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Abstract
Radar (SAR) satellites systematically acquire imagery that can be used for volcano monitoring, characterising magmatic 
systems and potentially forecasting eruptions on a global scale. However, exploiting the large dataset is limited by the need 
for manual inspection, meaning timely dissemination of information is challenging. Here we automatically process ~ 600,000 
images of > 1000 volcanoes acquired by the Sentinel-1 satellite in a 5-year period (2015–2020) and use the dataset to 
demonstrate the applicability and limitations of machine learning for detecting deformation signals. Of the 16 volcanoes 
flagged most often, 5 experienced eruptions, 6 showed slow deformation, 2 had non-volcanic deformation and 3 had atmos-
pheric artefacts. The detection threshold for the whole dataset is 5.9 cm, equivalent to a rate of 1.2 cm/year over the 5-year 
study period. We then use the large testing dataset to explore the effects of atmospheric conditions, land cover and signal 
characteristics on detectability and find that the performance of the machine learning algorithm is primarily limited by the 
quality of the available data, with poor coherence and slow signals being particularly challenging. The expanding dataset of 
systematically acquired, processed and flagged images will enable the quantitative analysis of volcanic monitoring signals 
on an unprecedented scale, but tailored processing will be needed for routine monitoring applications.
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Introduction

Globally, over 800 million people live within 100 km of 
a volcano and the number of fatalities is increasing with 
time (Loughlin et al. 2015). By identifying precursory activ-
ity, volcano monitoring can provide forecasts of impend-
ing eruptions, reducing socio-economic impacts (Poland 

and Anderson 2020). Once adjusted for population growth, 
the vulnerability to volcanic hazards is actually falling as 
improved monitoring enables timely evacuations (Auker 
et al. 2013). However, the distribution of ground-based 
equipment remains unequal, and many low-middle income 
countries have little capacity, leaving a significant proportion 
of the ~ 1500 Holocene volcanoes essentially unmonitored, 
including many with high population exposure (Loughlin 
et al. 2015).

Satellite systems are well-suited for global environmental 
monitoring and measure a number of volcanic phenomena 
on a routine basis. In the last decade, there have been thou-
sands of detections per year, most of which are co-eruptive 
thermal and gas emission signals. In contrast, many defor-
mation signals are pre-eruptive (Furtney et al. 2018), thus 
offering the potential to inform eruption forecasting and cri-
sis management (Biggs et al. 2014). Launched in 2014, the 
European Sentinel-1 constellation offers global coverage of 
radar images with a repeat cycle of 6 days at best, amount-
ing to > 13 TB per day. The explosion in data represents 
a remarkable opportunity for global volcano monitoring, 
but has brought major challenges associated with manual 
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inspection of imagery and timely dissemination of informa-
tion, which can only be addressed with automated methods 
such as machine learning.

Proof-of-concept studies using convolutional neural net-
works (CNN) have demonstrated the potential of machine 
learning algorithms for detecting volcanic deformation in 
large InSAR datasets (Anantrasirichai et al. 2018). Following 
this, many new machine learning algorithms and architec-
tures have been proposed for detecting and locating volcano 
deformation (Anantrasirichai et al. 2019a; 2019b; Bountos 
et al. 2022, 2021; Gaddes et al. 2019; Sun et al. 2020; Valade 
et al. 2019). However, these have only been tested on fairly 
small datasets (< 50,000 images) covering a limited range 
of volcano types, deformation characteristics and environ-
mental conditions. For example, the dataset of Anantrasiri-
chai et al. (2018) had two major limitations, despite being 
the largest available at the time. (1) Forty-five percent of 
the ~ 30,000 images were from Europe — where Sentinel-1 
acquired images every 6 days — but this limited the range 
of conditions considered. (2) Only 4 of the ~ 900 volcanoes 
covered had deformation signals (Etna, Erte Ale, Sierra 
Negra and Cerro Negro), but this is not representative of the 
full range of volcano deformation characteristics (Biggs and 

Pritchard 2017; Ebmeier et al. 2018). Here we focus on the 
rapid expansion in the amount of available Sentinel-1 data 
in the last 4 years, from 30,000 images in 2019 to ~ 600,000 
now. This new, expanded dataset provides an opportunity to 
test the existing algorithms on a wider range of deformation 
styles, atmospheric conditions and land cover, providing a 
benchmark against which future developments can be tested.

Methods

We use a 3-stage approach to analyse the large dataset of 
satellite imagery available from Sentinel-1 (Fig. 1). The first 
step is the automatic generation of InSAR images using the 
COMET-LICSAR automated processing system (Lazecký 
et al. 2020). The next step is the automatic analysis of the 
processed images, and we use a deep learning approach to 
classify each image (Anantrasirichai et al. 2019b, 2018). For 
volcano monitoring, false negatives are far more problematic 
than false positive, so we use a conservative thresholding 
approach. Finally, we perform an expert review to identify 
the true positives and characterise the signal at each volcano 
making use of any external information available.

Fig. 1  Flow chart summarising 
the methods used for the (1) 
automated processing of InSAR 
data, (2) detection of deforma-
tion and (3) expert review
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Automated processing

Interferometric Synthetic Aperture Radar (InSAR) pro-
duces maps (‘interferograms’) of surface displacement in 
the satellite line of sight (los) by comparing the phase of the 
backscattered signal in successive SAR images. Here we use 
the COMET-LICSAR archive of processed Sentinel-1 radar 
images spanning November 2015–November 2020 (http:// 
comet. nerc. ac. uk/ COMET- LiCS- portal/). Sentinel-1 data is 
taken directly from the Centre for Environmental Data Anal-
ysis (CEDA) Sentinel Mirror Archive (SMA) and processed 
using the COMET-LICSAR automated processing system 
which is based on the GAMMA SAR processing software 
package and runs on the UK Centre for Environmental Data 
Analysis infrastructure JASMIN (Lazecký et al. 2020; Wer-
ner et al. 2000). The LiCSAR standard frames are a merge 
of 13 burst units for each of the 3 Sentinel-1 swaths, cover-
ing approximately 250 km by 250 km. The interferograms 
are geocoded onto a 0.001° × 0.001° grid using elevation 
data primarily from the Shuttle Radar Topography Mission 
(SRTM).

The system generates differential interferograms con-
necting each Sentinel-1 acquisition to at least three suc-
cessive acquisitions in time. The original Sentinel-1 mis-
sion consisted of two identical satellites, Sentinel-1A and 
Sentinel-1B, each of which has a revisit period of 12 days. 
Sentinel-1A was launched in 2014 and Sentinel-1B was 
launched in April 2016, but ceased operating in December 
2021. In theory, this would generate interferograms of 6-, 
12- and 18-day durations when both satellites are acquir-
ing data and 12-, 24- and 36-day interferograms when just 
one satellite is acquiring data. However, the satellites do 
not always acquire data on every pass and the CEDA-SMA 
and LiCSAR archives are not yet complete. Although the 
majority of the inteferograms are shorter than 48 days in 
duration, missing acquisition means that longer duration 
interferograms are sometimes processed and > 10,000 inter-
ferograms are ≥ 120 days in duration (Fig. 2b). These long 
duration interferograms are particularly important for detect-
ing slow deformation and assessing the effects of coherence 
on detectability.

