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Abstract
Westudy a quantumscalar field,with generalmass and coupling to the scalar curvature,
propagating on three-dimensional global anti-de Sitter space-time. We determine the
vacuum and thermal expectation values of the square of the field, also known as the
vacuum polarisation (VP).We consider values of the scalar fieldmass and coupling for
which there is a choice of boundary conditions giving well-posed classical dynamics.
We apply Dirichlet, Neumann and Robin (mixed) boundary conditions to the field at
the space-time boundary.Wefind finite values of theVPwhen the parameter governing
the Robin boundary conditions is below a certain critical value. For all couplings, the
vacuum expectation values of the VP with either Neumann or Dirichlet boundary
conditions are constant and respect the maximal symmetry of the background space-
time. However, this is not the case for Robin boundary conditions, when both the
vacuum and thermal expectation values depend on the space-time location. At the
space-time boundary, we find that both the vacuum and thermal expectation values
of the VP with Robin boundary conditions converge to the result when Neumann
boundary conditions are applied, except in the case of Dirichlet boundary conditions.

Keywords Anti-de Sitter space-time · Vacuum polarization · Robin boundary
conditions
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1 Introduction

Quantum field theory (QFT) on a background anti-de Sitter space-time (adS) has
attracted much attention in recent years, not least because of its role in the adS/CFT
correspondence (see [1] for a review). While the maximal symmetry of adS simplifies
many aspects of QFT on this geometry, the presence of a time-like boundary at spatial
infinity means that adS is not a globally hyperbolic space-time. Thus, we need to
impose appropriate boundary conditions on the time-like boundary in order to have a
well-posed QFT [2–12].

The simplest boundary conditions to consider are Dirichlet, where the value of the
field vanishes at the boundary [2, 13, 14] and Neumann, where the normal derivative
of the field vanishes at the boundary [2, 13, 15]. For these boundary conditions, the
vacuumGreen’s functions and vacuumexpectation values (v.e.v.s) respect themaximal
symmetry of the background adS [2, 16]. This means that the v.e.v. of the square of
a quantum scalar field (hereafter termed the vacuum polarization (VP)) is a constant,
while the v.e.v. of the stress-energy tensor (SET) for any quantum field is a constant
multiplied by the space-time metric.

Other boundary conditions can also result in well-defined field dynamics [3–12].
For example, one can consider a linear combination of the Dirichlet and Neumann
boundary conditions (known as Robin or mixed boundary conditions [5, 7]). Such
Robin boundary conditions are the focus of this paper, however it should be emphasised
that these are not the only possibilities (see, for example, [4, 6, 11] for discussions of
more general boundary conditions).

The effect of Robin boundary conditions on renormalized expectation values was
studied in [3, 15] for a massless, conformally coupled scalar field on global four-
dimensional adS. Applying Robin boundary conditions to just the s-wave modes [3],
it is found that the v.e.v. of the VP is no longer a constant, and the v.e.v. of the SET is
also not maximally symmetric. At the space-time boundary, in this scenario the v.e.v.s
of both the VP and the SET approach those when Dirichlet boundary conditions are
applied [3]. Somewhat different results for the VP are obtained if Robin boundary
conditions are applied to all field modes [15]. In particular, at the space-time bound-
ary it is found that the renormalized VP for all boundary conditions approaches the
value obtained when Neumann boundary conditions are applied, except in the case of
Dirichlet boundary conditions [15].

The work of [3, 15] considers only a massless, conformally coupled scalar field.
What happens for more general scalar field mass and coupling? The maximal sym-
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metry of the v.e.v.s of the VP and SET is preserved for arbitrary mass and coupling
when Dirichlet boundary conditions are applied [16], for any number of space-time
dimensions. While the ground state Green’s function for a quantum scalar field with
arbitrary mass and coupling has been constructed with Robin boundary conditions
applied [5], the resulting renormalized expectation values have yet to be computed.

In this paper we study a real, free scalar field with general mass and coupling propa-
gating onglobal three-dimensional adS, and compute the v.e.v. and thermal expectation
value (t.e.v.) of the VP. Our motivations for working on a three-dimensional back-
ground are two-fold. First, reducing the number of space-time dimensions simplifies
the angular part of the scalar field Green’s function, thus avoiding the use of conical
functions which were required in the analysis in [15]. Second, our work in this paper
can be considered as a prelude to a study of renormalized expectation values on the
three-dimensional BTZ black hole [17, 18]. Naively one would expect that, far from
the black hole, renormalized expectation values would approach those on pure adS.
We therefore focus particularly on the behaviour of the VP close to the adS boundary.

We start, in Sect. 2, by constructing the vacuum and thermal Feynman’s Green’s
functions for both Dirichlet and Neumann boundary conditions. We then use these
Green’s functions to compute the v.e.v. and t.e.v. of the VP using Hadamard renor-
malization. In Sect. 3, following [15], we employ Euclidean methods to determine
the vacuum and thermal Euclidean Green’s function which we then use to determine
the v.e.v.s and t.e.v.s of the VP with Robin boundary conditions applied to all field
modes. The behaviour of these expectation values close to the space-time boundary is
examined in more detail in Sect. 4. Our conclusions are presented in Sect. 5.

2 Vacuum polarisation with Dirichlet and Neumann boundary
conditions

We consider three-dimensional adS in global coordinates, with metric

ds2 = L2 sec2 ρ
[
−dt2 + dρ2 + sin2 ρ dθ2

]
(2.1)

where 0 ≤ ρ < π/2 and 0 ≤ θ < 2π . The cosmological constant � < 0 is related
to the inverse radius of curvature L via � = −1/L2. For adS, the time coordinate t
is periodic with period 2π , and one can take −π ≤ t ≤ π with t = −π and t = π

identified. As in [15], here we work on the covering space of adS, denoted CadS, for
which the time coordinate is unwrapped, −∞ < t < ∞. Our focus in this paper is a
real scalar field �, of mass m, satisfying the Klein–Gordon equation

[
gμν∇μ∇ν − m2 − ξ R

]
� = 0, (2.2)

where R = −6/L2 is the Ricci scalar curvature. The coupling constant ξ takes the
value 1/8 for conformal coupling in three dimensions. To simplify the notation, we
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define new quantities ν and μ by

ν =
√
1 + μ2 L2, (2.3)

where
μ2 = m2 + ξ R. (2.4)

In this paper we consider ν ∈ [0, 1], where ν = 1/2 corresponds to the massless,
conformally coupled field and ν = 1 is the massless, minimally coupled field. In
order to satisfy the Breitenlohner-Freedman bound [19], we require ν ≥ 0 for the
scalar field to be classically stable. In [7] the possible boundary conditions that can
be imposed at the space-time boundary were studied for all values of ν. It was shown
that for ν ∈ (0, 1) many boundary conditions are possible. For ν = 0, there is a one-
parameter family of possible boundary conditions, whilst for ν ≥ 1 only Dirichlet
boundary conditions are permitted.

