
𝜓𝑗−1−((𝛼𝑟

′ +𝛾𝑞𝑟
′ )𝑥𝑞𝑟𝑡𝑙+(𝜂𝑘)𝑥𝑞𝑟𝑡𝑙+𝜌𝑗−1,𝑟

′ )

𝜆𝐷𝑟
]  

(2.2) 

where Λ (.) is the cumulative standard normal distribution. The complete set of parameters 

to be estimated in the bivariate model system of Equations 2.2 are 𝛼𝑟 , 𝜏𝑟  and 𝜃𝑟  vectors and the 

following standard error terms: 𝜎𝑟 and 𝜚. Let Ω  represent a vector that includes all the standard 

error parameters to be estimated. Given these assumptions the joint likelihood for airport level 

quarterly arrivals and departures is provided as follows:  

𝐿𝑞|Ω =  ∏ ∏ ∏ ∏ [𝑃(𝐷𝑞𝑟𝑡𝑙)|𝛾, 𝜂]
𝑑𝑞𝑟𝑡𝑙𝑗

  
𝐽

𝑗=1

2

𝑟=1

𝐿

𝑙=1

𝑇

𝑡=1
 (2.3) 
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where 𝑑𝑞𝑟𝑡𝑙𝑗  are dummy variables taking a value of 1 if an airport q has the demand 

dimension, r within the jth category for year, t and quarter, l and 0 otherwise. Finally, the 

unconditional likelihood function may be computed for airport q as: 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)𝑑Ω
Ω

 

 

(2.4) 

Now, we can express the likelihood function as follows: 

LL =  ∑ ln 𝐿𝑞

𝑄

𝑞=1
 

 

(2.5) 

The likelihood function in Equation 2.5 involves the evaluation of a multi-dimensional 

integral of size equal to the number of rows in Ω. We apply Quasi-Monte Carlo simulation 

techniques based on the scrambled Halton sequence to approximate this integral in the likelihood 

function and maximize the logarithm of the resulting simulated likelihood function (see Bhat, 

2001; Yasmin & Eluru, 2013 for more details). 

 

2.3.2 Model Prediction 

In the preceding discussion we presented the model estimation approach. In this sub-section, we 

outline the formula for generating the demand prediction from the proposed model. The approach 

recognizes that the continuous latent propensity score (𝐷𝑞𝑟𝑡𝑙
∗ ) generated serves as the estimate of 

airline demand. However, in the presence of alternative specific variables (𝜌𝑗𝑟), the latent 



 

25 

 

propensity score needs to be adjusted accordingly. The resulting equation for continuous demand 

from the proposed model is expressed as follows: 

 

𝑝𝑞𝑟𝑡𝑙  = (𝛼𝑟
′  + 𝛾𝑞𝑟

′ )𝑥𝑞𝑟𝑡𝑙 + (𝜂𝑘)𝑥𝑞𝑟𝑡𝑙 + ∑ (𝛼𝑟
′ 𝑥𝑞𝑟𝑡𝑙 > (𝜓𝑗 − 𝜌𝑗𝑟)) × 𝜌𝑗𝑟 𝐽

𝑗=2   (2.6) 

where, 𝑝𝑞𝑟𝑡𝑙  represents the total airline demand for dimension r, at airport q, for the year t and 

quarter l and 𝑥𝑞𝑟𝑡𝑙 is a matrix of attributes that influence passenger arrivals and departures. 𝑝𝑞𝑟𝑡𝑙  

generated will allow us to estimate all measures of comparison applicable for linear regression 

such as squared residuals, R2 and adjusted R2.  

 

2.3.3 Equivalent Log-Likelihood Generation Using Linear Regression 

The adjusted R2 measure represents the squared error in the model. However, it is worth noting 

that the squared error might not penalize the error in observations adequately. To develop a more 

reliable comparison metric to investigate the model performance, an equivalent linear regression 

log-likelihood was generated. The reader would note that linear regression model log-likelihood 

represents the probability density function of the difference between the observed and predicted 

value. However, in the proposed model, we do not differentiate between any values within each 

category. Thus, a direct comparison of log-likelihoods is not appropriate. Hence, we present an 

equivalent log-likelihood that allows for an appropriate comparison. The probability for airport q 

to have arrivals and departures in category j in year, t and quarter, l using linear regression model 

is given by: 

𝑃(𝐷𝑞𝑟𝑡𝑙) =  Λ [
𝜓𝑗−(𝜔𝑟

′ 𝑥𝑞𝑟𝑡𝑙)

𝜅𝑟
] −  Λ [

𝜓𝑗−1−(𝜔𝑟
′ 𝑥𝑞𝑟𝑡𝑙)

𝜅𝑟
]  (2.7) 
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where, 𝜔 and κ2 represent the vector of coefficients and the error variance respectively 

estimated from the linear regression model and 𝜓 is same as defined earlier in Equation 2.1. The 

probability thus generated is employed to compute the likelihood function following same 

equations as presented in 2.3, 2.4 and 2.5. 

 

2.4 Dataset Description 

The airport demand data are sourced from the airline origin and destination survey conducted by 

Bureau of Transportation Statistics (BTS). BTS provides detailed information about 10% of the 

tickets collected from domestic and international airlines operating in the US. For our current 

analysis, we confined our attention to the domestic air travelers from 2010 to 2018 across the 51 

states in US covering five major regions including South, West, North-East, Mid-West and Pacific 

regions. Further, we consider both arrivals and departures at an airport for every quarter over the 

study period.  Hence, passenger trips in origin and destination survey are aggregated at quarters 

and airports and scaled appropriately (as they represent 10% of the total domestic trips) to estimate 

the quarterly airport level travel demand. In the airport selection process, our focus was to consider 

all of the public-use airports located in the US. In this effort, we consider 510 airports for which 

itinerary information are available in origin and destination survey. We ignored the smaller airports 

that do not have itinerary information available. For the selected airports, we extract the demand 

data for every two years interval (2010, 2012, 2014, 2016 and 2018). The reader would note that 

some airports did not have all 20 records for various reasons (such as airports that were opened for 

passengers at a later time or closed in the time frame).  After cleaning the data, we obtain a total 

of 8,477 observations for estimation.  
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In preparation of dependent variables, we performed log transformation of arrivals and 

departures, and then considered 14 categories (≤3, >3-4, >4-5, >5-6, >6-7, >7-8, >8-9, >9-10, >11-

12, >12-13, >13-14, >14-15, >15) of the transformed variables. Distribution of the dependent 

variables are shown in Figure 2.1. The transformed variable reasonably represents a normal 

distribution.  

 

Figure 2.1 Distribution of the Dependent Variables 

The BTS airline data is also augmented with a host of independent variables. These 

variables are sourced from American Community Survey (ACS) and other secondary sources 

(County health ranking and roadmaps (Roadmaps, 2020) for crime data; Insider, 2020). 

Independent variables are grouped into four broad categories, namely, demographic 

characteristics, built environment characteristics, spatial and temporal factors. Demographic 

factors include population, household median income, employment, out of state employment and 

education level of the residents in the corresponding metropolitan statistical area (MSA). Built 

environmental characteristics include number of airports in 50mile buffer area around the airport 
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of interest and tourism ranking of the corresponding state. Spatial factors include location of the 

airport in terms of region including south, north-east, west, mid-west and pacific region. Temporal 

factors include year and quarter of the analysis. Detailed descriptions of functional form and 

summary statistics of the independent variables are provided in Table 2.2 for categorical and 

continuous variables.  

Table 2.2 Description of the Independent Variables 

Categorical Independent Variables 

Variables Definition Frequency Percentage 

Demographic characteristics 

Education Status 

High 
Percentage of adults not having high school degree in 

the MSA <=12% 
4713 55.597 

Low 
Percentage of adults not having high school degree in 

the MSA >12% 
3764 44.403 

Built environment factors 

Tourist attraction 

Top10 The state is among top 10 tourist attraction states 2252 26.566 

Bottom10 The state is among bottom 10 tourist attraction states 948 11.183 

Others 
The state is other than top and bottom tourist 

attraction states 
5277 62.251 

Spatial Factors 

Region 

South   2465 29.100 

North-East   1079 12.700 

West   2176 25.700 

Mid-West   1958 23.100 

Pacific   799 9.426 

Temporal factors 

Quarter 

Quarter 1 January-March 2101 24.785 

Quarter 2 April-June 2142 25.268 

Quarter 3 July-September 2128 25.103 

Quarter 4 October-December 2106 24.844 

Continuous Independent Variables 

Variables Definition Mean Min/Max 

Socio-demographic factors 

Population  Population in million in corresponding MSA 1.101 0.013/20.031 
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Continuous Independent Variables 

Variables Definition Mean Min/Max 

Median Income Median income in 100K in corresponding MSA 0.541 0.276/1.147 

Employment 
Ln(number of workers in thousands in corresponding 

MSA) 
4.848 2.029/9.166 

Out of State 

Employment 

Fraction of job holders in corresponding MSA 

working out of state 
0.029 0.000/0.273 

Built environment factors 

Number of airports Ln(Number of airports in 50 mile buffer area) 1.711 0.000/3.664 

Ordinal Independent Variables 

Temporal factors 

Year Ordinal year variable with 2010 as the base year 3.900 0.000/8.000 

 

2.5 Model Selection 

The empirical analysis begins with comparing the performance of the proposed group generalized 

ordered probit (GGOP) model with the performance of a linear regression model. The reader would 

note that the two model systems are generally estimated using different approaches. The linear 

regression model is estimated using the least squares estimator (and evaluated based on adjusted 

R2) and the GGOP model employs a log-likelihood maximization procedure (evaluated using log-

likelihood). In our effort to compare the two frameworks, we build equivalent measures for the 

two models from both approaches i.e. generate adjusted R2 and log-likelihood for both models 

(equations presented in section 2.3.2 and 2.3.3).  

The linear regression model for arrivals (departures) with 12 (12) parameters resulted in an 

adjusted R2 value of 0.401 (0.397). For the GGOP arrivals (departures) model with 15 (16) 

parameters resulted in an adjusted R2 value of 0.408 (0.405). The reader would note, even after 

accounting for the additional parameters in the GGOP framework, we observe that GGOP model 

outperforms the linear regression model structure.  
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The log-likelihood and Bayesian Information Criterion (BIC) value for the equivalent 

linear regression framework appropriately aggregated to reflect the GGOP structure is -37,363.3 

(with 24 parameters) and 74,876.2, respectively. The log-likelihood and BIC value for the 

proposed GGOP system is -37,128.0 (with 31 parameters) and 74,449.3, respectively. The 

comparison of the adjusted R2, log-likelihood and BIC measures clearly illustrate the superiority 

of the proposed model structure for the present empirical case study.  

After establishing the superiority of the GGOP framework (versus the linear regression 

approach), we estimate advanced model structures in the GGOP regime to account for the presence 

of two dependent variables and repeated measures. Prior to doing this, we recognized that the 

arrivals and departures models have similar coefficients for a substantial number of parameters. 

Hence, to arrive at a parsimonious specification, we restrict the variables with close parameter 

values and re-estimate the model. The re-estimated model offers no significant loss of fit. Finally, 

with this specification we estimate the joint panel GGOP model. The fit measures - log-likelihood 

(parameters) - for the three models are as follows: Independent GGOP model: -37,128.0 (with 31 

parameters); 2) Restricted GGOP model: -37,128.2 (with 19 parameters) and 3) Joint Panel GGOP 

model: -30,175.2 (with 20 parameters). We also compute the BIC value for these three frameworks 

to determine the best model. The BIC values for the three models are as follows: a) 74,449.3, b) 

74,374.9 and c) 60,475.1. Based on the BIC values, the joint panel model that accommodates for 

the presence of unobserved heterogeneity significantly outperforms the respective independent 

models highlighting the importance of accommodating for the influence of common unobserved 

factors affecting the two dependent variables (and their repeated measures). For the sake of brevity, 

only the joint panel GGOP model results are presented in the dissertation. 
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2.6 Estimation Results 

In the model estimation process, we explored various transformations of the independent variables 

and chose the best transformation based on model fit. Table 2.3 shows the effects of exogenous 

variables on passenger arrivals and departures. Positive (negative) coefficients in the model 

indicate that an increase (decrease) of a variable increases (decreases) the propensity for higher 

demand. From Table 2.3, the reader would note the variables for arrivals and departures offer 

identical parameters as they were restricted to be the same based on initial estimations that offered 

very close values across the two variables. Given the similarity, we will discuss the variable effects 

for both arrivals and departures together by variable groups. 

2.6.1 Demographic Characteristics 

Among the various demographic characteristics considered in the model, population, median 

income in an MSA, out of state employment and education status offer significant impact on the 

quarterly demand. As evident from Table 2.3, we can see that population - a surrogate for exposure 

is positively associated with increased demand (arrivals and departures) (please see Zhou et al., 

2018 and Grosche et al., 2007 for similar findings). Further, results show that the air travel demand 

is positively associated with median income in an MSA. Increased income, in general, corresponds 

to increased affordability for personal travel and higher business activity in the region. Thus, it is 

possible that airports in MSA’s with higher median income are likely to have higher demand 

profiles.  

The variable specific to out of state employment represents the percentage of employees 

working out of state and reveals a negative association with the air travel demand. This may 

indicate that as out of state workers are not actively present in the MSA, consequently, increase of 
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such population may reduce total number of passenger arrivals and departures. Further, from the 

results it appears that education status in an MSA is an important determinant influencing the air 

travel demand. Results show that if percentage of adults without high school degree is more than 

12%, then air travel demand decreases.  

2.6.2 Built Environment Characteristics 

The variable number of airports in a 50 mile buffer represents the number of available airports in 

close proximity (50 mile radius) of an airport. Interestingly, we found that increased number of 

airports in 50 mile buffer results in higher air travel demand in a MSA. Further, we considered the 

tourism status of an MSA in our analysis as demand for travel to these destinations can increase 

air travel demand. For this purpose, we identify the top and bottom 10 desirable states with respect 

to tourism activity and use that indicator variables as predictors in our model system. As expected, 

we find that the likelihood of higher air travel demand is greater in an airport located in top 10 

tourists’ attraction states while a reduced propensity for air demand is observed for an airport 

located in the least 10 visiting states.  

2.6.3 Spatial Factors 

Location of the airports in terms of US region has a significant effect on the total number of arrivals 

and departures through those airports. In general, compared to the airports in the west and the mid-

west region, the demand is observed to be higher for an airport in the south region. On the other 

hand, airports in the north-east and pacific regions experience lower level of demand. 
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2.6.4 Temporal Factors 

Quarterly effects are found to be significant in the model and the results indicate that travel demand 

is lowest for quarter 1 (January – March) and highest for quarter 3 (July – September). These trends 

can be attributed to presence of seasonal variation in air travel demand. 

2.6.5 Category Specific Deviations 

The proposed model also allows for category specific deviations on various predefined thresholds. 

In our air passenger arrivals and departures estimation, we consider various category specific 

deviations based on model fit and sample sizes across each trip count categories. The estimation 

results of these parameters are reported in the third-row panel of Table 2.3. These deviation 

parameters are similar to a constant in discrete choice models and do not have an interpretation 

after incorporating other variables. 

2.6.6 Effect of Unobserved Factors 

In our proposed model, we estimated unobserved effects at multiple levels: airports, year, quarter, 

airport – year and airport – quarter. Among different levels we considered, we found that the airport 

– year and airport – quarter level effects have significant influence on air travel demand. The 

estimation results of these standard deviations are presented in last row panel of Table 2.3. The 

significant standard deviation parameters at different repetition measures provide evidence toward 

supporting our hypothesis that it is necessary to incorporate these unobserved effects in examining 

air travel demand. These variables indicate that the air passenger arrivals and departures may vary 

for different airports based on the unobserved effects specific to different levels. 
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Table 2.3 Model Estimation Results 

Variables  
Arrivals Departures 

Estimate t-statistic Estimate t-statistic 

Propensity Components 

Constant 5.6422a 48.4330 5.6235 48.2630 

Demographic Factors 

Population 0.2681 32.0980 0.2681 32.0980 

Median income 3.5463 17.1210 3.5463 17.1210 

Out of state employment -0.6236 -1.7920 -0.6236 -1.7920 

Education Level (Base: High (% of adults not having high school degree <=12%))  

Low -0.6030 -15.0460 -0.6030 -15.0460 

Built Environment Factors 

No. of airports  1.3622 41.6110 1.3622 41.6110 

Tourist's Attraction (Base: Others) 

Top10 0.8160 15.5210 0.8160 15.5210 

Bottom10 -0.4552 -6.7810 -0.4552 -6.7810 

Spatial Factors 

Region (Base: West and Mid-West) 

South 1.1928 20.9990 1.1928 20.9990 

North-East -1.4536 -21.4080 -1.4536 -21.4080 

Pacific -2.9293 -36.1590 -2.9293 -36.1590 

Temporal Factors 

Quarter (Base: Quarter 1) 

Quarter 2&4 0.1161 2.8440 0.1161 2.8440 

Quarter 3 0.2044 4.5600 0.2044 4.5600 

Variance Components 

Constant 0.3767 42.6490 0.3855 43.6470 

Threshold Specific Constant 

Threshold 11 -0.1275 -5.7110 -0.1309 -5.8620 

Threshold 13 -0.4185 -7.7620 -0.4282 -7.9420 

Threshold 14 -1.6344 -17.2810 -1.6498 -17.3010 

Unobserved Effects 

Variables  Estimate t stat 

Airport-Year specific effect 1.9572 38.3520 

Airport-Quarter specific effect 0.3668 19.8320 

a = Significant at 90% confidence level 
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2.7 Model Validation 

The holdout sample with quarterly passenger arrivals and departures for year 2017 is used to 

perform the validation test. The validation set consists of 1,609 observations for 415 airports. To 

test the predictive performance of the proposed model, a validation exercise is performed in this 

study following the same procedures outlined in Section 2.5. First, we compared the performance 

of the traditional linear regression with the independent GGOP model. To perform the validation 

analysis, 25 data samples of 100 airports each, are randomly generated from the hold out validation 

sample consisting of 415 airports. Predicted R2 and Log-likelihood values for linear regression 

model and GGOP model are plotted in Figure 2.2. Figure 2.2 clearly highlights the enhanced 

performance of the GGOP model over LR across most of the samples for both arrival and departure 

rate. Specifically, for the arrival model, the GGOP model performs better than LR model in 43 out 

of 50 cases (R2: 21 and LL: 22) while for the departure model, the GGOP model performs better 

in 45 cases (R2: 22 and LL: 23). While the improvements in predicted R2 might be small, the 

consistency of the improved performance of the GGOP model indicates its superiority over the LR 

model. Further, we compare the distribution of the residuals for linear regression model and the 

proposed model in Figure 2.3. From Figure 2.3, we can see that the proposed model performs 

better than traditional linear regression model in terms of RMSE measure. Subsequently, we 

compared the performance of the three GGOP model systems (LL and BIC): (1) independent 

GGOP: -6972.12 and 14,131.12, (2) restricted GGOP: -6972.13 and 14,058.80 and (3) joint panel 

GGOP: -5868.40 and 11,857.37. The LL and BIC values computed using the validation dataset 

also clearly highlights the superiority of the joint panel GGOP model relative to the other two 

systems.  
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(a) Predicted R2 for arrivals (b) Predicted R2 for departures 

  

  
(c) Predicted LL for arrivals (d) Predicted LL for departures 

Figure 2.2 Predicted R2 and LL Comparison between LR and GGOP Model 

LR Vs. GGOP: (4, 21) LR Vs. GGOP: (3, 22) 

LR Vs. GGOP: (2, 23) LR Vs. GGOP: (3, 22) 
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(a) Arrival Model 

 

 
(b) Departure Model 

 

Figure 2.3 Distribution of the Residuals 
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2.8 Policy Analysis 

In order to highlight the effect of various attributes on air passenger arrivals and departures, an 

elasticity analysis is also conducted (see Eluru & Bhat, 2007 for a discussion on the methodology 

for computing elasticities). We investigate the change in demand, due to the change in selected 

independent variables. To elaborate, we compute the percentage change of aggregate probability 

of the demand categories because of the change in the factors considered. The variables considered 

include MSA level population, household median income, out of state employment, education 

status, number of airports in close proximity, tourism related variables and quarter of analysis. The 

results of elasticity analysis are presented in Table 2.4. Several observations can be made from the 

results. First, airport location in tourism driven states has a significant impact on air travel demand. 