We crop the area around each Holocene volcano to a 
0.5° × 0.5° box centred on the coordinates provided by the 
Global Volcanism Programme (Global Volcanism Program 
2013) generating 592,224 wrapped interferograms of 1084 
volcanoes. In this dataset, ~ 10% of the interferograms are 
located over European volcanoes (compared to 43% in 
Anantrasirichai et al. (2018)) and there is good coverage of 
Latin American (28%) and Asian (22%) volcanoes, which 
are key volcanic settings (Fig. 2a,c). Unfortunately, some 
notable deformation events prior to or during the time period 
considered are not covered by the LiCSAR archive (e.g. 
Ambrym (Shreve et al. 2019), Semisopochnoi (DeGrandpre 

et al. 2019), Fogo (González et al. 2015)). However, we 
chose not to artificially bias the dataset by running addi-
tional processing at these volcanoes. Although incomplete, 
the dataset is an order of magnitude larger than that used by 
previous machine learning studies and allows us to explore 
a wider range of signal characteristics, volcanic processes, 
atmospheric conditions and land cover types.

Detection

Machine learning (ML), in particular, deep convolution 
neural networks (CNNs), is becoming increasingly popular 
for image classification tasks as they have proven to be effi-
cient and are easy to adapt to many applications. However, 
to be successful, CNN models require a large training set of 
labelled data, balanced between classes. We apply the con-
volution neural network (CNN) proposed by Anantrasirichai 
et al. (2018), which was designed to distinguish between 
volcano deformation and atmospheric artefacts in wrapped 
interferograms. This approach fine-tunes the AlexNet archi-
tecture (Krizhevsky et al. 2012) using a combination of real 
(Anantrasirichai et al. 2018) and synthetic (Anantrasirichai 
et al. 2019b) training data (Fig. 3). The wrapped interfero-
gram is converted to 8-bit (grayscale) data and divided into 
overlapping patches of 224 × 224 pixels, which are repeat-
edly shifted by 28 pixels to cover the image.

For this study, we use the 2-class model of Anantrasiri-
chai et al. (2019b), which is trained to distinguish interfero-
grams that consist of both deformation and atmospheric sig-
nals from those with just atmospheric signals (“D + S + T vs 
S + T” where D, deformation signal; S, stratified atmospheric 
signal; T, turbulent atmospheric signal). The probabilities of 
deformation in each patch are merged, and the images are 
flagged as containing deformation when the maximum prob-
ability, P, is greater than 0.5 (Anantrasirichai et al. 2018).

Expert review

Finally, we use a range of tools to inspect the flagged inter-
ferograms and categorise the signals according to the pro-
cesses responsible. This allows us to identify false positives 
and investigate the range of mechanisms represented and the 
associated detection thresholds.

We class the volcanoes as ‘persistent detections’ if they 
have either > 25 detections or > 10% of detections per total 
number of interferograms, and ‘occasional detections’ if 
2–25 inteferograms were flagged. Since the LiCSAR sys-
tem automatically connects each SAR acquisition to at least 
three successive acquisitions in time, any rapid transient 
deformation should appear in at least 6 interferograms. Here 
we use a conservative threshold of two detections to allow 
for incoherence, processing errors etc. For volcanoes with 
persistent detections, we use time-series and atmospheric 
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correction approaches to investigate the characteristics of 
the signal, while volcanoes with occasional detections are 
checked visually.

To form time series for volcanoes with persistent detec-
tions, we apply the method used by Albino and Biggs (2021): 
the interferograms are unwrapped using snaphu (Chen and 
Zebker  2000; Lazecký et  al.  2020) and a least-squares 

approach is used to retrieve cumulative displacement maps 
for each time-step (Schmidt and Burgmann 2003). Each 
time-step is re-wrapped to produce fringes and the CNN 
algorithm is applied. The choice of wrapping interval is arbi-
trary and Anantrasirichai et al. (2019a) showed that small 
intervals produce many false positives while large intervals 
are not able to detect slow deformation. Thus, we compute 

12 24 36 48 60 72 84 96 108 120

Fig. 2  Distribution of testing dataset of ~ 600,000 images used in this 
study. (a) Worldmap showing the spatial distribution: colour dots 
indicate the number of Sentinel-1 interferograms calculated for each 
volcano. (b) Histogram showing the distribution of interferogram 

durations. (c) Pie chart showing distribution of images by region. 
Notice that the data are well-distributed and include a wide range of 
deformation styles, atmospheric conditions, durations and land cover 
types
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the final probability by averaging the probability at wrap 
intervals of 2.8 cm, 1.4 cm, 0.7 cm and 0.35 cm (Anan-
trasirichai et al. 2019a). For signals dominated by a sea-
sonal component, we apply automatically generated atmos-
pheric corrections using the COMET-GACOS system (Yu 
et al. 2018) which is based on the operational HRES weather 
model produced by the European Centre for Medium-Range 
Weather Forecasts (ECMWF) data (0.1° grid, 137 vertical 
levels, and 6-h intervals).

Results

The algorithm flagged 3323 wrapped interferograms of 
366 volcanoes (Fig. 4). Of these, 146 volcanoes were only 
flagged once. Re-classifying volcanoes detected only once 
leaves 3177 interferograms flagged at 220 volcanoes. Volca-
noes with a small number or proportion of detections tended 
to have lower maximum probabilities (0.5 < P < 0.9), while 
volcanoes with large numbers (> 20) or a high percentage 
(> 5%) of detections have very high maximum probabili-
ties (P > 0.9). In this section, we first describe the 16 volca-
noes with persistent detections in detail, and then highlight 

interesting examples from the 215 volcanoes with occasional 
detections.

Persistent detections

The Galapagos Islands

Of the 3323 detections, 1247 (38%) were from volcanoes 
in the Galapagos Islands, with 904 from Sierra Negra 
alone (Fig. 4, Table 1). Sierra Negra erupted in 2005 and 
2018. The 2018 eruption caused 8.5 m of subsidence (Bell 
et al. 2021), and the CNN flagged all individual wrapped 
interferograms spanning the 2018 eruption at P > 0.80. 
Magma recharge between eruptions caused continuous, but 
not constant, deformation. The total uplift of 6.5 m between 
2005 and 2018 (Bell et al. 2021) makes this one of the fast-
est and longest-lived deformation episodes ever recorded 
(Biggs and Pritchard 2017), and an easy target for automated 
detection algorithms (Gaddes et al. 2019). Over 80% of the 
individual wrapped interferograms were flagged at P > 0.9 
(Table 1). However, the extreme co-eruption signal was not 
accurately unwrapped by the automated processing system, 
aliasing the time series and such that only ~ 2 m of defor-
mation was recorded in the satellite line of sight (Fig. 5g). 

Fig. 3  The machine learning framework developed by Anantrasiri-
chai et  al. (2018, 2019b). (a) During the training process, synthetic 
examples are used to train the CNN to obtain an initial model. The 
model is then retrained using real examples of both positive and 
negative results to improve the performance. (b) For the prediction 

process, the new interferograms are divided into patches, and the 
CNN outputs the probability of deformation in each patch. The prob-
abilities are merged with Gaussian weights to produce a map and 
maximum probability for each image. Finally, the expert checks the 
results.  Modified from Anantrasirichai et al. 2019b
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Nonetheless, the cumulative time series reached the detec-
tion threshold (P > 0.5) within 30 days and was not sensitive 
to any further changes in deformation rate (Fig. 5g).

Three other Galapagos volcanoes were also flagged 
more than 80 times: Wolf, Cerro Azul and Fernandina 
(Fig. 5a). Between 2016 and 2020, both Wolf and Fernan-
dina were continuously deforming, with the time series 
reaching P > 0.5 after just 3.2 and 4.3 months respectively 
(Fig. 5c,d). At Wolf, the uplift rate of 6 los cm/year was 
significantly faster than the rate of 3 los cm/year observed 
prior to the 2015 eruption (Xu et al. 2016). Uplift at Fer-
nandina continued between November 2015 and January 

2020, despite minor effusive eruptions in September 2017 
and June 2018 (Vasconez et al. 2018), but a similar small 
eruption in January 2020 caused a reversal in deformation, 
and was followed by subsidence at a rate of 28 los cm/year. 
Cerro Azul experienced a non-eruptive deformation event 
in March 2017 attributed to the intrusion a sill at a depth 
of 5–6 km (Guo et al. 2019) (Fig. 5f). Although there was 
little deformation prior to this intrusion, the proximity 
to the large deformation signal at Fernandina caused the 
machine learning algorithm to assign a background proba-
bility of 0.5–0.8 (false positive), which increased to > 0.95 
(true positive) after the intrusion.

