
Northumbria Research Link

Citation: Lawrence, Tom (2022) Deep neural network generation for image classification
within  resource-constrained  environments  using  evolutionary  and  hand-crafted
processes. Doctoral thesis, Northumbria University. 

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/51121/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

                        

http://nrl.northumbria.ac.uk/policies.html


DEEP NEURAL NETWORK
GENERATION FOR IMAGE
CLASSIFICATION WITHIN

RESOURCE-CONSTRAINED
ENVIRONMENTS USING

EVOLUTIONARY AND
HAND-CRAFTED PROCESSES

T Lawrence

PhD

2021

1



DEEP NEURAL NETWORK
GENERATION FOR IMAGE
CLASSIFICATION WITHIN

RESOURCE-CONSTRAINED
ENVIRONMENTS USING

EVOLUTIONARY AND
HAND-CRAFTED PROCESSES

TOM LAWRENCE

A thesis submitted in partial fulfilment of

the requirements of the University of

Northumbria at Newcastle for the degree of

Doctor of Philosophy

Research undertaken in the Faculty of

Engineering and Environment and in

collaboration with Ocucon, Newcastle upon

Tyne

December 2021

2



Abstract

Constructing Convolutional Neural Networks (CNN) models is a manual process requiring

expert knowledge and trial and error. Background research highlights the following knowl-

edge gaps. 1) existing efficiency-focused CNN models make design choices that impact

model performance. Better ways are needed to construct accurate models for resource-

constrained environments that lack graphics processing units (GPU’s) to speed up model

inference time such as CCTV cameras and IoT devices. 2) Existing methods for automat-

ically designing CNN architectures do not explore the search space effectively for the best

solution and 3) existing methods for automatically designing CNN architectures do not ex-

ploit modern model architecture design patterns such as residual connections. The lack of

residual connections means the model depth is limited owing to the vanishing gradient prob-

lem. Furthermore, existing methods for automatically designing CNN architectures adopt

search strategies that make them vulnerable to local minima traps.

Better techniques to construct efficient CNN models, and automated approaches that can

produce accurate deep model constructions advance many areas such as hazard detection,

medical diagnosis and robotics in both academia and industry.

The work undertaken during this research are 1) the proposal of an efficient and accu-

rate CNN architecture for resource-constrained environments owing to a novel block struc-

ture containing 1x3 and 3x1 convolutions to save computational cost, 2) proposed a par-

ticle swarm optimization (PSO) method of automatically constructing efficient deep CNN

architectures with greater accuracy by proposing a novel encoding and search strategy, 3)

proposed a PSO based method of automatically constructing deeper CNN models with im-

proved accuracy by proposing a novel encoding scheme that employs residual connections,

in novel search mechanism that follows the global and neighbouring best leaders.

The main findings of this research are 1) the proposed efficiency-focused CNN model

outperformed MobileNetV2 by 13.43% in respect to accuracy, and 39.63% in respect to

efficiency, measured in floating-point operations. A reduction in floating-point operations

means the model has the potential for faster inference times which is beneficial to applica-

tions within resource-constrained environments without GPU’s such as CCTV cameras. 2)

the proposed automatic CNN generation technique outperformed existing methods by 7.58%

in respect to accuracy and a 63% improvement in search time efficiency owing to the pro-

posal of more efficient architectures speeding up the search process and 3) the proposed

automatic deep residual CNN generation method improved model accuracy by 4.43% when

compared against related studies owing to deeper model construction and improvements in

the search process. The proposed search process embeds human knowledge of construct-

ing deep residual networks and provides constraint settings which can be used to limit the

proposed models depth and width. The ability to constrain a models depth and width is im-

portant as it ensures the upper bounds of a proposed model will fit within the constraints of

resource-constrained environments.

3



List of Publications

Published peer-reviewed papers:

• T. Lawrence, L. Zhang, K. Rogage and C. Lim, “Evolving Deep Architecture Gener-

ation with Residual Connections for Image Classification Using Particle Swarm Opti-

mization,” Sensors, vol. 21, Article 7936, 2021.

• T. Lawrence, L. Zhang, C. Lim and E Phillips, “Particle Swarm Optimization for Au-

tomatically Evolving Convolutional Neural Networks for Image Classification,” IEEE

Access, vol. 9, pp. 14369-14386, 2021

• T. Lawrence, L. Zhang, “IoTNet: An Efficient and Accurate Convolutional Neural

Network for IoT Devices,” Sensors, vol. 19, Article 5541, 2019.

4



Contents

1 Introduction 16
1.1 Introduction to CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Efficiency Focused CNN Architecture Background and Gap . . . . 18

1.2.2 Automating CNN Architecture Generation Background and Gap . . 19

1.2.3 Automating Residual CNN Architecture Generation Background and

Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Motivations and Research Questions . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Motivation and Research Questions for Efficiency Focused CNN Ar-

chitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Motivation and Research Questions for Automating CNN Architec-

ture Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.3 Motivation and Research Questions for Automating Residual CNN

Architecture Generation . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Contributions for Efficiency Focused CNN Architectures . . . . . 24

1.4.2 Contributions for Automating CNN Architecture Generation . . . . 25

1.4.3 Contributions for Automating Residual CNN Architecture Genera-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Related Works 29
2.1 CNN Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Accuracy Focused CNN Architecture . . . . . . . . . . . . . . . . . . . . 31

2.3 Efficiency Focused CNN Architectures . . . . . . . . . . . . . . . . . . . . 33

2.4 Application of CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 PSO Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Other Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . 41

2.6 Evolving CNN Models with PSO Based Techniques . . . . . . . . . . . . . 43

2.7 Evolving CNN Models with Other Evolutionary Techniques . . . . . . . . 47

3 Proposed Efficiency Focused CNN Architecture (IoTNet) 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Distinction Between Standard Convolutions and Depth-Wise Separable Con-

volutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Standard Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Depth-Wise Separable Convolution . . . . . . . . . . . . . . . . . 52

3.3 The Proposed Efficiency Focused Model . . . . . . . . . . . . . . . . . . . 54

5



3.3.1 Approach to Identify Candidate Models . . . . . . . . . . . . . . . 55

3.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Comparison Against Efficiency-Focused Benchmark Models . . . . 59

3.4.4 Evaluation Using CIFAR-10 . . . . . . . . . . . . . . . . . . . . . 60

3.4.5 Evaluation Using SVHN . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.6 Evaluation Using GTSRB . . . . . . . . . . . . . . . . . . . . . . 63

3.4.7 Evaluation Against 3x3 Standard Convolutions . . . . . . . . . . . 65

3.4.8 Evaluation Against 3x3 Standard Convolution-based Models Using

CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.9 Evaluation Against 3x3 Standard Convolution-based Models Using

SVHN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.10 Evaluation Against 3x3 Standard Convolution-Based Models Using

GTSRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.11 Computational Cost Comparison . . . . . . . . . . . . . . . . . . . 67

3.4.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Proposed PSO Based Architecture Generation for Image Classification 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The Proposed Approach for Deep Architecture Generation . . . . . . . . . 71

4.2.1 The Proposed Encoding Strategy . . . . . . . . . . . . . . . . . . . 72

4.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Particle Distance Calculation . . . . . . . . . . . . . . . . . . . . . 75

4.2.5 Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.6 Particle Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Algorithm Parameter Settings . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.5 Performance Comparison with Existing Studies . . . . . . . . . . . 80

4.3.6 Effectiveness of the Proposed Encoding and Search Strategies . . . 83

4.3.7 Computational Cost Comparison . . . . . . . . . . . . . . . . . . . 83

4.3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.9 Theoretical Justification . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.10 Experimental Observations in Comparison with Related Studies . . 86

4.3.11 Discussion of Identified Models . . . . . . . . . . . . . . . . . . . 88

6



5 Proposed PSO Based Architecture Generation with Residual Connections for
Image Classification 90
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 The Proposed PSO-based Deep Architecture Generation . . . . . . . . . . 90

5.2.1 Encoding Strategy and Initialization . . . . . . . . . . . . . . . . . 91

5.2.2 Decoding Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.4 Particle Distance Calculation . . . . . . . . . . . . . . . . . . . . . 94

5.2.5 Distance Calculation between Groups with respect to the Number of

Channels cout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.6 Distance Calculation between Groups with respect to the Number of

Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.7 Distance Calculation with respect to the Block Kernel Size k . . . . 95

5.2.8 Distance Calculation with respect to the Pooling Type ptype . . . . 95

5.2.9 Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.10 Position Updating . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.11 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.5 Performance Comparison with Existing Studies . . . . . . . . . . . 100

5.3.6 Evaluation of the Proposed Encoding and Search Strategies . . . . 102

5.3.7 Theoretical Justification . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions 108
6.1 Efficiency Focused CNN Architecture Conclusion . . . . . . . . . . . . . . 108

6.2 Automating CNN Architecture Generation Conclusion . . . . . . . . . . . 109

6.3 Automating Residual CNN Architecture Generation Conclusion . . . . . . 111

6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Application of Research Over 3-5 Years . . . . . . . . . . . . . . . . . . . 115

7



List of Figures

1 LeNet-5 [1] comprises of convolutional layers indicated as C for local feature

extraction, subsampling layers indicated as S to reduce layer dimensions and

fully connected layers indicated as F for performing classification. . . . . . 30

2 AlexNet was a complex model split training over two graphics cards by split-

ting the model into two parts. The top part of the model was trained on

graphics card 1, and the bottom part was trained on graphics card 2. [2] . . 31

3 A ResNet block [3] feeds an input through a pair of convolutional layers,

before summing the output with the input. . . . . . . . . . . . . . . . . . . 32

4 A WideResnet block [4] contains a pair of convolutional layers, a dropout

layer and a residual connection. . . . . . . . . . . . . . . . . . . . . . . . 32

5 A WideResnet model is organised into groups. Each group contains N blocks.

Each blocks width is controlled by a scaling factor k [4] . . . . . . . . . . 33

6 MobileNet [5] uses depth-wise separable convolutions. DWise denotes depth-

wise convolution. Residual connections are not used. . . . . . . . . . . . . 34

7 ShuffleNet [6] uses a 3x3 convolution for the depth-wise phase of the convo-

lution which is performed after a channel shuffle. DWConv denotes depth-

wise convolution. This architecture uses residual connections. . . . . . . . 36

8 MobileNetV2 [7] uses a 3x3 convolution for the depth-wise phase of the

convolution and makes use of residual connections. DWise indicates depth-

wise convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 LiteNet [8] takes an inception block and replaces one of the 1x2 convolu-

tions and one of the 1x3 convolutions with their depth-wise counterparts,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 EffNet [9] uses 1x3 and 3x1 depth-wise separable convolutions to reduce

model complexity. DWConv denotes depth-wise convolution. . . . . . . . . 38

11 The proposed model dubbed IoTNet is distinctive from other related works

as it uses pairs of 1x3 and 3x1 standard convolutions, rather than 3x3 stan-

dard convolutions typically found in large models, or depth-wise separable

convolutions used in efficiency-focused models. . . . . . . . . . . . . . . 51

12 A standard convolution uses a kernel which extends the entire depth of an

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 In the depth-wise phase, multiple kernels are used to exploit the entire depth

of an input as each kernel only spans one channel. . . . . . . . . . . . . . . 52

14 In the point-wise phase, a standard convolution is performed on the interme-

diate output from the depth-wise phase. . . . . . . . . . . . . . . . . . . . 53

15 The proposed network block contains a batch normalization, followed by a

pair of 1x3 and 3x1 standard convolutions. Each convolution is preceded

with a ReLU. Each block also contains a residual connection [3]. . . . . . . 54

8



16 The network width is controlled by a widening factor k. Resolution is re-

duced within the first blocks of groups two and three if present. . . . . . . . 55

17 Example images extracted from the CIFAR-10 data set. . . . . . . . . . . . 58

18 Example images extracted from the SVHN data set. . . . . . . . . . . . . . 59

19 Example images extracted from the GTSRB data set. . . . . . . . . . . . . 59

20 The imbalanced class distributions within the GTSRB data set. . . . . . . . 60

21 CIFAR-10: The proposed model based on 1x3 and 3x1 convolution pairs

compared with a 3x3-based approach. Both variants are scaled to match in

terms of FLOPs ranging from 1 to 10 million. . . . . . . . . . . . . . . . . 66

22 SVHN: The proposed model based on 1x3 and 3x1 convolution pairs com-

pared with a 3x3-based approach. Both variants are scaled to match in terms

of FLOPs ranging from 1 to 10 million. . . . . . . . . . . . . . . . . . . . 67

23 GTSRB: The proposed model based on 1x3 and 3x1 convolution pairs com-

pared with a 3x3-based approach. Both variants are scaled to match in terms

of FLOPs ranging from 1 to 10 million. . . . . . . . . . . . . . . . . . . . 68

24 The proposed system architecture where the identified best model is indi-

cated by the global best solution . . . . . . . . . . . . . . . . . . . . . . . 71

25 An example model containing two groups where each group contains con-

volutional layers and an optional final pooling layer . . . . . . . . . . . . . 73

26 Distance between particles calculated as X1−X2 . . . . . . . . . . . . . . 76

27 Distance calculation between particle X and pbest and gbest respectively . . 76

28 Calculating the final velocity by picking at random from pbest−X or gbest−X 77

29 Convergence curves of the proposed algorithm and psoCNN. The mean losses

of 10 runs are plotted over 10 iterations for all data sets . . . . . . . . . . . 85

30 Comparison of particle distance calculations between the proposed approach

and the psoCNN method . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

31 The proposed system architecture where the identified best model is indi-

cated by the global best solution . . . . . . . . . . . . . . . . . . . . . . . 91

32 An example decoded network where the model configurations, i.e. the num-

ber of groups, the number of blocks per group, and the contents of each

group (e.g. the kernel size of each ResNet block, the number of channels

and the pooling type for each group), are embedded in the encoding process. 92

33 The structures of a ResNet block (left) and a transition block (right) . . . . 93

34 Groups from particles X1 and X2 which are temporarily padded to the same

length in preparation for the particle distance calculation. . . . . . . . . . . 94

35 An example particle distance computation for X1−X2 . . . . . . . . . . . . 95

36 An example of velocity calculation between the selection of nbest −Xi and

gbest−Xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9



37 A comparison of model depths between those devised by the baseline bench-

mark models and the proposed approaches denoted as resPsoCnn-PB-GB

and resPsoCnn, across all test data sets . . . . . . . . . . . . . . . . . . . . 104

10



List of Tables

1 Comparative analysis of related studies. . . . . . . . . . . . . . . . . . . . 35

2 Evaluation results for the CIFAR-10 data set grouped by network sizes in

FLOPs. The first group contains larger configurations, while the second

group comprises smaller ones. . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Overview of the data sets used in the experiments. . . . . . . . . . . . . . . 58

4 A summary of models used for evaluation. Two variations of EffNet intro-

duced by [9] as EffNet V1 and EffNet V2 are included. . . . . . . . . . . . 61

5 Accuracy of the best candidate models found using multi-filtering search,

then trained and tested on CIFAR-10. The first group contains networks

with larger configurations, while the second group comprises smaller ones. 62

6 The improvements of the proposed best model for the CIFAR-10 data set

over the state-of-the-art networks, grouped by network sizes. . . . . . . . . 62

7 Accuracy of the best candidate models found using the multi-filtering search,

then trained and tested on SVHN. . . . . . . . . . . . . . . . . . . . . . . 63

8 Evaluation results for the SVHN data set. . . . . . . . . . . . . . . . . . . 64

9 The improvements of the proposed best model for the SVHN data set over

the state-of-the-art networks. . . . . . . . . . . . . . . . . . . . . . . . . . 64

10 Accuracy of the best candidate models found using the multi-filtering search,

then trained and tested on GTSRB. The first group contains networks with

larger configurations, while the second group comprises smaller ones. . . . 65

11 Evaluation results of the GTSRB data set. The results are grouped by net-

work sizes in FLOPs. The first group contains larger networks, with the

second group showing comparatively smaller models. . . . . . . . . . . . . 65

12 The improvements of the proposed best model for the GTSRB data set over

the state-of-the-art networks, grouped by network sizes. . . . . . . . . . . . 66

