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Separable processes represent a convenient class of models for data collected on a regular rectangular lattice.
Three model-based tests, for testing separability and testing axial symmetry and separability together, are
presented. These are shown to be much more powerful than existing model-free tests using the sample
periodogram, provided the model assumptions hold. A simulation study also suggests that these tests are
not very sensitive to small departures from the assumed process.

Keywords: autoregressive process; axial symmetry; doubly geometric process; lattice process; separabil-
ity; spatial process
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1. Introduction

Many of the problems of spatial modelling can be overcome by using separable processes. This
subclass of spatial processes has several advantages, including rapid fitting and simple extensions
of many techniques developed and successfully used in time series analysis. In particular, a major
advantage of these processes is that the covariance matrix for realization on a rectangular lattice
can be expressed as the Kronecker product of two smaller matrices that arise from two under-
lying one-dimensional processes, and hence its determinant and inverse are easily determinable.
These separable models are, though, not always appropriate, and therefore formal testing of the
hypothesis of separability is desirable.

However, few methods for testing separability have been proposed—(see the discussion in
Scaccia and Martin [1]). For Gaussian data, Guo and Billard [2] suggested the Wald test comparing
the fit of an AR(1)·AR(1) process and the more general unilateral autoregressive Pickard process,
although this actually tests for axial symmetry and separability together. Recently, Genton and
Koul [3] presented a test comparing these processes, based on the least absolute deviation residuals.
This test seems to have higher power when the innovations have heavier tails than the Gaussian.
Scaccia and Martin [4,5] investigated tests using the sample covariances, but found these tests
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90 L. Scaccia and R.J. Martin

difficult to implement because the covariances are highly intercorrelated. Scaccia and Martin
[1,4,5] developed tests based on the sample periodogram that can be applied to a large range
of stationary processes, and test separability in two stages. First, axial symmetry (which is a
necessary condition for a process to be separable) is tested with four possible statistics (two of
which do not rely on normality of the data), and then separability is tested. Lu and Zimmerman [6]
also proposed tests using the sample periodogram for axial or reflection symmetry (and complete
symmetry). Their tests perform similarly to those in Scaccia and Martin [1].

Methods have also been proposed for testing separability between space and time in spatio-
temporal processes. Fuentes [7] developed a simple two-factor analysis of variance procedure
using spectral methods to test spatio-temporal separability that does not assume stationarity, but
does need a large sample. Li et al. [8] provided a unified framework to assess the assumptions of
full symmetry, spatial isotropy and separability, which is based on the asymptotic joint normality
of sample space–time covariance estimators. However, their method is applicable to data collected
on a random field with a fixed spatial domain and an increasing temporal domain, with replications
over time being required to estimate the variance–covariance matrix of the multivariate normal
distribution assumed for the sample space–time covariance estimators, and thus, is not adequate
for purely spatial data.

In this article, we examine model-based tests for separability on its own and for axial sym-
metry and separability together. The proposal is to fit a particular model (non-symmetric or
non-separable) to the data, then to restrict it to be axially symmetric or separable by imposing
constraints on its parameters, and to test if the reduction is statistically justified. Any such reduc-
tion could be tested by the generalised likelihood ratio test (GLRT) or tests that are asymptotically
equivalent, such as the Wald test or the Score test. Although the asymptotic theory for these test
statistics is well established, their distributions for finite samples need to be investigated. For
this, we propose Monte Carlo studies for a given finite sample size, model and parameter restric-
tion. Here, we concentrate on the fit to the data of the separable AR(1)·AR(1) process and two
non-separable processes that have the AR(1)·AR(1) as a special case. The reason for choosing the
AR(1)·AR(1) process is its relevance in real applications. For example, Jain [9] used it in the study
of image processing, Martin [10], Cullis and Gleeson [11], Basu and Reinsel [12], Genton and
Koul [3] in agricultural trials, whereas Tjøstheim [13] used it in digital filtering. The AR(1)·AR(1)
process has also been found to fit well remotely-sensed data [14], where the point spread func-
tion is usually taken as the product of the E–W and N–S scan components (see Section 6 for
details).

The advantage of the tests proposed here, compared with those in Scaccia and Martin [1],
is a larger power in detecting departures from separability when the specified model is cor-
rect. Our approach differs from that in Guo and Billard [2] as we also consider, in addition
to the Wald test, the asymptotically equivalent GLRT and the Score test (which is sim-
pler to implement) and compare their performances. We also compare different processes to
the AR(1)·AR(1) so that we can test separability on its own. Finally, by analogy with the
Durbin–Watson test for serial correlation in regression models, we carry out a brief sensi-
tivity analysis, in order to see whether these model-based tests can be used as more general
tests.

This article is organised as follows. Section 2 gives some basic notation and definitions.
Section 3 describes the spatial models, with particular regard to the computation of their dis-
persion matrices, which are used in Section 4, where formal tests are developed. In Section 5, we
describe a simulation study to evaluate the correspondence between the observed distribution of
the tests and their theoretical distribution for different lattice sizes, under the null and the alter-
native hypotheses and for different processes. In Section 6, we apply the test statistics for axial
symmetry and separability to some radar remote sensing data. Finally, conclusions are given in
Section 7.
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2. Notation and definitions

We assume that data occur on an n1 by n2 rectangular lattice, with rows indexed by i1 =
1, . . . , n1 and columns by i2 = 1, . . . , n2. Row and column lags are g1 and g2, with gj =
−(nj − 1), . . . , 0, . . . , (nj − 1), for j = 1, 2. The sites are ordered lexicographically, so that
(i1, i2) precedes (i1, i2 + 1) for i2 < n2, and (i1, n2) precedes (i1 + 1, 1). Data can be considered
as a realization of random variables Yi1,i2 . Assuming that the vector Y contains the Yi1,i2 in site
order, we can consider, as a model:

E(Y ) = Aϑ and var(Y ) = V σ 2,

where A is an n × p matrix (with n = n1n2), ϑ is a p-vector of parameters, σ 2 is a scale parameter
and the dispersion matrix V = V (δ) is an n × n positive-definite matrix depending on the q-vector
of parameters δ. We assume here that the process is Gaussian. We also assume that the study region
considered is homogeneous or that the data have had obvious trends or other effects removed to
permit us to make the assumption of stationarity with E(Y ) = μ1n so that Y ∼ N(μ1n, V σ 2),
where 1n is a column vector of ones.

Definition 2.1 If y ∼ N(μ1n, V σ 2), then the loglikelihood is

l(δ, μ, σ 2; y) = −n

2
log(2π) − n

2
log(σ 2) − 1

2
log | V | − 1

2σ 2
(y − μ1n)

′V −1(y − μ1n).