2.1 VacuumGreen’s function and expectation values

Expectation values of the product of field operators can be determined using Green’s
functions [20]. We consider the Feynman Green’s function, GF (x, x ′), defined as

GF (x, x ′) = i〈T(�̂(x) �̂(x ′))〉, (2.5)

whereT represents the timeordered product of thefield. TheFeynmanGreen’s function
satisfies the inhomogenous scalar field equation [21]

[
gαβ∇α∇β − μ2

]
GF (x, x ′) = − 1√|g|δ

3(x − x ′), (2.6)

where g is the determinant of the metric (2.1) and δ3(x − x ′) is the three-dimensional
Dirac delta function. Owing to the maximum symmetry of the Green’s function when
Dirichlet or Neumann boundary condtions are imposed, in these cases GF (x, x ′)
depends only on s(x, x ′), the proper distance between the points x and x ′ which are
connected by a unique geodesic.

Following the analysis in [13], the general maximally symmetric solution of (2.6)
is

GF (x, x ′) = CF

(
1 + ν, 1 − ν,

3

2
; z

)
+ Dz−

1
2 F

(
1

2
+ ν,

1

2
− ν,

1

2
; z

)
(2.7)

where F(a, b, c; z) = 2F1(a, b, c; z) is a hypergeometric function (the subscripts 2, 1
are omitted for brevity), C and D are arbitrary constants and

z = − sinh2
( s

2L

)
. (2.8)
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This solution is valid for ν ∈ [0, 1] but for nowwe focus on ν ∈ (0, 1) and return to the
special cases of ν = 0, 1 later. The constant D is fixed by matching the short-distance
behaviour of (2.7) to that of G̃H , the divergent part of the Hadamard parametrix, which
is [16]

G̃H (x, x ′) = i

4πs
. (2.9)

This gives

D = − 1

8πL
. (2.10)

The constant C is determined by the boundary conditions.
To apply Dirichlet boundary conditions, we require that GF (s) → 0 as rapidly as

possible when s → ∞, yielding

C = CD = − iν

4πL
. (2.11)

If the field is massless and conformally coupled (ν = 1/2) we may define Neumann
boundary conditions by making a conformal transformation onto the Einstein static
universe (ESU) [2]:

g̃μν = �2gμν (2.12)

where g̃μν is the metric in ESU, gμν is the metric (2.1) in adS and

�2 = cos2 ρ (2.13)

is the conformal factor. If we then impose the requirement that the resulting Green’s
function on ESU has a derivative which vanishes on the boundary, we find, in this case,
that C = −i D. If the scalar field is not conformally invariant, the above method of
mapping to ESU no longer applies, and there is a choice to made in how ‘Neumann’
boundary conditions are defined [5]. For 0 < ν < 1, ‘generalised’ Neumann boundary
conditions, which correspond to the vanishing of the derivative of the product of
the field with trigonometric functions of the radial coordinate can be defined [7]. In
keeping with [5, 7], we now choose the relationship C = −i D between C and D for
the Neumann boundary condition for general ν, yielding

C = CN = iν

4πL
. (2.14)

The vacuum Green’s functions GD/N
0 (s) with Dirichlet (D) and Neumann (N)

boundary conditions applied are then

GD
0 (s) = − iν

4πL
F

(
1 + ν, 1 − ν,

3

2
;− sinh2

( s

2L

))

+ i

8πL sinh
( s
2L

) F
(
1

2
+ ν,

1

2
− ν,

1

2
;− sinh2

( s

2L

))
, (2.15)
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GN
0 (s) = iν

4πL
F

(
1 + ν, 1 − ν,

3

2
;− sinh2

( s

2L

))

+ i

8πL sinh
( s
2L

) F
(
1

2
+ ν,

1

2
− ν,

1

2
;− sinh2

( s

2L

))
, (2.16)

which differ only in the sign of the first term. From these, we can determine the
renormalised v.e.v. of the VP, denoted by 〈�̂2〉0, which is given by

〈�̂2〉0 = lim
s→0

[−iGD/N
0 − (−i G̃H )], (2.17)

where G̃H is the divergent part of theHadamard parametrix (2.9). For Dirichlet bound-
ary conditions, the renormalized VP is then [16]

〈�̂2〉D0 = − ν

4πL
, (2.18)

while for Neumann boundary conditions we have

〈�̂2〉N0 = ν

4πL
. (2.19)

This has the same magnitude as the Dirichlet case but opposite sign. It can be seen that
in the case ν = 0 both boundary conditions give the same result (see Sect. 2.3 where
we consider this case in more detail). With both Dirichlet and Neumann boundary
conditions, we note that the v.e.v.s depend only on ν and are independent of the radial
coordinate, as expected from maximal symmetry.

2.2 Thermal Green’s functions and expectation values

We now determine the thermal Green’s function, Gβ(t, x; t ′, x′), for inverse tempera-
ture β, where x = (ρ, θ). The thermal Green’s function can be expressed as an infinite
sum involving the vacuum Green’s function G0(x, x ′), as follows [20]:

Gβ(t, x; t ′, x′) =
∞∑

j=−∞
G0(t + i jβ, x; t ′, x′). (2.20)

As the divergent part of the Hadamard parametrix (2.9) is independent of the state
and the renormalized v.e.v. has already been calculated, we do not need to repeat the
renormalisation process for the t.e.v.. Instead we can look at the difference between
the t.e.v. and the v.e.v. using the result

〈�̂2〉β − 〈�̂2〉0 = −i
∞∑

j=−∞, j �=0

Gβ(t + i jβ, x, t, x). (2.21)
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Fig. 1 Renormalized t.e.v.s of the VP 〈�̂2〉β with Dirichlet (left) and Neumann (right) boundary conditions
for the scalar field with ν = 1/4 and four different values of the inverse temperature β

We obtain the thermal Green’s functions for Dirichlet and Neumann boundary con-
ditions from the vacuum Green’s functions (2.15, 2.16) using (2.20). The Green’s
functions appearing in the sum in (2.20) depend on the proper distance s(x, x ′)between
the space-time points (t, x) and (t ′ + i jβ, x′). The proper distance s(x, x ′) is given
by [2]

cosh
( s

L

)
= cos
t

cos ρ cos ρ′ − cos
θ tan ρ tan ρ′, (2.22)

for two space-time points x(t, ρ, θ) and x ′(t ′, ρ′, θ ′) in adS with 
t = t ′ − t and

θ = θ ′ − θ . In the limit t ′ → t , x′ → x, we find that the thermal Green’s functions
in (2.21) are even functions of j , and hence arrive at the result

〈�̂2〉Dβ − 〈�̂2〉D0 = 1

2πL

∞∑
j=1

{
−νF

(
1 + ν, 1 − ν,

3

2
; 1 − cosh( jβ)

2 cos2 ρ

)

+
√
2 cos ρ

2
√
cosh( jβ) − 1

F

(
1

2
+ ν,

1

2
− ν,

1

2
; 1 − cosh( jβ)

2 cos2 ρ

)}
, (2.23)

for the Dirichlet boundary condition, while for the Neumann boundary condition we
have

〈�̂2〉Nβ − 〈�̂2〉N0 = 1

2πL

∞∑
j=1

{
νF

(
1 + ν, 1 − ν,

3

2
; 1 − cosh( jβ)

2 cos2 ρ

)

+
√
2 cos ρ

2
√
cosh( jβ) − 1

F

(
1

2
+ ν,

1

2
− ν,

1

2
; 1 − cosh( jβ)

2 cos2 ρ

)}
. (2.24)

The thermal expectation values, 〈�̂2〉β , with both Dirichlet andNeumann boundary
conditions (2.23, 2.24) are calculated numerically using MATHEMATICA. We find that
the sums in (2.23, 2.24) converge rapidly. The results are shown in figures 1–3 for
different values of the inverse temperature β.

