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ABSTRACT

The purpose of the research presented in this dissertation is to improve virtual reality (VR) training

systems by enhancing their understanding of users. While the field of intelligent tutoring systems

(ITS) has seen value in this approach, much research into making use of biometrics to improve user

understanding and subsequently training, relies on specialized hardware. Through the presented

research, I show that with machine learning (ML), the VR system itself can serve as that specialized

hardware for VR training systems.

I begin by discussing my explorations into using an ecologically valid, specialized training simu-

lation as a testbed to predict knowledge acquisition by users unfamiliar with the task being trained.

Then I look at predicting the cognitive and psychomotor outcomes retained after a one week pe-

riod. Next I describe our work towards using ML models to predict the transfer of skills from a

non-specialized VR assembly training environment to the real-world, based on recorded tracking

data.

I continue by examining the identifiability of participants in the specialized training task, allowing

us to better understand the associated privacy concerns and how the representation of the data can

affect identifiability. By using the same tasks separated temporally by a week, we expand our

understanding of the diminishing identifiability of user’s movements. Finally, I make use of the

assembly training environment to explore the feasibility of across-task identifiability, by making

use of two different tasks with the same context.
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CHAPTER 1: INTRODUCTION

1.1 Overview

This chapter begins by providing a background of research in virtual reality, intelligent tutoring

systems, and machine learning techniques. While not comprehensive, the intent of this section

is to provide a foundational background for the reader, and more detailed and relevant works to

the research presented are discussed in chapter 2. After providing some background information,

this chapter then moves into discussing the motivation, methodologies and contributions presented

herein.

1.2 Brief Background

1.2.1 Virtual Reality

Virtual reality (VR) has storied history stemming from Ivan Sutherland’s “Ultimate Display” [112].

Since then, VR still falls short of the complete replacement of the senses originally envisioned by

Sutherland, but in the last decade cheaper hardware has reduced the price of VR systems to the

point that they are now relatively affordable for individuals. Outside of personal gaming, VR has

also seen a rise in popularity among organizations that see value in its use for training and edu-

cation, particularly medical and military organizations, where real-world in situ training can be

dangerous or costly. For such uses, VR offers some unique benefits that make the cost of devel-

oping training applications worthwhile over traditional non-immersive trainers, video tutorials, or

text guides.

After conducting a survey of interaction design philosophies, Bowman, Kruijff, LaViola, and
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Poupyrev [11] found that natural interactions should be used when the replication of physical

actions is important, and Saposnik et al. [104] determined that these kinds of interactions can be

useful for training gross motor skills, which are afforded by readily available VR systems. While

VR can afford benefits for psychomotor learning (concepts related to the perception, action, and

motor activity of educational objectives [110]), it should be noted that for other tasks, such as those

that focus on cognition, natural interactions can be an impediment to performance [11, 76].

1.2.2 Machine Learning

Similar to VR, machine learning (ML) has existed as a field since the 1960’s, and has recently seen

a great increase in use. While cheaper and improved hardware has also been a source of improved

utility, the greater availability of large datasets has resulted in the success of models conceptualized

even in the early days of ML [41]. In broad terms, ML is the process of allowing a machine to

learn how to do a given task by exposing it to representative data of that task and allowing it to

improve its success as measured by a given heuristic [82]. This broad category of algorithms can

build models that are successful at several tasks including classification, regression, and generation

of data.

1.2.3 Intelligent Tutoring Systems

The field of intelligent tutoring systems (ITS) seeks to improve learning by modeling “what is

being taught, who is being taught, and how to teach [them],” [108]. This is motivated on the

consensus that individualized teaching is the most effective form of education for most domains

[93]. While the ITS field has the word “intelligent” in its name, many of the works in the field

do not necessarily make use of artificial intelligence or ML concepts, instead relying on crafted

models by domain experts. Some ITSs that do make use of ML, such as those researched by Won
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et al. [123], and Schneider and Blikstein [106], use streams of data beyond the typical event and

error tracking, such as posture and eye-gaze data, improving the system’s understanding of the

user’s mental state and learning.

1.3 Motivation

As noted, the success of ML models is broadly contingent on the availability of large quantities of

data. Simultaneously, recent developments in VR hardware that enable better and more detailed

interactions also, by necessity, provide better and more detailed tracking data. At the time of

writing, consumer VR systems can track the positions and orientations of the head-mounted display

and controllers with high accuracy at 90Hz [52]. Several HMDs also afford eye-tracking, and

some controllers offer more detailed hand-pose information than binary button presses. As this

VR tracking data improves in quality and more streams of data are made available, its possibility

for use in developing ML models to improve tutoring systems increases.

1.4 Problem Statement

Because of the improving availability of readily available tracking data, understanding what appli-

cations for machine learning are feasible is important to provide a basis for which researchers and

practitioners can implement systems that leverage such models. Additionally, investigation into

how identifiable this data is is important so that consumers and platforms can recognize privacy

implications of the collection of such data and appropriately weigh the benefits of the potential

uses.
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1.5 Research Questions and Methodologies

The goal of this research is to investigate the feasibility of developing and applying ML models

to readily available tracking data in VR training scenarios. Ultimately we believe that such an

approach is an opportunity to improve learning outcomes by allowing for prediction-based scaf-

folding, but we are also interested in understanding how identifiable this data is. To this end, we

have identified 5 main research questions.

1.5.1 Learning Outcomes

1.5.1.1 RQ1: Can readily available VR tracking data be used to predict cognitive outcomes

from a VR training scenario?

H1: Previous work has indicated that using data related to the posture of the body can be useful

for predicting learning gains [106, 123] thus our hypothesis was that the readily available track-

ing data which is correlated to the user’s posture would be useful for developing ML models for

predicting knowledge acquisition in a VR training scenario. In the same way that one can tell if

someone is paying attention by their posture and movements, we anticipated that a model could

interpret something similar from the positions and orientations of the controllers and HMD, which

are derived from posture and movements.

1.5.1.2 RQ2: Can readily available VR tracking data be used to predict psychomotor outcomes

from a VR training scenario?

H2: We anticipate that tracking data will be able to predict psychomotor outcomes. This anticipa-

tion is partially driven by the same reasoning as H1, as well as increasing evidence that machine
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learning on movements elicited by learners can be leveraged for automated assessment of skills for

tasks like laparoscopic or robotic surgeries [17].

1.5.1.3 Methodologies

Chapters 3, and 4 make use of a robotic operating room VR training scenario, that was designed

using the formative evaluation methodology described in Appendix A. These studies investigate

cognitive and psychomotor outcomes. Our expectation was that a machine learning model could

be trained to recognize movements associated with attention and engagement during training, and

would be able to predict these learning outcomes for participants.

1.5.2 Identifiability

1.5.2.1 RQ3: How does identifiability of readily available VR tracking data change

longitudinally?

H3 We anticipated that identifiability would decrease due to variations in physiological, emotional,

and mental state. Prior work such as that by Ferber et al. [38] has shown within-day movement

variability to be lower than between-day movement variability, and we would expect similar effects

to introduce difficulty in identifying participants based on their movements.

1.5.2.2 Methodology

We examined the identifiability of the data collected from participants in Chapter 5. By train-

ing models to perform within-session identification and across-session identification for sessions

spaced one week apart, our expectation was that the identifiability would decrease across-session,
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but still remain well above random chance.

1.5.2.3 RQ4: How does identifiability of readily available VR tracking data change between

tasks?

H4: We anticipated that the identifiability will decrease only slightly, as the model should be

able to learn anatomically and physiologically derived motions apart from the task specifics. This

hypothesis was guided in part by our investigation into H4, in which we found that our models

performed well at identifying participants when they were performing the same task, suggesting

the models had to learn features unique to individuals, rather than unique to the virtual environment

[87].

1.5.2.4 Methodology

In Chapter 6, we make use of an ordered assembly task VR training scenario. The design of which

allowed us to train users with two different building tasks using the same platform, models, and

interaction cues, so we can investigate the identifiability between tasks.

1.6 Contributions

These research contributions fit into two main categories. We have determined a number of facets

of predicting different learning outcomes from readily available VR tracking data. We have also

investigated the identifiability of this tracking data across both time and task, through a lens of

privacy, motivated by the potential usefulness of this data.
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1.6.1 Predicting Learning Outcomes from Readily Available Tracking Data in VR

1. We demonstrate that predicting Learning Gains from HMD and controller tracking data is

feasible. (Ch. 3)

2. We show that it is also possible to predict knowledge retention as well as performance reten-

tion. (Ch. 4)

3. We determined that models trained with velocity-based feature representations outperformed

those trained on positional data for knowledge acquisition, knowledge retention, and perfor-

mance retention. (Ch. 4)

4. We found indication that tracking data can be better used to predict psychomotor-based

outcomes than cognitive-based outcomes. (Ch. 4)

1.6.2 Identifiability of VR Tracking Data

1. We show that identifying users through their tracking data with high degrees of accuracy

within a VR training scenario is feasible. (Ch. 5)

2. We show that identifiability substantially decreases between sessions spaced one week apart,

but still remain well above random. (Ch. 5)

3. We demonstrate that representing data as velocity rather than position further reduces iden-

tifiablility. (Ch. 5)

4. We contribute deeper understanding to identifiability as it is affected by the task being per-

formed by the user, and the data that the system has available. (Ch. 6)
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CHAPTER 2: LITERATURE REVIEW

2.1 Training Outcomes

Machine learning has been applied to predict knowledge acquisition in each of the three domains

of learning: cognitive, psychomotor, and affective learning[110]. Much of this research has fo-

cused on creating an “online” classifier: one that can evaluate or predict students’ performance in

real-time during teaching without the need for separate testing. In this section, we discuss prior

work that has investigated the prediction of training outcomes, both by the their learning domain

(Table 2.1) and their types of models and whether they’re predicting retention (Table 2.2)

2.1.1 Predicting Cognitive Outcomes

There has been some work in the past on predicting cognitive learning outcomes in training and

education environments, particularly in the realms of declarative and procedural knowledge. While

Table 2.1: An overview of prior work that have used machine learning to predict learning outcomes.

Paper System Context Input Data Predicted Outcome
Chapter 3 Immersive tutor Surgical robot troubleshooting Head and hand tracking Procedural knowledge (C)

[2] Desktop tutor Math Eye tracking, context events Procedural knowledge (C)
[106] Immersive tutor Ear anatomy Skeletal tracking, context events Declarative knowledge (C)
[123] Dyadic teaching Environmental principles Skeletal tracking Declarative knowledge (C)
[109] Surgical robot Mastoidectomy Force and instrument tracking Fine motor skills (PM)
[26] Surgical simulator Bone marrow harvesting Force and instrument tracking Fine motor skills (PM)
[30] Dance trainer Forró partner dancing Phone accelerometer, song BPM Gross motor skills (PM)
[126] Classroom Synthesized Skeletal, face, and eye tracking Attention (A)
[117] Classroom Mechanical engineering System events, eye tracking Attention (A)
[29] Desktop tutor Computer literacy Skeletal tracking, Dialogue Engagement, confusion, frustration (A)
[90] Desktop game Constraint satisfaction Posture tracking Engagement (A)
[31] Textbook Biology Transcript, audio Engagement (A)

C = cognitive, PM = psychomotor, A = affective
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the field of ITSs has many examples of predicting cognitive learning outcomes based on system

and contextual events, we focus our discussion on research that makes use of physiological data

for prediction.

The prediction of declarative knowledge gains based on physiological data has been an active area

of research for some time. Schneider and Blikstein [106] developed an ear anatomy trainer with a

tangible user interface and used ML methods to predict the learning gains of students. Based on

a "rough" median split of their participants, they were able to achieve 100% accuracy with their

SVM using a Multilayer Perceptron kernel [97]. Although they did not find a direct correlation

between knowledge acquisition and posture, they determined that student posture had predictive

value for classifiers by showing that it was a useful feature for their system. Won et al. [123] also

researched prediction of declarative knowledge acquisition, specifically looking at the learning

gains of environmental principals in a teacher-student dyad. They made use of skeletal data in

the form of joint angles tracked from a Microsoft Kinect, a full-body motion sensing device that

makes use of structured light and time-of-flight , to predict the learning gains. While the system

showed little predictive power over all dyads, decision trees yielded a classification accuracy of

85.7% when comparing the top seven and bottom seven teacher-student dyads.

Beyond these approaches for predicting declarative knowledge gains, researchers have also inves-

tigated the prediction of procedural knowledge gains based on physiological data. Amershi and

Conati [2] designed a desktop tutor that taught mathematics using a clustering approach that used

distilled eye-tracking features, such as gaze shifts and interface events. This ML model was able to

classify students based on high and low knowledge acquisition with an average accuracy of 86.3%.

Recently, we also developed an ML approach that partitions users into high and low knowledge

acquisition groups [86]. We made use of velocity data derived from HMD and controller track-

ing data to predict the learning gains from a robotic operating room training scenario based on a

posttest knowledge test and found a mean accuracy of 93.1% among our examined approaches.
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Unlike our recent work, in this paper, we investigate both position and velocity data, and we also

investigate using ML models to predict retention outcomes, in addition to learning outcomes.

Amershi and Conati [2] showed that eye-tracking data can be used to predict procedural knowledge

acquisition. Similarly, Won et al. [123] and Schneider et al. [106] found that body posture is useful

in predicting declarative knowledge acquisition. These results clearly indicate that physiology can

be used as an indicator of cognitive learning outcomes. To the best of our knowledge, our work

was one of the first to successfully use HMD and controller tracking data to predict procedural

knowledge acquisition.

The research studies above indicate that physiologically based data, such as body postures [106,

123], eye tracking [2], and body movements [86], can be used to predict cognitive learning out-

comes, such as declarative and procedural knowledge acquisition.

2.1.2 Predicting Cognitive Retention Outcomes

In addition to predicting the immediate learning outcomes, research has also been conducted to pre-

dict longer-term knowledge retention. Wang and Beck [121] examined using logistic regression to

predict knowledge retention for a period of five to ten days after the student’s last practice. Their

approach makes use of features representing prior performance, when the student last practiced,

and student response time. Work by Choffin et al. [20] has looked at modeling student learning

and forgetting of skills by leveraging the Knowledge Tracing Machines framework [118] to em-

bed features from multiple skills together. Their results suggest that incorporating both item-skill

relationships and forgetting effects provides better learner models than only incorporating one or

the other. Li et al. [66] found speed of mastery to be a relevant feature for predicting performance

in week-later assessments within their Automatic Reassessment and Relearning System intelligent

tutor.
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By looking at the retention after a period of time, these works attempt to measure the "broader

notion of knowing a skill" [121]. These works all found that the retention of knowledge appears to

vary by skill and is possibly unique to each student [121, 20, 118] and generally requires additional

considerations beyond prediction of knowledge acquisition.

2.1.3 Predicting Psychomotor Outcomes

In addition to predicting cognitive learning outcomes, there has been research into predicting psy-

chomotor learning outcomes from physiological data.

DeMoraes et al. [26] developed an online training assessment system for a bone marrow harvesting

simulator that made use of a Gaussian Naïve-Bayes classifier. This system was able to match expert

classification with a Kappa coefficient of 80% by utilizing position, velocity, forces, and time as

features. Ultimately, their system made mistakes in only 20 of 150 cases. Similarly, Sewell et al.

[109] performed classification in a mastoidectomy simulator via a Hidden Markov Model. This

system used position, distance, tool force, and suction position features, and yielded 85% correct

classification for both novices and experts. In more recent work that attempts to predict learning of

gross motor movements, dos Santos [30] investigated rhythm skill prediction in a dancing trainer.

This system made use of data from the student’s phone and the song tempo in beats per minute

(BPM) to classify their movements as faster, correct, slower, or mixed and was able to correctly

identify 74% of sessions with an F1 score of 0.79.

The works by DeMoraes et al. [26] and Sewell et al. [109] indicate that motion data collected

during training can be used to predict fine motor skill learning of complex tasks. Additionally,

dos Santos [30] has shown that gross motor movement learning can also be predicted and used for

feedback. These results indicate that psychomotor outcomes can be estimated by using positional

tracking data.
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2.1.4 Predicting Affective Outcomes

Machine learning has also been employed for attention estimation in intelligent tutoring systems.

Zaletelj et al. [126] have researched the use of skeletal, face, and eye tracking features through a

Kinect to estimate attention in a classroom setting. Using bagged trees, they were able to achieve

86.9% prediction accuracy. Veliyath [117] also investigated classroom attention assessment using

only eye-tracking, time, and whether the foreground application on the student’s computer was

relevant. Extreme Gradient Boost was able to predict whether a student was paying attention at

77% accuracy.

Other affective outcomes have been estimated as well. D’Mello and Graesser [29] found that dia-

logue and posture features could discriminate between states of boredom, confusion, engagement,

and frustration in a desktop tutoring environment. Their system only averaged 50% accuracy for

a four-way classification among their 6 classifiers, which is better than random chance, but not

excellent. Another classifier that attempts to predict engagement was researched by Mota and Pi-

card [90], and made use of posture detected by weight distribution. This Hidden Markov Model

based system was able to discriminate between three states (high interest, low interest, and taking

a break) with a reported average accuracy of 82.25%.

Drummond and Litman [31] investigated predicting zoning out through the use of transcript fea-

tures (e.g., number of words read, disfluencies) and audio features (e.g., percent silence and min-

imum pitch). They found that a decision tree trained on the minimum pitch alone was able to

predict with 64.3% accuracy high or low zoning out states.

The work by Zaletelj et al. [126] and Veliyath [117] indicate that machine learning can be used to

estimate attention by using student physiology as input. Work by others indicates that body posture

is a useful feature for classifying students into affective states, though as D’Mello and Graesser [29]
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Table 2.2: An overview of related work that have predicted learning and retention outcomes.

Prediction Paper System Input Model
Cognitive learning [2] Math tutor Eye tracking, K-means

Context events
[123] Classroom monitor Skeletal tracking Decision tree
[106] Anatomy tutor Skeletal tracking, SVM

Context events
[86] Surgical simulation Head tracking, SVM

Hand tracking
Psychomotor learning [109] Surgical simulation Instrument tracking HMM

[26] Surgical simulation Instrument tracking Naive Bayes
[30] Dance monitor Phone accelerometer, Decision tree,

Song BPM kNN,
Logistic regression
Naive Bayes,
Neural network,
Random forest,
SVM

Cognitive retention [121] Math tutor System events Logistic regression
[66] Math tutor System events Logistic regression
[20] Math tutor System events Logistic regression

Cognitive learning, Ours Surgical simulation Head tracking, SVM
Cognitive retention, Hand tracking
Psychomotor retention

indicate, categorizing into more than two subsets of affect can still present challenges compared

to categorization of one affective state like Mota and Picard [90]. These works, along with that by

Drummond and Litman [31] show that it is possible to automatically predict much about a learner’s

affective state.

When this research was conducted, our work was the only one that made use of HMD and con-

troller tracking data to predict learning outcomes and one of few works to predict procedural

knowledge outcomes. Though other works do make use of skeletal tracking or posture tracking

(see Table 2.1), these made use of additional tracking systems such as the Microsoft Kinect. While

training systems may non-intrusively make use of such tracking, HMD and controller tracking data

is readily available in consumer VR systems.
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2.2 Identifiability and Obfuscation

The recent availability of larger datasets has been key for the improvement of machine learning

techniques. Goodfellow et al. note that “the learning algorithms reaching human performance

on complex tasks today are nearly identical to the learning algorithms that struggled to solve toy

problems in the 1980’s... The most important new development is that today we can provide these

algorithms with the resources they need to succeed.” [41]. VR offers unique access to a set of

biometric data at high frequencies from users, due to the inherent need to track their movements to

render the virtual world.

2.2.1 Machine Learning Biometrics for Authentication

There has been much research into the field of behavioral biometrics to investigate means of im-

proving authentication security while attempting to remain less intrusive than physiological bio-

metrics. Work has been done to investigate passive authentication in the form of keystroke dynam-

ics analysis while entering a password [101], continuous voice authentication for voice assistants

[37], and sensor-based passive smartphone authentication [64]. Specific device contexts can allow

access to biometric data that may normally be difficult to gather passively. Zhang et al. [127]

recently investigated electrocardiogram-based authentication for healthcare systems. Eberz et al.

[32] have looked at the ability to spoof user data for an electorcardiogram-based authentication

device, and there has also been research into the ability to transform recorded heart data across

contexts, increasing the ability to spoof electorcardiogram data [33].
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2.2.2 Machine Learning VR Tracking Data

Similar to collecting electrocardiogram biometrics for authentication while a user is already wear-

ing a sensor [33], VR provides a device context that allows software to incorporate several pieces

of behavioral biometric data that is normally inaccessible. At a minimum, most VR hardware

consists of a HMD with orientation tracking of the head, and common systems can incorporate

positional and orientation tracking of the HMD and multiple controllers. Some VR systems, such

as the HTC Vive Pro Eye, have embedded eye-trackers as well. The streams of data from these de-

vices which are used for displaying and interacting with virtual environments can also be a source

of rich biometric data, and there has been increasing research in using this data to identify and

authenticate users.

2.2.2.1 VR Tracking-based Authentication

Kupin et al.[60] investigated authentication through a controlled ball-throwing task by analyzing

the trajectory of the position of the controller over the entire task. This trajectory was then mapped

to existing trajectories with a symmetric sum-squared distance evaluation function to attain accu-

racy of about 90% among 14 participants. Ajit et al. [1] built upon this work by looking at new

match metrics, including dynamic time warping, and using a perceptron to identify optimal match

weights. They also made use of the position and orientation of both controllers and the HMD.

Ajit et al. [1] were able to get accuracies around 93% for their 33 participants. Finally, Miller et

al. [81] extended on the same authentication task by developing a system that sends matches to a

perceptron to report confidence in identity, in order to create a system that should be able to detect

when a different user has hijacked a VR session.

Similarly, Mustafa et al. [91] made use of feature vectors derived from time and frequency domain
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derivatives of the x, y, z, and magnitude values from each accelerometer and gyroscope sensor,

as well as features such as correlations across multiple streams to authenticate users. Mustafa et

al. [91] compared the performance of Logistic Regression to SVM for their authentication system,

and ultimately built a model capable of equal error rates among their 23 users as low as 7% in their

application that consisted of free head movements in response to random events.

2.2.2.2 VR Tracking-based Identification

Rogers et al. [103] found they were able to uniquely identify users from their involuntary blinks

and head movements when presented with images of numbers and letters. They made use of 96

total features derived from blinking and head movements, registered from the infrared (IR) eye

tracker, gyroscope, and accelerometer of their device. After an enrollment phase consisting of

showing the user a sequence of images, they were able to identify users with an RF model, getting

a balanced accuracy of about 94% for their 20 users.

Pfeuffer et al. [99] recently conducted a study in which 22 participants performed controlled VR

tasks over two sessions and, by making use of head, hand, and eye-tracking data, were able to

identify participants at rates of about 40%. They explored 4 generic tasks (pointing, grabbing,

walking, and typing) in a controlled setting and compared several feature representations, includ-

ing tracker positions, distance between trackers, and distances between trackers and targets, over

individual tasks. By comparing the classification accuracy between different tasks and feature sets,

they found which features were optimal for each of their tasks. Pfeuffer et al.’s [99] maximum

accuracy of about 64% was in pointing tasks with features based on the maximum dominant hand

angular velocity, the average distance between the two hands, as well as six other features.

Similarly, work by Miller et al. [80] has shown positive identification rates above 95% when iden-

tifying among 511 participants viewing 360◦ videos and answering questionnaires in a stationary
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position. They made use of a position and orientation feature vector derived from each second of

data. Unlike Pfeuffer et al.’s [99] work, Miller et al. [80] explored identification within a single

session only. Our current work is based on the work of Miller et al. [80].

Most recently, Liebers et al. [67] explored user identification with body normalization. In their

work, they developed two controlled identification tasks (bowling and archery) and employed fea-

turization derived from the position and orientation of the HMD and controllers, fed to a Recurrent

Neural Network consisting of three Long-Short Term Memory layers, and a multilayer percep-

tron. Their highest overall accuracy was 90% for archery and 68% for bowling among their 16

participants.

2.2.3 Machine Learning Velocity for User Experiences

In our current work, we investigate using velocity to reduce identifiability. This is motivated by re-

cent work that finds utility in applying ML to velocity data for predicting user experience outcomes.

Padmanaban et al. [96] used velocity-based video features for predicting simulator sickness in 360◦

stereoscopic videos with relatively low root mean squares. Similarly, Moore et al. [86] made use

of velocity components of the HMD and controllers in a VR training environment to predict pro-

cedural knowledge gain with accuracies up to 93%. Finally, David-John et al. [25] were able to

successfully predict the onset of 3D interactions with gaze dynamics, achieving a maximum area

under the Receiver-Operator Curve of 0.92. These works made successful use of velocity-based

data representations rather than position data for predicting user experience outcomes. Hence, we

decided to investigate velocity-based input features in our current work.
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2.3 Identifiability and Authentication Research by Inclusion of XR Tracking Features

In this section, we examine some works organized by their inclusion of different features, and the

comparisons in performance that they make by models trained on those different feature inclusion

conditions.

2.3.1 Identification and Authentication with Eye-tracking

Several commercially available HMDs for augmented or virtual reality affort eye-tracking. Often

the hardware necessary for this is included as a means of collecting user input or improving the

hardware performance through techniques like foveated rendering. As this stream of data has

become more available, several researchers have begun exploring its usefulness as a means to

identify or authenticate users.

In recent work by David-John et al. [24], the authors recognize that while eye-tracking data can

be useful as a means of input, it also runs a heightened risk of allowing systems identify users, for

example, by correlating a users’ data across multiple accounts. They propose a privacy-preserving

means of streaming eye-tracking data by gatekeeping at the API level. Their approach was capable

of reducing identifiability from 85% to approximately 30% while preserving a system’s ability to

use gaze data for input like foveated rendering.

In another recent work by Liebers et al [68], the authors make use of eye-tracking features and

HMD orientation and provided participants with a stimulus designed to elicit smooth pursuit head

and eye movements. These movements were tracked by logging the reported HMD Euler angles,

as well as the pupil position. After preprocessing to determine additional eye-tracking events

such as saccades and pursuits, The authors then investigate both kNN as well as a set of 10 Deep

Learning Neural Network approaches. Ultimately the authors found that inclusion of HMD-based
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Table 2.3: A comparisons of the input features used by related works. Each letter under a given
paper indicates a condition that was evaluated in that paper consisting of the data for each row in
which the letter appears. The chart also shows what kinds of classifiers each work explored as well
as the number of participants, and the highest accuracy attained by their best-performing classifier
among the explored representations.
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Position A A A AB AB A FJP CHJL
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Rotation A A A AB AB A IJP
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O
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Position A A A AB AB A KOP EIKL
QRSU

Velocity C B LOP
EIKL
QRSU

Distance MOP

Rotation A A A AB AB A NOP
FINO
QRTU

Ang Vel C B
FINO
QRTU

Classifiers

RBF DNN LogR kNN CNN LogR GBM RF, MLP MLP GBM RF GBM GBM
kNN DT, RF kNN SVM kNN FRNN RNN kNN SVM kNN kNN

LSTM RF LSTM RF RF RF
RF GRU

Participants 18 12 35 15 34 23 511 34 16 60 22 45 45
Highest
Accuracy 85% 100% 96% 98% 98% 93% 95% 100% 90% 90% 44% 96% 68%

data increased accuracy of their ML model from 45% to 90%, as well as their best-performing

deep learning model from 96% to 100%.