If a hat denotes the maximum likelihood estimate, e = y − μ̂1n and V̂ = V (δ̂), then

σ̂ 2 = 1

n
e′V̂ −1e, μ̂ = (1′

nV̂
−11n)

−11′
nV̂

−1y

and δ̂ is obtained by minimising (e′V −1e)n|V |.

Definition 2.2 For a second-order stationary spatial process in two dimensions, the covariance
function (or covariogram) at lags g1 and g2 is

C(g1, g2) = cov(Yi1,i2 , Yi1+g1,i2+g2) = E[(Yi1,i2 − μ)(Yi1+g1,i2+g2 − μ)].

Then, the theoretical autocorrelation at lags g1, g2 is ρ(g1, g2) = C(g1, g2)/C(0, 0), where
C(0, 0) = var(Yi1,i2) = σ 2

Y , and C(g1, g2) = C(−g1, −g2) ∀g1, g2.

Definition 2.3 A second-order stationary two-dimensional process is axial or reflection
symmetric if the following equivalent conditions are satisfied:

ρ(g1, g2) = ρ(g1, −g2) or C(g1, g2) = C(g1, −g2) ∀g1, g2.

If, in addition,

ρ(g1, g2) = ρ(g1, 0)ρ(0, g2) or, equivalently, C(g1, g2) ∝ C(g1, 0)C(0, g2) ∀g1, g2

the process is also separable.
A separable process is obviously also an axially symmetric process.
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92 L. Scaccia and R.J. Martin

3. Models compared

The test statistics used in this article are based on the comparison between the fits of the data to
the separable AR(1)·AR(1) and to two non-separable processes that have the AR(1)·AR(1) as a
special case. The test for separability uses the axially-symmetric CAR(2)SD, and the test for axial
symmetry and separability together uses the Pickard process. In this section, the three models used
are briefly described, with particular regard to their inverse dispersion matrices V −1, sometimes
called the potential matrices, or to obtaining e′V −1e, which is needed for the likelihood.

3.1. The AR(1)·AR(1) processes

The simplest non-trivial unilateral autoregressive separable process is the AR(1)·AR(1) process,
also called the doubly-geometric process [15]. It can be specified as

Yi1,i2 = α1Yi1−1,i2 + α2Yi1,i2−1 − α1α2Yi1−1,i2−1 + εi1,i2 ,

where the εi1,i2 are assumed to be independently distributed as N(0, σ 2
ε ). For stationarity, the

parameters need to satisfy |α1| < 1 and |α2| < 1. The correlations are ρ(g1, g2) = α
|g1|
1 α

|g2|
2 ,

showing that the process is separable.
The dispersion matrix for a separable process on a rectangular lattice can be decomposed into

two dispersion matrices arising from one-dimensional AR(1) processes. Taking σ 2 = σ 2
ε gives

V = V1 ⊗ V2,

where Vj , for j = 1, 2, are dispersion matrices of the one-dimensional processes, taken here to
have (i, k)th element equal to α

|i−k|
j /(1 − α2

j ), for i = 1, . . . , nj and k = 1, . . . , nj . The inverse

and the determinant of the dispersion matrix can, thus, be found from the known V −1
j and |Vj |.

3.2. The CAR(2)SD

The axially symmetric, non-separable model considered is a particular case of a second-order
conditional autoregressive process, CAR(2) [16]. Here, the CAR(2)SD, with equal diagonal
parameters, will be considered. It can be expressed as

E[Yi1,i2 |Yl1,l2 : (l1, l2) �= (i1, i2)] = β1(Yi1−1,i2 + Yi1+1,i2) + β2(Yi1,i2−1 + Yi1,i2+1)

+ β3(Yi1−1,i2−1 + Yi1+1,i2+1 + Yi1−1,i2+1 + Yi1+1,i2−1)

with constant conditional variance σ 2 = σ 2
κ , and stationarity requiring |β1 + β2| + 2β3 < 1/2

and |β1 − β2| − 2β3 < 1/2, which implies |β1| < 1/2, |β2| < 1/2, |β3| < 1/4.
In spite of their usage in a variety of disciplines including image processing and economics, there

are some difficulties with conditional models. In general, explicit spatial correlation properties
are not easily determined, and also the elements of the dispersion matrix corresponding to sites
on the boundary of a finite lattice are very difficult to obtain. For a stationary CAR(2)SD on an
infinite lattice, or on a finite torus lattice,

V −1 = In,n −
3∑

i=1

βiAi (1)

with A1 = Tn1,n1 ⊗ In2,n2 , A2 = In1,n1 ⊗ Tn2,n2 and A3 = Tn1,n1 ⊗ Tn2,n2 , where Inj ,nj
, for j =

1, 2, is the nj by nj identity matrix and Tnj ,nj
is a neighbour incidence matrix, with elements equal
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to 1 if sites are row (for j = 1) or column (for j = 2) neighbours, and zero otherwise. In this article,
we use Equation (1) on a finite planar lattice. These Dirichlet boundary conditions imply the model
is, for n1, n2 not small, mildly non-stationary. The determinant of this dispersion matrix can be
calculated from its known eigenvalues, 1/|V | = ∏n1

i=1

∏n2
j=1(1 − 2β1c1i − 2β2c2j − 2β3c1ic2j ),

where crs = cos(2πs/(nr + 1)).
The AR(1)·AR(1) with parameters α1, α2 is the special case of a stationary CAR(2)SD with

β3 = −β1β2, where βj = αj/(1 + α2
j ), j = 1, 2.

3.3. The Pickard process

The non-separable, non-symmetric model considered in this article, and referred to as Pickard
process, was considered by Pickard [17], Tory and Pickard [18] and Basu and Reinsel [12]. It is
a first-order unilateral autoregressive model and can be specified as follows:

Yi1,i2 = α1Yi1−1,i2 + α2Yi1,i2−1 + α3Yi1−1,i2−1 + εi1,i2 .

Stationarity requires |α1 + α2| < 1 − α3 and |α1 − α2| < 1 + α3. It is a special case of a CAR(2)
with unequal diagonal parameters. Neither the correlations nor the inverse of the dispersion
matrix are simple. Some ways to obtain V −1 are discussed in Martin [19] – note that there are
some misprints in the specified equation given there. Taking σ 2 = σ 2

ε , expressions for e′V −1e

can be obtained directly from the exact simulation equations, and using symmetry, or from the
conditional distributions [19].