Fig. 4  Outputs of the automated processing and machine learn-
ing detection of deformation organised by volcano. (a) Number of 
detections (P > 0.5) per volcano (log-scale), coloured by maximum 
probability, Pmax. (b) Percentage of detections (P > 0.5) per volcano 
(log-scale), coloured by maximum probability, Pmax. (c) Spatial dis-

tribution of detections (P > 0.5) from Table  1. Size represents the 
number of detections and colour the percentage of detections. Further 
details of volcanoes with a high number or percentage of detection 
are provided in Table 1 and the ‘Results’ section
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Eruptions elsewhere

The CNN detected ground deformation associated with 
eruptions at the following: Kilauea, Hawaii, in 2018 (Neal 
et al. 2019); Erta Ale, Ethiopia, in January 2017 (Moore 
et  al. 2019); and Etna, Italy, in December 2018 (De 

Novellis et al. 2019) (Fig. 4). The deformation at Kilauea 
was large magnitude and complex in both space and time 
(Neal et al. 2019) and the CNN flagged deformation in 
35 individual interferograms at Kilauea (Fig. 4, Fig. 5a). 
The time series probability reaches P > 0.5 on 4 June 2018 
(Fig. 6e), 1 month after the eruptive fissures first opened 

Table 1  Machine learning classification of automatically processed Sentinel-1 images for selected volcanoes between November 2015 and 
November 2020

Volcano name Number images Probability % detections

 > 0.9 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 Sum

Sierra Negra, Galapagos 1225 771 47 35 29 22 904 73.8
Fujisan, Japan 1127 73 34 21 17 20 165 14.6
Fernandina, Galapagos 742 34 20 13 32 32 131 17.7
Cerro Azul, Galapagos 1225 35 18 21 30 15 119 8.9
Wolf, Galapagos 742 5 18 20 24 14 81 10.9
Domuyo, Argentina 1399 14 15 7 15 12 63 4.5
Laguna Del Maule, Chile 1370 28 13 9 6 5 61 4.5
Etna, Italy 1149 13 7 11 11 16 58 5.1
Kverkfjoll, Iceland 2537 11 12 8 5 19 55 2.2
Krýsuvík-Trölladyngja Vol-

canic Field, Iceland
1174 37 6 3 1 2 49 4.2

Rinjani, Indonesia 890 10 19 7 3 10 49 5.5
Erta Ale, Ethiopia 798 9 18 8 2 5 42 5.3
Kilauea, Hawaii 489 26 6 1 1 0 34 7.0
Tambora, Indonesia 176 6 8 7 4 8 33 18.8
Agung, Indonesia 890 2 1 9 12 7 31 3.5
Lawu, Indonesia 1847 1 6 6 8 10 31 1.7

Fig. 5  Automated InSAR processing and detection at Galapagos vol-
canoes. (a) Cumulative displacement between November 2015 and 
November 2020 displayed as wrapped fringes, where each fringe 
represents 2.8 cm of displacement in the line of sight, (b) detection 
probability output by the Convolutional Neural Network. Red square: 

volcano summit (Global Volcanism Program 2013); green square: 
selected point; blue: reference point. (c–g) timeseries showing dis-
placement (blue) and probability (red) at (c) Wolf, (d) Fernandina, 
(e) Alcedo, (f) Cerro Azul and (g) Sierra Negra. Eruption events are 
marked in orange in (c–g)
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Fig. 6  Automated InSAR processing and detection of major erup-
tions. (a–d) Individual wrapped interferograms with CNN probabili-
ties super-imposed. Each fringe represents 2.8  cm of displacement 
in the satellite line of sight, and the semi-transparent yellow overlay 
represents the probability from the CNN, with contours at P = 0.5 and 
P = 0.8 (see Fig.  4b  for scale). The blue squares labelled ‘C’ show 

the points selected for time-series analysis in e–h. (e–h) Cumulative 
displacement time series of unwrapped interferograms (blue) with 
associated probabilities (red). (a, e) Kilauea, USA; (b, f) Taal, Phil-
ippines; (c, g) Etna, Italy; (d, h) Erta Ale, Ethiopia. Orange colours 
denote eruptive periods
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(Neal et al. 2019). Following the end of the eruption, the 
sign of the deformation reversed and the probability associ-
ated with the cumulative deformation dropped below the 
detection threshold on 3 October 2019. This illustrates the 
challenges associated with using cumulative time series to 
detect changes in rate (Supplementary Fig. 1 in the online 
resource).

Fissure eruptions at Erta Ale, Ethiopia, in January 2017 
(Moore et al. 2019) and Etna, Italy, in December 2018 (De 
Novellis et al. 2019) are flagged in more than 40 wrapped 
interferograms each (Fig. 4, Table 1). These eruptions were 
associated with small dyke intrusions which generate a char-
acteristic two-lobed deformation pattern (Fig. 6c,d). At pix-
els close to the intrusions, the time-series are dominated by 
the intrusive process (Fig. 6g,h), but more detailed analysis 
shows additional long-term deformation signals, associated 
with flank sliding at Etna and the shallow magma system 
at Erta Ale (Supplementary Fig. 2 in the Online Resource). 
These patterns are spatially distinct and can be separated 
by selecting time series from different pixels. For example, 
Fig. 7 shows 3 selected pixels at Etna: C1 is close to the 
summit and dominated by the dyke intrusion, C3 is low on 
the flank and dominated by flank sliding and C2 is a combi-
nation of both signals.

Systems experiencing volcanic unrest

Many volcanic systems experience deformation at rates of 
centimetres-per-year for years or decades without resulting 

in an eruption, especially silicic calderas (Biggs et al. 2014). 
The CNN can detect these in individual wrapped interfero-
grams if (1) the rate is sufficiently high and (2) there are 
coherent interferograms with longer time spans. For exam-
ple, 81 interferograms from Laguna del Maule, Chile, were 
flagged (Fig. 4, Table 1). Earlier studies have shown uplift 
at a rate of ~ 20 cm/year between 2007 and 2014 (Le Mével 
et al. 2016), and our time-series analysis shows a similar rate 
in 2016–2020, causing a positive flag after just 5 months 
(Fig.  8a). Similarly, Domuyo, Argentina, began uplift-
ing at a rate of 15 cm/year in 2014 (Lundgren et al. 2020) 
and was flagged in 63 wrapped interferograms with times-
pans > 84 days (Fig. 4, Table 1), and after 6 months using 
the time series approach (Fig. 8b).