Further, we observe that increased air travel demand is associated with number of airports in 

proximity, population and median income. Second, air travel demand is adversely affected by 

MSA level education status (higher proportion of adults without high school education) and state’s 

presence in the bottom tier of tourist attractions. These findings illustrate how the proposed 

approach can be employed to understand how air travel demand is affected by various independent 

variables. For instance, examining population and median income trends over time will allow 

planning agencies to expect changes to air travel demand. Further, from our analysis, it is also 

apparent that the tourism rank of a state has a substantial effect on air travel demand. Thus, 

marketing the tourist attractions in a state might be a beneficial investment.  
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Table 2.4 Elasticity Analysis Results 

Arrivals  

categories 

Bins 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Population -1.91b -1.13 -0.74 -0.56 -0.49 -0.46 -0.45 -0.42 -0.39 -0.31 -0.18 -0.24 -0.35 23.66 

Median income -37.41 -30.71 -25.26 -20.36 -15.79 -11.32 -6.82 -2.34 1.97 6.05 9.22 11.26 10.54 19.38 

Out of state employment 0.31 0.28 0.24 0.18 0.14 0.10 0.06 0.02 -0.02 -0.06 -0.09 -0.10 -0.03 -0.27 

Education Status (Low) 183.12 133.79 101.85 75.75 53.36 34.10 17.83 4.12 -7.75 -18.81 -27.69 -32.32 -25.45 -45.00 

No. of airports -10.54 -12.39 -13.85 -14.58 -14.05 -12.07 -8.82 -4.62 0.30 5.85 10.92 14.87 15.27 32.43 

Top10 -113.58 -96.89 -84.41 -72.42 -59.54 -45.27 -29.67 -12.78 5.43 25.34 42.53 52.02 44.11 60.03 

Bottom10 122.85 93.18 73.40 56.82 41.78 27.59 14.34 2.54 -7.30 -15.23 -20.49 -22.80 -19.85 -29.87 

Quarter 2&4 -23.57 -19.33 -15.94 -12.79 -9.75 -6.77 -3.86 -1.09 1.44 3.71 5.38 6.34 5.67 8.51 

Quarter 3 -37.77 -31.63 -26.50 -21.57 -16.70 -11.82 -6.92 -2.14 2.34 6.47 9.58 11.44 10.29 15.33 

Departures categories 
Bins 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Population -1.84 -1.10 -0.73 -0.55 -0.49 -0.46 -0.45 -0.42 -0.38 -0.31 -0.18 -0.25 -0.24 23.86 

Median income -36.87 -30.26 -24.92 -20.08 -15.57 -11.13 -6.68 -2.24 2.02 6.06 9.21 11.23 10.56 19.49 

Out of state employment 0.31 0.28 0.23 0.18 0.13 0.10 0.06 0.02 -0.02 -0.06 -0.09 -0.10 -0.03 -0.27 

Education Status 178.94 131.10 99.98 74.39 52.39 33.44 17.42 3.87 -7.89 -18.86 -27.64 -32.17 -25.49 -45.26 

No. of airports -10.69 -12.52 -13.91 -14.56 -13.96 -11.94 -8.69 -4.50 0.38 5.89 10.91 14.82 15.31 32.62 

Top10 -112.20 -95.87 -83.59 -71.67 -58.83 -44.64 -29.14 -12.36 5.71 25.46 42.44 51.78 44.15 60.22 

Bottom10 120.35 91.52 72.22 55.92 41.07 27.05 13.98 2.34 -7.38 -15.24 -20.45 -22.73 -19.89 -29.96 

Quarter 2&4 -23.22 -19.05 -15.72 -12.61 -9.60 -6.65 -3.77 -1.03 1.47 3.72 5.38 6.32 5.68 8.54 

Quarter 3 -37.28 -31.21 -26.15 -21.28 -16.46 -11.62 -6.78 -2.05 2.39 6.48 9.57 11.40 10.29 15.40 

b = percentage change of aggregate probability of the demand categories  
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2.9 Summary 

Understanding the factors affecting airline demand at US airports is important for long-term 

planning and operational decisions. The current study contributes to the existing literature along 

multiple directions. The first contribution our study to the literature arises from spatial and 

temporal data enhancement of airline demand data from BTS. Also, in presence of airport level 

variables - arrivals and departures, we develop a bivariate framework that recognizes the influence 

of common unobserved factors. The second contribution of the research is on empirically 

examining the appropriate hierarchy of unobserved factors that affect airline demand. Finally, to 

address the inherent limitations of traditional linear models, we employ the generalized response 

framework for developing a non-linear framework that subsumes the linear regression model 

system. In summary, the proposed research develops a joint panel group generalized ordered probit 

model system with observed thresholds for modeling air passenger arrivals and departures. The 

proposed model is estimated using airline data compiled by Bureau of Transportation Statistics for 

510 airports across the US. A host of exogenous variables including demographic characteristics, 

built environment characteristics, spatial and temporal factors are considered in the model 

estimation.  

The empirical analysis shows that the flexible structure of group generalized ordered probit 

model (GGOP) allows us to capture the non-linearity between air travel demand and its 

contributing factors resulting in better data fit compared to linear regression model. To arrive at a 

parsimonious specification, we estimated a restricted GGOP model without any significant loss of 

data fit. Finally, the joint panel model that accommodates for the presence of unobserved 

heterogeneity performs the best in terms of empirical context highlighting the importance of 

accommodating for the influence of common unobserved factors affecting the two dependent 



 

41 

 

variables (and their repeated measures). Finally, to illustrate how the enhanced demand model 

allows policy agencies to understand changes to airline demand with changes to independent 

variables a policy analysis is conducted. The results identify important predictors for airline 

demand. In particular, they highlight the role of tourism in the state, regional population and 

median income.  

However, this study is not without limitations. Augmenting the data in our research with 

local economic indicators and airport specific attributes might be an avenue for future research.    
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CHAPTER 3: EXAMINING THE IMPACT OF COVID-19 ON AIRLINE 

DEMAND 

 

3COVID-19 pandemic has affected every facet of life and airline industry is amongst the worst 

affected industries. In December 2020, domestic airline demand in US is only 39.1% of the demand 

in December 2019. As the demand recovery starts, a high-resolution demand prediction framework 

that accommodates the effect of COVID-19 global and local factors on airline demand is important 

to build a template of potential demand recovery in the future months. Thus, this chapter presents 

a linear mixed model of monthly air passenger departures at the airport level that considers the 

effect of COVID-19 factors. In addition, a validation exercise is undertaken to see how the 

proposed model captures the actual demand variations. Finally, the chapter presents a potential 

band of airline demand recovery over time by considering three hypothetical scenarios including 

expected, pessimistic, and optimistic scenarios. 

3.1 Earlier Studies 

The literature relevant to the current study context can be categorized into three major streams: a) 

studies investigating the factors influencing airline demand, b) studies examining the influence of 

external shocks (such as September 11 attacks) or health pandemics such as Severe Acute 

 

3 Tirtha, S. D., Bhowmik, T., & Eluru, N. (2022). An Airport Level Framework for Examining the Impact of COVID-

19 on Airline Demand. Transportation Research Part A: Policy and Practice, 159, 169-181. 

https://doi.org/10.1016/j.tra.2022.03.014 
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Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) and c) studies 

investigating the impacts of COVID-19.  

The first group of studies develop airline demand prediction frameworks considering a host 

of independent variables. The demand prediction exercise is typically conducted at two spatial 

resolutions: (a) airport level (Li & Wan, 2019; Loo et al., 2005; Suryani et al., 2010; Wei & 

Hansen, 2006; Zhou et al., 2018) and (b) regional level (Abed et al., 2001; Chang, 2014; Chen et 

al., 2009; Chi, 2014; Chi & Baek, 2013; Endo, 2007; Grosche et al., 2007; Grubb & Mason, 2001; 

Kalić et al., 2014; Matsumoto, 2004; Mostafaeipour et al., 2018; Rengaraju & Arasan, 1992; Tsui 

et al., 2014; Valdes, 2015). In the former category, studies analyze passenger demand data for 

individual airports while in the latter category, the analysis is conducted by aggregating demand 

at a regional level (such as state level or census region level). Across the two spatial resolutions, 

the factors affecting airline demand include socio-demographic factors (population, education, age 

distribution), socio-economic factors (income, unemployment rate, GDP), built environment 

(number of trade centers, tourist attractions), level of service factors (average airfare and distance) 

and historical demand (considered as lag variables). In terms of mathematical frameworks 

employed for analyzing demand, prevalent approaches include: (a) prediction methods using data 

and (b) distribution or assignment methods. The majority of prediction methods focused on trip 

departures from the spatial unit of interest employing passenger demand models such as regression 

models and their advanced variants (Abed et al., 2001; Chang, 2014; Chi, 2014; Endo, 2007; 

Rengaraju & Arasan, 1992; Valdes, 2015), artificial neural networks (Mostafaeipour et al., 2018), 

Holt–Winters method (Chen et al., 2009; Grubb & Mason, 2001), seasonal autoregressive 

integrated moving average (Chen et al., 2009; Tsui et al., 2014; Xu et al., 2019) and fuzzy models 

(Kalić et al., 2014). The second set of studies match the pairwise origin destination demand using 
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approaches such as gravity models (Grosche et al., 2007; Matsumoto, 2004; Zhou et al., 2018), bi-

level optimization (Li et al., 2013; Li & Wan, 2019) and continuous equilibrium approach (Loo et 

al., 2005). 

The second group of studies considered include research efforts that examined the impact of 

external shocks (such as September 11th attacks) or health shocks such as SARS and MERS on 

airline industry. Ito & Lee, 2005a assessed the influence of September 11 terror attacks on US 

airline demand using monthly observations of revenue passenger miles. The study found a sudden 

reduction of about 30% in demand in response to the shock. Further, the authors also found that 

the reduction in demand took well over 2 years to dissipate while controlling for various 

independent variables (such as economic and seasonal factors). In a subsequent paper (Ito & Lee, 

2005b), the authors extended the work to examine the impact of the terror attack on international 

airline markets. The subset of studies examining health shocks also developed similar approaches. 

Chi & Baek, 2013 employed autoregressive distributed lag model to study relationship between 

economic growth and airline demand while controlling for the impact of SARS outbreak. The 

results indicate that SARS epidemic decreased US air passenger demand by 6%. Pine & 

McKercher, 2004 also studied the impact of SARS outbreak on tourism and airline industry and 

presented a descriptive analysis of reductions induced by the epidemic.  

The third group of studies, conducted after the onset of COVID-19 pandemic, can be broadly 

characterized as preliminary research studying the impact of COVID-19 on airline demand. 

Maneenop & Kotcharin, 2020 identified three crucial announcements that triggered the airline 

demand reduction including (a) the first case reported outside China, (b) Italy outbreak and (c) the 

global pandemic declaration issued by WHO. Nižetić, 2020 performed descriptive analysis to see 

how COVID-19 affected air transport mobility concluding that the number of flights in the EU 
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region dropped by more than 89% in April 2020 (relative to April 2019). Gudmundsson et al., 

2020 analyzed world air transport industry employing time series models to study air traffic 

volume recovery timeline. The authors developed models employing economic indicators (such as 

Gross Domestic Product and Oil prices) and COVID-19 indicators and conclude that air transport 

recovery is likely to take about 2.4 years starting from 2020 with the most optimistic estimate of 

recovery in latter half of 2021. Gallego & Font, 2021 examined a large data of airline passenger 

searches and picks to evaluate airline demand and recovery patterns. The analysis using Big Data 

approaches suggests an L-shaped recovery as the pandemic progresses. Sun et al., 2020 employed 

data from 150 airlines and 2751 airports across the world to evaluate the impact of COVID-19 on 

airline industry between January 2020 and May 2020 employing complex network approaches. 

The study concluded that airport networks in the southern hemisphere experienced more 

significant disruptions relative to airport networks in the northern hemisphere.  

 

3.2 Contributions of the Current Study 

The review of literature highlights the exhaustive research on developing airline demand 

prediction frameworks. The research on measuring the impact of shocks (external or health) on 

airline demand focused on a retrospective analysis as opposed to offering insights for the potential 

recovery of demand in response to the shock. While earlier research provides the building blocks 

of demand prediction systems and some insights on modeling demand in the presence of shocks, 

these frameworks have not been employed to study demand recovery patterns.  

The proposed research builds on the demand prediction frameworks at the airport level by 

accommodating for the influence of COVID-19. Specifically, the study contributes to our 

understanding of the unprecedented drop in air passenger demand by examining airline data from 
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the Bureau of Transportation Statistics (BTS) at the disaggregate resolution of airport using a linear 

mixed model. The study contributes to the airline demand literature along multiple directions. 

First, research on COVID-19 impact on airline industry is in the nascent stages and has 

predominantly focused on global or regional effects. In our research, we examine the influence of 

COVID-19 at the disaggregate resolution of airport to incorporate the interplay of local and global 

factors on airline demand. The interaction between local and global factors is considered by 

considering global and local COVID-19 transmission, temporal indicators of pandemic start and 

progress, and interactions of airline demand predictors with global and local COVID-19 indicators.  

In our study, we conduct our analysis considering 380 airports across the country. For these 

airports, we augmented the airline demand data with a host of independent variables including 

COVID-19 related factors, demographic characteristics and built environment characteristics at 

the county level, spatial factors, temporal factors, and adjoining county attributes. Second, the 

research study employs a robust modeling framework to analyze airline demand variable. The 

study examines monthly airline demand (transformed to the natural logarithm) for 24 months from 

January 2019 through December 2020. A linear mixed model system that accommodates for the 

presence of repeated measures is developed. An exhaustive specification exercise is conducted to 

evaluate the impact of various COVID-19 factors while controlling for other attributes affecting 

airline demand. Finally, the proposed model is employed to undertake a scenario analysis that will 

allow us to provide a blueprint to the path to recovery for airline demand. The research team 

considers three scenarios – expected, pessimistic and optimistic – to generate the recovery patterns 

for airline demand. The results at the airport level were aggregated at the state or regional level by 

adding the demand from all airports in the corresponding state or region. These trends are presented 

by State and Region to illustrate potential differences across various scenarios.  
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3.3 Econometric Methodology 

The airport level monthly departure variable is a continuous value and can be analyzed using linear 

regression models. However, the traditional linear regression model is not appropriate for data 

with multiple repeated observations. In our empirical analysis, we observe monthly airline demand 

at the same airport for twenty four months. Hence, we employ a linear mixed modeling approach 

that builds on the linear regression model while incorporating the influence of repeated 

observations for the same airport (Bhowmik & Eluru, 2021; Bhowmik et al., 2021). The linear 

mixed model collapses to a simple linear regression model in the absence of any airport specific 

effects. 

Let z = 1, 2, …, Z = 380 be an index to represent each airport, t = 1, 2, …24 be index to 

represent the month for which data is compiled for each airport. The dependent variable (airport 

level monthly departures) is modeled using a linear regression equation with the following 

structure: 

𝑦𝑧𝑡 =  𝛽𝑋𝑧𝑡   +  휀𝑧𝑡 (3.1) 

where 𝑦𝑧𝑡 is the natural logarithm of monthly airline demand, X is a K×1 column vector of 

attributes and the model coefficients, β, is a K×1 column vector. The random error term 휀𝑧𝑡, is 

assumed to be normally distributed across the dataset. In our analysis, each airport is repeated 24 

times, once for each month. These repetitions over months can result in common unobserved 

factors affecting the dependent variable. In our model, we used first order autoregressive moving 

average as the repeated covariance structure. The exact functional form of the covariance structure 

assumed is shown below: 



 

48 

 

𝛺 = 𝜎2 (

1 𝜙𝜌 … 𝜙𝜌𝑛−1

𝜙𝜌 1 … 𝜙𝜌𝑛−2

⋮ ⋮ ⋱ ⋮
𝜙𝜌𝑛−1 𝜙𝜌𝑛−2 … 1

) (3.2) 

The covariance structure allows for a dampening relationship over time. The parameters 

estimated in this correlation structure are 𝜎, 𝜌 and 𝜙. The models are estimated in SPSS using the 

Restricted Maximum Likelihood Approach (REML). The REML approach estimates the 

parameters by computing the likelihood function on a transformed dataset. The approach is 

commonly used for linear mixed models (Harville, 1977). 

3.4 Data Description 

3.4.1 Data Preparation and Summary 

In this current study, we consider monthly airline demand for 24 months from January 2019 

through December 2020. The dependent variable is sourced from T-100 Domestic Market dataset 

provided by Bureau of Transportation Statistics (BTS). Flight passenger counts are aggregated 

over origin airports for each month to generate the dependent variable. For selection of the airports, 

we consider the top 400 busiest airports in the US. After removing airports with missing records 

380 airports remain in the estimation sample. The final dataset consists of 9120 records in total 

(24 records for each airport).  A representation of the monthly demand across the 380 airports is 

presented in Figure 3.1. The total demand is partitioned by region including  

South, West and Mid-West and rest of the country. The figure clearly illustrates the shock to the 

airline industry beginning in March 2020. The demand has started recovering in June 2020. 

However, the airline demand in December is still only a fraction of the previous year flows. 
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Figure 3.1 Domestic Air Passenger Departure Rate by Month and Region 

A more detailed examination of demand during pandemic months (March through 

December) is presented in Figure 3.2. Specifically, Figure 3.2 presents the monthly percentage 

change in airline demand relative to the previous year. The results highlight the varying recovery 

patterns across the various regions. From the figures we can observe that demand in the Southern 

region is recovering slightly faster than the rest of the country. 
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Figure 3.2 Changes of Air Passenger Demand across Different Regions 

3.4.2 Independent Variable Compilation 

The airline demand variable is augmented with a comprehensive set of independent variables 

including COVID-19 related factors, county level demographic characteristics, built environment 

characteristics at the county level, airport specific factors, spatial factors, temporal factors, and 

adjoining county attributes. COVID-19 related factors include both global and local effects of 

COVID-19 on airline demand. Global factors capture the change of demand across the months 

since the pandemic started while controlling for the number of local COVID-19 cases. In our study, 

we considered several binary variables as global factors including pandemic started month, May 

2020 or later, July 2020 or later, October 2020 or later variables and their interactions with other 

variables. The local effects of COVID-19 represent the impact of county level Covid-19 cases on 

airline demand. In this study, we consider natural logarithm of past month’s new cases at the 

county level of the airport as the local effect. County level monthly cases are processed from the 

COVID-19 dataset from Center for Systems Science and Engineering (CSSE) Coronavirus 
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Resource Center at Johns Hopkins University (CSSE, 2021). Total cases in the US by month from 

January 2020 to August 2021 is presented in Figure 3. The figure highlights the new surge in 

COVID-19 cases starting from July 2021.  

 

Figure 3.3 Total COVID-19 Cases by Month 

County level demographic characteristics considered include population, median income, 

unemployment rate, percentage of senior residents and percentage of households with 2 or more 

vehicles. Demographic data are sourced from American Community Survey (ACS) data. Built 

environment characteristics tested include number of airports in 50-mile buffer area and state level 

tourism ranking (Insider, 2020). Airport specific factors include the type of airport. In this study, 

we consider a binary classification of the airport categorized as large and small airports. 

Operational Evolution Partnership (OEP 35) airports are marked as the large airports and 

remaining airports are marked as the small airports. Spatial factors include location of the airport 

in terms of US regions. The regions include South, North-East, West, Mid-West, and Pacific 

regions. Temporal factors include quarters and month of the year. Finally, we consider the effect 
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of attributes of adjoining counties (spillover effect) on airline demand. Spillover attributes include 

mean of different attributes of the neighboring counties such as population, median income, 

unemployment rate, vehicle ownership level and new COVID-19 cases in the preceding month. A 

descriptive analysis summary of the independent variables is presented in Table 3.1.   