Let � = σ 2
ε /σ 2

Y , with �2 = D1D2D3D4, where D1 = 1 − α1 − α2 − α3, D2 = 1 + α1 + α2 −
α3, D3 = 1 + α1 − α2 + α3 and D4 = 1 − α1 + α2 + α3. It is shown in Basu and Reinsel [12]
and Martin [19] that the determinant of the dispersion matrix for a Pickard process is given by

|V | = �−(n1+n2−1)[1 − ρ2(1, 0)]n1−1[1 − ρ2(0, 1)]n2−1,

where ρ(1, 0) = (1 + α2
1 − α2

2 − α2
3 − �)/[2(α1 + α2α3)] and ρ(0, 1) = (1 − α2

1 + α2
2 −α2

3 −
�)/[2(α2 + α1α3)]. Note also that ρ(1, 1) = α1ρ(0, 1) + α2ρ(1, 0) + α3 and ρ(1, −1) =
ρ(1, 0)ρ(0, 1).

The AR(1)·AR(1) is a special case of a Pickard process with α3 = −α1α2 and is the only axially
symmetric (and separable) Pickard process [15].

4. Testing axial symmetry and separability

The tests here compare the fit of an AR(1)·AR(1) to that of a more general process – the Pickard
for testing axial symmetry and separability together, and the CAR(2)SD for testing separability
on its own. In both cases, the null hypothesis expresses a nonlinear restriction on the parameter
vector. Let ηδ denote δ3 + δ1δ2. Then, the hypotheses can be expressed as

{
H0 : ηδ = 0,

H1 : ηδ �= 0,

where, as appropriate, δ = (δ1 δ2 δ3)
′ is the parameter vector α of the Pickard model or β of the

CAR(2)SD model.
We consider the three asymptotically equivalent tests: the GLRT, the Wald test and the Score

test [20, pp. 314–315].
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94 L. Scaccia and R.J. Martin

The GRLT statistic to compare an AR(1)·AR(1) with a Pickard or a CAR(2)SD can be
expressed as

W(δ̂, δ̃) = −2[l(δ̃, μ̃, σ̃ 2; y) − l(δ̂, μ̂, σ̂ 2; y)],

where l(δ, μ, σ 2; y) denotes the loglikelihood, with a hat and a tilde on a parameter denoting,
respectively, the parameter estimates under H1 and H0.

Since the asymptotic variance of η̂δ is h(δ), the Wald test statistic can be written as

We(δ̂) = η̂2
δ

h(δ̂)
,

where h(δ) = (δ2 δ1 1)I−1
δ|σ 2(δ2 δ1 1)′ and Iδ|σ 2 is the conditional Fisher information matrix on δ,

given σ 2:

Iδ|σ 2 = Iδδ − Iδσ 2I−1
σ 2σ 2Iσ 2δ

with Iδδ = −E
[

∂2

∂δ∂δ′ l(δ, μ, σ 2; y)
]

and Iδσ 2 , Iσ 2σ 2 and Iσ 2δ similarly defined.

The score function U(δ) is the derivative of the loglikelihood with respect to the parameter
vector δ. If we write η = (δ1 δ2 ηδ)

′, then the Score test statistic is Uηδ
(η)2var(η̂δ) evaluated at η̃

[20, p. 324]. Expressing U(η) in terms of U(δ) shows that Uηδ
(η) = U3(δ) where U3(δ) is the

third component of U(δ). Hence, the Score test statistic becomes

Wu(δ̃) = U3(δ̃)
2h(δ̃).

These three test statistics are all asymptotically distributed, under the null hypothesis and
under general conditions of regularity, as a χ2

1 distribution. Under the alternative hypothesis, the
distribution of the three tests is asymptotically a χ2

1 with non-centrality parameter νδ = η2
δ /h(δ).

The three test statistics are all asymptotically consistent, which means that their power tends to 1
as n → ∞, at least for local alternatives.

Notice that the GLRT test needs parameter estimates under both the restricted and the unre-
stricted models, whereas the Wald test requires estimates only under the unrestricted model and
the Score test only under the restricted one.

4.1. Evaluation and maximization of the loglikelihood

For the evaluation and the maximization of the loglikelihood under the different models, |V | and
e′V −1e are required. These can be obtained from results in Sections 3.1, 3.2 and 3.3, respectively,
for the AR(1)·AR(1), the CAR(2)SD and the Pickard model. The following expressions for e′V −1e

can be obtained:

• For an AR(1)·AR(1) model

e′V −1e = a1 + a2 + (1 + α2
1)a3 + (1 + α2

2)a4 + (1 + α2
1)(1 + α2

2)a5 − 2α1a6

− 2α2a7 − 2α1(1 + α2
2)a8 − 2α2(1 + α2

1)a9 + 2α1α2(a10 + a11),

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
c
a
c
c
i
a
,
 
L
.
]
 
A
t
:
 
0
6
:
3
7
 
1
4
 
D
e
c
e
m
b
e
r
 
2
0
1
0



Journal of Statistical Computation and Simulation 95

where

a1 = e2
1,1 + e2

n1,n2
, a7 =

n2−1∑
j=1

(e1,j e1,j+1 + en1,j en1,j+1),

a2 = e2
1,n2

+ e2
n1,1, a8 =

n1−1∑
i=1

n2−1∑
j=2

ei,j ei+1,j ,

a3 =
n1−1∑
i=2

(e2
i,1 + e2

i,n2
), a9 =

n1−1∑
i=2

n2−1∑
j=1

ei,j ei,j+1,

a4 =
n2−1∑
j=2

(e2
1,j + e2

n1,j
), a10 =

n1−1∑
i=1

n2−1∑
j=1

ei,j ei+1,j+1,

a5 =
n1−1∑
i=2

n2−1∑
j=2

e2
i,j , a11 =

n1−1∑
i=1

n2−1∑
j=1

ei+1,j ei,j+1.

a6 =
n1−1∑
i=1

(ei,1ei+1,1 + ei,n2ei+1,n2),

• For a CAR(2)SD model

e′V −1e = b1 − 2β1b2 − 2β2b3 − 2β3b4,

where b1 = a1 + a2 + a3 + a4 + a5, b2 = a6 + a8, b3 = a7 + a9 and b4 = a10 + a11.
• For a Pickard model

e′V −1e = a1 + ψa2 + (1 + α2
1)a3 + (1 + α2

2)a4 + (1 + α2
1 + α2

2 + α2
3)a5 − 2α1a6

− 2α2a7 − 2(α1 − α2α3)a8 − 2(α2 − α1α3)a9 − 2α3a10 + 2α1α2a11, (2)

where

ψ = α2
2 + �

1 − ρ2(1, 0)
= α2

1 + �

1 − ρ2(0, 1)
= 1 + α2

1 + α2
2 − α2

3 + �

2
.

Since we use a (mildly) non-stationary CAR(2)SD process, when implementing the tests we fit
the non-stationary AR(1)·AR(1), which results by constraining ηβ to 0. In this way, the restricted
model is nested in the more general one.