13 Specifications and environmental settings of the desktop PC and Raspberry Pi. 68

14 Comparison of time and space required to process one image from a batch

of 128 between a PC and Raspberry Pi. Time is reported as the time taken to

process one image, in milliseconds. . . . . . . . . . . . . . . . . . . . . . 69

15 The optimized network parameters and their corresponding search ranges.

The settings of the search ranges adopted in the experiments are detailed in

Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16 Algorithm settings and the search space used in these experiments. The set-

tings selection was made to closely match those of existing studies [10] so

that a fair comparison can be made. . . . . . . . . . . . . . . . . . . . . . 78

17 A summary of the data sets used during the experiments, all of which have

an input size of 28 x 28 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11



18 Experimental results compared against various benchmark methods in terms

of error rates. Results in bold indicate a reduction in error rate when com-

pared with the benchmark methods. For the LeNet models, the results re-

ported for MNIST are taken from the original study [1]. The LeNet model

results for the remaining data sets were obtained by training the model from

scratch. The results of MetaQNN, EvoCNN, IPPSO and psoCNN are ex-

tracted from their original studies, i.e. [11], [12], [13] and [10], respectively. 81

19 The mean error rates over 10 runs for the proposed method and psoCNN

[10], along with the performance differences between the two methods (where

the (-) symbol indicates that the proposed model is better and the (+) symbol

indicates that the proposed model is worse). . . . . . . . . . . . . . . . . . 81

20 Result comparison between the proposed model using the encoding strategy

only, and the proposed model using both encoding and search strategies, over

10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

21 The mean search time in minutes of the experiments using (1) purely the pro-

posed encoding strategy, and (2) the overall proposed model for the training

and search phase over 10 runs and their corresponding improvements against

those of psoCNN. The (-) symbol indicates that the proposed strategies are

better in computational costs. All experiments have been conducted using

one NVIDIA GeForce RTX 2080Ti consumer GPU. . . . . . . . . . . . . . 82

22 The best CNN models discovered by the proposed approach for the eight test

data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

23 The optimized network parameters and their corresponding search ranges.

The settings of the search ranges used in the conducted experiments are pro-

vided in Section 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

24 A summary of the notations . . . . . . . . . . . . . . . . . . . . . . . . . . 93

25 A summary of the data sets used in the experiments. All data sets have an

input size of 28 x 28 x 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

26 Algorithm settings and the search space used in the experiments. The set-

tings are selected to closely match those of existing studies [10] so that a fair

comparison can be made. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

27 Experimental results of the proposed method (resPsoCnn) and benchmark

models, where the results of the benchmark models are extracted from their

original studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

28 The best and mean error rates over 10 runs for the proposed method (resP-

soCnn) and sosCNN [14], where a (-) symbol indicates that the proposed

model performs better whereas a (+) symbol indicates that the proposed

model performs worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12



29 Evaluation results of the state-of-the-art benchmark model sosCNN, the pro-

posed encoding scheme in combination with the original PSO operation

guided by the personal and global best solutions denoted as resPsoCnn-PB-

GB, as well as the proposed encoding scheme in combination with the pro-

posed search strategy guided by the neighbouring and global best solutions,

denoted as resPsoCnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

30 The discovered best models for all benchmark data sets using resPsoCnn-

PB-GB. TB indicates a transitional block which contains a single 1x1 con-

volutional layer and RB indicates a ResNet block which contains two con-

volutions, as indicated in Figure 33. FC indicates a fully connected layer. . 106

31 The discovered best models for all benchmark data sets using resPsoCnn.

TB indicates a transitional block which contains a single 1x1 convolutional

layer and RB indicates a ResNet block which contains two convolutions, as

indicated in Figure 33. FC indicates a fully connected layer. . . . . . . . . 107

13



Acknowledgements

I would like to offer my special thanks to Ocucon Ltd, specifically Simon Gardner for the

opportunity to work on such an interesting project. I have gained valuable experience and

have thoroughly enjoyed withing with you and the Ocucon team.

I would like to thank my supervisor Li Zhang. Li’s encouragement, support and guidance

have greatly improved my research and academic writing skills, resulting in three journal

publications. I am thankful for the support provided to me which went above and beyond

any expectations. Li is exceptionally dedicated to academia and is one of the hardest working

individuals I have had the pleasure to work with.

I would like to thank Kay Rogage who took on the position as my principal supervisor in

the final months of my PhD project. Kay has provided an invaluable fresh eyes perspective

to my project, providing valuable guidance, support and feedback.

I would like to extend my sincere thanks to my second supervisor Wai Lok Woo. Lok

has provided great feedback and support to further shape my academic writing.

I am grateful to the Intensive Industrial Innovation Programme and Northumbria Univer-

sity, whose financial support has made it possible for me to conduct my research. Without

such support, it would not have been possible for me to undertake such a project.

14



Declaration

I declare that the work contained in this thesis has not been submitted for any other award

and that it is all my own work. I also confirm that this work fully acknowledges opinions,

ideas and contributions from the work of others. The work was done in collaboration with

Ocucon, Newcastle upon Tyne.

Any ethical clearance for the research presented in this commentary has been approved.

Approval has been sought and granted through the Researcher’s submission to Northumbria

University’s Ethics Online System on 22 December 2021.

I declare that the Word Count of this Thesis is 32895 words

Name: Tom Lawrence

Date: 3 January 2022

15



1 Introduction

Convolutional Neural Networks (CNNs) have proved revolutionary in computer vision ap-

plications as they consistently outperform traditional models or even humans at image recog-

nition tasks. Designing CNNs from scratch remains a challenging task that requires expert

domain knowledge and significant levels of trial and error. An active research area exists

which has proposed many interesting architectures, with the main aim of maximizing ac-

curacy on competition data sets. The wider community benefits from such knowledge by

reapplying existing models to new problem domains. The new problem domains are com-

monly less complex and more focused problems, so the resulting models are often overly

complex for the task at hand. In extremely resource constrained environments, a similar

approach is adopted by applying a previously proposed efficiency focused CNN model. Ef-

ficiency focused models contain strategies that increase computational efficiency at great

expense to accuracy. When trying to tackle a new problem, a custom model specifically de-

signed for the task at hand would result in the most optimal model. Attempts have been made

to propose methods that automate the CNN design process. Work in the field of automated

CNN generation techniques is still a new research area. The existing state of the art meth-

ods focuses on relatively basic search strategies that do not effectively explore the available

search space. Moreover, some techniques require expert domain knowledge to implement

such a search strategy and do not incorporate modern CNN design techniques. Owing to the

aforementioned knowledge gaps, this research has been funded by the European Regional

Development Fund, in collaboration with an industry partner Ocucon Ltd to address these

gaps. Ocucon Ltd is a software as a service company that specialises in computer vision

based technologies. Such computer vision based technologies involve the development of

Convolutional Neural Networks (CNNs) models. The CNN models are applied primarily

within the CCTV industry. The main customer of Ocucon is the retail industry which is

price sensitive and fast-paced. The deployment of CNN models at Ocucon are either con-

ducted as edge deployments on resource-constrained devices such as IoT devices and CCTV

camera-related equipment or centralised at a data centre. Hardware requirements scale with

model complexity and complex model is more challenging to adopt and scale meaning that

there is a real need to address the aforementioned knowledge gaps. This research aims to

address the aforementioned academic and industry knowledge gaps by:

• Proposing an efficiency focused CNN model that reduces computational complexity,

whilst maximizing accuracy so that more accurate models can be deployed in con-

strained environments such as CCTV cameras.

• Proposing a PSO based search strategy for automatically designing efficient networks

for the data set at hand, that produces more accurate models when compared against

the current state-of-the-art approaches.

• Proposing a PSO based search strategy capable of generating deeper CNN architec-

16



tures owing to the inclusion of residual connections.

1.1 Introduction to CNN Models

Traditionally, state-of-the-art CNNs such as LeNet [1], AlexNet [2] and ResNet [3], Wide

ResNet [4] and DenseNet [15] are all designed by manual processes to compete on bench-

mark data sets such as ImageNet [16] which is a large data set containing approximately 1

million 469x387 colour images and 1,000 object classes, MS COCO [17] which contains

328,000 640×480 colour images with 80 object classes, CIFAR-10 which consists of 60000

32x32 colour images containing 10 different classes and CIFAR-100 [18] which consists of

60000 32x32 colour images containing 100 different classes. The resulting models are of-

ten repurposed to solve challenges in new problem domains using methods such as transfer

learning [19]. For example, [20] applied transfer learning to train a DenseNet network to per-

form keyword spotting on smart terminal devices, while the ResNet architecture was adopted

by [21] for medical diagnosis. Studies such as [22] adopted a CNN model to perform gas

identification as part of the wider research area of electronic noses (ENs).

Transfer learning involves taking a pre-trained model and training some of the model

layers further using a new data set [23]. Such a transfer learning process relies heavily on

existing certain well-known deep architectures. They are often overly complex as the original

model intention has been focused on obtaining state-of-the-art performance on complex and

varied large-scale data sets. On the other hand, hand-crafting a new model from scratch

requires specialist knowledge and trial-and-error owing to a vast number of design choices

and hyperparameter settings. It is a bottleneck of designing a network for a new application

domain.

A typical CNN can be divided into several specific types of layers. In general, each layer

has a specific type. There are three distinctive types of layers, i.e. 1) convolutional layers

for extracting features such as edges, 2) average or max pooling layers for reducing the

feature map sizes, and 3) fully connected layers for model classification. The convolutional

layers perform convolutional operations on the input images for deep feature learning while

the pooling layers down-sample an input dimension to achieve better spatial invariance by

reducing the feature map size and capturing invariances in image-like data [24]. A reduction

in the size of a feature map also results in fewer parameters, mitigating the overfitting issue

[25] and lowering the computational cost. The final layer is a fully connected layer for

classification purposes.

A convolution is performed by sliding a kernel of size K over an input feature map of

size M and taking the element-wise product. The distance at which the kernel is moved is

known as stride S and the input feature map can also be given a P padding. The process can

be repeated multiple times using different kernels to increase the number of output channels,

which is denoted as the model width, e.g. in Wide Resnet [4]. Using larger strides reduces

the output dimensions, however a common practice is to perform all convolution operations

based on the same convolution formulation, i.e., use appropriate padding to ensure matching

17



between the input and output dimensions. The required padding for each side of the input

volume to perform the same convolution formulation can be found using Equation 1, with

the most common setting of S = 1.

P =
K−S

2
(1)

1.2 Background

1.2.1 Efficiency Focused CNN Architecture Background and Gap

Many studies within computer vision focus on improving accuracy by designing a new state-

of-the-art model, typically only ever constrained by the resources available on high-end

graphics cards. State-of-the-art models are typically very deep. This is because the network

generalization capability is enhanced, as the network goes deeper. However, the downside to

deep models is that even the most cutting-edge and efficient state-of-the-art models, such as

EfficientNet [26], still contain millions of parameters and billions of FLOPs. Models such

as these require significant computational resources to execute, and exhibit diminishing re-

turns when scaling. For example, Related works such as WideResnet [4] has shown a model

containing approximately 1 million parameters spread over 40 layers takes 61.3 seconds to

compute per training epoch on CIFAR-10, but when organised over 22 wider model layers,

the time taken is reduced to 54.45 seconds per training epoch. The model with 40 layers

produced a 0.28% accuracy improvement over the 22 model configuration on the CIFAR-10

data set. This indicates that a large increase in model depth produces a small improvement

in accuracy. Therefore, such an approach results in a very large yet extremely accurate

model. When deploying a CNN model within a resource-constrained environment such as

IoT devices or smartphones, it becomes critical to find a balance between model accuracy

and computational cost to ensure the model will function well within resource limited en-

vironments. When finding such a trade-off, two main approaches exist. The first approach

is to scale down a large model to fit the constraints of the target device as it seems rea-

sonable to assume that if a large increase in the size of a state-of-the-art model results in a

small improvement in accuracy, then a large reduction in model size would result in a small

loss of performance. While this is true to an extent, the point at which accuracy starts to

drop rapidly occurs while the model is still very large. This is because the state-of-the-art

accuracy-focused models contain strategies that help such networks overcome the types of

issues encountered during training, such as overfitting. To scale such a model down suffi-

ciently enough for tightly constrained environments, expert knowledge and trial-and-error

would be required. The second approach is to design models specifically for computational

constrained environments. As an example, efficiency-focused models include MobileNet

[5], ShuffleNet [6] and EffNet [9]. Such models excel at delivering far greater accuracy than

would be possible by significantly scaling down a large model. This is achieved by mak-

ing design choices that reduce the computational cost, often by performing convolutions as

18



depth-wise separable convolutions instead of normal convolutions employed by their larger

model counterparts. A distinction between the above two types of convolutions (i.e., normal

and depth-wise separable convolutions) is discussed comprehensively in Section 3.2.

The weakness of the above two approaches identifies the following gap in knowledge:

• Scaling down a large state-of-the-art CNN model is not a sufficient approach for re-

source constrained environments.

• Existing efficiency focused CNN models do not trade model efficiency with accuracy

well. They include strategies such as depth-wise separable convolutions which nega-

tively impact feature model accuracy.

1.2.2 Automating CNN Architecture Generation Background and Gap

Designing Convolutional Neural Networks (CNNs) for a new domain is very challenging.

The design task requires expert knowledge and significant manual trial-and-error to produce

a model which performs well during testing and generalizes well on unseen data. The reason

designing a CNN is challenging is because of the important design choices which must be

made. Such design choices include selecting a suitable kernel size owing to its importance

in adjusting the receptive field [27]. Another important step is balancing the depth of the

network by adding or removing layers as well as increasing or decreasing the number of

filters per layer within the network [4].

Because of these challenges, a popular approach when tackling a new problem is to use an

existing state-of-the-art hand-crafted network as a starting point. The disadvantage of such

an approach is that the network is often overly large for the task at hand. This is because the

design choices made during the construction of the hand-crafted networks were to maximize

accuracy on challenging competition data sets. Such deep state-of-the-art networks also re-

quire a substantial amount of training data than those used for training shallower networks

[28]. When tackling new and novel image classification problems, it is usually a challenging

task to obtain a sufficient amount of data. To combat this, methods such as pruning convo-

lutional kernels have been proposed, to slim down networks by up to 10 times smaller [29],

measured as a reduction of the convolutional kernels of the final network architecture. A

weakness of the pruning approach is that it requires a suitable network as the starting point.

On the other hand, transfer learning is another mechanism used to leverage state-of-the-art

CNN architectures in new application domains. Many existing studies employed transfer

learning to fine-tune a pre-trained network for undertaking a task in a new domain. As an ex-

ample, a pre-trained ResNet network was re-trained by [30] for tackling malicious software

classification problems.

Owing to the aforementioned weaknesses and challenges, a new research era is opening

up which aims to address the research question of how to automatically design deep CNN

architectures for tackling problems in new domains. Such research efforts have resulted in

19



some impressive developments in the field where evolutionary algorithms are used to auto-

matically devise CNN models from scratch, psoCNN [10] and GeNET [31], where Particle

Swarm Optimization (PSO) [32] and the Generic Algorithms (GA) were used for evolving

deep network generation.

The concept of automatically evolving CNNs refers to an automatic procedure for the

generation of CNN models with diverse architectures for tackling different problems [33]

[13] [12]. Many existing studies on automatic CNN architecture generation adapt the exist-

ing meta-heuristic algorithms [34] for deep architecture search [33] [35]. Examples include

Genetic Algorithm (GA) [36] [37] which employs selection, crossover and mutation opera-

tions to evolve the search process. On the other hand, Particle Swarm Optimization (PSO)

[32] utilizes the personal and global best solutions to explore the search space. IPPSO [13]

has been one of the first studies to apply PSO for deep network design. Inspired by network

IP addresses, the method adopts a new encoding scheme to overcome network representation

constraints so that complex models can be easily encoded. EvoCNN [12] presents a GA-

based approach that uses a variable-length gene encoding strategy to represent the building

blocks of a CNN model. Because of the impressive global search capabilities of PSO and its

computational efficiency (e.g. as compared with the GA), psoCNN [10] has been proposed

recently for deep network generation. The model adapts a traditional PSO algorithm to be-

have more like the GA, where a particle position is updated by copying the layers at random

from either the personal or global best solutions. Although psoCNN outperforms a number

of existing methods, e.g. IPPSO and EvoCNN, for deep architecture generation, the model

suffers from a number of constraints including the need to define rules to ensure solutions

remain valid. PSO based approaches such as psoCNN also contain a movement strategy that

copies blocks from the global or personal best solutions, meaning that intermediate positions

are not explored.

The existing body of knowledge shows that PSO based approaches for automatically gen-

erating CNN models are the current state-of-the-art, however the following issues highlight

gaps in knowledge still exist:

• State-of-the-art PSO based architecture generation techniques such as psoCNN [10]

do not perform a detailed search. Instead, particle positions are updated by copying

aspects from other global or personal best solutions. Such an approach means that

intermediate positions are not explored, degrading the search quality.