Expanding on the number of tasks examined, Tricomi et al. [115] present a pre-print investigating

the identifiability of participants in both VR and AR tasks. The participants were exposed to 5
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types of tasks in the AR condition and 7 types of tasks in the VR condition. They make use of

automated systems to determine salient features of the raw data, then use machine learning to

attempt to identify and profile their participants. The authors found 96% identifiability accuracy.

Olade et al. [94] also examined similar body and eye tracking features, but for both continuous

identification as well as authentication. They used a data set of 15 participants, and investigated

various attack types could one could be conducted and what the risk was among their participants.

Ultimately, their accuracy was 98.6%.

Finally, one more paper that investigates identifiability with the inclusion of eye-tracking data by

Asish et al., [3] focused exclusively on eye-tracking data. This paper has VR session divided into 4

separate experiences and examines identifiability across those sessions. The authors also train their

models on 3 of the 4 experienced sessions and find 98% overall accuracy with their deep learning

models.

2.3.2 Identification and Authentication without Eye-tracking

While eye-tracking has been incorporated in multiple HMDs, many headsets do not support it as

a form of input. Several works have investigated identifiability or authentication by making use

only of the sensors that provide the tracking needed for a virtual reality experience. The benefit to

restricting oneself to this set of data is that the results are applicable to a broader range of hardware

than only those that afford eye-tracking.

Mustafa et al. [91] explore authentication in a VR experience making use of only features derived

from the orientation of the HMD. In their work, they generated authentication models that gave

equal-error rates around 7%, showing feasibility in such an approach for authenticating in a sce-

nario with 23 users. One caveat pointed out by the authors is that their results were task-specific
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due to encoding features of the virtual environment, and so authentication in another environment

would require the creation of new models which may perform differently.

In recent work by Miller et al. [80], the authors presented a study involving 511 participants

with a virtual environment that displayed 360◦ video clips with questionnaires presented between.

They made use of only the positions and orientations of the controllers and head-mounted display

for passive identification of users. They conducted an ablation study examining the removal of

subcomponents of tracking data and found that removal of the HMD Y value (which is strongly

correlated with height) resulted in the largest drop in identification accuracy.

Schell et al. [105] also investigate identifiability on motion from a restricted set of data points. In

this pre-print, the authors investigated identifiability by using the open Talking with Hands dataset

[63]. Schell et al. examined creating head-relative values for the hand position and orientations, as

well as their time-derivatives from this conversational dataset. This subset of the data was chosen

as it corresponds to the tracking data that a typical room-scale system affords. They found that

with majority voting on increasingly long test sequences, they were ultimately able to attain 100%

accuracy with several of their explored models. While the data this analysis is conducted on is from

in-person human-human conversational dyads outside of VR, the authors suggest that their results

further contribute to the body of research showing potential in the use of this data for identifying

individuals in VR experiences.

In another recent work by Liebers et al. [67], the authors investigate the identifiability of users

performing two different tasks in VR. In their study, they had 16 participants perform repetitions

of prescribed tasks over two days. By training their models on data from a single day’s session

and evaluating on a different day, they ensured that their models weren’t encoding data that may

be session-specific. They found that for their, they were able to attain accuracy up to 90% with

a motion mapped to a normalized human body model with a Recursive Neural Network based on
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LSTMs and a Multilayer Perceptron.

Another work that investigated identifiability by Moore et al. [87] examined the passive iden-

tification of users across a week delay between sessions in an interactive training environment.

They found that the identification accuracy across sessions was greatly reduced from around 90%

to near 32%. The authors hypothesize a few reasons for this finding including variability in the

presentation of the VR experience, the potential for the user to be in a substantially different phys-

ical and mental state, and wearing different clothing. The authors additionally examined using

velocity-based features and found that those further reduced identification accuracy.

Finally, Pfeuffer et al. [99] also investigate identification between sessions with a minimum 3-day

period between exposure. The examined identification making use of features derived from the

head, hand, eye, among 22 participants. They also looked at 4 different types of simple interactions

to identify users with. With multiple samples of each atomic interaction, they were able to achieve

44% identification accuracy between sessions.
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CHAPTER 3: EXTRACTING VELOCITY-BASED USER-TRACKING

FEATURES TO PREDICT LEARNING GAINS IN A VIRTUAL REALITY

TRAINING APPLICATION

NOTE: This chapter is a modified format version of the paper previously published.

Material from: A. G. Moore, R. P. McMahan, H. Dong, and N. Ruozzi. Extracting velocity-based

user-tracking features to predict learning gains in a virtual reality training application. In 2020

IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 881–890, Los

Alamitos, CA, USA, nov 2020. IEEE Computer Society. doi: 10.1109/ISMAR50242.2020.00099.

URL https://doi.ieeecomputersociety.org/10.1109/ISMAR50242.2020.00099
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3.1 Introduction

Virtual Reality (VR) has a long history of being used for training and educational purposes [10].

It has been used for cognitive-based learning (i.e., knowledge acquisition [57]), such as learning

about World War I [125], spatial understanding of geometry [61], and haul truck inspection proce-

dures [75]. For example, it has been used to learn how to use calipers and micrometers [7], how to

don personal protective equipment [36], and how to perform prescribed visual scanning strategies

[100]. Finally, VR has also been used for education in the affective domain (e.g., attitudes, emo-

tions, and feelings [56]), such as interpersonal skills [53] and therapy [102]. With the introduction

of consumer VR systems, these learning-focused uses of VR have gained more attention recently

[16].

Closely related to VR training and education is the Intelligent Tutoring Systems (ITSs) field. The

goal of an ITS is to engage learners in a sustained learning activity and to interact with each

learner based on a deep understanding of that learner’s behaviors [22]. To understand the learner’s

behaviors, ITSs incorporate techniques from the Artificial Intelligence (AI) community to provide

tutoring systems that know “what they teach, who they teach, and how to teach it” through user

models [93]. These user models enable ITSs to provide adaptive support for learners by using an

abstract representation of the learner in terms of relevant traits, such as knowledge, meta-cognitive

ability, and learning behaviors [2]. Two forms of adaptivity for ITSs include scaffolding (i.e.,

proactively providing guidance) and feedback (i.e., reactively providing guidance) [116]. However,

feedback is the more common approach to creating an adaptive learning environment [116], and

most feedback approaches use simple and static rules that employ particular feedback for specific

types of detected errors [42].

In this chapter, we investigate the feasibility of using a machine-learning approach to classify

users of a VR training system into groups of low-learning (LL) and high-learning (HL) gains,
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based on their head-mounted display (HMD) and controller tracking data. By using tracking data,

as opposed to events or errors [42], our approach affords new possibilities for real-time adaptivity,

before events or errors even occur. Unlike most prior approaches that are only capable of feedback

[116], this tracking-based, machine-learning approach can potentially be used for both feedback

and scaffolding, such as guiding the user’s attention [23], providing interaction cues [50], and

simplifying the interactions [74]. As discussed in Section 3.2, our machine-learning work is the

first to use HMD and controller tracking data to predict cognitive learning gains.

After discussing related work, we present a user study, in which participants used a VR training

simulation to learn the procedure for troubleshooting a surgical robot and then a knowledge test

was administered to assess their cognitive learning gains. We used the results of the knowledge test

to separate participants into two groups (LL and HL), with learning gains one standard deviation

or above the mean being classified as HL. We then present the results of a machine-learning exper-

iment that employed support-vector machines (SVMs) [9] to predict which group (LL or HL) each

participant belonged to, based on their tracking data. For the experiment, we compared the accu-

racy (i.e., correctness of the prediction) and confidence of the models learned using three different

sets of input features and two feature representations. For the input features, we investigated: a)

linear and angular velocity vectors of the HMD and controllers (HLA+CLA), b) linear and angular

velocities of the HMD and linear velocities of the controllers (HLA+CL), and c) linear velocities of

the HMD and controllers (HL+CL). For the feature representations, we investigated: a) Principal

Component Analysis (PCA) [119] and b) convex matrix factorizations (CVX) [8].

The results of our machine-learning experiment indicate that the velocities of the HMD and con-

trollers yielded high mean accuracies for both the training data (85.7%) and the testing data

(93.1%). There were no major differences among the input features and feature representations

on the testing data. However, we did find that the combination of HLA+CL input features and the

CVX feature representation yielded 100% accuracy for the testing data.
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In order to understand how the SVMs classified participants into LL and HL groups with such high

accuracies, we have visually inspected segments of tracking data that were correctly identified by

the SVMs. Novel visualizations of the segments show that participants with HL gains moved with

better economies of motion than those participants with LL gains. These results indicate that it

is feasible to use the velocities of the HMD and controllers to develop new real-time adaptivity

techniques for improved scaffolding and feedback in VR training systems.

We anticipate that our work will be useful in the development of systems that predict learning

gains, and subsequently respond dynamically when users may not be learning as well as possible.

Such systems may make use of real-time classifiers to provide additional scaffolding and feedback

to better support the end-user’s learning. Through this work, we hope to begin to answer RQ1:

Can readily available VR tracking data be used to predict cognitive outcomes from a VR training

scenario?

We present the following contributions in this chapter:

• We collected HMD and controller tracking data from 61 participants using a VR training

application for troubleshooting surgical robots and measured their procedural knowledge

acquisition using a posttest.

• We conducted a machine learning experiment investigating three sets of velocity-based input

features (HLA+CLA, HLA+CL, HL+CL) and two feature representations (PCA, CVX).

• Our results indicate that it is feasible to predict LL and HL gains with high accuracies and

confidences using our investigated machine learning methods.

• We found that participants with LL gains moved less smoothly but also more slowly than

participants with HL gains, using our novel visual inspection technique.
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Figure 3.1: The VR training simulation used in our user study.

3.2 VR Training User Study

We used an existing VR application that was designed to train first assists who work with surgical

robots [19]. The training scenario involves interacting with a virtual surgeon and non-sterile staff

member to troubleshoot a surgical robot with a faulted instrument arm. In brief, the troubleshooting

procedure involves attempting to restart the system, using a tool to open the instrument forceps

that are stuck grasping patient tissue, removing the instrument, stowing the arm, and disabling

it. To accomplish these tasks, a trainee must complete several steps that require various actions,

including moving around the virtual operating room (OR), looking at the endoscopic monitor,

selecting dialogue options to converse with the virtual agents, and manipulating objects, such as

the instrument clutch (see Figure 3.1).
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3.2.1 Materials

We used an HTC Vive system, including the head-mounted display (HMD) and both handheld

controllers, to run the VR training application. The Vive HMD provided a 110° diagonal field of

view with a display resolution of 1080 x 1200 pixels per eye and a 90Hz refresh rate. The HMD

was retrofitted with a Vive audio strap. The VR training application was developed using Unity

and maintained framerates of 90 frames per second to match the Vive’s refresh rate. The SteamVR

plugin for Unity was used to process the Vive’s input data.

During the procedure, the VR training application collected head and hand tracking data every

frame. Each data point consisted of the frame’s timestamp, the global positions and rotations of

the HMD and handheld controllers, and the status of each controller’s trigger button, which was

the only button used for interactions. We are using three attributes (i.e., a 3-vector) to describe

each global position and four attributes (i.e., a quaternion) to describe each global rotation.

3.2.2 Procedure

The following procedure was reviewed and approved by the University Institutional Review Board

(IRB).

After informed consent, the session began with a background survey on the participant’s demo-

graphics, education, and technology experience. The experimenter would then help the participant

put on the HTC Vive and run the SteamVR tutorial to train the participant how to use the Vive.

The participant would then experience the VR training application. After completing the train-

ing session, the participant was administered the Simulator Sickness Questionnaire (SSQ) [55],

the Spatial Presence Experience Scale (SPES) [44], the System Usability Scale (SUS) [14], and

questionnaires regarding scenario fidelity [73] and body ownership aspects [72] of the VR training
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experience. Finally, participants were administered a knowledge test consisting of 20 multiple-

choice questions pertaining to the training scenario. The session lasted approximately 60 minutes.

3.2.3 Participants

A total of 61 participants (11 females, 50 males) were recruited through university mailing lists and

completed our study. As an exclusion criterion, none of the participants had prior experience or

knowledge of surgical robots. The mean age of the participants was 22.7±4.23 years old. Based

on self-reported background data, 18 participants regularly played video games five or more hours

each week and 32 participants have prior experience with consumer VR HMDs.

3.2.4 Descriptive Statistics

The mean time required for the participants to complete the VR training application was 12.45

minutes (σ = 3.29 minutes). The mean total simulator sickness score was 21.09 (σ = 18.42), which

is similar to or better than recently reported SSQ results for consumer VR HMDs [122, 114, 69].

The mean presence score was 4.01 (σ = 0.70), which is similar to recent SPES results that also used

the HTC Vive [34]. The mean perceived usability score was 73.81 (σ = 13.26), which is greater

than the average SUS score of 68 [14]. The mean scenario fidelity score was 3.88 (σ = 0.64) out

of 5.00, and the mean body ownership score was 3.65 (σ = 0.79) out of 5.00. Generally, it appears

the scenario fidelity and body ownership aspects of the VR training simulation were acceptable.

Finally, the mean knowledge test score was 8.38 (σ = 3.07) out of 20.00. While this appears to

be low, it is important to keep in mind that the participants have no prior experience or knowledge

of surgical robots. Additionally, the participants experienced the troubleshooting procedure only

once. Finally, recent research indicates that people can generally only remember 4± 1 items at a
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time [54]. Considering all of this, a mean score of 8.38 out of 20 questions seems acceptable. At

the same time, it also clearly indicates that there is room to improve the VR training simulation

with real-time adaptivity techniques.

3.3 Machine Learning Experiment

In this section, our aim is to fit machine learning models to the collected VR data. In particular,

we are interested in answering the following question: Can we predict whether or not a trainee

is experiencing high learning gains or low learning gains using only the head and hand tracking

data?

As we are operating in a data limited setting, care must be taken when fitting ML models: naïve

applications of even simple ML models can easily overfit the data and result in poor predictive

performance. Consequently, we need to proceed with caution when processing the data, extracting

features, and fitting the ML model in order to minimize overfitting.

In the following sections, we will describe how we converted the collected data into a feature

representation that is amenable to standard ML methods, explain how the data was divided into

subsets for training and testing, specify how the model was fit to the training data, and show how

the learned model can be used to answer the above question. All code for these procedures was

written in Python using scikit-learn to fit the machine learning models. The featurized version of

the data set and the Python code for fitting the models will be made publicly available on GitHub1.

1GitHub.com/LeonDong1993/learning-gain-prediction
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3.3.1 Data Pre-processing

Below we discuss how we organized participants into groups of low- and high-learning gains.

We also describe how we segmented the participant data into two data sets: one for training our

machine-learning models and one for testing our trained models. We then discuss how we pre-

processed the tracking data and ultimately converted it to the linear and angular velocities of the

head and hand tracking data. Finally, we discuss how we pre-processed the tracking data and

ultimately investigated the linear and angular velocities of the head and hand tracking data.

3.3.1.1 Low- and High-Learning Gains

In order to label participant data as low-learning (LL) or high-learning (HL) gains, we first fit a

Gaussian distribution to the observed knowledge test scores, creating a normal distribution with a

mean score of 8.38 (σ = 3.07). We then classified all test scores one standard deviation above the

mean, i.e., ≥ 12, as HL gains. All other test scores and participants were classified as LL gains.

This resulted in 51 LL participants and 10 HL participants.

3.3.1.2 Training and Testing Data Sets

We divided our complete data set into a training data set and a testing data set: the training data

is used to build the ML models while the testing data is used to evaluate the performance of the

learned model on novel data observations. For both groups, we used an 80:20 ratio for dividing the

data for training and testing, which is based on the Pareto Principle [111]. That is, we randomly

selected 80% of the participants from each class for the training data set and used the remaining

20% for the testing data set. This resulted in a train-test split in which the training set contained

41 LL participants and 8 HL participants and a testing data set with 10 LL participants and 2 HL
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participants.

3.3.1.3 Velocity-Based Input Features

As described in Section 3.2.1, the raw input data from the VR training application included the

global positions and rotations of the HMD and handheld controllers, and the status of each con-

troller’s trigger button, per timestamped frame. However, there were several issues with the raw

data upon inspection. First, the relationship between the button and tracking inputs were highly

correlated with the tasks of the VR training application. For example, during the task of manip-

ulating the instrument clutch (see Figure 3.1), button inputs occurred approximately in the same

tracked positions due to the position of the instrument clutch before the manipulation began. For

the same reason, the positions and rotations of the HMD and handheld controllers were also highly

correlated with task execution. Additionally, the heights (i.e., z-axis values in Unity) of the posi-

tions were highly dependent upon the heights of the participants. Including such information can

cause machine learning models to overfit the training data set, e.g., by learning specific tasks and

participants, which often results in poor testing performance [58].

To address the above issues, we converted the raw positions and rotations to linear and angular

velocities. First, we sampled every 15 frames of the original data, which resulted in approxi-

mately 6 frames of data per second. We did this to reduce the effects of tracking jitter [73]. We

then computed 3-vector linear velocities for each new frame of data by dividing the differences

in the 3-vector positions, compared to the previous frame, by the time difference between the two

frame’s timestamps. We computed 4-vector angular velocities from the 4-vector rotations in a sim-

ilar manner, except we first converted the quaternion representations to angle-axis representations

to calculate the differences and then back to quaternion representations. In summary, these con-

versions yielded 1/15th of the original frames, with 3-vector linear velocities and 4-vector angular
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velocities for the HMD and both handheld controllers each frame.

Note, as part of our machine learning experiment, we investigated three sets of input features:

a) the HMD linear and angular velocity and the controller linear and angular velocities

(HLA+CLA), b) the HMD linear and angular velocity and the controller linear velocities

(HLA+CL), and c) the HMD linear velocity and the controller linear velocities (HL+CL).

3.3.1.4 Data Segments

The velocity sequence data for each user was divided into multiple short velocity segments of the

same fixed length using the sliding window method. Note that we allow those velocity segments

overlap with each other (this is particularly important for feature selection with CVX as we do not

know in advance which segments correspond to important patterns in the data). In other words,

when creating the next segment, the amount we shift the sliding window right is less than the

size of segment length (i.e., the size of sliding window) itself. The shift size and the length of

the velocity segments are considered as hyperparameters of our model. The ML process will

automatically select the best values among the given candidates based on predictive performance

as part of the cross-validation procedure. More details about the hyperparameter selection process

and the range of values we considered for each hyperparameter can be found in Section 3.3.2.1 and

3.3.3, respectively.

3.3.1.5 Feature Representations

The data obtained after pre-processing could be directly plugged into a learning procedure. For

example, we could construct a data vector by flattening the velocity segment in a row order. As

the data vectors produced this way are usually high dimensional and quite noisy, we expect poor
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performance from the learned classifier due to our limited number of participants, particularly our

limited number of HL gains. Instead, we consider two feature extraction procedures to produce

feature input vectors for our machine-learning models: a) Principal Component Analysis and b)

convex-combination representations.

Principal Component Analysis (PCA) aims to explain the data as a linear combination of input

features. This is done by finding the eigenvectors and corresponding eigenvalues of the data co-

variance matrix, where each eigenvector is considered as one component and the corresponding

eigenvalues tell us how much of the variance is explained by that eigenvector. We can construct

a lower dimensional feature representation by projecting onto the eigenvectors of the top k most

informative components.

As the features produced by PCA are linear combinations of the input data, and hence difficult to

interpret, we were motivated to investigate an alternative robust feature selection strategy based on

non-negative matrix factorization that aims to provide interpretable feature representations. The

motivation for interpretable features is our belief that certain patterns of velocities are more typical

of low- or high-learning gains. As a result, it makes sense to build feature vectors that are based

on canonical velocity segments.

Specifically, we consider the convex-combination (CVX) feature extraction technique, which

aims to explain the data as convex combinations of a subset of the input features [8]. In this

approach, each data vector is considered as a point in a high-dimensional space, and the objective

of the CVX algorithm is to find k points whose convex hull well-approximates the convex hull of

the entire data set. The k selected points are necessarily extreme points of the data set and can be

interpreted as those data points that contain patterns whose convex combinations well explain the

remaining data set. Note that every data point inside the convex hull can be exactly represented

as the convex combination of these k data points. For data points that are not inside the convex
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hull (often a small number in practice), we compute an approximation by projecting them onto the

convex hull. Similar to PCA, the coefficients, obtained by projection onto the hull, that describe

the approximation form the new feature vector. Note that the sum of the nonnegative coefficients

is guaranteed to be one, where the value of each coefficient tells us to what extent the data point is

similar to the corresponding selected point.

3.3.2 Model Setup

We fit support vector machines (SVMs) [9] with Gaussian kernels to the featurized data. The

resulting linear separator will yield a classification of LL/HL for every velocity segment. One

possible way to extend the segment classification to an entire user is to determine the user’s label

by majority vote over the predicted labels of the user’s velocity segments. This turn outs to be a

bad idea in our case. To see why, observe that approximately 20% to 30% of the velocity segments

are common between LL and HL. In other words, these velocity segments are not informative and

the classifier should yield a low confidence, i.e., essentially random, prediction for each of them.

As a result, the user label will likely be skewed by these segments if we do not take the confidence

of the segment-level classifier into consideration.

For example, consider an HL user that has 5 velocity segments whose predicted labels and corre-

sponding confidence scores are given as follows: (1,2.4),(0,1.7),(0,0.2),(1,2.7),(0,1.3), where

0/1 stands for LL/HL. Here, the third velocity segment is an uninformative segment where the

classifier predicts the label as LL. If we determine the label by majority vote, we would incorrectly

predict LL. However, if we take the confidence of the classifier into account, we see that the clas-

sifier is more confidently predicting an HL label. As a result, although only 2 out of 5 velocity

segments are predicted as HL, the overall confidence in HL is 2.4+2.7
2.4+2.7+1.3+1.7+.2 = 61.4%, which

gives the correct prediction result.
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To overcome the limitations of majority vote, we propose to extend the classifier over single ve-

locity segments to a classifier over users as follows. First, recall that, for the SVM classifier, the

prediction is generated by a decision function f . For a given input (feature vector) v, the sign

of f (v) indicates the class (LL/HL) of v while the absolute value | f (v)| is proportional to dis-

tance to the decision boundary. We say that the classifier is more confident for points further from

the boundary between LL and HL as small changes in data points that are far from the decision

boundary are very unlikely to change the prediction.

Let lu,i and du,i denote, respectively, the predicted label and corresponding distance for the ith

velocity segment of user u. We define the user level confidence that u belongs to class c as

confu,c =
∑i st. lu,i=c du,i

∑
N
i=1 du,i

,

where N is the number of velocity segments that belong to user u. Then, the predicted label of the

user is determined by selecting the class c that maximizes the confidence.

3.3.2.1 Hyperparameter Selection

There are five hyperparameters that need to be selected during the training process: the length

of the velocity segments, the shift size of sliding window, the number of approximate hull points

(CVX) / the number of selected eigenvectors (PCA) k, a parameter γ that controls the expressiv-

ity of the Gaussian kernel, and the slack penalty coefficient C that controls the degree to which

misclassification of the velocity segments is penalized. The larger the value of C, the more the

important it is to classify all velocity segments in the training split perfectly.

In our experiments, we used cross-validation at the user level to jointly tune those parameters.

Unlike normal fold-based cross-validation, we do not split our data into equal sized folds and train
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Table 3.1: Value range of hyperparameters considered.

HyperParameter Seg. Length Shift Size Components Penalty Expressivity
Minimum Value 30 5 10 1 0.001
Maximum Value 120 13 80 10000 0.09

a classifier on all folds except one, which is left out for evaluating model fit. Instead, we divide

all users in the train split into two groups such that the larger group accounts for 75% of all users.

We train an SVM classifier under each hyperparameter configuration using all velocity segments

belonging to users in the larger group, and we evaluate the performance of the trained classifier on

all velocity segments belonging to users in the smaller group. After that, we redivide the users in a

different way and conduct the above evaluation again. This process is repeated eight times and the

hyperparameter configuration that achieves the highest average evaluation score is selected as the

best hyperparameter.

Finally, the model fit with each configuration of the hyperparameters is evaluated using a scoring

function. A common approach would be to select the classifier with the highest F1-score, which

is the harmonic mean of the precision and recall of the classifier’s prediction results. This may not

be ideal in our setup as the F1-score only measures the segment level performance while what we

really cares about is the user level performance. In other words, we should favor a classifier that

can distinguish LL and HL gains with high accuracy as well as high confidence.

Based on the same idea of balancing precision and recall used by the F1-score, we propose the fol-

lowing user level scoring function. First, define PL ≡ LLAcc×LLCon f and PH ≡HLAcc×LLCon f

as the performance measure of the trained classifier for the LL and HL classes respectively. Our

scoring function is then the harmonic mean of these quantities.

score =
2PLPH

PL +PH
.
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Table 3.2: Best hyperparameter for each model.

Attributes Feature Seg. Length Shift Size Components (k) Penalty C Expressivity γ

HMD linear and angular velocity
Controller linear and angular velocity

PCA 105 7 10 10 0.001
CVX 90 5 10 1000 0.001

HMD linear and angular velocity
Controller linear velocity

PCA 120 7 30 10 0.001
CVX 105 7 20 10000 0.05

HMD linear velocity
Controller linear velocity

PCA 90 7 80 1 0.003
CVX 120 7 50 10000 0.07

3.3.2.2 Evaluation Metrics

Once we select the best hyperparameters via cross-validation, we train an SVM classifier with a

Gaussian kernel over the entire training split using these hyperparameters. The resulting model

is then evaluated on both the training and test splits. In the following experiments, we assess the

performance of our learned models with respect to three metrics: (1) the accuracy over velocity

segments SegAcc, which is the percentage of velocity segments that are correctly classified; (2)

the accuracy over users for both classes LLAcc and HLAcc, which is the percentage of users that

are correctly classified for their respective labels. (3) the average confidence of the user level

prediction for both classes LLCon f and HLCon f . This is calculated by taking the mean of the user

level prediction confidence. Note that we only consider the users that are correctly classified, thus

the average confidence should always be greater than 0.5 since we have only two classes. We will

report all evaluation metrics for both the train and test splits.

3.3.3 Results

We consider two different feature extraction algorithms as well as three different sets of input

attributes. The range of values we considered for each hyperparameter are shown in Table 3.1 and

the corresponding best hyperparameters found via cross-validation are shown in Table 3.2. The
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Table 3.3: Experimental results on Train split using different attributes combination and feature
extraction technique.