As a final remark, we stress the importance of an adequate choice of the starting values for
the maximization of the likelihood. Otherwise, convergence may fail. Different methods were
considered to overcome this problem. These included, using as starting values, the true values
and simple (least-squares) estimates.

4.2. Computation of the score vector

In order to implement the Score test, it is necessary to evaluate U3(δ) under the null hypo-
thesis. Consider the first derivative of the loglikelihood with respect to the ith component of the
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96 L. Scaccia and R.J. Martin

parameter vector:

∂l(δ, μ, σ 2; y)

∂δi

= −1

2

∂ log |V |
∂δi

− 1

2σ 2
e′ ∂V −1

∂δi

e for i = 1, 2, 3.

Since [20, p. 110]

E

(
∂l(δ, μ, σ 2; y)

∂δi

)
= 0, (3)

then
∂l(δ, μ, σ 2; y)

∂δi

= 1

2
tr

(
∂V −1

∂δi

V

)
− 1

2σ 2
e′ ∂V −1

∂δi

e

and for a CAR(2)SD specified by Equation (1), the score vector is simply obtained from

∂V −1

∂βi

= −Ai. (4)

The determination of the score vector for a Pickard process is a bit more complicated. From
Equation (3), it follows that

∂l(δ, μ, σ 2; y)

∂δi

= 1

2σ 2

[
E

(
e′ ∂V −1

∂δi

e

)
− e′ ∂V −1

∂δi

e

]
.

Now, recalling Equation (2), the derivatives of e′V −1e for a Pickard process are

e′ ∂V −1

∂α1
e = ψ1a2 + 2α1(a3 + a5) − 2(a6 + a8) + 2α3a9 + 2α2a11,

e′ ∂V −1

∂α2
e = ψ2a2 + 2α2(a4 + a5) − 2(a7 + a9) + 2α3a8 + 2α1a11,

e′ ∂V −1

∂α3
e = ψ3a2 + 2α3a5 + 2α2a8 + 2α1a9 − 2a10,

where ψi = ∂ψ/∂αi = ciαi + �i/2, with c1 = c2 = 1, c3 = −1 and �i = ∂�/∂αi =
(�/2)

∑4
j=1(1/Dj )(∂Dj/∂αi), with ∂Dj/∂αi equal to 1 or −1. Then, the expected value of

e′(∂V −1/∂αi)e can be easily obtained using

E(a2) = 2σ 2
Y , E(a7) = 2σ 2

Y (n2 − 1)ρ(0, 1),

E(a3) = 2σ 2
Y (n1 − 2), E(a8) = σ 2

Y (n1 − 1)(n2 − 2)ρ(1, 0),

E(a4) = 2σ 2
Y (n2 − 2), E(a9) = σ 2

Y (n1 − 2)(n2 − 1)ρ(0, 1),

E(a5) = σ 2
Y (n1 − 2)(n2 − 2), E(a10) = σ 2

Y (n1 − 1)(n2 − 1)ρ(1, 1),

E(a6) = 2σ 2
Y (n1 − 1)ρ(1, 0), E(a11) = σ 2

Y (n1 − 1)(n2 − 1)ρ(1, −1).

Notice that the score vector for the Pickard process can be expressed in a compact form, which
will be useful in the next section. Let e′(∂V −1/∂δi)e = ∑

r firair , where fir is a function of δ

and air is a function of e. Then,

∂l(δ, μ, σ 2; y)

∂δi

= − 1

2σ 2

∑
r

fir [air − E(air )].
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4.3. Computation of the information matrix

Both the Wald test and the Score test require the computation of the inverse of the conditional
information matrix on δ given σ 2. Using Mardia and Marshall [21]:

Iδ|σ 2(i, j) = 1

2
tr

(
∂V −1

∂δi

V
∂V −1

∂δj

V

)
− 1

2
tr

(
∂V −1

∂δi

V

)
tr

(
∂V −1

∂δj

V

)/
n, (5)

where the first term is Iδδ and the second one is −Iδσ 2I−1
σ 2σ 2Iσ 2δ . Putting the appropriate V matrix

and the appropriate derivatives in Equation (5), the information matrix for the different processes
can be found.

The information matrix for a CAR(2)SD is simply obtained from Equation (5) using the
derivatives of V −1 given in Equation (4).

For a Pickard process, the second term of Equation (5) can be calculated using Equation (3)
and results of the previous section. The first term is

−E

(
∂2l(δ, μ, σ 2

ε ; y)

∂αi∂αj

)
= E

(
1

2σ 2
ε

{∑
r

∂fir

∂αj

[air − E(air )] +
∑

r

fir

∂[air − E(air )]
∂αj

})
.

(6)
Since E[air − E(air )] = 0 and ∂air/∂αj = 0, expression (6) simply reduces to

−E

(
∂2l(δ, μ, σ 2

ε ; y)

∂αi∂αj

)
= − 1

2σ 2
ε

∑
r

fir

∂E(air )

∂αj

. (7)

Notice that in Equation (7) we need derivatives, with respect to αi , of ρ(1, 0), ρ(0, 1), ρ(1, 1)

and ρ(1, −1). Let ρi(g1, g2) = ∂ρ(g1, g2)/∂αi , then, for i = 1, 2, 3,

ρi(1, 0) = diαi − eiρ(1, 0) − �i/2

α1 + α2α3
,

ρi(0, 1) = hiαi − liρ(0, 1) − �i/2

α2 + α1α3
,

ρi(1, 1) = α1ρi(0, 1) + α2ρi(1, 0) + mi,

ρi(1, −1) = ρi(1, 0)ρ(0, 1) + ρ(1, 0)ρi(0, 1),

where d1 = 1, d2 = d3 = −1, e1 = 1, e2 = α3, e3 = α2, h1 = h3 = −1, h2 = 1, l1 = α3, l2 =
1, l3 = α1, m1 = ρ(0, 1), m2 = ρ(1, 0) and m3 = 1. Using the expressions above immediately
gives, for i = 1, 2, 3:

Iδδ(1, i) = 1

�2
{�i[ψ1 + n2(n1 − 2)α1] − n2(n1 − 1)[ρ(1, 0)�i − ρi(1, 0)�]

+ (n1 − 2)(n2 − 1)α3[ρ(0, 1)�i − ρi(0, 1)�]
+ (n1 − 1)(n2 − 1)α2[ρ(1, −1)�i − ρi(1, −1)�]},
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Iδδ(2, i) = 1

�2
{�i[ψ2 + n1(n2 − 2)α2] − n1(n2 − 1)[ρ(0, 1)�i − ρi(0, 1)�]

+ (n1 − 1)(n2 − 2)α3[ρ(1, 0)�i − ρi(1, 0)�]
+ (n1 − 1)(n2 − 1)α1[ρ(1, −1)�i − ρi(1, −1)�]},

Iδδ(3, i) = 1

�2
{�i[ψ3 + (n1 − 2)(n2 − 2)α3] − (n1 − 1)(n2 − 1)[ρ(1, 1)�i − ρi(1, 1)�]

+ (n1 − 1)(n2 − 2)α2[ρ(1, 0)�i − ρi(1, 0)�]
+ (n1 − 2)(n2 − 1)α1[ρ(0, 1)�i − ρi(0, 1)�]}.