Table 3.1 Descriptive Analysis of the Independent Variables 

Categorical Variables 

Variables Description Frequency Percentage 

Built Environment Characteristics 

State level tourism 

Top 10 The state is among top 10 tourists’ attraction state 109 28.7 

Bottom 10 The state is among bottom 10 tourists’ attraction state 39 10.3 

Others The state is not among top 10 or bottom 10 states 232 61.1 

Airport Specific Factors 

Operational Evolution Partnership (OEP) airports 

Yes   35 9.2 

No   345 90.8 

Spatial Factors       

Region  

South The airport is located in South region 122 32.1 

North-East The airport is located in North-East region 45 11.8 

West The airport is located in West region 91 23.9 

Mid-West The airport is located in Mid-West region 84 22.1 

Pacific The airport is located in Pacific region 38 10.0 

Temporal Factors 

Month 

June 2019  380 4.2 

July 2019  380 4.2 

November 2019  380 4.2 

December 2019  380 4.2 

Other months  7600 83.3 

COVID-19 Related Factors 

Pandemic started 

Yes Month is March 2020 or later 3800 41.7 

No Month is before March 2020 5320 58.3 

May or later 

Yes  Month is May 2020 or later 3040 33.3 

No Month is before May 2020 6080 66.7 

July or later 

Yes  Month is July 2020 or later 6840 75.0 

No Month is before July 2020 6912 25.0 
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Categorical Variables 

Variables Description Frequency Percentage 

October or later 

Yes  Month is October 2020 or later 1140 12.5 

No Month is before October 2020 7980 87.5 

Continuous Variables 

Variables Description Mean Min/Max 

County Level Demographic Characteristics 

Population Population in million 0.518 0.000/10.160 

Median income Ln(Median income in thousands) 10.944 10.350/11.820 

Unemployment County level unemployment rate 4.346 2.000/19.900 

Senior population % of population having age 65 and over 15.658 5.877/39.444 

Vehicle 0 % of HH with 0 vehicle 8.982 1.700/87.800 

Vehicle 1 % of HH with 1 vehicle 33.329 10.000/47.800 

Vehicle 2 % of HH with 2 vehicles 37.034 2.100/48.200 

Vehicle 3+ % of HH with 3 or more vehicles 20.658 0.100/38.100 

Built Environment Characteristics 

Ln(Airport) Ln(No. of airports in 50-mile buffer area) 1.842 0.000/3.740 

COVID-19 Related Factors 

Ln(COVID-19 cases) Ln(County level new COVID-19 cases in the past month) 2.138 0.000/11.670 

Adjoining County Attributes (Spillover Effects) 

Population Average population in neighboring counties in million 0.207 0.000/4.520 

Median Income 
Ln(average median income in neighboring counties in 
thousand) 

3.935 0.000/4.690 

Unemployment Unemployment rate 4.612 0.000/16.470 

Vehicle 0 % of HH with 0 vehicle 8.102 0.000/68.400 

Vehicle 1 % of HH with 1 vehicle 29.723 0.000/57.400 

Vehicle 2 % of HH with 2 vehicles 35.989 0.000/44.450 

Vehicle 3+ % of HH with 3 or more vehicles 24.084 0.000/44.700 

Ln(COVID-19 cases) 
Ln(average new COVID-19 cases in the past month in 

neighboring counties) 
1.801 0.000/10.680 

 

3.5 Analysis and Results 

In our study, we analyzed airport level monthly air passenger departures using a linear mixed 

model. A host of independent variables were considered in the model development process. As the 

main focus of our study is on understanding the impact of COVID-19, variables related to COVID-

19 and various interactions were tested in the model specification. However, we also included 

different factors that have been identified as important determinants of airline demand. In 
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summary, the model estimation process was guided by earlier research, variable interpretability 

and parameter statistical significance.  

The final model results are presented in Table 3.2. The positive (negative) value of the 

parameter estimates indicates increase of a parameter increases (decreases) the airline demand. 

The results are discussed in detail in the following subsections by the attribute levels.  

 

3.5.1 County Level Demographic Characteristics 

Demographic characteristics are expected to serve as controls for airline demand. As expected, 

counties with larger population are likely to have higher airline demand as population serves as a 

surrogate measure for demand (please see Grosche et al., 2007; Zhou et al., 2018 for similar 

results). On the other hand, a higher percentage of senior population is found to be negatively 

associated with the air passenger demand. The parameter for county level unemployment rate 

highlights the negative association of unemployment rate with airline demand. The result is 

plausible as increased unemployment rate, in general, corresponds to decreased affordability for 

personal travel and fewer business activity in the region.  

3.5.2 Built Environment Characteristics 

The variable “number of airports in a 50-mile buffer” represents the number of available airports 

in close proximity (50-mile radius) of an airport. We found that an increased number of airports in 

the 50-mile buffer results in higher air travel demand at an airport. The presence of additional 

airport(s) in close proximity reflects higher demand in the region. Further, we considered the 

tourism status of the state in our analysis by identifying the top and bottom 10 desirable states with 

respect to tourism activity. As expected, we find that air travel demand is higher (marginally 

significant) in an airport located in top 10 tourist attraction states while a reduced air demand is 
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observed for an airport located in the bottom 10 visiting states (see Sivrikaya & Tunç, 2013 for 

similar results). The reader would note that tourism ranking in our analysis is considered at a state 

resolution. Ideally, county level tourism measures such as expenditures or hotel beds would be 

preferred variables. However, access to such data across the country is not readily available and is 

a direction for future research. 

3.5.3 Airport Specific Factors 

In this study, we consider the type of airport as an airport specific factor. We classified the airports 

as Operational Evolution Partnership (OEP) airports and other airports. OEP airports capture 

approximately 70% of the total domestic airline demand in US and are identified as large airports 

in the analysis. The positive coefficient of binary OEP airport variable indicates that air passenger 

departure rate is higher in OEP airports compared to other airports. The result reflects the higher 

demand in OEP airports in the US.  

3.5.4 Spatial Factors 

Location of the airports across various US regions has a significant effect on the total number 

departures from those airports. In general, compared to the airports in the other regions, the demand 

is observed to be higher for an airport in the South region. An examination of the airports in the 

South region reveals that some of the busiest airports in the US (3 of the top 10 busiest airports 

(Travel, 2021)) are from this region. Further, we also find that airports in the South are located 

further away from one another relative to airports in the North-East and West. It is possible that 

these airports have much larger catchment areas, and the South indicator variable possibly serves 

as a surrogate for the larger catchment size.  
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3.5.5 Temporal Factors 

Monthly and Quarterly indicator variables were tested in the model to allow for seasonal effects. 

In our model estimation, the results indicate that travel demand was higher in the months of June, 

July and December 2019 and lower in November 2019 compared to other months while controlling 

for other factors. These results can be attributed to presence of seasonality in air travel demand. 

3.5.6 COVID-19 Related Factors 

COVID-19 related factors considered in this study include both global and local effects of COVID-

19 on airline demand. Global factors were considered in the model in various functional forms 

including continuous (such as linear, square and other polynomial) and indicator variables (such 

as month indicator for pandemic, pandemic from May or later and Pandemic from July or later). 

Local COVID-19 factors considered include the natural logarithm of county level total new 

COVID-19 cases in the preceding month. The reader would note that the net effect of COVID-19 

is a sum of the global effect and the local case specific effect. 

As expected, the pandemic variable (set to 1 for all months from March 2020) has a 

negative coefficient indicating that airline demand dropped significantly after the pandemic 

started. The positive coefficient of May or later variable indicates that airline demand recovered 

after May (while controlling for other variables). The positive coefficient of July or later and 

October or later variables indicate that airline demand increased further since these time periods. 

However, airline demand was negatively influenced by local COVID-19 data in the airport county 

for these months. The result indicates that the air travel is likely to reduce in the presence of 

increasing COVID-19 cases in the preceding month.  It should be noted that while some recovery 

has happened as reflected in May or later, July or later and October or later indicator variables, the 
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net change in airline demand relative to the corresponding month in 2019 has been negative across 

the country.  

In addition to the main effects described, we also tested for several interaction effects of 

COVID-19 variables with other factors affecting airline demand. The positive coefficient of the 

interaction of pandemic variable and population indicates that the initial drop of demand in March 

and April of 2020 due to COVID-19 was lower in the airports located in a county with higher 

population. The interaction analysis also found that the larger airports (OEP airports) exhibit 

slightly different trends. Specifically, we found that the initial drop of demand in March and April 

of 2020 is slightly lower in OEP airports. The coefficient for May or later at OEP airports further 

highlights higher recovery in these airports. A negative coefficient for July or later variable 

indicates a reduced differential with other airports from July. Finally, interaction of south region 

and pandemic started variable is found significant. The positive coefficient of the interaction term 

indicates that the initial drop in airline demand in the airports in the south region is lower compared 

to the airports in other regions. The finding might be attributed to reduced adherence to public 

health guidelines in many states from this region. 

3.5.7 Adjoining County Attributes (Spillover Effects) 

The parameter estimates indicate that airline demand is also influenced by the attributes of 

adjoining counties. We found that mean population, median income, and new COVID-19 cases in 

the neighboring counties influence airline demand at the airport level in an intuitive manner. The 

effects of population and median income indicate that increased population and median income in 

the neighboring counties increase airline demand. The effect of neighboring county COVID cases 



 

58 

 

indicates that increased new COVID cases in the adjoining counties significantly decreases airline 

demand. 

3.5.8 Covariance parameters 

The last row panel of Table 3.2 present the results for the covariance parameters (𝜎2, 𝜌 and 𝜙). As 

expected, these parameters are significant and highlight the presence of common unobserved 

factors affecting the repeated airline demand data for each airport.  

Table 3.2 Parameter Estimates for Liner Mixed Model 

Parameter Estimates Std. Error t stat 

Fixed Effects 

Intercept 9.293 0.696 13.354 

County Level Demographic Characteristics 

Population in million 0.379 0.088 4.304 

Senior population  -0.070 0.019 -3.696 

Unemployment rate -0.304 0.036 -8.411 

Built Environment Characteristics 

Ln(No. of airports in 50 mile buffer) 0.448 0.119 3.750 

State level tourism (Base: Others) 

Top10 0.353 0.193 1.829 

Bottom10 -0.593 0.266 -2.232 

Airport Specific Factors 

OEP airports (Base: No) 

Yes 3.082 0.310 9.930 

Spatial Factors 

Region (Base: Other regions) 

South 0.552 0.184 2.998 

Temporal Factors 

Month (Base: Other months) 

June 2019 0.053 0.027 2.008 

July 2019 0.114 0.027 4.293 

November 2019 -0.105 0.027 -3.972 

December 2019 0.059 0.027 2.241 

COVID-19 Related Factors 

Pandemic started (Base: No) 
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Parameter Estimates Std. Error t stat 

Fixed Effects 

Yes -0.957 0.039 -24.352 

May or later (Base: No) 

Yes 1.621 0.035 46.143 

July or later (Base: No) 

Yes  0.958 0.032 29.886 

October or later (Base: No) 

Yes 0.183 0.030 6.105 

Ln(County Level Covid-19 Cases in the last month) -0.304 0.012 -25.356 

Population × Pandemic started 0.059 0.028 2.070 

OEP airports × Pandemic started 0.181 0.113 1.601 

OEP airports × May or later 0.171 0.104 1.641 

OEP airports × July or later -0.292 0.104 -2.817 

South × Pandemic started 0.213 0.064 3.322 

Adjoining County attributes (spillover effects) 

Average population (million) 0.572 0.240 2.379 

Ln(average median income in thousand) 0.299 0.131 2.277 

Ln(average COVID-19 cases in past month) -0.107 0.015 -7.350 

Covariance Parameters 

𝞼2 3.201 0.175 18.252 

ρ 0.965 0.003 349.007 

ϕ 0.940 0.003 272.200 

 

3.6 Model Performance 

The performance of the linear mixed model was compared with the performance of the traditional 

linear regression model using log-likelihood and Bayesian Information Criterion (BIC)4. The log-

likelihood (BIC) values for the models are as follows: linear regression model: -17247.95 

 

4 The reader would note that due to the inherent structure of linear mixed models, traditional goodness of fit measures 

such as R2 are not readily applicable and require more involved approaches to computing the measure (see Nakagawa 

& Schielzeth, 2013 for more details). 
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(34505.01) and linear mixed model: -8720.29 (17467.92). From the comparison, it is evident that 

the linear mixed model offers improved fit in our data.  

We also evaluate the performance of the proposed model in predicting the demand. 

Specifically, we compare the total observed demand and predicted demand in US (see Figure 3.4). 

An examination of Figure 3.4 plot illustrates that the proposed model represents the demand trends 

before and after the pandemic. The model successfully captures the demand drops after the start 

of the pandemic and the slow continuing recovery after the initial months. The reader would note 

that the airline demand data is available only till December 2020. In our prediction exercise, we 

also generate demand for January 2021 through September 2021 by employing COVID-19 data 

available up to August 21, 2021. For COVID-19 cases in the full month of August (as required to 

predict demand for September), we assumed same infection rate in the remaining days of August 

as it was in the first 21 days of the month. The figure shows that the demand may decrease in the 

future months, especially in September, due to recent increase of COVID-19 cases. 

  

Figure 3.4 Predictive Performance of the Proposed Model 
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3.7 Policy Analysis 

As discussed in the study objectives, the model development exercise was motivated by the need 

to present a blueprint for airline demand recovery. To illustrate the model applicability for 

generating monthly airline demand estimates, we consider three hypothetical scenarios of COVID-

19 transmission rates – expected, pessimistic and optimistic. In these scenarios, a rate of increase 

or decrease for COVID-19 is considered. While the rate considered is uniform across the country, 

the actual change in cases will depend on current transmissions in the counties. Thus, we will be 

accommodating for a spatially varying COVID-19 case load in the country. The exact assumptions 

for the scenarios are described below: 

1) Expected Scenario: The scenario is based on the expected increase in vaccinations of the 

approved vaccines such as Pfizer BionTech and Moderna across US. Hence, in this 

scenario COVID-19 cases are likely to increase marginally in September 2021 (August is 

at a high and plateauing). As increased proportions of the population are vaccinated, we 

expect the transmissions to drop in the subsequent months as follows: October 2021 (15%), 

November 2021 (20%), December 2021 (20%), and January 2022 (20%). The reader may 

see IHME, 2021 to find similar expected scenario of COVID-19 transmission rate.  

2) Pessimistic Scenario: The proportion of vaccinated population does not increase 

significantly, and infection rate keeps increasing following the trend in recent months. We 

assume the infection rate will increase by 20% in September 2021 and October 2021 

followed by 10% increases in each of the months from November 2021 through January 

2022.  

3) Optimistic Scenario: The scenario assumes a better-than-expected impact of vaccination 

due to rapidly increased vaccination rate and possible emergence of booster doses. In this 
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scenario, we assume that the infection rate will increase by 5% in September and booster 

doses will be available by end of September causing 25% decrease in COVID cases in 

October 2021. Finally, cases will decrease by 35%, 50% and 50% in the following months. 

Table 3.3 Percentage Changes in New COVID-19 Cases Compared to the Preceding Month 

Month Expected Pessimistic Optimistic 

Sep-21 10% 20% 5% 

Oct-21 -15% 20% -25% 

Nov-21 -20% 10% -35% 

Dec-21 -20% 10% -50% 

Jan-22 -20% 10% -50% 

 

The rate of change of COVID-19 cases for different scenarios by month are summarized 

in Table 3.3. Based on these assumptions, the airline demand is predicted using the proposed linear 

mixed model and the demand is aggregated to identify the total airline demand for the months of 

interest. Then, we perform a month-by-month comparison of airline demand for months September 

2021 through February 2022 with the corresponding months in 2019. To facilitate the 

understanding of recovery process across the country, the numbers are aggregated by US region. 

The results of the analysis are then presented in Figure 3.5. Figure 3.5 shows the future percentage 

changes in airline demand in the US by month across different regions. From Figure 3.5, the 

following observations can be made for the three scenarios considered: 

1) Expected Scenario: In this scenario, airline demand will decrease in September 2021 and 

October 2021, followed by a small increase in November 2021. Airline demand will further 

decrease in December 2021. Finally, the demand will start recovering starting from January 

2022. If we compare the demand changes for the four regions, we can see that south region 
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experienced the lowest drop in demand and may also recover faster than the other regions 

in the US.  

2) Pessimistic Scenario: In this scenario, airline demand will continue decreasing and drop by 

87% by February 2022. Airports across all regions may experience similar decrease in 

demand but airports in West region may have the highest decrease estimated at 90%.  

3) Optimistic Scenario: In this scenario, airline demand may keep decreasing till October 

2021. But in response to the improved COVID-19 condition, the recovery will start from 

November 2021 and accelerate in the latter months. By February 2022, airline demand in 

the US may reach 38% of the typical demand. If we compare the recovery rate for regions, 

we can see that South region will recover faster and the demand may be 50% of original 

demand by February 2022.    

To offer further insights on the predictions generated, we aggregate the demand at the State 

level based on all airports in the state and present the estimates for all scenarios (see Figure 3.6). 

Figure 3.6 shows percentage change of airline demand from September 2021 through February 

2022 compared to the usual demand from 2019 at the state level.  The results follow expected 

scenario specific trends. We recognize that the policy assumptions are unlikely to be matched 

exactly. The objective of this exercise is to illustrate the insights that can be generated from the 

model. These plots generated can be customized with more up to date information on COVID-19 

cases to arrive at accurate expected demand.  

Moreover, we compare our demand prediction for the future (2021) based on expected 

scenario with terminal area forecasts provided by FAA. Recently available demand data for year 
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2021 is considered as a benchmark for the comparison5. We consider 2021 air passenger departure 

prediction provided by 2020 Terminal Area Forecast (TAF) model for the selected airports. In 

demand prediction, TAF model first predicts O-D air passenger flows using a regression model. 

Then, segment pair demand is calculated based on O-D pair predictions and T-100 data. Finally, 

yearly airport level demand is forecasted by aggregating segment pair demands (see FAA, 2020 

for the detailed process). From the comparison, it is evident that both proposed model and TAF 

model underpredict the demand for 2021. But TAF model shows superior prediction accuracy to 

the proposed model. Such result is expected as high dimensions data (O-D pair demand data) is 

employed by TAF model. Such O-D pair-based demand modeling approach can be an avenue for 

future research.  

 

5 As of February 14, 2022, T-100 domestic marketing carrier data is available up to November 2021. Demands at the 

airports for full year of 2021 are estimated by assuming demand in December 2021 to be same as average monthly 

demand observed for other months in 2021.     
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Figure 3.5 Future Demand Based on Hypothetical Scenarios 
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Figure 3.6 Future Airline Demand at the State Level 
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3.8 Summary 

The COVID-19 pandemic has affected every facet of life in the world significantly burdening 

social, health and economic systems. Among these affected industries, airline industry ranks as 

one of the worst affected industries. The emergency use authorization of vaccines offers promise 

in curbing the pandemic and supporting the recovery. As the recovery begins airlines and airports 

would need to address supply side shortages with growing demand. In this context, the primary 

focus of our proposed research effort is to develop a framework that provides a blueprint for airline 

demand recovery at a high resolution as COVID-19 cases evolve over time. In our study, we 

conduct our analysis considering 380 airports across the country. Airline data employed in this 

study is sourced from Bureau of Transportation Statistics (BTS) for 24 months from January 2019 

through December 2020 which is augmented with a host independent variables including COVID-

19 related factors, demographic characteristics and built environment characteristics at the county 

level, airport specific factors, spatial factors, temporal factors, and adjoining county attributes. 

COVID-19 related factors include both local and global factors by considering global and local 

COVID-19 transmission, temporal indicators of pandemic start and progress, and interactions of 

airline demand predictors with global and local COVID-19 indicators. We employ a linear mixed 

model system that accommodates for the presence of repeated measures for modelling airline 

demand.  