Attributes Feature SegAcc LL Acc LL Conf HL Acc HL Conf

HMD linear and angular velocity
Controller linear and angular velocity

PCA 0.737 32/41 0.936 5/8 0.905
CVX 0.743 33/41 0.934 5/8 0.858

HMD linear and angular velocity
Controller linear velocity

PCA 0.731 30/41 0.903 6/8 0.788
CVX 0.794 41/41 0.883 6/8 0.822

HMD linear velocity
Controller linear velocity

PCA 0.771 41/41 0.865 5/8 0.785
CVX 0.865 41/41 0.939 7/8 0.867

Table 3.4: Experimental results on Test split using different attributes combination and feature
extraction technique.

Attributes Feature SegAcc LL Acc LL Conf HL Acc HL Conf

HMD linear and angular velocity
Controller linear and angular velocity

PCA 0.842 9/10 0.92 2/2 0.838
CVX 0.842 9/10 0.939 2/2 0.776

HMD linear and angular velocity
Controller linear velocity

PCA 0.818 9/10 0.904 2/2 0.956
CVX 0.827 10/10 0.889 2/2 0.688

HMD linear velocity
Controller linear velocity

PCA 0.798 9/10 0.872 2/2 0.856
CVX 0.781 9/10 0.904 2/2 0.871

performance of the models trained using the best hyperparameters for the train and test split are

shown in Table 3.3 and Table 3.4, respectively.

3.3.3.1 Comparison of Feature Representations

In this section, we compare the performance of the feature selection strategies PCA and CVX. We

make the following observations from the results in Tables 3.3 and 3.4. (1) The model trained

using the CVX feature representation achieves higher accuracy on the training split in all cases and

comparable levels of accuracy on the test split compared to the models fit using the PCA feature

selection technique. In addition, the models trained with the CVX feature representation always
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correctly identify at least as many LL and HL gain users compared to model trained with the PCA

feature representation on both the training and test splits. (2) The CVX feature representation

tends to use fewer components, the hyperparameter k, to explain the data as compared with PCA

as shown in Table 3.2. This indicates that CVX feature extraction results in a more compact

and robust feature representation, which usually leads to better generalization performance, i.e.,

performance on held-out data. (3) The models fit with the PCA feature representation tend to

have a smaller “Expressivity,” γ , and slack penalty, C, hyperparameters. This suggests that the

best model under the PCA features is not close to a perfect classifier on the training data. The

larger slack penalty for the optimal models under CVX features suggests that misclassification is

highly penalized in the optimal models, but the hyperparameter is slightly larger suggesting that

the representation in the kernel space is slightly more complicated.

The above observations suggest that the feature representation produced by CVX may better cap-

ture the important patterns inside the data compared to the features extracted by PCA. Recall that

the CVX feature representation also provides interpretability: the selected components correspond

to real motion segments. Still, both methods perform quite in this limited data setting.

3.3.3.2 Noisy Data and Head Orientation

We also investigated the effect that the angular velocity attributes had on the quality of the learned

classifier. Our initial experiments suggested that the head orientation data was quite noisy. This

observation also motivated us to investigate whether or not head orientation contributes signifi-

cantly to the predictive performance of the ML model. To do this, we first removed the angular

velocity attributes of both hands from all velocity segments and then we applied the PCA and CVX

feature extraction algorithms as above. The same procedure is repeated when we further remove

the angular velocity attributes of the head. The results of these experiments are shown in Table 3.3
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and Table 3.4 for train and test splits, respectively.

On the training split, we can see that the models trained with either the PCA or CVX feature

representations fail to identify a large percentage of LL and HL gains when the angular velocity

of the head and both hands are included. When the angular velocity of both hands are removed,

the ML model trained using CVX features achieves much better performance but the the model

trained on PCA features is still poor. This makes sense if the knowledge of angular velocity of

the hands either is not useful for predicting learning gains and/or the angular velocity of the hands

adds a significant amount of noise, which results in some eigenvectors in PCA that simply fit the

noise. Once we remove the angular velocity of the head as well as the hands, the model trained

using PCA features can achieve comparable results to the model trained with CVX features on the

training set.

On the test split, we can see that the model performance is quite robust no matter whether we

include the angular velocities or not, though the affect of these features on the confidence of the

ML models’ predictions is less clear. This suggests that the additional angular velocity attributes

add little generalization power to the ML model and only make it more difficult to train. In other

words, we can, and likely should, drop the angular velocity features to improve performance.

However, given our limited data setting, we view the above as preliminary observations; a larger

data set is necessary to draw stronger conclusions.

3.4 Visual Inspection of Machine Learning Results

Given the promising results of our machine learning experiment, we decided to visually inspect

segments of tracking data that were correctly identified as LL or HL by the CVX representation,

in order to understand how the SVMs classified participants with such high accuracies. Even
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though segments are independent of the VR system’s tasks, we wanted to visualize LL and HL

segments corresponding to the same VR system task to reduce confounds for the visual inspections.

However, because the participants completed the VR tasks at different times within the application,

we had to manually inspect the tracking data of segments to find those with corresponding tasks.

For both groups of learning gains, we manually inspected the 50 segments with the greatest HL+CL

CVX confidences that were correctly identified. We identified a total of 20 pairs of LL and HL

segments with corresponding VR tasks. See Figure 2 for visualizations of one of these paired

segments and a description of their underlying tasks.

In order to compare each pair of corresponding LL and HL segments, we needed a method for

visualizing their tracking data. A number of prior works have used top-down views of tracked

positions to visualize trajectories of VR travel [4, 21, 48, 92]. However, none of these prior works

have visualized handheld controller data, in addition to HMD data. In the robotic surgery do-

main, Hung et al. [51] have used 3D perspectives to visualize the trajectories of tracked handheld

instruments and camera.

Having considered prior works, we developed our own technique for visualizing HMD and hand-

held controller tracking data. Like some prior works [4, 92], we use a top-down view with the

virtual environment serving as a background for the visualization. We render the tracked HMD,

left-, and right-handheld controllers as purple, yellow, and cyan trajectories, respectively. To con-

vey the temporal relationships among these lines, we chose to render two lines from the HMD

position to the two controller positions, using a temporal blue-red color gradient, where blue rep-

resents the oldest data and red represents the newest. To avoid visual clutter, we only rendered

these HMD-controller lines on certain frames. To determine which ones, we chose to render those

frames in which the linear velocity of any tracked object exceeded 1 m/s, which was inspired by

our machine learning results.
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Figure 3.2: Visualizations of a pair of corresponding low- and high-learning gain segments. The
underlying VR tasks involved: 1) Requesting an instrument release kit (IRK) via a floating dialog
menu, 2) Receiving the IRK from a virtual agent, 3) Using the IRK on the instrument arm, 4)
Leaving the IRK on the back table, and 5) Removing the instrument. The blue-red color gradient
of the connected HMD-controller lines indicates the oldest (blue) and newest (red) frames in which
a linear velocity exceeded 1 m/s.
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Upon visual inspection of our visualizations, we quickly noticed two major differences between

our paired LL and HL segments. First, we noticed that the LL segments contained more changes

in positional direction than the HL segments, for all three tracked devices (see Figure 3.2). This

result indicates that the LL participants were more haphazard with their movements while the

HL participants maintained more control over theirs. Second, we noticed that the HL segments

contained many more velocity-based, HMD-controller lines than the LL segments (see Figure 3.2).

This result indicates that when the HL participants moved, they moved with more speed and likely

intention, as opposed to the LL participants, who moved more slowly and were possibly unsure of

their movements.

Considering our visualization outcomes indicating that the HL participants moved with more con-

trol and more deliberately while the LL participants moved more haphazardly but more timidly, we

decided to investigate whether prior VR experience was the cause. We conducted a Mann-Whitney

U test to compare learning label (LL or HL) differences between those participants with prior VR

experience and those without. However, we did not find a significant difference between the two

groups (U = 441, p = 0.605), which indicates that prior VR experience did not have a significant

effect on learning gains for the VR training system.

3.5 Discussion

In the following sections, we discuss predicting learning gains and the movements of learners

during VR training.
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3.5.1 Feasibility of Predicting Learning Gains

The results of our machine learning experiment indicate that it is feasible to predict learning gains

during a VR training application, based on the velocities of the HMD and handheld controllers.

We found that the investigated machine-learning approaches yielded a mean accuracy of 93.1% on

our test data for predicting LL and HL gains and a mean overall accuracy (i.e., testing and training

data) of 87.2%. We also found that the approaches yielded a mean test accuracy of 91.7% and a

mean overall accuracy of 89.2% for predicting LL gains. This is important since the motivation

for predicting learning gains is to develop adaptivity techniques for learners that are struggling.

Once we have established a larger data set to refine our machine-learning models on, the next step

will be to validate our classifiers in practice. We plan to conduct another large user study, in which

we will use our classifiers to predict each participant’s learning gains at the end of the VR training

application. We will then compare these predictions to the post-training knowledge test results,

in order to assess and validate the accuracies of our classifiers in practice. Accurate prediction of

learning gains will enable trainers to identify users that likely require more training, reducing the

time cost of separate evaluations when training to proficiency.

Finally, once we have validated the ability to predict learning gains with a high-degree of accuracy,

we will then need to investigate how to modify our machine-learning classifiers to be used in real

time. This capability is necessary in order to provide real-time adaptivity techniques, such as

scaffolding and feedback. A system could potentially identify users with LL gains during training

and dynamically adjust the prompts, animations, and cues provided to intervene and reduce the

time spent training while learning poorly. Tentatively, we expect to use a vote-oriented approach

[83]. This would require investigating a proper vote weighting method, confirmation and election

methods, and expiration parameters.
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3.5.2 Movements of Learners During VR Training

An interesting result from our research were the differences in movements between participants

with LL and HL gains. Using a novel visualization technique (see Section 3.4), we were able to

visually inspect the tracking segments correctly identified by our machine-learning models. We

found that participants with LL gains moved less smoothly but also more slowly than participants

with HL gains. These results indicate that participants with LL gains may have been unsure of

their movements while those with HL gains may have been more confident in their movements.

These outcomes also mirror results from the robotic surgery domain, in which experienced robotic

surgeons are found to have better economies of motion (i.e., fewer overall motions that are gen-

erally smooth and continuous except during fast ballistic motions) than less-experienced robotic

surgeons [35, 65].

We also investigated whether these results pertaining to economy of motion were due to prior VR

experiences. However, we found no significant differences between participants with LL and HL

gains due to prior VR experiences. Hence, we believe the observed economies of motion were

indicative of cognitive performance, rather than prior VR experience.

3.5.3 Limitations

Despite these promising results, more research needs to be conducted to achieve our goal. First, it

is important to note that we had a small number of HL gains to train and test our machine-learning

approaches on, due to the complexity of the VR training system, as discussed in Section 3.4. The

next step in our research is to conduct a much larger user study, in order to hopefully find a greater

number of HL examples. This will help refine our machine-learning models and avoid overfitting

our data set, which would negatively impact any future uses of our machine-learning classifiers.
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Another limitation is that while there clearly appears to be a link between user motion and knowl-

edge test performance, it is unclear how relevant the HL/LL split is with regard to training per-

formance. It is possible that a human trainer may view training performances quite differently,

compared to knowledge test performances. Additionally, while our HL/LL split was based on the

mean and standard deviation of the entire population, this wouldn’t necessarily be feasible in a

real-world scenario where any such division would have to be based on training data alone. In

our case, the HL/LL split for the entire population was 8.38 (σ = 3.07), while for just the training

population, it was 8.57 (σ = 2.85). So, we would still have used a score of 12 as the threshold for

HL/LL gains.

It’s worth noting that our evaluation with the test data yielded better results than the evaluation

using the training data as seen in Tables 3.3 and 3.4. This is likely because there were greater

variations within the training data than the testing data due to its larger sample size. These greater

variations resulted in the testing data yielding better results than the training data.

Additionally, the selected training scenario required significant interactions and movements. This

may have aided the classifier in its ability to distinguish learning performance compared to a virtual

environment consisting of only minimal interactions. Further research should be conducted to

determine to what degree the magnitude of required movements in a training scenario affects the

capability of a learning gains classifier.

3.6 Conclusion

In this chapter, we investigated the feasibility of predicting learning gains during a VR training

experience, based on a user’s HMD and controller movements. We conducted a user study with a

VR training simulation for learning how to troubleshoot a surgical robot and used a post-training
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knowledge test to assess learning gains. Based on the results of the knowledge test, we separated

participants into low- and high-learning gains, which we then randomly assigned to training and

testing data sets. We converted the positional and rotational tracking data from the VR training

system to linear and angular velocity vectors, which we used as input features. We used SVM

classifiers and two different feature representations (Principal Component Analysis and convex

matrix factorizations) to model learning gains based on the velocity vectors. Given its highly accu-

rate results, our machine-learning experiment indicates that it is feasible to predict learning gains

during a VR training application, based on the velocities of the HMD and handheld controllers.

Visual inspection of these results indicates that participants with high-learning gains exhibit better

economies of motion than those with low-learning gains.
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CHAPTER 4: EXPLORATION OF FEATURE REPRESENTATIONS FOR

PREDICTING LEARNING AND RETENTION OUTCOMES IN A

VIRTUAL REALITY TRAINING SCENARIO

NOTE: This chapter is a modified format version of the paper previously published.

Material from: A. G. Moore, R. P. McMahan, and N. Ruozzi. Exploration of feature representations

for predicting learning and retention outcomes in a vr training scenario. Big Data and Cognitive

Computing, 5(3), 2021. ISSN 2504-2289. doi: 10.3390/bdcc5030029. URL https://www.mdpi.

com/2504-2289/5/3/29
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4.1 Introduction

With the positive results we identified in the previous chapter for the prediction of learning gains in

virtual environments, we continued to investigate other cognitive outcomes that we may be able to

predict. Our motivation for continuing to pursue this line of research was based on the increasing

use of VR for education and training [10], hoping to further our understanding of RQ1, and to

begin to answer RQ2: Can readily available VR tracking data be used to predict psychomotor

outcomes from a VR training scenario?

VR practitioners have developed educational VR environments for knowledge acquisition, such as

learning about geometry [61], World War I [125], and how to inspect a haul truck [75]. VR has

also been used for training psychomotor skills, such as how to visually scan for threats [100], use

measurement tools [7], and put on personal protective equipment [36]. As consumer VR systems

have become more easily available, these educational uses of VR have gained more attention [16].

The field of Intelligent Tutoring Systems (ITSs) is closely related to VR training and education.

The goal of an ITS is to develop a deep understanding of each learner’s behavior to allow for in-

telligent engagement in sustained learning activities [22]. While much work in the field of ITSs

is focused on immediate knowledge, some research has made strides towards attempting to un-

derstand and predict longer-term retention of information, which is a better indicator of mastery

than short-term retention [121]. ITSs incorporate Artificial Intelligence (AI) techniques to allow

for tutoring systems that know “what they teach, who they teach, and how to teach it” through

user models [93]. ITSs can use these user models to provide adaptive support for learners be-

cause they provide a representation of the learner in terms of relevant traits like learning behaviors

and meta-cognitive ability [2]. This adaptive support can be implemented via proactive guidance

(scaffolding) or reactive guidance (feedback) [116]. Most ITSs that create adaptive learning envi-

ronments employ feedback [116], which is usually implemented with static rules for specific types
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of detected errors [42].

In this chapter, we investigate using a machine learning (ML) approach to classify users of a

VR training application into groups of low and high learning and retention outcomes, expanding

upon our previous work which only sought to predict learning outcomes [86]. Our work in this

chapter makes use only of the head-mounted display (HMD) and handheld controller tracking data,

as opposed to events or errors [42], which makes our approach viable for real-time scaffolding,

before events or errors even occur. Unlike most prior approaches that are only capable of feedback

[116], this tracking-based ML approach can potentially be used for both feedback and scaffolding,

such as providing interaction cues [50], guiding the user’s attention [23], or even simplifying the

interactions [74]. Our work explores using HMD and controller tracking data as a means for

predicting knowledge acquisition, knowledge retention, and performance retention.

After discussing related work, we present a user study in which participants used a VR training ap-

plication to learn the procedure for troubleshooting a surgical robot [85], then returned a week later

to perform this task again in VR. Participants were administered a knowledge test after the initial

training session and before the week-later retention session to evaluate knowledge acquisition and

retention, respectively. Errors were tracked in the retention simulation to evaluate performance

retention. For each learning and retention outcome, we used the results to separate participants

into two groups: high-performance participants scoring at least one standard deviation above the

mean and low-performance participants (i.e., all remaining participants that did not score at least

one standard deviation above the mean).

We then present the results of an ML experiment that employed support-vector machines (SVMs)

[9] to predict which group each participant belonged to, based on their tracking data. For the exper-

iment, we compared six different sets of input features based whether the data represented positions

or velocities and three different combinations of HMD and controller data: a) linear-and-angular
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features for both the HMD and controllers, b) linear-and-angular features for the HMD and linear-

only features for the controllers, and c) linear-only features for both the HMD and controllers. We

compared the accuracy (i.e., correctness of the prediction) and Matthews correlation coefficient

(MCC) (i.e., a measure of the quality of binary classifications [18]) of each model learned from

these six different sets of input features. For the feature representations, we applied Principal Com-

ponent Analysis (PCA) [119]. The results of our ML experiment indicate that this approach can

yield high degrees of accuracy for predicting learning and retention outcomes, with our maximum

observed overall accuracy at 96.7%. However, we note varying accuracy across our different in-

put features, which reinforces the usefulness of exploring these features as hyperparameters when

building models for similar educational purposes.

In order to understand how the SVMs classified participants into their high and low-performance

groups with such high degrees of accuracy, we have visually inspected tracking data segments that

were correctly identified by the SVMs. Visualizations show that participants with high learning

and retention outcomes moved with better economies of motion than those participants with lower

outcomes. These results show that it is feasible to use HMD and controller tracking data to develop

new real-time scaffolding and feedback techniques for VR training applications. We anticipate

that our work will be useful in the development of systems that predict learning and retention

outcomes, and subsequently respond dynamically when learning can be improved. Such systems

may make use of real-time classifiers to provide scaffolding and feedback that better support the

user’s learning.

In this chapter, we present the following research activities:

• A study that collected VR tracking data and results pertaining to knowledge acquisition,

knowledge retention, and VR-based performance retention from 60 participants across two

VR training sessions, separated by one week.
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• An ML experiment investigating six sets of input features for predicting the three differ-

ent outcomes. This is the first such experiment to investigate both learning and retention,

particularly psychomotor retention.

We also present the following research results:

• Our results indicate that our velocity-based ML models generally outperformed our position-

based models for predicting all three outcomes.

• Our results also indicate that VR tracking data can be better used to predict psychomotor-

based outcomes than cognitive-based outcomes.

4.2 VR Learning and Retention User Study

We made use of an existing VR application designed for training first assistants how to troubleshoot

a faulted arm on a surgical robot [85]. This robotic operating room (OR) application makes use

of virtual hand-based selections and manipulations [84, 78] to support multiple equipment inter-

actions, as well as communicating with a virtual surgeon and staff member by selecting dialog

options. In order to complete the scenario, the user must perform an ordered set of steps involving

these interactions while moving around the virtual OR by physically walking [62] and periodically

looking at a vision cart screen. Table 4.1 shows a list of these subtasks and the types of interactions

that they require.

We slightly varied the virtual training application between the learning and retention sessions.

During the learning session, it provided interaction cues, which convey actions to take [49], for

each step. These interaction cues consisted of verbal instructions and visual animations showing
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Table 4.1: The subtasks and their required interactions involved in the VR training simulation.

# Subtask Interaction
1 Check error message Walk + Look
2 Consult Surgeon Select (dialog)
3 Ask to press power down Select (dialog)
4 Ask to press power up Select (dialog)
5 Ask to call support Select (dialog)
6 Ask for release wrench Select (dialog)
7 Grab release wrench Select (wrench)
8 Ask for emergency stop Select (dialog)
9 Hold instrument carriage Select (carriage)

10 Insert wrench Position (wrench)
11 Rotate wrench Rotate (wrench)
12 Check vision monitor Look
13 Remove wrench Position (wrench)
14 Remove instrument Position (instrument)
15 Give instrument to staff Position (instrument)
16 Ask to recover fault Select (dialog)
17 Ask to disable arm Select (dialog)
18 Check error message Walk + Look
19 Use cannula lever Select (lever)
20 Use instrument clutch Position (clutch)
21 Use port clutch Position (clutch)
22 Ask to confirm disable Select (dialog)
23 Check error message Look
24 Ask to press recover fault Select (dialog)

perceived affordances and feedforward information. Selection cues used semi-transparent green

controller models that continuously linearly interpolated from the user’s controller to the target

dialog option or object to be selected (see Figure 4.1). Manipulation cues used semi-transparent

green copies of the objects being manipulated and linearly interpolated these copies to the tar-

get positions for the manipulations. Finally, for travel cues, these animations consisted of semi-

transparent green boots that linearly interpolated from the user’s position to a icon representing the

travel destination that read "Stand Here".

In the learning version of our VR training application, the interaction cues described were preemp-

tively presented to the users, in order to demonstrate and train how to perform the troubleshooting

task. However, for the retention-session version, these cues were not presented, unless the user
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Figure 4.1: A first-person perspective of the VR training application used for our research.

committed an error or was inactive for 30 seconds.

4.2.1 Materials

The VR hardware for this study was HTC Vive system, consisting of an HMD and two handheld

controllers, which were used to interact with the VR training application. The display of the

Vive HMD has a resolution of 1080x1200 pixels per eye, a 90Hz refresh rate, and affords a 110◦

diagonal field of view (FOV). We fitted the HMD with the Vive audio strap that integrates over-

the-ear headphones. The VR application maintained 90 frames per second to match the Vive’s

refresh rate and was developed in Unity. The input data from the Vive was processed with the
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SteamVR plugin. For every frame in the VR training application, the HMD and controller tracking

data was logged. This data consisted of the global positions and quaternions of both the HMD and

the controllers, as well as the frame’s timestamp.

4.2.2 Procedure

The following procedure was reviewed and approved by the University of Texas at Dallas Institu-

tional Review Board (IRB).

The human subjects study consisted of one learning and one retention session for each participant.

The duration of the sessions was approximately 60 minutes for the learning session and 30 minutes

for the retention session. The retention session occurred one week after the learning session.

Participants first gave informed consent, then the learning session began with a background sur-

vey on the demographics, education, and technology experience of the participant. To train the

participant on how to use the HTC Vive, the experimenter would help the participant put on the

HMD and run the SteamVR tutorial. After this, the experimenter would then run the participant

through the VR training application. Once the participant finished, they were then administered a

number of questionnaires regarding their VR experience. Finally, participants were administered a

knowledge test consisting of multiple-choice questions pertaining to the training scenario.

One week later (restricted to the same day of the week to avoid confounds), a participant would

begin the retention session with the experimenter administering the same knowledge test to mea-

sure knowledge retention. After completing the test, the experimenter would help the participant

to put on the HTC Vive, and the participant would then experience the retention version of the VR

application. After completing the retention application, the participant was given a free-response

exit survey and compensated $15 USD.
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4.2.3 Participants

A total of 61 participants were recruited through university mailing lists and completed the ini-

tial training session. However, one participant did not return to complete the retention session.

Thus, our data consists of 60 participants (11 females, 49 males). None of our participants had

prior knowledge of or experience with surgical robots or the training task. The mean age of the

participants was 22.6 ± 4.2 years.

4.3 Machine Learning Experiments

In this section, we discuss the learning and retention outcomes, experimental design, input features,

input feature representation, hyperparameters, and scoring method.

4.3.1 Learning and Retention Outcomes

For this research, we are concerned with three learning and retention outcomes: Knowledge Ac-

quisition, Knowledge Retention, and Performance Retention. We measure Knowledge Acquisition

and Knowledge Retention with the knowledge tests that were administered at the end of the learn-

ing session and beginning of the retention session, respectively. We measure Performance Reten-

tion by tracking errors and completion time at the subtask level. If participants made no errors and

completed a subtask within 30 seconds (i.e., the period of inactivity allowed before an interaction

cue was presented), they are regarded as having successfully completed that subtask. In order to

predict these different outcomes in a consistent way, we choose to implement a similar approach to

that by Moore et al. [86]. For each outcome factor, we fit a Gaussian distribution to the observed

scores, then classify all scores one standard deviation above the mean as high performance, and all

others as low performance. These splits are described in Table 4.2.
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Table 4.2: Evaluation metrics and categorizations of participants.

Metric Value Range Mean Score SD # High # Low
Knowledge Acquisition [0,20] 8.45 3.04 10 50
Knowledge Retention [0,20] 10.50 3.60 9 51

Performance Retention [0,24] 8.47 3.05 9 51

4.3.2 Experimental Design

In order to evaluate the performance of our models, we conduct an exhaustive grid-search with

four-fold, participant-level cross-validation across all hyperparameter options. This is performed

by first segmenting our data into an 80/20 train/test split for later evaluation. On the training data,

we create four roughly equal partitions to iteratively train on three of the partitions and evaluate on

the fourth, retaining the average score for comparison against other hyperparameter configurations.

We then select the configuration with the highest average score, train on the entirety of the training

data, and then test on both the training and testing data, separately and overall.

4.3.3 Input Features

Our data consists of the position and rotation of the tracked HMD and handheld controllers at a rate

of 90Hz, the frame rate of the training application. We encode this tracking data in the form of a

three-value vector for position and a four-value quaternion for rotation. To mitigate possible noise

introduced by including the rotation data, we compare three sets of position and rotation data: a)

linear-and-angular features for both the HMD and controllers, b) linear-and-angular features for

the HMD and linear-only features for the controllers, and c) linear-only features for both the HMD

and controllers. Because of recent success seen in making use of velocity rather than position

for predicting success [86, 96], we also look at the linear and angular velocities derived from the

position and rotation data, thus resulting in six total conditions for each evaluation metric.
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4.3.4 Input Feature Representation

In our analysis, we take the 90Hz data and use a sliding window approach to chunk it into spans

that are more meaningful than an instant of data. This window is made by selecting a time span

for the segment length, and another for the shift size. Depending on these parameters, there can

be a significant amount of overlap between subsequent windows. The frames of data within a

window are concatenated to create a high-dimensional vector that encodes the information. These

vectors are then processed with Principal Component Analysis (PCA) to extract salient features.

This process greatly reduces the amount of data and forms the input vectors used for training our

models.

4.3.5 Hyperparameters

We consider several hyperparameters for both the representation of the input and the support vector

machine (SVM). The six described options for Input Feature Representation can be regarded as hy-

perparameters within an evaluation metric prediction, however, in this chapter, we will treat them

as separate experiments as we are interested in discussing the differences in their performance.

The sliding window approach for chunking our data is determined by two hyperparameters: the

segment length and shift size. The PCA feature extraction also has a hyperparameter for deter-

mining the number of features extracted. Finally, the SVM that we use in our methodology has

two hyperparameters: penalty and expressivity. The range of values that we explore for these five

hyperparameters are shown in Table 4.3.
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Table 4.3: Value range of hyperparameters considered.

Hyperparameter Seg. Length Shift Size PCA Features Penalty Expressivity
Min Value 30 5 10 1 0.001
Max Value 120 13 80 10000 0.090

4.3.6 Scoring Method

We fit SVMs [9] with Gaussian kernels to the featurized data. The resulting linear separator will

yield a classification of low or high for each window segment. One possible way to extend the

segment classification to an entire user is to determine the user’s label by majority vote over the

predicted labels of the user’s velocity segments. This approach is reasonable, but doesn’t accom-

modate well for cases where several vectors are incorrectly classified with low confidence. Thus,

we weight each vote based on its distance from the decision boundary.