• PSO based architecture generation techniques such as psoCNN [10] require complex

rules to guard against invalid CNN architectures. Invalid model guarding rules include

removing any fully connected layer from the start of the network and limiting how

many pooling layers a network can contain to ensure downsampling is not performed

excessively. While such rules do ensure valid networks are generated, the mechanism

of defining rules that manually move a particle interrupts the natural search process.

Manual rules also increase the complexity of implementing such a solution, as all edge

20



cases must be considered.

1.2.3 Automating Residual CNN Architecture Generation Background and Gap

Existing state-of-the-art CNN architecture construction techniques fall into two main cate-

gories which are 1) CNN architecture generation and 2) CNN architecture optimization. Ex-

isting state-of-the-art CNN architecture generation techniques such as sosCNN [14], psoCNN

[10] and IPPSO [13] perform a search capable of optimizing important hyperparameters such

as kernel size and pooling types. The weakness of such studies is that they perform archi-

tecture searches on relatively basic CNN architectures i.e do not take advantage of advanced

construction techniques like Residual connections. Residual connections were proposed in

ResNet [3] as a way to address the vanishing gradient problem. Residual connections at a

high level organise a network into blocks. Each block contains two convolutional layers. The

output of the previous block gets added to the output of the current block. Such a connec-

tion means that gradients have a path to flow which passes through less convolutional layers,

making them less likely to become 0, or vanish. The authors of ResNet showed that such an

approach enabled deeper model construction. Further details of residual connections is pro-

vided in Section 2. The lack of residual connections in studies relating to CNN architecture

construction makes them susceptible to the vanishing gradient problem [3] [38]. Existing

methods for architecture optimization such as [15] [39] [40] do make use of advanced con-

struction techniques like residual connections by optimizing existing state-of-the-art models,

however, they limit the search by not optimizing hyperparameters such as the kernel sizes

or pooling types. This limits the variety of the generated networks. In addition, most of

the existing search methods, such as sosCNN [14] and psoCNN [10], adopt the traditional

PSO operations by using the personal and global best solutions to guide the search process.

Therefore, their search processes are more likely to be trapped in local optima owing to the

dominance of a single global best leader [41]

The following gaps are highlighted:

• Existing CNN generation techniques do not exploit advanced CNN techniques such as

residual connections.

• Existing CNN optimization techniques perform a limited search that limits the variety

of the generated networks.

• Existing PSO based CNN generation techniques may become trapped in local optima

due to following the personal and global best leaders.

1.3 Motivations and Research Questions

Neural networks and CNN models perform classification tasks by passing data through a

series of connected layers. Each layer performs a floating point operation before passing its

output to the next layer. The larger the network, the longer this process takes as the hardware

21



running the CNN model must perform more calculations to compute the output owing to

the greater number of layers. Research such as [3] has shown that larger networks are more

accurate, however, larger networks are slower for the aforementioned reasons.

To accelerate the process of performing floating point operations, research such as [42]

first proposed using a graphics processing unit (GPU) rather than a central processing unit

(CPU) for computing the calculations within a network. The authors showed that using

GPUs yields over 3X speedup for both training and testing when compared to a 3GHz P4

CPU. GPUs are commonly found on desktop computers, and GPU equipped servers are

available but low powered edge devices such as CCTV cameras, often powered over Ethernet

cables with limited power available [43] do not have GPU capabilities because of cost and

power limitations, they are therefore heavily resource constrained. Moreover, scaling up

the throughput of a CNN model in a production environment requires additional hardware,

which increases cost. Cost constraints the commercial feasibility of a CNN based solution.

This research is heavily motivated by a need to design more efficient CNN architectures so

more accurate models can be deployed to research contained environments such as CCTV

cameras and production data centers.

Designing a CNN model from scratch requires expert knowledge and significant trial and

error. Rather than designing a new model from scratch to solve problems in a new domain, a

common approach is to train some of the final layers of an existing state-of-the-art model on a

new data set in a process called transfer learning [23] which has two main weaknesses. 1) The

models selected are often larger than required for the new task at hand as the original intent

of the model was to achieve state-of-the-art performance on large competition datasets and

2) Transfer learning works best when the new domain resembles that of the domain the base

model was trained on. This research is therefore also motivated to embed human knowledge

within automated techniques of designing new and novel CNN model architectures as an

alternative to transfer learning and manual trial and error.

1.3.1 Motivation and Research Questions for Efficiency Focused CNN Architectures

Designing CNN models for resource constrained environments is an important research

topic. The reason this is an important area is that many applications for computer vision

exist on IoT devices. Examples of applications include people detection on CCTV cameras

and face detection on smartphones, both of which lack powerful graphics cards. Deep CNN

models are slower to train and run inference on [4]. In industry and academia, the devel-

opment and application of a CNN model into a resource contained environment such as a

CCTV camera, IoT device or robotics are constrained in terms of the available resources. In

such a contained environment, a deep CNN model may simply run too slow for the appli-

cation at hand. The motivation of this research is to address the following research problem

by proposing a novel CNN architecture better suited for resource contained environments by

answering the following research question:

• Is there a better way to construct a CNN model so that the model achieves greater

22



accuracy levels with less computational cost, resulting in more accurate CNN models

that can be deployed into resource contained environments such as IoT devices?

1.3.2 Motivation and Research Questions for Automating CNN Architecture Genera-
tion

Automatically designing CNN models is an important research topic because designing such

models by hand requires specialist knowledge and trial and error. The motivation of this

research is to design an automatic procedure for deep CNN model generation. The research

problems addressed in this study include:

• Can CNN model architectures be encoded in a way that it is ensured to be both ar-

chitecturally valid and reasonably built to avoid the need for additional hard coded

governing rules [10] or wasteful function evaluations?

• Can each particle be guided effectively through a complex search space efficiently in

order to construct more effective networks, that are faster than the current state-of-the-

art algorithms [10] [11]?

• Can CNN models be designed to be more efficient using an algorithm that is both

easy to understand and fast to run, so that the approach can be easily exploited in both

academia and industry settings with limited specialised knowledge while not compro-

mising the overall performance?

1.3.3 Motivation and Research Questions for Automating Residual CNN Architecture
Generation

Automatically designing deep residual CNN models is an important research topic because

some computer vision applications are more suited to deeper architectures owing to the chal-

lenging nature of the classification task at hand. No existing works perform the automatic

design of residual deep neural networks, so the motivation of this research is to design an

automatic procedure for deep residual CNN model generation. The research problems ad-

dressed in this study include:

• Can a rich CNN model architecture search be performed whilst exploiting advanced

techniques such as residual connections so that larger models can be constructed?

• How can a search be performed that is not susceptible to becoming trapped in local

optima?

1.4 Contributions

The following contributions are related to a field of research aimed at designing convolu-

tional neural networks which are more accurate and efficient. Contributions in Section 1.4.1

23



relate to the manual design of a more efficient model with greater accuracy than existing

efficiency-focused models. The contributions in Sections 1.4.2 and 1.4.3 relate to embed-

ding human knowledge within automated techniques for designing accurate CNN model

architectures specifically for the task at hand, as opposed to applying transfer learning tech-

niques using a large base model. The hypothesis is that a model constructed specifically

for the task at hand will be no larger than required, and the models maximum size could be

contained by search parameters to suit the target environment. This field of work is impor-

tant as edge deployments such as models deployed on IoT devices such as CCTV cameras

have limited hardware resources. Specifically, they lack graphics cards that are used to ac-

celerate the inference speed of a deep CNN model and instead rely on comparatively slower

CPU processing. The current works in this field relate to constructing model architectures

that contain network elements designed to reduce the number of floating point operations

to speed up inference, and the automated design of CNN model, designed to perform well

on a target data set. The contributions in Section 1.4.1 add to this field by proposing an

efficiently focused CNN model which is more accurate and efficient than the current state-

of-the-art approaches. Furthermore, the contributions in Sections 1.4.2 and 1.4.3 add to the

field by proposing automated techniques that embed human knowledge for designing deep

CNN models. Automated techniques add to the field as they provide an alternative to trans-

ferring learning. Transfer learning techniques involve selecting an existing model as a base

model and subsequently train some of its final layers on a new data set. Because the base

model was not designed for the new data set and instead commonly designed to achieve

state-of-the-art accuracy on competition data sets, designing a model through transfer learn-

ing does not ensure optimal model design for the new task at hand. The proposed automated

techniques include search bounds to limit the proposed models depth and width so that the

final model could suit a resource-contained environment and construct a model specifically

suited for the task at hand.

1.4.1 Contributions for Efficiency Focused CNN Architectures

The main contributions of this research are as follows.

• Proposing a new architecture, namely IoTNet, which is designed specifically for per-

formance constrained environments such as IoT devices, smartphones or embedded

systems. It trades accuracy with a reduction in computational cost differently from ex-

isting methods by employing novel pairs of 1x3 and 3x1 normal convolutions, rather

than using depth-wise separable convolutions.

• An in-depth comparison of the proposed architecture against efficiency-focused mod-

els including MobileNet [5], MobileNetV2 [7], ShuffleNet [6] and EffNet [9] has been

conducted using CIFAR-10 [18], Street View House Numbers (SVHN) [44] and Ger-

man Traffic Sign Recognition Benchmark (GTSRB) [45] data sets. The empirical re-

sults indicate that the proposed block architecture constructed exclusively from pairs

24



of 1x3 and 3x1 normal convolutions, with average pooling for downsampling, outper-

forms the current state-of-the-art depth-wise separable convolution-based architectures

in terms of accuracy and cost.

• A direct comparison of pairs of 1x3 and 3x1 normal convolutions against 3x3 standard

convolutions has also been conducted. The empirical results indicate that the proposed

approach results in a more accurate and efficient architecture than a scaled-down large

state-of-the-art network.

1.4.2 Contributions for Automating CNN Architecture Generation

This research has the following contributions, which aim to address the aforementioned re-

search problems.

• A new group-based encoding strategy is proposed. Each group contains at least one

convolutional layer. Its final layer is reserved as an optional pooling layer. The number

of groups can be adjusted in accordance with the input image size. By restricting the

number of groups, it can adapt the frequency of the pooling operations toward the input

image size. As such, it ascertains the position and maximum frequency of the pooling

operations always result in a valid model architecture without the need for additional

governing rules.

• A new velocity updating mechanism based on the key network configuration differ-

ences is developed. Existing models such as psoCNN [10] copy the layers randomly

from the global and personal best solutions for architecture generation. This indicates

that new models are always generated based on the combinations of existing layer con-

figurations. To overcome such limitations, the new velocity updating mechanism cre-

ates new network architectures by identifying the key layer configuration differences

between particles. This proposed mechanism is capable of devising new network ar-

chitectures by exploring the intermediate positions of the particles’ trajectories. It is

also less dependent on the requirement of a good random swarm initialization.

• A new position updating mechanism with weighted velocity strengths is devised. This

granular position updating mechanism enables a thorough exploration of the search

space and increases the likelihood of generating diversified network configurations.

It employs a weighted strength of the velocity updates for new position generation,

leading to the exploration of the search space in various forces and scales to increase

the chances of formulating diversified networks. Such a granular movement also en-

ables a better balance between intensification and diversification in order to increase

the chances of finding global optimality. Both proposed encoding and search strate-

gies illustrate significant capabilities in enhancing performance and computational ef-

ficiency.

25



• A comprehensive evaluation of the proposed model with several data sets is conducted.

Our proposed model compares favourably with the state-of-the-art models such as

psoCNN [10] and notable alternative methods including EvoCNN [12]. Serving as

a practical alternative to deep network generation, the proposed model achieves up

to 7.58% improvement in accuracy and up to 63% reduction in computational cost,

in comparison with those from the current state-of-the-art methods. Importantly, the

proposed model is repeatable and easy to implement with limited hardware resources.

1.4.3 Contributions for Automating Residual CNN Architecture Generation

Specifically, the contributions of this research are as follows.

• A novel PSO algorithm, namely resPsoCnn, is proposed for residual deep architecture

generation. First, a new group-based encoding scheme is proposed, which provides

compatibility with residual connections. Each group contains one or more residual

convolutional blocks and an optional pooling layer. Each residual block inside a group

shares the same number of filters so that the residual operation can be performed.

The number of filters per group is optimised to control the network width. Before

each group, a transitional layer is used to increase or decrease the number of filters

to the number required by the subsequent group. The kernel sizes of convolutional

layers are individually encoded, giving fine-grained control over the receptive field of

each block. The number of blocks within each group can vary in order to increase or

decrease the model depth, while different pooling layer types are embedded to control

downsampling.

• Proposing an optimization strategy that exploits the advantages of residual connec-

tions to avoid the vanishing gradient problem. Such a strategy addresses weaknesses

in related studies which either 1) perform optimization tasks only on fixed skeleton

models (e.g. fixed numbers of blocks) that make use of residual connections but re-

strict diversity as settings such as kernel sizes and pooling types are fixed, or 2) do

not use residual connections and instead optimize a range of hyperparameter settings,

capable of producing diverse, but shallow networks. Our proposed strategy addresses

both of the aforementioned weaknesses by providing the ability to make use of resid-

ual connections to construct deep network architectures whilst also optimizing a range

of network settings to improve diversity.

• Proposing a new velocity updating mechanism that adds randomness to the updating

of the group and block hyperparameters. Specifically, it employs multiple elite signals,

i.e. the swarm leader and the non-uniformly randomly selected neighbouring best so-

lutions, for searching optimal hyper-parameters. The hyperparameter updating at the

group and block levels is conducted by either selecting from the distance between the

current particle and the global best solution, or the distance between the current parti-

cle and a neighbouring best solution, to increase search diversity. The proposed search

26



mechanism optimizes the number of groups, network width and depth, kernel sizes,

and pooling layer choices to produce a rich assortment of candidate best solutions

of residual deep architectures. Owing to the guidance of multiple elite signals (e.g.

the global best and neighbouring promising solutions), the proposed search process

achieves a better balance between exploration and exploitation and addresses a weak-

ness in existing search methods where the search processes led by the single leader

are prone to being trapped in local optima and converge prematurely. Evaluated using

a number of benchmark data sets, the devised networks show superior performances

against those yielded by several state-of-the-art existing methods.

1.5 Thesis Layout

Section 2 introduces the main concepts relating to Convolutional Neural Networks (CNNs).

This section reviews related studies focused on CNN models that aim to maximise model

accuracy. CNN models that are focused on efficiency with respect to computational cost

are reviewed in this section. The various applications for CNN models have been reviewed.

Moreover, this section reviews evolutionary algorithm based approaches for automatically

constructing and optimizing CNN models.

Section 3 introduces a novel efficiency focused CNN model, namely IoTNet. The pro-

posed CNN model saves computational cost by factorizing a 3x3 convolution into a pair of

1x3 and 3x1 convolutions. The proposed model is compared with efficiency focused CNN

models and scaled down versions of accuracy focused CNN models in respect to accuracy

and computational cost across a range of data sets. The proposed CNN model introduced in

this section has been published in the following journal publication [46].

Section 4 introduces a PSO based CNN architecture generation approach. The novel-

ties introduced include an encoding strategy capable of encoding deep CNNs, and a novel

particle search strategy. This section provides the results of the proposed PSO architecture

generation approach, compared against state-of-the-art related work. The proposed PSO

based CNN architecture generation approach introduced in this section has been published

in the following journal publication [47].

Section 5 introduces a PSO based CNN architecture generation approach for CNNs with

residual connections. The novelties introduced include are as follows. 1) An encoding strat-

egy capable of encoding deep CNNs. The CNN models constructed contain residual con-

nections. The residual connections enable deeper networks to get constructed, and 2) a novel

particle search strategy that follows the neighbouring and global best solutions to improve

search capabilities. This section provides the results of the proposed PSO architecture gen-

eration approach, compared against state-of-the-art related work. The proposed PSO based

residual CNN architecture generation approach introduced in this section has been published

in the following journal publication [48].

Section 6 summarises the main findings and results from the conducted studies. This

section discusses the future direction of the research. The application of this research in both

27



academia and industry over the next 3 to 5 years is discussed.

28



2 Related Works

2.1 CNN Concepts

Prior to convolutional neural networks (CNNs), pattern recognition tasks were performed by

devising systems that comprised of a feature extractor and a classifier. The feature extractor

was responsible for transforming high dimensional data into a series of low dimensional

vectors. These low dimensional vectors were designed for a specific domain by hand so that

pattern matching could be performed. The weakness of this approach was that the success

depended on the ability of the designer to manually construct an appropriate feature extractor.

The second module comprised of a trainable classifier such as a support vector machine [49],

which was limited to the classification of low dimensional vectors only, due to available

hardware at the time. This limitation meant that such a module could only classifying easily

spreadable classes.