Deformation was repeatedly flagged in wrapped inter-
ferograms at two volcanic systems with no prior satel-
lite reports of deformation (Ebmeier et al. 2018). The 
0.5° × 0.5° tile around the Holocene volcano ‘Reykjanes’ 
was flagged 52 times (Fig. 4, Table 1). Two areas of defor-
mation are visible: subsidence due to the Reykjanes geo-
thermal power-plant to the west and uplift at Svartsengi in 
the east (Fig. 8e). The time series from Svartsengi shows 
slow subsidence from at least mid-2017 consistent with 
earlier observations which have attributed the deformation 
to exploitation of the Svartsengi geothermal field (Kei-
ding et al. 2010), with the probability exceeding the detec-
tion threshold (P > 0.5) on 02-Oct-2019 (Fig. 8e). Uplift 
at Svartsengi began in early 2020, which briefly reduced 
the cumulative deformation and hence the probability, 

Fig. 7  Automated processing and machine learning results for Etna, 
Italy. Cumulative displacement map (wrapped modulo 2.8  cm) for 
November 2015–November 2020. (a–c) Timeseries showing cumula-
tive displacement (blue) and probability (red) for selected points. (a) 
Point C1 is close to the summit and deformation is dominated by the 

dyke intrusion. (b) Point C2 is located high on the flank and shows a 
combination of displacement caused by the intrusion and flank slid-
ing. (c) Point C3 is located low on the flank and displacement is dom-
inated by the slow flank sliding. Eruption dates are shown in orange
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before returning to P > 0.5 by 19-Apr-2020. Again, this 
illustrates the challenges associated with using cumulative 
time series to detect changes in rate. Following the obser-
vation period, the unrest led to a dyke intrusion followed 
by the Fagradalsfjall eruption in March 2021, and can ret-
rospectively be classed as precursory (Flóvenz et al. 2022; 
Sigmundsson et al. 2022).

Tambora, Indonesia, was the site of world’s largest and 
deadliest historical eruption in 1815 (Self et al. 1984), but no 
deformation has been reported since. The Sentinel-1 dataset 
is sparse over Tambora and only extends to mid-2018, but 
19% of the processed interferograms were flagged (Fig. 4, 
Table 1). The short time-series suggests localised subsidence 
at a steady rate of 8 los cm/year (Fig. 8f).

Non‑volcanic signals

Although most volcanoes with a high detection rate experi-
enced deformation associated with volcanic activity, some 
detections were associated with signals that are non-volcanic 
in origin. For example, three earthquakes above magnitude 
6.4 occurred on Lombok, Indonesia, in July/August 2018, 
which caused deformation at nearby Rinjani volcano and 
triggered 52 detections (Fig. 4, Supplementary Fig. 3 in the 
Online Resource). The CNN flags deformation at Kverk-
fjöll, Iceland, in 55 interferograms (Fig. 4, Table 1), but the 
deformation is located along the edge of the ice-cap sug-
gesting it is non-volcanic in origin (Supplementary Fig. 4 in 
the Online Resource). We identify the signals at Fujisan in 
Japan and Agung and Lawu in Indonesia as atmospheric in 
origin and discuss them further in the section on detection 
performance.

Occasional detections

We visually inspected the interferograms from volcanoes 
for which there were occasional (2–25) flags. Many of these 
are false positives and are easy to filter out during expert 
review but many are true positives caused by transient or 
slow deformation. Transient deformation is easy to clas-
sify because the flagged interferograms cluster in time. For 
example, the January 2020 eruption of Taal was associated 
with lateral magma movement causing large magnitude, 
complex deformation patterns which were flagged 13 times 
in individual interferograms, of which 11 spanned January 
2020 (Fig. 6b). The time-series shows pre-eruptive deforma-
tion of a few centimetres-per-year on the central island, as 
previously being reported by both ground and space-based 
sensors (Bato et al. 2020), but the probability remained 
below the detection threshold, peaking at P = 0.4 (Fig. 6f). 
Another example is Nevados de Casiri in Peru, which was 
flagged in 11 interferograms, of which 10 spanned July 
2020. Visual inspection shows 3 fringes of deformation 
located ~ 15 km NW of the edifice. The volcano does not 
have any previous record of Holocene eruption (Global Vol-
canism Program 2013) or deformation (Ebmeier et al. 2018), 
but the location and timing of the deformation is consistent 
with seismic swarm at the end of July 2020 that was reported 
by the Instituo Geofisico de Peru (Antayhua et al. 2021).

Although some volcanoes experiencing slow rates of 
deformation were flagged sufficiently often to be classed 
as ‘persistent detections’ (e.g. Domuyo, Laguna del Maule, 
Tambora), at others the deformation was too slow to be 
flagged in many individual interferograms. For example, 
Alcedo (Galapagos) did not experience any significant erup-
tive or intrusive activity during the observation window, but 

Fig. 8  Automated InSAR processing and detection of volcanic unrest. 
(a) Laguna del Maule, Chile; (b) Domuyo, Argentina; (c) Campi 
Flegrei, Italy; (d) Corbetti, Ethiopia; (e) Reykjanes, Iceland; and (f) 
Tambora, Indonesia. Cumulative deformation maps are rewrapped 
such that each fringe represents 2.8  cm of displacement in the sat-

ellite line of sight. The blue square labelled ‘C’ shows the point 
selected for time-series analysis. Cumulative displacement time series 
of unwrapped interferograms (blue) with associated probabilities 
(red)
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slow subsidence (< 3.5 los cm/year) within the caldera was 
sufficient to cause 12 detections in the short-term interfero-
grams (Table 1) and for the time series to exceed P = 0.5 
after 6.5 months (Fig. 5e). Other examples such as Campi 
Flegrei, Italy (8.5 cm/year since 2017) (Anantrasirichai 
et al. 2019a), and Corbetti, Ethiopia (6–7 cm/year) (Albino 
and Biggs 2021), were only flagged once or twice in individ-
ual interferograms, but deformation can easily be detected 
using a cumulative time series approach (Fig. 8c,d).

Detection performance

In this study, we use an expanded dataset of ~ 600,000 
images for testing, which allows us to consider the perfor-
mance of the machine learning algorithm under a wider 
range of atmospheric conditions, signal characteristics and 
land cover types than was previously possible. In this sec-
tion, we consider the effects that these factors have on detec-
tion. First, we calculate a formal detection threshold using 
the time-series results, and then we explore the effects that 
atmospheric conditions, coherence and deformation char-
acteristics have on detectability. We use contrasting regions 
as case studies: we consider atmospheric effects in Asia, 
coherence in the Chilean Andes and signal characteristics 
in Afar, Ethiopia.

Detection threshold

We use the time series results to estimate the detection 
threshold of the CNN. We plot the output probability, P, 
plotted against maximum displacement for each step of the 
time series (Fig. 9) and fit a sigmoidal curve, defined as 
f(x) = (1 + e−a(x−b)) following Anantrasirichai et al. (2019a). 
The transition between P∼0 (undetectable) and P∼1 (detect-
able) occurs over a narrow range and corresponds to the 
minimum value of displacement that the CNN can iden-
tify. The detection threshold for the whole dataset is 5.9 cm, 
equivalent to a rate of 1.2 cm/year over the 5-year study 
period. However, it is important to note that this estimate is 
based on time-series generated for volcanoes where defor-
mation has been detected, and the thresholds might be sig-
nificantly higher elsewhere.

There is considerable variability between volcanoes with 
individual values ranging from 2.1 cm (0.4 cm/year) at Tam-
bora, Indonesia, to 9.9 cm (2.0 cm/year) at Domuyo, Argen-
tina. In general, detection thresholds are < 5 cm for low relief 
volcanoes such as Reykjanes and Tambora but are > 5 cm for 
high relief volcanoes such as Laguna del Maule, Etna and 
Domuyo. These values are consistent with similar tests con-
ducted on synthetic data by Anantrasirichai et al. (2019a). 
Volcanoes where part of the deformation signal is obscured 
by vegetation, such as Corbetti, or water cover, such as 

Campi Flegrei, also tend to have high detection thresholds 
(> 7.5 cm).

