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ABSTRACT 

Vulnerable road user (VRU) detection and tracking has been a key challenge in transportation 

research. Different types of sensors such as the camera, LiDAR, and inertial measurement units 

(IMUs) have been used for this purpose. For detection and tracking with the camera, it is 

necessary to perform calibration to obtain correct GPS trajectories. This method is often tedious 

and necessitates accurate ground truth data. Moreover, if the camera performs any pan-tilt-zoom 

function, it is usually necessary to recalibrate the camera. In this thesis, we propose camera 

calibration using an auxiliary sensor: ultra-wideband (UWB). UWBs are capable of tracking a 

road user with ten centimeter-level accuracy. Once a VRU with a UWB traverses in the camera 

view, the UWB GPS data is fused with the camera to perform real-time calibration. As the 

experimental results in this thesis have shown, the camera is able to output better trajectories 

after calibration. It is expected that the use of UWB is needed only once to fuse the data and 

determine the correct trajectories at the same intersection and location of the camera. All other 

trajectories collected by the camera can be corrected using the same adjustment. In addition, data 

analysis was conducted to evaluate the performance of the UWB sensors. This study also 

predicted pedestrian trajectories using data fused by the UWB and smartphone sensors. UWB 

GPS coordinates are very accurate although it lacks the other sensor parameters such as 

accelerometer, gyroscope, etc. The smartphone data have been used in this scenario to augment 

the UWB data. The two datasets were merged on the basis of closest timestamp. The resulting 

dataset has precise latitude and longitude from UWB as well as the accelerometer, gyroscope and 

speed data from smartphone making the fused dataset accurate and rich in terms of parameters. 
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The fused dataset was then used to predict GPS coordinates of pedestrian and scooter using 

LSTM. 
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CHAPTER ONE: INTRODUCTION 

Vulnerable road user (VRU) detection plays a crucial role in traffic safety. VRU crashes 

have been increasing at an alarming pace in recent years. Between 2009 and 2016, annual U.S. 

pedestrian fatalities increased by 46%, and bicyclist fatalities increased by 34% [1]. Previous 

studies show that vehicles are obvious and easily detected by the sensors and have various 

avenues to share their intent, such as braking lights and turning indicators [2]. However, the 

VRUs may change their direction of movement quickly, not follow the specific sidewalks and be 

too small to be captured by the sensors, especially cameras. In addition, it is still absent a 

commonly understood mode to show or observe the intent of pedestrians and cyclists[3]. 

Therefore, in order to ensure the safety of the VRU, it is necessary to more accurately discover 

and track the dynamic trajectory of the VRU and provide corresponding warnings to drivers. 

To achieve accurate and stable VRU detection, a large variety of sensors have been used, 

including radar, lidar, ultrasonic detectors, and cameras. Nevertheless, these sensors are not 

always reliable because of darkness, fog, rain, etc [4]. Versatility is the most distinctive merit of 

radar sensors because they can operate during the day and nighttime. Most studies, however, 

reported that radar is not effective in recognizing object details or distinguishing pedestrians 

from other objects such as rain, snow, and trash bins, leading to many inevitable false detections 

[5]. Lidar systems are sensitive to precipitation and fog, as well as blinded by direct sunlight [6]. 

Ultrasonic detectors do not have the potential to be used for VRU detection. It was found that 

ultrasonic detectors have an effective detection range of six meters or less and are typically 
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utilized in parking assistance systems [4]. Cameras can also be used to detect and track VRU 

based on various computer vision algorithms. 

There are still several challenges to using cameras to detect VRU. First, in previous 

studies, it was found that cameras are susceptible to environmental conditions, and sometimes 

lenses may be distorted and blurred [7]. Second, many studies generate new descriptive features 

or use complicated data preprocessing techniques to calibrate cameras. However, these processes 

increase the computational complexity and make them hard to apply in real-time [8]. Third, 

sensor fusion may improve the camera's performance, but some sensors have high battery 

consumption and computation costs [9].  

For detection and tracking with the camera, it is necessary to perform calibration to 

obtain correct GPS trajectories. This method is often time-consuming and necessitates accurate 

ground truth data. In addition, if the camera performs any pan-tilt-zoom function, it is usually 

necessary to recalibrate the camera. In this thesis, we propose camera calibration using an 

auxiliary sensor: ultrawideband (UWB). Previous studies also showed that UWB allocates a 

unique ID tag and the detection range is up to 200 meters [10]. In addition, this sensor has been 

built into both the Android and iOS systems, which has led to a high market penetration rate 

[11]. However, UWB is an active detection sensor, which means that each user needs a sensor, 

and object classification cannot be achieved [10]. Therefore, cameras are able to be calibrated by 

the UWB sensor due to the UWB's cm-level accuracy and real-time data acquisition. 

Furthermore, two types of sensors were evaluated in this study, including Ultra-

Wideband Band (UWB) and camera. A corridor within the University of Central Florida (UCF) 

campus was selected for field tests and demo purposes. Extensive field tests were conducted at 
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the selected location in order to evaluate the sensor performance. The various outputs were 

provided by the different sensors: UWB and camera sensors were used to provide localization 

information of road users, such as vehicles, pedestrians, E-scooters. Besides, pedestrian 

trajectories were predicted by fusing UWB and smartphone data. The author adopted LSTM 

algorithm to predict pedestrian trajectories. 

The rest of the thesis is organized as follows: The existing studies are reviewed in 

Chapter two. In Chapter three, the related methodologies are presented. Chapter four provides 

findings and the experimental results. The conclusions and future research are introduced in 

Chapter five. 
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CHAPTER TWO: LITERATURE REVIEW 

Current studies about VRU detection used in this thesis can be divided into two groups 

based on the devices, which are cameras and UWB sensors. Besides, the following section also 

discusses the details regarding the notable work of sensor fusion methods. 

2.1 Sensing Technologies 

2.1.1 Camera 

Cameras are widely adopted sensors for object detection and tracking. They are 

promising sensors, which can provide rich information such as position and orientation. It was 

found that cameras have several features, including low cost, low weight, limited power 

consumption, and reasonable size [12]. In most cases, cameras at a signalized intersection are 

used to detect and locate pedestrians. Their superiority is to identify road users (e.g., vehicles, 

motorbikes, and pedestrians) by computer vision and pattern recognition techniques [13]. 

Camera-based methods could achieve high accuracy. Nevertheless, several defects in cameras 

are inevitable. For instance, cameras are typically assumed to be stationary in their original 

position unless operators control the camera. Information is extracted by this assumption using 

computer vision algorithms, otherwise, information may be lost [14]. Furthermore, when a 

vehicle makes a turn, cameras lose the observation position as well as the detection region [15]. 

Then, the performance of visual tracking can be easily influenced by lighting, weather, and 

pavement conditions, and it may suffer from distortion in fast motion and odometry drifts [16]. 

The amount or visual detail of road users is limited due to the low resolution of cameras, 



 

5 

 

depending on environmental conditions. In particular, compared to daytime, special camera 

systems are needed at night and the detection rate is inevitably reduced [17]. All these limitations 

make the camera-based methods less flexible and convenient. 