With the advent of more powerful and low cost hardware capable of performing mathe-

matical calculations quickly, along with the availability of larger quantities of training data,

it became possible to train models such as neural networks via gradient based backpropa-

gation, popularized by [50]. The weakness of using a neural network for performing image

classification tasks was that the first layer of such a neural network must flatten an image

into a 1 dimensional vector. As images are typically large, such a network would require a

vast memory footprint to store weight information relating to the connections between the

first layer, and subsequent hidden layers. Another weakness of neural networks performing

image classification is that as the image is flattened into a 1 dimensional vector, it becomes

unstructured. For example, two images of a handwritten digit of the same character will

contain similar features, but as the features are not organised during the flattening process,

this leads to intolerance in respect to image translations.

Convolutional Neural Network (CNNs) were proposed to solve the weaknesses of neu-

ral networks when performing classification tasks on complex data such as image. CNNs

are a specialised neural network architecture first introduced by LetNet-5 [1] to address the

aforementioned weaknesses of neural networks within the domain of image classification.

An overview of LeNet-5 is shown in Figure 1.

The architecture of LeNet-5 comprises of layers. The layer types are convolutional lay-

ers, subsampling layers and fully connected layers.

Convolutional layers are feature extractors. Within the first convolutional layers of a

CNN model, such layers extract low level features such as edges. As these features propagate

through the network, they are combined by subsequent layers to form higher level features.

The input of a convolutional layer is a volume of shape D f 2M where D f represents the

width and height, and M represents the number of channels. The first layer of LeNet-5 is

indicated in Figure 1 as C1. Layer C1 takes as input a greyscale image of shape 32x32x1.

A convolutional layer contains N kernels k where N is a design choice that increases the

number of channels of the output. Increasing N is useful for extracting more features from

29



Figure 1: LeNet-5 [1] comprises of convolutional layers indicated as C for local feature

extraction, subsampling layers indicated as S to reduce layer dimensions and fully connected

layers indicated as F for performing classification.

the same regions of the input volume. In the case of layer C1, N = 6.

A kernel is a matrix, which in the case of C1 is of size 5x5, therefore each kernel contains

25 trainable weight parameters, plus a trainable bias. The convolution operation is performed

by first positioning the kernel in the top left corner of the input volume. The kernel is then

moved across the entire input volume with a stride of 1. For every position that the kernel is

placed, a dot product is taken that results in an output volume of 28x28x1. The convolutional

operation is performed with each k kernel, which in the case of layer C1 is 6 kernels. The

output of each convolutional operation for all 6 kernels are then stacked to produce a final

output of shape 28x28x6.

The convolutional operation means that each 5x5 region of the input volume is directly

connected to all N kernels. This is referred to as the receptive field. The larger the kernel

dimensions, the larger the region which is in focus for each dot product operation. The

advantage of a convolutional layer over a fully connected layer of a neural network is that

the location of a detected feature is of less importance. The total number N of kernels k

controls the models width. Increasing the number of kernels means that more features can

get extracted from the same region of the input volume. Increasing N however increases

the number of trainable weights, and therefore increases the computational cost and memory

footprint of the model.

Sub-sampling layers within LeNet comprise of a 2x2 kernel which is slid across the input

volume with a stride of 2. The kernel of a sub-sampling layer contains trainable coefficients.

Due to the fact that the kernel size is 2, and the size is 2 means that the output volume is half

of that of the input. The sub-sampling layer has two main aims, firstly features from the input

are summarised into higher level features, and secondly, as the output volume is reduced,

so are the number of trainable parameters which improves computational efficiency. More

recently, sub-sampling has been replaced with pooling layers which rather than performing

dot operations with trainable coefficients, instead take either the average or mean for each

kernel position.

Fully connected layers are used to flatten the output and reduce its dimensions to that of

the total number of classes. The purpose of this is to perform classification. Activation func-

tions add non linearity. Sigmoid activation functions which are also referred to as logistic

30



function or squashing functions are popular for binary classification tasks. For multi-class

classification tasks, softmax [51] is a populate choice. For example, ResNet [3] used a 1000-

way fully-connected layer with softmax activation function to classify the COCO data set

[17].

2.2 Accuracy Focused CNN Architecture

Research into architectures that improve the accuracy and performance of CNNs has been an

active research area for some time. This work has resulted in architectures such as AlexNet

[2]. The goal of AlexNet was to propose a model capable of classifying ImageNet [52], a

challenging data set containing 1000 different classes. In comparison to LeNet-5, AlexNet

contained 8 layers rather than 5. Each layer had more kernels than LeNet-5 to improve the

learning capacity of the model. The authors adopted a larger kernel size i.e an 11x11 kernel

for the first layer, to increase the receptive field size. AlexNet contained approximately 60

million parameters. To train such a large model on the limited hardware available at the time,

the authors split the model into two parts so that it could be trained on two graphics cards,

as indicated in Fig 2. AlexNet was the state of the art model on ImageNet in 2012. The

weakness of AlexNet was the model complexity which meant it was hard to make deeper as

it would become impractical to train.

Figure 2: AlexNet was a complex model split training over two graphics cards by splitting

the model into two parts. The top part of the model was trained on graphics card 1, and the

bottom part was trained on graphics card 2. [2]

Works such as VGG-16 [53] set out to address the model complexity weakness of AlexNet.

The authors fixed all kernel sizes to 3x3. The rationale for fixing the kernel was to reduce

the number of floating-point operations needed to perform a convolution. The reduction in

floating-point operations meant that VGG-16 could contain 16 layers. VGG-16 was there-

fore twice as deep as AlexNet. A weakness of VGG-16 was that it was deeper and therefore

susceptible to the vanishing gradient problems [3].

Further studies have shown that model depth can improve overall accuracy [54] [55]

[56], but to achieve greater depth, the vanishing gradient problem needed solving. Works

such as ResNet [3] set out to address the vanishing gradient problem by introducing residual

connections. The authors organised network architectures into a series of blocks. Each block

contains two convolutional layers. The input to the block is fed through the convolutional

layers inside the block to produce an output. A residual connection is defined as taking

the blocks output then summing it with the block input x as shown in Fig 3 as F(x) + x.

31



The benefit of a residual connection is that it allows for gradients during backpropagation to

propagate further, as they do not need to pass through as many convolutional layers.

Figure 3: A ResNet block [3] feeds an input through a pair of convolutional layers, before

summing the output with the input.

Studies such as WideResnet [4] aimed to address a weakness in Resnet, stating that

Resnet models are capable of containing thousands of layers, but increasing the depth further

results in minor improvements. The authors set out to show that it is important to balance

the width of a model i.e the number of kernels used per convolutional operation, and not just

increase its depth. The authors extended the ResNet block by adding a dropout layer [57] to

prevent overfitting as shown in Fig 4.

Figure 4: A WideResnet block [4] contains a pair of convolutional layers, a dropout layer

and a residual connection.

The model architecture was organised into three groups. Each group contained N WideRes-

Net blocks. A scaling factor k was introduced to control the width of each group. The width

of the first group was 16k, the second group had a width of 32k, and the third group had a

width of 64k, as indicated in Fig 5.

Experiments were conducted on a range of different values for N and k. The best per-

forming model on the CIFAR-10 [18] data set had 28 layers, and a wide construction i.e

k = 28. The proposed shallower and wider model outperformed the deeper, thinner model

i.e 40 layers deep and k = 8. The shallower but wider configuration was reported as being

0.49% more accurate than the aforementioned deeper counterpart.

Other related works which address the vanishing gradient problem include DenseNet

[58]. The authors of Densenet found that deep convolutional networks could be constructed

32



Figure 5: A WideResnet model is organised into groups. Each group contains N blocks.

Each blocks width is controlled by a scaling factor k [4]

by concatenating the inputs to all previous layers, with subsequent layers. The weakness of

this approach is that the model is a very domain-specific model and prone to overfitting due

to the high number of layer interconnections [59].

2.3 Efficiency Focused CNN Architectures

Works relating to IoT devices identify a real need for more accurate models within resource-

constrained environments. Recently, the research studies of [60] highlighted how IoT de-

vices, such as Raspberry Pi, make edge computing a reality, as cheap devices can be intercon-

nected to form network infrastructures. When interconnected, such networks have been used

to tackle a range of problems, including pollution, air, water, food, and fire sensing, heartbeat

and blood pressure monitoring, and motion tracking. Furthermore, the studies of [61] pre-

sented a novel solution to decentralize data exchange based on wireless IoT and blockchain

technologies and highlighted how IoT-based solutions have illustrated exponential growth

owing to a rise in IoT applications within smart cities and health tracking domains. Because

of the fast growth and the range of interesting applications for IoT devices, more accurate

and efficient deep learning models are essential. Moreover, a recent case study [62] espe-

cially focused on sensor reliability relating to LiDAR sensors with IoT capabilities. Their

work pointed out that such types of sensor devices are becoming widespread. Their IoT ca-

pable devices employed a range of models to perform tasks such as driver assisting obstacle

detection within cars and fault detection, yet more advanced deep learning models could be

deployed in such applications providing such networks can deliver sufficient accuracy and

efficiency.

Other research efforts in building network architectures suitable for use on performance

restricted environments such as IoT and smartphones have led to another category of models,

specifically designed to be computationally efficient. State-of-the-art architectures of these

types of models include MobileNet [5], MobileNetV2 [7], ShuffleNet [6], LiteNet [8] and

EffNet [9].

A comparative analysis of all related studies has been summarized in Table 1, followed

by in-depth discussions.

The motivation behind MobileNet [5] illustrated in Figure 6 was to reduce the network

33



computational cost by using 3x3 depth-wise separable convolutions. Specifically, a depth-

wise separable convolution is a form of factorization which reduces computational cost in

comparison with a standard convolution. A more comprehensive comparison between a

normal convolution and a depth-wise separable convolution is provided in Section 3.2. The

study in [5] showed a drawback when evaluated with ImageNet, i.e., the performance of

MobileNet decreased by 1%, but the advantage was a substantial reduction in computational

cost in comparison with those of the model with a normal 3x3 convolution.

The 3x3 convolution has proven a popular choice for many architectures but Inception-v3

[63] and Inception-v4 [64] have shown that the 3x3 convolution can be replaced with a 3x1

and 1x3 convolution, resulting in a 33% reduction in parameters. While the above variants

of the inception block make use of 1x3 and 3x1 convolutions, the block contains multi-

ple branches, filter concatenations and 1x1 convolutions. Multiple branches were proposed

within the inception model to train deeper models. The drawback of such a practice is that

in resource-constrained environments, models tend to be shallower due to the computational

constraints and multiple branches substantially increase the computational cost for a given

depth. In comparison with these existing models, the proposed architecture in this research

differs from inception networks as it contains one branch, and has no filter concatenation

which reduces overhead and does not use 1x1 convolutions.

Figure 6: MobileNet [5] uses depth-wise separable convolutions. DWise denotes depth-wise

convolution. Residual connections are not used.

ShuffleNet [6], as illustrated in Figure 7, uses two new operations, i.e., a point-wise group

convolution and channel shuffling. A 3x3 kernel was used for the depth-wise portion of the

depth-wise separable convolution operation to reduce computational cost. The motivation of

using a shuffle was to combat pitfalls in group convolutions. Specifically, if multiple group

convolutions stack together, output channels are only derived from a small fraction of input

channels which impacted performance. Shuffling the channels overcame this problem and

led to performance improvements over MobileNet. However, this additional operation, i.e.,

shuffling, is also a drawback, as it leads to additional computation.

MobileNetV2 [7], as illustrated in Figure 8, builds on the original MobileNet architecture

34



Table 1: Comparative analysis of related studies.

Model Kernel Convolution Type Emphasis Methodologies and Strengths Drawbacks

AlexNet [2] mixed standard accuracy Demonstrated how the model depth was

essential for performance

Contained large kernels which are less

efficient. Outperformed by subsequent

studies

ResNet [3] 3x3 standard accuracy Used residual connections to enable train-

ing deeper networks

A slim but deep state-of-the-art model,

not designed for constrained environ-

ments

Inception [63, 64] mixed standard accuracy Trained deeper networks using sparsely

connected network architectures, i.e., by

using a variety of kernel sizes side by side

The employed side-by-side model in-

creased model complexity

WideResnet [4] 3x3 standard accuracy Demonstrated that widening a residual

network can decrease its depth and im-

prove its performance

A state-of-the-art model, not designed for

constrained environments. Less efficient

at smaller scales than the proposed ap-

proach

PyramidNet [56] 3x3 standard accuracy Gradually increasing the feature map size

of deep networks led to performance im-

provements on ResNet

A deep state-of-the-art model, not de-

signed for constrained environments.

Gradual depth increase led to a larger

model size

MobileNet [5, 7] 3x3 depth-wise efficiency Traded accuracy with efficiency by using

depth-wise separable convolutions

Contained bottlenecks during downsam-

pling which impeded data flow

ShuffleNet [6] 3x3 depth-wise efficiency Shuffling channels helped information

flowing when performing depth-wise sep-

arable convolutions

Shuffle resulted in additional operations

and contained bottlenecks which impeded

data flow

EffNet [9] 1x3 and 3x1 depth-wise efficiency Factorized 3x3 depth-wise convolutions

into 1x3 and 3x1 depth-wise convolutions

to reduce complexity. Addressed bottle-

necks of prior efficiency-focused models

Based on depth-wise separable convolu-

tions which traded accuracy with effi-

ciency less optimally than the proposed

approach

LiteNet [8] 1x2 and 1x3 depth-wise and standard efficiency Combined ideas from Inception and Mo-

bileNet

A combination of drawbacks of Inception

and MobileNet (see above)

Ours 1x3 and 3x1 standard efficiency Factorized 3x3 into 1x3 and 3x1 standard

convolutions to retain the strength of stan-

dard convolutions, i.e., superior perfor-

mance while reducing model complexity

Designed for constrained environments

and not to outperform state-of-the-art

accuracy-focused models in extremely

large configurations on GPU machines.

using 3x3 depth-wise separable convolutions but with the addition of an inverted residual

structure where shortcut connections are used between thin bottleneck layers to reduce input

and output sizes. This model outperformed the state-of-the-art networks such as MobileNet

and ShuffleNet, at the time for the evaluation of ImageNet [52].

LiteNet [8], as illustrated in Figure 9, takes an inception block which contains 1x1, 1x2

and 1x3 standard convolutions arranged side by side and makes modifications (inspired by

MobileNet) by replacing half of the 1x2 and 1x3 standard convolutions with their depth-

wise equivalents. Their proposed block, therefore, contains a mix of both standard and

depth-wise separable convolutions. Their work also makes use of a SqueezeNet fire block

[65] to further reduce the total network parameters. The model was trained on the MIT-BIH

electrocardiogram (ECG) arrhythmia database [66] and improved the accuracy rate against

baseline models of ≈0.5%. The drawback of their proposed model is the side-by-side struc-

ture employed, since side-by-side blocks increase the total number of parameters for a given

depth. The inception model originally proposed a side-by-side block to reduce the need to

select appropriate filter sizes upfront. By including a variety of different filter sizes side by

side, the network could learn which ones are best to use. The research community has since

learnt in related works that the most common filter used is 3x3 and deeper models perform

better.

A common drawback of MobileNet, MobileNetV2 and ShuffleNet is a substantial re-

35



Figure 7: ShuffleNet [6] uses a 3x3 convolution for the depth-wise phase of the convolution

which is performed after a channel shuffle. DWConv denotes depth-wise convolution. This

architecture uses residual connections.

Figure 8: MobileNetV2 [7] uses a 3x3 convolution for the depth-wise phase of the convolu-

tion and makes use of residual connections. DWise indicates depth-wise convolution.

duction in the total number of floats-out when downsampling is performed. The authors

of EffNet [9] highlighted this as a weakness as the aggressive nature of the reduction is

that floats cause a bottleneck which impedes data flow when the model is small, causing

them to diverge. The motivation for EffNet as illustrated in Figure 10 was to deploy net-

works in performance constrained environments and to increase the efficiency of existing

off-shelf models. EffNet achieves this by gradually reducing the total number of FLOP out-

puts throughout the network to avoid bottlenecks. EffNet also replaced 3x3 convolutions

with pairs of 1x3 and 3x1 convolutions performed as a depth-wise separable operation to

further reduce computational cost. A weakness to such an approach is that the computa-

tional saving of performing a 1x3 convolution as a depth-wise operation is less than that of a

3x3 convolution as elaborated in Section 3.2.