Atmospheric artefacts

Atmospheric effects are a major challenge for InSAR, espe-
cially at high-relief volcanoes (Albino et al. 2020; Beauducel 
et al. 2000; Bekaert et al. 2015). Although the model of 
Anantrasirichai et al. (2019b) was trained using synthetic 
data from global atmospheric models to distinguish between 
deformation and atmospheric artefacts, that study identi-
fied false positives due to atmospheric artefacts in 53 of 
the ~ 30,000 interferograms tested. In this expanded study, 
expert review suggests that 3 of the 16 volcanoes with per-
sistent detections can be attributed to atmospheric artefacts, 
including 165 flags (the second highest) at Fujisan, Japan 
(Fig. 4, Table 1). The signal at Fujisan is seasonal (Fig. 10a), 
and similar signals reported in large scale Sentinel-1 stud-
ies of Japan and have been attributed to tropospheric water 
vapour variations and snow loading (Morishita et al. 2020). 
The other persistent detections attributed to atmospheric 
artefacts are at Agung and Lawu, Indonesia, which were 
flagged 31 times each by the algorithm, but only 1–2 times 
with P > 0.9. In both cases, the time-series are very noisy, 
and the detection probability rarely exceeds 0.5 (Fig. 10c,d). 
Atmospheric artefacts are particularly common at tropical 
island volcanoes and have led to misinterpretation of InSAR 
signals in the past (Rémy et al. 2015; Yip et al. 2019). At 
Agung, this atmospheric noise actually masks the deforma-
tion which preceded the 2017 eruption (Albino et al. 2019) 
and demonstrates the importance of atmospheric corrections.

Fig. 9  Detection threshold of the CNN calculated from the time 
series. Tambora = 2.1  cm, Reykjanes = 4.5  cm, Laguna Del 
Maule = 5.5 cm; Etna = 6.3 cm; Campi Flegrei 7.7; Corbetti = 8.7 cm 
and Domuyo = 9.9 cm
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Anantrasirichai et al. (2019b) found that applying a cor-
rection from a global atmospheric model (Yu et al. 2018) 
reduced the probability for false positives below the thresh-
old of 0.5. In the case of Fujisan, the GACOS correction 
reduces the number of detections to from 165 to 64, but does 
not completely remove them (Fig. 10b). The residual rate of 
1.5 los cm/year is significantly higher than the ± 2.4 mm/year 
misfit (1 s.d.) between GNSS stations and InSAR velocities 
on the Kanto plain to the north but consistent with misfits 
to levelling data of around 1 cm/year for individual points 
within Niigata City (Morishita et al. 2020). Discrepancies 
in residual deformation between overlapping tracks suggest 
this is an artefact associated with the extreme topography, 
seasonal snow cover and poor coherence at Fujisan.

Interferometric coherence

Next, we consider the case of the Chilean Andes where high 
relief and seasonal snow cover represent challenging condi-
tions for automated systems. Furthermore, this is an environ-
ment that was not well-represented in the original training or 
testing datasets of Anantrasirichai et al. (2018, 2019b). We 
focus on 3 rapidly uplifting volcanoes with similar deforma-
tion rates and footprints: Laguna del Maule (2162 m) was 
uplifting at a rate of 20 cm/year, Domuyo (4702 m) was 
uplifting at a rate of 15 cm/year and Nevados de Chillan 
(3180 m) began uplifting at a rate of ~ 10–12 cm/year in 
July 2019 (Astort et al. 2022). Each of these volcanoes is 
covered by ~ 1400 interferograms, but the number of detec-
tions is very different: Laguna del Maule was flagged 61 
times, Domuyo 63 times and Nevados de Chillan just once. 
Figure 11a–c shows that the coherence at all 3 volcanoes is 

highly seasonal, but while coherence at Laguna del Maule 
and Domuyo reaches values of ~ 0.8 for short, summer inter-
ferograms, the maximum at Chillan is 0.6. For detecting 
slow deformation, long duration interferograms are espe-
cially important, and the majority of positive detections at 
Laguna del Maule and Domuyo come from interferograms 
with durations of > 100 days (Fig. 11d–e). This corresponds 
to deformation of 4–5 cm, consistent with the detection 
threshold estimated by Anantrasirichai et al. (2019a) based 
on synthetic tests. At Nevados de Chillan, these longer inter-
ferograms are less coherent, and the detection probability 
remains very low (Fig. 10f).

Although detectability does not depend on coherence 
alone, we find that the mean coherence of the interfero-
grams, which is automatically calculated for each track, 
is a useful indicator of areas where the algorithm may not 
perform well. At Laguna del Maule and Domuyo, the mean 
coherence ranges from 0.24 to 0.33. In contrast, at Nevados 
de Chillan the mean coherence is just 0.13–0.20. Similarly, 
several other notable volcanoes with good coverage but 
low mean coherence were not flagged, such as Yellowstone 
(0.12) and Masaya (0.08–0.11). In both these cases, tailored 
processing would be required for the signal to be detectable. 
In summary, we demonstrate that the CNN can detect slow 
deformation in individual interferograms if (1) the rate is 
sufficiently fast, (2) there are interferograms with long time 
spans and (c) those interferograms are sufficiently coherent.

Signal characteristics 

In this section, we focus on the Afar region of Ethiopia 
where Albino and Biggs (2021) and Moore et al. (2021) 

Fig. 10  Automated processing and machine learning results for 
Fujisan in Japan and Agung and Lawu in Indonesia. (a) Fujian time-
series without GACOS correction which is dominated by a seasonal 
signal. (b) Fujian timeseries using GACOS correction to remove 

atmospheric contributions, (c) timeseries show cumulative displace-
ment (blue) and probability (red) for selected point at Lawu, Indone-
sia and (d) timeseries show cumulative displacement (blue) and prob-
ability (red) for selected point at Agung, Indonesia
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have carried out detailed analyses of the Sentinel-1 dataset. 
The testing dataset contains 30,275 interferograms covering 
the 31 volcanoes in Afar (Table 2), of which 6 have known 
deformation: Alu-Dalafilla, Dabbahu-Hararo, Dallol, Erte 
Ale, Gada Ale and Nabro (Albino and Biggs 2021). The 
mean coherence is > 0.34 (Table 2) and the volcanoes are 
mostly low relief such that atmospheric artefacts are negli-
gible. Thus, this is a good region to test how detectability 
depends on the characteristics of the signal.

At Erte Ale, a dyke intrusion caused short-term defor-
mation rates in excess of 200 cm/year triggering 42 flags; 
Dabbahu, Nabro and Dallol in Ethiopia were all deforming 
at steady rates of 3–4 cm/year and were flagged 4–10 times 
and the small, slow subsidence signal at Gade Ale (1.9 cm/
year) was only flagged twice. Although Alu-Dalafilla was 
flagged 17 times, this was because of its proximity to the 
large signal at Erte Ale, and the slow deformation signal 
(1.2 − 1.6 cm/year) reported by Albino and Biggs (2021) 
was below the detection threshold. The algorithm initially 
identified a further 25 volcanoes that were not picked out 
by Albino and Biggs (2021), including 4 volcanoes with 
more than 25 flags each (Table 2). Many of these are false 
positives associated with closely spaced volcanoes and are 
easy to filter out during expert review: for example, Ale 
Bagu, Hayli Gubbi and Bora Ale were flagged because the 

signal at Erte Ale appears within their frame, and similarly 
Asavyo was flagged due to the nearby signal at Nabro. The 
remaining 122 interferograms represent a false positive rate 
of 0.3–2.1% per volcano, and just 0.4% for the Afar region as 
a whole. Some of these false positives are caused by atmos-
pheric artefacts (Adwa, Ayelu), while others are associated 
with the edge of lakes (e.g. Borawli, Mat Ala, Tat Ali).