Traffic cameras are used to monitor target objects such as vehicles, drivers, pedestrians, 

and landmarks on roads. It could clearly capture the feature information (e.g., license plate, 

color, shape, contour, etc.) of target objects in real time. The cameras could be installed outside 

and adapt to the brightness, weather and monitoring range changes, high or low temperature and 

dust, as well as continuous work for 24 hours. The main applications are summarized as follows:  

2.1.1.1 Road Monitoring 

The camera sends real-time images back to the center for storage via the internet for 

playback or real-time display. Managers can grasp the traffic conditions of intersections in real 

time, such as traffic flow, signal light status, vehicle violations, and crashes. Edge computing is 

an emerging technology that enables users to exploit mobile devices or Internet-of-Things (IoT) 

in close proximity. Recently, video analytics edge computing exploiting IoT cameras has gained 

significant attention. However, since video and image transmissions are both time consuming 

and bandwidth-hungry, running such tasks on remote servers is still very challenging. The video 

data generated by cameras could be processed through edge computing in order to reduce the 

transmission delay between vehicles and infrastructures, and several additional services can be 

achieved. For example, surveillance cameras using edge computing technologies are available 

for intrusion detection and crowd monitoring, as well as wearable cameras for lifelogging and 

healthcare monitoring [18]. 



 

6 

 

2.1.1.2 Information Collection 

Traffic violations such as speeding and red-light running could be captured, identified, 

and stored to provide violation evidence and road traffic analysis. Furthermore, cameras could be 

used to monitor road traffic conditions and estimate traffic parameters such as volume, speed, 

etc. 

2.1.1.3 Image Processing 

The camera could analyze the collected images in real time and recognize information 

such as license plate information. It could analyze the image stream to judge the entry and exit of 

the vehicle according to the change of the background gray value, calculate the trace of the 

vehicle and track license plates and measure accurate speed. 

Different types of cameras could be utilized for different situations and objectives. In 

recent years, many companies provide video analysis solutions by integrating cameras with AI 

chips. The following types of cameras are widely utilized for various traffic applications: 

1. Fisheye Camera 

A fisheye camera refers to a camera with a fisheye lens, with an angle of view close to or 

equal to 180-degree and a focal length of 16 mm or less. To maximize the photographic angle of 

view, the diameter of the front lens of this photographic lens is parabolic and protrudes toward 

the front of the lens, which is similar to the eyes of a fish called "fisheye lens." The fisheye lens 

is a special kind of ultra-wide-angle lens, and its view could reach or exceed the range that the 

human eye can see. Therefore, fisheye lenses are very different from the real scene in human 

eyes. The scenery we see in real life is a regular and fixed scenery, but the picture effect 

produced by fisheye lens is not this form. 
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In general, the shorter the focal length, the larger the viewing angle and the stronger the 

deformation due to optical principles. In order to achieve a 180-degree ultra-large viewing angle, 

the designer of the fisheye lens has to allow the deformation (barrel distortion). Thus, the further 

the object is from the center of the camera view, the stronger the barrel distortion. 

For autonomous vehicles, implementing robust visual localization using only cameras 

and vehicle sensors is a challenge. Muehlfellner et al. integrated four monocular, wide-angle, 

fisheye cameras on a vehicle and implemented a mapping and localization pipeline [19]. Visual 

features and odometry are combined to build and localize against a keyframe-based 3D map. 

Traditionally, the fisheye image is transformed to a flat image before subsequent 

processing, which is time-consuming. The high-resolution flat image with low quality at the edge 

will also slow down the post-processing. Zhu et al. described a method of fisheye object 

detection and localization on the unrestored fisheye image to shorten the processing time [20]. A 

single-stage neural network is built for object detection. To improve the detector performance, its 

submodules are designed specifically by combining the central rotational property and severe 

distortion of the fisheye image. After that, the detected objects are localized with the assistance 

of data fusion on the fisheye model and micro aerial vehicle (MAV) sensory data. 

Another drawback of fisheye cameras is that the pixels in the central region of a fisheye 

image have lower angular resolution compared to those of a pinhole image with the same image 

resolution. To maintain both accuracy and efficiency, Cui et al. presented a real-time dense 

mapping system for self-driving vehicles and a new strategy for fisheye depth map recovery 

using images with different resolutions [21]. Several filtering methods are adopted to filter noisy 

and unreliable depth estimates in texture-poor and low-resolution areas. Subsequently, they fused 
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the fisheye depth maps directly into a 3D map model. To increase the system’s scalability, they 

reduced both memory usage and run-time with local map pruning and only store map data in the 

vehicle’s vicinity. To fulfill the requirement of real-time mapping for self-driving vehicles, a fast 

object detection pipeline to handle potentially moving objects were adopted.  

2. Closed-Circuit Television (CCTV) 

Closed-circuit television (CCTV) cameras are widely deployed and are mainly used for 

surveillance. CCTVs provide long-distance monitoring and control. They can also provide a 

reliable way to collect road users’ positions in time and space. Zhang et al. attempted to extract 

the road user locations using CCTV, identify the pedestrian-involved potential collisions, and 

analyze the interaction behavior between pedestrians and vehicles [22]. The results show that the 

pedestrian–vehicle interaction behavior in many types of intersections can be analyzed via 

CCTV. Hashmi and Keskar suggested a statistical-based approach to determine the traffic 

parameters at heavily crowded urban intersections. In this study, CCTVs are used to estimate 

vehicle count at a high traffic density T-intersection [23]. The proposed approach could 

guarantee a high success rate for vehicle detection at heavily crowded urban Intersections. CCTV 

in traffic flow could monitor at a T intersection using a detection zone-based approach. Thus, 

CCTV can be implemented for traffic analysis at multi-directional, multi-lane traffic flow. 

One of the challenges of implementing applications using CCTV cameras is the ability of 

the end user to manually pan, tilt, and zoom into the camera view. The constant movement of the 

camera’s field of vision impedes algorithms that depend on placing virtual zones, lines, or loops 

for computation. 
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To summarize, fisheye cameras could cover a larger area that could be suitable for large 

intersections; CCTVs cameras are widely deployed and can be used for many traffic 

applications.  

2.1.2 Ultra-Wideband (UWB) 

With advances in communication technologies, UWB sensors have very promising 

technology for accurate positioning with pre-installed receivers. Previous studies described that 

UWB sensors could be used as a replacement for Global Navigation Satellite Systems (GNSS) 

[24]. UWB sensors possess the following technical characteristics: First, theoretically, UWB data 

transmission could reach a rate of 1 Gbit/s, thus achieving a rate of more than 100 Mbit/s in 

practice [25]. Meanwhile, UWB can provide the relative position and precise trajectory of VRUs, 

and its positioning accuracy can attain the centimeter level, which is a cheap alternative to a 

lidar-based [26]. This technology has been recognized as a feasible technology for wireless 

sensor networks (WSNs) applications due to its very good time-domain resolution, allowing for 

precise location, tracking, low complexity, and coexistence with low-power and low-cost on-chip 

implementation facilities [27]. Unfortunately, UWB sensors have some drawbacks, which are 

mainly applied to indoor terrestrial applications and need a sensor tag for each user [28]. 

UWB positioning technology is used to transmit data with low power spectral density and 

narrow pulse width. It has the characteristics of high temporal resolution and strong spatial 

penetration. In line of sight (LOS) environment, the ranging and positioning accuracy is better 

than the centimeter level. UWB was initially used for military-industrial purposes, and 

commercial specifications were released in 2002. Compared with the traditional communication 

system, the UWB positioning technology has the following technical characteristics [11]: 
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(1) High-speed data transmission: theoretically, UWB can reach the rate of 1 Gbit/s, so it 

is possible to achieve the rate of more than 100 Mbit/s in practice. 

(2) Simple implementation of the system structure: UWB positioning systems can be 

roughly divided into location-aware layers, network transmission layers, service 

layers, and positioning application layers. 

(3) Low power consumption: UWB transmits data signals by sending nanosecond pulses, 

which only consume a small amount of energy when transmitting narrow pulses. In 

short-range applications, the transmission power of UWB is usually less than 1MW 

(which is also the technical requirement of the Federal Communications Commission 

(FCC) for UWB in order to avoid interference to other devices). 