Let lu,i and du,i denote the predicted label and corresponding distance for the ith segment of partic-

ipant p. We define the participant-level confidence that p belongs to class c as:

confp,c =
∑i st. lp,i=c dp,i

∑
N
i=1 dp,i

,

where N is the number of segments that belong to participant p. Then, the predicted label of the

user is determined by selecting the class c that maximizes the confidence.

4.4 Machine Learning Results

In this section, we will detail the results of our ML experiments across our learning metrics. We

choose to analyze the performance of each model in terms of the Matthew’s Correlation Coefficient

(MCC) score. This value is a special case of the Pearson’s Correlation Coefficient for two cate-
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gories and is valued from -1 (full counter-correlation) to 1 (full correlation). Unlike metrics such

as accuracy, MCC takes into account the relative size of each category when assigning a score, thus

balancing the weight of disparately sized categories [18]. This is particularly useful for our exper-

iments in which the relative category sizes have approximately a 5:1 ratio of low-performance to

high-performance participants.

4.4.1 Knowledge Acquisition Results

Table 4.4 shows the full results of our Knowledge Acquisition experiment. First, it is clear from the

discrepancies in high-performance accuracy between the training (High Acc = 1.000) and testing

(High Acc = 0.000) datasets and the MCC scores for the testing data (MCC = -0.135) that the first

and third sets of input features, both position-based, suffered from overfitting the high-performance

training data. Similarly, the sixth set, the velocity-based, linear-only input features set, also suf-

fered from overfitting the high-performance training data, resulting in a low MCC score (MCC =

0.000).

Interestingly, the two best performing models were the second and fifth sets of input features (i.e.,

the position-based and velocity-based linear-and-angular HMD features and linear-only controller

features, respectively). The velocity-based fifth set yielded the best test MCC of 0.674 and a

better overall accuracy of 0.833 than the position-based second set, which yielded a test MCC of

0.400 and an overall accuracy of 0.783. This position-based second set was more conservative in

identifying low-performance participants in both the training (Low Acc = 0.725) and testing (Low

Acc = 0.900) datasets than the velocity-based fifth set, which was more accurate for both training

(Low Acc = 0.825) and testing (Low Acc = 1.000).
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Table 4.4: Knowledge Acquisition prediction results. For each of the six sets of input features, the
accuracy of the low-performance and high-performance predictions and the MCC are shown for
both the training and testing data. Accuracy and MCC are also shown for each set of input features
across the entire dataset (i.e., both the training and testing data).

Position / Train / Low High Overall Overall
Set Velocity HMD Controllers Test Acc Acc MCC Acc MCC

1 Position Lin+Ang Lin+Ang Train 0.800 1.000 0.632 0.817 0.513Position Lin+Ang Lin+Ang Test 0.900 0.000 -0.135

2 Position Lin+Ang Linear Train 0.725 1.000 0.553 0.783 0.516Position Lin+Ang Linear Test 0.900 0.500 0.400

3 Position Linear Linear Train 0.829 1.000 0.665 0.836 0.541Position Linear Linear Test 0.900 0.000 -0.135

4 Velocity Lin+Ang Lin+Ang Train 0.700 0.750 0.346 0.700 0.309Velocity Lin+Ang Lin+Ang Test 0.700 0.500 0.158

5 Velocity Lin+Ang Linear Train 0.825 0.750 0.482 0.833 0.493Velocity Lin+Ang Linear Test 1.000 0.500 0.674

6 Velocity Linear Linear Train 1.000 0.625 0.762 0.917 0.674Velocity Linear Linear Test 1.000 0.000 0.000

Table 4.5: Knowledge Retention prediction results. For each of the six sets of input features, the
accuracy of the low-performance and high-performance predictions and the MCC are shown for
both the training and testing data. Accuracy and MCC are also shown for each set of input features
across the entire dataset (i.e., both the training and testing data).

Position / Train / Low High Overall Overall
Set Velocity HMD Controllers Test Acc Acc MCC Acc MCC

1 Position Lin+Ang Lin+Ang Train 0.732 0.857 0.435 0.717 0.358Position Lin+Ang Lin+Ang Test 0.600 0.500 0.076

2 Position Lin+Ang Linear Train 0.732 0.857 0.435 0.733 0.377Position Lin+Ang Linear Test 0.700 0.500 0.158

3 Position Linear Linear Train 0.756 0.857 0.459 0.717 0.358Position Linear Linear Test 0.500 0.500 0.000

4 Velocity Lin+Ang Lin+Ang Train 0.854 0.714 0.477 0.817 0.430Velocity Lin+Ang Lin+Ang Test 0.800 0.500 0.258

5 Velocity Lin+Ang Linear Train 0.610 0.857 0.331 0.617 0.327Velocity Lin+Ang Linear Test 0.400 1.000 0.316

6 Velocity Linear Linear Train 0.805 0.714 0.412 0.783 0.380Velocity Linear Linear Test 0.800 0.500 0.258
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4.4.2 Knowledge Retention Results

Table 4.5 shows the complete results of our Knowledge Retention experiment. Unlike the Knowl-

edge Acquisition experiment, there are no clear results indicating that any of the six models overfit-

ted the training data for low or high-performance outcomes. However, it is also the case that none

of the six models performed as well on the Knowledge Retention results, as they performed on the

Knowledge Acquisition results. For Knowledge Acquisition, five of the six models yielded overall

MCC scores ranging from 0.493 to 0.674. However, for Knowledge Retention, the six models only

yielded overall MCC scores ranging from 0.327 to 0.430. In terms of test MCC scores, two of the

models, the first and third sets, yielded chance-like results (i.e., near zero MCC scores).

The best performing model for predicting Knowledge Retention was the fourth set of velocity-

based, linear-and-angular HMD and controller input features. This model yielded the best overall

MCC of 0.430 and the second best test MCC of 0.258, which would have dramatically improved

had it identified both high-performance participants instead of just one (i.e., High Acc = 0.500).

The sixth set of velocity-based, linear-only HMD and controller input features performed similarly

with an overall MCC of 0.380 and the same test MCC of 0.258. Finally, the fifth set of velocity-

based, linear-and-angular HMD and linear-only controller features performed well with an overall

MCC of 0.327 and the best test MCC of 0.316. However, this model was overly generous with

high-performance labels, particularly in the testing data (High Acc = 1.000), which yielded poor

low-performance identification (Low Acc = 0.400).

4.4.3 Performance Retention Results

Table 4.6 shows the complete results of our Performance Retention experiment. Like the Knowl-

edge Retention results, there are no clear results indicating that any of the six models overfitted the
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Table 4.6: Performance Retention prediction results. For each of the six sets of input features, the
accuracy of the low-performance and high-performance predictions and the MCC are shown for
both the training and testing data. Accuracy and MCC are also shown for each set of input features
across the entire dataset (i.e., both the training and testing data).

Position / Train / Low High Overall Overall
Set Velocity HMD Controllers Test Acc Acc MCC Acc MCC

1 Position Lin+Ang Lin+Ang Train 0.878 1.000 0.716 0.867 0.620Position Lin+Ang Lin+Ang Test 0.800 0.500 0.258

2 Position Lin+Ang Linear Train 0.927 1.000 0.805 0.900 0.685Position Lin+Ang Linear Test 0.800 0.500 0.258

3 Position Linear Linear Train 0.780 1.000 0.584 0.800 0.572Position Linear Linear Test 0.700 1.000 0.529

4 Velocity Lin+Ang Lin+Ang Train 0.683 0.714 0.290 0.700 0.341Velocity Lin+Ang Lin+Ang Test 0.700 1.000 0.529

5 Velocity Lin+Ang Linear Train 0.780 1.000 0.584 0.800 0.517Velocity Lin+Ang Linear Test 0.800 0.500 0.258

6 Velocity Linear Linear Train 1.000 1.000 1.000 0.967 0.869Velocity Linear Linear Test 0.900 0.500 0.400

training data for low or high-performance outcomes. However, unlike the Knowledge Retention

results, the six models performed relatively well on the Performance Retention results, yielding

overall MCC scores ranging from 0.341 to 0.869 and test MCC scores ranging from 0.258 to

0.529.

The best performing model for predicting Performance Retention in the VR training application

was the sixth set of velocity-based, linear-only HMD and controller input features. It yielded the

highest overall MCC score of 0.869 (with an overall accuracy of 0.967), and it yielded one of the

top test MCC scores of 0.400, incorrectly predicting exactly one low-performance participant and

one high-performance participant. The third and fourth sets of input features yielded the best test

MCC scores of 0.529. However, these models were generous with high-performance labels in the

testing data (High Acc = 1.000), which yielded conservative low-performance identification (Low

Acc = 0.700).
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Figure 4.2: Visualizations of motion data from a low-performance participant and a high-
performance participant, based on all three metrics, for the same set of actions.
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4.5 Visual Inspection of Results

Given the highly accurate results of our ML experiments, we decided to conduct visual inspections

of the motions of participants, in order to try and understand how the SVMs are classifying par-

ticipants with such high degrees of accuracy. We use an approach similar to our recent work [86],

rendering the positions and high-velocity moments of the tracking data within the environment,

in a top-down orthographic view. We show the HMD tracking data in yellow, and the left and

right controller data in blue and red, respectively. To convey high-velocity moments, green lines

connecting the three tracked traces are rendered for frames in which the velocity of any tracked

device exceeded 1 m/s, with a minimum 15 frame break since the last rendered line to prevent

visual clutter. To convey time, we adjust the brightness of all four traces from dim to bright over

the course of the segment. For example, Figure 4.2 shows the visualizations of the same set of

actions for a participant with low performances on all three metrics (i.e., Knowledge Acquisition,

Knowledge Retention, and Performance Retention) and a participant with high performances on

all three metrics.

Through our visual inspections, we have noticed that the motions of low-performance partici-

pants generally have more directional changes and return more often to prior positions than the

motions of high-performance participants. Additionally, we have observed that low-performance

participants exhibit fewer velocity peaks (i.e., moments in which velocity exceeds 1 m/s) than

high-performance participants. Together, these results suggest that low-performance participants

moved more haphazardly and with less certainty. In contrast, high-performance participants moved

more smoothly and with greater certainty, and likely, intention. These results are similar to prior

results from the robotic surgery domain, in which less-experienced robotic surgeons often demon-

strate worse economies of motion (i.e., excessive motions) than more-experienced robotic surgeons

[35, 65].
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Table 4.7: Results of Mann-Whitney U tests comparing the distribution differences of low and high
performances among participants with or without prior VR experiences.

Prior VR Exp No VR Exp
Metric Low:High Ratio Low:High Ratio U p

Knowledge Acquisition 28:6 22:4 432.0 0.888
Knowledge Retention 29:5 22:4 439.0 0.968

Performance Retention 27:7 24:2 385.0 0.401

Considering that our visualizations indicated that low-performance participants moved more hap-

hazardly and timidly, we decided to investigate whether prior VR experience had a significant

effect on whether a participant would be a low or high-performance learner. We conducted a

Mann-Whitney U test for each metric to compare the distribution differences of low and high per-

formances among participants with and without prior VR experiences. Table 4.7 shows the results

of these tests. The results clearly indicate that prior VR experience did not have a significant effect

on Knowledge Acquisition, Knowledge Retention, or even Performance Retention.

4.6 Discussion

In this section, we will discuss our results and what knowledge has been gained through this work.

4.6.1 Position-based versus Velocity-based Models

Overall, we found that our velocity-based models generally outperformed our position-based mod-

els. For all three metrics, we found that one of our velocity-based models yielded the best results.

Our velocity-based, linear-and-angular HMD with linear-only controller model was the best for

predicting Knowledge Acquisition. Our velocity-based, linear-and-angular HMD and controller

input features had the best results for predicting Knowledge Retention. Finally, our velocity-based,
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linear-only HMD and controller input features were the best for predicting Performance Retention.

In contrast, we observed that our position-based models produced some of the worst results. For

predicting Knowledge Acquisition, we found that two of the position-based models suffered from

overfitting the high-performance training data. Similarly, we found that the same two position-

based models, the linear-and-angular HMD and controller input features and the linear-only HMD

and controller input features, yielded chance-like results for predicting Knowledge Retention.

However, all three position-based models did perform moderately well for predicting Performance

Retention, which is based on psychomotor skills as opposed to cognitive-only skills.

These results strongly support future research into the use of velocity-based models for predict-

ing learning and retention outcomes, both cognitive and psychomotor ones. On the other hand,

particularly if computing resources are limited, future researchers can likely omit position-based

models for predicting cognitive learning and retention outcomes, like our Knowledge Acquisi-

tion and Knowledge Retention metrics. However, we believe that position-based models are still

viable for predicting psychomotor outcomes, based on the results of our Performance Retention

experiment.

4.6.2 Linear-and-Angular versus Linear-Only Models

In general, we did not find any results indicating that linear-and-angular or linear-only models

performed better than the other. In our experiments, we investigated three different combina-

tions of these features: a) linear-and-angular features for both the HMD and controllers, b) linear-

and-angular features for the HMD and linear-only features for the controllers, and c) linear-only

features for both the HMD and controllers. We found that a velocity-based version of each com-

bination performed the best for one of our three metric predictions. We found that the velocity-

based, linear-and-angular HMD and controller combination performed the best overall for predict-
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ing Knowledge Retention. We found that the velocity-based, linear-and-angular HMD and linear-

only controller model performed the best overall, without overfitting, for predicting Knowledge

Acquisition. Finally, we found that the velocity-based, linear-only HMD and controller features

performed the best overall for predicting Performance Retention.

These results suggest that there is still much research to be conducted into the investigation of

these linear and angular features. It is likely that one combination is not superior to the others,

and that researchers should investigate each to identify the best model for their prediction metric.

Furthermore, it is important to note that we did not investigate angular-only features, which might

be viable models for some types of prediction, such as simulator sickness [55]. There are also

other types of features that should be investigated, such as the linear distances between the HMD

and handheld controllers [99].

4.6.3 Cognitive versus Psychomotor Models

We found that our models produced the best results for the psychomotor-based Performance Reten-

tion metric, as opposed to the cognitive-based Knowledge Acquisition and Knowledge Retention

metrics. The Performance Retention models yielded generally higher overall MCC scores, with

five of the six models ranging from 0.517 to 0.869. In contrast, four of the six Knowledge Ac-

quisition models had overall MCC scores ranging from 0.309 to 0.516 and the best Knowledge

Retention model had an overall MCC score of 0.430. The psychomotor-based Performance Re-

tention metric also yielded the best overall accuracy of 0.967, out of all 18 models evaluated, and

the only perfect MCC score of 1.000 for the velocity-based, linear-only HMD and controller input

features model.

These results indicate that VR tracking data can be better used to predict psychomotor-based learn-

ing and retention outcomes than to predict cognitive-based outcomes. This is intuitive as VR
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tracking data is directly generated by psychomotor-based actions. Hence, it is a more-direct repre-

sentation of the psychomotor-based mental models that participants have.

These results also imply that VR technologies are most likely more useful for training psychomotor-

based skills, such as troubleshooting a surgical robot, as opposed to cognitive-only skills, such as

mathematical calculations. However, more research is necessary to investigate these potential dif-

ferences in usefulness. In particular, real-world efficacy evaluations of skills transfer is necessary.

In our research, we were only able to assess psychomotor retention by having participants use the

retention version of our VR training application. Ideally, we would have assessed psychomotor re-

tention by having participants demonstrate a real-world transfer of those psychomotor-based skills

to a physical surgical robot and OR environment. However, this was not feasible due to the limited

availability of such robotic ORs in hospitals [85].

4.6.4 Limitations

In our ML experiments, we chose to omit predicting performance during the learning session of

our study. This decision was made because while there may be utility in such a classifier, it would

be trying to predict values derived in part from actions the participant has already undertaken, and

wouldn’t be as directly comparable.

Additionally, in this study, we performed PCA to reduce the dimensionality of our input vectors

before using them to train the SVM models. While this is a generally accepted practice, for com-

pleteness, a future study would ideally also treat rotation algorithms for the PCA, as well as other

feature extraction techniques such as convex-hull representations [86], and other types of ML mod-

els as hyperparameters, and evaluate performance among those. The decision not to explore those

here was due in part to the computational complexity of such a broad exploration.
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Finally, the positional data was originally encoded in terms of VR world space, and while this

remained consistent with the real-world space in terms of scale, orientation, and being stationary,

it decreased the model’s ability to encode salient features such as head-to-hand distance. Directly

encoding such salient features would likely have been beneficial for our models’ predictive power

as Pfeuffer et al. [99] found, however evaluating all possible salient features would be intractable,

and selecting a subset of features to evaluate over may have introduced bias.

4.7 Conclusion

In this chapter, we explored the feasibility of employing ML models based on different sets of VR

tracking features to predict learning and retention outcomes from a VR training application. Our re-

sults show that such models can be used to predict such educational outcomes with high degrees of

accuracy. Furthermore, our results indicate that velocity-based models are likely better predictors

of learning and retention outcomes, particularly cognitive-based outcomes, than position-based

models. However, our results did not indicate that any particular combination of linear-and-angular

or linear-only conditions yielded better results. Hence, we generally recommend investigating dif-

ferent linear and angular combinations of input features, in addition to considering some features

not investigated in this work, such as head-to-hand distances. Finally, our results clearly indicate

that VR tracking features can be better used to predict psychomotor outcomes than cognitive ones.

Through the course of this research, we have demonstrated that this data may be valuable to XR

practitioners, particularly those in the field of VR-based intelligent tutoring systems. However,

without an understanding of the potential privacy implications of collecting and maintaining this

data, informed decisions about its use cannot yet be made. In the next two chapters, I will begin to

approach this topic.
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CHAPTER 5: PERSONAL IDENTIFIABILITY AND OBFUSCATION OF

USER TRACKING DATA FROM VIRTUAL REALITY TRAINING

SESSIONS

NOTE: This chapter is a modified format version of the paper previously published.

Material from: A. G. Moore, R. P. McMahan, H. Dong, and N. Ruozzi. Personal identifiability and

obfuscation of user tracking data from vr training sessions. In 2021 IEEE International Symposium

on Mixed and Augmented Reality (ISMAR), pages 221–228, 2021. doi: 10.1109/ISMAR52148.

2021.00037
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5.1 Introduction

In the previous two chapters, value has been demonstrated in collecting Virtual Reality (VR) track-

ing data for the uses of predicting learning outcomes in training environments. While this data can

be valuable, further understanding of its potential role in privacy and authentication would be help-

ful to allow developers of VR training environments to make informed decisions on the collection

of this data, which has already seen interest in its use for authentication and identification. With

this chapter, we hope to investigate RQ4: How does identifiability of readily available VR tracking

data change between tasks?

Authentication is the process of determining that someone is who they claim to be. For example,

recent work by Kupin et al. [60] focuses on task-driven authentication by having users perform

a task multiple times, creating a library of samples to authenticate against, then matching new

samples from a user against their library. This process is similar to providing multiple samples of

a fingerprint when setting up fingerprint authentication.

While authentication will generally have the user indicate who they are and provide some proof

of that (e.g., a password, token, or biometric data), identification is the process of associating a

person with an identity [6]. Identification can be a non-intrusive process performed by a system

without awareness on the part of the user. It can both be done positively for the user’s benefit

(e.g., to passively determine an identity to authenticate against), or antagonistically, in the form of

identifying a user without their consent.

Recent work on identification by Pfeuffer et al. [99] considered the problem of determining a user’s

identity over two sessions based on motion data. This work relied on recording the motion of par-

ticipants’ head-mounted displays (HMDs) and controllers through several iterations of a set of 4

controlled tasks, designed to represent generic VR tasks. The researchers then attempted to iden-
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tify participants using the data collected from these tasks using a variety of different features for

training their Machine Learning (ML) models [99]. Overall, Pfeuffer et al. [99] report accuracies

around 40% when identifying users across sessions (N=22) via Random Forest (RF) classifiers.

In another recent work, Miller et al. [80] were able to identify participants (N=511) with accura-

cies up to 95% by training SVM, RF, and Gradient Boost Machine (GBM) models on HMD and

controller data captured from participants observing 360◦ videos within a single session. Miller

et al. [80] described two major limitations of their work in their paper. First, the VR experiences

were primarily stationary with interactions largely limited to standing with little motion. Second,

all the data for a participant was recorded during a single period of time without the user removing

the VR head-mounted display (HMD), setting down the handheld controllers, or restarting the VR

application. Too much homogeneity in the data collection process could increase the identifiability

of individual users as it can limit the realism of the collected data. As an example, consider a

facial recognition task in which the training data consists solely of images of faces of individuals

under carefully controlled lighting, background, and orientation. Under such carefully controlled

conditions, the task is much simpler than if the faces are in random orientations with a variety of

backgrounds and lighting conditions that are more typical in real-world settings.

If we are to understand motion data from the user’s HMD and controllers as uniquely identifying

across a broad range of VR experiences, VR practitioners will need to take special considerations

to maintain compliance with the European Union’s General Data Protection Regulation (GDPR)

and the California Consumer Privacy Act (CCPA), even when the data is fully disassociated from

other identifying information.

To address both of the prior limitations of Miller et al. [80], we follow the same approach with

default hyperparameters for identification of VR participants using motion data that we previously

captured from a two-session user study (N=60), but with two substantial differences to the overall
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methodology. First, the VR experience in our user study involved training the participant how

to troubleshoot a surgical robot, which involved numerous tasks with lots of motion, including

moving to inspect equipment, taking tools from virtual teammates, and manipulating instruments.

Hence, our motion data is not primarily stationary, addressing the first limitation of Miller et al.

[80]. Second, our study included two sessions of motion data for each participant: the first ses-

sion focused on learning how to troubleshoot, and the second session, which was conducted one

week later, was focused on evaluating the participant’s retention of the troubleshooting procedure.

Therefore, our data spans multiple days, not just sessions, in which the participants doffed the

VR hardware and the VR application was restarted, addressing the second limitation of the data

analyzed by Miller et al. [80]. This approach also explores some of the potential improvements

identified by Pfeuffer et al. [99], by considering feature vectors generated over time and identifi-

cations determined by aggregations over multiple samples. Finally, in contrast to their work, our

work explores identification of users based on an ecologically valid VR training task, as opposed

to a controlled interaction task.

After discussing related work, we first describe our two-session user study, which involved a learn-

ing session and then a retention session, one week later. We then present our implementation of

the single-session approach and models presented by Miller et al. [80] on the motion data from

our separate learning and retention sessions. On our learning session data, we found that two of

the three ML models performed noticeably worse than the results reported by Miller et al. [80].

This is surprising considering that our data set is much smaller, i.e., random selection has higher

probability of identifying the correct participant (1/60) than the original study (1/511). Hence, we

believe this indicates that our VR experience is different in terms of motion than the experiences

captured by Miller et al. [80]. On our retention session data, we found that only one of the three

models performed worse, which indicates potential differences between the VR experiences of our

two sessions.
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Next, we applied the classifiers learned from each session to the other session to address the issue

of multiple sessions and doffing the VR hardware. By applying the classifiers from our learning

session to our retention session data, we found that the accuracy of all three models decreased by

approximately 30-50%, to levels similar to those found by Pfeuffer et al. [99]. In this instance,

our results are surprising now because compared to Pfeuffer et al. [99], we have a larger dataset,

and thus a smaller random chance of success (1/60) than the original study (1/22). In applying the

classifier from our retention session to our learning session data, we found that the accuracy of the

models decreased by 40-65%. Hence, these results appear to indicate that identifying participants

across multiple sessions is more challenging, though still possible in some cases.

Finally, we demonstrate how motion tracking data can be obfuscated to reduce identifiability by en-

coding positional data as velocity data, which we believe should reduce the encoding of anatomical

features, such as height and arm-length. We believe that obfuscating data and reducing identifi-

ability are important areas of future research, in order to protect VR users from being identified

without their consent. Using the single-session approach on our learning session data, we found

that encoding velocity data instead of positional data caused the accuracy of the models to de-

crease by 45-65%. Furthermore, when applied to the other session data, we found that the velocity

representation caused accuracy to decrease by approximately 65-80%. Because prior work has

successfully made use of similar velocity features to predict user experience outcomes like simu-

lator sickness [96] and knowledge acquisition [86], we believe this approach to obfuscation could

be a viable method for reducing the identifiability of VR user tracking data while retaining useful

information for other ML applications.

To summarize, in this work we explore the following:

• Identifiability of participants within one session of a VR training application.

• Identifiability of participants from one session of a VR training application to another.
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• Reduction in identifiability of participants by representing data as velocity rather than posi-

tion.

5.2 VR Learning and Retention User Study

In order to investigate identifiability in an ecologically valid context, we used an existing VR

application that was designed to train first assists how to troubleshoot a surgical robot in a robotic

operating room (OR) [85]. This application makes use of virtual hand selections and manipulations

[84, 78] to support multiple interactions with equipment, as well as selecting dialog options to

communicate with a virtual surgeon and non-sterile staff member, in order to fix a faulted arm

on the robot. In order to complete the scenario, the user must perform a variety of ordered steps

involving these interactions and must additionally move about the virtual OR using real walking

[62] and look at notifications and an endoscopic monitor displayed on a vision cart. Table 5.1

shows a list of subtasks and the types of interactions they require to complete.

During the learning session, this VR training application provided interaction cues, which con-

vey actions to take [49], for each step that consisted of verbal instructions and visual animations

showing perceived affordances and feedforward information. For travel cues, these animations

consisted of semi-transparent green boots that linearly interpolated from the user’s current posi-

tion to a "Stand Here" icon representing the travel destination. Selection cues made use of semi-

transparent green controller models that also continuously linearly interpolated from the user’s

controller to the target dialog option or object to be selected. Manipulation cues made use of semi-

transparent green clones of the object, and linearly interpolated to the position they needed to go,

in order for the user to progress (an example is visible in Figure 5.1). For the retention session,

these cues were not provided until the user made an error or took no action for 30 seconds. In both

sessions, errors and inaction caused a virtual agent to verbally instruct the participant what to do,
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while the interaction cue for that step would enable.

5.2.1 Materials

This study used the HTC Vive system, which includes an HMD and two handheld controllers

to interact with the VR training application. The Vive HMD has a 90Hz refresh rate, a display

resolution of 1080x1200 pixels per eye, and affords a 110◦ diagonal field of view. The HMD

Table 5.1: The subtasks and their associated required interactions involved in our VR training
simulation.