Figure 1 shows 〈�̂2〉β for Dirichlet (left) andNeumann (right) boundary conditions,
for four different values of the inverse temperature β and a representive value of
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Fig. 2 T.e.v. of the VP 〈�̂2〉β , as a function of ρ and ν, with Dirichlet (left) and Neumann (right) boundary
conditions. In both cases β = 1

Fig. 3 Close up view of Fig. 2 showing 〈�̂2〉β , for Dirichlet (left) andNeumann (right) boundary conditions,
for ν ∈ (0, 0.3) and β = 1

ν = 1/4. Figure 2 shows the three-dimensional surface plots of 〈�̂2〉β as a function
of ρ and ν, again for Dirichlet (left) and Neumann (right) boundary conditions. The
plots in figure 1 are similar to those in [14], showing that the thermal energy of the
field concentrates in a region close to the origin, thereby breaking the translational
symmetry of the background adS space-time. For all values of the inverse temperature
and ν ∈ (0, 1), the t.e.v. of the VP attains its maximum value at the origin, and is
monotonically decreasing towards the boundary. We also see that for increasing β

(decreasing temperature), the t.e.v.s approach the v.e.v.s, as observed in [15] for the
four-dimensional, massless, conformally coupled scalar field. Approaching the space-
time boundary as ρ → π/2, we recover the zero temperature v.e.v. for all β and ν. For
the Neumann boundary condition, the convergence to the vacuum result, as ρ → π/2,
occurs less rapidly than in the Dirichlet case.

Although the t.e.v.s for the cases of ν = 0, 1havenot specifically beendetermined in
the above analysis (see Sect. 2.3 for analysis of these values of ν), figure 2 suggests that
〈�̂2〉β reaches the same value for both Dirichlet and Neumann boundary conditions as
ν → 0 for all ρ. This can be seen more clearly in figure 3, which shows an expanded
view of figure 2 for ν ∈ (0, 0.3). For the Dirichlet boundary condition, at fixed ρ the
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t.e.v. 〈�̂2〉β has its maximum value at ν = 0 and decreases for increasing ν. For the
Neumann boundary condition, however, at fixed ρ the t.e.v. 〈�̂2〉β has its minimum
value at ν = 0, and increases steadily for increasing ν. As ν → 1, it appears to
be the case that 〈�̂2〉β diverges, in accordance with the result in [7] that there is no
generalized Neumann boundary condition for ν = 1.

2.3 Vacuum and thermal expectation values for � = 0, 1

The analysis in Sects. 2.1 and 2.2 was valid for ν ∈ (0, 1). We now consider the
particular cases ν = 0, 1.

First, for ν = 0, the vacuum Green’s function (2.7) simplifies to

GF (x, x ′) = C sin−1 √
z√

1 − z
√
z

− 1

8πL
√
z
√
1 − z

, (2.25)

where we have used (2.10). To obtain the value of the constantC , we consider the form
of the Green’s function (2.25) at the space-time boundary. Using (2.8) and the series
expansion for sin−1 √

z as z → −∞ (s → ∞), we find that GF (s) → 0 as s → ∞
for all values of C . However, applying Dirichlet boundary conditions and demanding
rapid convergence to zero requires C = 0, as in (2.11). Applying (2.14) for ν = 0,
we would find that C = 0 for Neumann boundary conditions also. For this value
of ν our earlier definition of Neumann boundary conditions therefore corresponds
to Dirichlet boundary conditions, and it makes no sense to consider Robin (mixed)
boundary conditions. However, in this case there remains a one-parameter family of
boundary conditions leading to consistent classical dynamics [7].

Wecan straightforwardly construct a one-parameter family ofmaximally symmetric
vacuum Green’s functions simply by choosing a non-zero value of the constant C . In
order to obtain a real expectation value for the v.e.v., we define C = i C̃ for C̃ ∈ R.
Using the Maclaurin series expansions of the functions in (2.25), the renormalized
v.e.v. of the VP is then

〈�̂2〉0 = C̃ . (2.26)

Varying the constant C̃ therefore results simply in a constant shift of the v.e.v. of theVP.
Wenote thatwe could similarly define a one-parameter family ofmaximally symmetric
Green’s functions for other values of ν, simply by allowing the constant C in (2.7)
to vary. However, the physical interpretation of the states given by such maximally
symmetric Green’s functions is unclear; in particular they do not correspond to the
application of Robin boundary conditions [23]. We therefore do not consider such
states further, except when ν = 0 and the usual Robin boundary conditions are not
applicable.

For ν = 1, we can write the vacuum Feynman Green’s function (2.15), with Dirich-
let boundary condition, as

GD
0 (s) = − i

4πL
+ i cosh( s

L )

8πL sinh2( s
2L ) cosh2( s

2L )
. (2.27)
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Fig. 4 T.e.v.s of the VP as functions of the radial coordinate ρ, for ν = 0 and different values of C̃ with
β = 1

Using (2.17, 2.27) gives the v.e.v. of the VP, with Dirichlet boundary conditions, to
be −1/4πL , consistent with the value found for ν ∈ (0, 1) in (2.18).

We can calculate the t.e.v. for the VP, for ν = 0, 1, along the same lines as we did
for ν ∈ (0, 1) in Sect. 2.2. For ν = 0, we express the difference between the t.e.v. and
the v.e.v. of the VP as

〈�̂2〉β − 〈�̂2〉0 =
j=∞∑
j=1

{
2
√
2 C̃ cos ρ√

cosh jβ + cos 2ρ

+ cos2 ρ

2πL
√

(cosh jβ − 1)(cosh jβ + cos 2ρ)

}
, (2.28)

where 〈�̂2〉0 is given in (2.26). Figure 4 shows the t.e.v.s for various different values
of C̃ and inverse temperature β = 1. As we approach the space-time boundary (ρ →
π/2), the t.e.v.s converge to the v.e.v.s (which depend on C̃ (2.26)). For C̃ = 0, the
t.e.v.s match those seen in figure 3 for ν → 0. One interesting feature of the t.e.v.s in
figure 4 is that the profiles of the t.e.v.s are no longer always monotonically decreasing
functions of the radial coordinate ρ. When C̃ > 0, it remains the case that the t.e.v.s
have their maximum values at the origin and decrease towards the boundary. However,
for C̃ < 0, the t.e.v.s are monotonically increasing close to the boundary. When C̃
is small and negative, there is still a maximum at the origin, but for sufficiently large
|C̃ | the t.e.v.s have a minimum at the origin and are monotonically increasing as ρ

increases.
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Using the same method for ν = 1, the t.e.v. of the VP, with Dirichlet boundary
conditions applied, is found to be

〈�̂2〉Dβ − 〈�̂2〉D0 = 1

2πL

j=∞∑
j=1

{
(cosh jβ − sin2 ρ)√

cosh jβ − 1
√
cosh jβ + cos 2ρ

− 1

}
, (2.29)

from which it can be readily seen that at ρ = π/2, we obtain 〈�̂2〉Dβ = −1/4πL
consistent with figure 2. If we try to find the t.e.v. of the VP with Neumann boundary
conditions (by using (2.24) for v = 1), we obtain

〈�̂2〉Nβ − 〈�̂2〉N0 = 1

2πL

j=∞∑
j=1

{
(cosh jβ − sin2 ρ)√

cosh jβ − 1
√
cosh jβ + cos 2ρ

+ 1

}
. (2.30)

The first term in brackets in (2.30) will tend to unity for large j showing that the
t.e.v. in this case is divergent, again consistent with figure 2.