(4) Low interception rate and detection rate: the transmission power spectral density of 

the UWB system is very low, the useful information is completely submerged in the 

noise, the probability of being intercepted is very small, and the probability of being 

detected is also very low. 

(5) Strong anti-jamming ability: UWB communication adopts time modulation 

sequences, which can resist multipath fading. Multipath fading refers to the random 

change of signal amplitude at the receiving point caused by the superposition of 

reflected wave and direct wave, while each pulse transmission time of UWB systems 

is very short, and the transmission and reception of direct wave have been completed 

before the arrival of the reflected wave. 

(6) High precision positioning: UWB has very high positioning accuracy using UWB 

radio communication, it is easy to integrate positioning and communication. 
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Moreover, UWB radio has strong penetration ability and can carry out high-precision 

positioning indoor and underground. UWB technology can give the relative position, 

and its positioning accuracy can reach the centimeter level. 

UWB location technology can be based on or not based on range. In contrast, the location 

technology without distance measurement has poor accuracy and needs many anchor points 

(nodes with known location). Indoor localization requires high accuracy and few anchor points, 

so location algorithms based on distance are generally used, including time of arrival (TOA), 

time difference of arrival (TDOA), received signal strength (RSS) and angle of arrival (AOA). 

AOA locates by acquiring the signal arrival angles from the measured point to two receivers, 

which needs to configure a complex antenna system, and the influence of angle error on the 

positioning accuracy is far greater than the ranging error. According to the signal propagation 

model, RSS uses the relationship between the received signal strength and the signal propagation 

distance to locate the target. The location coverage distance of this method is relatively short, 

and it is highly dependent on the channel transmission model. The change of multipath and 

environmental conditions will seriously deteriorate its accuracy. Meanwhile, the accuracy of 

range estimation has no relationship with the signal bandwidth, which is the advantage of UWB. 

Therefore, RSS and AOA methods are generally not used for UWB positioning alone but can 

only be used as auxiliary means for primary coarse positioning. The accurate positioning of 

UWB positioning technology mainly depends on precision ranging. 

In the process of TOA implementation, the distance information between the UWB 

location tag and each base station needs to be measured, so the location tag needs to 

communicate with each base station back and forth, so the power consumption of the location tag 
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is high. The advantage of this location method is that it can maintain high location accuracy both 

inside and outside the location area (inside and outside the area surrounded by the base station). 

For industry, the UWB positioning technology started from the pulse communication 

technology that emerged in the 1960s. In 2002, the United States first approved the technology 

used for civilian communications. In 2015, this technology began to show up in the Microsoft 

Indoor Positioning Competition (Microsoft, 2015). In 2016, the UWB positioning technology 

occupied half of the 3D group of the Microsoft Indoor Positioning Competition (Microsoft, 

2016). Commercial applications. Compared with consumer-level (To C) applications, enterprise-

level (To B) pays more attention to technical performance and is less price-sensitive. Compared 

with other positioning technologies, UWB positioning technology has high precision and 

security. It also has indicators such as low latency, high transmission rate, and high stability, 

which lead UWB to be applied in the enterprise market, mainly including judicial prisons, 

hospitals, mines, chemical plants, factories and warehouses, and other application scenarios that 

require material or personnel management.  

In order to quickly promote the development of this industry, NXP, Samsung, Sony, 

Bosch, ASSA ABLOY, HID Global formed the FiRa Alliance in 2019, aiming to use UWB 

technology promotes a seamless user experience (Wikipedia, 2019). Sony, LitePoint, and the 

Telecommunications Technology Association (TTA) have also joined the FiRa organization. The 

alliance is also actively promoting the development and definition of technology in cooperation 

with other industry participants such as automobiles. 

1. Apple U1 chip: The Apple U1 chip uses UWB technology (2019) to make the phone 11 

series more spatially aware and can accurately locate other Apple devices equipped with 
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U1. Unlike traditional narrow-wave signals, UWB uses a wide spectrum range and is not 

easily interfered with, so it can provide more precise positioning capabilities than Wi-Fi 

and Bluetooth. The U1 chip uses UWB technology to achieve spatial perception, 

allowing the iPhone 11pro to accurately locate Apple devices that are also equipped with 

the U1 chip. 

2. Samsung: As early as 2003, Samsung teamed up with chip manufacturer Staccato to 

deploy UWB technology. In 2006, Samsung exhibited at CeBIT. On display, a prototype 

mobile phone SGH-i750 based on UWB technology and d-hoc transmission mode was 

exhibited for data transmission. According to complete statistics, since 2003, Samsung 

has applied for more than a dozen patents in the United States. Especially since 2013, the 

number of UWB patents is more intensive than earlier in Samsung. 

2.2 Sensor Fusion Algorithms 

As more and more sensors are being used for urban streets and traffic safety, it is 

becoming increasingly important to understand multiple sensors collectively. Sensor fusion is, 

therefore, an interesting area of research and has been studied extensively for different 

applications such as intelligent intersections, and the navigation system of autonomous vehicles. 

Smart corridors can make the intersection more stable and efficient by adding sensor-based 

technologies and by broadcasting secure communications in near-real-time. Some recent studies 

rectify three key components for an intelligent corridor, such as the complete sensor set for an 

intersection, the powerful sensor fusion algorithms that generate the environment model, and the 

dedicated short-range communication units, both at the intersection and in the vehicle [29]. The 
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sensors such as camera, LiDAR, SONAR, etc. collect data from the surrounding environment. 

The main goal of such systems is safety and reliability, but both elements are controlled by the 

information received from various sensors. It is very difficult to maintain safety and reliability 

based on information from a single sensor because it might report faulty or incomplete sensor 

data. Therefore, it is important to extract information from different sources to make a more 

accurate and complete estimation. Sensor fusion is a technique that integrates the information 

collected from multiple sensors. It is an integral part of the design of a connected system, which 

is composed of numerous components according to Fei Liu et al. [30]: algorithms, including 

sensing, vision, and decision-making; customer systems, including the operating system and the 

hardware infrastructure; and the cloud platform, including high-definition maps, training of deep 

learning models, emulation, and data storage as shown in Figure 1. 

 

Figure 1 The architecture of autonomous vehicle [30] 

Perception and trajectory extraction of individual traffic participants is complex, 

especially for challenging scenarios with multiple road users or under bad weather conditions. In 

recent years, sensor fusion methods have been published with the aim of better object detection. 
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A lidar-radar sensor fusion method for object detection mechanism in transportation during 

daytime and night is described [31]. Especially, sensor fusion methods could calibrate cameras 

by fusing radar or LiDAR. For instance, a scheme that applies 3D point clouds returning from 

the lidar depth sensor to further examination of the object's shape, which the camera detects, is 

proposed to reduce the false-positive rate and the object occlusion problem [32]. Ishikawa et al. 

explored the possibility of an automatic targetless calibration method between a fixed camera 

and LiDAR, based on hand-eye calibration and using sensor-fusion odometry [33]. In another 

study, Han, X., et al. developed a real-time pedestrian detection system using LiDAR and vision 

in-vehicle. The regions of interest are gained by clustering lidar point clouds and projecting them 

onto the images. After that, these regions replace image areas that have no lidar points projected 

onto them [34]. Similarly, pedestrians are extracted from high-definition LIDAR and a single 

camera in parallel by SVM-based classifiers for the purpose of realizing efficient and accurate 

pedestrian recognition [35]. Besides, a fusion of stereo camera and radar targets to significantly 

improve the tracking of pedestrians indoors is presented, especially suited for surveillance and 

security applications [36]. Whereas the previous studies did not fuse the UWB sensor and the 

camera to improve the accuracy of real-time VRU detection and tracking. 