# Subtask Interaction
1 Check error message Walk + Look
2 Consult Surgeon Select (dialog)
3 Ask to press power down Select (dialog)
4 Ask to press power up Select (dialog)
5 Ask to call support Select (dialog)
6 Ask for release wrench Select (dialog)
7 Grab release wrench Select (wrench)
8 Ask for emergency stop Select (dialog)
9 Hold instrument carriage Select (carriage)

10 Insert wrench Position (wrench)
11 Rotate wrench Rotate (wrench)
12 Check vision monitor Look
13 Remove wrench Position (wrench)
14 Remove instrument Position (instrument)
15 Give instrument to staff Position (instrument)
16 Ask to recover fault Select (dialog)
17 Ask to disable arm Select (dialog)
18 Check error message Walk + Look
19 Use cannula lever Select (lever)
20 Use instrument clutch Position (clutch)
21 Use port clutch Position (clutch)
22 Ask to confirm disable Select (dialog)
23 Check error message Look
24 Ask to press recover fault Select (dialog)
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Figure 5.1: A first-person perspective of the VR training application.

was fitted with the Vive audio strap that integrates over-the-ear headphones. The VR application

was developed in Unity and maintained 90 frames per second to match the Vive’s refresh rate.

SteamVR was used to process the Vive’s input data. The VR training application also collected

HMD and controller tracking data every frame. This data consisted of the frame’s timestamp and

the positions and orientations of the HMD and controllers every frame.

5.2.2 Procedure

The following procedure was reviewed and approved by the University Institutional Review Board

(IRB).

The study consisted of two sessions for each participant: the learning session and the retention

session. The learning session lasted approximately 60 minutes. The retention session occurred one
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week later and lasted approximately 30 minutes.

After informed consent, the learning session began with a background survey on the participant’s

demographics, education, and technology experience. The experimenter would then help the par-

ticipant put on the HTC Vive and run the SteamVR tutorial to train the participant how to use the

Vive. The participant would then experience the VR training application. After completing the

training session, the participant was administered a number of questionnaires regarding their VR

experience. Finally, participants were administered a knowledge test consisting of multiple-choice

questions pertaining to the training scenario.

One week later (restricted to the same day of the week to avoid confounds), the retention session

began with the experimenter helping the same participant put on the HTC Vive. The participant

would then experience the VR retention application. After completing the retention session, the

participant was given a free-response exit survey and compensated $15 USD.

5.2.3 Participants

A total of 61 participants were recruited through university mailing lists and completed the initial

training session. Due to a system issue, one participant was unable to complete the retention ses-

sion, leaving 60 participants (11 females, 49 males). None of our participants had prior experience

or knowledge of surgical robots. The mean age of the participants was 22.6 ± 4.2 years old.

5.3 Identifying Participants in the Same Session

In this section, our aim is to fit machine learning models to identify participants based on their

motion data. Can we identify participants based on tracking data taken during a VR training

80



scenario?

For purposes of comparison, we followed the basic approach described by Miller et al. [80] in

terms of feature representation and general ML approaches (some important deviations will be

discussed later). The motion data from our VR training system contained 6-degree-of-freedom

(6-DOF) data from both of the controllers and the HMD for 18 total values ({x, y, z, roll, pitch,

yaw} × 3 tracked objects) at 90 frames per second. This data was then combined into a descriptive

feature vector for each second, consisting of the minimum, maximum, mean, median, and standard

deviation (i.e., 5 metrics) for each of the 18 values, resulting in a 90-valued feature vector for each

second, v⃗ ∈R90. These sets of feature vectors were then partitioned into 10 sequential subsessions

for each participant.

Again, in keeping with Miller et al. [80], we trained three different ML models: k-Nearest-

Neighbors (kNN), random forests (RF), and gradient boosting machines (GBM) The kNN classifier

treats all training vectors as points in a high dimensional space (in our case, R90), and when asked

to predict the category of a new vector, finds the k nearest training vectors (usually by Euclidian

distance), and predicts whichever category occurs most frequently among these neighbors. Note

that for kNN, we do normalize these vectors to M = 0,SD = 1 to prevent the scale of input along

different axes from affecting the prediction, a known limitation of kNN. RF was implemented with

scikit-learn defaults, which are the same as R defaults, but with 100 estimators rather than 10 [98].

GBM was also implemented with scikit-learn defaults: 100 estimators, a maximum depth of 3, and

a minimum of 1 observation per leaf. These hyperparameters match those of Miller et al. [80],

with the exception of the number of estimators for GBM, for which they used 20. While train-

ing kNN simply involves embedding the training vectors and their labels into a high dimensional

space, random forest and GBM are trained by building ensembles of decision trees that try to map

vectors to labels. After being trained, all three of these classifiers attempt to solve our multiclass

classification problem – they take a single feature vector as input, and return a prediction as to
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which participant generated that feature vector.

We applied 20-fold leave-one-out cross-validation to compare the performance of the three ap-

proaches: we retained one subsession per participant for evaluating the performance of the clas-

sifier trained on the other 9 subsessions, and we performed this training and testing process with

20 different random Monte-Carlo selections. While the classifiers provided a prediction for each

feature vector (i.e. one prediction per second of data), we used the plurality of these predictions

at the subsession level, saying each classifier ultimately identified the most commonly predicted

identity for that subsession. Each training and validation process yields a percentage of correct

identifications out of all 60 participants, and we averaged this value over all 20 cross-validations

to get a mean accuracy rating for each classifier. We found that GBM performed the best with

an average accuracy of 90.83% (fig. 5.2). Our GBM accuracy was substantially higher than that

reported by Miller et al. [80], which averaged 68.2%. This is most likely due to our much smaller

sample size (N=60), compared to the original study’s sample size (N=511), which increases the

probability of correct identifications, as well as our larger number of estimators, made possible by

our smaller sample size. However, our kNN and RF classifiers performed notably worse than those

of Miller et al. [80]. Specifically, our kNN averaged 80.42% accuracy compared to their kNN’s

average accuracy of 92.3%, and our RF averaged 89.33% compared to their RF average accuracy

of 95.3%. We believe these results indicate that it is more difficult to identify participants from our

VR training application than the 360◦ video and survey experiences used by Miller et al. [80], due

to differences in the motion data.

For completeness, we also trained and evaluated the three ML models on the retention session data.

We began by dividing the retention session data from the participants into 10 equal subsessions,

as we had done for the learning session models. We then analyzed the performance of the three

models using the same 20-fold leave-one-out Monte-Carlo analyses as above. These results based

on the retention session motion data perform better than those based on the learning session motion
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Figure 5.2: Classification accuracy using position feature vectors, averaged over 20 Monte-Carlo
cross-validations within session data for each participant. Error bars indicate range of values.

data, as shown in Figure 5.2. Compared to Miller et al. [80], our GBM and RF results for our

retention session data are better (GBM: 95.00% vs. 68.2%, RF: 95.50% vs. 95.3%). Again, this

is likely due to our much smaller sample size and larger number of estimators. However, our kNN

results were again worse than those reported by Miller et al. [80] (kNN: 89.42% vs. 92.3%).

5.4 Identifying Participants in a Different Session

In this section, our goal is to use ML models trained on the motion data in one session to identify

participants with motion data from another session. Can we identify participants in a session that

takes place at a different time from the session used to train the classifiers?
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Inherently, the problem presented in the previous section should be a relatively easy identification

task. In our study, participants did not doff the HMD between subsessions, so the fit should have

remained roughly consistent. Additionally, 8 of the 10 subsessions, when selected for the Monte-

Carlo cross-validation, would have been chronologically bound on both ends by subsessions that

the classifier was directly trained upon, leading us to expect several feature vectors on either end

of a subsession being easy to identify. Showing how well participants can be identified one week

later (or earlier), when a multitude of factors affecting the physiology of a participant, as well as

the fit of the HMD and grip on the controllers, may be different, can give us insight into how much

we should consider VR motion data to be personally identifiable information.

To address this issue, we first used all of the data from the learning session to train our three clas-

sifiers. For our analysis, we attempted to identify within our 10 equal subsessions of the retention

session and averaged the classification accuracy across all 10, which yielded worse performance

for all three classifiers (see Figure 5.3). We found that the accuracy of each classifier decreased

by around 50%, compared to their learning session average accuracy. More specifically, GBM de-

creased from 90.83% to 41.50%, kNN decreased from 80.42% to 28.00%, and RF decreased from

89.83% to 42.33%. Out of curiosity, we also looked at the accuracy of the classifiers when being

used to predict identity for the full retention session (as opposed to one subsession) and found that

with more data, our classifiers were able to eventually attain accuracies closer to 50%. Figure 5.4

shows the percent of correct identifications each classifier achieves with more data and suggests

that adding even more data would not result in further increases in accuracy. The final values of

the classifiers in this condition were 48.33% for GBM, 46.67% for kNN, and 51.67% for RF.

For completeness, we also used all of the data from the retention session to train our three clas-

sifiers and attempted to identify participants from the data from each of the 10 equal subsessions

of the learning session data. Averaging the accuracy of these again, we find substantially worse

performance for all three classifiers when compared to their performance for the within retention-
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session data (see Figure 5.3). Each classifier in this scenario decreased in their average accuracy

by over 50%, specifically GBM decreased from 95.00% to 37.67%, kNN decreased from 89.42%

to 24.83%, and RF decreased from 95.50% to 25.17%.

Figure 5.3: Classification accuracy using position feature vectors, averaged over 10 subsessions
for each participant, across sessions. Error bars indicate range of values.

5.5 Obfuscating Identities With Velocity-based Data

The results in the previous section show that the ML algorithms, if provided with several minutes

of data, can achieve approximately 50% accuracy in identifying participants between different

sessions. As researchers, this brings up the question of how we can share data to improve the field

of VR and ML without potentially compromising the identities of participants. Can we reduce the
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Figure 5.4: Correct identifications for each additional second of position-based features for the
first 10 minutes of data per participant.

identifiability of motion data while still retaining usefulness for research?

The way in which the data is featurized could have a significant impact on identifiability. For

example, positional data from the VR hardware can encode the height and reach of each participant.

More importantly, data is often featurized in a specific way in order to make it useful for a particular

task. In this sense, the featurization used by Miller et al. [80] and in the experiments above may

not be realistic for ML tasks of interest beyond authentication and identification. And, of course,

different featurizations may be more or less difficult to de-anonymize.
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To look at the ability to de-anonymize data that has been encoded for predicting other factors of

the participants, we considered the prior work of Moore et al. [86], which makes use of velocity-

based feature vectors to predict participant knowledge gains in a training scenario. We choose

to look at the capabilities of the same classifiers presented in the prior two sections when trained

and tested on feature vectors based on velocity rather than position. Each positional data value

(6-DOF × {HMD, left controller, right controller}) was interpolated to a velocity value based on

each frame’s timestamp. We then made similar feature vectors consisting of the min, max, median,

mean, and standard deviation of each value, for a new 90-valued vector ˙⃗v ∈ R90.

We then re-conducted the 20-fold leave-one-out Monte-Carlo cross-validation procedure, trained

on 9 of the 10 learning subsessions per participant, to determine to what degree of accuracy these

classifiers are able to predict the removed subsessions. Our data shows that these classifiers had

much more difficulty identifying the participants in this scenario, with the best performing classi-

fier, kNN, reaching only an average accuracy of 35.17% (see Figure 5.5).

For completeness, we also chose to inspect the ability of these classifiers to predict the identity of

participants during the retention session. Again, we trained the classifiers on all of the learning

session data, and analyzed the prediction accuracy across the 10 retention subsessions for each

participant and we found even worse performance. Compared to our position learning-session to

retention-session condition, we found each velocity-based classifier to be less than half as accurate.

Specifically the decreases were 41.50% to 11.83% for GBM, 28.00% to 12.33% for kNN, and

42.33% to 13.83% for RF (see Figure 5.5). Again we were curious as to how additional data

affected the accuracy, so we examined how well the classifiers could identify participants using

the entire retention session’s data (as opposed to one subsession). Figure 5.6 shows the percent of

correct identifications each classifier achieves with more data and again suggests that more data

would not result in increases in accuracy. The final values of the classifiers in this condition were

16.67% for GBM, 15.00% for kNN, and 18.33% for RF.

87



Figure 5.5: Classification accuracy using velocity feature vectors, averaged over 20 Monte-Carlo
cross-validations for each participant. Error bars indicate range of values.

5.6 Discussion

In this section, we discuss the implications of our within-session identification, between-session

identification, and velocity-based obfuscation results. We also discuss sharing our resources for

future replication studies, the limitations of our current work, and our plans for future work.

5.6.1 Validation of Within-Session Identification

In contrast to prior work by Pfeuffer et al. [99], we investigated identification of users based

on an ecologically valid VR training task. In section 5.3, we showed that our classifiers were
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Figure 5.6: Correct identifications for each additional second of velocity-based features for the first
10 minutes of data per participant.

able to achieve fairly accurate identification of users. These results are much higher than chance

(1/60), however, when compared to the results and chance (1/511) of Miller et al. [80], our results

were underwhelming. In their paper, they also present the results of their classification procedure

on a sample of 50 randomly selected participants, achieving 98% accuracy, demonstrating the

improvement in accuracy one might expect with a smaller sample size [80].

We believe that the primary contributor of this disparity is the large difference in VR experiences

presented to the users While our experiment made use of a VR training scenario with several virtual
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object manipulations that required movement around the virtual space, the environment presented

in the Miller et al. [80] consisted of five 360◦ videos and five in-VR questionnaires, presented one

after each video. Indeed, the authors stated that “a limitation of this work is that both tasks captured

standing users with little motion. . . the generalizability beyond the tasks demonstrated here should

be tested.”[80]. Our results seem to indicate that while it’s still quite possible to identify a user in

a scenario with more movement, the classifiers seem to perform less well.

5.6.2 Feasibility of Between-Session Identification

In contrast to Miller et al. [80], we investigated identification of users across multiple sessions. In

section 5.4, we showed that the same classifiers that performed well within the learning-session

data performed worse when evaluated on the retention session data, but still performed much bet-

ter than chance. Three likely contributing factors to this change in performance are differences

between the VR learning and retention experiences, potential physiological differences for the par-

ticipant after a week, and changes in the donned positions of the VR hardware. While the virtual

robotic OR application required users to complete the same tasks in both the learning and the re-

tention sessions, the learning session provided unprompted interaction cues, while the retention

session only displayed these after the user made an error or was inactive for 30 seconds. We be-

lieve that this caused user behaviors and motions to be subtly different, as they still had to complete

the same tasks and interact with the same objects that were located in the same positions. This as

a contributing factor is supported by observed performance differences between the same-session

classifiers for the training and retention sessions.

We also think that physiological differences contributed to the observed change in classifier perfor-

mance. After a week, participants may be in a different physiological, emotional, and mental state.

Finally, the fit of the HMD on their head and the grip with which they held the controllers may be
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significantly different too. Miller et al. [80] identified that one limitation of their study was that

participants did not doff the headset at any time between sessions. We think that our results help

show, again, that participant identification is certainly still possible, but once again, a little more

difficult – likely because the ML models are somewhat overfit to differences between participants

that are not consistent across different days.

While not a perfect comparison, we choose to examine our results with respect to recent work by

Pfeuffer et al. [99] that also looked at identification across sessions. We find that our classification

accuracy is roughly on par with their results despite having a lower random chance of success (1/60

for ours compared to 1/22 for theirs). This should not necessarily be interpreted as indicating that

identification across sessions is easier within an ecologically valid context than with an artificial

context as there are a large number of factors that differentiate our approach with theirs, including

that our vectors are determined at the per-second level, as opposed to on a per-action level, and

we only have one example of each subtask per participant embedded in our model. Finally, we are

also using the plurality of predictions to determine identity, as Miller et al. [80] and Liebers et al.

[67] did, and as Pfeuffer et al. [99] recommended to potentially improve accuracy. All of these

differences likely contributed to the improved performance of our classifiers in light of Pfeuffer et

al.’s [99] results.

5.6.3 Feasibility of Velocity-based Obfuscation

Finally, in section 5.5, we looked at the possibility of obfuscating motion data as a series of fea-

turized summary vectors of linear and angular velocities rather than position and orientation to

attempt to reduce identifiability, while maintaining usefulness for VR researchers. This direction

was chosen based on prior work by Moore et al. [86] that indicated procedural knowledge transfer

can be predicted using velocity-based features. We similarly computed velocity feature vectors that

91



matched our position-based feature vectors, but made use of the first-order derivative with respect

to time. We found this approach yielded much lower identification accuracy for our within-session

condition, e.g. GBM, our highest performing classifier for the positional representation at 90.83%

accuracy, degraded to 25.67% accuracy when given velocity-based data. We observed a similar

decrease in accuracy for our between-session condition, wherein RF decreased from 42.33% to

13.83%.

Ultimately, we determined that the accuracy of participant identification remains better than chance

and may still contribute to identification, but is much more difficult for the classifiers we exam-

ined, particularly in our most difficult condition, identifying participants during a different session

from velocity-based vectors. Looking at the comparisons between Figures 5.4 and 5.6, it appears

as though the classifiers quickly approached their approximate final accuracy rate when given

position-based feature vectors, while the velocity-based classifiers needed more data before they

reached their peaks, before dropping to a lower final accuracy.

Interestingly, our presumption is that because the classifiers were less able to embed anatomical

data, such as participant height or arm-length, they performed worse. This stands in contrast to

recent work by Liebers et al. [67], in which they found that normalizing participants’ height

led to higher identification accuracy, saying that “instead of recognizing different users by their

physiology... we force it to focus on the subtle changes in behavior between participants.” We

believe that this disparity is due in part to the difference in the design of tasks: where our data

was captured passively during a training scenario, their participants performed several repetitions

of sports actions, which would likely yield more identifying movements.
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5.6.4 Sharing Resources for Replication

The code we use for our ML approach is implemented in Python with the Scikit-Learn library [98]

and is available on GitHub1. Due to the wording of our IRB-approved informed consent, we are

unable to share participant data. However, we are working with our IRB to develop an informed

consent form that will allow us to share VR tracking data like this in the future.

5.6.5 Limitations

We make two observations that limit the generalizability of this work, as well as that of Miller et al.

[80]. First, in both this work and that of Miller et al. [80], cross-validation should have been used

to determine the hyperparameters of the different models (e.g., the k in kNN, the number and depth

of trees in the RF algorithm). In particular, the decision to discretize the features over one-second

intervals is a bit arbitrary, and a better value may be able to be found with proper cross-validation.

Note that in both this work and in Miller et al. [80], the ML models are quite limited in that they do

not take advantage of the fact that this data is actually temporal (i.e., each one-second data point is

effectively classified in isolation). As a result, the scale at which the data is characterized can have

a significant impact on predictive performance of the models. Similarly, in this work, we divided

the motion data of each participant into ten equal size pieces—a somewhat arbitrary slicing of their

motion data.

Second, we note that, if our aim were to actually identify participants from motion data in practice,

we would use cross-validation to select the best model/hyperparameters on, say, the learning data

set, train a model on the full learning data set using the selected model/hyperparameters, and then

apply this model to a new unseen data set, say, the retention data set. That is, care should be taken

1 github.com/tapiralec/Identifiability-and-Obfuscation-VR-Training
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not to use performance on the test set to draw conclusions about the best model to pick. As an

example, we note that when training on the “survey” data and then testing on the “video” data,

Miller et al. [80] remark that the model is still accurate. However, this observation overfits the test

set. An improved procedure that limits this overfitting would be to train on “survey”, note that kNN

had the highest accuracy in the 20-fold cross validation procedure, and then apply a kNN model

trained on the whole of “survey” to the “video” data set. This is important because, in practice, if

we were trying to de-anonymize the data, we would not have the labels on the test data set to know

which model we should have chosen and can only rely on performance on data used to train the

models to select between them. Furthermore, one set of hyperparameters we would evaluate over

would be the duration of time used for the segments, as a real-time classifier would not know the

total session duration and thus would be unable to partition based on the total session.

Finally, it is worth mentioning that although we found our models to have degraded performance

when attempting to identify across sessions, there are other possible confounding variables that

can have contributed to this decrease as well. Notably, while participants were required to perform

the same ordered set of twenty 3D interaction tasks in the same space for both sessions, the specific

presentation of manipulation cues varied in order to maintain the ecological validity of a training

and evaluation scenario. Even without this as a confound, however, learning effects would also

contribute to different behaviors between sessions.

5.7 Conclusion

In this chapter, we investigated the feasibility of implementing the approach presented by Miller

et al. [80] to identify users in a VR scenario that involved more than stationary users and little mo-

tion, and attempted to identify them between sessions, one week later. We ultimately determined

that while these classifiers performed much better than random chance at correctly identifying par-
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ticipants, their performance is worse than the prior work’s results. While there are several factors

contributing to this discrepancy, the identifiability of participants through their motion data ap-

pears to be dependant on the underlying VR experience and the representation of the data. We also

showed that identification between sessions is a more difficult task, but that rates above random

chance are still achievable. Unlike prior work by Pfeuffer et al. [99], which also explored identifi-

cation between sessions, we show that identification is possible even with data collected passively

in the background of a VR training scenario, without a dedicated enrollment phase to build a li-

brary of known actions. The next chapter continues this research with an investigation into how

this identifiability changes between two similar, but distinct tasks.
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CHAPTER 6: A SYSTEMATIC INVESTIGATION OF DEVICE

COMBINATIONS AND SPATIAL REPRESENTATIONS FOR

IDENTIFYING VIRTUAL REALITY USERS IN AN ASSEMBLY

TRAINING ENVIRONMENT

NOTE: This chapter contains material that has been modified from a paper submitted for publi-

cation, and has not yet been peer reviewed. Authors: Alec G. Moore, Tiffany D. Do, Nicholas

Ruozzi, Ryan P. McMahan.
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6.1 Introduction

Continuing our investigation into identifiability, we choose to now focus on identifying people

between similar, but distinct tasks, trying to improve our understanding of RQ4: How does iden-

tifiability of readily available VR tracking data change between tasks? There have been several

works recently that investigate the identifiability of virtual reality (VR) users based on properties

of their biomarkers. Some works, such as Pfeuffer et al. [99], focus on an authentication model,

where the user proposes their identity, and the system verifies that they are indeed that person.

Other works, like those by Miller et al. [80] and Moore et al. [88] look at the question of passive

identifiability. That is, given a person’s biomarkers data in a population, can they be identified

afterwards from a new sample of their VR usage data.

While the question of identifiability has been explored in several contexts, recent work by Liebers

et al. [67], examines identifiability within a gameified context. Other environments, such as the one

used by Asish et al. [3], are built as educational experiences, while some are developed specifically

to elicit identifiable motions like one used in a paper by Liebers et al. [68]. In work by Mustafa et

al. [91], the authors recognize that their approaches may yield different results when applied to a

different context.

We expand upon a shortcoming of prior works by providing an analysis into the identifiability of

users across two separate VR training sessions, where both samples are captured within a single

hour span of time. Prior work by Miller et al.[80] found very high identification rates, they were

between single-session samples of data. The work by Moore et al.[87], on the other hand, showed

lower identification rates, but between sessions collected a week apart, introducing potential con-

founds due to the participants’ mental state, clothes, physical health, and other potential changes.

By collecting data within the same period of time, but separate VR sessions, we can isolate and

begin to understand to what degree identifiability diminishes as a result of exiting and reentering
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VR.

In this work, we choose a simple training task as our ecologically valid environment since this

domain has seen expanded use as of late [124]. We developed a virtual environment to train users

how to construct simple objects out of a set of toy pipes and connectors, allowing us to emulate

a simple assembly task. By using a prescribed set of instructions that the user had to replicate,

we reduce the likelihood that our within-session models overfit to features of the participant’s

experience, because we know that all participants completed the same steps in the same order for

the same tasks.

Using this training task, we conducted a study with 45 participants, yielding 1.7 million frames of

data over more than 5 hours. As far as research on identifiability with VR experiences this amounts

to less than the 60 participants of data Moore et al. [87] had, and far fewer than the 511 participants

of the work by Miller et al. [80]. Unlike those works, however, our informed consent allows us to

publish this dataset to make it openly available for future research.

Finally, we conduct 4 machine learning experiments to examine the identifiability of this data,

moderating the inclusion of data, its representation and the models, yielding results for 1176 total

conditions. We choose to examine only the machine learning models Random Forest (RF), Gra-

dient Boosting Machine (GBM), and k-nearest neighbors (kNN) rather than deep learning models

due to their reduced likelihood of overfitting. In our best-performing within-session RF model, we

find over 95% accuracy, but that same condition drops in accuracy to around 46% when trained

on one session and evaluated on another. We also examine a set of featurizations based on the 1st

order time derivative of the data and find it to perform moderately well, but with a different set of

data inclusion.

In this chapter, we will describe the development of the virtual environment and the experimental

methodologies, discuss our findings, and finally conclude with the limitations of this work and
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some future directions. The primary contributions presented herein are:

1. An analysis of identifiability between VR sessions within a short span of time.

2. An exhaustive exploration of data inclusion and representation conditions and how they af-

fect identifiability.

3. We provide a novel dataset featuring high-framerate capture of the tracked devices across

two VR sessions for 45 participants. A dataset containing all data used in this chapter will

be made available at GitHub:

6.2 Full-scale Assembly Benchmark

There were a few motivating factors for developing a new testbed for this research. Primarily, we

wanted to create a platform that was both usable and reproducible. We also wanted to investigate

assembly, since it enables us to maintain a consistent context while modifying the specifics of the

task that the participant will have to undergo. Another benefit of using an assembly training testbed

is that we can moderate the duration of the experience by changing the complexity of the object

that the participant has to build.

We are making use of a relatively inexpensive and readily available tube and connector toy as our

real-world task. We decided on this specific type of toy because the individual pieces are large

enough to elicit the gross motor movements that VR easily affords, and the individual pieces are

relatively simple objects and are easy to model with sufficient realism (Figure 6.1). To ensure

accurate reproduction, the toys were measured with digital calipers to measure the thickness and

positioning of each physical feature. I then recreated these using Blender, ignoring minor features

such as injection mold flashing. Finally the Unity standard shader was applied to the models and

values were tuned to achieve a similar visual appearance to their real-world counterparts.
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Figure 6.1: Two of the types of connectors in the toy set and their corresponding models.

In parallel with modelling, I also developed an assembly system that allows the individual pieces

to be attached to each other, as well as read, write, and modify sets of assembly instructions. This

system was then used in the editor to design some models and create associated sets of instructions.

At runtime, users could use virtual hand enhanced with VOTE [83] to select and manipulate the

virtual toy pieces. Because all of the pieces were inherently symmetrical about at least one axis,

care was taken to ensure that the system would recognize connections that were visually identical

as being the same. Generally, each step consisted of attaching a new piece to the current work in

progress, adding a screw to that connection, then using the key to turn the screw 90◦, as seen in

Figure 6.2.

While the environment was structured in a way that required the users to "turn" each screw, this

interaction was identified as having a disproportionally high level of dexterity needed for realism,

with interactions occurring at a scale afforded poorly by our hardware’s lack of finger-tracking.

Thus, participants were required only to use the key to touch the head of the screw, at which time,

the system would animate the key turning the screw, then return the key to the participant’s hand1.

1This design decision was met with mixed opinions from our participants as reflected in free-response questions
that did not prime discussion of the screw-turning behavior. Some participants specifically appreciated that it was
easier than the real-world, others disliked the suspension of realism compared to the rest of the environment.
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Figure 6.2: Attaching a tube in the Full-scale Assembly Benchmark. From top left, grabbing a
pipe, attaching it to the work in progress, inserting a screw, and turning the screw with the key.