Discussion and conclusions

Satellite systems are ideally suited for global environmental 
monitoring, and several pilot studies have shown the poten-
tial for using machine learning approaches for character-
ising and detecting volcanic deformation (Anantrasirichai 
et al. 2019a, 2019b; Bountos et al. 2022, 2021; Gaddes 
et al. 2019; Sun et al. 2020). This study is the first to dem-
onstrate the powerful combination of automatically pro-
cessed satellite data and machine learning on a large global 
dataset: we process and analyse more than half-a-million 
images acquired by Sentinel-1 in a 5-year period and cover-
ing > 1000 volcanoes. This enables us to test the model on a 
much wider range of land cover, atmospheric conditions and 
signal characteristics than previously possible.

Fig. 11  The influence of interferometric coherence on signal detect-
ability illustrated using 3 deforming volcanoes in the Andes: (a, d) 
Laguna del Maule, (b, e) Domuyo and (c, f) Nevados de Chillan. 
(a–c) Seasonal variations in coherence. Red, 6-day interferograms; 

blue, 12-day interferograms; green, 18-day interferograms; magenta, 
24-day inteferograms. (d–f) CNN detection probability as a function 
of interferogram coherence and length
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Of the 16 volcanoes flagged most frequently by the con-
volutional neural network: five were associated with signifi-
cant eruptions (Sierra Negra, Kilauea, Etna and Erta Ale, 
Fernandina) and six examples with non-eruptive unrest 
(Cerro Azul, Wolf, Domuyo, Laguna del Maule, Reykjanes 
and Tambora). The deformation on the Reykjanes Penin-
sula is retrospectively considered a precursor to the 2021 
Fagradalsfjall eruption, which occurred after the end of our 
observation period. Among these are several new observa-
tions that have not been previously published: (1) a com-
pletely new deformation signal at Tambora, Indonesia; (2) 
a change in rate of deformation at Wolf, Galapagos, from 
3 cm/year prior to the 2015 eruption (Xu et al. 2016) to 
6 cm/year during our study period of 2016–2020; (3) a rever-
sal in deformation at Fernandina, Galapagos, in January 
2020, coinciding with a minor effusive eruption reported by 
Vasconez et al. (2018). Similar minor effusive eruptions in 
September 2017 and June 2018 may have caused a decrease 

in rate of uplift. We also identify deformation near Nevados 
de Casiri in Peru associated with a seismic swarm reported 
by the Institute Geofisico de Peru (Antayhua et al. 2021). 
Although designed for detecting volcanic deformation, the 
machine learning algorithm is also capable of identifying 
non-volcanic signals, such as those at Kverkfjöll, Fujisan and 
Rinjani, and has considerable potential in other applications 
(Anantrasirichai et al. 2020).

By testing machine learning algorithms on a more repre-
sentative global dataset, we are able to make recommenda-
tions for the development of global volcano monitoring sys-
tems. We find that the performance of the machine learning 
algorithm is primarily limited by the quality of the available 
data, with poor coherence and slow signals being particu-
larly challenging. We show that individual wrapped inter-
ferograms are best suited for detecting eruptions and intru-
sions, which are characterised by sudden, large deformation 
signals. Slow deformation associated with unrest can also be 

Table 2  Systematic analysis 
of the 31 volcanoes in Afar. 
Volcanoes with deformation 
reported by Albino and Biggs 
(2021) are shown in bold to 
provide ground truth. TP, true 
positive; TN, true negative; 
FP, false positive; * denotes 
examples where the detection 
was associated with another 
signal as described in the 
notes column. For TP, the rate 
of deformation is given. The 
total number of false positives 
is 241, or 0.8% of the 30,275 
interferograms in the Afar 
dataset

Volcano Mean coherence Number images Number flags Expert review Notes

Erta Ale 0.75 798 42 TP  ± 200/year
Ale Bagu 0.72 808 41 FP* Erte Ale
Asavyo 0.64 992 41 FP* Nabro
Hayli Gubbi 0.73 810 37 FP* Erte Ale
Bora Ale 0.73 798 27 FP* Erte Ale
Dubbi 0.67 1039 19 FP
Alayta 0.78 798 17 FP
Alu-Dalafilla 0.71 798 17 FP* Erte Ale
Ardoukoba 0.59 1674 17 FP
Mat Ala 0.7 798 15 FP
Assab 0.8 783 12 FP* Lake
Ayelu 0.34 1006 9 FP Atmos
Dabbahu 0.6 1178 9 TP 3.9 cm/year
Tat Ali 0.7 810 9 FP* Lake
Nabro 0.63 1299 6 TP 3.1 cm/year
Borawli 0.74 2213 5 FP
Dallol 0.54 1026 4 FP  − 3.3 cm/year
Dama Ali 0.55 782 4 FP
Dabbayra 0.44 859 3 FP
Ma Alalta 0.57 798 3 FP
Mousa Alli 0.67 783 3 FP
Adwa 0.37 776 2 FP* Atmos
Alid 0.63 638 2 FP
Gada Ale 0.56 1122 2 TP  − 1.9 cm/year
Gufa 0.84 783 2 FP
Gabillema 0.67 782 1 TN
Manda-Inakir 0.57 1251 1 TN
Yangudi 0.32 1151 1 TN
Groppo 0.35 415 0 TN
Manda Gargori 0.38 1415 0 TN
Manda Hararo 0.6 1092 0
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detected in individual interferograms if they retain coher-
ence over a sufficiently long timespan, but the use of time-
series is more reliable and provides insight into the temporal 
behaviour of the signal. However, the use of cumulative time 
series can delay detection if the new signal reverses sign, 
as shown at Kilauea and Svartsengi, and machine learning 
methods designed to detect changes in rate and/or pattern are 
more suited to these cases (Gaddes et al. 2019).

For machine learning algorithms to become fully inte-
grated into automated processing systems, some adaptations 
to the current processing strategies are needed. Specifically, 
we show that (1) long-duration interferograms or timeseries 
of unwrapped images are needed to detect slow deforma-
tion associated with unrest; (2) tailored processing strategies 
are needed in regions with dense vegetation and/or snow 
cover, where automated processing systems may produce 
incoherent interferograms; and (3) atmospheric corrections 
using global weather models reduce the total number of false 
positives, but atmospheric artefacts can still cause false posi-
tives or mask real deformation. Many of these recommenda-
tions are already been implemented in the LiCSAR system 
to avoid issues related to cumulated unwrapping errors and 
fading phase bias (Maghsoudi et al. 2022). For new acqui-
sitions, interferograms connecting the spring and autumn 
seasons with year-long durations are now automatically gen-
erated (Lazecky et al. 2021), and these will be particularly 
important for building a more complete catalogue of slowly 
deforming volcanoes.

Although the analysis presented here was conducted ret-
rospectively, the underlying motivation is to design a real-
time monitoring and alert system. To this end, the machine 
learning algorithms described here have been adapted to 
run on the open-access, web-based COMET Volcano Portal 
(https:// comet. nerc. ac. uk/ comet- volca no- portal/). The por-
tal displays a range of LiCSAR products, including inter-
ferograms and time series with interactive tools designed 
to allow observatory volcanologists to (1) search quickly 
through processed imagery for deformation and (2) to make 
a critical assessment of whether any apparent signals are 
likely to be noise or true displacements (Ebmeier et al. 
2013; Biggs et al. 2021). The machine learning algorithm 
of Anantrasirichai et al. (2019b) runs automatically and pro-
vides users with a tool for quickly finding major deforma-
tion events in a time series. Further developments in both 
automated processing and machine learning tools should 
improve the reliability and timeliness of this service further.

Open research

The InSAR data are available at http:// comet. nerc. ac. uk/ 
COMET- LiCS- portal/.

Machine Learning Codes are available at: https:// doi. org/ 
10. 5281/ zenodo. 55508 15.