The linear mixed model identifies several important determinants of airline demand while 

also capturing the impact of global and local COVID-19 effects on demand. The performance of 

the model is examined by comparing observed and predicted demand for all airports across the 

US. The result indicates that model successfully captures the demand drops after the start of the 

pandemic and the slow continuing recovery after the initial months.  Subsequently, we present a 



 

69 

 

blueprint for airline demand by considering three hypothetical scenarios of COVID-19 

transmission rates – expected, pessimistic and optimistic. The results at the airport level from these 

scenarios are aggregated at the state or regional level by adding the demand from all airports in 

the corresponding state or region. These trends are presented by State and Region to illustrate 

potential differences across various scenarios. The result from the expected scenario presents a 

path to slow recovery as COVID-19 cases reduce. The various scenarios clearly illustrate how the 

proposed model can be employed to generate airline demand estimates at the airport level, state, 

region or country level.  

The study is not without limitations. In our analysis, data was generated at the airport 

county level. Thus, when the same county has multiple airports, the model includes substantially 

similar information for these airports (except OEP 35 indicator and number of airports in a 50-

mile buffer). While only 22 of the 354 counties in our data had multiple airports, it might be 

interesting to explore how aggregation of the demand for these airports affects the findings. 

Moreover, the airline demand data is available only till December 2020 which restricted us from 

employing linear and non-linear functions of continuous temporal variables. Given the data 

availability for the next few months, continuous temporal variables could be considered to enhance 

the current model. Further, COVID-19 pandemic is an evolving situation, and it is appropriate to 

consider updating the models with newer airline demand (as they become available), local 

vaccination data and local COVID-19 cases. Finally, the airport level analysis conducted in the 

paper can be augmented by examining airport level actions/strategies (such as changes to fare, 

priority for freight movement) in response to COVID-19 pandemic. The research might have to be 

conducted for a subset of airports where such data is available.  
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CHAPTER 4: ACCOMMODATING SPATIAL DEPENDENCY IN 

AIRLINE DEMAND MODELING 

 

Air passenger demand is important to understand overall health of airline industry. While earlier 

research efforts identified the factors affecting airline demand, spatial interactions between air 

passenger demand at multiple airports have not been adequately considered. Thus, the current 

study develops novel spatial group generalized ordered probit models of monthly air passenger 

departures at the airport level that accommodate spatial dependency between proximally located 

airports. Specifically, we employ spatial error and spatial lag models of airport level air passenger 

departures in this study. Further, we compare the predictive performance of alternative models 

using a validation exercise. 

 

4.1 Earlier Studies 

The literature review in the current study context can be categorized into two major streams: a) 

studies identifying key factors of airline demand, b) studies developing spatial panel models across 

transportation domains considering dependency between the spatial unit of analysis. 

The first group of studies analyzing airline demand provides useful insights on the factors 

affecting airline demand (please see Chapter 2 for the detailed review of the relevant studies). The 

second group of studies include research efforts identifying spatial dependencies between the 

spatial unit of analysis in the modelling approach. In terms of dependent variables, the studies 

considered cover a wide range of topics in transportation research domain including transportation 

demand modeling (Rahman et al., 2021; Faghih-Imani & Eluru, 2016), impact of transportation 
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infrastructure on regional/agricultural growth (Chen & Haynes, 2015; Tong et al., 2013; Yu et al., 

2013), land use modeling (Ferdous & Bhat, 2013; Chakir & Parent, 2009; Carrión-flores et al., 

2009; Xiaokun & Kockelman, 2006), crash injury severity modeling (Castro et al., 2013), 

recreational activity modeling (Bhat et al., 2010), and airfare analysis (Daraban & Fournier, 2008). 

Dependent variables in such studies can be categorized as both continuous variable (Rahman et 

al., 2021; Faghih-Imani & Eluru, 2016; Chen & Haynes, 2015; Tong et al., 2013; Yu et al., 2013; 

Daraban & Fournier, 2008), and categorical variables (Castro et al., 2013; Ferdous & Bhat, 2013; 

Bhat et al., 2010; Chakir & Parent, 2009; Carrión-flores et al., 2009; Xiaokun & Kockelman, 

2006). The aforementioned studies employ different variants of spatial models to capture spatial 

correlations including spatial lag or spatial autoregressive model (SAR) (Rahman et al., 2021; 

Faghih-Imani & Eluru, 2016; Chen & Haynes, 2015; Ferdous & Bhat, 2013; Castro et al., 2013; 

Lee & Yu, 2010; Chakir & Parent, 2009; Carrión-flores et al., 2009; Daraban & Fournier, 2008; 

Xiaokun & Kockelman, 2006), spatial intermediate model (Castro et al., 2013), spatial error model 

(SEM) (Rahman et al., 2021; Faghih-Imani & Eluru, 2016; Chen & Haynes, 2015; Castro et al., 

2013; Bhat et al., 2010), and spatial Dublin model (SDM) (Chen & Haynes, 2015; Tong et al., 

2013; Yu et al., 2013). Most of the aforementioned modeling approaches require spatial weight 

matrix representing the spatial arrangements of the analysis units to understand spatial correlation 

among themselves. Spatial weight matrices are generally formed based on pairwise distance 

between the spatial units. Various types of formulation of the weight matrix elements include 

neighborhood/ within distance threshold indicator (Rahman et al., 2021; Faghih-Imani & Eluru, 

2016; Yu et al., 2013), inverse of distance squared (Ferdous & Bhat, 2013; Daraban & Fournier, 

2008), inverse of distance cubed (Castro et al., 2013), and inverse of exponential of distance 

(Ferdous & Bhat, 2013). In case of panel data, distance-based weight matrix may need some 
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modifications to capture changes of spatial dependency effect over time. To consider for such 

temporal variability, Xiaokun & Kockelman, 2006 formulated spatial weight matrix as a function 

of distance and time difference. However, earlier research efforts analyzing spatially correlated 

discrete dependent variables indicated increased complexity in model estimation. In presence of 

complex correlation between the observations, full likelihood approach might be infeasible 

especially for discrete outcome variables. Therefore, earlier studies emphasized the application of 

methods estimating surrogate likelihood measures such as composite marginal likelihood method 

(CML) (see Castro et al., 2013; Ferdous & Bhat, 2013; Bhat et al., 2010) and Markov chain Monte 

Carlo (MCMC) (see Chakir & Parent, 2009) method.   

 

4.2 Contributions of the Current Study 

While earlier studies in airline literature examined the impact of key factors on airline demand, 

spatial interaction between the airports has not been sufficiently considered in the demand analysis. 

The current study addresses this gap by developing a novel spatial group generalized ordered 

probit (SGGOP) model system of monthly air passenger departures at the airport level that 

explicitly accommodates the spatial interactions of the proximally located airports. In this study, 

we categorize log-transformed monthly air passenger departures into ten demand groups (≤6, >6-

7, >7-8, >8-9, >9-10, >10-11, >11-12, >12-13, >13-14, and >14) and employ the recently 

developed GGOP model system to model the discretized dependent variable. The proposed 

grouped response model is a hybrid system that ties a continuous demand variable to a categorical 

demand variable. The proposed GGOP model system is analogous to the linear regression model 

system without the restrictions of linear regression (Tirtha et al., 2022a, 2022b). In addition, the 

proposed model system recognizes that there can be spatial correlations in the error terms of 
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demand propensity of the spatially linked airports. In this study, we estimate two variants of spatial 

models including spatial lag model and spatial error model. In presence of repeated demand 

measures at the airport level, it is possible that spatial correlations between the observational units 

may vary over time. Therefore, we formulate weight matrix as a function of shortest geodesic 

distance between the airports and the absolute value of time difference (measured in months). The 

approach we followed in this study allows correlation between observations varying across both 

space and time (see Xiaokun & Kockelman, 2006 for similar approach). In the model development, 

we employ various functional forms of weight matrix (such as the inverse of square root of distance 

× time, the inverse of distance × time, and the inverse of distance × time squared) and select the 

best formulation based on data fit. In our analysis, we restrict spatial correlation to be present only 

within a distance and time threshold considering as the dependency is negligible between 

observations far apart in terms of space and time. The proposed spatial model is implemented using 

composite marginal likelihood (CML) approach that is easier compared to full likelihood approach 

due to the presence of complex spatial dependencies among the observations. Further, we perform 

spatial data enhancement by considering a large set of airports across the US to accommodate the 

effects of different spatial factors in the analysis. Finally, we compare the performance of spatial 

lag model and spatial error model with the traditional model without spatial effects to highlight 

the importance of accommodating spatial correlations while modeling airline demand at the airport 

level. 

In this study, airline demand data is sourced from T-100 marketing carrier dataset compiled 

by Bureau of Transportation Statistics (BTS). The demand dataset employed in this study includes 

monthly air passenger departure rate for 369 airports across the US for 5 annual time points (2010, 

2012, 2014, 2016, and 2018). Airline demand data is further augmented with a comprehensive set 
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of independent variables including a) demographic characteristics (population, median income, 

employment, and vehicle ownership level), b) built environment characteristics (number of 

airports in close proximity, and state level tourism ranking), c) airport specific factors (airport 

classification such as core airports, and Operational Evolution Partnership (OEP-35) airports), d) 

spatial factors (region of the airports), and e) temporal factors (month of analysis). 

 

4.3 Econometric Methodology 

In this section, we first present the details of group generalized ordered probit (GGOP) model 

without considering any spatial dependencies between the airports. In the subsequent sub-sections, 

we present the formulations of spatial lag and spatial error GGOP models, respectively. Finally, 

we present model estimation procedure.  

4.3.1 Group Generalized Ordered Probit Model 

Let k (k= 1, 2,…, K) be an index to represent airports, t (t = 1, 2, 3,…, T = 5) represent the different 

years, m(l=1, 2, 3,…., M = 12)  represent different months of a year and j (j = 1, 2, 3,…, J = 10) 

be an index to represent the bins for the logarithm of monthly passenger departures.  We consider 

ten categories for the air travel demand analysis and these categories are: Bin 1 = ≤6; Bin 2 = 6-7; 

Bin 3 = 7-8, Bin 4 = 8-9, Bin 5 = 9-10, Bin 6 = 10-11, Bin 7 = 11-12, Bin 8 = 12-13, Bin 9 = 13-

14, and Bin 10 = >14. For ease of presentation, we express each observational unit as an unique 

combination of airport k, year t, and month m, using q (q = 1, 2, 3,…., Q=k*t*m). Then, the 

equation system for modeling demand may be written as follows: 

𝑦𝑞
∗  = 𝛼′𝑥𝑞+휀𝑞 , 𝑦𝑞 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝑦𝑞

∗ ≤ 𝜓𝑗   (4.1) 
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In Equation 4.1, 𝑦𝑞
∗ is the continuous latent propensity for total airline demand at airport k, 

for the year t and month m. This latent propensity 𝑦𝑞
∗ is mapped to the actual demand category j by 

the 𝜓 thresholds, in the usual ordered-response modeling framework. In our case, we consider J = 

10 and thus the 11 𝜓 values are as follows: -∞, 6, 7, 8, 9, 10, 11, 12, 13, 14, and +∞. 𝑥𝑞 is a matrix 

of attributes that influence passenger departures (including the constant); 𝛼 is the vector of 

coefficients corresponding to the attributes. Further, 휀𝑞 is an idiosyncratic random error term 

assumed independently normally distributed with variance 𝜆2. 

The variance vector for passenger departures is parameterized as a function of independent 

variables as follows: 𝜆𝑞 = exp (𝜃′𝑥𝑞) . The parameterization allows for the variance to be different 

across the airports accommodating for heteroscedasticity6. Finally, to allow for alternative specific 

effects, we also introduce threshold specific deviations in the model as 𝜌𝑗 =  𝜏′
𝑗𝑥𝑞.  

The probability for airport k to have departures in category j in year, t and month, m is 

given by: 

 

𝑃(𝑦𝑞 = 𝑗𝑞) =  Λ [
𝜓𝑞,𝑗−(𝛼′𝑥𝑞+𝜌𝑞,𝑗

′ )

𝜆𝑞
] −  Λ [

𝜓𝑞,𝑗−1−(𝛼′𝑥𝑞+𝜌𝑞,𝑗−1
′ )

𝜆𝑞
]  (4.2) 

where Λ (.) is the cumulative standard normal distribution.  

 

6 Elements of error variance function do not include a constant as estimation result confirms strong correlation between 

the constant and spatial autoregressive parameter. 
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4.3.2 Spatial Lag GGOP Model 

The spatial lag formulation includes spatial correlation in the latent propensity of airline demand 

presented in Equation 4.1 as follows (Castro et al., 2013): 

 𝑦𝑞
∗  =  𝛿 ∑ 𝑤𝑞𝑞′𝑦𝑞′

∗𝑄
𝑞′=1 +  𝛼′𝑥𝑞 + 휀𝑞 , 𝑦𝑞 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝑦𝑞

∗ ≤ 𝜓𝑗   (4.3) 

Where, 𝑤𝑞𝑞′ is an element of an exogenously defined distance-month difference based 

space and time weight matrix W  calculated based on locations and month of analysis for airport 

k and 𝑘′ (with 𝑤𝑞𝑞
′ = 0 and ∑ 𝑤𝑞𝑞′ = 1𝑞′ ), and 𝛿 (0 < 𝛿 < 1) is the spatial autoregressive 

parameter. For example, distance between two airports, A and B is 50 miles and months of analysis 

are January 2016 and June 2018. Therefore, absolute value of month difference between the 

observations is 29 and we add 1 to the absolute difference (=30) for computational advantage. In 

space-time weight matrix W, we employ different functional forms of 𝑤𝑞𝑞′ including 

1/√𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑚𝑜𝑛𝑡ℎ, 1/(distance×√𝑚𝑜𝑛𝑡ℎ), 1/(distance×ln(month+1)), 1/(distance×month), 

and 1/(distance×month)2. Further, we restrict diagonal elements of W to be zero7. Then, we 

normalize each column of W matrix using row total to restrict ∑ 𝑤𝑞𝑞′ = 1𝑞′ .  

Finally, to restrict 𝛿 between 0 and 1, we represent 𝛿 using a function: 
𝑒𝛿′

1+𝑒𝛿′ and estimate 

the parameters of 𝛿′. The latent demand propensity presented in Equation 4.3 can be re-written 

using vector notation as follows:  

 

7 We replace off-diagonal zero values with large values in the distance matrix to avoid strong correlations between 

same airports at different time points.   
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𝒚∗ =  𝜹𝐖𝒚∗ +  𝐱𝜶 + 𝜺  (4.4) 

Now, the Equation 4.4 can be re-written as follows (Castro et al., 2013): 

𝒚∗ =  𝑺(𝐱𝜶 + 𝜺)  (4.5) 

where   1-

Q WIS −=  is a (Q×Q) matrix and 
QI  is an identity matrix of size Q. The vector 

*y  is multivariate normally distributed as, 𝑦∗~𝑀𝑉𝑁𝑄(𝑩𝒍𝒂𝒈, 𝜮𝒍𝒂𝒈). We represent 𝑩𝒍𝒂𝒈 and 𝜮𝒍𝒂𝒈 

as follows: 

𝑩𝒍𝒂𝒈 = 𝐒𝐱𝜶 and 𝜮𝒍𝒂𝒈 = 𝐒𝐈𝐐𝐒′ (4.6) 

 

4.3.3 Spatial Error GGOP Model 

In spatial error model formulation, continuous latent propensity is expressed as follows (Castro et 

al., 2013): 

𝑦𝑞
∗  =  𝛿 ∑ 𝑤𝑞𝑞′

′ 휀𝑞′
𝑄
𝑞′=1 +  𝛼′𝑥𝑞 + 휀𝑞 , 𝑦𝑞 = 𝑗  𝑖𝑓 𝜓𝑗−1 < 𝑦𝑞

∗ ≤ 𝜓𝑗   (4.7) 

Now, vector representation of Equation 4.7 is as follows: 

𝒚∗ =  𝜹𝐖𝜺 +  𝐱𝜶 + 𝜺  (4.8) 

We can re-write Equation 4.8 as follows: 

𝒚∗ =  𝐱𝜶 + 𝑺𝜺  (4.9) 
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The vector *y  is multivariate normally distributed as, 𝑦∗~𝑀𝑉𝑁𝑄(𝑩𝒆𝒓𝒓𝒐𝒓 , 𝜮𝒆𝒓𝒓𝒐𝒓). We represent 

𝑩𝒆𝒓𝒓𝒐𝒓 and 𝜮𝒆𝒓𝒓𝒐𝒓 as follows: 

𝑩𝒆𝒓𝒓𝒐𝒓 = 𝐱𝜶 and 𝜮𝒆𝒓𝒓𝒐𝒓 = 𝐒𝐒′ (4.10) 

 

4.3.4 Model Estimation 

The vector of parameters to be estimated in both spatial lag and spatial error GGOP model is θ = 

(𝛼′, 𝜌𝑗
′ , 𝜆, 𝛿′). While full likelihood approach is infeasible in presence of complex dependencies 

between the observations, composite marginal likelihood (CML) approach is simpler which is 

based on maximizing surrogate likelihood function. In this study, we follow pairwise CML method 

to compute log-composite likelihood as follows (see Castro et al., 2013 for similar formulation): 

𝐿𝐶𝑀𝐿(𝜃) =  ∏ ∏ Pr(𝑦𝑞 = 𝑗𝑞, 𝑦𝑞
′ = 𝑗𝑞

′ )

𝑄

𝑞′=𝑞+1

𝑄−1

𝑞=1

 

=  ∏ ∏ [Φ(𝜑𝑞, 𝜑𝑞′ , 𝜈𝑞𝑞′) −  Φ(𝜑𝑞, 𝜇𝑞′ , 𝜈𝑞𝑞′) −  Φ(𝜇𝑞 , 𝜑𝑞′ , 𝜈𝑞𝑞′  )

𝑄

𝑞′=𝑞+1

𝑄−1

𝑞=1

+  Φ(𝜇𝑞, 𝜇𝑞′ , 𝜈𝑞𝑞′)] 

 

(

(4.11) 

Where, 𝜑𝑞 =  
𝜓𝑞,𝑗−([𝑩]𝑞+ 𝜌𝑞,𝑗

′ )

√𝜆𝑞∗[𝜮]𝑞𝑞

 , 𝜇𝑞 =   
𝜓𝑞,𝑗−1−([𝑩]𝑞+ 𝜌𝑞,𝑗−1

′ )

√𝜆𝑞∗[𝜮]𝑞𝑞

, 𝜈𝑞𝑞′ =  
[𝜮]

𝑞𝑞′

√[𝜮]𝑞𝑞∗[𝜮]𝑞′𝑞′   
   

In computing marginal likelihood function presented in Equation 4.11, we need to calculate 

𝑄(𝑄 − 1)/2 numbers of joint probabilities. In Equation 4.11, 𝜈𝑞𝑞′ represents correlation parameter 

in bivariate normal cumulative density function which is stronger for observations in close 

proximity in terms of time and space. 𝜈𝑞𝑞′ is considerably small for observations with larger 

distance and month difference. In this study, we assume that spatial correlations are considerable 
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within a distance band and a time threshold. Therefore, we employed different values of distance 

band and time threshold and select the best combination. Based on model fit and significance of 

spatial autoregressive parameter, we select 100 miles distance band and 36 months threshold for 

our study. Therefore, we can re-write Equation 4.11 as follows: 

𝐿𝐶𝑀𝐿(𝜃) =  ∏ ∏ Pr(𝑦𝑞 = 𝑗𝑞, 𝑦𝑞
′ = 𝑗𝑞

′ )

𝑄

𝑞′=𝑞+1

𝑄−1

𝑞=1

 

=  ∏ ∏ [Φ(𝜑𝑞, 𝜑𝑞′ , 𝑅𝑞𝑞′ 𝜈𝑞𝑞′ ) −  Φ(𝜑𝑞, 𝜇𝑞′ , 𝑅𝑞𝑞′𝜈𝑞𝑞′) −  Φ(𝜇𝑞, 𝜑𝑞′ , 𝑅𝑞𝑞′𝜈𝑞𝑞′  )

𝑄

𝑞′=𝑞+1

𝑄−1

𝑞=1

+  Φ(𝜇𝑞, 𝜇𝑞′ , 𝑅𝑞𝑞′𝜈𝑞𝑞′)] 