3 Vacuum polarisation with Robin boundary conditions

Having computed the renormalized t.e.v.s and v.e.v.s of the VP for a scalar field with
general mass and coupling, when either Dirichlet or Neumann boundary conditions are
applied,we now turn our attention tomore generalmixed (Robin) boundary conditions.
As in [15], we employ Euclidean methods, so that the Green’s function is unique and
to circumvent the requirement to use an iε-prescription in order to obtain the Green’s
function as a well-defined distribution.

3.1 Euclidean Green’s functions

The Euclidean metric is obtained from the adS metric (2.1) by performing a Wick
rotation, t → iτ , which gives

ds2 = L2 sec2 ρ [dτ 2 + dρ2 + sin2 ρ dθ2]. (3.1)

The Euclidean Green’s function, GE (x, x ′), for the scalar field satisfies the inhomo-
geneous PDE

(
�E − μ2

)
︸ ︷︷ ︸

Lx

GE (x, x ′) = − 1√
g
δ3(x − x ′) (3.2)
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where μ2 is given in (2.4), g is the determinant of the Euclidean adS metric (3.1) and
Lx is a differential operator whose form is

Lx = 1

L2 sec2 ρ

(
∂2

∂τ 2
+ ∂2

∂ρ2 + 1

sin2ρ

∂2

∂θ2
+ 1

sinρ cosρ

∂

∂ρ
− μ2L2 sec2 ρ

)
.

(3.3)
Suitable ansatze for the vacuum Euclidean Green’s function, G0

E (x, x ′) and thermal

Euclidean Green’s function Gβ
E (x, x ′) are

G0
E (x, x ′) = 1

4π2

∫ ∞

−∞
eiω
τdω

∞∑
�=−∞

ei�
θgω�(ρ, ρ′), (3.4)

Gβ
E (x, x ′) = κ

4π2

∞∑
n=−∞

∞∑
�=−∞

einκ
τ ei�
θgn�(ρ, ρ′), (3.5)

where

κ = 2π

β
, (3.6)

and gω�(ρ,ρ′) is the vacuum radial Green’s function. The thermal radial Green’s func-
tion gn�(ρ, ρ′) is given by setting ω = nκ in gω�(ρ, ρ′). Using (3.2), the equation
satisfied by gω�(ρ, ρ′) takes the form

cos2 ρ
∂2gω�

∂ρ2 (ρ, ρ′) + cot ρ
∂gω�

∂ρ
(ρ, ρ′)

+ (−ω2 cos2 ρ − �2 cot2 ρ − μ2L2)gω�(ρ, ρ′) = −cot ρ cos2 ρ

L
δ(ρ − ρ′). (3.7)

The general solution qω� of the homogeneous version of (3.7) is

qω�(ρ) = [cos ρ]A[sin ρ]B
{
C1F(a, b, c; cos2 ρ)

+C2 (cos ρ)2(1−c)F(a − c + 1, b − c + 1, 2 − c; cos2 ρ)
}

, (3.8)

where C1 and C2 are arbitrary constants, and F(a, b, c; cos2 ρ) is a hypergeometric
function with parameters

a = 1

2
(A + B) − 1

2
iω, b = 1

2
(A + B) + 1

2
iω, c = 1 + ν, (3.9)

and
A = 1 + ν, B = |�| for � ∈ Z. (3.10)

Since we are considering ν ∈ (0, 1), the solution (3.8) is regular at ρ = π/2 for
all values of C1, C2. This is a manifestation of the requirement to impose boundary
conditions on the scalar field at ρ = π/2. We adopt the approach in [5] and define the
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arbitrary constants C1 and C2 in terms of a parameter ζ ∈ [0, π) (hereafter called the
‘Robin parameter’) as follows:

C1 = cos ζ and C2 = sin ζ. (3.11)

Dirichlet boundary conditions correspond to ζ = 0 andNeumann boundary conditions
to ζ = π/2.

In general qω�(ρ) is divergent at the origin ρ = 0. The solution pω� of the homo-
geneous version of (3.7) which is regular at the origin is

pω�(ρ) = [cos ρ]A[sin ρ]B F(a, b, a + b − c + 1; sin2 ρ), (3.12)

where we have set an overall arbitrary constant to unity. The second, linearly inde-
pendent, solution of the radial equation has a logarithmic singularity at ρ = 0 [22,
15.10(i)] and hence we eliminate this solution. The hypergeometric functions in (3.8,
3.12) are related by Kummer’s connection formulae [22, 15.10(ii)]. These enable us
to write pω�(ρ) (3.12) in the alternative form

pω�(ρ) = [cos ρ]A[sin ρ]B{PF(a, b, c; cos2 ρ)

+ Q (cos ρ)2(1−c)F(a − c + 1, b − c + 1, 2 − c; cos2 ρ)}, (3.13)

where

P = �(1 − c)�(a + b − c + 1)

�(a − c + 1)�(b − c + 1)
, Q = �(c − 1)�(a + b − c + 1)

�(a)�(b)
, (3.14)

The vacuum radial Green’s function, gω�(ρ, ρ′), can be constructed from qω�(ρ)

and pω�(ρ) by
gω�(ρ, ρ′) = Nω� pω�(ρ<) qω�(ρ>) (3.15)

where ρ< = min{ρ, ρ′}, ρ> = max{ρ, ρ′} andNω� is a normalisation constant, given
by

Nω� = 1

2L(1 − c) [P sin ζ − Q cos ζ ]
. (3.16)

The thermal radial Green’s function gn�(ρ, ρ′) is given by substituting ω = nκ in
(3.8, 3.12, 3.15, 3.16). The denominator of (3.16) becomes zero if ζ satisfies

tan ζ = Q
P = �(ν)|�(

|�|
2 + 1

2 − ν
2 − iω

2 )|2
�(−ν)|�(

|�|
2 + 1

2 + ν
2 − iω

2 )|2 , (3.17)

resulting in divergent values of (3.16) and a divergent Euclidean Green’s function.
For ν ∈ (0, 1), the right-hand-side of (3.17) is negative, corresponding to values of
ζ in the interval (π/2, π). As in the corresponding quantity for a four-dimensional,
massless, conformally coupled scalar field [15], it can be shown that the minimum of
the right-hand-side of (3.17) occurs at ω = 0 for fixed � and ν and that it increases
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Fig. 5 Critical value ζcrit of the Robin parameter as a function of ν, showing that ζcrit → π/2 as v → 1

monotonically asω increases for fixed �, ν. Whenω = 0, the right-hand-side of (3.17)
is an increasing function of |�| for fixed ν. Therefore the minimum of the right-hand-
side of (3.17), for fixed ν, occurs when ω = 0 = �. Substituting ω = 0 = � into
(3.17) gives a value of ζ which we denote by ζcrit. If 0 < ζ < ζcrit, there are no real
values of ω for which (3.17) is satisfied. If ζcrit < ζ < π , then (3.17) has solutions
for �, ω and the scalar field is classically unstable [7].