The machine learning outputs (filenames and probabili-
ties) are included as a supplementary datafile and is also 
available at https:// doi. org/ 10. 5281/ zenodo. 71993 56. Data-
cubes for the 20 volcanoes studied in depth are available at 
https:// doi. org/ 10. 5281/ zenodo. 72134 07.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00445- 022- 01608-x.

Acknowledgements We thank the reviewers and editor for their con-
structive comments.

Funding All authors were supported by COMET, the NERC Centre for 
the Observation and Modelling of Earthquakes, Volcanoes and Tecton-
ics, a partnership between UK Universities and the British Geologi-
cal Survey. J.B., N.A and F.A were funded by the NERC innovation 
grant—Making Satellite Volcano Deformation Analysis Accessible 
(NE/S013970/1). J.B., M.L. and Y. M were supported by the NERC 
large grant Looking into the Continents from Space (NE/K010913/1). 
N.A was supported by the EPSRC Platform Grant—Vision for the 
Future (EP/M000885/1). J.B. and N.A. received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 
2020 research and innovation programme (MAST; grant agreement 
No. 101003173). J.B was supported by a Leverhulme Prize (PLP-
2018–362) and European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme (DEEP-
VOLC; grant agreement No. 866085).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Albino F, Biggs J (2021) Magmatic processes in the East African Rift 
system: insights from a 2015–2020 Sentinel-1 InSAR survey. 
Geochem, Geophys, Geosyst 22(3):e2020GC009488

Albino F, Biggs J, Syahbana DK (2019) Dyke intrusion between neigh-
bouring arc volcanoes responsible for 2017 pre-eruptive seismic 
swarm at Agung. Nat Commun 10(1):748

Albino F, Biggs J, Yu C, Li Z (2020) Automated methods for detecting 
volcanic deformation using Sentinel-1 InSAR time series illus-
trated by the 2017–2018 unrest at Agung, Indonesia. J Geophys 
Ress: Solid Earth 125(2):e2019JB017908

Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Applica-
tion of machine learning to classification of volcanic deformation 
in routinely generated InSAR data. J Geophys Res-Solid Earth 
123(8):6592–6606

Anantrasirichai N, Biggs J, Albino F, Bull D (2019a) The appli-
cation of convolutional neural networks to detect slow, 

Page 15 of 17    100

https://comet.nerc.ac.uk/comet-volcano-portal/
http://comet.nerc.ac.uk/COMET-LiCS-portal/
http://comet.nerc.ac.uk/COMET-LiCS-portal/
https://doi.org/10.5281/zenodo.5550815
https://doi.org/10.5281/zenodo.5550815
https://doi.org/10.5281/zenodo.7199356
https://doi.org/10.5281/zenodo.7213407
https://doi.org/10.1007/s00445-022-01608-x
http://creativecommons.org/licenses/by/4.0/


Bulletin of Volcanology (2022) 84:100

1 3

sustained deformation in InSAR time series. Geophys Res Lett 
46(21):11850–11858

Anantrasirichai N, Biggs J, Albino F, Bull D (2019b) A deep learning 
approach to detecting volcano deformation from satellite imagery 
using synthetic datasets. Remote Sens Environ 230:111179

Anantrasirichai N, Biggs J, Kelevitz K, Sadeghi Z, Wright T, Thomp-
son J. et al (2020) Detecting ground deformation in the built envi-
ronment using sparse satellite InSAR data with a convolutional 
neural network. IEEE Transactions on Geoscience and Remote 
Sensing.

Antayhua Y, Velarde L, Vargas K, Tavera H, Villegas JC (2021) Activi-
dad Sismica en el entorno de la falla Pacollo y volcanes Purupu-
runi-Casiri (2020–2021). Informe Técnico, Instituto Geofísico del 
Perú, p N 010-2021

Astort A, Boixart G, Folguera A, Battaglia M (2022) Volcanic unrest 
at Nevados de Chillán (Southern Andean Volcanic Zone) from 
January 2019 to November 2020, imaged by DInSAR. J Volcanol 
Geoth Res 427:107568

Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) 
A statistical analysis of the global historical volcanic fatalities 
record. J Appl Volcanol 2(1):2

Bato MG, Lundgren P, Pinel V, Solidum R, Daag A, Cahulogan M 
(2020) The 2020 eruption and the large lateral dike emplacement 
at Taal volcano, Philippines: insights from radar satellite data. 
Geophys Res Lett e2021GL092803

Beauducel F, Briole P, Froger JL (2000) Volcano-wide fringes in ERS 
synthetic aperture radar interferograms of Etna (1992–1998): 
deformation or tropospheric effect? J Geophys Res: Solid Earth 
105(B7):16391–16402

Bekaert D, Walters R, Wright T, Hooper A, Parker D (2015) Statistical 
comparison of InSAR tropospheric correction techniques. Remote 
Sens Environ 170:40–47

Bell AF, La Femina PC, Ruiz M, Amelung F, Bagnardi M, Bean CJ 
et al (2021) Caldera resurgence during the 2018 eruption of Sierra 
Negra volcano Galápagos Islands. Nat Commu 12(1):1–9

Biggs J, Pritchard ME (2017) Global volcano monitoring: what does it 
mean when volcanoes deform? Elements 13(1):17–22

Biggs J, Dogru F, Dagliyar A, Albino F, Yip S, Brown S, Anantrasiri-
chai N, Atıcı G (2021) Baseline monitoring of volcanic regions 
with little recent activity: application of Sentinel-1 InSAR to 
Turkish volcanoes. J Appl Volcanol 10(1):1–14

Biggs J, Ebmeier S, Aspinall W, Lu Z, Pritchard M, Sparks R, Mather 
T (2014) Global link between deformation and volcanic eruption 
quantified by satellite imagery. Nat Commu 5(3471)

Bountos NI, Papoutsis I, Michail D, Anantrasirichai N (2021) Self-
supervised contrastive learning for volcanic unrest detection. 
IEEE Geosci Remote Sens Lett 19:1–5

Bountos NI, Michail D, Papoutsis I (2022) Learning from synthetic 
InSAR with vision transformers: the case of volcanic unrest detec-
tion. IEEE Transactions on Geoscience and Remote Sensing

Chen CW, Zebker HA (2000) Network approaches to two-dimensional 
phase unwrapping: intractability and two new algorithms. J Opt 
Soc Am 17:401–414

De Novellis V, Atzori S, De Luca C, Manzo M, Valerio E, Bonano M 
et al (2019) DInSAR analysis and analytical modeling of Mount 
Etna displacements: the December 2018 volcano-tectonic crisis. 
Geophys Res Lett 46(11):5817–5827

DeGrandpre KG, Pesicek JD, Lu Z, DeShon HR, Roman DC (2019) 
High rates of inflation during a noneruptive episode of seismic 
unrest at Semisopochnoi Volcano, Alaska in 2014–2015. Geo-
chem Geophys Geosyst 20(12):6163–6186

Ebmeier SK, Biggs J, Mather TA, Amelung F (2013) Applicability of 
InSAR to tropical volcanoes: insights from Central America. Geol 
Soc, London, Special Pub 380(1):15–37

Ebmeier S, Andrews B, Araya M, Arnold D, Biggs J, Cooper C et al 
(2018) Synthesis of global satellite observations of magmatic and 

volcanic deformation: implications for volcano monitoring & the 
lateral extent of magmatic domains. J Appl Volcanol 7(1):2

Flóvenz ÓG, Wang R, Hersir GP, Dahm T, Hainzl S, Vassileva M et al 
(2022) Cyclical geothermal unrest as a precursor to Iceland’s 2021 
Fagradalsfjall eruption. Nat Geosci 15(5):397–404

Furtney MA, Pritchard ME, Biggs J, Carn SA, Ebmeier SK, Jay JA et al 
(2018) Synthesizing multi-sensor, multi-satellite, multi-decadal 
datasets for global volcano monitoring. J Volcanol Geoth Res 
365:38–56

Gaddes M, Hooper A, Bagnardi M (2019) Using machine learning to 
automatically detect volcanic unrest in a time series of interfero-
grams. J Geophys Res: Solid Earth

Global Volcanism Program. (2013). Volcanoes of the World, v. 4.5. 2. 
In: Smithson. Institution, Natl Museum Nat Hist.