When in use, the system would iterate through the instruction steps, presenting a set of interaction

cues [49] (consisting of animated transparent copies of objects to convey their intended motion

as well as static outlines to indicate objects to interact with and arrows to indicate screws to turn)

appropriately for each step. Additionally, as a form of feedback, a "pop" noise was added to

audibly confirm when pieces were attached together.

Finally, similarly to the Robotic Operating Room environment, the system was programmed to

record several features of movement including the positions, orientations, and button states of each

tracked object in the scene at 90Hz, when piece-attach events occurred, a first-person perspective

video recording of the activity, what objects were being observed and hovered over by the hands,

and times when the HMD was removed.
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Figure 6.3: The completed structures. Build A is shown on the left, and build B on the right.
Screws do not appear as an artifact of the way the screenshots were captured, but were visible in
the application.

6.2.1 Experimental Design

With the newly developed Full-scale Assembly Benchmark, we prepared two structures for par-

ticipants to build: build A and build B (see Figure 6.3). For both, we avoided having obvious

semantic meanings such as a house shaped structure. Both puzzles consisted of the same pieces:

3 “T Connectors,” 2 “L Connectors,” and two of each Red, Green, Yellow, and Blue pipes, as well

as 12 screws, exactly the number of each part needed for all of the connections in both puzzles. At

the beginning of the each experience, these pieces were laid out on the virtual table identically, as

shown in Figure 6.4. The full set of instructions for each build is shown in Table 6.1.

In the study, participants were presented first with a simplified VR onboarding task that prepared

them to complete the VR training scenario (see Figure 6.5). For this tutorial task, participants were

placed into a simplified scene that required only two connections to be made. In addition to the

interaction cues used throughout, the tutorial experience was annotated with both verbal and text

instructions providing guidance on the actions that needed to be taken in VR as well as the physical
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Figure 6.4: Both builds made use of the same pieces, in the same locations. They consisted of two
of each color pipe (red, green, blue, yellow), two elbow connectors, three three-way connectors,
and 12 screws. Also visible in the middle is the metallic key used to turn the screws to secure
connections.

Table 6.1: The order of steps for builds A and B. The letters R, G, B, and Y represent red, green,
blue, and yellow pipes respectively, T and L represent Three-way and Elbow joints, respectively.

Build 1 2 3 4 5 6 7 8 9 10 11 12

A Y1 B1 L1 Y2 T2 G1 R1 L2 G2 T3 R2 B2
T1 T1 B1 L1 Y2 T2 T2 R1 L2 G2 T3 T3

B Y1 B1 R1 T2 G1 R2 L1 G2 T3 B2 L2 Y2
T1 T1 T1 R1 T2 T2 R2 L1 G2 T3 B2 L2

actions needed to elicit them. This allowed the experimenter to have to only assist the participant

with making the ergonomic adjustments needed to don the HMD and hold the controllers correctly.

After completing the tutorial, participants had to do the VR training environments for the A and

B builds, which were presented in a counterbalanced manner. After completing each training

environment, participants attempted to recreate the structure they just built in VR, but now with

the physical toys. We made use of colored tape to mark the starting positions of the real-world toys

so that they would closely match the starting positions of their VR counterparts. See Figure 6.6 for
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Figure 6.5: A still of the participant’s perspective of the VR onboarding task.

an overview of the participant flow through the study.

6.2.2 Procedure

The following procedure was approved by the University of Central Florida Institutional Review

Board.

A link to a pre-survey was made available through university mailing lists. This pre-survey first

ensured that people responding to our survey were eligible according to our inclusion criteria.

They were then asked for their consent and,if granted, were administered a demographics survey.

Finally, the pre-survey automatically helped the participant schedule a 1-hour period of time to

participate in the in-person portion of the study.
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Figure 6.6: The full participant flow through the experiment.

Upon arrival, participants were asked for informed consent by the experimenter. Participants ex-

perienced the tutorial task, then VR training for the first build and replicating the build in the real

world. For the real-world task, participants were asked to recreate the build as accurately as they

could, and were asked to make use of all pieces in the event that they were stuck. This was fol-

lowed by the VR training and real-world building for the other build, with the ordering presented in

a counterbalanced manner. The result of the participant’s attempt to recreate the builds in the real

world was photographed (without the participant visible) and the administrating researcher timed

the participant.

In addition to the physical tasks asked of our participants, they were given some common question-

naires throughout the study including the System Usability Scale (SUS) [14], Simulator Sickness

Questionnaire (SSQ) [55], NASA Task Load Index (TLX) [43], and the Spatial Presence Experi-

ence Scale [44]. The ordering of the administration of these questionnaires was designed to ensure

that we would acquire immediate before and after measures of SSQ, and per-build measures of
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TLX, SUS, and SPES.

Finally, participants were given an exit survey after completing the second real-world build. The

full presentation ordering of questionnaires, VR experiences, and assembly evaluation tasks can be

seen in Figure 6.6. After completing the exit survey, the participant was thanked for their time and

compensated $25. Finally, the experimenter used a cleanbox to prepare the HMD and controllers

for the next user.

6.2.3 Materials

We made use of the HTC Vive Pro Eye system which has 1440x1600 pixels per eye, a 110◦ field of

view, integrated earphones, and provides accurate position and orientation tracking, eye-tracking,

a front-facing camera, and microphone. We paired this with a computer capable of rendering and

playing the VR training application at 90Hz as well as logging the tracked data to disk.

6.2.4 Participants

A total of 45 participants were recruited via university mailing lists. All participants (20 females,

25 males) had normal or corrected-to-normal vision with contacts, which were worn throughout

the duration of the study. The mean age of our participants was 22.1 ± 4.2 and 3 were left-hand

dominant.

6.3 Machine Learning Experiment 1

In this machine learning experiment, we analyze the identifiability of motion data within each

session. That is to say that we make use of data from a given session for training our models, and
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Table 6.2: An overview of the conditions compared in this chapter. Explored conditions include
the 0th and 1st order time derivative, within- and between-session predictions, the inclusion and
exclusion of individual trackers, the type of data used from those trackers, and the model used.

Trackers Used Included Data Model Type Session Time
Derivative

Head DomH OffH
Head DomH
Head OffH

DomH OffH
Head

DomH
OffH

×

Position Euler
Position Quaternion
Position SixD
Position

Euler
Quaternion

SixD

×
RF

GBM
kNN

×

A → A
B → B
A → B
B → A

× 0th
1st

some retained data for evaluating their accuracy. Several works explore the identifiability of users

within a single VR session, such as that by Miller et al. [80].

For each session the participants experienced, the system tracked the position and orientation of the

HMD and controllers at a rate of 90Hz. Because the application was built in the Unity Engine for

the HTC Vive Pro Eye, this was the framerate at which the application executed its event loop, and

thus the rate at which position and orientation data was provided to Unity to ensure the application

updated the rendered view for the HMD.

Across all analyzed conditions, we considered the inclusion or exclusion of each tracked object

(the HMD on the head, the controller in the dominant hand, and the controller in the non-dominant

hand), as well as inclusion of position or orientation. Although the inclusion and exclusion of

each individual value from each tracked object could be toggled independently (such as including

or excluding the Y component of position), the combination of these features would result in an

untenable search space. We choose to moderate the inclusion and exclusion of data by tracked

object to allow us to explore how each tracked object is contributing to identifiability. Likewise,

we moderate the inclusion of position and orientation data so we can evaluate if either are too noisy
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Table 6.3: Within-session identification accuracy for Random Forest, with position and orientation
data, trained and evaluated with data from session A.
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Head +
DomH +

OffH
95.1% 95.3% 95.8% 85.6% 85.9% 85.4% 87.8%

Head +
DomH 94.7% 93.4% 94.3% 78.3% 74.4% 73.0% 75.6%

Head +
OffH 93.9% 93.7% 94.3% 79.7% 76.6% 76.8% 77.6%

DomH +
OffH 88.7% 87.9% 88.4% 64.4% 71.0% 72.8% 71.3%

Head 85.1% 85.0% 86.0% 53.2% 42.9% 40.7% 44.2%
DomH 66.6% 67.0% 67.4% 41.7% 46.7% 45.7% 45.7%

OffH 71.2% 72.2% 71.9% 39.4% 49.9% 45.7% 47.8%

Table 6.4: Within-session identification accuracy for Random Forest, with position and orientation
data, trained and evaluated with data from session B.
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94.2% 95.7% 95.0% 81.8% 83.1% 83.0% 84.1%

Head +
DomH 91.8% 91.0% 91.0% 72.2% 70.6% 68.6% 69.3%

Head +
OffH 94.4% 93.2% 94.4% 77.3% 75.7% 75.3% 76.6%

DomH +
OffH 86.0% 87.3% 85.9% 59.6% 71.8% 73.8% 70.8%

Head 84.7% 81.3% 83.8% 48.0% 37.4% 36.9% 40.1%
DomH 61.6% 61.2% 59.7% 32.2% 47.3% 49.2% 49.4%

OffH 71.0% 71.7% 70.4% 40.1% 56.0% 56.2% 51.8%
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for the models to fit well.

Beyond the inclusion of orientation data, we also considered three orientation representations:

Euler angles, quaternions, and a six-dimensional representation. While the authors are not aware

of a six-dimensional representation being applied specifically to data collected in VR experiences,

this rotation representation has recently shown promise for machine learning models because of

the lack of discontinuities among continuous data [128]. We also examined Euler angles and

quaternions as alternatives due to their ready availability in the Unity engine and to help with

comparisons with prior works [86] [91].

The models we chose to evaluate were k-Nearest Neighbors, Random Forests, and Gradient-

Boosting Machine. These have been used previously by Miller et al. [80] effectively for identifying

participants. Because of the large number of hyperparameters we are already evaluating across we

choose to make use of default intrinsic parameter values for each model in the Scikit-Learn library

[98]. These values were k=3 for kNN, 100 estimators for Random Forest, and 100 estimators and a

learning rate of 0.1 for GBM. For kNN, training data was normalized and the same scaling function

was applied to the evaluation data to avoid issues with the scales along different axes. We chose not

to examine deep learning models due to the likelihood of overfitting to the relatively short samples

of data from each participant.

The full set of hyperparameter conditions explored in this chapter are described in Table 6.2. For

this section, we discuss the results of moderating the trackers used, included data, model type and

the first two values in the session column.

For a given set of conditions, we computed a set of per-second feature vectors. This feature vector

described per-second statistics of each available field in the data by calculating the minimum,

maximum, mean, median, and standard deviation. As an example, if head position was included

in the raw data, a corresponding feature vector would include these statistics for the x, y, and z
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values. These feature vectors from each session were then partitioned into 10 subsessions. For

the within-session identifiability analyses, we evaluated 20 Monte-Carlo shuffles of the data by

training on 9 random subsessions and evaluating the accuracy on the remaining subsession. While

the subsessions retained for evaluation for each participant varied within shuffles, the shuffles

themselves remained consistent across conditions. The models would predict a participant ID

label per 1-second feature vector provided. These 1-second level predictions were aggregated

together to yield a final predicted label for a given participant’s evaluation data by selecting the

most-predicted label.

For positional data, within-sessions, we found our best performance among conditions including

both the head and at least one hand, as well as incorporating both positional and rotational data

(Figure 6.3,6.4). For session A, this was 95.8% accuracy with the RF model, all three trackers,

using both position and 6-dimensional rotations. The same condition performed the best with the

GBM model at 95.7% accuracy, and the kNN model at 90.1%. In this chapter, I present the full

set of results for the Random Forest classifiers. All results for GBM and kNN across the machine

learning experiments can be found in Appendix B. For session B, the best performance was also

with all three trackers, but with position and quaternion rotations, at 95.7%. Again this condition

was the best for GBM as well at 94.0% accuracy, for kNN the best was all three trackers with

position and 6-dimensional rotations at 87.4% accuracy.

6.4 Machine Learning Experiment 2

For our next machine learning experiment, we investigate the between-session accuracy of these

models. This is motivated by some prior works that indicate that the task of identifying an indi-

vidual across multiple sessions is more difficult than within one session. Miller et al. [80] mention

it as a limitation of their study, and while Liebers et al. [67], Moore et al. [89], and Pfeuffer et
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Table 6.5: Between-session identification accuracy for Random Forest, with position and orienta-
tion data, trained on A and evaluated on B.
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51.1% 44.4% 46.7% 42.2% 46.7% 40.0% 44.4%

Head +
DomH 53.3% 53.3% 48.9% 40.0% 35.6% 40.0% 33.3%

Head +
OffH 57.8% 46.7% 51.1% 44.4% 37.8% 40.0% 40.0%

DomH +
OffH 33.3% 33.3% 35.6% 22.2% 33.3% 33.3% 31.1%

Head 75.6% 71.1% 75.6% 42.2% 40.0% 31.1% 31.1%
DomH 31.1% 35.6% 31.1% 20.0% 31.1% 28.9% 26.7%

OffH 26.7% 24.4% 31.1% 15.6% 17.8% 17.8% 22.2%

al. [99] all make use of datasets involving multiple sessions, the sessions are spaced at least a day

apart, introducing some additional variability due to the change in state of the participant.

For our Between-session Identifiability analyses, we evaluate identification accuracy across the

same set of variables as the previous section. We moderate the inclusion of trackers, the position

and orientation data of those trackers as well as the orientation representation, and model type, as

shown in Table 6.2. In this section, we now look at training models on one session and evaluating

on another.

For this analysis, we developed the same per-second feature vectors as previously described. Our

models were then trained on the entirety of a given session and evaluated on the entirety of the

other session, aggregating predictions at the second level to create a prediction for that session.

This approach was chosen as it would be an ecologically valid approach for identifying users
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Table 6.6: Between-session identification accuracy for Random Forest, with position and orienta-
tion data, trained on B and evaluated on A.
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Head +
DomH +

OffH
51.1% 51.1% 53.3% 40.0% 46.7% 46.7% 44.4%

Head +
DomH 57.8% 51.1% 55.6% 40.0% 42.2% 40.0% 40.0%

Head +
OffH 62.2% 62.2% 62.2% 37.8% 40.0% 40.0% 40.0%

DomH +
OffH 40.0% 37.8% 37.8% 31.1% 33.3% 31.1% 33.3%

Head 80.0% 75.6% 82.2% 33.3% 51.1% 31.1% 42.2%
DomH 35.6% 35.6% 35.6% 15.6% 31.1% 31.1% 24.4%

OffH 31.1% 31.1% 31.1% 22.2% 24.4% 22.2% 22.2%

without their knowledge.

Looking at the between-session positional data, we now find our best performances still incor-

porated positional and rotation data, but now only made use of the head tracker (Table 6.5,6.6).

For the models trained on A and evaluated on B, the best performance was head tracker, position,

and either Euler or 6-dimensional rotational representation, at 75.6% for RF, 73.3% for GBM, and

75.6% for kNN. For the models trained on B and evaluated on A, the head tracker and position with

6-dimensional rotation performed at 82.2% for RF, and 80% for GBM. For B to A, kNN performed

best with head, position and Euler angles at 71.1%.
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6.5 Machine Learning Experiment 3

Beyond creating the feature vector by using the collected data as it was, we also considered com-

puting its first-order time derivative, since velocity-based features have been demonstrated to be

useful when predicting knowledge and performance retention [89]. This tracking data was then

aggregated at the one-second level by computing the minimum, maximum, mean, median, and

standard deviation for each component value, to create a feature vector to describe that second of

motion. Depending on the tracker inclusion and position/orientation conditions, this per-second

feature vector consisted of between 15 and 135 values.

In this section, we again divided the data from each session into 10 subsessions. We use a similar

approach of creating 20 Monte-Carlo shuffles of the subsessions, allowing the models to train on

9 of them per participant, and evaluating their identification accuracy on the retained ones. This

is essentially the same procedure as presented in Section 6.3, but now conducted on the feature

vectors that were generated using the time-derivative data instead of the raw data. Again, RF and

GBM performed on par with each other, and overall better than kNN, so we choose to show the

results for RF (Table 6.7,6.8), with the full set of results available in Appendix B.

Examining the within-session velocity data, we found our highest identification accuracies among

models involving six-dimensional rotation representations and incorporating at least two trackers.

Across all models, for both the A session and B session, the best-performing conditions were those

that made use of position and 6-dimensional rotations across all three trackers, yielding 64.1%

accuracy for session A and 66.2% accuracy for session B. GBM maxed out at 64.3% for session

A and 68.0% for B. Finally, kNN performed notably worse, with accuracies of 37.2% for A and

40.9% for B. k
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Table 6.7: Within-session identification accuracy for Random Forest, with velocity and angular
velocity data, trained and evaluated on A.
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Velocity
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Head +
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OffH
54.2% 59.0% 64.1% 41.3% 45.7% 52.4% 62.0%

Head +
DomH 48.6% 52.7% 60.3% 37.4% 40.4% 46.4% 54.8%

Head +
OffH 44.8% 47.9% 53.8% 30.7% 36.2% 42.8% 48.0%

DomH +
OffH 49.4% 56.0% 59.6% 39.3% 40.8% 51.0% 54.9%

Head 29.6% 32.2% 36.1% 18.3% 24.4% 28.1% 28.4%
DomH 42.4% 45.1% 49.1% 25.8% 32.3% 38.6% 43.7%

OffH 36.1% 45.1% 50.1% 27.7% 26.7% 37.7% 44.8%

Table 6.8: Within-session identification accuracy for Random Forest, with velocity and angular
velocity data, trained and evaluated on B.

RF
B → B

Velocity
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Head +
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OffH
58.7% 63.6% 66.2% 46.3% 53.0% 59.7% 64.2%

Head +
DomH 51.8% 54.2% 58.3% 35.1% 41.7% 48.4% 54.6%

Head +
OffH 50.9% 55.7% 60.8% 36.9% 41.4% 50.9% 56.3%

DomH +
OffH 52.1% 58.7% 60.9% 36.7% 44.6% 53.4% 56.9%

Head 30.2% 31.9% 36.6% 20.2% 22.3% 25.6% 31.2%
DomH 41.6% 44.2% 46.4% 24.1% 27.4% 39.1% 43.2%

OffH 40.6% 49.0% 49.9% 26.2% 29.1% 40.1% 42.7%
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Table 6.9: Between-session identification accuracy for Random Forest, with velocity and angular
velocity data, trained on data from A and evaluated with data from session B.

RF
A → B
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Head +
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OffH
28.9% 28.9% 35.6% 17.8% 26.7% 28.9% 33.3%

Head +
DomH 28.9% 24.4% 33.3% 15.6% 20.0% 28.9% 31.1%

Head +
OffH 28.9% 31.1% 24.4% 15.6% 22.2% 22.2% 24.4%

DomH +
OffH 22.2% 22.2% 26.7% 13.3% 17.8% 22.2% 24.4%

Head 33.3% 42.2% 44.4% 15.6% 28.9% 28.9% 33.3%
DomH 20.0% 20.0% 24.4% 15.6% 11.1% 11.1% 24.4%

OffH 24.4% 24.4% 20.0% 11.1% 20.0% 17.8% 15.6%

6.6 Machine Learning Experiment 4

Finally, we examine the identifiability of motion data, using the same velocity feature-vector pro-

cedure described in the previous section, but now between sessions. We conducted this exploration

by allowing the models to train over the entirety of one session from all participants, then evalu-

ated over the entirety of the other session. Again, because our models created predictions for each

second, based on each per-second feature vector provided, we aggregate the predictions, saying

that the model ultimately predicted an identity based on

Finally, when we look at the between-session velocity data, we find that no conditions exceeded

50% accuracy. Our best-performing models involved both the position and 6-dimensional repre-

sentation of the data, with the head tracker only. For the RF model trained on session A and evalu-

ated on session B, we found 44.4% accuracy, and for the RF model trained on B and evaluated on

115



Table 6.10: Between-session identification accuracy for Random Forest, with velocity and angular
velocity data, trained on data from B and evaluated with data from session A.

RF
B → A
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42.2% 44.4% 40.0% 33.3% 31.1% 40.0% 40.0%

Head +
DomH 37.8% 35.6% 42.2% 28.9% 26.7% 28.9% 31.1%

Head +
OffH 26.7% 35.6% 35.6% 17.8% 15.6% 35.6% 40.0%

DomH +
OffH 31.1% 37.8% 28.9% 17.8% 22.2% 28.9% 26.7%

Head 28.9% 35.6% 46.7% 17.8% 17.8% 26.7% 33.3%
DomH 28.9% 26.7% 26.7% 13.3% 15.6% 20.0% 17.8%

OffH 22.2% 26.7% 24.4% 11.1% 11.1% 17.8% 20.0%

A, this yielded 46.7% accuracy. For that same condition, GBM had an accuracy of 46.7% for A to

B. For GBM’s best B to A condition, we see head and dominant-hand, position and 6-dimensional

rotations perform best at 48.9%. For kNN A to B, Head-only, position and 6D rotations is best at

31.1%, and no condition performed above 25% accuracy for B to A.

6.7 Discussion

6.7.1 Tracking data from an unspecified task is likely not sufficient for identifying people against

their will with these machine learning models

Our findings generally show that across the board, it’s feasible to attain impressive results for iden-

tifying participants within the same task. The results of our analyses also demonstrate, however,
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that even when models are provided with substantially more data to evaluate over, they still fail

to identify participants at nearly the same level of accuracy when attempting to evaluate over a

slightly different task. This result is important because it demonstrates that XR practitioners hop-

ing to develop motion-based authentication should present users with the same task for encoding

and authentication. Likewise, those hoping to de-anonymize XR usage data should, if possible,

train their models on identified samples of users performing parts of the tasks in their target data

set, because even similar tasks yield between sessions yield worse results.

Furthermore, it is worth noting that in an ecologically valid between-task identification scenario,

where one knew the labels for session A, but not B, one might attempt to use the best-performing

classifier in their labelled training data (i.e., all three trackers with position and quaternion rota-

tions, which performed at 96% accuracy). This condition applied between sessions yields relatively

poor performance, however, at only 48.9% accuracy.

6.7.2 More tracked devices yields better identification accuracy within the same task

As shown in Tables 6.3 and 6.4, across all position and orientation conditions, the inclusion of

additional trackers yielded better accuracies. This suggests that within a given task and session,

none of the tracked objects contributed data that caused the models to overfit to the training subset.

Perhaps unsurprisingly, we also note that of the 2-device and 1-device conditions, those that in-

cluded the head performed better than those without, when position was included. This is aligned

with the results of the ablation results presented by [80], in which removal of the features related

to the head Y-value resulted in the greatest drop in identification accuracy.
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6.7.3 More tracked devices does not yield better identification accuracy across similar but

slightly different tasks

As shown in Tables 6.5 and 6.6, the inclusion of trackers other than the head yielded worse accu-

racies, suggesting that they contributed to noise in the training of the model. We were focused on

the ecologically valid potential privacy issue in which a malicious actor has a sample of labeled,

trained data. Because of our study design, we are unfortunately unable to separate out if this may

have been due in part to the model encoding physiological features of the user such as their height,

as opposed to features related to their environment as indicated by [105].

6.7.4 Using position and orientation generally yields higher identification accuracy

Across both the within- and between-session conditions, the inclusion of both position and orienta-

tion generally yielded higher identification accuracy than using exclusively one or the other. These

results indicate that broadly when including the data from a given set of trackers, it appears to be

helpful to make use of both the position and orientation tracking, if afforded by the system.

Interestingly, we find that in many of our conditions, the six-dimensional representation proposed

by Zhou et al. [128] not to perform significantly better. We posit that this may be partially a

result of the manner in which we aggregate positions. Because each per-second feature vector was

considered in isolation, moments where the quaternion or Euler values would have discontinuities

was outnumbered by the samples of data without such discontinuities. It is possible that this

representation may be more useful for a more time-dependent approach such as LSTM.
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6.7.5 Identities can be partially obfuscated by encoding the velocities of tracked devices instead

of positions

While one might expect that using feature vectors generated from the first-order derivative to poten-

tially encode data more specific to users and yield classifiers that are better capable of generalizing

across tasks, we found that between-task performance was generally worse with the velocity-based

features than with the positional ones, diminishing from 82.2% to less than 50% for Random For-

est. While this is still much more than the random likelihood of a correct guess, this diminishing

suggests that while velocity-based features may have some use for identification, they may need

a specific featurization outside of the scope of this chapter to yield accuracies on par with our

positional data.

6.7.6 Limitations

In this work, we choose not to optimize some of the hyperparameters that are intrinsic to the

models explored (such as the depth of trees in Random Forest, or k in kNN). This decision is

due in part to the scope of the explored hyperparameters in this work requiring the evaluation of

1176 (2 ∗ 4 ∗ 7 ∗ 7 ∗ 3) models, resulting in further hyperparameter exploration to be untenable.

Additionally, our approach categorized each feature vector in isolation, not taking advantage of the

temporal nature of our data.

Another limitation is that we examined the data from two similar but distinct tasks. It’s possible

that our results could be different with different builds or with fundamentally different tasks. We

believe that this is a somewhat representative example of identifiability between similar tasks in

which the user is performing a task that is prescriptively defined as a sequence of steps, but varying

results may be found for environments in which the interactive objects are different, appear in
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different locations, or lack the instructional context our application contains.

Further, while our total set of data may appear large (1.7 million samples), this represents the data

of 45 users and a total of a little more than 5 hours of time. If we were to make use of Deep

Learning methods on this amount of data, it would be likely to overfit to the individuals. While

this amount of data is less than some previous work like that by Miller et al. [80] or Moore et

al. [89], it is more than several of the other works exploring VR identifiability, and will be made

available as a resource for future research.

One final limitation to address is the arguable presence of a confound due to differences in the

builds in addition to the participants doffing and donning the VR equipment. Some existing work,

such as that by Asish et al. [3] makes use of multiple scenes and contexts without removal of the

headset. With the between-session portion of this work, our focus was on identifiability between

two individual VR sessions. Because our context is in an ecologically valid training scenario, we

anticipated learning affects to moderate participants’ motions through the instructions. This would

still result in unique behavior from session to session, so we opted for two unique, but slightly

different builds.

6.8 Conclusion

In this chapter, we explored the identifiability of participants when presented with two distinct

but similar tasks in VR. We first looked at identifiability within sessions and we examined the

inclusion and exclusion of data across several conditions by tracked object as well as the kind of

data contained therein. Our search over this space of data should help form an understanding of

what is contributing to accuracy and what is overfitting for different training and testing condi-

tions. Further, by examining temporally close data from two VR sessions, we hoped to expand
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our understanding of identifiability as it relates to variables specific to a given session. While we

found that within a VR session, increasing the sources of data generally improved the accuracy of

the models identifications, we found some sets of data to be contributing data that overfits to the

session, thus resulting in worse accuracy. Finally, by exploring a velocity representation, we find

different sets of data to be useful for identification, warranting further exploration.
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CHAPTER 7: INSIGHTS AND FUTURE WORK

7.1 Introduction

The previous chapters discussed the findings related to two human-subjects studies. In the process

of conducting this research, we have identified some gaps and new areas for research that are both

interesting and valuable to investigate. In this chapter, I will describe both the upcoming research

that the second human-subjects study enables, as well as some of the insights gained through the

process of doing this research.