Figure 5 shows ζcrit as a function of ν. In our subsequent computation of v.e.v.s and
t.e.v.s, we will only consider values of the Robin parameter ζ below ζcrit. As ν → 0,
we have ζcrit → 3π/4. In the case of the massless conformally coupled field, for
ν = 1/2, we find the value ζcrit ≈ 0.572π . As ν → 1, ζcrit → π/2, in agreement
with the fact that we cannot consider Neumann boundary conditions for ν = 1 (see
Sect. 2.3 and figure 2).

3.2 Vacuum expectation values

Using the results of previous subsection, the vacuum Euclidean Green’s function with
Robin boundary conditions gζ

ω�(ρ, ρ′) is

gζ
ω�

(ρ, ρ′) = Nω� [cos ρ]1+ν [cos ρ′]1+ν [sin ρ]|�| [sin ρ′]|�|

× F
( 1
2
(1 + |�| + ν − iω),

1

2
(1 + |�| + ν + iω), 1 + |�|; sin2 ρ<

)

×
{
cos ζ F

( 1
2
(1 + |�| + ν − iω),

1

2
(1 + |�| + ν + iω), 1 + ν; cos2 ρ>

)
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+ sin ζ [cos ρ>]−2ν F
( 1
2
(1 + |�| − ν − iω),

1

2
(1 + |�| − ν + iω), 1 − ν; cos2 ρ>

)}
.

(3.18)

To calculate the v.e.v. with Robin boundary conditions, we note that the divergent
part of the Hadamard parametrix (2.9) is state-independent. Thus we simply consider
the difference between the unrenormalised v.e.v.s with Robin and Neumann bound-
ary conditions, which removes the singularities common to both. Following this, we
add the v.e.v. with Neumann boundary conditions (2.19). We can therefore write the
v.e.v. with Robin boundary conditions as

〈�̂2〉ζ0 = lim
ρ′→ρ

1

4π2

∞∑
�=−∞

∫ ∞

−∞

[
gζ
ω�(ρ, ρ′) − gNω�(ρ, ρ′)

]
dω + ν

4πL
, (3.19)

where gNω�(ρ, ρ′) is the vacuum Euclidean Green’s function (3.18) with ζ = π/2,
corresponding to Neumann boundary conditions.

We calculate the v.e.v.s (3.19) with Robin boundary conditions for representative
values of ν, using MATHEMATICA. We find that the sum and integral in (3.19) converge
rapidly. The results are shown in figure 6, where the v.e.v.s have been determined for
different Robin parameters 0 < ζ < ζcrit. As found for a massless, conformally cou-
pled scalar field in four space-time dimensions [15], the v.e.v.s with Robin boundary
conditions are not constant in the space-time, unless we apply either Dirichlet or Neu-
mann boundary conditions. For fixed ν and ζ , the v.e.v.s are monotonic functions of ρ,
but whether they aremonotonically increasing or decreasing as ρ increases depends on
the value of ζ . For all values of ν studied, the v.e.v.s are monotonically increasing as ρ

increases if 0 < ζ < π/2, but monotonically decreasing for ζ > π/2. For each value
of ν studied, the v.e.v.s for fixed ρ increase with increasing ζ and eventually diverge
as ζ → ζcrit. With increasing ν and fixed ρ, ζ , we see that the v.e.v.s all increase in
magnitude for all ρ. Also it can be seen that the variation in the v.e.v.s is greatest at the
origin of the space-time (ρ = 0). As we reach the space-time boundary at ρ = π/2,
the v.e.v.s for all Robin parameters (except the Dirichlet case ζ = 0) converge to the
result for Neumann boundary conditions. This generalizes the finding of [15] in the
massless, conformally coupled case in four dimensions.

3.3 Thermal expectation values

For the thermal Euclidean Green’s functions (3.5) we replace ω in (3.18) with nκ for
n ∈ Z and κ given in (3.6). To calculate the t.e.v.s, we employ the same method used
in Sect. 3.2 and consider the difference between the unrenormalised t.e.v.s with Robin
and Neumann boundary conditions. Following this we add the t.e.v. with Neumann
boundary conditions previously determined in (2.19, 2.24). We can therefore write

〈�̂2〉ζβ = 1

2πβ
lim

ρ′→ρ

∞∑
�=−∞

∞∑
n=−∞

[
gζ
n�(ρ, ρ′) − gNn�(ρ, ρ′)

]
+ ν

4πL
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Fig. 6 V.e.v.s of the VP, 〈�̂2〉ζ0 , with ν = 1/4 (top), ν = 1/2 (middle) and ν = 3/4 (bottom). On the left

are the surface plots of 〈�̂2〉ζ0 as a function of ρ and ζ . On the right is shown 〈�̂2〉ζ0 as a function of ρ for a
selection of values of the Robin parameter ζ . The dotted lines denote the results for Dirichlet (ζ = 0) and
Neumann (ζ = π/2) boundary conditions

+ 1

2πL

∞∑
j=1

{
νF

(
1 + ν, 1 − ν,

3

2
; 1 − cosh( jβ)

2 cos2 ρ

)

+
√
2 cos ρ

2
√
cosh( jβ) − 1

F

(
1

2
+ ν,

1

2
− ν,

1

2
; 1 − cosh( jβ)

2 cos2 ρ

)}
. (3.20)

We calculate the t.e.v.s of the VP, with Robin boundary conditions, using MATHEMAT-

ICA for different values of ν and Robin parameter ζ < ζcrit. Our results are displayed
in figures 7 and 8.
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Figure 7 shows the t.e.v.s for different inverse temperature,β, with ν = 1/4.Aswith
the v.e.v.s, the t.e.v.s for fixed ρ increase with increasing ζ and start to diverge as ζcrit
is approached. We also see that with increasing β, and thus decreasing temperature,
the plots resemble the corresponding v.e.v.s, a finding also noted in [15]. Figure 8
shows the t.e.v.s for three different values of ν and inverse temperature β = 1. As ν

increases, we see the values of the t.e.v.s increasing in magnitude for all ρ, as in the
vacuum case. Both figures 7 and 8 show that the maximum difference between the
t.e.v.s, for the different Robin parameters, is found at the space-time origin, as was
found for the t.e.v.swithDirichlet andNeumann boundary conditions (see figure 1). As
we reach the space-time boundary, all t.e.v.s converge to the Neumann v.e.v.s, except
for the Dirichlet case which converges to its own v.e.v.. For a massless, conformally
coupled scalar field in four dimensions, similar results were obtained in [15]. Our
work therefore shows that the key finding in [15], namely that near the boundary the
Neumann v.e.v.s are generic and those forDirichlet boundary conditions a special case,
extends to three dimensions and remains true for all scalar field masses and values of
the coupling constant for which Robin boundary conditions can be applied.