 

(

(4.12) 

Where, 𝑅𝑞𝑞′ = 1 𝑖𝑓 𝑑𝑞𝑞′ ≤ 100miles and 𝑚𝑞𝑞′ ≤ 36months, 0 otherwise 

 

In above Equation 4.12, 𝑅𝑞𝑞′ is a dummy variable indicating the presence of spatial correlation 

between a pair of airports. 𝑑𝑞𝑞′  and 𝑚𝑞𝑞′ represent distance in miles and time difference in months 

between observations, 𝑞 and 𝑞′. Finally, covariance matrix of the parameters is estimated by the 

inverse of Godambe's (1960) sandwich information matrix (see Bhat et al., 2010 and Castro et al., 

2013 for the details of covariance matrix). 
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4.4 Dataset Description 

The airline demand data is sourced from T-100 Domestic Marketing Carrier dataset compiled by 

Bureau of Transportation Statistics. The marketing carrier dataset contains number of passengers 

carried by all domestic carriers for each airport for each month. In this study, we analyze monthly 

air passenger departure rate at the airport level for five annual time points (2010, 2012, 2014, 2016, 

and 2018). Hence, we aggregate air passenger departures for each airport and each month in the 

analysis period. Initially, we selected 510 airports across the 51 states in the US from five major 

regions including South, West, Mid-West, North-East, and Pacific regions. Then, we remove all 

smaller airports having missing demand records. After removing the airports with missing records, 

we retain 369 airports resulting in a sample of 22,140 observations (369 airports * 60 months). In 

preparation of estimation sample, we randomly select 5 records from each airport resulting in 1845 

records in total. The remaining 20,295 observations are employed for model validation as a holdout 

sample. In analyzing the airline demand data, we perform natural logarithmic transformation of 

monthly departures and then categorize the log-transformed variables into 10 demand groups 

including ≤6, >6-7, >7-8, >8-9, >9-10, >10-11, >11-12, >12-13, >13-14 and >14. The distribution 

of the categorical demand variable is presented in Figure 4.1. The figure shows that the dependent 

variable is approximately normally distributed. 
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Figure 4.1 Distribution of The Dependent Variable 

The airline demand data is augmented with a comprehensive set of independent variables 

including a) demographic characteristics, b) built environment characteristics, c) airport specific 

factors, d) spatial factors, and e) temporal factors. Demographic characteristics includes 

Metropolitan Statistical Area (MSA) specific population, median income, employment, out of state 

employment rate, vehicle ownership level, etc. Demographic data is sourced from American 

Community Survey (ACS). Built environment characteristics include number of airports in close 

proximity of an airport, and tourism ranking of the corresponding state (Insider, 2020). Airport 

specific factors include airport classification such as core airports, and Operational Evolution 

Partnership (OEP-35) airports. Spatial factors include region of the airports including South, West, 

Mid-West, North-East, and Pacific regions. Temporal factors include month of the analysis 

ranging from January through December. The detailed description of the independent variables is 

presented in Table 4.1. Table 4.1 includes mean, minimum and maximum values for continuous 

variables and frequency and percentage for categorical variables. 
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Table 4.1 Descriptive Statistics of the Independent Variables 

Continuous Variables 

Variables Description Mean Min/Max 

Demographic Characteristics 

Population Population in million in corresponding MSA 1.179 0.013/20.031 

Median Income Median income in 100K in corresponding MSA 0.544 0.312/1.147 

Employment Ln(number of workers in thousands in corresponding MSA) 0.464 0.290/0.607 

Out of state 

employment 

Fraction of job holders in corresponding MSA working out of 

state 
0.029 0.000/0.269 

Built Environment Characteristics 

No. of airports Ln(Number of airports in 50 mile buffer area) 1.753 0.000/3.664 

Categorical Variables 

Variables Description Freq. Percent 

Built Environment Characteristics 

Tourism Attraction 

Top10 The state is among top 10 tourist attraction states 105 28.455 

Bottom10 The state is among bottom 10 tourist attraction states 38 10.298 

Others The state is other than top and bottom tourist attraction states 226 61.247 

Airport Specific Effect 

Core airport in the US 

Yes   30 8.13 

No   339 91.87 

Spatial Factors 

Region 

South   114 30.894 

West   88 23.848 

Mid-West   85 23.035 

North-East   46 12.466 

Pacific   36 9.756 

Temporal Factors 

Month 

January   158 8.564 

February   145 7.859 

March   133 7.209 

April   155 8.401 

May   156 8.455 

June   147 7.967 

July   165 8.943 

August   155 8.401 

September   149 8.076 

October   157 8.509 
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Categorical Variables 

Variables Description Freq. Percent 

November   156 8.455 

December   169 9.160 

 

4.5 Analysis and Results 

In model development, we first estimate a simple group generalized ordered probit (GGOP) model 

system without considering any spatial dependencies between the observations. The estimated 

GGOP model serves as a benchmark for the spatial GGOP models. Log-composite likelihood (LL) 

at convergence and Bayesian Information Criteria (BIC) values of GGOP models are -3510.43 and 

7156.22, respectively. In the second step, we estimate a series of spatial lag and spatial error 

models considering various formulation of 𝑤𝑞𝑞′ as discussed in section 4.3.2. Based on the data 

fit and significance of spatial autoregressive parameter, we select 1/(√𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑚𝑜𝑛𝑡ℎ) as the 

element of W matrix, and distance band and time threshold are set to be 100 miles and 36 months, 

respectively. The LL and BIC values of the proposed spatial lag GGOP model are -3395.49 and 

6933.86, respectively. The LL and BIC values of the proposed spatial error GGOP model are -

3378.82 and 6900.52, respectively. Therefore, both spatial lag model and spatial error model offer 

improved data fit compared to simple GGOP model and spatial error GGOP model offers the best 

fit in terms of the BIC measure. For the sake of brevity, only the spatial error GGOP model results 

are presented in this dissertation.  
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4.5.1 Estimation Results 

The proposed spatial error GGOP model is presented in Table 4.2. Positive (negative) value 

associated with a variable indicates that an increase of the variable increases (decreases) the 

propensity of higher demand. The effects of the variables on airline demand are discussed in detail 

as follows: 

4.5.1.1 Demographic Characteristics 

Estimation results indicate that airline demand is significantly influenced by MSA level 

demographics. From the result, it is evident that airport level passenger departure rate is positively 

associated with MSA level population. Thus, an increase in MSA population increases the 

propensity for higher monthly airline demand (see Tirtha et al., 2022c for similar results). The 

results show that airline demand is higher in MSAs with higher income level. Finally, we found 

that employment in the corresponding MSA significantly contributes to airport level airline 

demand. An increase in number of employees in the corresponding MSA significantly increases 

the propensity for higher demand. The results might indicate the fact that increased income and 

employment enhances business activities and also air travel affordability for residents in the MSA. 

4.5.1.2 Built Environment Factors 

Among built environment factors considered, number of airports in close proximity and state level 

tourism ranking affect airline demand. The effect of number of airports in a 50-mile buffer is found 

to be positive indicating that as number of surrounding airports increases, departure rate at that 

airport will increase significantly. This may reflect the fact that number of airports in close 

proximity may be higher due to overall increased demand for air travel in an area. In addition to 

number of airports, state level tourism ranking influences airport level air passenger demand. To 
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identify the impact of tourism, we include top 10 and bottom 10 tourist attraction state indicators 

in the model. The results indicates that if an airport is present among the top 10 tourist attraction 

states in the US, the airport may experience higher demand in general. Inversely, if an airport is 

present among the bottom 10 tourist attraction states in the US, the airport, in general, may 

experience lower demand compared to other airports while controlling for remaining factors.  

4.5.1.3 Airport Specific Factors 

In the study, we include airport specific factors in the demand modelling. Airport specific factors 

include airport classifications such as core airports, and OEP-35 airports. From Table 4.2, it is 

evident that airport classification significantly affects airport level airline demand. The results 

show that core airports in the US experience increased demand compared to other airports if other 

factors remain the same. The result is intuitive as core airports are the largest airports in the US 

with the highest passenger share compared to the remaining airports. 

4.5.1.4 Spatial Factors 

Location of the airport in the US region is found to be significantly associated with total number 

of departures at an airport. From Table 4.2, it is evident that airports located in South region 

experience higher demand compared to airports in West and Mid-West regions controlling for 

other factors. On the other hand, airports in North-East and Pacific regions experience lower airline 

demand compared to airports in West and Mid-West regions. 

4.5.1.5 Temporal Factors 

From the analysis, we also found that there is temporal variability in airline demand. Compared to 

other months of the year, airline demand is lower in January controlling for other factors. In 

contrast, airline demand is higher in July compared to the other months. 
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4.5.1.6 Threshold Specific Deviations 

The proposed model also allows for threshold specific deviations on various predefined thresholds. 

In our air passenger departure model, we consider various threshold specific deviations based on 

model fit and sample sizes across each category. The estimation result of these parameters is 

reported in the second-row panel of Table 4.2. The deviation parameter is similar to a constant in 

discrete choice models and does not have an interpretation after incorporating other variables. 

4.5.1.7 Variance Components 

In the proposed model, we estimate and parameterize error variance. Variance components are 

presented in third-row panel of Table 4.2. From the results, it is evident that error variance is a 

function of region of the airports. Such parameterization of the variance component allows us to 

accommodate for heteroscedasticity in the data. 

4.5.1.8 Spatial Correlation 

The main contribution of this chapter arises from consideration of spatial dependency in the airline 

demand modelling. From the analysis results, we found spatial autocorrelation parameter as strong 

in magnitude (the value is 3.943) and highly significant (t stat is 109.558). The significance of the 

spatial dependency parameter indicates the presence of unobserved factors affecting airline 

demand at an airport also influence the demand at other proximally located airports. In the presence 

of time component in spatial weight matrix, we can also conclude that such spatial correlation 

varies significantly over time.  
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Table 4.2 Estimation Results for Spatial Error GGOP Model 

Variables Estimates t stat 

Propensity Components 

Constant 4.102 12.826 

Demographic Factors 

Population in million 0.130 11.729 

Median income in 100K 1.932 5.610 

Ln(Employment in thousands) 5.591 6.708 

Built Environment Factors 

Ln(no. of airports in 50 miles) 0.894 17.431 

Tourism Ranking (Base: other states) 

Top 10 0.509 6.932 

Bottom 10 -0.508 -4.826 

Airport Specific Factors 

Core Airports (Base: No) 

Yes 2.898 29.266 

Spatial Factors 

Region (Base: West and Mid-West) 

South 0.615 8.562 

North-East -0.867 -9.757 

Pacific -1.840 -12.932 

Temporal Factors 

Month (Base: other month of the year) 

January -0.425 -4.027 

July 0.398 4.274 

Threshold Specific Effects 

Threshold 2 -0.403 -4.980 

Threshold 3 -0.289 -5.194 

Threshold 4 -0.172 -4.767 

Variance Components 

Region (Base: other regions) 

South -0.145 -5.336 

North-East 0.136 3.884 

Spatial Autoregressive Parameters 

Constant 3.943 109.558 
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4.6 Model Validation 

In this study, we undertake a validation exercise to compare the predictive performance of the 

alternative models developed. In this comparison, independent GGOP model (without spatial 

dependency parameter) of air passenger departures serves as the benchmark. To perform the 

validation test, we employ data from our hold out sample (observations not included in estimation 

set) consisting of 20,295 observations. From the hold out sample, we further create 20 data samples 

of 1845 observations by randomly choosing 5 monthly departure records for each airport. Next, 

we employ alternative models (independent GGOP, spatial lag GGOP, and spatial Error GGOP) 

to generate prediction for each sample. Then, the predicted probabilities of the observed demand 

categories are used to estimate log-composite likelihood (LL) and Bayesian Information Criteria 

(BIC) measures for the three model systems. The results from 20 samples are compiled to generate 

the average and range of the model performance measures across the three systems. The results 

from validation exercise are presented as a box plot in Figure 2. The result indicates that the 

average predicted LL and BIC values and the ranges (95% confidence interval) in parentheses for 

the model systems are as follows: (1) independent model: -3543.94 [-3549.61, -3538.27] and 

7223.24 [7211.90, 7234.59], (2) spatial lag GGOP model: -3456.19 [-3479.38, -3432.99] and 

7055.26 [7008.87, 7101.65], (3) spatial error GGOP model: -3398.88 [-3403.02, -3394.74] and 

6940.64 [6932.36, 6948.92]. The results from the validation exercise confirm that both spatial 

models perform considerably better than the independent model that does not consider for spatial 

correlations between the observation units. Further, spatial error model is found to be superior to 

independent GGOP model and spatial lag GGOP model. The confirmation from our validation 

exercise highlights the importance of considering spatial and temporal dependency in airline 

demand models at the airport level. 
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(a) Comparison of Predicted LL Values 

 

(b) Comparison of Predicted BIC Values 

Figure 4.2 Comparison between Three Model Systems 
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4.7 Summary 

The current study aims to analyze monthly air passenger departures at the airport level 

accommodating for spatial interactions between the airports in close proximity. Towards this end, 

we develop a novel spatial group generalized ordered probit (SGGOP) model system of monthly 

air passenger departures at the airport level. Specifically, we estimate two variants of spatial 

models including spatial lag model and spatial error model. In presence of repeated demand 

measures for the airports, we also consider temporal variations of spatial correlation effects among 

proximally located airports by employing space and time-based weight matrix. The proposed 

model is estimated using monthly air passenger departures for five years for 369 airports across 

the US. The proposed spatial model is implemented using composite marginal likelihood (CML) 

approach that offers a computationally feasible framework compared to sheer dimensionality 

challenge associated with the full likelihood approach for discrete outcome spatial models. 

In model development, we employed various functional forms for the weight matrix and 

model selection was based on data fit. Among the three model systems we estimated, spatial error 

GGOP model was found to be the best in terms of the BIC measure. Importantly, both spatial 

models are found to be superior to the independent GGOP model that does not consider any spatial 

dependency between the observations. From the estimation results, it is evident that air passenger 

departures at the airport level are influenced by different factors including MSA specific 

demographic characteristics, built environment characteristics, airport specific factors, spatial 

factors, and temporal factors. Moreover, spatial autoregressive parameter is found to be significant 

supporting our hypothesis of the presence of common unobserved factors associated with the 

spatial unit of analysis. In this study, we also perform a validation analysis to examine the 

predictive performance of the proposed spatial lag GGOP and spatial error GGOP models 
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compared to independent GGOP model. The result of validation exercise indicates the superiority 

of both spatial models relative to the independent model. Among the two spatial models, spatial 

error GGOP model offered improved data fit.  

To be sure, the current study is not without limitations. It would be useful to accommodate 

for other socio-economic factors in the proposed model such as MSA specific GDP and business-

related indicators. We employ state level tourism ranking to capture the effect of tourism on airline 

demand. MSA specific tourism measures (For example: number of hotel beds), if available, may 

further enhance the demand model. 
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CHAPTER 5: A FLIGHT LEVEL ANALYSIS OF DEPARTURE DELAY 

AND ARRIVAL DELAY 

 

Airline delay has become a recurrent event in the US airports causing both direct and indirect costs 

to the industry. In 2019, 21.03% of all flights operated in the US arrived late by 15 minutes or 

more. Understanding the factors influencing airline delay is important to improve airline on-time 

performance or mitigate the delays. In this dissertation, we develop a novel copula-based group 

generalized ordered logit (GGOL) model of departure and arrival delay at a disaggregate resolution 

of flight. Further, we compare predictive performance of the proposed model relative to 

independent models of flight departure and arrival on a holdout sample. Finally, we conduct a 

model application analysis to present the policy implications of the current research. 

 

5.1 Earlier Studies 

In airline literature, airline delay can be considered as a departure and/or an arrival delay. 

According to BTS, departure/arrival delay can be defined as the time difference between scheduled 

and actual gate departure/arrival time. Traditionally, earlier studies identified the factors affecting 

airline delays and developed prediction models. A summary of previous studies examining airline 

delay is provided in Table 5.1 with information on the delay measure of interest, spatial resolution 

of analysis, number of airports considered, study objectives, methodology employed, and 

independent variables considered. From Table 5.1, we can make several observations. First, earlier 

studies on airline delay study three types of delay measures: (a) departure delay, (b) arrival delay 

and (c) both departure and arrival delay. From the review, a majority of earlier research analyzed 
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either departure or arrival delay. The studies, modeling both departure and arrival delays, modelled 

the two delay categories independently. Second, earlier research on airline delay is conducted at 

three resolutions: (a) flight, (b) airport and (c) national airspace system (NAS) level. In the first 

resolution, studies analyzed airline delay for individual flights while in the latter two resolutions, 

delay is analyzed at an aggregate level of airport or network as an average daily delay. The review 

also shows that earlier studies analyzed airline delay data mostly employing a limited set of 

airports8. Third, the factors considered in modeling airline delays vary across the studies and 

include traffic conditions (average queuing delay, average arrival delay, total operations), trip 

specific factors (carrier, route, distance), weather conditions (visibility, wind speed, thunderstorm, 

precipitation, snow depth), spatial factors (location of origin and destination airports), and 

temporal factors (season, weekday/weekend, time of the day). Fourth, several mathematical 

models were employed in literature to predict airline delays and they can be broadly classified as 

(a) discrete outcome and (b) continuous outcome models. In discrete outcome models, the 

dependent variable is characterized as a binary outcome (flight delayed or not based on the BTS 

threshold of 15 minutes) or a categorical variable (for example, Gui et al., 2020 categorized flight 

arrival delay in 4 groups). Among discrete outcome models, binary/multinomial logit models are 

generally employed to determine the factors affecting airline delay. Among continuous outcome 

models, where delay is measured in minutes, commonly employed models include: (a) linear 

regression model, (b) time series analysis, (c) machine learning approaches, (d) survival model, 

 

8 35 Operational Evolution Partnership Airports (OEP-35) are the largest set of airports considered by the airport level 

studies (Hao et al., 2014; Nayak & Zhang, 2011). However, flight level studies considered flights operated in most of 

the major airports across the US. 
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(e) piecewise regression model, and (f) optimization methods. Finally, discrete outcome models 

are more commonly employed in flight level analysis while continuous outcome models are 

employed in both disaggregate and aggregate level analysis. 

 

5.2 Contributions of the Current Study 

In this study, our goal is to model departure and arrival delays in a joint framework at the 

disaggregate resolution of flights.  