Besides the above methods, post-processing techniques exist which reduce model com-

36



Figure 9: LiteNet [8] takes an inception block and replaces one of the 1x2 convolutions and

one of the 1x3 convolutions with their depth-wise counterparts, respectively.

plexity and therefore the computational cost. Related studies in this field include [67, 68, 69,

70], which employed pruning algorithms that remove redundant elements such as filters with

do not assist in the final classification from a model as part of a post-processing operation.

These developments indicated that a model can be compressed to reduce complexity, with

minimal impact on performance. Related works such as [67] proposed a pruning algorithm

based on Taylor series expansion of a cost function which was applied to SqueezeNet [65],

resulting in a 67% model reduction. Some limitations of this approach include a 1% drop

in accuracy. It obtains better results when training from scratch, rather than using trans-

fer learning on top of a pre-trained network. Studies such as [68] prunes based on a filter

stability which is calculated during training. As an example, unstable filters are candidates

for pruning. This approach was applied to LeNet-5 [71] on MNIST [72], VGG-16 [73] on

CIFAR-10 [18], ResNet-50 [3] on ImageNet [52], and Faster R-CNN [74] on COCO [17]

and reduced the number of FLOPs by a factor of 6.03X. A limitation to this approach is that

it can only be used on new models trained from scratch.

In contrast to post-processing techniques, architecture generation algorithms such as

[75, 76, 13, 77, 78] have demonstrated that architectures can be automatically generated by

exploring different architecture choices and hyper-parameter settings. Studies such as [76]

used a Q-Learning method [79] with an epsilon-greedy exploration strategy [80] to speed up

the time taken when generating new model architectures. The algorithm was able to choose

from 1x1, 3x3 or 7x7 convolutions and was trained on CIFAR-10. The approach was able to

reduce the time required to generate suitable architectures from 22 days for the current state-

of-the-art approach [11] to 3 days with a 0.1% reduction in the error rate. Studies such as [75]

recently proposed an ageing evolution algorithm which extended the well-established tour-

nament selection in genetic algorithm [81] by introducing an age property to favor younger

37



Figure 10: EffNet [9] uses 1x3 and 3x1 depth-wise separable convolutions to reduce model

complexity. DWConv denotes depth-wise convolution.

genotypes. The algorithm chose from 3x3, 5x5 or 7x7 separable convolutions, 1x7 then 7x1

standard convolutions, 3x3 max or average pooling and dilated convolutions. The approach

achieved a new state-of-the-art 96.6% top-5 accuracy rate on ImageNet. These evolving

model generation methods require additional computational resources owing to the large

search space and complex evolving processes with the involvement of fitness evaluations.

Parameter quantization is an area of research which aims to make a network have a

smaller memory footprint by compressing 32-bit parameters to 16-bit or even smaller. Re-

lated developments such as [82, 83, 84] have explored compression to various degrees, e.g.,

including reducing weights to binary values. Bi-Real Net [82] significantly reduced mem-

ory footprint and computational cost by setting all weights and activations to binary val-

ues. This process was achieved by using a sign function which replaced the true activations

and weights with either −1 or 1. It also reduced the memory usage of the previous state-

of-the-art 1-bit CNN XNOR-Net [85] by 16 times and reduced computational cost by 19

times. The authors of [84] introduced chunk-based accumulation and floating-point stochas-

tic rounding functions which compressed weights from 32-bit to 8-bit. In comparison with

a wide spectrum of popular CNNs, for the evaluation of several benchmark data sets, their

network achieved similar accuracy rates as those of the baseline models, but with reduced

computational costs. However, the study also indicated that their model suffered from loss

of precision over the 32-bit model counterparts.

38



Learning data augmentation strategies which can be transferred across different data sets

and models such as [86] have proved extremely effective at improving model accuracy by

discovering novel combinations of data augmentations which can be applied to specific data

sets and often transferred to others.

The above studies on pruning algorithms, automatic architecture generation and parame-

ter quantization are examples of related work, which could complement ours and be embed-

ded for future development.

2.4 Application of CNN Models

There are many recent applications of CNN models. For image classification tasks, the

authors of [87] reduced the analyzing time and increased the accuracy of medical diagnostic

by training a LeNet [1] convolutional neural network to distinguish between Staphylococcus

and Lactobacillus bacteria.

Pre-trained CNN models such as AlexNet [2] have been further trained through transfer

learning to perform the detection and classification of lung abnormalities in related studies

such as [88]. The authors showed that with a relatively small data set i.e 163 CT scans

of patients with lung nodule cases, and 372 CT scans of patients with or without diffuse

lung abnormalities, the trained model was able to achieve a 95.2% classification accuracy.

Furthermore, the authors were able to improve the accuracy to 99.4% by applying rotation

and reflection data augmentation. The rotation and reflection data augmentations increased

the amount of training data 8 times.

The authors of [89] constructed a convolutional neural network to perform breast cancer

image classification. The CNN model consisted of a stack of 3 convolution layers, a ReLU

activation layer, followed by max-pooling layer. The image data was 8-bit greyscale images.

The authors proposed extracting the bits from each image pixel into 8 images through a

process called bit-plane slicing. Bit-plane slicing involved extracting all the pixels with

the value of 1 into a new image representing bit-plane one. This process was repeated for

all eight possible pixel values, resulting in eight different bit-planes. The authors reported

that the fourth, fifth, sixth and seventh bit-plane images had a higher classification accuracy

than with the original image. The weakness of this work is that deeper models were not

constructed to see if the classification accuracy improved with the original images.

Works such as [90] [91] proposed a CNN model for performing oil spill detection from

Space-borne Synthetic Aperture Radar(SAR) images. [92] applied transfer learning to a

VGG16 [73] model to distinguish between normal and pneumonia cases from chest X-ray

images. [93] proposed a diverse, multi-branch CNN model to perform hyperspectral image

classification, within the domain of remote sensing. CNN models are also applied in man-

ufacturing settings. [94] proposed a CNN model for performing fault diagnosis of rolling

bearing, achieving an impressive 99.2% accuracy at identifying bearing faults. Other ap-

plications of CNN models include detecting material defects in industrial settings [95] and

addressing medical problems such as skin lesion segmentation [96], fall detection [97] and

39



health monitoring [98] [99].

CNN models have also shown groundbreaking results in classifying handwritten digits

[1]. Object localization models e.g. YOLO [100] [101], Fast R-CNN [102] and Faster

R-CNN [74] and object segmentation methods e.g. Mask R-CNN [103] all make use of

CNNs as the backbones to perform detection, localization and segmentation tasks. Advances

in automated CNN architecture generation, therefore, have a significant impact in many

domains.

In summary, CNN models can broadly be split into accuracy focused models, and effi-

ciency focused CNN models. Accuracy focused CNN models primarily aim to maximize

accuracy on a particular data set. They contain strategies that facilitate the construction of

large networks to help improve accuracy. Accuracy focused models are often deep networks

that run on powerful graphics card devices. For example, ResNet was trained on two GPU

machines [3]. Efficiency focused models focus on strategies that reduce the number of float-

ing point operations (FLOPs) as doing so means fewer computational steps are required to

perform one forward pass through the network. This means that such a model can be run in

more resource constrained environments. The main strategy to reduce computation cost is

to perform depth-wise separable convolutions instead of standard convolutions. Depth-wise

separable convolutions are effective at reducing computational cost, at the expense of accu-

racy [5]. CNN models in general, have a broad range of applications and positively impact

many domains. Domains that benefit from the application of CNN models include image

classification, object detection, medical diagnosis, mechanical fault diagnosis, health moni-

toring and remote sensing. The broad range of applications for CNN models indicates that

the research conducted in the following chapters should have a wide-reaching and positive

impact.

2.5 Evolutionary Algorithms

2.5.1 PSO Concepts

Proposed by [32], PSO is a popular swarm intelligence algorithm which simulates natural

social behaviours, e.g. bird flocking or fish schooling. The concept of PSO is to create a

swarm of particles, where each particle explores a search space guided by the best-known

position of the entire swarm, gbest , as well as its individual best experience, pbest . In each

iteration, the particle position is updated by adding a velocity to the current position vector.

The formula for velocity calculation can be divided into three main components, i.e. inertia,

cognitive, and social components.

The inertia component shown in Equation 2 multiplies the current velocity V for particle

i in the t-th iteration with a weight w, which controls the impact of the previous velocity on

the new velocity calculation.

inertia = wV t
i (2)

40



The cognitive component shown in Equation 3 multiplies the distance between the cur-

rent particle position X and its personal best solution P by a cognitive acceleration coefficient

c1 as well as a random parameter r1.

cognitive = c1r1(Pt
i −X t

i ) (3)

Similarly, the social component shown in Equation 4 multiplies the distance between the

current particle position X and the global best solution G by a social acceleration coefficient

c2 and a random value r2.

social = c2r2(Gt−X t
i ) (4)

The acceleration coefficients c1 and c2 control the degrees at which a given position

update is guided by the cognitive or social component. The complete velocity updating

formula shown in Equation 5 produces the final velocity for the (t +1)-th iteration.

V t+1
i = wV t

i + c1r1(Pt
i −X t

i )+ c2r2(Gt−X t
i ) (5)

The new position in the (t + 1)-th iteration is produced using Equation 6, based on the

velocity yielded from Equation 5.

X t+1
i = X t

i +V t+1
i (6)

2.5.2 Other Evolutionary Algorithms

Firefly (FA) [104] is a swarm-based metaheuristic algorithm inspired by fireflies. Fireflies

in nature communicate with and are attracted to the bioluminescent light emitted by other

fireflies. The algorithm defines a swarm of fireflies of size = j. Each firefly is initiated at

random in a location constrained between an upper and lower bound. The algorithm performs

a search over t iterations. For each iteration, the position of each firefly is ranked according to

a fitness function. The brightness of the firefly is then set according to its fitness meaning that

the firefly in the best position is the brightest in the swarm. Next, the brightness of each ith

firefly is compared against the brightness of all fireflies within the swarm of size jth. If the

ith firefly is less bright than the jth firefly, then the ith firefly moves towards the jth firefly,

otherwise, it moves randomly. Distance between the ith and jth firefly is also considered.

The further apart two individuals are from each other, the less bright they appear to each

other. Once the position of a firefly is updated, its brightness is immediately recalculated

based on the fitness of its new position. The downside of FA is that studies have reported

that the algorithm can be slow to converge [105] [106] due to the random movements in the

search phase.

Genetic Algorithms (GA) [107] is a metaheuristic algorithm that mimics natural selec-

tion. The first stage of the algorithm is to generate a population of individuals in random

positions. Secondly, over several iterations, until a stop condition is met, each individual’s

41



position is evaluated using a fitness function. The individuals are then ranked in order of

fitness. If a stop condition is not met, a new population is generated for the next iteration.

The new population is generated by adopting three main steps, a section step, a crossover

step, and a mutation step. The section step involves selecting the best individuals from the

population to become parents. The selection criteria randomly selects individuals. Bet-

ter performing individuals have a higher probability of selection, simulating survival of the

fittest. Next, the crossover step combines two parent individuals to generate offspring which

contain features from both parents. Lastly, a mutation step adds randomness to the crossover

step by introducing diversity into the population. This is to avoid the population becoming

stagnant. Studies have shown that GA algorithms are slower to converge than PSO based

algorithms for CNN architecture generation [10].

Ant Colony Optimization (ACO) [108] models the natural foraging nature of ants. As

ants find food, they indirectly communicate with other ants by leaving behind a trail of

pheromones. Once the food gets found, the ants return following the same pheromone trail,

further increasing its scent. The pheromone scent decays over time. Routes containing

stronger scents are a good indicator of a close food source. Subsequent ants pick up on

the pheromone scent, following it to the food source. This further increases the pheromone

levels. The best routes, therefore, have the strongest pheromone levels. ACO models this be-

haviour by modelling the possible route connections as a graph. The amount of pheromones

between two edges on a graph is calculated by Equation 7 where ∆τk
i, j is the amount of

pheromone for the kth ant, between the graph connection of edge i to j. This is calculated

with 1
Lk

where Lk is the length of the edge between i and j. A calculation based on path

length means that shorter paths have stronger pheromones when visited.

∆τ
k
i, j =

1
Lk

(7)

ACO models multiple ants so Equation 8 calculates the pheromones levels left by all

ants, at all edges in the graph. The term (1−ρ)τi, j simulates evaporation of pheromones,

where ρ is a constant.

τ
k
i, j = (1−ρ)τi, j +

m

∑
k=1

∆τ
k
i, j (8)

Cuckoo Search (CS) [109] is a swarm-based metaheuristic algorithm that models the

parasitic behaviour of cuckoo birds, which lay eggs in a hosts birds nest. If the host bird

discovers the cuckoo eggs, there is a chance that the host will abandon its nest or throw away

the cuckoo egg. The authors base CS search behaviour on lévy flights [110]. Lévy flight

is a flight mechanism seen in flies whereby travel is performed as a series of straight lines,

broken up by sharp 90 turns. Cuckoo search defines three rules 1) A cuckoo will lay one egg

at a time in a randomly selected nest. 2) The nest containing the best egg carries over to the

next generation 3) The number of available nests is fixed. The probability that a host bird

will discover the cuckoo egg is defined with pe ∈ [0,1]. The algorithms aim is to replace the

existing solutions in the nest, i.e the host eggs, with better solutions. The weakness of CS,

42



when compared to PSO, is that CS uses Lévy flight. The movement mechanism of CS is less

iterative when compared to PSO [111]. Cuckoo Search has also been shown to easily get

stuck in local optimal traps [112]

2.6 Evolving CNN Models with PSO Based Techniques

Evolutionary algorithms such as PSO show superior search capabilities in solving diverse

optimization problems. Related studies adapt the PSO algorithm to CNN architecture gen-

eration. Evolutionary techniques such as PSO based algorithms for generating CNN archi-

tectures is relevant to resource-constrained environments because the search space can be

constrained to ensure candidate models will fit within the target environment. Furthermore,

the generated model is designed specifically for the task at hand which could lead to more

optimal solutions when compared to transfer learning. Before discussing recent deep archi-

tecture generation methods, the PSO algorithm is introduced in this section.

In comparison with other optimization methods, PSO shows impressive search capabili-

ties in solving single- and multi-objective optimization problems [113], [114], [115], [116].

PSO when compared to other evolutionary techniques is relatively easy to implement and

compute, as indicated by a favourable search time when compared to other techniques out-

lined in this section. extended Because of this, it has been widely adopted for optimizing

CNN models [117] [118].

One of the first studies of applying PSO to CNN generation was IPPSO [13]. The IPPSO

model adopts a flexible encoding scheme to address the limitation of the traditional PSO

model where particles are required to have a fixed length. The encoding scheme is inspired

by IP addressing and subnetting in computer network research. Specifically, an IP address

strategy is used to represent the layer parameters as a series of bits. As an example, the kernel

sizes within the search range between 1 and 8 are encoded into 3 bits, i.e. a kernel size of

1 is encoded as 001. A subnet is used to identify a layer type, i.e. a convolutional, pooling,

or fully connected layer. Evaluated using a variant of the MNIST data set, i.e. MNIST-

BI (MNIST with background images), IPPSO has achieved state-of-the-art performance.

Experiments were reported as taking on average 2.5 hours to complete for each data set.

A novel PSO variant namely psoCNN [10] was introduced for deep architecture gen-

eration. Based on a selection criterion for position updating in a swarm, psoCNN selects

the candidate layers from either the global or personal best solution. psoCNN outperforms

state-of-the-art models for architecture generation, including IPPSO [13]. It also depicts a

low computational cost. One weakness of psoCNN is that the particles are not able to fully

explore a search space like they would in the original PSO algorithm. This is because the

psoCNN algorithm copies layers from the personal and global best solutions directly. Such

a copying strategy significantly reduces search diversity as intermediate positions are not

explored. Such a search strategy increases the likelihood of being trapped in local optima.

The sosCNN [14] method was proposed by [14] for deep network generation, which was

built upon a previous study of psoCNN [10]. It employed a Symbiotic Organisms Search

43



(SOS) [119] algorithm instead of PSO for the search of evolving network architectures, by

introducing two new strategies. Firstly, a slack gain strategy was proposed for devising

architectures with greater depths, in order to overcome a weakness of the SOS algorithm

which excessively eliminated deep networks early in the search process. Specifically, the

difference between the global best position and the current particle position was calculated,

and then a random number was generated for each layer in the network. If the random

number was less than 0.5, the difference between the global best and the current position

was selected for particle position updating. Otherwise, the original particle position was

selected. Secondly, a dissimilar mutation strategy was also introduced which strictly limited

the difference in mutations in a way to guarantee that when a block mutation occurred, the

resulting block was not too dissimilar. The authors claimed that such a process also helped

to ensure faster convergence. The work achieved an error rate of 0.3% on the MNIST data

set. However both sosCNN and the previous study of psoCNN [10] do not construct models

comprising residual connections, and therefore susceptible to the vanishing gradient problem

[3] [38].