5. Simulation study

Simulations were used to evaluate how large a lattice needs to be for the null asymptotic χ2
1

distribution of the test statistics to be reasonable. Lattices of increasing dimension were considered,
starting from an 11 × 11 lattice, and the comparison between the empirical and the asymptotic
distribution was made on the basis of their means and standard deviations, as well as using the
X2 test for goodness-of-fit. However, principally we considered the probabilities of exceeding the
95th and 99th percentile of the theoretical distribution, as these are of most concern for using the
tests.

Each setting was simulated 1000 times to estimate the distribution of the test statistics. The
vector of observations y was simulated as y = T ε, where ε is a random vector of n independent
N(0, 1) observations, and T is a matrix such that V = T T ′. The random vector ε was generated
using the computer software Matlab [22], and randomly permuting the result to guard against
possible serial correlation. The matrix T can be chosen in any convenient way. We usually used
the Cholesky decomposition that specifies T as a lower triangular matrix, and if the observations
are ordered lexicographically, the method corresponds to a finite unilateral moving average rep-
resentation of the process. For the Pickard process, a slightly different method, corresponding to
a finite unilateral autoregressive representation, was used [19].

Under the null hypothesis, five different separable CAR(2)SD (i.e. AR(1)·AR(1), indicated as
A1–A5 in the appendix) and five different separable Pickard (i.e. AR(1)·AR(1), A6–A10 in the
appendix) were simulated, respectively, for the test statistics for separability and those for axial
symmetry and separability. Moreover, to evaluate the sensitivity of the test statistics proposed to
misspecification of the model, five ARMA(p1, q1)· ARMA(p2, q2) processes (AM1–AM5) were
also simulated. Details on these models can be found in Martin [19].

For comparing the power of the test statistics developed in this article with those in Scaccia and
Martin [1], the same models used in there are simulated here, under the alternative hypotheses of
no separability (C1–C5) and no axial symmetry (P1–P5).

Notice that if the estimated probability of rejection, in %, is p, then its estimated standard error
is

√
p(100 − p)/1000%. Thus, the estimated standard errors corresponding to a 5% and a 1%

rejection probability are, respectively, approximately equal to 0.7% and 0.3%.

5.1. Test statistics for separability

The estimated probabilities of rejecting the null hypothesis of separability when true for each
of the three test statistics are given in Table 1. For an 11 × 11 lattice, these are quite close to
the nominal levels and generally the 95% confidence intervals for the rejection probabilities
include the 5% and 1% nominal levels. The only exceptions are for process A5, whose parameters
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Table 1. Observed rejection probabilities of the GLRT, Wald and Score tests under
the null hypothesis of separability.

11 × 11 lattice 15 × 15 lattice

Process Test 5% level 1% level 5% level 1% level

A1 GLRT 4.2 0.7 5.6 1.4
Wald 6.3 2.1 7.1 2.0
Score 4.2 0.7 5.6 1.4

A2 GLRT 3.6 0.8 4.5 0.9
Wald 5.6 1.5 5.8 1.2
Score 3.5 0.8 4.4 0.9

A3 GLRT 4.3 0.3 3.5 0.6
Wald 5.0 1.1 3.9 0.9
Score 4.2 0.3 3.4 0.6

A4 GLRT 3.9 0.5 3.4 0.9
Wald 4.2 0.4 3.0 0.9
Score 3.8 0.2 3.2 1.0

A5 GLRT 2.9 0.0 3.3 1.0
Wald 1.3 0.0 3.5 0.6
Score 1.0 0.0 2.3 0.2

Note: Processes simulated: separable CAR(2)SD.

are closer to the boundary. However, this feature is not particularly worrying, since the rejection
probabilities are actually smaller than they should be, leading to more conservative tests. Moreover,
the approximation to the null distribution seems to improve rapidly as the lattice size increases.
For the Wald test, it seems that the rejection probabilities are generally higher than those of the
other two tests and decrease as the parameters get closer to the boundary.

Table 2 shows the observed power (πo) of the three different test statistics, under five non-
separable CAR(2)SD processes. The knowledge of the asymptotic distribution of the tests under

Table 2. Simulated power of the tests for separability.

11 × 11 lattice 15 × 15 lattice

5% level 1% level 5% level 1% level

Process Test ν
(e)
β ν

(o)
β πe% πo% πe% πo% ν

(e)
β ν

(o)
β πe% πo% πe% πo%

C1 GLRT 1887.5 38.5 100.0 99.9 100.0 99.7 4640.6 89.7 100.0 100.0 100.0 100.0
Wald 344.3 99.9 99.8 1225.0 100.0 100.0
Score 30.6 99.9 99.8 64.0 100.0 100.0

C2 GLRT 20.9 9.5 99.6 86.1 97.7 67.6 41.7 24.8 100.0 99.4 100.0 98.3
Wald 11.9 87.6 73.0 28.1 99.5 98.6
Score 11.0 88.0 71.3 28.9 99.5 98.7

C3 GLRT 8.3 3.6 82.2 52.0 62.0 24.2 16.4 11.5 98.2 91.0 93.0 78.8
Wald 3.3 53.8 19.1 9.5 90.9 77.1
Score 4.8 57.7 33.3 14.9 92.6 83.9

C4 GLRT 6.3 2.5 70.9 37.8 47.4 13.5 12.6 8.3 94.4 82.7 83.5 61.9
Wald 2.3 40.5 6.3 6.8 82.7 62.1
Score 3.6 45.1 24.7 11.5 86.0 70.8

C5 GLRT 0.6 0.1 12.1 5.7 3.6 1.3 1.3 0.7 20.7 12.4 7.6 3.9
Wald 0.1 6.1 1.3 0.7 11.8 3.5
Score 0.1 6.1 1.6 0.8 14.2 4.5

Note: Processes simulated: nonseparable CAR(2)SD.
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the alternative hypothesis has been exploited to calculate also the expected power (referred to
as πe) of the tests. The expected power at the 5% and 1% level of the tests was obtained as
the probability that a χ2

1 with non-centrality parameter νβ exceeds, respectively, the 95th and
the 99th percentile of the χ2

1 distribution. In Table 2, the observed and expected values of νβ ,
indicated, respectively, as ν

(o)
β and ν

(e)
β , are also given. The value of ν

(e)
β was calculated from the

true information matrix, I (β). Note that when the parameters are close to the boundary, their
estimates must be inside the boundary so that ν

(o)
β can have a large negative bias for ν

(e)
β .