A major contribution of this study to literature arises from data enhancement for flight 

delay analysis. The variables processed from 2019 BTS marketing carrier on time performance 

data are augmented with a comprehensive set of independent variables sourced from secondary 

data sources including Automated Surface Observing System (ASOS) dataset (sourced from Iowa 

Environment Mesonet) and FAA’s Aviation System Performance Metrics (ASPM). We prepare 

weather variables – wind speed, hourly precipitation, thunderstorm proportion and visibility - from 

ASOS dataset.  The data compilation is achieved by charting the potential airline flight route to 

identify weather conditions near the flight’s origin airport, along the route, and at the destination 

airport. Towards processing this weather data, we divide the continental US into a latitude 

longitude grid of 5 degrees and compile hourly weather data from all weather stations within each 

grid while estimating the flight path and its intersection with the grid system (more details in Data 

Section). The detailed process allows us to generate weather conditions for the entire duration of 

the flight. Subsequently, we employ ASPM data to determine air traffic conditions at the origin 

and destination airports in the hours preceding the flight’s departure and arrival, respectively.   
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Table 5.1 Summary of Literature Review 

Study 
Dependent 

Variable 

Spatial 

Resolution 

No. of 

Airports 
Objective Method Independent variables 

Hao et al., 

2014 

Average daily 

arrival delay 

(continuous) 

Airport 

level  

New York 

airports and 

OEP 32 
airports 

Estimating impact of 

NY airports’ delay on 

other airports 

2SLS regression 

model 

Air traffic condition such as total operations 

and average queuing delay, weather factors 

including portion of thunderstorms in different 
regions in the US 

Nayak & 

Zhang, 2011 

Average daily 

arrival delay 

(continuous) 

Airport 

level  

OEP 34 

airports and 

other 

airports in 

NAS 

Estimating impact of 

single airport delay on 

NAS 

Multivariate 

simultaneous 

regression model 

Air traffic condition such as queuing delay, 

observed arrival delay at other airports and 

NAS, weather factors (thunderstorms and IMC 

condition), temporal factors including seasonal 

and year 

Schaefer & 

Millner, 

2001 

Average arrival 

and departure 

delay per flight 

(continuous) 

Airport 

level 

3 sample 

airports 

Modeling propagation 

of delay 

Air traffic 

simulation 
Weather factors (IMC duration) 

Klein et al., 

2010 

Average daily 

arrival delay 

(continuous) 

Airport 

level 

Major 

airports in 

US 

Estimating airport 

delay using weather 

data 

Regression 

model 

NAS and airport weather conditions including 

wind speed, snow depth, IMC condition, 

queuing delay 

Markovic et 
al., 2008 

Average daily 

punctual flights 
(continuous) 

Airport 
level 

1 airport in 
Germany 

Identifying weather 

impact on arrival 
delays 

Hybrid 

regression/time 
series modelling 

Weather factors such as wind speed, snow 

depth, the traffic flow, and the airport system 
state (strikes, air traffic control failures, 

roadworks, or safety related shutoffs) 

Abdel-Aty et 

al., 2007 

Average daily 

arrival delay and 

flight arrival 

delay 

(continuous) 

Airport 

and flight 

level  

1 airport – 

MCO 

Identifying periodicity 

in arrival delays 

Multinomial 

logit model 

Temporal factors, weather factors 

(precipitation) 

Choi et al, 

2016 

Arrival delay 

(binary) 
Flight level 

45 major 

airports in 

US 

Identifying weather 

factors of arrival delay 

Machine learning 

approach 

Temporal factors, and weather factors such as 

wind speed, visibility, precipitation, snow 

depth, and weather intensity code 

Pérez-

Rodríguez et 

al., 2017 

Arrival/departure 

delay (binary) 
Flight level 

All US 

airports 

Estimating the daily 

probabilities of delay 

in aircraft arrivals. 

Bayesian model 

Trip specific factors including distance and 

airlines, temporal factor such as day of the 

week 

Gui et al., 

2020 

Arrival Delay 

(categorical) 
Flight level -- Flight delay prediction 

Machine learning 

method  

Air traffic condition, weather condition, 

temporal factors, spatial factors including 

origin and destination airport 
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Study 
Dependent 

Variable 

Spatial 

Resolution 

No. of 

Airports 
Objective Method Independent variables 

Arora & 

Mathur, 

2020 

Departure delay 

(binary) 
Flight level 

All US 

airports 

Identifying the impact 

of airline choice and 

temporality on flight 

delays 

Binary logit 

model 

Trip specific factor (carrier) and Temporal 

factors 

Wong & 

Tsai, 2012 

Flight delay 

propagation 

(continuous)  

Flight level -- 

To study relationship 

between flight delays 

and the causes 

Survival Model 

Trip specific factors such as delay cause, 

aircraft type, air traffic condition (turnaround 

buffer time), temporal factors 

V. N. Bhat, 
1995 

Arrival delay 
(binary) 

Flight level -- 

Identifying operating 

and financial factors of 
airline delays 

Binary logit 
model 

Operating and financial variables such as 
capital ratio and current ratio 

Xu et al., 

2008 

Arrival delay 

(continuous) 

Airport 

level  

34 OEP 

airports 

To predict flight 

delays at airports in 

15-min epochs 

Piecewise linear 

regression model 

Delay cause, Departure delay, Time, GDP 

holding time 

Wong et al., 

2002 

Arrival and 

departure delay 

(continuous) 

Flight level  
1 – Taipei 

airport 

Identifying the factors 

and predict airline 

delays 

Optimization 

model 

Departure and arrival patterns, number of 

departure and arrival routes 

Mueller & 

Chatterji, 

2002 

Average daily 

arrival and 

departure delay 

(continuous) 

Airport 

level  

10 airports 

in the US 

Examining relation 

between airline 

demand and flight 

delay 

Least Squares 

method 

Traffic demand related factors such as number 

of departures, number of arrivals, time of the 

day, casual factors 

Kim, 2016 
Arrival delay 

(continuous) 
Flight level 

1– Denver 

Internation

al Airport 

Forecasting flight 

arrival time 

Nonparametric 

additive 

techniques 

Arriving and departing airport capacity, 

weather and airline, temporal factors including 

day of the month and month 

Deshpande 

& Arikan, 
2012 

Truncated block 

time 
(continuous) 

Flight level 
All airports 

in US 

Identifying the impact 

of scheduled block 
time on arrival delay 

Ordinary least 

square regression 

Route, carrier, temporal and spatial factors, 

traffic condition 

Lee & 

Zhong, 2016 

Arrival delay 

(continuous) 
Flight level 

1 airport – 

Singapore 

Studying the 

correlation between 

weather condition and 

flight delay 

Linear regression 

and square root 

regression  

Weather factors such as rainfall and 

thunderstorm duration 

Allan et al., 

2001 

Arrival delay 

type 

(categorical) 

Airport 

level  

1 airport – 

Newark 

airport 

Determining the delay 

cause and delay type 

based on weather data 

Descriptive 

analysis 

Weather factors including wind speed ceiling, 

visibility, and thunderstorm 

Greenfield, 

2014 

Arrival delay per 

flight 

(continuous) 

Carrier and 

route level 

Top 100 

airports in 

US 

To study the effects of 

market competition on 

airline delay 

Regression 

analysis 

Weather condition, airport traffic and market 

structure market structure, airline demand 
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Finally, we perform spatial data enhancement in our study by considering all flights 

between 67 airports across the US to capture the effects of spatial factors on flight level delay. The 

selected 67 airports are a subset of ASPM 77 airports and include all operational evolution 

partnership (OEP-35) airports in the US. The data for our analysis is augmented with other 

independent variables including (a) trip specific factors (carrier and flight distance), (b) spatial 

factors (region of origin and destination airports) and (c) temporal factors (season, day of the week 

and time of the day). The reader would note that the current study is the first effort to consider the 

influence of high resolution spatio-temporal weather conditions along the entire flight on flight 

delay. 

Employing the data prepared, the current research contributes to airport departure and 

arrival delay analysis by developing a novel copula-based group generalized ordered logit (GGOL) 

model. The proposed framework recognizes that delay measure in minutes is not exclusively a 

categorical variable or a continuous variable. A cursory examination of delay variable would 

indicate the presence of clusters of data points as delay increases i.e., as delay increases, it is likely 

to be rounded to larger time bins (such as 5 minutes or 15 minutes). For analyzing such data, the 

application of a purely discrete outcome model system while feasible, does not allow the 

estimation of a continuous measure in prediction (without any strong assumptions). On the other 

hand, employing a continuous variable representation is not appropriate with rounded values. 

Thus, in our proposed research we employ a hybrid framework that ties the continuous delay 

measure to a categorical variable allowing us to estimate the model as a discrete outcome system 

with the inherent ability to predict as a continuous variable (Tirtha et al., 2020; Tirtha et al., 2022a; 

Yasmin & Eluru, 2018) (see more details in the section 5.3). 
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Our proposed model system also recognizes that it is very plausible that there might be 

some common unobserved factors influencing both delay categories. Given the obvious 

interactions between two types of delay variables, we develop a copula-based group generalized 

ordered logit model framework that accommodates for the influence of common observed and 

unobserved effects on flight departure and arrival delays. In this study, we also estimate and 

parameterize the error variance of the delay component to account for heteroscedasticity. The two 

GGOL model components are then stitched together as a joint distribution using the flexible 

copula-based approach. In our analysis, we employ six different copula structures – the Gaussian 

copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and set of Archimedean copulas including 

Frank, Clayton, Joe and Gumbel copulas (see Bhat & Eluru, 2009 for a detailed discussion). The 

value of the proposed model system is illustrated by comparing predictive performance of the 

proposed model relative to independent models of flight departure and arrival on a holdout sample 

(records not used in estimation). Finally, we conduct an application analysis to present the policy 

implications of the current research. The illustration provides a mechanism for employing the 

proposed model as a tool for airline carrier level or airport level delay prediction analysis using 

weather forecasts.  
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5.3 Econometric Methodology 

In this section, econometric formulation of the copula-based group generalized ordered logit model 

(GGOL) model is presented. 

5.3.1 Flight Delay Model 

Let q (q=1,2,…,Q), and k (k=1,2,…,K;K=2) be the indices to represent flight and the 

corresponding delay type (departure/arrival), respectively. Let 𝑗𝑘  (=1,2,…J;J=6) be the index for 

the discrete outcome that corresponds to delay levels for delay type 𝑘. In the group ordered 

response model, the discrete incident duration levels (𝑦𝑞𝑘) are assumed to be associated with an 

underlying continuous latent variable (𝑦𝑞𝑘
∗ ). This latent variable is typically specified as follows:  

 

𝑦𝑞𝑘
∗ = (𝛼𝑘 +  𝜂𝑞𝑘) 𝑧𝑞𝑘 + 휀𝑞𝑘 , 𝑦𝑞𝑘 = 𝑗𝑘  if 𝜓𝑗𝑘

< 𝑦𝑞𝑘
∗ < 𝜓𝑗𝑘+1 (5.1) 

 

Where, 𝑧𝑞𝑘  is a vector of exogenous variables for delay type 𝑘 for a flight 𝑞, 𝛼𝑘  is row of 

unknown parameters, 𝜂𝑞𝑘  is a vector of coefficients representing the impact of unobserved factors 

moderating the influence of corresponding element of 𝑧𝑞𝑘 , 𝜓𝑗𝑘
 and 𝜓𝑗𝑘+1 are the observed lower 

bound threshold and upper bound threshold, respectively for time interval level 𝑗𝑘  for delay type 

𝑘. In this study, 𝜓 takes a value from -α, 5, 10, 15, 30, 60, +α. 휀𝑞𝑘  captures the idiosyncratic effect 

of all omitted variables for delay type 𝑘. The error terms are assumed to be independently logistic 

distributed with variance 𝜆𝑞𝑘
2 . The variance vector is parameterized as follows: 

 

𝜆𝑞𝑘 = 𝑒𝑥𝑝(𝜌𝑘𝑔𝑞𝑘)  (5.2) 
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Where, 𝑔𝑞𝑘  is a set of exogenous variables (including a constant) associated with delay 

type 𝑘 for a flight 𝑞 and 𝜌𝑘  is the corresponding parameters to be estimated. 𝑔𝑞𝑘  accommodates 

for the potential presence of heteroscedasticity within the grouped ordered framework. Finally, to 

allow for alternative specific effects, we also introduce threshold specific deviations in the model 

as 𝜎𝑗𝑘
=  𝜏𝑗𝑘

𝑧𝑞𝑘 . The probability for delay type 𝑘 for time interval in category 𝑗𝑘  is given by: 

 

Pr(𝑦𝑞𝑘 = 𝑗𝑘) = 𝛬 (
𝜓𝑗𝑘+1−((𝛼𝑘+𝜂𝑞𝑘) 𝑧𝑞𝑘+𝜎𝑗𝑘

)

𝜆𝑞𝑘
) - 𝛬 (

𝜓𝑗𝑘
−((𝛼𝑘+ 𝜂𝑞𝑘) 𝑧𝑞𝑘+𝜎𝑗𝑘

)

𝜆𝑞𝑘
)  (5.3) 

 

Where, 𝛬(. ) is the cumulative standard logistic distribution. 

 

5.3.2 Bivariate Copula Model 

In examining the grouped time intervals across two delay types simultaneously, the levels of 

correlations between two dimensions of interests depend on the type and extent of dependency 

among the stochastic terms (휀𝑞𝑘) of Equation 5.1. The joint probability function of involving 

departure delay level 𝑗𝑞1 and arrival delay level 𝑗𝑞2 for flight q can be expressed as (Laman et al., 

2018):  

 

𝑃𝑟(𝑦𝑞1 = 𝑗𝑞1, 𝑦𝑞2 = 𝑗𝑞2)  = 𝑃𝑟(𝜓𝑗𝑞1
<  𝑦𝑞1

∗ < 𝜓𝑗𝑞1+1, 𝜓𝑗𝑞2
<  𝑦𝑞2

∗

< 𝜓𝑗𝑞2+1) 

(5.4) 

 

Now, the Equation 5.4 can be written as follows (Laman et al., 2018): 
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𝑃𝑟(𝑦𝑞1 = 𝑗𝑞1, 𝑦𝑞2 = 𝑗𝑞2) 

     = ∑ ∑ (−1)𝑎1+𝑎2 [𝑃𝑟(𝑦𝑞1
∗ < 𝜓𝑗𝑞1+𝑎1−1, 𝑦𝑞2

∗ < 𝜓𝑗𝑞2+𝑎2−1)]

2

𝑎2=1

2

𝑎1=1

 

 

(5.5) 

The copula is a device or function that generates a stochastic dependence relationship (i.e., 

a multivariate distribution) among random variables with pre-specified marginal distributions 

(Bhat & Eluru, 2009), and can be defined as: 

 

𝐶𝜃(𝑢1, 𝑢2, 𝑢3, … , 𝑢I) = 𝑃𝑟(𝑈1 < 𝑢1, 𝑈2 < 𝑢2, 𝑈3 < 𝑢3, … , 𝑈𝐼 < 𝑢𝐼) (5.6) 

 

where 𝜃 is a parameter vector of the copula commonly referred to as the dependence 

parameter vector. The Equation 5.5 can be written within a Copula system as (Laman et al., 2018): 

 

𝑃𝑟(𝑦𝑞1 = 𝑗𝑞1, 𝑦𝑞2 = 𝑗𝑞2) 

    = ∑ ∑ (−1)𝑎1+𝑎2 [𝐶𝜃𝑞
(𝑢𝑗𝑞1+𝑎1−1, 𝑢𝑗𝑞2+𝑎2−1)]

2

𝑎2=1

2

𝑎1=1

 

(5.7) 

 

To allow for the dependency structure to vary across flights, the dependence parameter 𝜃𝑞  

is parameterized as a function of observed attributes as follows: 

 

𝜃𝑞 = 𝑓𝑛(𝜸𝒔𝑞) (5.8) 
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Where, 𝒔𝑞 is a column vector of exogenous variables, 𝜸 is a vector of unknown parameters 

(including a constant) and 𝑓𝑛 represents the functional form of parameterization. Based on the 

dependency parameter permissible ranges, alternate parameterization forms for the four copulas 

are considered in our analysis. For the Clayton and Frank copulas we employ 𝜃𝑞 = 𝑒𝑥𝑝(𝜸𝒔𝑞), and 

for Joe and Gumbel copulas we employ 𝜃𝑞 = 1 + 𝑒𝑥𝑝 (𝜸𝒔𝑞) (see Eluru et al., 2010; Wang et al., 

2015; Yasmin et al., 2014 for a similar approach). In our analysis we employ Gaussian copula, 

Farlie-Gumbel-Morgenstern (FGM) copula and four Archimedean copulas Frank, Clayton, Joe 

and Gumbel copulas (Bhat & Eluru, 2009). 

In examining the model structure of flight delay across two delay types, it is also necessary 

to specify the structure for the unobserved vector 𝜂𝑞𝑘  represented by Ω. In this paper, it is assumed 

that 𝜂𝑞𝑘  is drawn from a normal distribution: Ω~𝑁(0, 𝝅𝑘
𝟐). Thus, the conditional likelihood 

function for flight q based on the joint probability expression in Equation 5.7 can be expressed as: 

 

𝐿𝑞|Ω =  ∏ ∏ 𝑃𝑟(𝑦𝑞1 = 𝑗𝑞1, 𝑦𝑞2 = 𝑗𝑞2)
𝑤𝑞𝑗1𝑗2  

𝐽

𝑗2=1

𝐽

𝑗1=1

 (5.9) 

 

where 𝑤𝑞𝑗1𝑗2
 is a dummy indicator variable. For a flight q, 𝑤𝑞𝑗1𝑗2

 takes a value of 1 if 

departure delay level is 𝑗1 and arrival delay level is 𝑗2, and 0 otherwise. The unconditional 

likelihood function for flight q can be constructed as: 

 

𝐿𝑞 =  ∫ (𝐿𝑞|Ω)dΩ
Ω

 (5.10) 
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Now, we can express the log-likelihood function as follows: 

 

𝐿𝐿 =  ∑ ln(𝐿𝑞)

𝑄

𝑞=1

 (5.11) 

 

The parameters to be estimated in the copula model are 𝛼𝑘, 𝜏𝑗𝑘
, 𝜌, 𝜸, 𝝅𝑘. All the parameters 

are estimated by maximizing the log-likelihood function presented in Equation 5.11. The reader 

would note that the proposed discrete outcome model system can be employed to predict a 

continuous measure of delay by generating the estimate of 𝑦𝑞𝑘
∗  based on model results. Thus, the 

proposed hybrid approach allows us to handle the presence of rounded delays (see Chapter 2 for 

implementation details). 

 

5.4 Dataset Description 

The main data for our study is drawn from the BTS 2019 non-stop domestic marketing carrier on 

time performance dataset. Marketing on time performance dataset includes departure and arrival 

data for 10 marketing carriers who market flights for themselves and their regional code share 

partners. On-time performance dataset offers flight level information including scheduled and 

actual gate departure/arrival date and time, departure/arrival delay in minutes, delay cause, 

cancellation and diversion indicator, origin and destination airports, marketing carrier and 

operating carrier. Initially, we started our analysis considering all the 77 ASPM airports. However, 

10 of these airports do not report any considerable operations and hence, we excluded these airports 

from the dataset. The final dataset consists of all the flights operated in 2019 between 67 selected 
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airports in the US. After excluding all cancelled and diverted flights, the final dataset results in a 

total 5,053,375 observations.  

For our estimation sample, we randomly sample 200 flights departing from each of the 

selected 67 airports, resulting in a dataset of 13,400 records. For a validation sample, we sampled 

100 flights departing from each airport amounting to 6,700 records. The dependent variables, 

departure delay and arrival delay are categorized (in minutes) into 6 groups (0-5, 5-10, 10-15, 15-

30, 30-60, >60 minutes). Distributions of departure and arrival delay categories are presented in 

Figure 5.1. From the figure, we observe that 18.12% of the domestic flights in 2019 departed late 

and 17.97% flights arrived late by more than 15 minutes. 

 

 

Figure 5.1 Distribution of Flight Departure and Arrival Delays 
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5.4.1 Independent Variables 

Airline delay variables are augmented with a host of independent variables. Detailed description 

of the variable generation process by variable group follows.  

5.4.1.1 Airport Level Traffic Conditions 

Airport level traffic conditions includes air traffic and delay variables at the origin and destination 

airports. FAA’s ASPM dataset provides hourly air traffic and delay information at the airport level. 

In this study, we aggregate hourly level data in the preceding 6 hours before scheduled departure 

and arrival time of a flight at the origin and destination airports. Airport level traffic condition at 

the origin (destination) airport includes scheduled number of departures (arrivals), percentage of 

on time gate departures (arrivals), percentage of on time airport departures, average gate departure 

(arrival) delay, average taxi out (in) delay, and average airport departure delay. 

5.4.1.2 Trip Level Attributes 

Trip level attributes are mainly sourced from BTS airline on time performance dataset and includes 

distance and operating carrier. In case of operating carrier, we consider 7 major operating carriers 

including Southwest Airlines, American Airlines, Delta Air Lines, United Air Lines, SkyWest 

Airlines, JetBlue Airways, and other airlines based on the distribution.  

5.4.1.3 Weather Factors 

We compile a comprehensive set of weather variables including thunderstorm occurrence, hourly 

precipitation, visibility, and wind speed at the origin, destination and along the route sourced from 

ASOS dataset from Iowa Environmental Mesonet (Iowa State University, 2021). The weather 

variable data generation process includes series of steps. First, the airline route is generated for 

every origin destination pair considering the shortest geodesic path between the origin and 



 

106 

 

destination9. Second, we divide continental US into a latitude longitude grid of 5 degrees (see 

Figure 5.2) and compile hourly weather data from all weather stations within each grid. Third, we 

identify weather conditions at the origin airport during flight departure by aggregating weather 

data from multiple stations during departure hour and preceding 2 hours at the origin grid. 