PSO has also been applied to the optimization of hand-crafted models such as DenseNet

[15]. As an example, Wang et al. [120] proposed a multi-objective PSO method for DenseNet

architecture generation, which maximizes accuracy whilst minimizing the computational

cost of the devised CNN model, measured in floating-point operations (FLOPS). An en-

coding scheme was proposed for optimizing the number of dense blocks, layers per block

and the growth rate of each block. The architecture search of their model required a high

computational cost, i.e. 3 days with the settings of 8 GPUs and a population size of 20, op-

timized over 20 iterations. The optimized DenseNet model was evaluated on the CIFAR-10

data set and achieved an accuracy rate of 95.51%, which showed an improvement when com-

pared to an accuracy rate of 94.77% for DenseNet-121. However their work did not optimize

other key parameters such as kernel size and pooling types within each dense block.

Dutta et al. [121] proposed two PSO variants, namely Qubit Fractional Order PSO (Qubit

FO-DPSO) and Qutrit Fractional Order PSO (Qutrit FO-DPSO), with the attempt to iden-

tify the best wavelength thresholds to minimise signal noise for Hyperspectral Image (HSI)

segmentation. First of all, Improved Subspace Decomposition Algorithm, Principal Com-

ponent Analysis (PCA), and a Band Selection CNN, were used to conduct discriminative

band selection. In addition, their models maintained multiple swarms simultaneously while

using quantum parallelism to reduce the computational cost. In the Qubit configuration,

each dimension was initialized randomly with a binary value of 0 or 1, whereas in the Qutrit

configuration, each dimension was initialized randomly with either 0, 1 or 2. Fractional or-

der (FO) was proposed for velocity calculation which took the last three velocities of each

particle into account, and employed a weighted sum of these recent velocities for calculat-

ing the new one in the next iteration. Each particle was evaluated using the following three

objective functions, i.e. modified Otsu criterion, Masi entropy and Tsallis entropy, for thresh-

olding performance measurement. Moreover, a quantum disaster operation (denoted as D)

44



was proposed in the aforementioned variants to mitigate early stagnation and increase search

diversity. This operator deleted particles and even a whole swarm whose fitness scores did

not improve over 10 consecutive iterations. It also generated new particles or a new swarm

if a particular swarm illustrated enhanced fitness over generations. Evaluated on the Indian

Pines, the Pavia University and the Xuzhou HYSPEX data sets, their models achieved mea-

surable improvements in terms of the Peak signal-to-noise ratios and Dice similarity scores

in comparison with those of other search methods for HSI segmentation.

Fielding and Zhang [39] proposed a PSO-based method for optimizing skeleton block-

based CNN architectures comprising dense connectivity [15]. Their work employed novel

weight inheritance learning mechanisms in an attempt to reduce computational costs. Their

weight inheritance mechanisms provided continual training to any selection of CNN net-

works by inheriting the weights for a partially trained CNN model. Specifically, their work

initialized a network containing four dense blocks that were subsequently optimized using a

modified PSO algorithm with cosine search coefficients. The objective of their PSO model

was to discover the optimal number of layers within each dense block, and the growth rate

of the overall model. The growth rate controlled the number of filters within the model, i.e

the model width. The weight inheritance processes were subsequently applied to any CNN

architecture devised by the PSO variant and employed the layer position and the size of its

parameter matrix as the search key for weight inheritance. Evaluated on the CIFAR-10 data

set, in comparison with related studies such as [122], their method reduced the computational

cost of the architecture search from 1000 to 150 GPU hours and also improved the accuracy

rate from 89% to 90.28%. But their model did not optimize lower level features such as the

kernel size or the number of blocks within the model.

A PSO variant was proposed by Zhang et al. [123] to discover the optimal hyper-

parameters when constructing an ensemble hybrid network to perform human action recog-

nition. Each base network within the ensemble model was composed of a GoogLeNet in

combination with a bidirectional Long Short-Term Memory (BLSTM) network. Hyper-

parameters, such as the learning and dropout rates and the number of hidden units in the

BLSTM layers, were optimized using their proposed PSO variant. The PSO operation was

guided by hybrid leader signals generated using nonlinear crossover operators, as well as

3D superellipse coefficients, to overcome stagnation. A number of base googLeNet-BLSTM

networks were optimized using the PSO method, which was subsequently used to construct

ensemble models. Evaluated using several well-known human action data sets (e.g. KTH,

UCF50 and UCF101), their ensemble networks showed impressive performance in compar-

ison with those of ensemble models devised by other PSO variants and existing state-of-the-

art methods.

Liu et al. [124] developed two PSO-based methods, i.e. PSO-Net and CPSO-Net, for

cell-based CNN architecture generation with respect to Hyperspectral Image (HSI) segmen-

tation classification. Their encoding process was used to transform architectures into ar-

rays by embedding information such as connections and operation types between network

45



nodes. In both methods, PSO was used to devise optimal CNN architectures. In particular,

in CPSO-Net, a SuperNet was maintained first, which was trained using gradient descent.

Each particle subsequently inherited the network weights from those of this fixed SuperNet.

In comparison with PSO-Net where each network devised by each particle was trained indi-

vidually, the SuperNet in CPSO-Net was trained only once per iteration using the gradients

of all particles in the swarm to accelerate the optimal network generation process. Evaluated

using biased and unbiased HSI data sets, their methods obtained improved accuracy rates as

compared with those of existing state-of-the-art studies.

An evolutionary group-based PSO (EGPSO) was proposed by Juang et al. [125] for op-

timizing weights in Recurrent Neural Networks (RNNs) with respect to the generation of

forward walking gait of a hexapod robot. Their model incorporated group-based GA with

PSO, which outperformed other GA and PSO methods for optimizing the walking speed of

the robot. Tan et al. [126] proposed a PSO variant for optimal hyperparameter selection for

a VGG network for melanoma classification. Their PSO variant employed three subswarms

guided by distinctive adaptive nonlinear search coefficients, as well as sub-dimension based

search for leader enhancement. A wrapper-based feature selection was also conducted us-

ing the PSO algorithm for ensemble model construction pertaining to lesion classification.

Moreover, a PSO method with elliptical search coefficients was proposed by [127] for hyper-

parameter fine-tuning of Mask R-CNN for medical image segmentation, while PSO in com-

bination with random walk strategies and FA operations [128] was exploited for K-Means

clustering centroid enhancement and deep architecture generation for image segmentation

and classification, respectively. PSO-based generative adversarial networks (GANs) were

also proposed by [129] for facial image generation. The PSO model was used to optimize the

parameters of the generator network to improve training stability. The quality and diversity

measurements of generated images were taken into account in the cost function. Evaluated

using the CelebA data set, the PSO-enhanced GAN model outperformed the original GAN

and other variant methods and overcame the vanishing gradient problem of the original GAN

model.

Gao et al. [130] proposed a gradient-priority PSO algorithm for deep network generation

for undertaking EEG-based emotion recognition. It addresses the efficiency limitations of

automated architecture search in a high-dimensional search space. A hybrid model based on

PSO and the gradient descent method is proposed for carrying out a weighted exploration

in dimensions of greater importance. The method identifies the optimal settings of both the

convolutional and pooling layers. To be specific, the kernel sizes and the number of output

channels are optimized for the convolutional layers. For pooling layers, the optimal pooling

types and the kernel sizes are identified. Instead of calculating the distance between the

current particle and the global best solution, the model computes the maximum gradient

position for each particle, which is subsequently used to accelerate the particle movement in

the direction illustrating the most impact. The method achieves an impressive performance

for deep network generation for emotion recognition in comparison with those from existing

46



studies.

Wang et al. [40] proposed an efficient PSO model, namely EPSOCNN, for deep ar-

chitecture generation. It employs the classical PSO algorithm to optimize a single network

block only, i.e. a dense block, to accelerate the evolutionary process. Proposed in DenseNet

[15], a dense block contains 3x3 convolutions and residual connections. Specifically, the

EPSOCNN model optimizes the number of output channels within a block using a widening

factor, as well as the number of convolutional layers with a search range between 6 and 32

within a single block. Once the best dense block is found, a second-stage process progres-

sively stacks the optimized dense block to identify the optimal number of blocks, in order to

construct the final network. With fewer than 4 GPU days, EPSOCNN yields an error rate of

3.58% on the CIFAR-10 data set, with an improvement of 1.12% over that in [131]. Note the

study conducted has been based on the optimization of an existing state-of-the-art network

block.

2.7 Evolving CNN Models with Other Evolutionary Techniques

Recently, Sun et al. [132] proposed a GA-based deep architecture generation model, namely

CNN-GA, to automatically devise networks for image classification. Since the GA-based

optimization process commonly employs a fixed-length encoding strategy, where the length

of chromosomes is fixed and must be specified beforehand, CNN-GA introduces a variable-

length encoding operation to overcome this restriction. The encoding scheme considers both

the residual blocks and pooling layers. A residual block contains two convolutional layers

with fixed kernel sizes of 3x3 and 1x1, respectively, along with a residual connection. A bi-

nary tournament selection mechanism [133] is adopted, whereby two individuals are selected

at random based on the fitness scores. A crossover operation is subsequently performed with

respect to a random threshold. Mutations are conducted by adding, removing, or modifying

layers. Evaluated using CIFAR-10 and CIFAR-100 data sets, CNN-GA outperforms several

existing methods such as NASNet [134] and DARTS [135].

Another deep architecture generation model, namely Automatically Evolving CNN (AE-

CNN), was proposed in [131]. For deep network generation, the AE-CNN model employs

either a ResNet block [3] with three convolutional layers and residual connections, or a

DenseNet block [15] with four convolutional layers and residual connections. The pooling

layer is designed to perform mean and max-pooling using a 2x2 kernel. The computational

cost of the search process is handled by introducing asynchronous computation and caching,

which successfully reduces the cost of the fitness evaluation. Based on the CIFAR-10 and

CIFAR-100 data sets, the proposed method is able to reduce the computational cost from

the 100 GPU days as required by MetaQNN [11] to 35 GPU days. However, their proposed

strategies have not explored kernel sizes other than 3x3 in the convolutional layers.

Within the family of neural architecture search (NAS) based algorithms, Kwasigroch et

al. [136] aimed to reduce the computational cost when generating CNN model architec-

tures from scratch. A novel network morphism operation is combined with a greedy search

47



algorithm (i.e. hill-climbing) to generate an optimal architecture in malignant melanoma

classification. The search mechanism incrementally increases the model size over a number

of iterations. Savings in the computational cost are achieved by inheriting the previously

trained weights over to the new offspring. The architecture search initially constructs a base

model. It consists of a 3x3 convolutional layer, followed by a max-pooling layer, a second

3x3 convolutional layer and finally a Sigmoid activation function. This base model is trained

before multiple offspring solutions are created. The offspring networks are created by ap-

plying an operation to extend the parent model. The available extension methods include

inserting new layers, altering the number of output channels on existing layers, or stacking

two layers side by side and applying an addition or concatenation operation to the output of

each layer. The offspring models are trained when the training of the parent model is com-

pleted. The best offspring model from the current iteration is selected to become the parent

for the next iteration. Impressive results are achieved. The entire search process requires 18

GPU hours, as compared with 38 GPU hours required by a related method reported in [131].

A Neural Architecture Search (NAS) method based on Ant Colony Optimization (ACO)

[108] called DeepSwarm [137] was applied to the generation of deep convolutional neu-

ral networks. One by one, each ant in a colony got placed on the input node. Guided by

pheromone signals, the ant selects a node type, followed by node hyperparameters such as

the kernel size, filter count and activation layer type. The ant navigates the graph until the

maximum model depth is reached. The selected architecture was when evaluated before the

ants chosen path pheromone signals got updated. Finally, the overall model with the best

accuracy is identified as the optimal model construction. DeepSwarm achieved a mean error

rate of 0.46% on the MNIST data set.

In order to better balance the search between exploration and exploitation of the Monarch

Butterfly Optimization (MBO) algorithm [138], a new hybrid variant model, namely the

MBO-Artificial Bee Colony Firefly Enhanced (MBO-ABCFE) algorithm, was proposed by

[139], for deep architecture generation. Their model incorporated MBO with Artificial Bee

Colony (ABC) and Firefly Algorithm (FA) to increase search diversity and overcome the

premature convergence problems of the original MBO algorithm [140]. Specifically, it di-

versified global exploration by incorporating the search mechanisms of ABC [141], along

with a control parameter which adjusted the intensification. The local exploitation was also

increased by adopting the search strategy of FA [142]. In addition, two new parameters

were introduced, i.e. an exhaustiveness parameter and a trial parameter. After each iteration,

if an individual butterfly solution did not improve, the trial parameter for the butterfly was

increased by one. Once the trial parameter exceeded the exhaustiveness parameter, a new in-

dividual was randomly initialized. The search exploration was therefore further improved by

replacing poor performing individuals stuck in local optima with new solutions. A number of

hyperparameters were optimized by their proposed model, i.e. the number of convolutional

layers, kernel size, type of activation functions, pooling size, batch size and learning rate.

Evaluated using the MNIST data set, MBO-ABCFE devised networks achieved an error rate

48



of 0.34% with an improvement of 0.02% over those yielded by the original MBO algorithm.

Chen et al. [143] proposed a BASCNN method by applying a recently proposed meta-

heuristic algorithm, i.e. Beetle Antenna Search (BAS) [144] for the optimization of CNN

hyper-parameters. The BAS algorithm models food sensing behaviours of beetles and searches

for an optimal solution in the search space using a single search agent. Specifically, the BAS

algorithm was used to optimize the initial weights and biases of a LeNet model at the early

stage of model training. Their work was evaluated using a brain CT scan data set contain-

ing 200 images from subjects in different age groups, half of which included patients with

intracranial haemorrhage. The BASCNN model achieved an accuracy rate of 93.93%, out-

performing those of existing studies such as [145] and [146]. But their experiments were

limited to the optimization of the initial weights and biases of CNNs, without the considera-

tion of optimizing the network structures.

A GeNET model was proposed by [31] for CNN architecture generation based on the GA

method. Their work employed an encoding scheme based on a fixed-length binary string. To

be specific, this fixed-length binary string encoded the inter-connections between CNN ar-

chitecture nodes. Each node contained a set of convolutional, batch normalization and Relu

layers. Genetic operations such as selection, mutation and crossover mechanisms, were sub-

sequently conducted. In particular, the mutation operation has a low probability of flipping

a bit within the fixed-length binary string, thus slightly altering the node connections. The

work achieved error rates of 0.34%, 5.39%, and 25.12% for MNIST, CIFAR-10, and CIFAR-

100 data sets, respectively.

Architecture generation has also been conducted by combining strategies from multiple

evolutionary techniques simultaneously. As an example, Tirumala [147] proposed a multi-

population competitive and cooperative neuroevolution method, namely DNN-COCA, for

deep neural network architecture generation. Specifically, their model divided a population

into two sub-populations P1 and P2, and applied a different search strategy in each sub-

population. The sub-population P1 employed a competitive co-evolution search method,

whereas P2 adopted a cooperative search strategy. To maintain search diversity, the work

introduced an interpopulation migration strategy that migrated individuals between P1 and

P2. A table of the best individuals from both populations was maintained and used to generate

offspring solutions. The model achieved an accuracy rate of 98.7% on the MNIST data set

by evolving the total number of layers within a CNN between 5 and 7 layers. However, such

constrained experimental settings compromise their model performance.

Calisto and Lai-Yuen [148] employed a multi-objective evolutionary algorithm based on

decomposition (MOEA/D) [149] for the automatic construction of an ensemble of 2D and

3D residual models for medical image segmentation using volumetric medical data. A 2D

CNN model extracted in-plane intra-slice information, while a 3D CNN model exploited

volumetric inter-slice information. The work employed a multi-objective cost function that

minimized the error rate and the number of model parameters simultaneously. The algorithm

optimized the number of residual blocks, the number of filters of the first residual block, the

49



kernel size for convolutional layers within each block, the activation function, dropout and

learning rates, for both 2D and 3D models. Evaluated using the prostate segmentation task

in the PROMISE12 Grand Challenge [150], the model achieved an impressive pixel-wise

classification accuracy rate of 89.29%, ranked among the top 10 results for the challenge at

the time of publication.