4 Vacuum polarisation at the space-time boundary

In Sects. 3.2, 3.3 we found that the VP with Robin boundary conditions converges to
the Neumann v.e.v. at the space-time boundary for all values of the Robin parameter
0 < ζ < ζcrit and for all values of the scalar field mass and coupling. In [15], this
result was demonstrated using an analytic argument for a massless and conformally
coupled scalar field in four dimensions. In this section we extend the argument of [15]
to a massless, conformally coupled scalar field (ν = 1/2) on three-dimensional adS,
before examining more general mass and coupling. The analysis for ν = 1/2 very
closely follows that in [15], so our presentation is brief; further details can be found
in [15, 24].

For a massless, conformally coupled scalar field, the behaviour of the VP at the
boundary can be studied by transforming to ESU and applying the general method-
ology of [24]. This enables us to write GESU

ζ (x, x ′), the vacuum Euclidean Green’s
function on ESU with Robin boundary conditions, as an asymptotic series:
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Fig. 7 T.e.v.s of the VP, 〈�̂2〉ζβ , for ν = 1/4 and a selection of values of the inverse temperature β: β = 1

(top), β = 2 (middle), β = 4 (bottom). On the left are the 3D surface plots of 〈�̂2〉ζβ as a function of ρ

and ζ . On the right is shown 〈�̂2〉ζβ as a function of ρ for various values of ζ . The dotted lines denote the
results for Dirichlet and Neumann boundary conditions

GESU
ζ (x, x ′) = GESU

N (x, x ′) − cot ζ

L

∫

I π
2

GESU
N (x, y)GESU

ζ (y, x ′) dS

= GESU
N (x, x ′) − cot ζ

L

∫

I π
2

GESU
N (x, y)GESU

N (y, x ′) dS

+ cot2 ζ

L2

∫

I π
2

GESU
N (x, y)

[∫

I π
2

GESU
N (y, z)GESU

N (z, x ′) dS
]
dS . . . ,

(4.1)
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Fig. 8 T.e.v.s of the VP, 〈�̂2〉ζ0 , with inverse temperature β = 1, for a selection of values of ν: ν = 1/4

(top), ν = 1/2 (middle), ν = 3/4 (bottom). On the left is shown the 3D surface plots of 〈�̂2〉ζ0 as a function

of ρ and ζ . On the right is shown 〈�̂2〉ζ0 as a function of ρ for various values of the Robin parameter ζ ,
with the dotted lines denoting the results for Dirichlet and Neumann boundary conditions

where GESU
N (x, x ′) is the vacuum Euclidean Green’s function on ESU with Neumann

boundary conditions applied:

GESU
N (x, x ′) = 1

4
√
2πL

{[
cosh
τ − cos
θ sin ρ sin ρ′ + cos ρ cos ρ′]− 1

2

+ [
cosh
τ − cos
θ sin ρ sin ρ′ − cos ρ cos ρ′]− 1

2

}
. (4.2)

The first line in (4.1) arises from applying Stokes’ theorem in a region of ESU bounded
by timelike hypersurfaces I0 at ρ = 0 and I π

2
at ρ = π/2 (the surface integral over

I0 vanishes via the same argument as in [15]). In the second line of (4.1) we use
an iterative method, replacing GESU

ζ (x, x ′) in the integral by the expression on the
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right-hand-side of the first line and successively repeating this step. The integrals in
(4.1) are over the space-time points y and z.

We transform back to adS by multiplying (4.1) throughout by
√
cos ρ cos ρ′. Then,

taking the limit x ′ → x , we have the following relationship between the VP on adS
with Robin boundary conditions applied and that with Neumann boundary conditions

〈�̂2〉ζ0 = 〈�̂2〉N0 − cos ρ cot ζ

L

∫

I π
2

GESU
N (x, y)GESU

N (y, x) dS

+ cos ρ cot2 ζ

L2

∫

I π
2

GESU
N (x, y)

[∫

I π
2

GESU
N (y, z)GESU

N (z, x) dS

]
dS . . . ,

(4.3)

which is valid for all nonzero ζ , that is, for all boundary conditions other thanDirichlet.
Next we evaluate the first integral on the right-hand-side of (4.3):

∫

I π
2

GESU
N (x, y)GESU

N (y, x) dS = 1

8π2L2

∫

I π
2

1

cosh
τ − cos
θ sin ρ
dS

= 1

4π

∫ ∞


τ=−∞
1√

cosh2 
τ − sin2 ρ
d
τ

= 1

2π
K (− tan2 ρ) sec ρ, (4.4)

where K is the complete elliptic integral of the first kind [22, 19.2.8]. Here x is a
general point in ESU with coordinates (τ, ρ, θ), the integral is performed over points
y = (τy, π/2, θy) on I π

2
and 
τ = τy − τ , 
θ = θy − θ . In the second line in (4.4)

we have performed the integral over 
θ ∈ [0, 2π ] and in the third line the integral
over 
τ is performed. As the point x approaches the boundary at I π

2
, we have

∫

I π
2

GESU
N (x, y)GESU

N (y, x) dS ∼ 1

2π
log ε (4.5)

for ρ = π/2 − ε as ε → 0. This diverges as the boundary is approached, but the
divergence is weaker than that of the corresponding integral in four dimensions [15].
The second integral in (4.3) remains finite as the point x approaches I π

2
and does not

need to be considered further. Substituting in (4.3) then gives

〈�̂2〉ζ0 = 〈�̂2〉N0 − cot ζ

2πL
K (− tan2 ρ) + . . . , (4.6)

where . . . denotes terms which vanish as ρ → π/2. In this limit the elliptic integral
also vanishes and hence

lim
ρ→ π

2

〈�̂2〉ζ0 = lim
ρ→ π

2

〈�̂2〉N0 . (4.7)
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Here we have considered v.e.v.s, but the argument extends trivially to t.e.v.s. However,
the above analysis does depend crucially on a conformal transformation to ESU, and
hence can only be applied when ν = 1/2. For other values of ν, we take an alternative
approach.