Similarly, we identify weather conditions at the destination airport considering weather conditions 

during arrival hour and preceding 2 hours. Third, we identify the sequence of exact grid units along 

a route allowing us to generate the time when a flight passes through a grid and record its 

corresponding weather condition based on weather stations in the grid. To find the intermediate 

grid, we first identify the shortest route between origin and destination airports considering 

geodesic distance. Routes between the airports considered in this study are presented in Figure 5.2. 

Then, we identify direction of a flight in terms of grids using distance between origin airport and 

centroids of intermediate grids. In our processed dataset, number of intermediate grids between 

origin and destination airports varies from 0 to 11 (higher number of grids for longer flights). 

Finally, we allocate flight duration based on the distances between origin airport and grids’ cut 

points to determine the hour of passing and corresponding weather condition10. This process allows 

us to generate weather conditions during the entire flight.  

To illustrate the whole process, we describe the weather variable generation process in 

Figures 5.3 to 5.5 for a flight from John F. Kennedy International Airport (JFK) to Seattle 

 

9 The route generated might not necessarily match the exact proprietary carrier flight path, but it still provides an 

excellent surrogate route for consideration. 

10 It is important to note that the proposed model system is flexible to accommodate for varying number of intermediate 

grids for flights.  
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International Airport (SEA). Consider a non-stop flight that is scheduled to depart at 6:30am 

Coordinated Universal Time (UTC) and arrive at 12:30pm UTC. First, we identify weather 

conditions (90 percentile wind speed, 90 percentile precipitation, thunderstorm proportion and 10 

percentile visibility across weather stations) in the origin grid at 4am-5am, 5am-6am and 6am-

7am. Similarly, we identify weather condition in destination grid for 10am-11am, 11am-12pm and 

12pm-1pm. Then, we aggregate weather condition measures of 3 hours to estimate origin and 

destination weather variables (see Figure 5.3). Second, we identify the shortest route between JFK 

and SEA and obtain a path of 10 intermediate grids. Now, we rank intermediate grids from 1 to 10 

based on distance between JFK and centers of the grids as shown in Figure 5.4. Third, we estimate 

the distances of grid cut points from JFK and calculate the average distances of the grids. Based 

on average distance, scheduled departure time, trip length and trip duration, we determine the hour 

when a flight passes a grid (see Figure 5.5) and identify the weather conditions in each individual 

intermediate grid.  

 

 

Figure 5.2 Grid System and Routes between the Airports 
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5.4.1.4 Spatial Factors 

We consider the location of origin and destination airports in terms of US regions including South, 

Northeast, West, and Midwest. 

5.4.1.5 Temporal Factors 

In this current study, we also investigate presence of any temporal variability in flight delays. We 

consider different temporal variables including time of the day, day of the week and season.  

 

 

Figure 5.3 Weather Condition at Origin and Destination Airports 

 

Figure 5.4 Identification of Intermediate Grids and Their Sequence 
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Figure 5.5 Weather Condition Estimation at Intermediate Grid 

 

Table 5.2 offers the summary statistics (minimum, maximum and average values for continuous 

variables; frequency for categorical variables) of the considered exogenous variables for the 

estimation sample.  

 

Table 5.2 Descriptive Statistics of Independent Variables 

Continuous Variables 

Variable Description Mean Min/Max 

Airport Level Traffic Condition 

Origin Airport Level Traffic Condition 

Scheduled departures Scheduled departures in preceding 6-hrs of flight departure 84.71 0.00/522.00 

On time gate 

departures 

% On time gate departures in preceding 6-hrs of flight 

departure 
80.35 0.00/100.00 

On time airport 

departures 

% On time airport departures in preceding 6-hrs of flight 

departure 
73.23 0.00/100.00 

Gate departure delay 
Average gate departure delay (min) in preceding 6-hrs of flight 

departure 
12.68 0.00/344.00 

Taxi out time 
Average taxi out time (min) in preceding 6-hrs of flight 

departure 
15.80 0.00/86.00 

Taxi out delay 
Average taxi out delay (min) in preceding 6-hrs of flight 

departure 
5.42 0.00/76.75 

Airport departure 

delay 

Average airport departure delay (min) in preceding 6-hrs of 

flight departure 
16.65 0.00/367.00 

Destination Airport Level Traffic Condition 
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Continuous Variables 

Variable Description Mean Min/Max 

Scheduled arrivals Scheduled arrivals in preceding 6-hrs of flight arrival 152.8 0.00/530.00 

On time gate arrivals % On time gate arrivals in preceding 6-hrs of flight arrival 80.06 0.00/100.00 

Taxi in delay Average taxi in delay (min) in preceding 6-hrs of flight arrival 3.12 0.00/38.99 

Block delay Average block delay (min) in preceding 6-hrs of flight arrival 3.49 0.00/67.61 

Gate arrival delay 
Average gate arrival delay (min) in preceding 6-hrs of flight 

arrival 
13.51 0.00/211.00 

Trip Level Attributes 

Distance Ln(Trip Distance+1) 6.48 4.22/7.91 

Weather Factors 

Origin Grid Level Weather Condition 

Wind Speed 
Max(90 percentile wind speed (mph) in origin grid during 

departure hour, 1 hour before, and 2 hours before departure) 
12.92 2.30/35.27 

Hourly Precipitation 
Max(90 percentile precipitation(mm) in origin grid during 

departure hour, 1 hour before, and 2 hours before departure) 
0.18 0.00/6.96 

Thunderstorm 

proportion 

Max(percentage of weather stations recording a thunderstorm 

event in origin grid during departure hour, 1 hour before, and 2 

hours before departure) 

1.55 0.00/59.79 

Visibility 
Min(10 percentile visibility (miles) in origin grid during 

departure hour, 1 hour before, and 2 hours before departure) 
7.09 0.22/10.00 

Destination Grid Level Weather Condition 

Wind Speed  13.08 1.38/37.45 

Precipitation  0.17 0.00/8.83 

Thunderstorm  1.55 0.00/56.67 

Visibility  7.41 0.25/10.00 

Categorical Variables 

Variable Description Freq. Percent 

Trip Level Attributes 

Operating Carrier 

Southwest Airlines   3602 26.88 

American Airlines   1719 12.83 

Delta Air Lines   1659 12.38 

United Air Lines   994 7.42 

SkyWest Airlines   919 6.86 

JetBlue Airways   714 5.33 

Other Airlines  Endeavor Air Inc., Alaska Airlines Inc., Spirit Air Lines, etc. 3793 28.31 

Spatial Factors 

Region (Origin Airport) 

South   5000 37.31 

Northeast   2400 17.91 

West   3800 28.36 

Midwest   2200 16.42 

Region (Destination Airport) 
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Categorical Variables 

Variable Description Freq. Percent 

South   5281 39.41 

Northeast   1953 14.57 

West   4005 29.89 

Midwest   2161 16.13 

Temporal Factors 

Time of the Day (Departure) 

Morning 6am – 10am (local time) 28.57 3829 

Midday 10am – 4pm (local time) 35.96 4818 

Evening 4pm – 8pm (local time) 24.11 3231 

Nighttime 8pm – 6am (local time) 11.36 1522 

Time of the Day (Arrival) 

Morning 6am – 10am (local time) 2474 18.46 

Midday 10am – 4pm (local time) 4748 35.43 

Evening 4pm – 8pm (local time) 3189 23.80 

Nighttime 8pm – 6am (local time) 2989 22.31 

Day of the Week (Departure) 

Saturday   1586 11.84 

Other Days   11814 88.16 

Day of the Week (Arrival) 

Saturday   1613 12.04 

Other Days   11787 87.96 

Season  

Spring March, April, May 3519 26.26 

Summer June, July, August 3367 25.13 

Fall September, October, November 3354 25.03 

Winter December, January, February 3160 23.58 

 

5.5 Analysis and Results 

5.5.1 Model Selection 

The empirical analysis involves the estimation of models by using six different copula structures: 

a) FGM, b) Frank, c) Gumbel, d) Clayton, e) Joe and f) Gaussian copulas. A series of models were 

estimated, and the best data fit is chosen based on Bayesian Information Criterion (see Figure 5.6). 

First, an independent copula model (separate GGOL models for flight departure delay and arrival 
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delay) is estimated to establish a benchmark for comparison. Second, we recognize that arrivals 

and departures delay models have similar coefficients for 3 origin and destination grid weather 

variables (wind speed, precipitation, and thunderstorms). Therefore, we estimate a restricted 

version of independent copula model where we restrict 3 origin and destination grid weather 

variables to be same across departure and arrival delays. The restricted model offered improved 

fit relative to unrestricted model in terms of BIC. Third, six different models considering six copula 

dependency structures across departure delay and arrival delay are estimated. Based on log-

likelihood (LL) and BIC measures, Joe copula dependency structure provides the best fit. 

Subsequently, the copula profile of selected Joe model has been parameterized (see Equation 8). 

Parameterized Joe copula model shows improved data fit in terms of the BIC measure. Further, 

the log-likelihood ratio test yields a statistics value of 20.64 which is substantially larger than the 

critical value (= 9.21) with 2 degrees of freedom at 99% confidence level. Therefore, Joe copula 

model with parameterization of the copula profile is selected as the final model11. 

  

 

11 We investigated random effects of the variables and we found 1 random parameter offered a statistically significant 

result. However, the model with the random parameter does not improve BIC value of the model compared to the BIC 

value of the model without the random parameter. Hence, we did not consider the model with random parameter as 

our final model. 
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* Joe-Param. = Joe copula model with parameterization  

 

Figure 5.6 Comparison of Alternative Models 

 

5.5.2 Estimation Results 

In this sub-section, we discuss estimation results from the joint copula model with Joe copula 

dependency (with parameterization).  

5.5.2.1 Airport Level Traffic Conditions 

Airport level traffic conditions at origin and destination airports are found to be significantly 

associated with flight departure and arrival delay, respectively. Among the variables considered in 

the analysis, number of scheduled departures and average gate departure delay at the origin airport 

during previous 6 hours of a flight affect departure delay while average gate arrival delay at the 

destination airport during previous 6 hours of flight arrival affects arrival delay. The estimation 

results show that increased number of scheduled departures and gate departure delay at origin 
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airport increase the likelihood of a flight to be delayed. Similarly, increased average gate arrival 

delay at the destination airport increases the likelihood of a flight to be delayed. This result is very 

intuitive in that adverse traffic condition at the origin and destination airports mostly trigger flight 

delay. 

5.5.2.2 Trip Level Attributes 

Among trip specific factors, trip distance and operating carrier have significant effect on flight 

delay. Interestingly, we find the influence of trip distance on the departure delay only. The results 

indicates that departure delay increases with increased trip distance in general. It is an interesting 

finding that only departure delay is influenced by trip distance. It is plausible that longer flights 

have more opportunity to compensate for any initial delay by adjusting their route, a mechanism 

called “direct routing” (HowStuffWorks, 2019). Given this flexibility, it is possible airports alter 

the departure times of flights with longer distance more often than other flights. In terms of 

operating carrier, we find Delta Air Lines to provide the best on time performance as indicated by 

the negative coefficient on both departure and arrival delay. Further, the parameter estimates also 

suggest reduced departure delay if the flight is operated by United Air Lines and SkyWest Airlines. 

In terms of arrival delay, flights operated by American Airlines, JetBlue Airways and other airlines 

are susceptible to longer delays as indicated by the positive coefficient in Table 5.3. 

5.5.2.3 Weather Factors 

The results corresponding to the weather level factors highlight the important role of weather in 

flight’s delay (both departure and arrival). In this current study, we consider three set of weather 

variables: origin level, along the route and destination level. Origin level weather factors are 

considered in departure delay component. On the other hand, route level and destination level 
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weather variables are considered in arrival delay component. As discussed earlier, effects of the 

corresponding origin level and destination level weather variables (same effect for wind speed on 

departure and arrival delay; similar too for hourly precipitation, and thunderstorm proportion) are 

restricted to be same on departure delay and arrival delay. All the weather level variables offer 

expected trends for both departure and arrival delay. For instance, if adverse weather condition 

exists at/near the origin/destination airports including higher precipitation, higher wind speed and 

higher frequency of thunderstorm, a flight will be more likely to experience increased departure 

and arrival delay which is intuitive. Further, our results also underscore the association of visibility 

with the arrival delay. As expected, decreased level of visibility near destination airport causes 

increased arrival delay. Under adverse weather conditions, flight operators are unlikely to operate 

under optimal conditions affecting flight speed and landing operations. It is important to note that 

effects of intermediate grid level weather variables are accommodated in the arrival delay model. 

For each weather indicator, we estimate a single effect across all intermediate grids. The results 

indicate that intermediate grid level hourly precipitation and thunderstorm proportion have 

significant positive impact on arrival delay indicating the higher likelihood of arrival delay with 

increased amount of precipitation and thunderstorm along the route (as expected).  

5.5.2.4 Spatial Factors 

The influence of spatial factors (such as location of origin and destination airports) represent 

factors specific to these airports that are usually unobserved to the analyst. For example, the airport 

crew hours and shifts are likely to be similar in a region and thus can positively or negatively affect 

delay. The exact details of these variables are not easy to obtain. Hence, it is accommodated 

through regional and/or temporal indicator variables. It is evident from estimation results that flight 
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delay is closely associated with location of origin and destination airports. Flights departing from 

airports located in Northeast region in the US experience less departure delay compared to flights 

from other regions in the US (when all other factors are the same). For arrival delay model 

component, we observe that flights destined to airports in the West region experience increased 

arrival delay compared to airports in other regions (when all other factors are the same).  

5.5.2.5 Temporal Factors 

Among the temporal factors considered in this study, time of the day, day of the week and season 

were significantly associated with flight delays. In general, departure delay is found to be less in 

the morning time period and higher in the evening time period compared to nighttime and midday 

even after controlling for scheduled arrivals and departures. On the other hand, arrival delay is 

found to be lower in morning and midday periods compared to other times of the day. From the 

parameter estimates, we found effects of day of the week and season consistent across departure 

and arrival delay. Results show that departure and arrival delays are lower on Saturday compared 

to other days in a week. It is also evident that both departure delay and arrival delay are more 

frequent in summer season and less frequent in fall season relative to delays in winter and spring 

seasons. 

5.5.2.6 Threshold Specific Effects 

The proposed delay model also accommodates for threshold specific effects on various predefined 

thresholds. The estimation results of these parameters are reported in the second-row panel of 

Table 3 and have no substantive interpretation.  
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5.5.2.7 Variance Components 

We estimate variance of delay model components as a function of exogenous variables. From the 

results, it is evident that the morning time period variable contributes to the variance profiles of 

both departure and arrival delay models. Specifically, morning time period delay is subject to a 

higher variance relative to delay in other time periods. Additionally, Northeast region variable 

affects variance component of the departure delay model. Significance of such factors indicates 

the presence of heteroscedasticity in the delay data. 

5.5.2.8 Dependence Effects   

As indicated earlier, the estimated Joe copula based GGOL model with parameterization provides 

the best fit incorporating the correlation between departure delay and arrival delay. The result of 

the dependency profile is presented in the last row panel of Table 5.3. The results clearly highlight 

the presence of common unobserved factors affecting departure delay and arrival delay. Joe 

dependency is found positive indicating upper tail dependency between departure and arrival 

delays. Such correlation indicates that unobserved factors modifying the likelihood of higher-level 

departure delay categories also modify the likelihood of higher-level arrival delay categories. 

Among the various variables considered, we found that season variable affects dependence 

structure. Specifically, the results indicate a stronger dependence between departure and arrival 

delay during Spring and Summer seasons. 
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Table 5.3 Parameter Estimates of Delay Model 

Variables 
Departure Delay Arrival Delay 

Estimates t statistics Estimates t statistics 

Propensity Component 

Constant -70.194 -15.603 -39.431 -18.244 

Airport Level Traffic Condition 

Origin airport's delay condition in previous 6-hr 

Scheduled departures 0.016 3.945 -- -- 

Average gate departure delay (min) 0.205 6.743 -- -- 

Destination airport's delay condition in previous 6-hr 

Average gate arrival delay (min) -- -- 0.391 13.950 

Trip Level Attributes 

Distance 5.477 9.104 -- -- 

Operating Carrier (base: Southwest Airlines) 

Delta Air Lines -11.636 -5.947 -6.282 -3.306 

American Airlines -- -- 7.046 5.940 

United Air Lines -9.071 -6.149 -- -- 

SkyWest Airlines -6.703 -4.186 -- -- 

JetBlue Airways -- -- 4.952 2.910 

Other Airlines -- -- 7.600 8.150 

Weather Factors 

Origin level weather condition 

Wind speed (mph) 0.332 5.345 -- -- 

Hourly precipitation (mm) 1.083 2.278 -- -- 

Thunderstorm proportion 0.198 3.842 -- -- 

Destination level weather condition 

Wind speed (mph) -- -- 0.332 5.345 

Hourly precipitation (mm) -- -- 1.083 2.278 

Thunderstorm proportion -- -- 0.198 3.842 

Visibility (miles) -- -- -0.468 -3.594 

Route level weather condition 

Hourly precipitation (mm) -- -- 1.842 4.953 

Thunderstorm proportion -- -- 0.258 6.756 

Spatial Factors 

Region (origin airport) (Base: other regions) 

Northeast -6.937 -3.173 -- -- 

Region (destination airport) (Base: other regions) 

West -- -- 2.377 2.976 

Temporal Factors 

Time of the day (Departure) (base: midday and nighttime) 
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Variables 
Departure Delay Arrival Delay 

Estimates t statistics Estimates t statistics 

Propensity Component 

Morning -21.277 -8.169 -- -- 

Evening 4.189 4.508 -- -- 

Time of the day (Arrival) (base: evening and nighttime) 

Morning -- -- -14.882 -5.786 

Midday -- -- -6.509 -7.017 

Day of the week (Departure) (base: other day of the week) 

Saturday -6.830 -3.726 -- -- 

Day of the week (Arrival) (base: other day of the week) 

Saturday -- -- -9.387 -5.394 

Season (base: Spring and winter) 

Summer 4.604 3.114 4.329 2.957 

Fall -8.899 -5.667 -8.701 -5.747 

Threshold Specific Effect 

Threshold 2 6.930 10.707 8.034 12.490 

Threshold 3 2.749 6.724 3.330 8.144 

Threshold 5 -3.664 -6.575 -2.724 -5.113 

Variance Component 

Constant 3.463 139.902 3.467 148.611 

Time of the day (Departure) (base: other time) 

Morning 0.152 3.691 -- -- 

Time of the day (Arrival) (base: other time) 

Morning -- -- 0.100 2.359 

Region of origin airport (Base: Other regions) 

Northeast 0.119 3.067 -- -- 

Dependence Effect 

Variables Estimates t statistics 

Constant 0.822 24.693 

Season (base: Fall and Winter) 

Spring 0.198 4.064 

Summer 0.177 3.661 
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5.6 Model Validation 

To test the predictive performance of the proposed model, we perform a validation exercise with 

the 6700-record holdout sample. For testing the predictive performance of the copula model and 

its independent counterpart, 25 data samples of 500 records each, are randomly generated from the 

hold out validation sample. The average log-likelihood and BIC score for the proposed copula 

model are -807.81 [(-824.98, -790.63)] and 1895.27 [(1860.92, 1929.62)], respectively. The 

average log-likelihood and BIC score for independent model (with restriction) of departure and 

arrival delays are -968.54 [(-987.24, -949.85)] and 2235.39 [(2198.01, 2272.77)], respectively.  

The validation results clearly highlight the superiority of the proposed copula model over 

independent models (see Figure 5.7). Finally, we compare predicted shares of delay categories 

with observed shares for the validation sample. The comparison results are presented in Figure 5.8 

and Figure 5.9. From these figures, we can clearly see that predicted shares of delay categories are 

very close to the observed shares. 