Regardless of the search strategies, the bottleneck in optimizing CNN models is the con-

siderable computational cost in the fitness evaluation of the candidate models. Such a fitness

evaluation procedure needs to be repeatedly performed over a significant number of times

during the optimization process. Related studies such as [151] indicated that only 1.14% of

the candidate models achieve good results, and 88% provide reasonable results, while the

remaining illustrate poor performances. The study indicates that the majority of the com-

putational cost has been spent evaluating less optimal networks during the search process.

As such, a linear prediction model was proposed in [151] as the performance predictor of

deep networks. Such techniques can be combined with any optimal architecture generation

process to improve computational efficiency while effectively exploring the search process.

There are also other related studies, such as [152] and [153], which adopt non-evolutionary

techniques such as pruning to remove insignificant weights for devising deep networks.

In summary, many approaches to automatic CNN architecture generation exist. Back-

ground research indicates that particle swarm optimization (PSO) based approaches to CNN

architecture generation converge faster than alternative methods such as Firefly and GA

based approaches. Fast convergence is an important consideration with architecture gen-

eration as the search space is large owing to a large number of hyperparameter settings, and

the search time is slow, due to the need to train CNN models at every particle position to eval-

uate fitness. Existing state-of-the-art PSO based CNN architecture generation approaches do

however contain weaknesses. The weaknesses are 1) the current state-of-the-art PSO based

architecture generation technique i.e psoCNN [10] limits the search by copying blocks from

solutions in promising positions. Such an approach means that intermediate positions are not

explored and the overall approach is more susceptible to the quality of the particle initiali-

sation, 2) psoCNN uses hard-coded rules to ensure the proposed models remain valid. Such

rules interrupt the natural particle movement as applying the rule directly modifies the parti-

cle position directly, and 3) Existing state-of-the-art PSO architecture generation techniques

such as psoCNN [10] and sosCNN [14] do not take advantage of residual connections [3],

which means that existing techniques are unable to construct deep CNN models, owing to

the vanishing gradient problem [3].

50



3 Proposed Efficiency Focused CNN Architecture (IoTNet)

3.1 Introduction

The motivation of this research is to design a novel efficiency-focused model specifically for

resource-constrained devices which greatly improves accuracy, and reduces computational

cost simultaneously. Specifically, a new efficiency focused model is proposed, namely IoT-

Net, which improves the trade-off between accuracy and computational cost by avoiding

the common pitfall of efficiency-focused related studies which is to perform convolutions

as depth-wise separable operations to reduce computation cost. This research reduces the

computational cost by factorizing the 3x3 standard convolutions found in large and highly

accurate models into pairs of 1x3 and 3x1 normal convolutions which reduce the number

of parameters by 33%. The empirical results indicate that the proposed approach delivers

significantly enhanced performance with less computational cost measured as a reduction

in FLOPs. The way the proposed model differs from other existing studies is visualized in

Figure 11.

Figure 11: The proposed model dubbed IoTNet is distinctive from other related works as

it uses pairs of 1x3 and 3x1 standard convolutions, rather than 3x3 standard convolutions

typically found in large models, or depth-wise separable convolutions used in efficiency-

focused models.

3.2 Distinction Between Standard Convolutions and Depth-Wise Sepa-
rable Convolutions

The following section aims to make a clear distinction between a standard convolution found

in the proposed model and depth-wise separable convolutions found in related works, per-

taining to their differences in methodology and computational cost. Subscripts have been

used because the proposed kernels are not square as they are either 1x3 or 3x1 in shape.

51



3.2.1 Standard Convolution

For an input f of size D f1×D f2×M, a standard convolution uses a kernel k which extends

the entire depth of the input. The kernel therefore has a size of Dk1×Dk2×M. Convolving

k with input f produces an output g of size Dg1×Dg2 as seen in Figure 12.

Figure 12: A standard convolution uses a kernel which extends the entire depth of an input.

A total of N such kernels can be used to produce multiple output channels. The compu-

tational cost of a standard convolution can be calculated with Equation 9

standard = N ·Dg1 ·Dg2 ·Dk1 ·Dk2 ·M (9)

3.2.2 Depth-Wise Separable Convolution

A depth-wise separable convolution is performed in two stages, i.e., a depth-wise stage,

and a point-wise stage. The computational cost of a depth-wise separable convolution is

therefore the sum of the computational cost of both stages.

The depth-wise stage uses a kernel k which spans only one channel of input f . M such

kernels are used to span the entire depth of the input to produce an intermediate output g of

size Dg1×Dg2×M as shown in Figure 13.

Figure 13: In the depth-wise phase, multiple kernels are used to exploit the entire depth of

an input as each kernel only spans one channel.

The computation cost of this phase can be calculated with Equation 10

52



depthwise = M ·Dg1 ·Dg2 ·Dk1 ·Dk2 (10)

The point-wise stage combines the intermediary output from the depth-wise stage using

a standard convolution, commonly with a 1× 1 kernel. As with the standard convolution,

you can have N such kernels to produce multiple output channels as shown in Figure 14.

Figure 14: In the point-wise phase, a standard convolution is performed on the intermediate

output from the depth-wise phase.

The computational cost of this phase can be calculated with Equation 11

pointwise = N ·Dg1 ·Dg2 ·M (11)

The motivation when using a depth-wise separable convolution is to reduce the compu-

tational cost. The cost saving can be calculated as Equation 12 which simplifies to Equation

13.

cost =
depthwise+ pointwise

standard
(12)

cost =
Dk1 ·Dk2 +N
N ·Dk1 ·Dk2

(13)

It is more likely to perform a convolution as a depth-wise convolution rather than a stan-

dard convolution when using a 3x3 kernel than it is when using a 1x3 kernel. This becomes

clearer when comparing the savings of both kernel types. Equation 14 shows that a convolu-

tion with a 3x3 kernel and 64 channels will require only 12.7% of the total FLOPs a normal

convolution would require if performed depth-wise, which is a significant saving. On the

other hand, equation 15 illustrates that a convolution with a 1x3 kernel and 64 channels will

use 34% of the total FLOPs a normal convolution would require. This means that the cost

saving is greater on a 3x3 kernel, therefore the proposed study is more motivated to perform

standard convolutions and instead reduce computation through factorisation i.e a 1x3 and

3x1 kernel, replacing a single 3x3 kernel.

Dk1 ·Dk2 +N
N ·Dk1 ·Dk2

=
3 ·3+64
64 ·3 ·3

= 0.127 (14)

53



Dk1 ·Dk2 +N
N ·Dk1 ·Dk2

=
1 ·3+64
64 ·1 ·3

= 0.34 (15)

3.3 The Proposed Efficiency Focused Model

The proposed model consists primarily of groups and blocks. A group is a logical collection

of blocks. A group also contains metadata such as to what degree resolution downsampling

and widening should be applied. A block is a collection of operations such as convolutions

which are performed in a repeatable sequence.

The proposed model has an initial 3x3 convolution, followed by at least one group of

blocks. The depth of the proposed model is controlled by increasing or decreasing the num-

ber of groups with g ∈ {1,2,3} and controlling the number of n blocks within each group

where n >= 1. A block consists of batch normalization [154] followed by a pair of 1x3

and 3x1 standard convolutions and contains a residual connection. A block is defined in

Equation (16) from [4] as xl and xl+1 represent the input and output of the l-th block in the

network, respectively. F is a residual function and Wl is the parameter matrix of the block.

Each convolution is preceded with a ReLU [155].

xl+1 = xl +F(xl,Wl) (16)

The proposed network block is shown in Figure 15.

Figure 15: The proposed network block contains a batch normalization, followed by a pair

of 1x3 and 3x1 standard convolutions. Each convolution is preceded with a ReLU. Each

block also contains a residual connection [3].

54



The width within the proposed model is controlled with a widening factor of k. The first

block of each group is responsible for increasing width. The initial 3x3 convolution has a

width of f loor(16∗k). Group one has a width of f loor(16∗k), while group two has a width

of f loor(32 ∗ k), and group three has a width of f loor(64 ∗ k). Except for the initial 3x3

convolution, these settings were taken from related studies of [4].

Resolution downsampling is performed in groups two and three if they are present. The

first blocks of groups two and three reduce the resolution by performing average pooling

using a 2x2 filter, which halves the output resolution. Figure 16 shows how depth, width and

resolution can be controlled, and how the proposed model is made up of g groups, containing

n blocks.

The linear layer which performs final classification is preceded by batch normalization,

ReLU and average pooling.

So that the benefits of the proposed model could be isolated, the experiments in this

research did not use the data augmentation policies learnt through related works, such as

AutoAugment [86]. Instead, data augmentation was performed by using the mean/std nor-

malization of all data sets so that the architectures themselves can be compared fairly. For

the CIFAR-10 data set, the data augmentations from [4] are adopted for fair comparison i.e

horizontal flip, random crop and padded by 4 pixels. Missing pixels added through padding

are repopulated using reflections of the original input image.

Figure 16: The network width is controlled by a widening factor k. Resolution is reduced

within the first blocks of groups two and three if present.

3.3.1 Approach to Identify Candidate Models

In this research, multiple filtering steps are used to reduce the architecture search space and

identify the optimal network configurations for each test data set. The detailed process is

55



provided below.

Step 1 – Calculate the FLOPs for all combinations of groups, i.e., g∈ {1,2,3}, number of

blocks per group, i.e., n ∈ {1,2,3,4,5}, data set classes, i.e., c ∈ {10,43}, and the widening

factor in the range of [0.1,2.0] in intervals of 0.01.

Step 2 – Filter the results down to networks within a target FLOP range. The range is set

to between 50% and 100% of the FLOPs of the smallest baseline benchmark model for each

data set. For example, the ShuffleNet large model for CIFAR-10 has the smallest number of

FLOPs, i.e., 11.1 million (see Table 2). Therefore, the filtering range for candidate model

selection would be between 5.5 and 11.1 million FLOPs.

Table 2: Evaluation results for the CIFAR-10 data set grouped by network sizes in FLOPs.

The first group contains larger configurations, while the second group comprises smaller

ones.

Model Widening Factor k Mean Acc Mil. FLOPs
EffNet V1 large 0.99 85.02% 79.8

MobileNet large 0.14 78.18% 11.6

ShuffleNet large 0.14 77.90% 11.1

EffNet V1 0.14 80.20% 11.4

EffNet V2 0.22 81.67% 18.1

MobileNetV2 0.20 76.47% 16.4

IoTNet-3-4 0.7 89.9% 9.9
MobileNet 0.07 77.48% 5.8

ShuffleNet 0.06 77.3% 4.7

IoTNet-3-2 0.68 87.19% 4.2

Step 3 – Narrow the results down further by selecting the minimum and maximum widths

for every unique combination of g and n. This process results in a list of configurations that

contain two candidate models for each unique combination of g and n.

Step 4 – Train the narrowed list of model configurations obtained from Step 3 using a

reduced epoch count of 25 to reduce training cost. Then the trained models are tested with

the test data set.

Step 5 – Finally select the most promising models (e.g., 2–3 models) based on the test

accuracy rates obtained in Step 4 as candidate models for full training with 200 epochs.

Automatic architecture generation techniques, such as Particle Swarm Optimization-

based deep CNN model generation, will also be explored in future directions.

3.3.2 Complexity Analysis

The main indicator of computational cost, used in efficiency-focused related studies, such as

the benchmark models MobileNet [5], MobileNetV2 [7], ShuffleNet [6] and EffNet [9], is to

56



report the number of floating-point operations, i.e., FLOPs. Therefore, the same indicator is

adopted for direct computational cost comparison.

Influential studies such as [5] highlighted that computational cost depends multiplica-

tively and therefore varies based on the number of FLOPs. The number of FLOPs for a

standard convolution as used in this study depends on the number of input channels M, the

number of output channels N, the kernel size Dk1 ·Dk2 and the feature map size D f1 ·D f2, as

shown in Figure 12. Full details of how convolutional cost is calculated in terms of FLOPs,

and a complexity analysis of the proposed modifications and customizations, i.e., cost differ-

ences between standard and depth-wise convolutions, and differences between 3x3 and 1x3

convolutions, are provided in Section 3.2. The impact of selecting different widening factors

W to the computational cost of a convolution within the proposed model can be compared

by scaling Equation 9 from [5] with W , as illustrated in Equation 17. This shows that for

the proposed models which share the same numbers of groups and blocks, the computational

cost of convolutions scales proportionately with W . In other words, when other network

configurations remain intact, the computational cost increases as the widening factor scales

up and vice versa.

cost = N ·Dg1 ·Dg2 ·Dk1 ·Dk2 ·M ·W (17)

3.4 Experimental Studies

The experimental studies are presented in this section. In Section 3.4.1 a detailed overview

of the test data sets employed in the experiments, as well as the model training scheme is

provided. Section 3.4.3 evaluates the proposed model against efficiency focused related stud-

ies. Section 3.4.7 evaluates the proposed model against models containing 3x3 convolutions.

Section 3.4.11 evaluates the trade between accuracy and computational cost for the proposed

1x3 and 3x1 standard convolution approach, with that of a more traditional 3x3 standard

convolution. An in-depth model and result analysis in also provided in Section 3.4.12.

3.4.1 Data Sets

The data sets in the experiments include CIFAR-10 [18], SVHN [44] and GTSRB [45].

These data sets offer realistic and varied representations of the types of image classification

problems that could be encountered in resource-constrained environments. All these em-

ployed data sets have pre-defined training and test sets meaning that all benchmark models

and the proposed model have been trained and tested under the same experimental settings,

i.e., using the same data splits, samples and image resolutions. The selected data sets are

summarized in Table 3 and introduced in more detail in the following subsections.

The CIFAR-10 data set [18] consists of 60,000 images in 32x32 resolutions. They are

split into 50,000 and 10,000 samples for training and test, respectively. Each image is cat-

egorized as one of the ten classes, including airplane, automobile, bird, cat, deer, dog, frog,

57



Table 3: Overview of the data sets used in the experiments.

Data Set Total Sample Size Training Samples Test Samples Image Resolution
CIFAR-10 60,000 50,000 10,000 32x32

SVHN 99,289 73,257 26,032 32x32

GTSRB 51,839 39,209 12,630 32x32

horse, ship and truck. Figure 17 illustrates some example images extracted from this data

set.

Figure 17: Example images extracted from the CIFAR-10 data set.

The SVHN data set [44] contains house numbers obtained from Google Street View

images. It is divided into 73,257 training and 26,032 test images. A 32x32 crop of the

original images is used, which produces a MNIST-like data set. In this format, each image

contains one digit of interest belonging to one of 10 classes, i.e., a number between 0–9,

along with some distracting digits in both sides of each image. Some example images in the

SVHN data set are shown in Figure 18.

The GTSRB [45] data set is composed of 51,839 images of traffic signs covering 43

different classes of signs including stop, no entry and speed limits. Images within the same

class are of different physical signs with various lighting conditions and image qualities. The

data set is split into 39,209 and 12,630 samples for training and test, respectively. Figure 19

illustrates some example images from this data set.

Moreover, GTSRB illustrates imbalanced class distributions with relatively small num-

bers of examples for some of the classes as shown in Figure 20. Such characteristics make

the data set challenging as it is prone to overfitting.

3.4.2 Training Scheme

When training using the CIFAR-10 [18] and GTSRB [45] data sets, stochastic gradient de-

scent (SGD) is used as the optimizer and cross-entropy loss is used for the loss function.

58



Figure 18: Example images extracted from the SVHN data set.

Figure 19: Example images extracted from the GTSRB data set.

A total of 200 epochs are used for model training. The initial learning rate lr is set to 0.1,

and dropped by lr ∗ 0.2 at epochs 60, 120 and 160. For the SVHN [44] data set, the Adam

optimizer [156] is used, along with cross-entropy loss. A total of 200 epochs with a fixed

learning rate of 0.001 have been applied. The above experimental settings are obtained by

trial and error to achieve the best model performance. The epoch steps of 60, 120 and 160

were selected based on related works using the same data sets [4]. The learning rate and the

degree to which the learning rate was reduced were selected by comparing various settings

with a grid search. The mean accuracy over a total of 5 runs is reported and used as the main

criterion for comparison. The proposed model has been implemented using PyTorch [157].

3.4.3 Comparison Against Efficiency-Focused Benchmark Models

A comprehensive evaluation has been conducted to compare the proposed block architectures

against the baseline efficiency-focused models, i.e., EffNet [9], MobileNet [5], MobileNetV2

[7] and ShuffleNet [6]. The evaluation also compares the proposed approach directly against

59



Figure 20: The imbalanced class distributions within the GTSRB data set.

a standard 3x3 convolution method typically used in state-of-the-art accuracy-focused mod-

els. The depth settings for the proposed model is denoted as IoTNet-g-n where g is the

number of groups, and n is the number of blocks within each group. IoTNet-3-2 for example

contains three groups, each of which contains two blocks. The same experimental settings

are used to ensure a fair comparison, i.e., by using the aforementioned data sets with pre-

defined training and test sets and input resolutions. The experimental results are presented

separately for each test data set.