The power of the three tests is clearly linked to the parameters of the process and increases as
νβ does (with |ηβ | being a large component of νβ). Notice that the processes in Table 2 are in
decreasing order with respect to |ηβ |, with process C5 being very close to separability. In this case,
the power of the tests is nearly the same as the significance level. For the three tests, the observed
power seems to be smaller than expected for small values of |ηβ |. This is probably because the
lattices are too small for a good approximation to the expected non-central χ2. The discrepancy
between the expected and the observed power seems to decrease as the lattice size increases. It
also seems that the power is generally slightly higher for the Wald and the Score test than for
the GLRT.

Comparing Table 2 with the power of the test for separability based on the sample periodogram,
given in Table 2 of Scaccia and Martin [1], it can be seen that the GLRT, the Wald test and the
Score test are clearly much more powerful. For example, for process C1, the power of the test
based on the periodogram (using the maximum range of [0, 10π/11] for the frequencies) was
27.4% and 10.3% at the 5% and the 1% level, respectively. However, these model-based tests
clearly have the drawback that they depend on the specification of the model, whereas the test
based on the sample periodogram only requires stationarity of the process.

Table 3 illustrates the effects of misspecification of the model on the level of the three tests,
under the null hypothesis of separability. The observed rejection probabilities of the Wald test are
all low or very low. Those of the GLRT and Score test are high for some processes and low for
others. The only reasonable results seem to be for the GLRT with AM5 (both lattice sizes), and

Table 3. Effects of model misspecification on the level of the tests for separability,
when the null hypothesis is true.

11 × 11 lattice 15 × 15 lattice

Process Test 5% level 1% level 5% level 1% level

AM1 GLRT 7.3 1.6 14.4 4.9
Wald 0.5 0.0 3.7 0.4
Score 7.8 0.9 11.4 2.4

AM2 GLRT 0.6 0.0 2.2 0.1
Wald 0.0 0.0 0.1 0.0
Score 4.3 0.8 3.7 0.8

AM3 GLRT 0.7 0.0 0.4 0.0
Wald 0.2 0.0 0.3 0.0
Score 0.3 0.0 0.3 0.0

AM4 GLRT 8.2 2.2 12.1 4.1
Wald 0.9 0.0 3.5 0.0
Score 1.9 0.2 4.1 0.2

AM5 GLRT 4.0 0.5 4.2 0.5
Wald 0.4 0.0 0.4 0.0
Score 0.8 0.0 0.1 0.0

Note: Processes simulated: ARMA(p1, q1)·ARMA(p2, q2).
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AM1, AM4 (11 × 11 lattice); and the Score test with AM2 (both lattice sizes) and AM1 (11 × 11
lattice).

5.2. Test statistics for axial symmetry and separability

Table 4 shows the observed probabilities of rejecting the null hypothesis of axial symmetry and
separability for each of the three tests. Most values seem to be reasonable, although there is a
suggestion (particularly for A10) that those for the Wald test are a little high, and those for the
Score test a little low.

Table 5 shows the observed power of the three different test statistics, together with the expected
power and the observed and expected non-centrality parameter, under five non-symmetric, non-
separable Pickard processes. The power of the three tests increases with να , with the observed
power being a bit smaller, in some cases, than the expected one. This discrepancy seems, however,
to decrease as the lattice size increases. It also seems that the power is generally slightly higher
for the Wald test and slightly lower for the Score test (although this may be related to the sizes of
the tests having the same effect – see Table 4).

Considering Tables 2 and 5, it is evident that the GLRT, the Wald test and the Score test
can be much more powerful for testing an AR(1)·AR(1) versus a Pickard, than for testing an
AR(1)·AR(1) versus a CAR(2)SD. This is due to the fact that in the first case we are testing for
both axial symmetry and separability at the same time, while in the second case we are only
testing for separability.

Effects of model misspecification on the level of the tests, when the null hypothesis is true, can
be observed in Table 6. On 11×11 lattices, the rejection probabilities are higher than they should
be for most of the processes. The performance of the GLRT statistic seems, though, promising: its
observed rejection probabilities are generally closer to the expected ones than those of the other
test statistics. In particular, the usage of the GLRT seems perfectly reasonable for two out of the
five ARMA(p1, q1)·ARMA(p2, q2) processes considered.

Table 4. Observed rejection probabilities of the GLRT, Wald and Score tests under
the null hypothesis of axial symmetry and separability.

11 × 11 lattice 15 × 15 lattice

Process Test 5% level 1% level 5% level 1% level

A6 GLRT 4.1 0.4 4.4 1.4
Wald 4.3 0.7 4.3 1.4
Score 4.1 0.3 4.1 1.4

A7 GLRT 5.4 0.6 5.1 0.9
Wald 6.4 0.5 5.8 1.2
Score 4.9 0.6 4.1 0.7

A8 GLRT 5.0 0.5 5.1 0.9
Wald 6.1 1.1 5.4 0.8
Score 4.6 0.3 5.3 0.5

A9 GLRT 5.4 1.0 5.7 1.0
Wald 6.2 1.0 5.9 1.5
Score 3.2 0.3 4.4 0.6

A10 GLRT 6.7 1.7 7.1 1.6
Wald 8.8 2.1 7.8 2.0
Score 1.5 0.1 2.4 0.3

Note: Processes simulated: separable Pickard.
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Table 5. Simulated power of the tests for axial symmetry and separability.

11 × 11 lattice 15 × 15 lattice

5% level 1% level 5% level 1% level

Process Test ν
(e)
α ν

(o)
α πe% πo% πe% πo% ν

(e)
α ν

(o)
α πe% πo% πe% πo%

P1 GLRT 91.2 53.3 100.0 100.0 100.0 100.0 171.0 106.9 100.0 100.0 100.0 100.0
Wald 85.6 100.0 100.0 162.0 100.0 100.0
Score 39.3 100.0 100.0 79.8 100.0 100.0

P2 GLRT 64.1 45.7 100.0 100.0 100.0 100.0 122.6 87.3 100.0 100.0 100.0 100.0
Wald 65.9 100.0 100.0 125.0 100.0 100.0
Score 13.6 99.8 95.9 24.2 100.0 100.0

P3 GLRT 35.0 24.7 100.0 99.9 100.0 98.1 67.4 52.0 100.0 100.0 100.0 100.0
Wald 28.9 99.9 98.8 59.2 100.0 100.0
Score 21.3 99.9 97.5 46.8 100.0 100.0

P4 GLRT 15.4 11.1 97.5 88.9 91.1 75.4 29.5 23.7 100.0 99.4 99.8 98.2
Wald 12.6 90.6 77.7 26.1 99.6 98.4
Score 9.7 87.0 71.4 21.2 99.4 97.7

P5 GLRT 0.2 0.0 7.0 4.7 1.7 0.8 0.3 0.2 8.8 7.8 2.3 1.9
Wald 0.0 5.5 1.2 0.3 8.6 2.1
Score 0.0 4.0 0.6 0.2 7.5 1.9

Note: Processes simulated: non-symmetric, non-separable Pickard.