7.2 Insightful Conjectures

This research was broken into two major categories: the prediction of outcomes from VR training

environments, and the identifiability of this data. Through this work, a few themes have emerged

that may be of use to future researchers and XR practitioners.

7.2.1 The Appropriateness of Time-derivative Data

One of the comparisons that I examined was the performance of our models when trained on

the unmodified data, or the derivative of that data. Taking the derivative with respect to time

with rolling differences can accentuate noise by amplifying the high frequency components of

the signal. While we assume the HTC Vive and HTC Vive Pro Eye systems used throughout

this dissertation to yield accurate data with a relatively high signal to noise ratio, these effects

were nevertheless magnified. Future effort could make use of filtering to produce better, filtered

estimates of hidden states that are not directly measured (such as estimating velocity from position
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with a Kalman filter). This could yield better results both in terms of identifiability as well as the

prediction of learning outcomes with the time-derivative data.

Due to the combinatorial explosion of features, I was limited in what I could explore in these

studies. I explored features with reference to the world-space, but other researchers like Pfeuffer

et al. [99] have found certain velocity features to be helpful for identification or authentication

when calculated when done in reference to other trackers. It’s possible that a combination of

positional, velocity, or even higher order derivatives of the data could be optimal for some of

these tasks, but these potential future approaches will necessitate better filtering of high-frequency

domain noise.

7.2.2 Velocity is an Indicator of Cognitive Processing

In Chapters 3 and 4, we found the models trained on data based on the velocity of the the learner’s

movement to yield higher accuracy when predicting learning gains, knowledge retention, and per-

formance retention. This suggests that the velocity of movement more closely indicates underlying

cognitive processes than the positions themselves while learning. Our visual analysis presented in

Chapter 3 and refined in Chapter 4 suggests that the classifiers may be identifying purposeful

movement as part of its prediction. Since our participants had no prior experience with robotic

surgery, we interpret this as indicating that the degree to which the user is encoding the training

content is more predictable with this kinda of data.

7.2.3 Position Encodes Physiology which is a Key Feature for Identifiability

When discussing our identifiability findings in Chapters 5 and 6, I noted that models trained on the

positional representation of data consistently outperformed those trained on the velocity data. This
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suggests that the position data, which is more closely related to the anatomy of the participants was

more useful to our classifiers than the velocity, which may be more related to the kinetics. With

this observation, one should note that VR users with disabilities likely have an increased risk of

identification compared to existing online interactions, highlighting the importance of this ongoing

field of research. As we see new techniques develop to attempt to reduce identifiability in virtual

environments, such as remapping movements to a standard-scaled avatar, our understanding of

adversarial identifiability will also have to evolve.

7.2.4 Task Categorization

One of the contributions to why we found positional characteristics to be more identifying and

the kinematic data to be more helpful for predicting outcomes is due to the difference in the type

of task being asked of the machine learning models. While identification or authentication tasks

must seek to identify what is unique about a user’s movement, performance prediction has to

identify similarities in the movement, with individually identifying features potentially leading to

detrimental overfitting.

For identification, based on the results presented in this dissertation, it appears that the overfit-

ting risk is more related to factors intrinsic to the session or the content presented in the virtual

environment, rather than the participant themselves. This suggests that there could be value in

the development of a model that unifies the different physical aspects that feed into the readily

available tracking data: the content of the presented scene, the physiology of the participant, the

specifics of the VR hardware, and the goals of the participant. Such modeling could lead to better

selection of features, filtering, or even development of more robust human performance modeling

in the context of virtual environments.
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Figure 7.1: The participant flow as experienced through the experiment to support real-world trans-
fer of skills

7.3 Future Work

While we presented some work that makes use of the Full-scale Assembly Benchmark (FAB)

environment, we intend to continue using it for some additional work. In this section, I’ll describe

research that we’re in the process of conducting, as well as some potential future work that could

readily stem off of the research that I have presented in this dissertation.

7.3.1 Predicting Real-world Transfer of Skills

We are currently in the process of conducting additional participants through the FAB environment

with a study design that involves participants building a real-world version of each structure after

learning how to construct it in VR (Figure 7.1). We intend to collect the data from 100 complete

sessions in order to enable our planned analyses. Recall that after they completed their best attempt
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at reconstructing the build, a photo was taken, allowing us to interpret the outcome quality of their

real-world performance.

Since each piece in the toy set is limited in the way that it can be connected, we can design a

heuristic to objectively measure the accuracy of the participants’ performance by a measure of how

different it is from what they were supposed to build. Similarly to the work presented in Chapter

4, we can build a classifier to attempt to predict this performance based on the data recorded while

undergoing training.

While this data can allow us to predict the real-world transfer of skills, because we collected

data from two unique tasks, we can look at additional questions, such as whether behavior when

learning one task predict performance in a similar but distinct task, or if exposure to multiple tasks

improve the performance of skill transfer prediction models. Additionally, beyond skill-transfer

related questions, we can also look at predicting cybersickness and cognitive load, or modeling

usability.

7.3.2 Obfuscation

While the FAB environment enables us to continue exploration into identifiability, there are a

few potential future studies that would continue our understanding of the identifiability of this

data. A further study we recommend be conducted includes a controlled study that compares the

identifiability of users between tasks with little motion and tasks with much motion, specifically in

guided and unguided interactions.

Another future study that would be valuable would be to analyze these approaches in the context

of authentication, rather than identification, in an ecologically valid context, like the VR training

application that we investigated. This could be used to augment existing work in continuous au-
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thentication to detect session hijacking in order to retain your credentials between sessions until

the system detects a different user has begun to use the machine.

Finally, this work demonstrated that training a classifier within a session of data can overfit to

features specific to the task a participant is experiencing, and that using this data from one un-

specified task may be insufficient to identify participants in other tasks against their will. In our

dataset, participants were exposed to one session in VR, exited VR, then re-entered for the other

task. Exploring multiple tasks within a single VR session, and alternatively the same task, longitu-

dinally across multiple sessions will be an important next step for improving our understanding of

the variability in tracking data across experiences and sessions. A further logical next step for this

work would be to design additional experiences, and examine to what degree training classifiers on

samples of data from multiple distinct tasks can improve accuracy in identifying people in unseen

tasks.
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CHAPTER 8: CONCLUSION

In this dissertation, I presented some of my findings regarding the usefulness of readily available

tracking data in virtual reality training experiences. My focus was primarily on prediction and

estimation of the outcomes of those training environments at the user-level, as well as discussing

identifiability as it relates to this data. I believe that it is clear that while the intrinsic tracking

needed to convey VR experiences affords systems unique insight to their users, there is still much

work to be done in this area to continue advancing our understanding of what this data is useful for

and how it can be used.

Through the work described in Chapters 3 and 4, we found that readily available VR tracking

data was useful for predicting both cognitive and psychomotor outcomes from VR training scenar-

ios. Similarly, in Chapters 5 and 6, we determined that factors relating to the user’s session and

experience impacted the identifiability.

In seeking to answer these questions, we made some additional observations, like how identifi-

ability isn’t always improved by adding additional tracked data, and how models can be trained

to predict the retention of psychomotor performance better than the immediate gains of cognitive

knowledge. I am really excited to see where the future takes us for new applications of VR tracking

data, because a system with a better understanding of the user is one that can hopefully be more

equitable.
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APPENDIX A: A FORMATIVE EVALUATION METHODOLOGY FOR

VIRTUAL REALITY TRAINING SIMULATIONS
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NOTE: This appendix is a modified format version of the paper previously published.

Material from: A. G. Moore, X. Hu, J. C. Eubanks, A. A. Aiyaz, and R. P. McMahan. A formative

evaluation methodology for vr training simulations. In 2020 IEEE Conference on Virtual Reality

and 3D User Interfaces Abstracts and Workshops (VRW), pages 125–132, 2020. doi: 10.1109/

VRW50115.2020.00027

A.1 Introduction

The term “formative evaluation” was originally coined by Michael Scriven [107] in 1967 to refer

to “outcome evaluation at an intermediate stage in the development of the teaching instrument.”

The term was quickly adopted by the educational research community [120] and popularized by

Dick and Carey [27] in the area of instructional design. In the 1980s, the concept of “formative

assessment” emerged as an opportunity to assess the learner’s progress, in addition to continually

modifying instruction [5, 40]. In the 1990s, Carroll et al. [15] were among the first to use the

term “formative evaluation” for a human-computer interaction (HCI) context, and shortly after,

Hix and Hartson [46] defined it as the “evaluation of the interaction design as it is being developed

early and continually throughout the interface development process.” Put simplest by Hartson and

Pyla [45], formative evaluation helps you “form the design”, as opposed to summative evaluation,

which helps you “sum up the design”.

In HCI, formative evaluations are empirical methods that use data collected from representative

users interacting with the system to iteratively assess and improve the interaction design [47]. Nu-

merous techniques have been employed to gather data during formative evaluations of traditional

2D user interfaces (UIs), including critical incidents, video and/or audio recordings, automated

data logging, think aloud protocols, interviews, and questionnaires [45]. These techniques have

also been applied to 3D UIs like VR [12]. However, in general, few evaluation techniques have
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been developed specifically for 3D UIs[62].

In this appendix, we present a novel formative evaluation methodology designed specifically for

improving the interaction design of VR systems that simulate real-world tasks, which we call

CARAI (pronounced “kerē”). Our methodology involves five distinct stages: 1) Capture the real-

world task and interactions; 2) Automate data logging for each subtask and interaction of the VR

counterpart; 3) Run an empirical, rigorous user study; 4) Analyze user performances for each

subtask; 5) Inspect significantly worse subtasks and interactions.

As a case study, we have used CARAI to formatively evaluate the interaction design of a VR system

designed to train users how to troubleshoot a surgical robot during surgery. We used a videotape of

a subject-matter expert (SME) troubleshooting a real- world robot to identify subtasks, the physi-

cal actions that each subtask involves, and how much time the SME needed to complete each one.

During development of the VR application, we incorporated data logging features to automatically

capture the time required to compete each subtask and any errors that could be potentially com-

mitted during that subtask. After completing development, we conducted a user study with 20

participants to capture usability data for all the subtasks and interactions. We then conducted a

one-way repeated-measures analysis of variance (ANOVA) to identify subtasks that yielded signif-

icantly worse completion times or more errors. Finally, we inspected the implementations of these

subpar subtasks and were able to identify important but nuanced issues in their interaction designs,

which we have since addressed to improve the usability of our VR training application.

We present the following contributions in this appendix:

1. A formative evaluation methodology designed specifically for improving the interaction de-

sign of VR simulations.

2. A case study using our methodology to formatively evaluate and improve the usability of a
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VR training simulation.

3. An investigation and discussion of how to optimally analyze user performances for each

subtask of a VR simulation.

A.2 Formative Evaluation

Several formative evaluation methodologies and approaches have been developed for conventional

UIs [45], such as the Rapid Iterative Testing and Evaluation (RITE) method [79], which has been

used to formatively evaluate VR systems (e.g., [61]). However, only a couple formative evaluation

methods have been developed specifically for VR or 3D UIs [62].

Gabbard et al. [39] presented a user-centered design and evaluation methodology specifically for

VR based on sequentially performing: 1) user task analysis; 2) expert guidelines-based evalua-

tion; 3) formative user-centered evaluation; and finally, 4) summative comparative evaluations.

While this sequential evaluation methodology could be applied generally to any type of interface,

it employs application-specific guidelines, domain-specific representative users, and application-

specific tasks to design and evaluate a useful VR system interface [62].

Bowman and McMahan [10] presented another evaluation approach based on investigating specific

components of a VR system while keeping other components constant, in order to evaluate their

effects on the usability of the system. This approach can be used either formatively, to decide upon

unclear design choices, or summatively, to establish knowledge of the general effects of one or

more components [62]. For identifying components to investigate, McMahan [73] has presented

the user-system loop and identified several components pertaining to interaction [74], scenario

[100], and display fidelity [77].
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A.3 New Formative Evaluation Methodology

In this section, we present our novel formative evaluation methodology that helps to identify usabil-

ity and interaction issues in VR systems that simulate real-world tasks. This methodology emerged

from the currently presented case study of a VR system designed to train users how to troubleshoot

a surgical robot, which was initially developed using a user experience (UX) lifecycle of analyz-

ing, designing, prototyping, and evaluating [8]. In the early stages of the lifecycle, we used con-

ventional evaluation methods, including heuristic evaluations [20], SME interviews after demos

[10], and a formative quasi-empirical evaluation with SMEs [8]. At this point, we redesigned the

troubleshooting scenario to address several issues identified during the quasi-empirical study and

re-developed the VR application from scratch. Additional SME interviews after demos of our new

system indicated that we had fixed all of the previously identified issues. However, we observed

some potential usability issues during some of the demos. To determine if these potential issues

were actual usability problems, we devised the following formative evaluation method.

It is important to note that our methodology can be used at any stage in the UX lifecycle, despite us

employing it in the late stages of our VR training application’s lifecycle. We actually recommend

using it at the start of the lifecycle, if possible.

Figure A.1 shows an overview of our methodology, which we refer to as CARAI. It involves five

distinct stages: 1) Capture, 2) Automate, 3) Run, 4) Analyze, and 5) Inspect.

The capture stage occurs during the analyze phase of the UX lifecycle, and ideally, should occur

during the first iteration. It involves videotaping one or more SMEs completing a physical task in

the real world, which will eventually be simulated by the VR system to be developed. The most

relevant output of this stage are subtask requirements, which clearly define the subtasks of the real-

world task, the physical actions required for each subtask, potential errors that could be committed
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Figure A.1: Overview of our formative evaluation methodology.

during each, and metrics based on the performance of the SMEs, such as speed, accuracy, and

precision [78]. Environmental requirements, such as what real-world objects need to be modeled,

and hardware requirements, such as tracking capabilities, can also be derived from the real-world

task, in addition to consulting the SMEs.

During the first iteration of the UX lifecycle, the design phase should include identifying interac-

tion techniques (e.g., selection, manipulation, travel, and system control [62]) to employ, based on

the subtask, environmental, and hardware requirements. In turn, interaction cues, which inform

the user about an action to take [28], should be designed for the chosen interaction techniques.

The automate stage of our methodology occurs during the prototype phase of the UX lifecycle. It

involves integrating automated data logging into the VR simulation to capture subtask performance

metrics, such as time and interaction errors. In this appendix, we discuss how we formatted our
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logs, but formatting requirements are highly dependent upon the subtask requirements identified

during the capture stage, which are dependent upon the real-world task being simulated. Ideally,

the automate stage would occur during the first iteration of the lifecycle; however, as discussed

above, this requires time to implement, which detracts from developing other features or fixes, and

may need to be reimplemented in later iterations, if the system is redesigned.

The run stage occurs during the evaluate phase of the lifecycle. It involves conducting an empirical,

rigorous user study to capture performance data for each subtask implemented in the VR system.

These metrics should be automatically captured by the automated data logging implemented in

the automate stage. In addition to the performance logs, this stage can also be used to capture

subjective data in the form of questionnaires. Early in the lifecycle, we recommend using custom

usability questionnaires that address application-specific design requirements, such as the subtask,

environmental, and hardware requirements identified during the capture stage. Later in the lifecy-

cle, as was the case with our VR training system, we recommend using standardized questionnaires

to obtain results that can be compared to other VR evaluations.

The analyze stage should immediately follow the run stage. It involves conducting a one-way

(subtask) repeated measures (RM) ANOVA to identify subpar subtasks that were significantly

worse than some other subtask, in terms of the performance metrics. This stage can also be used

to analyze, and possibly compare, the statistics of any data collected via questionnaires.

The final inspect stage should follow the analyze stage. It involves inspecting the VR simulation’s

software, and possibly hardware, to identify usability issues pertaining to the subpar subtasks and

to identify what causes them. In turn, these usability issues and their causes should be addressed

by appropriately redesigning the interaction techniques and cues of the simulation. The formative

iteration process of the UX lifecycle can continue by simply repeating the relevant stages of our

methodology. We have provided a general overview of our formative evaluation methodology
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above. In the next few sections, we discuss how we applied the five stages of CARAI to our VR

training system for troubleshooting during robotic surgeries.

A.4 Case Study: The Real-World Task

Our VR simulation has been formatively designed and developed to train first assistants, who fa-

cilitate the procedures and perform instrument exchanges in robotic surgeries [19], to troubleshoot

the robot during intra-operative complications, which is one of their most important responsibili-

ties [59]. In the initial stage of our project, during the analyze phase, we collaborated with SMEs

to identify the subtask, environmental, and hardware requirements for the VR simulation. A ma-

jor part of this collaboration involved videotaping the SMEs executing the proper procedure for

trouble-shooting the robot. This video “artifact” [45] allowed us to identify the subtasks required

for the training, the physical actions to simulate, and potential errors that could be committed, in

addition to some environmental requirements (see Figure A.2).

Though we did not employ CARAI early in the lifecycle of our VR simulation, we were able to

reuse this video artifact later on to capture completion times in seconds for each subtask based on

the actions of the SMEs (TS). See Table A.1 for the subtasks and times.

A.5 Case Study: The VR Simulation

During our initial analyze phase, we identified several design requirements for our VR simula-

tion. The SMEs desired hardware that was easily replaceable and affordable (relative to hospitals),

which constrained us to consumer VR technologies only (i.e., no specialized headsets or peripheral

devices). The captured subtask requirements indicated that the system would need to support 3D

manipulations outside of the user’s view, in order to rotate the wrench and check the vision moni-
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Figure A.2: A frame of the video used to capture subtask metrics.

tor. This constrained us to choosing a room-scale technology with outside-in tracking, which only

included the HTC Vive and Oculus Rift CV1 at the time. Finally, the environmental requirements

indicated that a large tracking space would be necessary to access the virtual operating room by

walking, without introducing a virtual travel technique and potentially simulator sickness. Hence,

we settled on the HTC Vive, which provided the larger tracking space (4m x 4m).

As seen in Table A.1, several of the subtasks required the user, acting as a sterile first assistant,

to communicate with the non-sterile surgeon and staff. Many of these communications involve

requesting the surgeon or staff to interact with the non-sterile portions of the surgical robot, such

as the touchscreen on the vision cart or the touchpad on the surgeon console. In order to simulate

such communications and the ability to make requests of either a surgeon or staff member, we used

a floating window with dialog options [62] for each virtual agent (see Figure A.3). We chose not
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Table A.1: The subtasks for our VR simulation and their associated interactions and SME comple-
tion times (in seconds).

# Subtask Interaction TS
1 Check error message Walk + Look 3.5
2 Consult surgeon Select (dialog) 6
3 Ask to restart system Select (dialog) 7
4 Ask to call support Select (dialog) 7
5 Ask for release wrench Select (dialog) 7
6 Ask to emergency stop Select (dialog) 10
7 Hold instrument carriage Select (carriage) 4
8 Insert wrench Position (wrench) 5
9 Rotate wrench Rotate (wrench) 4

10 Check vision monitor Look 2
11 Remove wrench Position (wrench) 4
12 Remove instrument Position (instrument) 4
13 Give instrument to staff Position (instrument) 7
14 Ask to recover fault Select (dialog) 7
15 Ask to disable arm Select (dialog) 7
16 Check error message Walk + Look 3.5
17 Use cannula lever Select (lever) 7
18 Use instrument clutch Position (clutch) 8
19 Use port clutch Position (clutch) 10
20 Ask to confirm disable Select (dialog) 7

to use voice commands to reduce the extraneous cognitive load [95] induced by voice recognition

errors [62]. In order to avoid clutter, we displayed only one window at a time, based on which

agent was near to the center of the user’s field of view.

Outside of communicating with the surgeon and non-sterile staff, most of the remaining subtasks

involved motor actions to grab, position, or rotate objects within the operating room. To increase

the likelihood of successfully training these motor skills, we decided to use the simple virtual hand

technique, which provides a high degree of interaction fidelity for such gross motor tasks [73]

(see Figure A.4 for example). Again, to reduce extraneous cognitive load [95], we decided to use

the same simple virtual hand technique for selecting the previously mentioned dialog options (see
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Figure A.3: One of the floating windows used for communicating with the virtual surgeon and
non-sterile staff member.

Figure A.3), as opposed to introducing a second selection technique, such as ray-casting.

Finally, a number of the subtasks involved visually checking the vision monitor to either read error

messages or to verify that the instrument is no longer grasping tissue. We implemented this by

simply verifying that the vision monitor was in the center of the user’s field of view. For reading

the error messages, our subtask requirements indicated that, in the real world, the assistant should

walk up to the vision cart to improve the legibility of the messages. Hence, we designed those

subtasks to require walking to, but not touching (to avoid breaking sterility), the vision cart.

Because we were developing a VR simulation for training, we decided to use interaction cues to

enable learning. An interaction cue is essentially a stimulus that informs the user about an action to

take [28]. For our virtual hand interactions, we used green, semi-transparent animations to indicate

what manual action to take (see Figures A.3 and A.4). For the walking and looking subtasks, we

used a “Stand Here” icon to indicate where to walk to and a “Look Here” icon to indicate where to

look (see Figure A.5).

In addition to the interaction cues, we included verbal repercussions for mistakes. If the user makes

an error or incorrect decision, one of the virtual agents will verbally inform the user of the mistake.
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Figure A.4: Example of using the simple virtual hand technique to rotate the grip release wrench.

Figure A.5: We required walking and looking to read error messages.

After implementing all of the interaction techniques and cues described above during our major re-

design, we proceeded with the automate stage of CARAI and implemented automated data logging

for each subtask. Completion times were measured in seconds from the moment the user was ex-

pected to act until the current subtask was successfully completed. For each subtask, we identified

numerous errors that the user may make, including selecting the wrong dialog option, selecting the

wrong object, positioning an object in an incorrect space, rotating the wrench the wrong direction,

or at any point, touching a non-sterile object. Our data logs included a time column and an error

count column for each subtask, formatted as a comma-separated value (.csv) file.
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A.6 Case Study: The Rigorous User Study

A.6.1 Independent Variable

Our study’s independent variable was the subtask completed, which included 20 levels or subtasks

(see Table A.1) within subject.

A.6.2 Dependent Variables

A.6.2.1 Subtask Metrics

As described above, we automatically collected two metrics for each subtask: completion time and

number of errors committed.

A.6.2.2 Questionnaires

Because we conducted CARAI later in the lifecycle of our VR simulation, we decided to use

standardized questionnaires for simulator sickness, presence, and usability. We specifically used

the Simulator Sickness Questionnaire (SSQ) [55], the Spatial Presence Experience Scale (SPES)

[44], and the System Usability Scale (SUS) [14]. We also administered a custom questionnaire

addressing scenario fidelity since our VR system was designed to simulate the real-world task of

troubleshooting a surgical robot. Participants ranked 10 aspects of the scenario from 1 (“I do not

agree at all”) to 5 (“I fully agree”). See Table A.5 for the 10 items.
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A.6.2.3 Knowledge Posttest

Because we had developed a VR simulation intended for training, we also included a knowledge

posttest consisting of 20 multiple-choice questions correlating to each of the 20 subtasks.

A.6.3 Materials

We used an HTC Vive system, including the HMD and both handheld controllers. The Vive HMD

provided a 110° diagonal field of view with a dispay resolution of 1080 x 1200 pixels per eye and a

90Hz refresh rate. The HMD was retrofitted with a Vive audio strap. The VR training application

was developed in Unity to maintain framerates of 90 frames per second to match the Vive’s refresh

rate. The SteamVR plugin for Unity was used to process the Vive’s input data.

A.6.4 Procedure

The following procedure was reviewed and approved by the University of Texas at Dallas Institu-

tional Review Board (IRB). The study consisted of one session for each participant, which lasted

approximately 60 minutes. After informed consent, each participant completed a background sur-

vey to capture the participant’s demographics, education, and technology experience. The partic-

ipant would then don the HTC Vive and experience the SteamVR tutorial to learn how to use the

Vive. The participant would then experience the VR training application. After successfully com-

pleting the VR training application, the participant would be administered the SSQ, SPES, SUS,

scenario fidelity questionnaire, and the knowledge test, which concluded the session.
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A.6.5 Participants

A total of 20 participants (4 females, 16 males) were recruited through university mailing lists for

this study. As an exclusion criterion, none of the participants had prior experience or knowledge

of surgical robots. The overall average age was 23.6 ± 5.8 years, within a range of 19 to 45 years.

Based on self-reported background data, 18 participants played video games on a regular basis

(i.e., at least one hour per week) and 12 participants had prior VR experiences.

A.7 Case Study: The Subtask Analyses and Results

Here, we describe the results of our study, including analyzing the subtasks of our VR simulation,

investigating a useful threshold for the time metrics based on the SME completion times, and

inspecting the results of our questionnaires and knowledge test.

A.7.1 Subtask Analyses of Completion Times

Because the subtasks naturally varied in completion times in the real world (see Table A.1), we

could not directly compare their completion times logged by the VR simulation. For example,

subtask #1 (check error message) would most likely be significantly better than subtask #19 (use

port clutch), even if it were poorly implemented. Hence, the original SME completion times (TS)

would need to be used to establish thresholds for determining if a subtask passed or failed.

However, the question emerged on how best to establish a useful threshold for each subtask based

on the original TS. One option was to use 1TS, which would require the virtual subtasks to be

completed as fast or faster than the real-world subtasks. Other possibilities that we considered

were to use 2TS, 3TS, and 4TS. For example, for subtask #19, which took 10s, these thresholds
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would be 20s, 30s, and 40s, respectively.

For each threshold possibility, we conducted a one-way RM ANOVA at a 95% confidence level

to investigate the main effect of subtask. Degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity when Mauchly’s test of sphericity indicated that the assumption of

sphericity had been violated.

For the 1TS threshold, we found a significant main effect of subtask, F(8.422,160.009)= 11.415, p<

0.001,η2 = 0.375. We also found significant main effects for the 2TS threshold, F(7.118,135.249)=

7.538, p < 0.001,η2 = 0.284, for the 3TS threshold, F(5.921,112.496) = 6.590, p < 0.001,η2 =

0.258, and for the 4TS threshold, F(4.746,90.171) = 4.463, p = 0.001,η2 = 0.190. Using Bonfer-

roni post hoc tests, we found several subpar subtasks, which we define as any subtask significantly

different from the best subtask. Table A.3 shows the results of these post hoc tests.

Interestingly, the 1TS threshold was the only one to yield more than one subpar subtask. The 2TS

and 3TS thresholds both indicated that subtask #7 (hold instrument carriage) was a subpar subtask.

Most interestingly, the post hoc tests for the 4TS threshold did not yield any significantly different

pairs of subtasks, despite the RM ANOVA indicating statistical significance. This is due to the

Bonferroni tests accounting for the numerous comparisons.

A.7.2 Subtask Analyses of Errors

Another methodology question that emerged from our analyses was whether to analyze the number

of errors per subtask, which our VR simulation automatically logged, or to analyze the percentage

of participants that completed each subtask without error (i.e., convert any positive number of

errors to 0 and any instances of no errors to 1). We followed the same statistical procedure to

conduct a one-way RM ANOVA at 95% confidence level for each approach to considering errors.
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Table A.2: The percentage of participants that successfully completed each subtask, based on the
four proposed time thresholds. Asterisks indicate subpar subtasks.