 

 

Figure 5.7 Comparison of Predictive Performance of Two Models 
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Figure 5.8 Comparison of Predicted and Observed Share of Departure Delay 

 

 

Figure 5.9 Comparison of Predicted and Observed Share of Arrival Delay 

 

5.7 Model Illustration 

Parameter estimates from Table 5.3 do not directly provide the magnitudes of the impacts of 

various independent variables. To illustrate the impact of independent variables, we compute the 

probability changes of both departure and arrival delay categories for bidirectional flights between 
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an OD pair. We estimate probability of flight delay based on five hypothetical scenarios. For these 

hypothetical scenarios, we consider different weather condition attributes at the origin grid, 

intermediate grid, and destination grid level. In generating the probability profile, we consider the 

following conditions: 

Scenario 1: Origin (Destination) precipitation = 0mm, Thunderstorm proportion = 0%, 

Wind speed = 10 mph, Intermediate grid thunderstorm proportion = 0% for all grids 

Scenario 2: Origin (Destination) precipitation = 10mm, Thunderstorm proportion = 0%, 

Wind speed = 10 mph, Intermediate grid thunderstorm proportion = 0% for all grids 

Scenario 3: Origin (Destination) precipitation = 10mm, Thunderstorm proportion = 25%, 

Wind speed = 10 mph, Intermediate grid thunderstorm proportion = 0% for all grids 

Scenario 4: Origin (Destination) precipitation = 10mm, Thunderstorm proportion = 25%, 

Wind speed = 30 mph, Intermediate grid thunderstorm proportion = 0% for all grids 

Scenario 5: Origin (Destination) precipitation = 10mm, Thunderstorm proportion = 25%, 

Wind speed = 30 mph, 3rd Intermediate grid thunderstorm proportion = 25% and 0% for others  

 

In these scenarios, the remaining variables are considered to be the same. For ease of 

presentation, we identify flight delay probability as a two-alternative prediction - delay under 15 

minutes or delay over 15 minutes. The probability values for delay over 15 minutes based on the 

above-mentioned scenarios are plotted in Figure 5.10. Departure and arrival delay probabilities are 

plotted for each airport considering bidirectional flights. For example, departure and arrival delay 

probabilities are plotted for John F. Kennedy International Airport (JFK) considering flights to and 

from Los Angeles International Airport (JFK-LAX and LAX-JFK). From the plots, we can clearly 

see that probability of delay increases with adverse weather conditions with a probability of arrival 
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delay increasing to about 30%. Among the impact of weather variables we consider, precipitation 

is found to have the highest influence on flight delay while thunderstorm proportion has the least 

influence. It is also evident that route level weather conditions affect arrival delay, not departure 

delay. It is important to note that these plots are illustrations for the chosen hypothetical scenarios 

and can be easily generated for different values of independent variables. 
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Figure 5.10 Departure and Arrival Delay Probability Based on Hypothetical Scenarios 
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5.8 Summary 

The main focus of the current study is to identify the key factors affecting airline delay by modeling 

departure and arrival delays at the flight level. This study makes several contributions to airline 

delay literature. The first contribution of the current study arises from data enhancements for the 

delay analysis. The main data source of the current study is the 2019 marketing carrier on time 

performance data compiled by BTS.  The variables processed from BTS dataset are augmented 

with a comprehensive set of independent variables sourced from secondary data sources including 

ASOS dataset and ASPM dataset. Using ASOS dataset, we prepare a comprehensive set of weather 

variables for the entire flight duration near the origin airport, along the flight route and the 

destination airport. Also, we process ASPM data to determine the traffic conditions at the origin 

and destination airports in the hours preceding the flight departure and arrival. The current research 

also contributes to airport departure and arrival delay analysis by developing a novel copula-based 

group generalized ordered logit (GGOL) model. The proposed model accommodates for the 

influence of common observed and unobserved effects on flight departure and arrival delays. In 

our analysis, we employ six different copula structures – the Gaussian copula, the Farlie-Gumbel-

Morgenstern (FGM) copula, and set of Archimedean copulas including Frank, Clayton, Joe and 

Gumbel copulas. 

We compare the predictive performance of independent models of departure and arrival 

delays and the proposed joint model with different dependency profiles. Based on the model fit 

measures, Joe copula model with parameterization provides the best result. The final model 

indicates that flight delay is significantly influenced by airport level traffic conditions, trip specific 

factors, weather factors, spatial factors, and temporal factors. We test the predictive performance 

of the proposed model by performing a validation exercise with a holdout sample. The results 



 

126 

 

illustrate the superiority of the proposed model system. Finally, to illustrate the potential 

applicability of our model system and illustrate the impact of independent variables, we generate 

the probabilities for arrival and departure delays under a host of hypothetical scenarios for one 

bidirectional origin-destination pair. The generated airport level delay probabilities provide a 

framework for airlines and airports across the nation, to evaluate departure and arrival delay 

possibilities for their flights based on current weather predictions. The delay analysis can offer 

potential strategies to improve boarding, deplaning and luggage handling of flights (identified in 

advance to have a delay) to improve on time departure and/or quick turnaround for the next flight.  

To be sure, the current study is not without limitations. In this study, we process weather 

variables at 5-degree latitude/longitude resolution. It would be interesting to examine if a finer 

resolution analysis can improve the accuracy of model by considering more localized weather data. 

The dataset available to us can also be improved with airline carrier specific route information to 

enhance the weather data collection process and contribute to an improved model. Moreover, a 

comparison of the developed model with machine learning approaches would be an interesting 

avenue for future research. 
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CHAPTER 6: CONCLUSIONS 

 

Understanding the factors affecting airline demand at US airports is important for long-term 

planning and operational decisions. Given the recent drop in airline demand due to the pandemic, 

it is also important to understand the potential path to demand recovery to design plans for 

increasing flight availability and hiring staff for airline and airport operations. Moreover, while 

earlier studies examined the factors of airline demand, spatial correlations between proximally 

located airports have not been adequately considered. In addition to the airline demand challenges 

due to COVID-19, flight delays at airports have become recurrent events in recent years causing 

significant economic loss to commercial aviation industry. Given the negative impacts of airline 

delays on the US economy, understanding the factors influencing airline on time performance is 

important that allows airlines to improve their on-time performance or mitigate the delays by 

increasing and reallocating their resources such as aircrafts, crews, and staff. Within this broad 

vision, the dissertation makes multiple contributions. First, we propose a novel modeling approach 

for modeling airline demand evolution over time. Second, we explore the impact of COVID-19 on 

domestic airline demand in the US and provide a blueprint of recovery path in the upcoming 

months. Third, we build on the airline demand modeling framework by accommodating for 

observed and unobserved spatial and temporal effects. Finally, we study the factors affecting 

airline departure and arrival delays employing high resolution data at the flight level. 

The first objective of this research is to identify the factors of quarterly air passenger 

arrivals and departures at the airport level and quantify their impact. Towards achieving this goal, 

the current study develops a joint panel group generalized ordered probit model system with 

observed thresholds for modeling air passenger arrivals and departures while accommodating for 
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the influence of observed and unobserved effects on airline demand across multiple time periods. 

The second objective of this research effort is to develop a framework that provides a blueprint for 

airline demand recovery at a high resolution as COVID-19 cases evolve over time. Towards 

achieving this broad objective, the current study develops a model for analyzing airport level 

passenger demand data characterized as monthly departures at the airport level. The third objective 

of this research is to analyze monthly air passenger departures at an aggregate level of airport 

considering for spatial and temporal interactions between the proximally located airports. To be 

specific, we develop two variants of spatial models, namely spatial lag model and spatial error 

model in our study. Finally, the fourth objective of this research is to model departure and arrival 

delays in a joint framework at the disaggregate resolution of flights. Towards achieving this goal, 

we develop a novel copula-based group generalized ordered logit (GGOL) model system of flight 

departure delay and arrival delay. 

Thus, the contributions of the current research are divided into four groups. Section 6.1 

through section 6.4 present methodological approaches and summary of the results for objective 1 

through objective 4, respectively. Section 6.5 summarizes the contributions of this dissertation. 

Finally, section 6.6 presents the scope for future research and limitations of the current study. 

 

6.1 Understanding the Factors Affecting Airport Level Airline Demand 

In the United States, commercial aviation sector is a significant contributor to the economy. Airline 

industry is closely intertwined with tourism, hospitality, and related auxiliary business (such as 

rental cars). An important metric to examine the health of the aviation sector is passenger demand 

– arrivals and departures - at airports. Understanding the factors affecting airline demand at US 

airports is important for long-term planning (such as airport runway and terminal design and 
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expansion, intermodal transportation facilities) and operational decisions (such as crew 

management for airport services). 

Thus, we develop a joint panel group generalized ordered probit model system with 

observed thresholds for modeling air passenger arrivals and departures. The current study 

contributes to the existing literature along multiple directions. The first contribution our study to 

the literature arises from spatial and temporal data enhancement of airline demand data from BTS. 

Also, in presence of airport level variables - arrivals and departures, we develop a bivariate 

framework that recognizes the influence of common unobserved factors. The second contribution 

of the research is on empirically examining the appropriate hierarchy of unobserved factors that 

affect airline demand. Finally, to address the inherent limitations of traditional linear models, we 

employ the generalized response framework for developing a non-linear framework that subsumes 

the linear regression model system. The proposed model is estimated using airline data compiled 

by Bureau of Transportation Statistics for 510 airports across the US. In model estimation, we 

consider a host of exogenous variables including demographic characteristics, built environment 

characteristics, spatial and temporal factors. 

The empirical analysis shows that the flexible structure of group generalized ordered probit 

model (GGOP) allows us to capture the non-linearity between air travel demand and its 

contributing factors resulting in better data fit compared to linear regression model. To arrive at a 

parsimonious specification, we estimated a restricted GGOP model without any significant loss of 

data fit. Finally, the joint panel model that accommodates for the presence of unobserved 

heterogeneity performs the best in terms of empirical context highlighting the importance of 

accommodating for the influence of common unobserved factors affecting the two dependent 

variables (and their repeated measures). Finally, to illustrate how the enhanced demand model 
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allows policy agencies to understand changes to airline demand with changes to independent 

variables a policy analysis is conducted. The results identify important predictors for airline 

demand. In particular, they highlight the role of tourism in the state, regional population, and 

median income.  

 

6.2 Examining the Impact of COVID-19 on Airline Demand  

Airline industry has experienced a significant shock in air passenger demand worldwide due to the 

recent outbreak of COVID-19. In the US, airline domestic passenger demand dropped by 476.4 

million in 2020 compared to the previous year. Airline demand in the recent months has started to 

recover from April 2020 lows as precautions at airports, access to testing, mask mandates and 

finally the emergency use authorization of vaccines have encouraged some air travel. As the 

recovery begins airlines and airports would need to address supply side shortages with growing 

demand. Thus, understanding the potential path to recovery will allow airlines, airport 

management agencies to design plans for increasing flight availability and hiring staff for airline 

and airport operations.  

In this context, the primary focus of our proposed research effort is to develop a framework 

that provides a blueprint for airline demand recovery at a high resolution as COVID-19 cases 

evolve over time. In our study, we analyze airport level monthly air passenger departure data for 

24 months from January 2019 through December 2020 considering 380 airports across the country. 

In this study, we consider a host of independent variables including COVID-19 related factors, 

demographic characteristics and built environment characteristics at the county level, airport 

specific factors, spatial factors, temporal factors, and adjoining county attributes. COVID-19 

related factors include both local and global factors by considering global and local COVID-19 
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transmission, temporal indicators of pandemic start and progress, and interactions of airline 

demand predictors with global and local COVID-19 indicators.  

In this study, we employ a linear mixed model system that accommodates for the presence 

of repeated measures for modelling airline demand.  In the validation exercise, we examine the 

performance of the proposed model by comparing observed and predicted demand for all airports 

across the US. From the result, we found that the proposed model successfully captures the demand 

drops after the start of the pandemic and the slow continuing recovery after the initial months.  

Subsequently, we present a blueprint for airline demand by considering three hypothetical 

scenarios of COVID-19 transmission rates – expected, pessimistic and optimistic. The result from 

the expected scenario presents a path to slow recovery as COVID-19 cases reduce. The various 

scenarios clearly illustrate how the proposed model can be employed to generate airline demand 

estimates at the airport level, state, region, or country level.  

 

6.3 Accommodating Spatial Dependency in Airline Demand Modeling  

Given the importance of understanding airline demand, earlier studies examined airline demand at 

different spatial and temporal resolutions. However, earlier research efforts have neglected to 

adequately consider for spatial interactions between air passenger demands at multiple airports. 

To elaborate, there may be some unobserved factors associated with closely linked spatial units 

that may cause spatial correlations among the airports. Neglecting such spatial correlations in the 

demand modelling may result in some biased estimates. Thus, the current research analyzes 

monthly air passenger departures at an aggregate level of airport considering for the spatial and 

temporal interactions between proximally located airports.  
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 Towards this end, we develop a novel spatial group generalized ordered probit (SGGOP) 

model system of monthly air passenger departures at the airport level. Specifically, we estimate 

two variants of spatial models including spatial lag model and spatial error model. In presence of 

repeated demand measures for the airports, we also consider temporal variations of spatial 

correlation effects among proximally located airports by employing space and time-based weight 

matrix. The proposed model is estimated using monthly air passenger departures for five years for 

369 airports across the US. The proposed spatial model is implemented using composite marginal 

likelihood (CML) approach that offers a computationally feasible framework compared to sheer 

dimensionality challenge associated with the full likelihood approach for discrete outcome spatial 

models. 

In model development, we employed various functional forms for the weight matrix and 

model selection was based on data fit. Among the three model systems we estimated, spatial error 

GGOP model was found to be the best in terms of the BIC measure. Importantly, both spatial 

models are found to be superior to the independent GGOP model that does not consider any spatial 

dependency between the observations. From the estimation results, it is evident that air passenger 

departures at the airport level are influenced by different factors including MSA specific 

demographic characteristics, built environment characteristics, airport specific factors, spatial 

factors, and temporal factors. Moreover, spatial autoregressive parameter is found to be significant 

supporting our hypothesis of the presence of common unobserved factors associated with the 

spatial unit of analysis. In this study, we also perform a validation analysis to examine the 

predictive performance of the proposed spatial lag GGOP and spatial error GGOP models 

compared to independent GGOP model. The result of validation exercise indicates the superiority 
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of both spatial models relative to the independent model. Among the two spatial models, spatial 

error GGOP model offered improved data fit. 

 

6.4 A Flight Level Analysis of Departure Delay and Arrival Delay  

In addition to the airline demand challenges due to COVID-19, flight delays at airports have 

become recurrent events in recent years causing huge economic loss to commercial aviation 

industry. Airline delays cause both direct and indirect costs to several components of the industry. 

Given the negative impacts of airline delays on the US economy, understanding the factors 

influencing airline on time performance will allow airlines to improve their on-time performance 

or mitigate the delays by increasing and reallocating their resources such as aircrafts, crews, and 

staff.  

Therefore, we develop a novel copula-based group generalized ordered logit (GGOL) 

model system of flight departure delay and arrival delay. This study makes several contributions 

to airline delay literature. The first contribution of the current study arises from data enhancements 

for the delay analysis. The main data source of the current study is the 2019 marketing carrier on 

time performance data compiled by BTS.  The variables processed from BTS dataset are 

augmented with a comprehensive set of independent variables sourced from secondary data 

sources including ASOS dataset and ASPM dataset. Using ASOS dataset, we prepare a 

comprehensive set of weather variables for the entire flight duration near the origin airport, along 

the flight route and the destination airport. Also, we process ASPM data to determine the traffic 

conditions at the origin and destination airports in the hours preceding the flight departure and 

arrival. The current research also contributes to airport departure and arrival delay analysis by 

developing a novel copula-based group generalized ordered logit (GGOL) model. The proposed 
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model accommodates for the influence of common observed and unobserved effects on flight 

departure and arrival delays. In our analysis, we employ six different copula structures – the 

Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and set of Archimedean copulas 

including Frank, Clayton, Joe, and Gumbel copulas. 

In model selection, we compare the predictive performance of independent models of 

departure and arrival delays and the proposed joint model with different dependency profiles. 

Based on the model fit measures, Joe copula model with parameterization provides the best result. 

The final model indicates that flight delay is significantly influenced by airport level traffic 

conditions, trip specific factors, weather factors, spatial factors, and temporal factors. We test the 

predictive performance of the proposed model by performing a validation exercise with a holdout 

sample. The results illustrate the superiority of the proposed model system. Finally, to illustrate 

the potential applicability of our model system and illustrate the impact of independent variables, 

we generate the probabilities for arrival and departure delays under a host of hypothetical scenarios 

for one bidirectional origin-destination pair. The generated airport level delay probabilities provide 

a framework for airlines and airports across the nation, to evaluate departure and arrival delay 

possibilities for their flights based on current weather predictions. The delay analysis can offer 

potential strategies to improve boarding, deplaning and luggage handling of flights (identified in 

advance to have a delay) to improve on time departure and/or quick turnaround for the next flight.  

 

6.5 Contributions of the Dissertation 

The current dissertation makes substantial contributions towards addressing methodological gaps 

and enhancing data for airline demand and flight delay analysis. The key contributions of the 

current research include: 1) conducting spatial and temporal data enhancement of airline demand 
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data, 2) examining the appropriate hierarchy of unobserved factors that affect airline demand, 3) 

employing the generalized response framework for developing a non-linear framework of airline 

demand, 4) developing a framework that provides a blueprint for airline demand recovery at a high 

resolution, 5) developing a novel spatial GGOP model system of airline demand considering for 

the spatial dependencies between the airports, 6) conducting data enhancements for the flight delay 

analysis, and 7) accommodating for the influence of common observed and unobserved effects on 

flight departure and arrival delays. In addition to the aforementioned contributions, the current 

research makes several contributions to aviation literature by undertaking multiple policy analyses. 

Such studies may act as decision-making tools for the airport officials, planners, and airlines for 

both short-term and long-term design and operational planning.   

 

6.6 Limitations and Future Research 

To be sure, this dissertation is not without limitations. Limitations and future research scopes are 

discussed below by four research objectives. 

6.6.1 Understanding the Factors Affecting Airport Level Airline Demand  

Towards modeling airline demand, augmenting the airline demand data in our research with local 

economic indicators and airport specific attributes might be an avenue for future research.   

6.6.2 Examining the Impact of COVID-19 on Airline Demand  

In our analysis, data was generated at the airport county level. Thus, when the same county has 

multiple airports, the model includes substantially similar information for these airports (except 

OEP 35 indicator and number of airports in a 50-mile buffer). While only 22 of the 354 counties 

in our data had multiple airports, it might be interesting to explore how aggregation of the demand 
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for these airports affects the findings. Moreover, the airline demand data is available only till 

December 2020 which restricted us from employing linear and non-linear functions of continuous 

temporal variables. Given the data availability for the next few months, continuous temporal 

variables could be considered to enhance the current model. Further, COVID-19 pandemic is an 

evolving situation, and it is appropriate to consider updating the models with newer airline demand 

(as they become available), local vaccination data and local COVID-19 cases. Finally, the airport 

level analysis conducted in the paper can be augmented by examining airport level 

actions/strategies (such as changes to fare, priority for freight movement) in response to COVID-

19 pandemic. The research might have to be conducted for a subset of airports where such data is 

available. 

6.6.3 Accommodating Spatial Dependency in Airline Demand Modeling  

It would be useful to accommodate for other socio-economic factors in the proposed model such 

as MSA specific GDP and business-related indicators. We employ state level tourism ranking to 

capture the effect of tourism on airline demand. MSA specific tourism measures (For example: 

number of hotel beds), if available, may further enhance the demand model. 

6.6.4 A Flight Level Analysis of Departure Delay and Arrival Delay  

In this study, we process weather variables at 5-degree latitude/longitude resolution. It would be 

interesting to examine if a finer resolution analysis can improve the accuracy of model by 

considering more localized weather data. The dataset available to us can also be improved with 

airline carrier specific route information to enhance the weather data collection process and 

contribute to an improved model. Moreover, a comparison of the developed model with machine 

learning approaches would be an interesting avenue for future research. 
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