Table 6. Effects of model misspecification on the level of the tests for axial symmetry
and separability, when the null hypothesis is true.

11 × 11 lattice 15 × 15 lattice

Process Test 5% level 1% level 5% level 1% level

AM1 GLRT 10.9 3.2 10.9 3.0
Wald 12.9 4.4 12.4 4.1
Score 5.1 0.6 7.2 0.7

AM2 GLRT 5.8 1.1 4.0 1.0
Wald 6.9 1.3 4.5 0.9
Score 3.8 0.3 3.1 0.5

AM3 GLRT 7.6 1.8 7.0 1.5
Wald 8.0 2.0 7.1 1.8
Score 7.6 1.5 7.0 1.3

AM4 GLRT 8.3 1.8 10.1 3.1
Wald 9.6 3.5 12.3 4.4
Score 2.5 0.1 5.0 0.5

AM5 GLRT 5.4 1.5 7.0 1.4
Wald 6.4 1.9 7.5 2.4
Score 3.0 0.4 4.2 0.9

Note: Processes simulated: ARMA(p1, q1)·ARMA(p2, q2).

6. An application

In this section, the tests for separability and for axial symmetry and separability together,
investigated in Section 5, are implemented on a real data set from radar remote sensing.

The data were collected during theAgriSAR 86 remote sensing campaign organized by the Joint
Research Centre of the European Communities, Ispra. During this campaign, several sites over
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Europe were imaged from an airplane using a particular Synthetic Aperture Radar (SAR) with
the aim of providing a calibrated multi-temporal and multi-polarization data set over agricultural
test sites, in order to investigate the backscatter behaviour of growing crops. The SAR data were
augmented by ground data collected in order to understand the phenomena observed in the SAR
data. For this reason, the data set has been analysed by several researchers with different objectives
[23–27]. Here, a small amount of the data from the Feltwell (Cambridgeshire, UK) test site are
considered with the aim of verifying the separability of the point spread function, which is briefly
described below.

The interaction of the radar signal with the Earth’s surface causes a change in both the amplitude
and the phase of the signal itself. The amplitude and the phase of the backscattered signal represent
the specific reflectivity of the point on the ground which returned the signal. The output, y(r),
from the SAR system summarizes the information from a large number of scatterers within an
area surrounding the point r and is given by a convolution of the reflectivity with the SAR system
function, called the point spread function. When a region is imaged, a sample of the y(r) is
taken and this sample is denoted by {yij : i = 1, . . . , n1; j = 1, . . . , n2}. For each pixel (i, j),
two measurements are produced, which can be regarded as the real and imaginary parts of the
complex number yij . To produce an image, either the amplitudes |yij | or the intensities |yij |2 are
calculated and transformed into a grey scale (integers 0 to 2k − 1 for some k).

The point spread function causes the SAR data to be correlated even when the imaged surface
is homogeneous and no texture is present. Thus, it leads to obvious problems when analysing the
data. In some cases, researchers are interested in studying the texture of a given region of the image.
However the correlation structure of the data will be confounded by the presence of the correla-
tion structure due to the point spread function. In other cases, the surface imaged will be divided
into regions considered small enough to be homogeneous, and the interest will be in discrimi-
nating between different features (e.g. crops, land usage), on the basis, for example, of the mean
reflectivity of each of the regions. The dependence of the data in each region, due to the point
spread function, obviously affects any tests to detect the existence of such a difference in the mean
reflectivity. Thus, removal of, or at least allowance for, the effect of the point spread function is
one of the fundamental problems when analysing the SAR remote sensing data.

The idealized SAR theory states that the point spread function can be modelled as a sep-
arable spatial process. Here, we consider a portion from each of eight different fields [28],
small enough (20×10 pixels) to be considered homogeneous, so that the observable correla-
tion structure can be assumed to be due to the point spread function, and test whether the
SAR theory is valid. The data, consisting of the intensities |yij |2, which varied from 0 to
255, were transformed taking their cubic root to reduce their non-normality. Then, a graphical
analysis of the sample autocorrelation and partial autocorrelation structure of the transformed
data was performed. The analysis, not reported here [28], revealed that for all the fields
considered, the one-dimensional autocorrelations and partial autocorrelations were compati-
ble with those of an AR(1) process. Moreover, the two-dimensional autocorrelations at lags
(1, 1) and (1, −1) looked very similar in accordance with the hypothesis of axial symmetry.
Thus, an AR(1)·AR(1) model was fitted to the data and compared with a Pickard model to
test for axial symmetry and separability together. Since the sample autocorrelation structure
suggested that axial symmetry could be reasonable, the AR(1)·AR(1) model was also com-
pared with a CAR(2)SD to test just for separability. Tables 7 and 8 show how the fit of an
AR(1)·AR(1) to the SAR data compares with that of a Pickard and CAR(2)SD, respectively.
The restricted model seems to fit the data well in comparison with the unrestricted mod-
els: in both cases, the p-values associated with all the asymptotically equivalent test statistics
used are larger than 10%, providing no evidence against the null hypotheses. Thus, the data
turned out to be consistent with both axial symmetry and separability, as suggested by the
SAR theory.
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Table 7. Tests for axial symmetry and separability.

Field GLRT p-value Wald test p-value Score test p-value

217 0.323 0.570 0.335 0.563 0.311 0.577
240 2.307 0.129 2.617 0.106 1.997 0.158
246 0.737 0.391 0.789 0.375 0.700 0.403
266 0.836 0.360 0.833 0.361 0.851 0.356
120 0.004 0.948 0.004 0.948 0.004 0.948
131 0.112 0.738 0.114 0.735 0.109 0.741

98 0.093 0.761 0.083 0.774 0.104 0.748
155 0.011 0.916 0.012 0.913 0.010 0.919

Note: Processes fitted: AR(1)·AR(1) versus Pickard.

Table 8. Tests for separability.