Sensor technology can be divided into two types, namely proprioceptive sensors and 

exteroceptive sensors. The proprioceptive sensors measure values that are intrinsic to the device. 

Examples in this group include accelerometers, global positioning systems (GPS), inertial 

measurement units (IMUs), optical flow sensors, gyroscopes, encoders, and gyro-meters. 

Exteroceptive sensors receive data from the vehicle's surrounding environment. The common 
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types of exteroceptive sensors are cameras, sonars, Infrared, Radar, LiDAR, Radiofrequency 

(RF) systems.  

Sensors can also be categorized as passive sensors and active sensors [37]. RGB cameras, 

thermal cameras, and GPS are the passive sensor which generates the output from sensing the 

surrounding energy. On the other hand, the active sensors, such as Radar and LiDAR produce 

output from the reflection of the light energy.  In order to track or control unique groups of 

identified traffic sources, Gentili and Mirchandani have introduced a new series of network 

location concerns that decide where to find active sensors[38]. The authors investigated the 

performance of multi-sensor fusion, including LiDAR, camera, ultrasonic, radar, global 

positioning system (GPS), inertial measurement unit [39], and V2X communication [40]. 

Fayyad et al. classified the sensors fusion algorithm into classical algorithms and deep-

learning-based algorithms[41]. The traditional sensor fusion approaches include probabilistic 

methods, statistical methods, evidential reasoning methods, interval analysis methods, and 

knowledge-based methods such as fuzzy logic and possibility. Figure 2-2 shows the classical 

approaches of sensor fusion. Sasiadek classified the sensor fusion algorithm into three different 

categories such as probabilistic techniques, least-squares methods, and intelligent fusion[42]. 

The probabilistic algorithms are recursive operators, robust statistics, evidence theory, and 

Bayesian reasoning. Kalman filtering, regularization, uncertainty ellipsoids and optimal theory 

are the least-squares approaches. Fuzzy logic, neural networks and genetic algorithms are the 

intelligent fusion techniques. The combination of the probabilistic and holistic prediction 

algorithm is used to accurately predict the states of the ego-vehicle and to improve the perception 

and risk evaluation module performance in an integrated vehicle safety system [43]. 
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Simultaneous Localization and Mapping (SLAM) is a method to combine a set of sensors to 

make a map. The tracking system of SLAM depends on vision-based sensors, other sensors such 

as GPS, LiDAR, and sonar [44]. Eckelmann et al. present the possibilities of achieving correct 

localization and object identification, based on the LiDAR method and the Differential Global 

Positioning System (DGPS) methodology[45]. The authors proposed a navigation system by 

combining four sensors (i.e., GNSS, IMU, ODO, LiDAR-SLAM). It can effectively fuse 

information from various sources to maintain the SLAM process and reduce overall navigation 

error, particularly in harsh areas where the GNSS signal is severely degraded and LiDAR-SLAM 

has inadequate environmental characteristics [46]. 

 

Figure 2 Classical approaches for sensor fusion algorithms [41] 
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Another strategy is to reduce unintended noise or information by averaging multiple 

sensor data. The weighted least squares approach has introduced two distributed measurements 

fusion Kalman filtering algorithms in terms of the weighted average measurements and the 

average inverse-covariance matrices in sensor networks [47]. In omnipresent localization, an 

algorithm is proposed based on robust adaptive Kalman filtering to approximate precise headings 

in order to improve the location tracking performance of the pedestrian dead reckoning system in 

complex environments [48]. Olfati-Saber and Shamma presented a consensus filter, which plays 

an important role in solving a data fusion problem [49]. To find an exact location for an 

autonomous robot, Das et al. developed an intelligence localization model for robots by 

combining various types of location sensors using a Kalman Filter and an Extended Kalman 

Filter[50]. In order to predict the reliability factor for each sensor, the authors have followed a 

fuzzy model. Pires, Ivan Miguel, et al. provided a survey report on different algorithms of sensor 

fusion [51]. Table 1 shows the summary of sensor fusion techniques. 
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Table 1 Summary of sensor data fusion methods [51] 

Sensors Methods Achievements 

Accelerometer, Gyroscope, 

Magnetometer, Compass, 

GPS receiver, Bluetooth, 

Wi-Fi, digital camera, 

microphone, RFID readers, 

IR camera. 

Dead-reckoning pedestrian tracking system, Autoregressive-Correlated 

Gaussian Model, CASanDRA mobile OSGi (Open Services Gateway 

Initiative) framework, Genetic Algorithms, Fuzzy Logic, Dempster-Shafer, 

Evidence Theory, Recursive Operators, dynamic time warping framework, 

CHRONIOUS system, SVM, Random Forests, ANN, Decision Trees, Naive 

Bayes, Decision Tables, Bayesian analysis. 

The use of multiple sensors eliminates noise effects; 

these approaches also test the precision of the data 

fusion of the sensor; data fusion can be conducted for 

mobile devices, analyzing the data and presenting the 

results in a readable format. 

Accelerometer; 

Gyroscope; Magnetometer; 

Compass, GPS receiver, 

Bluetooth, WiFi, digital 

camera, microphone, low-

cost wireless EEG sensors, 

RFID readers, IR camera 

Kalman Filtering, Collaborative-Signal Processing in Node Environment 

(C-SPINE) framework, Drift and Noise Removal Filter (DNRF) method, 

sensor weighted network classifier (SWNC) model; GATING technique; 

Cooperative Framework for Building Sensing Maps in Mobile Opportunistic 

Networks (COUPON) framework; Complete ambient assisting living 

experiment (CAALYX) system; high energy-efficient very large-scale 

integration (VLSI) architecture; sensor-fusion-based wireless walking-in-

place (WIP) interaction technique; J3 criterion; DFF method; epidemic 

routing with fusion (ERF) method; binary spray-and-wait with fusion 

(BSWF) method; inContexto system; root-mean-square (RMS) frame 

These approaches facilitate complicated analysis of the 

volume of data collected when it is centrally stored 

through a server-side system; using data from a variety 

of sources decreases the level of uncertainty of output; 

conducting a data fusion operation in real time may be 

difficult due to the vast amount of data that will need to 

be merged; data merging with mobile applications, 

accessing, etc. 
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Sensors Methods Achievements 

energy, mel-frequency cepstral coefficients (MFCC), pitch frequency, 

harmonic-to-noise ratio (HNR) and zero-crossing-rate (ZCR), KNN, Least 

squares-based estimation methods, Optimal Theory, Regularization, 

Uncertainty Ellipsoids. 

Gyroscope, Compass, 

Magnetometer, GPS 

receiver. 

Kalman Filtering, Bayesian analysis. It is one of the most useful for the context-aware 

localization systems; multiple recognizer algorithms 

have been described to perform online temporal fusion 

on either the raw data or the features. 

ECG and others Kalman Filtering. The uncertainty level of the performance is decreased 

by using data from multiple sources; several recognizer 

algorithms are specified to perform online temporal 

fusion on either the raw data or the features. 
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Sensor technology can be divided into two types, namely proprioceptive sensors and 

exteroceptive sensors. The proprioceptive sensors measure values that are intrinsic to the device. 

Examples in this group include accelerometers, global positioning systems (GPS), inertial 

measurement units (IMUs), optical flow sensors, gyroscopes, encoders, and gyro-meters. 

Exteroceptive sensors receive data from the vehicle's surrounding environment. The common 

types of exteroceptive sensors are cameras, sonars, Infrared, Radar, LiDAR, Radio Frequency 

(RF) systems.  