Consider first the v.e.v.s, determined using (3.19). The first part of the right-hand-
side of (3.19) is the difference between v.e.v.s with Robin and Neumann boundary
conditions applied. We can write this as

〈�̂2〉ζ0 − 〈�̂2〉N0 = 1

4π2

∞∑
�=−∞

∫ ∞

−∞
pω�(ρ)

[
Nζ

ω� q
ζ
ω�(ρ) − NN

ω� q
N
ω�(ρ)

]
dω (4.8)

where we have used (3.8, 3.12, 3.15) and, as before, the ζ, N superscripts refer to the
Robin and Neumann boundary conditions respectively. Using (3.18), we can express
(4.8) as

〈�̂2〉ζ0 − 〈�̂2〉N0 = − Lν cos ζ

2π2

∞∑
�=−∞

∫ ∞

−∞
Nζ

ω� NN
ω� [pω�(ρ)]2 dω. (4.9)

To analyze the behaviour of this quantity as ρ → π/2, it is helpful to use the form
(3.13) for the radial function pω�(ρ). As the space-time boundary is approached, the
hypergeometric functions (3.13) tend to unity. Therefore the second term in (3.13) is
dominant, giving the following leading-order behaviour of (4.9):

〈�̂2〉ζ0 − 〈�̂2〉N0 ∼ − Lν[cos ρ]2−2ν cos ζ

2π2

∞∑
�=−∞

∫ ∞

−∞
Nζ

ω� NN
ω� [sin ρ]2|�|Q2 dω,

(4.10)
where Q is given in (3.14).

The integral over ω and sum over � in (4.10) cannot be performed analytically.
However, whether or not this quantity is convergent (and the rate at which it diverges
if it is divergent) depends only on the behaviour for large |�|, |ω|. Using the expression
(3.16) for the normalization constants, and considering only the dominant behaviour
of Nζ

ω�NN
ω� Q2 for large |�|, |ω| gives

Nζ
ω�N

N
ω� Q2 ∼ 1

4L2ν2

�(ν)2

�(−v)2

|�(1/2 − ν/2 + |�|/2 + iω/2)|4
|�(1/2 + ν/2 + |�|/2 + iω/2)|4 csc ζ. (4.11)

Clearly this expression is valid only for ζ > 0, that is for all boundary conditions
except Dirichlet boundary conditions. Let us therefore consider the quantity

�0 =
∞∑

�=−∞

∫ ∞

−∞
|�(1/2 − ν/2 + |�|/2 + iω/2)|4
|�(1/2 + ν/2 + |�|/2 + iω/2)|4 [sin ρ]2|�| dω. (4.12)
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We are still unable to perform the sum over � and integral overω in (4.12) analytically.
However, from [22, 5.11.12], for large |�| and |ω| we have

|�(1/2 − ν/2 + |�|/2 + iω/2)|4
|�(1/2 + ν/2 + |�|/2 + iω/2)|4 ∼ 24ν

(|�|2 + |ω|2)2ν . (4.13)

Using this approximation, the expression

�1 =
∞∑

�=1

∫ ∞

0

24ν[sin ρ]2�
(�2 + ω2)2ν

dω (4.14)

is amendable to exact evaluation. The integral over ω in (4.14) is convergent for
ν > 1/4, leading to

�1 = 24ν
√

π ν�(2ν − 1/2)

�(2ν + 1)

∞∑
�=1

[sin ρ]2�
�(4ν−1)

= 24ν
√

πν�(2ν − 1/2)

�(2ν + 1)
Li(4ν−1)(sin

2 ρ),

(4.15)
where Li4ν−1[sin2 ρ] is the polylogarithm function [22, 25.12.10]. To find the
behaviour of (4.15) as ρ → π/2, we use the relationship between the polylogarithm
and Lerch’s transcendental function �L [22, 25.14.1]

Li(4ν−1)(sin
2 ρ) = (sin2 ρ)�L(sin2 ρ, 4ν − 1, 1), (4.16)

together with the result in [25, 64:12.7]:

lim
ρ→π/2

[
�L(sin2 ρ, 4ν − 1, 1)

(cos2 ρ)4ν−2

]
= �(2 − 4ν). (4.17)

However, (4.17) is only valid for ν < 1/2. So, for 1/4 < ν < 1/2, we have, as
ρ → π/2,

�1 ∼ 24ν
√

πν�(2ν − 1/2)�(2 − 4ν)

�(2ν + 1)
[cos ρ]8ν−4. (4.18)

Since the divergences arise from the large |�|, |ω| behaviour which is captured in
�1 (and thence in �0), the dominant behaviour of 〈�̂2〉ζ0 − 〈�̂2〉N0 at the space-time
boundary is obtained by substituting 4�1 for the sum and integral (to account for both
positive and negative values of ω and �) in (4.12) and subsequently in (4.10), which
gives

〈�̂2〉ζ0 − 〈�̂2〉N0 ∼ − 24ν�(ν)2�(2ν − 1/2)�(2 − 4ν) cot ζ

2π3/2 L �(−ν)2�(2ν + 1)
[cos ρ]6ν−2, (4.19)

which vanishes in the limit ρ → π/2 when ν > 1/3. Therefore for 1/3 < ν < 1/2
we have 〈�̂2〉ζ0 = 〈�̂2〉N0 at the space-time boundary.
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When ν > 1/2 we note that polylogarithm function in (4.15) becomes the Riemann
zeta function as ρ → π/2 [22, 25.12.10], which is finite for these values of ν. When
we then substitute (4.15) back into (4.10) the right-hand-side vanishes due to the
[cos ρ]2−2ν term since ν < 1. Therefore, from our analysis of the quantity �1, we
deduce that 〈�̂2〉ζ0 = 〈�̂2〉N0 at the space-time boundary for ν > 1/3, as the case
ν = 1/2 was considered earlier.

While the above discussion is for v.e.v.s, similar considerations apply to t.e.v.s. In
that case the integral over ω in (4.12) is replaced by a sum over n (from replacing ω

by nκ), leading us to consider the quantity

�β =
∞∑

�=1

∞∑
n=1

[sin ρ]2�
(�2 + n2κ2)2ν

. (4.20)

While the sum is convergent for ν > 1/4, it cannot be performed analytically.However,
using the Euler-Maclaurin formula [22, 2.10.1], we have the asymptotic approximation

∞∑
n=0

1

(�2 + n2κ2)2ν
∼

∫ ∞

0

1

(�2 + y2κ2)2ν
dy + 1

�4ν
+ . . . , (4.21)

where . . . denotes termswhich vanishmore rapidly as � → ∞. Therefore the dominant
behaviour in�β , for large �, arises from the integral in (4.21). The same analysis as that

performed for v.e.v.s then leads us to deduce that 〈�̂2〉ζβ = 〈�̂2〉Nβ at the space-time
boundary for ν > 1/3.

The above analytic argument is valid only for ν > 1/3. However, our numerical
results in Sect. 3 indicate that 〈�̂2〉ζ = 〈�̂2〉N on the space-time boundary for both
v.e.v.s and t.e.v.s and values of ν less than or equal to 1/3. In the absence of an
analytic argument, we now present some additional numerical evidence for v.e.v.s
(similar results are obtained for t.e.v.s). Using the form (3.12) for the radial function
pω�(ρ), and applying [22, 15.8.1], we consider the quantity

�2 =
∞∑

�=−∞

∫ ∞

−∞
dωNζ

ω� NN
ω� (sin ρ)2|�|[F(b−c+1, a−c+1, a+b−c+1; sin2 ρ)]2,

(4.22)
where the parametersa, b and c are given in (3.9). The quantity�2 will bemultiplied by
a factor [cos ρ]2−2ν (plus some numerical factors) to give 〈�̂2〉ζ − 〈�̂2〉N . Therefore,
if we can demonstrate that �2 is finite as the boundary is approached, it must be the
case that 〈�̂2〉ζ = 〈�̂2〉N on the boundary, as required. The hypergeometric function
in (4.22) is regular as ρ → π/2 and the boundary is approached. However, setting
ρ → π/2 in (4.22) (and replacing the numerical factors and appropriate powers of
cos ρ) simply gives (4.10), which we have already examined. We therefore explore
the behaviour of �2 for ρ < π/2, as follows.