Field GLRT p-value Wald test p-value Score test p-value

217 0.655 0.418 0.647 0.421 0.662 0.416
240 2.450 0.118 2.282 0.131 2.373 0.123
246 0.010 0.920 0.010 0.920 0.010 0.920
266 1.459 0.227 1.428 0.232 1.503 0.220
120 0.028 0.867 0.029 0.865 0.028 0.867
131 0.424 0.515 0.426 0.514 0.425 0.514

98 0.609 0.435 0.612 0.434 0.625 0.429
155 0.484 0.487 0.485 0.486 0.491 0.483

Note: Processes fitted: AR(1)·AR(1) versus CAR(2)SD.

7. Discussion

Model-based tests for testing the hypothesis of separability and that of axial symmetry and sepa-
rability have been proposed. The test for separability is based on the comparison between the fit
of a CAR(2)SD and the fit of an AR(1)·AR(1), while the test for axial symmetry and separability
compares the fit of a Pickard and that of an AR(1)·AR(1). The GLRT, the Wald and the Score
test statistics were used for the comparison. Although the three test statistics are asymptotically
equivalent, their properties differ for finite samples, and so it is necessary to investigate which
one is best in the present situation.

The Score test uses estimates under the null hypothesis and thus the loglikelihood is maximized
with respect to just two parameters. For the AR(1)·AR(1), the estimates are easily found by
iteratively solving two cubic equations [15]. The Wald test uses instead estimates under the
alternative hypothesis, while the GLRT uses both estimates and is, therefore, computationally
more intensive than the other two tests. On the other hand, the Wald and the Score tests need the
second derivatives of the loglikelihood, which are not easily found. When computing the three
test statistics to compare the fit of a Pickard with that of an AR(1)·AR(1), we observed that the
time required to compute the Wald test and the GLRT is, respectively, approximately four and
five times than that required to compute the Score test. On the other hand, computing the Fisher
information matrix and the score vector turned out to be more computationally expensive for a
CAR(2)SD than for a Pickard process. Thus, when computing the three test statistics to compare
the fit of a CAR(2)SD with that of an AR(1)·AR(1), the GLRT required the least computing time, at
least on an 11 × 11 lattice, with the Wald test and the Score test being, respectively, approximately
more than three and more than six times slower to compute. Increasing the lattice size, however,
makes the time demanded for the maximization of the likelihood increase faster than that for
computing the Fisher information matrix and the score vector: on a 15 × 15 lattice, we observed
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much smaller differences between the computing time for the three test statistics. On larger lattice
sizes, the Score test is thus expected to be the least computationally demanding also when testing
separability on its own.

Apart from a computational point of view, the simulations show that, generally, the GLRT is
preferable as it converges faster to its asymptotic distribution than the other two tests. We therefore
suggest using this test, rather than the other two, especially when the lattice size is not large.

The advantage of the tests proposed here, compared with those in Scaccia and Martin [1], is that
they have a much larger power for detecting departures from separability. The drawback is that
they depend on a specified model. However, a brief sensitivity analysis, using separable processes
that are different from the specified AR(1)·AR(1), suggests that it may be reasonable to use the
GLRT, provided that the true process is not too different from the one fitted under the alternative
hypothesis.

Finally, notice that the GLRT, Wald and Score tests could be extended to test axial symmetry
and separability for processes other than those considered here, provided these hypotheses can be
expressed as restrictions on the parameters of the process. Analogously, they can be extended to
test for simplification of processes defined on a three-dimensional space or space–time processes.
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Appendix

The five separable CAR(2)SD models simulated are as follows:

Label β ρ(1, 0) ρ(0, 1) ρ(1, 1) ρ(1, −1)

A1 (0, 0, 0) 0 0 0 0
A2 (0.15, 0.1,−0.015) 0.154 0.101 0.016 0.016
A3 (0.25, 0.2, −0.05) 0.268 0.209 0.056 0.056
A4 (0.35, 0.3, −0.105) 0.408 0.333 0.136 0.136
A5 (0.45, 0.4, −0.18) 0.627 0.500 0.313 0.313

The five separable Pickard models simulated are as follows:

Label α ρ(1, 0) ρ(0, 1) ρ(1, 1) ρ(1, −1)

A6 (0, 0) 0 0 0 0
A7 (0.2, 0.3) 0.2 0.3 0.06 0.06
A8 (0.4, 0.5) 0.4 0.5 0.20 0.20
A9 (0.6, 0.7) 0.6 0.7 0.42 0.42
A10 (0.8, 0.9) 0.8 0.9 0.72 0.72

The five separable ARMA(p1, q1)·ARMA(p2, q2) models simulated are as follows:

Label θ1 ϕ1 θ2 ϕ2 ρ(1, 0) ρ(0, 1) ρ(1, 1) ρ(1, −1)

AM1 (0.5, 0.4) 0 (0.3, 0.2) 0 0.833 0.375 0.313 0.313
AM2 (0, 0) 0.3 (0.7, 0.2) 0 0.275 0.875 0.241 0.241
AM3 (0, 0) 0.4 (0, 0) 0.6 0.345 0.441 0.152 0.152
AM4 (0.3, 0.2) 0.2 (0.5, 0.4) 0 0.156 0.833 0.130 0.130
AM5 (0.4, 0.1) 0.6 (0.3, 0.4) 0.3 0.259 0.220 0.057 0.057

where θ1 and ϕ1 are, respectively, the parameters of the autoregressive part and those of the moving average part of
process ARMA(p1, q1), while θ2 and ϕ2 are, respectively, the parameters of the autoregressive part and those of the
moving average part of process ARMA(p2, q2).

The five non-separable CAR(2)SD models simulated are as follows:

Label β |ηβ | ρ(1, 0) ρ(0, 1) ρ(1, 1) ρ(1, −1)

C1 (0, 0, 0.25) 0.25 0 0 0.599 0.599
C2 (0.11, 0.07, 0.16) 0.17 0.491 0.476 0.488 0.488
C3 (0.2, 0.2, 0.05) 0.09 0.593 0.593 0.514 0.514
C4 (0.25, 0.25, 0) 0.06 0.631 0.631 0.538 0.538
C5 (0.3, 0.2, −0.03) 0.03 0.391 0.290 0.165 0.165
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The five non-symmetric, non-separable Pickard models simulated are as follows:

Label α |ηα | ρ(1, 0) ρ(0, 1) ρ(1, 1) ρ(1, −1)

P1 (0.1, 0.2, 0.6) 0.62 0.426 0.476 0.733 0.203
P2 (0.6, 0.7, −0.8) 0.38 0.180 0.624 −0.300 0.112
P3 (0.3, 0.4, 0.26) 0.38 0.694 0.733 0.757 0.509
P4 (0.1, 0.6, 0.2) 0.26 0.426 0.716 0.527 0.305
P5 (0.3, 0.6, −0.15) 0.03 0.329 0.611 0.231 0.201
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