The deep learning approaches that have been used for sensor fusion are convolutional 

neural networks (CNN), recurrent neural networks (RNN), deep belief networks (DBN), and 

autoencoders (AE). The most popular techniques used in autonomous vehicles are CNN and 

RNN. Figure 3 Common deep learning sensor fusion algorithms [41]represents the different 

algorithms of deep learning sensor fusion, for instance, Region-Based CNN (R-CNN), Spatial 

Pyramid Pooling network (SPP-Net), You only look once (YOLO), Single-Shot Multibox 

Detector (SSD), Deconvolutional Single-Shot Multibox Detector (DSSD), Long-Short Term 

Memory (LSTM), and Gated Recurrent Unit [41]. Liu et al. introduced faster R-CNN for 

multispectral pedestrian detection, where color or thermal images are fused to provide the 

additional information needed for brightness and darkness detection[30]. It would increase the 

detection results by providing complementary sensor data; however, selecting the right fusion 

architecture would produce a better detection outcome. Four Convolutional network fusion 

models called early fusion, halfway fusion, late fusion, and score fusion were also developed and 

tested [30]. 
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Figure 3 Common deep learning sensor fusion algorithms [41] 

Several conclusions can be summarized based on the literature review. First, cameras are 

the most common sensor to detect and track VRU. Second, UWBs are able to track a road user 

with centimeter-level accuracy. Third, sensor fusion methods could be used to calibrate the 

camera. However, there are still some challenges, including camera position, lens distortion and 

occlusion, time latency, etc. This thesis attempts to address them by proposing a real-time 

camera calibration method using UWB sensors, which will be elaborated in the following 

sections.  
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This thesis tries to mitigate the existing research gaps by proposing camera calibration 

using an auxiliary sensor: UWB. UWBs are capable of tracking a road user with centimeter-level 

accuracy. Once a VRU with a UWB traverses in the camera view, the UWB GPS data is fused 

with the camera to perform real-time calibration. In addition, GNSS is used to collect fixed 

points as the ground truth to calculate the distance between calibrated trajectories and the ground 

truth.  

The main contributions of this research are as follows: 

(1) To our knowledge, the UWB sensor in a sensor fusion system has not been previously 

applied in camera calibration. 

(2) It is determined that the UWB sensor optimizes the effectiveness of the camera 

calibration method. 

(3) The trajectories from the camera were calibrated using UWB only in the initial study, 

and then only the camera could be used to adjust trajectories accordingly, as long as the cameras 

remained at the same location, height, and angle. 

The proposed method requires that the measurement ranges of the camera and the UWB 

sensor overlap during the initial experiment. To secure overlaps between detections, the 

experiment was conducted at intersections. The experiment results show that the proposed 

strategy is better than the previous methods. 
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CHAPTER THREE: METHODOLOGY 

3.1 The UWB Sensor Tests 

UWB is a short-range Radio Frequency (RF) technology for wireless communication that 

can be utilized for localization by transmitting data through radio waves (Figure 4). In this study, 

the data collection frequency for UWB is 50 Hz. 

 

Figure 4 UWB Sensor 

In general, a UWB system includes three parts in order to obtain localization information: 

(1) Anchor: four (4) UWB sensors are used as anchors. The anchors are needed as the fixed 

reference points for the study area. 

(2) Console: one UWB sensor is used as the console. The console needs to be connected to 

the Terminal (e.g., computers, tablets). It is used to monitor the running status of the 

system and send instructions to other nodes (i.e., anchor, tag). 
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(3) Tag: each movement object (e.g., pedestrian) should be equipped with one UWB sensor 

(i.e., tag) for localization purposes. 

3.1.1 Data Collection 

This experiment aims to evaluate the performance of the UWB sensor for pedestrian and 

electric scooters (E-scooter) localization. Intersection 1 (i.e., Gemini Blvd East & North Orion 

Blvd) was selected for data collection for this study. The pedestrian data collection was 

conducted on November 9th, 2021, and E-scooter data collection was conducted on November 

11th, 2021. The E-scooters have become a popular transportation mode, which provides an 

option for first-/last- mile trips. However, the rapid growth of using E-scoters has also caused 

safety concerns, and countermeasures are needed to improve E-scooter safety [52]. Meanwhile, 

UWB sensors could be equipped on the E-scooters to provide real-time localization information, 

which could be utilized for real-time warnings to improve road safety, such as jaywalking, 

conflicts.  

In this study, the data collection for UWB sensors included the following steps: 

Step 1: select anchor locations. Four (4) anchor locations were selected at the four corners of the 

intersection (Figure 5). Each anchor is installed on the tripod and connected to a battery to 

provide the necessary power (Figure 7). 



 

26 

 

 

Figure 5 Studied Intersection for UWB Sensor 

Step 2: Setup Global Navigation Satellite Systems (GNSS) and Obtain coordinates. The GNSS 

devices were used to collect the coordinates of the selected locations (Figure 6)Two GNSS 

devices were used during the experiment. One GNSS device was used as the base station, while 

the other GNSS device was used as a rover to collect coordinates for anchors. 

 

Figure 6 GNSS Device 
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Step 3: Selecting landmarks and obtain landmark coordinates using GNSS. Ten landmarks were 

selected along the crosswalk of the intersection (Figure 8). The coordinates of the landmarks 

were obtained using the GNSS devices, which were used as the ground truths for UWB sensor 

evaluation.  

 

Figure 7 Landmarks on the crosswalk 

 

Figure 8 Landmark locations 
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Step 4: Conduct the experiment. After collecting the coordinates using GNSS, four UWBs were 

placed at the anchor locations, and one UWB was connected to a laptop as the console (Figure 

10). Meanwhile, a pedestrian/E-scooter with a UWB device (i.e., tag) crossed the intersection 

and passed through the ten landmarks (Figure 11). Meanwhile, a video was recorded from the 

roadside to obtain the timestamp that the pedestrian/E-scooter arrived at each of the landmarks. 

Ten trials were conducted for both pedestrian and E-scooter, respectively.  

 

Figure 9 Anchor 
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Figure 10 Console 

 

Figure 11 Participant with the UWB Sensor 

3.1.2 Performance of the UWB sensor 

To evaluate the latency, processing time and response time flowchart for the UWB sensor 

presented in Figure 12 is proposed. The system takes road data from the serial port as input. The 

output is the position of the tag then transmitted to the cloud server. The processing time is the 
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duration it takes to process the road data from the serial port, while latency is the round-trip 

delay to send the output to the cloud. 

 

Figure 12 Latency, Processing Time, and Response Time Flow Chart for UWB 

3.1.3 Trajectory Prediction 

Understanding the probable future coordinates of a road user is pertinent for a smart 

system making it more robust at detecting conflicts earlier while simultaneously reducing false 

warnings. For the purpose of predicting trajectories ahead of time, Kalman Filter [53] has been 

used in this study. It is an algorithm that uses a series of data points that contain noise and other 

unknown inaccuracies to estimate a few points in the future. It has been widely used in several 

fields due to its real-time, fast and efficient processing time. Kalman filter estimates the state of a 

discrete time series governed by the stochastic difference equation given by  

xk = Axk−1 +  Buk−1 +  wk−1 (1) 
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Here A is a n ∗ n matrix establishes relation between the two time states of x such as k 

and k − 1 while the matrix B relates an optional control input to the state of x. The Kalman filter 

can be applied in two steps: a time step and a measurement step [54]. 