González PJ, Bagnardi M, Hooper AJ, Larsen Y, Marinkovic P, Sam-
sonov SV, Wright TJ (2015) The 2014–2015 eruption of Fogo 
volcano: geodetic modeling of Sentinel-1 TOPS interferometry. 
Geophys Res Lett 42(21):9239–9246

Guo Q, Xu C, Wen Y, Liu Y, Xu G (2019) The 2017 noneruptive 
unrest at the Caldera of Cerro Azul Volcano (Galápagos Islands) 
revealed by InSAR observations and geodetic modelling. Remote 
Sensing 11(17):1992

Keiding M, Árnadóttir T, Jónsson S, Decriem J, Hooper A (2010) Plate 
boundary deformation and man-made subsidence around geother-
mal fields on the Reykjanes Peninsula, Iceland. J Volcanol Geoth 
Res 194(4):139–149

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification 
with deep convolutional neural networks. Paper presented at the 
Advances in neural information processing systems

Lazecký M, Spaans K, González PJ, Maghsoudi Y, Morishita Y, Albino 
F et al (2020) LiCSAR: an automatic InSAR tool for measuring and 
monitoring tectonic and volcanic activity. Remote Sensing 12(15):2430

Lazecky M, Maghsoudi Y, Albino F, Hooper AJ, Wright TJ 
(2021) Improvements in the Licsar Generator of Sentinel-1 Inter-
ferograms. Paper presented at the 2021 IEEE International Geo-
science and Remote Sensing Symposium IGARSS

Le Mével H, Gregg PM, Feigl KL (2016) Magma injection into a long-
lived reservoir to explain geodetically measured uplift: application 
to the 2007–2014 unrest episode at Laguna del Maule volcanic 
field, Chile. J Geophys Res: Solid Earth 121(8):6092–6108

Loughlin S, Sparks S, Brown S, Jenkins S, Vye-Brown C (2015) Global 
volcanic hazards and risk: Cambridge University Press

Lundgren P, Girona T, Bato MG, Realmuto VJ, Samsonov S, Cardona 
C et al (2020) The dynamics of large silicic systems from satel-
lite remote sensing observations: the intriguing case of Domuyo 
volcano Argentina. Sci Rep 10(1):1–15

Maghsoudi Y, Hooper AJ, Wright TJ, Lazecky M, Ansari H (2022) 
Characterizing and correcting phase biases in short-term, multi-
looked interferograms. Remote Sens Environ 275:113022

Moore C, Wright T, Hooper A, Biggs J (2019) The 2017 eruption of 
Erta’Ale Volcano, Ethiopia: insights into the shallow axial plumb-
ing system of an incipient Mid-Ocean Ridge. Geochem Geophys 
Geosyst 20(12):5727–5743

Moore C, Wright T, Hooper A (2021) Rift focusing and magmatism 
during late-stage rifting in Afar. J Geophys Res: Solid Earth 
126(10):e2020JB021542

Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR, Hooper 
A (2020) LiCSBAS: an open-source InSAR time series analysis 
package integrated with the LiCSAR automated Sentinel-1 InSAR 
processor. Remote Sensing 12(3):424

Neal CA, Brantley S, Antolik L, Babb J, Burgess M, Calles K et al 
(2019) The 2018 rift eruption and summit collapse of Kīlauea 
Volcano. Science 363(6425):367–374

Poland MP, Anderson KR (2020) Partly cloudy with a chance of lava 
flows: forecasting volcanic eruptions in the twenty‐first century. 
J Geophys Res: Solid Earth, 125(1)

100   Page 16 of 17



Bulletin of Volcanology (2022) 84:100

1 3

Rémy D, Chen Y, Froger J-L, Bonvalot S, Cordoba L, Fustos J (2015) 
Revised interpretation of recent InSAR signals observed at Llaima 
volcano (Chile). Geophys Res Lett 42(10):3870–3879

Schmidt DA, Burgmann R (2003) Time-dependent land uplift and 
subsidence in the Santa Clara valley, California, from a large 
interferometric synthetic aperture radar data set. J Geophys Res 
108(B9):2416

Self S, Rampino M, Newton M, Wolff J (1984) Volcanological study 
of the great Tambora eruption of 1815. Geology 12(11):659–663

Shreve T, Grandin R, Boichu M, Garaebiti E, Moussallam Y, Ballu 
V et al (2019) From prodigious volcanic degassing to caldera 
subsidence and quiescence at Ambrym (Vanuatu): the influence 
of regional tectonics. Sci Rep 9(1):1–13

Sigmundsson F, Parks M, Hooper A, Geirsson H, Vogfjörd KS, Drouin 
V, Ófeigsson BG, Hreinsdóttir S, Hjaltadóttir S, Jónsdóttir K, Ein-
arsson P (2022) Deformation and seismicity decline before the 
2021 Fagradalsfjall eruption. Nature 1–6

Sun J, Wauthier C, Stephens K, Gervais M, Cervone G, La Femina 
P, Higgins M (2020) Automatic detection of volcanic surface 
deformation using deep learning. J Geophys Res: Solid Earth 
125(9):e2020JB019840

Valade S, Ley A, Massimetti F, D’Hondt O, Laiolo M, Coppola D 
et al (2019) Towards global volcano monitoring using multisensor 

sentinel missions and artificial intelligence: the mounts monitor-
ing system. Remote Sensing 11(13):1528

Vasconez FJ, Ramón P, Hernandez S, Hidalgo S, Bernard B, Ruiz M 
et al (2018) The different characteristics of the recent eruptions 
of Fernandina and Sierra Negra volcanoes (Galápagos, Ecuador). 
Volcanica 1(2):127–133

Werner C, Wegmüller U, Strozzi T, Wiesmann A (2000) Gamma SAR 
and interferometric processing software. Paper presented at the 
Proceedings of the ers-envisat symposium, Gothenburg, Sweden

Xu W, Jónsson S, Ruch J, Aoki Y (2016) The 2015 Wolf volcano 
(Galápagos) eruption studied using Sentinel-1 and ALOS-2 data. 
Geophys Res Lett 43(18):9573–9580

Yip STH, Biggs J, Albino F (2019) Reevaluating volcanic deforma-
tion using atmospheric corrections: implications for the mag-
matic system of Agung Volcano Indonesia. Geophys Res Lett 
46(23):13704–13711

Yu C, Li Z, Penna NT, Crippa P (2018) Generic atmospheric correction 
model for Interferometric Synthetic Aperture Radar observations. 
J Geophys Res: Solid Earth 123(10):9202–9222

Page 17 of 17    100


	Large-scale demonstration of machine learning for the detection of volcanic deformation in Sentinel-1 satellite imagery
	Abstract
	Introduction
	Methods
	Automated processing
	Detection
	Expert review

	Results
	Persistent detections
	The Galapagos Islands
	Eruptions elsewhere
	Systems experiencing volcanic unrest
	Non-volcanic signals

	Occasional detections

	Detection performance
	Detection threshold
	Atmospheric artefacts
	Interferometric coherence
	Signal characteristics 

	Discussion and conclusions
	Open research
	Acknowledgements 
	References