Subtask 1TS 2TS 3TS 4TS
1 45% 75% 100% 100%
2 *25% 80% 85% 90%
3 75% 85% 95% 100%
4 85% 100% 100% 100%
5 85% 90% 95% 95%
6 80% 95% 95% 100%
7 *0% *25% *40% 100%
8 80% 95% 95% 95%
9 *25% 55% 70% 90%

10 70% 95% 100% 100%
11 70% 90% 90% 95%
12 *0% 55% 85% 95%
13 80% 95% 95% 95%
14 80% 100% 100% 100%
15 95% 100% 100% 100%
16 75% 85% 100% 100%
17 *10% 100% 100% 100%
18 55% 90% 95% 100%
19 45% 70% 75% 85%
20 60% 95% 100% 100%

For the mean number of errors, we found a significant main effect of subtask, F(3.724,70.750) =

4.807, p = 0.002,η2 = 0.202. For success percentages (i.e., no errors), we also found a significant

main effect of subtask, F(6.074,115.406) = 6.607, p < 0.001,η2 = 0.258. Interestingly, for the

mean number of errors, the Bonferroni post hoc tests did not yield any significantly different pairs

of subtasks. However, they did indicate the subtask #9 (rotate wrench) was significantly different,

based on the percentage of success (i.e., not committing an error).
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Table A.3: The mean number of errors and percentage of participants that successfully (without
errors) completed each subtask. Asterisks indicate subpar subtasks.

A.7.3 Questionnaire Results

Table A.4 shows the means and standard deviations for our SSQ, SPES, and SUS results. Our

simulator sickness results were higher than the acceptable total score of 15 indicated by Kennedy

et al. [55]; however, they were similar or better than recently reported SSQ results that used modern

VR HMDs [122, 114, 70]. Our presence results were also similar to recent SPES results that also

used the HTC Vive [34]. Finally, our perceived usability results were above the average SUS score
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Table A.4: Descriptive statistics for standardized questionnaires.

Table A.5: Descriptive statistics for scenario fidelity questions.

of 68 [14]. Table A.5 shows the results of our custom scenario fidelity questionnaire. Generally, it

appears that the scenario fidelity of our simulation was acceptable.

A.7.4 Knowledge Posttest Results

For our knowledge posttest, we first examined the Cronbach’s alpha for its results to determine its

reliability. We found the alpha value to be 0.406, which is far below the acceptable value of 0.7 for

such instruments [71]. We then inspected the percentage of participants that correctly answered
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Table A.6: Comparison of success on the posttest, time, and errors.

each question and compared it to the prior percentages for completion times (1TS) and errors.

Given the comparison (see Table A.6), it is clear that our knowledge test questions were highly

variable and unreliable. Hence, we did not conduct a Kruskal-Wallis H test to determine whether

the subtasks were significantly different with regard to the posttest.
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A.8 Case Study: The Interaction Inspection

Based on the previous subtask analyses, we identified five subpar subtasks (#2, #7, #9, #12, #17)

to inspect for usability issues. For each inspection, we referenced any critical incidents noted by

the evaluator for the subtask and reviewed the implementation of the interaction techniques and

cues involved in the subtask.

A.8.1 Subtask #2 Inspection: Consult surgeon

This is the first dialog selection subtask that the user makes in our VR simulation, so we expected

them to perform slightly worse here. However, inspection of our software revealed that our attempt

to avoid clutter, by displaying only one floating window at a time, was prioritizing the staff window

if both agents were near the center of the user’s field of view. For subtask #2, this naturally occurs

due to the preceding subtask of walking to the vision cart and checking the error message.

An easy fix for this issue would be to simply prioritize the surgeon window over the staff window.

However, we had observed that some participants did not realize that the dialog options between

the windows differ. For example, the user can ask the staff for the grip release wrench, but not the

surgeon. Similarly, the surgeon can be consulted about how to proceed, but not the staff. Hence,

we have decided to reverse our design choice regarding clutter and to show both windows at the

same time.

A.8.2 Subtask #7 Inspection: Hold instrument carriage

This was the first subtask in our VR simulation that required using both hands. Due to the preceding

subtask #5, the user is holding the grip release wrench in one of their virtual hands and must use
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the other virtual hand to grab the instrument carriage. However, several participants did not realize

that the interaction cue for this subtask was originating from their other virtual hand and instead

attempted to use the virtual hand holding the wrench to grab the carriage. This would result in the

wrench being dropped to the floor, which counts as an error due to breaking sterility.

In the evaluated version of our VR simulation, the virtual hands were simply represented by the

HTC Vive controllers, which offer little feedback in terms of handedness. We have decided to

incorporate left and right models of human hands holding each controller to better convey hand-

edness for both the virtual hands and the virtual-hand interaction cues. We are also considering

incorporating “L” and “R” labels into the representations to help users understand when bimanual

interactions are expected.

A.8.3 Subtask #9 Inspection: Rotate wrench

We observed that some participants would attempt to rotate the wrench immediately after inserting

it and before the virtual agents prompted them to. This often would result in our VR simulation not

recognizing their action or recognizing the action as an error. Upon inspecting our software, we

discovered that the start angle for calculating the completion of this subtask was being set after the

virtual agents prompted the subtask and not when the wrench is first inserted. Hence, this caused

discrepancies between what the participants expected and what the system expected.

We have decided to set the start angle for the subtask rotation calculation when the preceding

subtask is completed, as opposed to when this subtask is prompted.
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A.8.4 Subtask #12 Inspection: Remove instrument

Based on our observations, this issue appeared to be caused by the interaction cue for removing

the instrument animating too slowly. Upon inspection of our software, we discovered that the

preceding interaction cue for grabbing the instrument was never being replaced by the interaction

cue for removing the instrument. Due to participants grabbing the instrument off center, the cue

for grabbing the instrument would appear to be a slow animation.

We have decided to fix this issue by replacing the interaction cue for grabbing the instrument with

the intended interaction cue for removing the instrument.

A.8.5 Subtask #17 Inspection: Use cannula lever

From our study, we observed that participants had difficulty locating the cannula mount lever,

which is largely occluded from most perspectives due to its inherent position in the space. Upon

inspecting our software, we also determined that the collision volume used for interacting with the

cannula mount level is the smallest interactable collider in the virtual scene (2.5cm radius).

We have decided to modify this subtask to include a walking component and “Stand Here” cue to

provide the user with a better perspective to see the cannula mount lever. Additionally, we have

decided to increase the size of the interactable collider and to use the VOTE technique [83] with

closest intersection disambiguation [84] to address potential issues with multiple selections.
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A.9 Discussion

A.9.1 A Useful Formative Evaluation Methodology

Through the presented case study, we have demonstrated that our formative evaluation methodol-

ogy is useful for identifying usability issues and improving the interaction design of VR systems

that simulate real-world tasks. By employing CARAI, we were able to identify five subpar subtasks

in our VR simulation. Based upon inspections of our observations and software, we discovered

that two subtasks were hindered by poor interaction techniques, two by poor interaction cues, and

one by both poor interaction and cue.

Another useful aspect of our formative evaluation methodology is that it can be employed dur-

ing any stage of the UX lifecycle. Most formative evaluation methodologies have been designed

specifically for the early stages of UX lifecycle development. However, as demonstrated by our

case study, CARAI can also be used in the late stages of the lifecycle.

A.9.2 Recommendations for Subtask Analyses

In the presented case study, we investigated four potential thresholds for analyzing completion

times based on SME real-world completion times (TS) and two approaches for analyzing subtask

errors. Based on our current results, we recommend at least using and analyzing 1TS for subtask

completion times. We also recommend analyzing the percentage of participants that completed

each subtask without error, as opposed to analyzing the total number of errors per subtask.
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A.9.3 Limitations

One of the limitations of our work is that the participants recruited for our empirical, rigorous user

study do not well represent our end users (first assistants). In order to conduct a large number of

participants, we had to recruit from our university’s student population. This resulted in nearly all

of our participants having played video games on a regular basis and more than half of our partic-

ipants having prior VR experiences, which are both uncommon among first assistants. These also

likely do not represent a broad population. Furthermore, we had a low ratio of female participants

to male participants (4 to 16).

Another limitation of our research was the poor reliability of the knowledge posttest that we ad-

ministered in our study. In our prior formative quasi-empirical evaluation with SMEs, we did not

administer a knowledge posttest. Hence, we did not have a validated instrument [71] prior to con-

ducting our rigorous user study. Since completing the study and our analyses, we have discovered

guidelines for creating test questions (e.g., [113, 13]). Upon inspection, our posttest questions

clearly violated several of these guidelines, including:

1. Make sure the stem asks a clear question that can be answered without looking at the options.

2. Avoid placing information in the stem that is not required to answer the question.

3. Avoid overly wordy stems.

4. Avoid logical clues in the stem.

5. Make all options equal in length and amount of detail.
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A.10 Conclusion

We have presented a novel formative evaluation methodology designed specifically for identifying

usability issues and improving the interaction design of VR systems that simulate real-world tasks

and actions. We have also discussed the application of our methodology in a case study involving

a VR simulation for training troubleshooting skills for surgical robots. Through this appendix,

we have demonstrated that our methodology is capable and useful for identifying usability issues.

We have also investigated how to analyze user performance based on subtasks and have provided

recommendations for such analyses.

For future work, we plan to conduct a summative evaluation of our VR training simulation, us-

ing the same data collection and analyses techniques, to determine how effective our formative

evaluation and improvements have been. We are also planning to use our formative evaluation

methodology to improve another VR training simulation involving the inspection of haul trucks.
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APPENDIX B: ALL RESULTS FROM SYSTEMATIC INVESTIGATION

OF DEVICE COMBINATIONS AND SPATIAL REPRESENTATIONS

FOR IDENTIFYING VIRTUAL REALITY USERS IN AN ASSEMBLY

TRAINING ENVIRONMENT
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This appendix contains the full set of results from the systematic investigation in chapter 6.

B.1 Random Forest Results

RF
A → A
Position
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+
Si
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n
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Si
xD

Head +
DomH +

OffH
95.1% 95.3% 95.8% 85.6% 85.9% 85.4% 87.8%

Head +
DomH 94.7% 93.4% 94.3% 78.3% 74.4% 73.0% 75.6%

Head +
OffH 93.9% 93.7% 94.3% 79.7% 76.6% 76.8% 77.6%

DomH +
OffH 88.7% 87.9% 88.4% 64.4% 71.0% 72.8% 71.3%

Head 85.1% 85.0% 86.0% 53.2% 42.9% 40.7% 44.2%
DomH 66.6% 67.0% 67.4% 41.7% 46.7% 45.7% 45.7%

OffH 71.2% 72.2% 71.9% 39.4% 49.9% 45.7% 47.8%

RF
B → B

Position
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+
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OffH
94.2% 95.7% 95.0% 81.8% 83.1% 83.0% 84.1%

Head +
DomH 91.8% 91.0% 91.0% 72.2% 70.6% 68.6% 69.3%

Head +
OffH 94.4% 93.2% 94.4% 77.3% 75.7% 75.3% 76.6%

DomH +
OffH 86.0% 87.3% 85.9% 59.6% 71.8% 73.8% 70.8%

Head 84.7% 81.3% 83.8% 48.0% 37.4% 36.9% 40.1%
DomH 61.6% 61.2% 59.7% 32.2% 47.3% 49.2% 49.4%

OffH 71.0% 71.7% 70.4% 40.1% 56.0% 56.2% 51.8%
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RF
A → B

Position

Po
si

tio
n

+
E

ul
er

Po
si

tio
n

+
Q

ua
te

rn
io

n

Po
si

tio
n

+
Si

xD

Po
si

tio
n

E
ul

er

Q
ua

te
rn

io
n

Si
xD

Head +
DomH +

OffH
51.1% 44.4% 46.7% 42.2% 46.7% 40.0% 44.4%

Head +
DomH 53.3% 53.3% 48.9% 40.0% 35.6% 40.0% 33.3%

Head +
OffH 57.8% 46.7% 51.1% 44.4% 37.8% 40.0% 40.0%

DomH +
OffH 33.3% 33.3% 35.6% 22.2% 33.3% 33.3% 31.1%

Head 75.6% 71.1% 75.6% 42.2% 40.0% 31.1% 31.1%
DomH 31.1% 35.6% 31.1% 20.0% 31.1% 28.9% 26.7%

OffH 26.7% 24.4% 31.1% 15.6% 17.8% 17.8% 22.2%
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B → A

Position
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+
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Head +
DomH +

OffH
51.1% 51.1% 53.3% 40.0% 46.7% 46.7% 44.4%

Head +
DomH 57.8% 51.1% 55.6% 40.0% 42.2% 40.0% 40.0%

Head +
OffH 62.2% 62.2% 62.2% 37.8% 40.0% 40.0% 40.0%

DomH +
OffH 40.0% 37.8% 37.8% 31.1% 33.3% 31.1% 33.3%

Head 80.0% 75.6% 82.2% 33.3% 51.1% 31.1% 42.2%
DomH 35.6% 35.6% 35.6% 15.6% 31.1% 31.1% 24.4%

OffH 31.1% 31.1% 31.1% 22.2% 24.4% 22.2% 22.2%
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RF
A → A
Velocity
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OffH
54.2% 59.0% 64.1% 41.3% 45.7% 52.4% 62.0%

Head +
DomH 48.6% 52.7% 60.3% 37.4% 40.4% 46.4% 54.8%

Head +
OffH 44.8% 47.9% 53.8% 30.7% 36.2% 42.8% 48.0%

DomH +
OffH 49.4% 56.0% 59.6% 39.3% 40.8% 51.0% 54.9%

Head 29.6% 32.2% 36.1% 18.3% 24.4% 28.1% 28.4%
DomH 42.4% 45.1% 49.1% 25.8% 32.3% 38.6% 43.7%

OffH 36.1% 45.1% 50.1% 27.7% 26.7% 37.7% 44.8%
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B → B

Velocity

Po
si

tio
n

+
E

ul
er

Po
si

tio
n

+
Q

ua
te

rn
io

n

Po
si

tio
n

+
Si

xD

Po
si

tio
n

E
ul

er

Q
ua

te
rn

io
n

Si
xD

Head +
DomH +

OffH
58.7% 63.6% 66.2% 46.3% 53.0% 59.7% 64.2%

Head +
DomH 51.8% 54.2% 58.3% 35.1% 41.7% 48.4% 54.6%

Head +
OffH 50.9% 55.7% 60.8% 36.9% 41.4% 50.9% 56.3%

DomH +
OffH 52.1% 58.7% 60.9% 36.7% 44.6% 53.4% 56.9%

Head 30.2% 31.9% 36.6% 20.2% 22.3% 25.6% 31.2%
DomH 41.6% 44.2% 46.4% 24.1% 27.4% 39.1% 43.2%

OffH 40.6% 49.0% 49.9% 26.2% 29.1% 40.1% 42.7%
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RF
A → B

Velocity
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Head +
DomH +

OffH
28.9% 28.9% 35.6% 17.8% 26.7% 28.9% 33.3%

Head +
DomH 28.9% 24.4% 33.3% 15.6% 20.0% 28.9% 31.1%

Head +
OffH 28.9% 31.1% 24.4% 15.6% 22.2% 22.2% 24.4%

DomH +
OffH 22.2% 22.2% 26.7% 13.3% 17.8% 22.2% 24.4%

Head 33.3% 42.2% 44.4% 15.6% 28.9% 28.9% 33.3%
DomH 20.0% 20.0% 24.4% 15.6% 11.1% 11.1% 24.4%

OffH 24.4% 24.4% 20.0% 11.1% 20.0% 17.8% 15.6%

RF
B → A

Velocity
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OffH
42.2% 44.4% 40.0% 33.3% 31.1% 40.0% 40.0%

Head +
DomH 37.8% 35.6% 42.2% 28.9% 26.7% 28.9% 31.1%

Head +
OffH 26.7% 35.6% 35.6% 17.8% 15.6% 35.6% 40.0%

DomH +
OffH 31.1% 37.8% 28.9% 17.8% 22.2% 28.9% 26.7%

Head 28.9% 35.6% 46.7% 17.8% 17.8% 26.7% 33.3%
DomH 28.9% 26.7% 26.7% 13.3% 15.6% 20.0% 17.8%

OffH 22.2% 26.7% 24.4% 11.1% 11.1% 17.8% 20.0%
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B.2 Gradient Boosting Machine Results

GBM
A → A
Position
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Head +
DomH +

OffH
95.3% 96.0% 95.7% 85.0% 84.7% 82.3% 85.4%

Head +
DomH 93.8% 93.1% 93.7% 75.3% 71.6% 68.3% 73.3%

Head +
OffH 92.3% 92.0% 92.7% 75.9% 71.0% 72.3% 72.8%

DomH +
OffH 87.1% 87.0% 88.3% 58.7% 68.1% 69.8% 70.0%

Head 82.7% 79.6% 83.4% 45.6% 35.9% 33.6% 36.0%
DomH 64.0% 62.7% 63.1% 36.2% 39.4% 43.2% 42.6%

OffH 68.7% 67.4% 66.4% 32.3% 41.9% 45.2% 42.7%
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B → B

Position
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Head +
DomH +

OffH
94.0% 93.2% 93.0% 80.6% 82.9% 81.0% 82.1%

Head +
DomH 89.9% 88.7% 87.7% 67.6% 68.8% 67.2% 66.8%

Head +
OffH 92.1% 91.8% 91.3% 73.0% 74.2% 70.6% 75.1%

DomH +
OffH 83.9% 84.6% 83.0% 57.4% 70.2% 69.8% 69.1%

Head 79.9% 74.9% 79.1% 40.9% 36.1% 30.6% 36.6%
DomH 54.6% 55.8% 54.8% 28.7% 40.8% 44.1% 41.0%

OffH 66.9% 68.4% 65.6% 34.1% 46.7% 47.2% 49.0%
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GBM
A → B

Position
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Head +
DomH +

OffH
46.7% 48.9% 51.1% 44.4% 48.9% 46.7% 46.7%

Head +
DomH 51.1% 51.1% 51.1% 40.0% 37.8% 37.8% 37.8%

Head +
OffH 53.3% 53.3% 53.3% 44.4% 35.6% 40.0% 40.0%

DomH +
OffH 35.6% 37.8% 35.6% 20.0% 33.3% 33.3% 35.6%

Head 73.3% 64.4% 71.1% 42.2% 26.7% 31.1% 46.7%
DomH 26.7% 31.1% 26.7% 15.6% 26.7% 26.7% 28.9%

OffH 24.4% 26.7% 31.1% 15.6% 15.6% 24.4% 13.3%
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B → A

Position
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Head +
DomH +

OffH
46.7% 46.7% 48.9% 46.7% 48.9% 48.9% 48.9%

Head +
DomH 57.8% 53.3% 57.8% 46.7% 44.4% 42.2% 46.7%

Head +
OffH 62.2% 57.8% 60.0% 42.2% 51.1% 44.4% 53.3%

DomH +
OffH 44.4% 40.0% 42.2% 35.6% 35.6% 33.3% 33.3%

Head 73.3% 75.6% 80.0% 33.3% 35.6% 31.1% 42.2%
DomH 31.1% 35.6% 33.3% 24.4% 26.7% 20.0% 24.4%

OffH 35.6% 35.6% 28.9% 20.0% 20.0% 24.4% 17.8%
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GBM
A → A
Velocity
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Head +
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55.2% 56.2% 64.3% 39.1% 44.9% 54.0% 62.3%

Head +
DomH 47.3% 51.7% 59.3% 31.0% 36.1% 42.1% 50.8%

Head +
OffH 44.4% 45.9% 53.3% 25.8% 31.2% 38.8% 49.8%

DomH +
OffH 49.0% 50.4% 58.4% 31.8% 40.1% 44.2% 54.4%

Head 26.6% 29.3% 28.8% 14.4% 17.1% 20.7% 26.0%
DomH 34.3% 38.4% 44.6% 20.8% 24.8% 32.9% 37.1%

OffH 30.0% 35.8% 42.7% 18.6% 22.7% 29.9% 37.9%
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B → B

Velocity
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DomH +

OffH
57.0% 62.7% 68.0% 37.0% 45.8% 55.2% 65.1%

Head +
DomH 47.3% 49.3% 55.0% 27.6% 33.1% 40.8% 51.1%

Head +
OffH 44.8% 51.3% 58.2% 27.8% 38.6% 40.2% 51.9%

DomH +
OffH 46.4% 55.0% 56.2% 30.3% 37.8% 44.3% 53.7%

Head 25.6% 24.7% 31.2% 13.9% 17.9% 20.7% 26.2%
DomH 28.2% 35.0% 39.4% 17.9% 19.8% 29.1% 34.2%

OffH 31.6% 37.8% 42.8% 18.6% 24.1% 31.6% 35.0%
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GBM
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Velocity
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Head +
DomH +

OffH
42.2% 44.4% 46.7% 26.7% 35.6% 40.0% 37.8%

Head +
DomH 33.3% 44.4% 33.3% 13.3% 22.2% 28.9% 40.0%

Head +
OffH 28.9% 37.8% 37.8% 15.6% 26.7% 31.1% 28.9%

DomH +
OffH 33.3% 31.1% 31.1% 13.3% 15.6% 26.7% 26.7%

Head 28.9% 33.3% 37.8% 13.3% 22.2% 28.9% 28.9%
DomH 17.8% 20.0% 20.0% 13.3% 8.9% 11.1% 22.2%

OffH 15.6% 22.2% 22.2% 6.7% 13.3% 13.3% 13.3%
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Velocity
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Head +
DomH +

OffH
44.4% 46.7% 46.7% 26.7% 31.1% 37.8% 40.0%

Head +
DomH 33.3% 37.8% 48.9% 17.8% 31.1% 31.1% 42.2%

Head +
OffH 33.3% 42.2% 44.4% 17.8% 24.4% 33.3% 37.8%

DomH +
OffH 33.3% 37.8% 35.6% 20.0% 26.7% 35.6% 28.9%

Head 31.1% 26.7% 40.0% 11.1% 17.8% 22.2% 31.1%
DomH 24.4% 17.8% 28.9% 8.9% 15.6% 15.6% 17.8%

OffH 24.4% 20.0% 22.2% 8.9% 13.3% 24.4% 17.8%
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B.3 K Nearest Neighbors Results

kNN
A → A
Position
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xD

Head +
DomH +

OffH
90.3% 90.0% 91.3% 74.9% 82.0% 81.7% 81.3%

Head +
DomH 85.8% 84.6% 84.8% 69.4% 64.2% 65.7% 66.1%

Head +
OffH 87.3% 87.4% 86.8% 72.6% 68.2% 71.9% 71.0%

DomH +
OffH 78.4% 79.3% 79.2% 48.8% 66.4% 64.3% 65.2%

Head 71.8% 69.6% 67.8% 43.2% 31.6% 27.1% 30.4%
DomH 57.7% 55.6% 57.8% 33.7% 38.7% 37.1% 37.3%

OffH 59.7% 60.6% 60.7% 29.6% 41.1% 40.2% 38.6%
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B → B

Position
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Head +
DomH +

OffH
86.1% 86.3% 87.4% 66.2% 82.7% 80.6% 80.7%

Head +
DomH 79.8% 79.2% 79.7% 60.6% 61.1% 58.4% 60.9%

Head +
OffH 86.1% 86.8% 86.8% 65.2% 72.3% 72.3% 73.3%

DomH +
OffH 72.9% 75.3% 76.3% 45.4% 68.4% 66.7% 66.2%

Head 66.7% 64.3% 64.0% 35.9% 28.4% 29.6% 29.9%
DomH 49.1% 52.9% 54.4% 26.6% 37.3% 36.7% 40.3%

OffH 67.3% 65.8% 64.4% 34.0% 43.3% 45.6% 45.0%
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kNN
A → B

Position
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Head +
DomH +

OffH
48.9% 44.4% 46.7% 28.9% 48.9% 53.3% 51.1%

Head +
DomH 46.7% 46.7% 44.4% 24.4% 44.4% 28.9% 40.0%

Head +
OffH 44.4% 44.4% 44.4% 26.7% 37.8% 35.6% 35.6%

DomH +
OffH 35.6% 33.3% 33.3% 24.4% 33.3% 35.6% 33.3%

Head 75.6% 62.2% 66.7% 33.3% 35.6% 17.8% 31.1%
DomH 28.9% 24.4% 24.4% 13.3% 24.4% 20.0% 24.4%

OffH 26.7% 24.4% 20.0% 15.6% 22.2% 15.6% 20.0%

kNN
B → A

Position
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Head +
DomH +

OffH
44.4% 46.7% 44.4% 37.8% 46.7% 46.7% 48.9%

Head +
DomH 46.7% 44.4% 42.2% 40.0% 42.2% 33.3% 37.8%

Head +
OffH 46.7% 46.7% 46.7% 31.1% 33.3% 35.6% 35.6%

DomH +
OffH 35.6% 44.4% 42.2% 28.9% 35.6% 35.6% 33.3%

Head 71.1% 68.9% 68.9% 35.6% 26.7% 24.4% 20.0%
DomH 26.7% 24.4% 26.7% 15.6% 20.0% 20.0% 17.8%

OffH 26.7% 24.4% 26.7% 22.2% 13.3% 17.8% 17.8%
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kNN
A → A
Velocity
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Head +
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OffH
29.6% 30.3% 37.2% 22.9% 24.1% 27.4% 34.9%

Head +
DomH 25.1% 29.1% 35.4% 19.0% 18.3% 20.9% 31.1%

Head +
OffH 25.0% 26.4% 33.8% 15.7% 18.9% 24.6% 31.1%

DomH +
OffH 21.3% 26.8% 32.1% 19.9% 14.7% 21.1% 30.6%

Head 15.4% 16.2% 18.7% 9.3% 11.3% 12.9% 15.7%
DomH 18.7% 23.6% 32.1% 15.3% 16.1% 19.7% 30.0%

OffH 17.8% 21.8% 33.1% 12.9% 10.3% 20.4% 31.6%

kNN
B → B

Velocity
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DomH +

OffH
31.6% 30.6% 40.9% 24.0% 22.0% 27.8% 40.6%

Head +
DomH 26.9% 28.7% 36.2% 17.6% 19.1% 22.3% 36.0%

Head +
OffH 27.9% 28.8% 40.9% 22.0% 17.7% 23.3% 36.9%

DomH +
OffH 24.9% 29.9% 35.6% 17.0% 15.1% 24.1% 31.8%

Head 15.9% 16.8% 21.4% 10.7% 13.0% 12.6% 20.3%
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OffH 15.6% 17.8% 24.4% 13.3% 15.6% 15.6% 20.0%

DomH +
OffH 11.1% 17.8% 15.6% 8.9% 6.7% 11.1% 15.6%

Head 20.0% 22.2% 31.1% 15.6% 13.3% 17.8% 20.0%
DomH 13.3% 13.3% 13.3% 4.4% 6.7% 8.9% 11.1%

OffH 11.1% 13.3% 17.8% 4.4% 4.4% 8.9% 13.3%
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DomH 6.7% 8.9% 17.8% 4.4% 6.7% 11.1% 15.6%

OffH 11.1% 13.3% 13.3% 6.7% 4.4% 11.1% 13.3%
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