The time update can be given by: 

x ̂k
− = Ax ̂k−1 + B uk−1 (2) 

Pk
− = A Pk−1AT + Q (3) 

The measurement update is calculated by: 

K =  Pk
−HT(HPk

−HT + R)−1 (4) 

x ̂k = x ̂k
− + K(z ̂k − H x ̂k

−) (5) 

Pk = (1 − KH)Pk
− (6) 

By recursing over these steps, the mean x ̂k and covariance Pk can be estimated. 

3.2 UWB-Smartphone Fusion 

The UWB sensor data includes latitude and longitude while smartphone data include 

latitude, longitude, speed, accelerometer and gyroscope data.  

The update frequency of UWB and smartphone is different:  the frequency of UWB is 

50Hz, while the frequency of smartphone is 2Hz. To overcome this issue, the research team 
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reduced the frequency of UWB for data synchronization. Two data samples were obtained each 

second from the UWB by averaging every 25 samples. 

In the last section, it was shown that UWB GPS coordinates are very accurate although it 

lacks the other sensor parameters such as accelerometer, gyroscope, etc. The smartphone data 

have been used in this scenario to augment the UWB data. The two datasets were merged on the 

basis of closest timestamp. The resulting dataset has precise latitude and longitude from UWB as 

well as the accelerometer, gyroscope and speed data from smartphone making the fused dataset 

accurate and rich in terms of parameters. The sensor fusion process is shown in Figure 13. The 

fused data is shown in Figure 14. The fused dataset was then used to predict GPS coordinates of 

pedestrian and scooter using LSTM. 

 

Figure 13 Sensor Priority Flowchart 
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Figure 14 Fused Dataset 

3.2.1 LSTM Model for Trajectory Prediction 

In a basic LSTM network architecture, given an input sequence represented by (x1, 

⋯,xT), the output sequence yt can be obtained by iteratively computing Equations 2, 3 for t=1, 

⋯, T [5]: 

ht = LSTM(ht−1, xt; W)                                                   (7) 

yt = Whyht + by                                                           (8) 

where the W terms denote the different weight matrix, by denotes the bias vector for the output yt, 

and h denotes the hidden state. In the cell of each LSTM, the hidden state is determined by the 

input gate i, forget gate f, output gate o, and the cell state c via the equations below: 

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)                                  (9) 
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ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf)                                        (10) 

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc)                                  (11) 

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)                                      (12) 

ht = ot tanh(ct)                                                          (13) 

where Wab is the weight matrix from layers a to b;σ(⋅) denotes the sigmoid activation function; 

each b term with a subscript is the bias vector for the appropriate layer. 

As shown in the previous section, latitude, longitude, speed, accelerometer, and 

gyroscope data were taken as input. A three-layered LSTM network was trained using this data 

as shown in Figure 15. There are three layers of LSTM model, and the output of the first layer is 

used as the input of the second layer. The input window is 30 and features number is 5.  
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Figure 15 LSTM Model 

3.2.2 Sensor priority 

The following Figure 16 shows a flowchart explaining sensor priority. Since UWB data is 

more accurate than smartphone GPS, it is set a higher priority. When both UWB and smartphone 

is available, the fused data is used. When the UWB data is inaccurate, such as the frequency is 

too low or most of the values are empty, etc., the smartphone data is directly used. Similarly, 

when the smartphone data is inaccurate, the UWB data is used.  
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Figure 16 Sensor Priority Flowchart 
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3.3 UWB-Camera Fusion 

To analyze pedestrian safety at intersections, an intersection (i.e., Gemini Blvd East & 

North Orion Blvd) at the University of Central Florida, Florida, USA was selected as the study 

site. Video data and UWB data were collected for this study. The spatial map of the site is shown 

in Error! Reference source not found.. The camera was set on the third floor of the garage b

uilding.  

In this study, the data collection for UWB sensors included the following steps: 

Step 1: select anchor locations. Four anchor locations were selected at the four corners of the 

intersection (Figure 5). Each anchor is installed on the tripod and connected to a battery to 

provide the necessary power. 

Step 2: Setup Global Navigation Satellite Systems (GNSS) and Obtain coordinates. The GNSS 

devices were used to collect the coordinates of the selected locations. Two GNSS devices were 

used during the experiment. One GNSS device was used as the base station, while the other 

GNSS device was used as a rover to collect coordinates for anchors. 

Step 3: Selecting landmarks and obtain landmark coordinates using GNSS. Five landmarks were 

selected along the crosswalk of the intersection. The coordinates of the landmarks were obtained 

using the GNSS devices, which were used as the ground truth for UWB sensor evaluation. 

Step 4: Conduct the experiment. After collecting the coordinates using GNSS, four UWBs were 

placed at the anchor locations, and one UWB was connected to a laptop as the console. 

Meanwhile, a pedestrian or E-scooter with a UWB device (i.e., a tag) crossed the intersection 

and passed through the eight landmarks. Meanwhile, a video was recorded from the third floor of 
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the garage building to obtain the timestamp that the pedestrian arrived at each of the landmarks. 

Eight trials were conducted. 

Ultra-Wide Band (UWB) is a short-range Radio Frequency (RF) technology for wireless 

communication that can be utilized for localization by transmitting data through radio waves 

(Figure 4). In this study, the data collection frequency for UWB is 50 Hz. Our proposed method 

consists of object detection and tracking, coordinate transformation, and sensor adjustment. 

Figure 17 displays the schematic procedure for extracting and calibrating pedestrians’ 

trajectories from camera videos and the UWB sensor. First, during the object detection and 

tracking step, a pedestrian within the camera view is detected using the detection and tracking 

algorithms. The Yolov5 and DeepSORT algorithms were used in our study. 

In the coordinate transformation step, it is necessary to convert points in a two-

dimensional coordinate system into latitude and longitude coordinates. In the case of the camera, 

the authors marked seven points with known latitude and longitude from a two-dimensional 

video and gained a transform matrix. Then GPS coordinates were gained. Therefore, coordinate 

transformation can be achieved. In the case of the UWB sensor, the authors use the points of the 

four anchors as the reference points of the two-dimensional coordinate system and convert the 

two-dimensional coordinate points of the UWB tags into latitude and longitude coordinates. 

In sensor adjustment, the camera and UWB sensors have been used through the outputs 

of the sensors. The camera is made to detect and track moving objects. The UWB sensor is used 

to calibrate object information obtained from cameras, such as pedestrians' trajectories. Then, 

from the UWB sensor's accurate location of objects, objects' trajectories are calibrated in the 

camera view. Finally, the accuracy of pedestrians' trajectories could be improved. 
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Figure 17 Proposed scheme for VRU using camera and UWB sensor adjustment 

3.3.1 Objective Detection and Tracking 

A. YOLOv5 object detection algorithm  

YOLOv5 is used to detect objects in our study. As shown in Figure 18, the network 

structure of YOLOv5 is divided into four parts: Input, Backbone, Neck, and 

Prediction. Input, like YOLOv4, performs Mosaic data enhancement on the input 

image. Then, the backbone network mainly adopts a focused structure, the CSP 

structure. In the Neck of the network, the FPN and PAN structures, drawing on the 
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design ideas of the CSPNet, are used for rich feature fusion. Following the consistent 

practice of the YOLO series, the Bounding box loss function is adopted for the output 

of the network. 