For fixed � and ρ < π/2, the integral over ω in (4.22) converges very rapidly for
large ω, as can be seen in Figure 9. We compute the integral over ω numerically for
fixed �, for |ω| ≤ 200. The integral for larger values of |ω| is estimated by fitting a sum
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Fig. 9 The integrand in (4.22) for ρ = 99π/100, ν = 1/8, ζ = π/3, ω ∈ [201, 450] and a selection of
values of �

Fig. 10 Ratio of successive terms in the sum over � in (4.22) for four different values of ν with ρ = 99π/200
and ζ = π/3. In each case the integral over ω has been performed for |ω| ≤ 200

of exponentials to the integrand in the region ω ∈ [201, 700] and then integrating the
fitting functions. We thereby estimate that the relative error in truncating the integral
at |ω| = 200 is of the order of 10−4.

We then use the ratio test to show that the sum over � converges. Our results for
ρ = 99π/200 and four different values of ν are shown in figure 10. We plot the ratio
of successive terms in the sum over � for � ≤ 150. For all values of ν, the ratio of
successive terms in the sum over �, as � increases, tends to a limit which is below unity.
Our numerical investigations reveal that the limit is below unity for all 0 < ρ < π/2,
but that the limit increases towards unity as ρ → π/2. This provides evidence that the
sum over � converges to a finite value for 0 < ρ < π/2.

To find 〈�̂2〉ζ0 − 〈�̂2〉N0 at the space-time boundary, we multiply the finite value of
�2 obtained from (4.22) by [cos ρ]2−2ν , which vanishes as ρ → π/2 (there are also
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some irrelevant numerical factors). We conclude 〈�̂2〉ζ0 = 〈�̂2〉N0 at the space-time
boundary for all values of ν ∈ (0, 1).

5 Conclusions

In this paperwehave studied the renormalisedv.e.v.s and t.e.v.s of theVPof a real quan-
tum scalar field, with general mass and coupling, propagating on three-dimensional
adS space-time. We have constructed the Feynman’s Green’s functions for both the
vacuum and thermal states and have used Hadamard renormalisation to calculate the
v.e.v.s and t.e.v.s of the VP, applying Dirichlet and Neumann boundary conditions at
the time-like boundary. The v.e.v.s with both Dirichlet and Neumann boundary con-
ditions respect the maximum symmetry of the background adS space-time, whereas
this symmetry is lost for the thermal states, resulting in t.e.v.s which depend on the
space-time position ρ. As the space-time boundary is approached (ρ → π/2), the
t.e.v.s with both Dirichlet and Neumann boundary conditions reach their respective
v.e.v.s for all values of the inverse temperature β.

We have also determined the v.e.v.s and t.e.v.s of the VP with Robin boundary
conditions applied at the time-like boundary. This was achieved by studying the scalar
field in Euclidean space as the Euclidean Green’s function is uniquely prescribed. Our
findings show that the v.e.v.s and t.e.v.s for all ν and Robin parameter ζ approach the
Neumann values at the space-time boundary except for Dirichlet which has a different
limit.

Earlier work determined the VP on n-dimensional adS [16] for a scalar field with
general mass and coupling but only with Dirichlet boundary conditions, whilst [15]
looked at Dirichlet, Neumann andRobin boundary conditions for a scalar field but only
in the massless conformally coupled case in four-dimensional adS. We have extended
the work in these papers by considering the VP for a scalar field with general mass
and coupling with Dirichlet, Neumann and Robin boundary conditions.

Our result that the v.e.v.s and t.e.v.s with Robin boundary conditions converge to
the Neumann case at the space-time boundary matches the finding in [15] for the
massless conformally coupled case. We conclude that this result is a general property
of quantum scalar field theory on adS, namely that the generic behaviour of the fields
at the space-time boundary is given by Neumann boundary conditions, while Dirichlet
boundary conditions, although they are the most widely considered in the literature,
give expectation values with different behaviour at the boundary.

Wemay understand this heuristically as follows. For Dirichlet boundary conditions,
the scalar field decays as rapidly as possible at the space-time boundary. For all other
boundary conditions, the leading-order behaviour of the scalar field as the boundary
is approached is the same. Furthermore, as observed in [5], while Dirichlet boundary
conditions uniquely specify the form of the scalar field near the boundary, the notion of
Neumann boundary conditions is not, in general, unique. We have made a particular
choice of boundary conditions to be defined as Neumann boundary conditions. A
different choice of Neumann boundary conditions would correspond to one of our
Robin boundary conditions. Since the value of the VP on the boundary is the same for
all boundary conditions other than Dirichlet, our results demonstrate that all possible
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choices of Neumann boundary conditions yield the same value of the VP on the
boundary. The differences between Neumann and Robin boundary conditions appear
only at subleading order and hence do not affect the v.e.v.s and t.e.v.s of the scalar
field on the boundary.

In this work we have considered the VP of a quantum scalar field. It would be very
interesting to study the renormalized SET, which governs the back-reaction of the
quantum scalar field on the space-time geometry. The v.e.v. of the SET for a scalar field
with arbitrarymass and coupling, andDirichlet boundary conditions applied, leads to a
renormalization of the cosmological constant in the semi-classical Einstein equations
in any number of dimensions [16]. We expect that a similar result holds for Neumann
boundary conditions, since the vacuum state in this case is also maximally symmetric,
although the explicit computation of the SET for these boundary conditions has yet
to be completed. T.e.v.s for all boundary conditions, and v.e.v.s for Robin boundary
conditions, are no longer maximally symmetric so the solution of the back-reaction
problem in these states is likely to be more complicated.

Finally, this paper contains preliminary work for a study of quantum scalar field
theory on a BTZ black hole [17, 18]. Since the BTZ metric is constructed by identi-
fying points in three-dimensional adS [17, 18], the Green’s function for a massless,
conformally coupled scalar field on BTZ can be found using themethod of images [26,
27]. This greatly facilitates the calculation of the renormalized VP and SET, which
have been computed for a massless, conformally coupled scalar field with transparent
[26], Dirichlet [27, 28] and Neumann [27] boundary conditions (see also [29, 30]).
We do not consider the former in our work here since they can be applied only to a
massless and conformally coupled scalar field. The corresponding calculation for a
rotating BTZ black hole with Robin boundary conditions is likely to be complicated by
the fact that, while there are no superradiant modes when either Dirichlet or Neumann
boundary conditions are applied [31], superradiant modes exist for a set of values of
the Robin parameter ζ [32]. Green’s functions for the ground state can be constructed
for Robin boundary conditions [33], but the VP and SET remain to be computed. We
plan to explore this situation further in future work.
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