 

 

Figure 18 YOLOv5 network structure [55]  

 

B. The DeepSORT object-tracking algorithm 

The DeepSORT tracking algorithm is a detection-based tracking algorithm proposed in 2017, 

that has excellent performance. The DeepSORT algorithm adds Matching Cascade and a new 

trajectory confirmation to the Sort algorithm. Tracks are divided into Confirmed states and 

Unconfirmed states. Newly generated tracks are unconfirmed states. Tracks, which in the 

unconfirmed states must match Detections a certain number of times before they can be 

converted into Confirmed states. Confirmed Tracks are continuously mismatched with 

Detections for a certain number of times (30 times by default) before they are deleted. The 

overall process is shown in Figure 19. 
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Figure 19 DeepSORT algorithm overall process 

3.3.2 Coordinate Transformation 

Figure 20 shows a flowchart of Coordinate Transformation. Firstly, find the new X and Y 

coordinates in the Plane Coordinate System according to the GPS reference points. A perspective 

transformation through the new X, Y and the original reference X, Y coordinates to get a matrix. 

Because perspective transformation is the process of projecting an image from one viewing plane 

to another, it is also known as projection mapping (Projection Mapping). The general process of 

perspective transformation includes obtained boundary points, defining target boundary points, 

obtaining transformation matrix, and transforming. The corresponding GPS coordinates are 

obtained by combining the X and Y coordinates, which are obtained from the pedestrian 

trajectory of the camera and UWB in different coordinate systems and inverse matrix, 

respectively. 
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Figure 20 The flowchart of Coordinate Transformation 

3.3.3 Sensor Adjustment Method 

After the coordinate transformation in the previous step, the pedestrian trajectories of the 

camera video data and the UWB more accurate pedestrian trajectories are obtained. Authors 

fused the X and Y coordinates of the camera coordinate system with more accurate GPS 

coordinates (UWB latitude and UWB longitude), which are obtained from the UWB sensor. 
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Then a new transformation matrix was produced. Therefore, more accurate trajectories than the 

camera results individually were gained by experiments.  
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CHAPTER FOUR: RESULTS 

4.1 UWB Sensor Data Analysis and Results  

In order to evaluate the performance of the UWB sensors, data analysis was conducted. 

The data analysis process included the following steps: 

• Step 1: Obtain the timestamps the pedestrian/E-scooter arrived at the ten landmarks (t1, 

t2, …, t10) 

• Step 2: Obtain the coordinates (UWBlatitude, UWBlongitude) for those timestamps (t1, t2, …, t10) 

from the UWB sensor. 

• Step 3: For each landmark, calculate the distances between the GNSS outputs (i.e., ground 

truths) and the UWB sensor outputs (UWBlatitude, UWBlongitude). 

Figure 21 illustrates an example for one of the pedestrian trials. The data collection 

frequency for UWB is 50 Hz. The corresponding UWB outputs for each landmark can be 

obtained using the timestamps collected from the video data. For example, in Figure 22, the 

pedestrian arrived at the landmark point at the timestamp 11:19:26.702. The corresponding UWB 

outputs (i.e., coordinates) for this timestamp is (28.60485125, -81.19634028The GNSS outputs 

of this landmark are (28.60485145, -81.19634048). Thus, the localization error for this 

timestamp is 0.029 cm by calculating the distance between the two points.  
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Figure 21 Ground Truth and UWB Reading Comparison for One Trial 

*The green line is the pedestrian’s trajectory from UWB. The red points are ground truth from GNSS. 

 

Figure 22 Video Image from Roadside 
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Table 2 Validation Results for UWB (Pedestrian)Table 2 shows the results of the 

pedestrian experiments based on the ten (10) trials. The minimum localization error for the UWB 

is 0.39 centimeters, and the maximum error is 37.37 centimeters. The average error is 11.21 

centimeters.  

Table 2 Validation Results for UWB (Pedestrian) 

Pedestrian Average error  

(cm) 

Maximum error  

(cm) 

Minimum error 

(cm) 

1 10.56 28.50 0.40 

2 11.25 31.42 2.42 

3 15.45 37.37 2.43 

4 8.50 24.75 0.71 

5 10.96 28.09 1.49 

6 11.04 30.49 2.76 

7 10.38 33.32 0.95 

8 11.95 30.28 0.86 

9 11.44 30.50 1.01 

10 10.59 34.07 0.39 

Average 11.21 30.88 1.34 
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Similar to the evaluation of pedestrians’ localization, the distances between GNSS points 

and E-scooter points were calculated and summarized in Table 3. The average error between the 

GNSS outputs and UWB outputs is 11.82 centimeters. The minimum and maximum errors are 

0.66 and 31.91 centimeters, respectively. The results indicate that UWB could provide 

acceptable position information for both pedestrians and E-scooters.  

Table 3 Validation Results for UWB (E-scooter) 

E-scooter Average error  

(cm) 

Maximum error  

(cm) 

Minimum error 

(cm) 

1 10.26 31.91 0.89 

2 14.65 27.95 4.41 

3 12.43 24.48 1.33 

4 10.22 22.76 2.71 

5 09.02 25.08 0.66 

6 12.43 24.09 2.51 

7 12.41 27.45 2.93 

8 11.61 31.54 1.83 

9 11.75 23.33 2.50 

10 13.42 30.22 4.69 

Average 11.82 26.88 2.45 
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As is shown in Figure 23, the latency, processing time, and response time of the UWB 

sensor are almost real-time. The three lines are shown for a 5-minute upload of real-time data 

from the field experiments. The average latency, processing time and response time are 0.15 s, 

0.03 s, and 0.18 s, respectively. Therefore, the UWB could be used to detect and localize 

pedestrians and E-scooters. 

 

Figure 23 Test Results Between Latency, Processing Time, and Response Time 

Using Kalman Filter, trajectory have been predicted for both the pedestrians and scooter 

riders. GPS points were predicted for 1 and 1.5 seconds ahead of time based on the trajectory of 

the previous one second. Then the predicted points were matched with the actual points given by 

UWB. Finally, deviation of the predicted points from the actual points were calculated in meters. 

This process was repeated each second predicting the next 1 and 1.5 seconds. Average deviation 

of prediction for the whole route is visualized in Figure 24 and Figure 25. 
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Figure 24 Pedestrian Trajectory Prediction Error 

 

Figure 25 Scooter Trajectory Prediction Error 
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Table 4 Evaluation Results Summary 

Sensor Type Equipment 

Name 

Output Type Accuracy Latency  Processing 

time 

Response 

time 

Ultra-

Wideband(U

WB) 

NoopLoop 

LinkTrack 

Vulnerable road 

user localization 

0.39cm- 

37.37cm 

0.15 s 0.03 s 0.18 s 

Camera ELP-

USBFHD06

H-KL36IR 

Road user 

classification and 

localization  

93% 0.29 s 0.24 s 0.53 s 

4.2 UWB and Smartphone Fusion Results  

Table 5 shows the trajectory prediction results from the 3-layer LSTM model. Three 

different data sources were used such as: fused data, only-UWB data and only smartphone data.  

Two different input windows were experimented with: 30 and 10 while the output window was 

5. Mean Squared Error (MSE) as well as average error between the predicted points and true 

values were calculated.  

From the results in the table, it can be seen that the result with an input window of 30 is 

better than the result with an input window of 10, and the effect of UWB and smartphone fusion 

is better than the individual sensors alone. 
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Table 5 Results for Trajectory Prediction 

Dataset 

Input 

window 

Output 

window 

test1 test2 

MSE Distance(m) MSE Distance(m) 

UWB 10 (5s) 5 0.0314 0.8045 0.0303 0.5893 

smartphone 10 5 0.0896 1.1212 0.1263 1.3331 

UWB and 

smartphone 

10 5 0.0520 0.5388 0.0297 0.5715 

UWB 30 (15s) 5 0.0300 0.6603 0.0187 0.4627 

smartphone 30 5 0.1458 0.5682 0.0924 0.6574 

UWB and 

smartphone 

30 5 0.0358 0.5262 0.0792 0.3858 

Table 6 shows the transferability latency of UWB and smartphone data fusion. 

Transferability can be defined as the time taken to re-identify a road user in case of low accuracy 

of a sensor. For UWB-smartphone fusion, the transferability latency is essentially the time it 

takes to fuse the two datasets since the fusion steps consider which model to use based on data 

availability. Four different input windows were experimented with: 30 and 10 while the output 

window was 5. There were instances from the jaywalking scenario as well. From the results in 

the table, the results show no difference with the different change in window sizes. Moreover, 

the average latency of 0.05s and 0.02s are encouraging for real-time applications. 
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Table 6 UWB and Smartphone Transferability Latency 

Scenario Input Window 

Output 

Window 

Latency 

Jaywalking 

10 5 0.0530 

30 5 0.0530 

Crosswalk 

10 5 0.0223 

30 5 0.0223 

4.3 UWB and Camera Adjustment Results  

In order to compare the performance of the camera, the UWB sensors, and the results 

after camera calibration, data analysis was conducted. The data analysis process included the 

following steps: 

Step 1: Determine the timestamps at which the pedestrian arrived at each of the ten 

landmarks (t1, t2, ... t5). 

Step 2: Obtain the coordinates (latitude, longitude) for those timestamps (t1, t2, …, t5) 

from the camera, the UWB sensor, and the results after camera calibration. 

Step 3: For each landmark, calculate the distances between the GNSS outputs (i.e., 

ground truths) and the camera, the UWB sensor, and after camera calibration outputs (latitude 

and longitude), respectively. 

Figure 26 displays the results of the experiments based on the pedestrian trials. The data 

collection frequency for UWB is 50 Hz. The corresponding UWB outputs for each landmark can 
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be obtained using the timestamps collected from the video data. Figure 26 (a) to (c) show the 

pedestrian tracking results of the separate camera, separate UWB, and calibrated camera data, 

respectively. Four different experiments of pedestrian results were shown. The results 

demonstrate that after UWB and camera Adjustment more accurate position information for 

pedestrians were provided.   

 

Figure 26 The results of the experiments 

Table 7 shows the comparison of the pedestrian experiments based on the trials. The 

average error of the first test between the GNSS outputs and camera outputs is 0.37 meters. The 

average localization error for the UWB is 0.16 meters. However, if a UWB sensor is used to 

adjust camera data, the average error reaches 0.24 meters. Therefore, we are recommending 

correction and adjustment of the camera trajectories based on the UWB trajectories. In the future, 

we should focus on correcting the UWB's accuracy based on GNSS first. 
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Table 7 Comparison of the pedestrian experiments 

Average error Camera(m) UWB(m) Camera+UWB(m) 

Experiment 1 0.36 0.15 0.23 

Experiment 2 0.45 0.23 0.34 

Experiment 3 0.34 0.12 0.20 

Experiment 4 0.31 0.15 0.20 

Total average error 0.37 0.16 0.24 

According to the experimental results, we divided the sidewalk into four zones as Figure 

27. As mentioned above, from the sidewalks of these four regions, UWB trajectories, Camera 

trajectories, and after-adjusted camera trajectories of a pedestrian were shown in Figure 26, 

respectively. Furthermore, we calculated the adjustment errors for different regions separately. 

The results from Table 8 showed the correction factor of every zone. Take zone 1 as an example, 

the correction distance between the original camera and after adjustment is 0.05 meters. In zone 

2, the correction distance is 0.06 meters. Likewise, the correction distance in zone 3 and zone 4 

is 0.13 meters and 0.17 meters. Therefore, the error of the trajectory adjustment using UWB was 

different depending on the distance from the camera. For example, in zone 1 and zone 2, the 

pedestrian trajectory of the camera will be more accurate. The average error of the pedestrian 

trajectory obtained by the camera before and after adjustment using UWB is 0.05 meters, while 

in zone 3 and zone 4, the average error of pedestrian trajectory obtained by the camera before 
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and after adjustment is 0.13 meters. The results indicate that UWB and camera adjustment could 

provide more accurate position information for pedestrians.  

 

Figure 27 Sidewalk by area 

Table 8 Adjustment results for trajectory by zone 

Zone Correction Factor (m) 

1 0.05 

2 0.06 

3 0.13 

4 0.17 
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According to adjustment method, after using UWB for the first time, the camera 

trajectory can be adjusted using its data. The error of the adjustment will be different in different 

regions.   
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CHAPTER FIVE: CONCLUSIONS 

In this study, three types of sensors were evaluated, including Ultra-Wideband Band 

(UWB) and camera. A corridor within the University of Central Florida (UCF) campus was 

selected for field tests and demo purposes. Extensive field tests were conducted at the selected 

location in order to evaluate the sensor performance. The various outputs were provided by the 

different sensors: UWB camera sensors were used to provide localization information of road 

users, such as vehicles, pedestrians, E-scooters. The field tests results illustrate the above-

mentioned sensors provide reliable outputs, which could be utilized for smart corridors. Future 

efforts could be conducted for road user localization or travel time estimation.  

Next, sensor fusion and priority strategies were proposed based on the abovementioned 

sensor outputs to further improve data accuracy and reduce latency. Three types of sensor fusion 

strategies were implemented and evaluated. Extensive tests were conducted to fully evaluate the 

performance of the proposed algorithms. In the thesis, the smartphone data include speed, 

accelerometer and gyroscope have been used in this scenario to augment the UWB data. The two 

datasets were merged on the basis of closest timestamp and the frequency of UWB is reduced for 

data synchronization. The resulting dataset has precise latitude and longitude from UWB as well 

as the accelerometer, gyroscope and speed data from smartphone making the fused dataset 

accurate and rich in terms of parameters. The fused dataset was then used to predict GPS 

coordinates of pedestrian and scooter using LSTM. The results are more reliable than UWB 

individually because the accelerometer, gyroscope and speed data are fused. Furthermore, the 

authors propose a new scheme to calibrate the traffic cameras by fusing the camera and the UWB 
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sensor. Generally, the camera and UWB have been used for pedestrian detection and tracking, 

individually. However, the camera is sensitive to light intensity and environmental changes. 

Detection is also affected by the angle and height of the camera and the location of the trajectory 

with respect to the camera. The camera detection in image processing is more complex and needs 

more processing time. Meanwhile, the UWB sensor is an active detection, which means that it 

needs a sensor for each user. 

This thesis proposes a new concept of camera calibration using the UWB sensor in order 

to improve the accuracy of VRU's trajectories. To verify the performance of our proposed 

method, various experiments were performed in real road environments. According to 

experimental results, proposed method reaches an average error of 0.24 meters. It has better 

detection performance compared to the individual camera detection. For the same intersection 

and location of the camera, the use of UWB is needed only once to fuse the data and determine 

the correct trajectories. Other trajectories collected by the camera latter can be corrected using 

the same adjustment. 

However, there are still some improvements to be made. The proposed method does not 

complete lost frames, which means it is more likely to lose some jaywalking VRUs. This 

problem may be overcome by finding the relationship between UWB data and camera data. For 

the results of the pedestrian and E-scooters experiments from UWB sensor, we also should take 

the speed and time latency from GNSS and UWB comparison. In addition, for the prediction of 

pedestrian trajectory in fusing smartphone and UWB algorithms, we should add the pedestrian 

direction and angle to improve the prediction accuracy.  
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This camera calibration scheme will be very meaningful in the autonomous vehicle field 

because VRUs can be detected more accurately and avoid collisions by using our method. Also, 

this VRU detection and tracking scheme could be adopted to prevent accidents in safety systems 

of autonomous vehicles, such as active emergency braking systems. 
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