The evaluation results of the baseline networks were obtained from the work of EffNet

[9]. The authors of EffNet constructed models of comparable sizes by adjusting the width

of the network using a widening factor, adding additional layers or a combination of both.

A summary of the models with brief configuration descriptions employed for performance

comparison in this research is provided in Table 4. Further details can be obtained from their

original studies [9].

3.4.4 Evaluation Using CIFAR-10

The baseline models are split into two categories according to model sizes, measured in

FLOPs. The multi-filtering steps as discussed in Section 3.3.1 is adopted to identify suitable

candidate models for each network category, which contain fewer FLOPs than those of the

baselines. Three candidate models of the proposed approach were identified and trained with

200 epochs on CIFAR-10 for both large and small network configurations, respectively. The

detailed results are shown in Table 5.

As illustrated in Table 5, all top candidate models of the proposed approach contain three

groups since those with two groups performed worse than such networks, while those with

one group performed worse than the models with two groups. This indicates that multiple

downsampling stages and network depth are important factors. Candidate models favoured

a balance between depth and the widening factor owing to the comparatively challenging

nature of CIFAR-10. The empirical results also indicate that shallow but wide models, or

deep and narrow models performed worse.

Table 2 shows the detailed results of the best candidate models and the baseline networks

60



Table 4: A summary of models used for evaluation. Two variations of EffNet introduced by

[9] as EffNet V1 and EffNet V2 are included.

Model Name Brief Description
IoTNet-g-n The proposed model with g as the number of groups, and n

as the number of blocks per group

EffNet V1 An implementation of EffNet [9]. Model architecture con-

tains 1x3 and 3x1 depth-wise separable convolution and

pooling-based blocks

EffNet V1 large As per EffNet V1 with two additional layers and more chan-

nels

EffNet V2 As per EffNet V1, introduced also in [9] in response to Mo-

bileNetV2, model contains minor changes relating to net-

work expansion, extension rates (depth and width) and the

replacement of ReLU on the point-wise layers with leaky

ReLU

MobileNet An implementation of MobileNet [5] of varying widths.

Model architecture contains 3x3 depth-wise separable con-

volutions

MobileNet large As per MobileNet implementation with two extra layers

MobileNetV2 An implementation of MobileNetV2 [7] of varying widths.

Model contains 3x3 depth-wise convolutions and inverted

residual structures where shortcut connections are between

bottleneck layers

ShuffleNet An implementation of ShuffleNet [6] of varying widths.

Model contains 3x3 depth-wise convolutions in addition to

point-wise group convolution and channel shuffle

ShuffleNet large As per ShuffleNet implementation with two extra layers

for the CIFAR-10 data set while Table 6 indicates the performance improvements of the best

performing candidate models over the benchmark networks. The results in both tables are

split into two categories according to model sizes.

Within the first groups (i.e., the larger networks) of Tables 2 and 6, a comparison is

provided that compares the proposed best candidate model against larger versions of the

efficiency-focused benchmark networks. The best performing benchmark baseline model is

EffNet V1 large with an accuracy rate of 85.02%, with 79.8 million FLOPs. The proposed

model achieves an accuracy rate of 89.9% with 9.9 million FLOPs. It outperforms EffNet

V1 large by 4.88% in terms of accuracy with 87.59% fewer FLOPs. The proposed model

also delivers a considerable improvement in terms of accuracy compared to MobileNetV2

with a 13.43% accuracy improvement, with 39.63% fewer FLOPs.

61



Table 5: Accuracy of the best candidate models found using multi-filtering search, then

trained and tested on CIFAR-10. The first group contains networks with larger configura-

tions, while the second group comprises smaller ones.

Model Widening Factor k Mean Acc Mil. FLOPs
IoTNet-3-2 1.08 89.79% 11

IoTNet-3-4 0.7 89.9% 9.9
IoTNet-3-3 0.66 88.98% 6.2

IoTNet-3-2 0.68 87.19% 4.2
IoTNet-3-2 0.5 81.47% 2.6

IoTNet-3-3 0.41 83.49% 2.5

Table 6: The improvements of the proposed best model for the CIFAR-10 data set over the

state-of-the-art networks, grouped by network sizes.

Model Acc Improvement FLOPs Saving
EffNet V1 large 4.88% 87.59%
MobileNet large 11.72% 14.66%

ShuffleNet large 12.0% 10.81%

EffNet V1 9.7% 13.16%

EffNet V2 8.23% 45.3%

MobileNetV2 13.43% 39.63%

MobileNet 9.71% 27.59%
ShuffleNet 9.89% 10.64%

Within the second group (i.e., the networks with smaller configurations), a comparison

between the proposed model and smaller versions of the efficiency-focused benchmark mod-

els is provided. The best performing baseline model is MobileNet with an accuracy rate of

77.48% and 5.8 million FLOPs. The proposed model achieves an accuracy rate of 87.19%

with 4.2 million FLOPs, i.e., an improvement of 9.71%, with 27.59% fewer FLOPs against

those of MobileNet. The proposed model also beats ShuffleNet with a 9.89% accuracy im-

provement, with 10.64% fewer FLOPs.

The results also indicate that the difference between MobileNet and MobileNet large,

and the difference between ShuffleNet and ShuffleNet large, in terms of performance when

scaling up from smaller to larger sizes, result in less than a 1% improvement in accuracy,

respectively. On the contrary, the performance improvement of the proposed models, i.e.,

between IoTNet-3-4 and IoTNet-3-2, is by 2.71% indicating that diminishing returns when

scaling up MobileNet and ShuffleNet, which the proposed model overcomes.

62



3.4.5 Evaluation Using SVHN

A multi-filtering search strategy is adopted to identify suitable candidate models which con-

tain fewer FLOPs than those of the baselines. Two top candidate models were subsequently

identified and trained with 200 epochs on SVHN. The evaluation results on the test set are

shown in Table 7.

Table 7: Accuracy of the best candidate models found using the multi-filtering search, then

trained and tested on SVHN.

Model Widening Factor k Mean Acc kFLOPs
IoTNet-3-5 0.14 89.22% 499.7
IoTNet-3-2 0.21 88.4% 474.3

As indicated in Table 7, the candidate models containing three groups performed the best

which again indicates that multiple downsampling stages and depth are influential factors.

Owing to the less challenging nature of SVHN, the candidate models favoured depth over

width. Since SVHN contains digits which vary much less between samples than a more

general data set would such as CIFAR-10, this indicates that fewer filters are required to

extract fine detail and perform classification well. Therefore, less width was required.

Tables 8 and 9 compare the best proposed candidate model against efficiency-focused

benchmark models on the SVHN data set. Motivated by the related research [9] where the

comparison was conducted using one category of smaller networks owing to the simplicity

of the problem, this research makes a comparison with SVHN using a similar style, i.e.,

purely with the smaller network category. As illustrated in Tables 8 and 9, the best perform-

ing benchmark baseline model is EffNet V1 with an accuracy rate of 88.51%, with 517.6

kFLOPs. The proposed model achieves an accuracy rate of 89.22%, with 499.7 kFLOPs,

and outperforms EffNet V1 by 0.71% in terms of accuracy with 3.46% fewer FLOPs. It also

makes a considerable improvement, i.e., 6.49%, in terms of accuracy with 31.84% fewer

FLOPs as compared with those of ShuffleNet. The proposed model is also able to make a

significant reduction, i.e., 57.03% in FLOPs, when compared against MobileNetV2 while

also improving accuracy by 2.51%. The empirical results indicate that the proposed ar-

chitecture substantially reduces the trading of accuracy over computational cost by making

significant reductions in FLOPs while improving performance across the board.

3.4.6 Evaluation Using GTSRB

The baseline models are split into two categories according to model sizes, measured in

FLOPs. A multi-filtering search method was adopted to identify suitable candidate models

with fewer FLOPs than those of the baselines, for each network category. Three candidate

models were identified for each network configuration, which was subsequently trained with

200 epochs and tested on GTSRB. The detailed results are shown in Table 10.

63



Table 8: Evaluation results for the SVHN data set.

Model Widening Factor k Mean Acc kFLOPs
EffNet V2 0.34 87.3% 1,204.2

MobileNetV2 0.33 86.71% 1,162.8

EffNet V1 0.14 88.51% 517.6

MobileNet 0.22 85.64% 773.4

ShuffleNet 0.21 82.73% 733.1

IoTNet-3-5 0.14 89.22% 499.7

Table 9: The improvements of the proposed best model for the SVHN data set over the

state-of-the-art networks.

Model Acc Improvement FLOPs Saving
EffNet V2 1.92% 58.5%
MobileNetV2 2.51% 57.03%

EffNet V1 0.71% 3.46%

MobileNet 3.58% 35.39%

ShuffleNet 6.49% 31.84%

As shown in Table 10, all top candidate models contained three groups. They outper-

formed all the networks with one group or two groups, which ascertains the importance of

multiple downsampling stages and network depth. The candidate models required less width

than on those used for CIFAR-10, yet more width than those tested upon SVHN. Since GT-

SRB is imbalanced with comparatively more classes (i.e., 43) and contains images with a

range of lighting conditions, it is more challenging than SVHN. Therefore, more filters are

required in the models than those used in SVHN. On the other hand, GTSRB consists of

images with road traffic signs which are comparatively consistent in design and have fewer

variations. Thus, it is less challenging than CIFAR-10. Therefore, fewer filters are required

than those used in CIFAR-10. Also, the results indicate that shallow but wide, or deep and

narrow models performed worse. As an example, the empirical results in Table 10 indicate

that when constructing small models, depth must be compromised with width. This can be

observed by the improvement in performance when reducing the number of blocks per group

from three to two while increasing width.

Tables 11 and 12 compare the best candidate model for each network category against

efficiency-focused benchmark models on the imbalanced GTSRB data set. For the larger

network comparison, the best performing benchmark baseline model is MobileNetV2 with

an accuracy rate of 90.74%, with 710.7 kFLOPs. The proposed model achieves an accuracy

rate of 93.17%, with 531.0 kFLOPs. It outperforms MobileNetV2 by 2.43% in terms of

accuracy with 25.28% fewer FLOPs. It also makes a significant improvement, i.e., 5.02%,

in terms of accuracy with 0.38% fewer FLOPs as compared with those of MobileNet. The

64



Table 10: Accuracy of the best candidate models found using the multi-filtering search, then

trained and tested on GTSRB. The first group contains networks with larger configurations,

while the second group comprises smaller ones.

Model Widening Factor k Mean Acc kFLOPs
IoTNet-3-2 0.22 93.17% 531.0
IoTNet-3-5 0.15 90.57% 531.5

IoTNet-3-3 0.18 91.84% 427.1

IoTNet-3-3 0.15 88.25% 342.1

IoTNet-3-3 0.13 88.72% 323.9

IoTNet-3-1 0.24 73.33% 310.3

IoTNet-3-2 0.18 88.82% 301.6

proposed model is also able to make a significant reduction in FLOPs, i.e., 24.63%, when

compared against EffNet V2 while also improving accuracy by 2.77%. The empirical results

also indicate that when scaling down to 301.6 kFLOPS, it was not possible to increase the

width beyond 0.18 but at the same time also staying within the target FLOP range of be-

low 344.1 kFLOPs. Therefore, further studies will be conducted around different widening

schemes to address this.

Table 11: Evaluation results of the GTSRB data set. The results are grouped by network

sizes in FLOPs. The first group contains larger networks, with the second group showing

comparatively smaller models.

Model Widening Factor k Mean Acc kFLOPs
EffNet V2 0.3 90.4% 704.5

MobileNetV2 0.31 90.74% 710.7

MobileNet 0.23 88.15% 533.0

ShuffleNet 0.23 88.99% 540.7

IoTNet-3-2 0.22 93.17% 531.0
EffNet V1 0.15 91.79% 344.1

IoTNet-3-2 0.18 88.82% 301.6

3.4.7 Evaluation Against 3x3 Standard Convolutions

To prove the effectiveness of the proposed architecture against a scaled-down state-of-the-

art model based on the popular 3x3 standard convolution, a 3x3-based model is constructed

by replacing the proposed 1x3 and 3x1 pairs with a 3x3 convolution for comparison. The

proposed model and its 3x3 standard convolution counterpart are then scaled down to con-

tain between 1 to 10 million FLOPs. The 3x3 configuration closely resembles scaled-down

variants of popular models proposed by [3, 4]. With some minor alterations to the width

65



Table 12: The improvements of the proposed best model for the GTSRB data set over the

state-of-the-art networks, grouped by network sizes.

Model Acc Improvement FLOPs Saving
EffNet V2 2.77% 24.63%

MobileNetV2 2.43% 25.28%
MobileNet 5.02% 0.38%

ShuffleNet 4.18% 1.79%

EffNet −2.97% 12.35%

calculation, it would also resemble the architecture proposed by [56]. Both models are then

trained on the data sets CIFAR-10, SVHN and GTSRB as discussed earlier.

3.4.8 Evaluation Against 3x3 Standard Convolution-based Models Using CIFAR-10

Figure 21 demonstrates that on the CIFAR-10 data set, the proposed model offers signifi-

cantly improved accuracy rates over its 3x3 counterpart in all cases when scaled between 1

and 10 million FLOPs. The empirical results also indicate that scaling both model variants

to sizes greater than 3 million FLOPs results in an improvement of accuracy, but with greater

diminishing returns between the model complexity and the observed accuracy improvement.

Figure 21: CIFAR-10: The proposed model based on 1x3 and 3x1 convolution pairs com-

pared with a 3x3-based approach. Both variants are scaled to match in terms of FLOPs

ranging from 1 to 10 million.

3.4.9 Evaluation Against 3x3 Standard Convolution-based Models Using SVHN

Figure 22 compares the proposed model against its 3x3 counterpart on the SVHN dataset.

The empirical results indicate that due to SVHN representing a simpler problem when com-

66



pared to CIFAR-10, scaling the 3x3 model to more than 3 million FLOPs does not result

in any significant performance improvements. Also, the accuracy rate achieved by the 3x3

model when scaled to 3 million FLOPs is surpassed by that of the proposed model contain-

ing just 1 million FLOPs. This indicates a significant reduction in computational cost by

using the proposed model. For experiments scaled above 6 million FLOPs, the proposed

model achieves greater accuracy when using just 5 million FLOPs, which represents another

significant reduction in computational cost.

Figure 22: SVHN: The proposed model based on 1x3 and 3x1 convolution pairs compared

with a 3x3-based approach. Both variants are scaled to match in terms of FLOPs ranging

from 1 to 10 million.

3.4.10 Evaluation Against 3x3 Standard Convolution-Based Models Using GTSRB

Figure 23 compares the proposed model against its 3x3 counterpart on the GTSRB data set.

The empirical results indicate that scaling either model larger than 3 million FLOPs does

not result in any significant real-world accuracy gains. The empirical results for models

containing between 1 and 3 million FLOPs indicate significant accuracy improvements with

the proposed model outperforming its 3x3 counterpart throughout. While both models with 4

million FLOPs result in the same accuracy rates, the proposed model scaled above 4 million

FLOPs again shows superior performance over its 3x3 counterpart.

3.4.11 Computational Cost Comparison

A model’s suitability for deployment on a resource-constrained environment is evaluated by

measuring the time and memory utilisation required to process one image from a batch size

of 128 images with 32x32 resolutions. The tests are performed using the proposed best per-

forming models obtained from Tables 2, 8 and 11. The time and memory utilisation is mea-

sured using a Raspberry Pi 3 Model B+ device and compare them against those of a desktop

67



Figure 23: GTSRB: The proposed model based on 1x3 and 3x1 convolution pairs compared

with a 3x3-based approach. Both variants are scaled to match in terms of FLOPs ranging

from 1 to 10 million.

PC. The specifications of both devices can be found in Table 13, while the results of the tests

are recorded in Table 14. All tests are performed using the CPUs, as resource-constrained

environments often lack GPUs. The processing time per image for both environments is cal-

culated by processing a batch of 128 images. The time is then divided by 128 to give a mean

elapsed per image.

Table 13: Specifications and environmental settings of the desktop PC and Raspberry Pi.

Device CPU Memory Operating System Library

PC I7-2600k @ 4GHz 16GB Ubuntu 18.04 LTS PyTorch 1

Raspberry Pi 3 ARM Cortex @ 1.4GHz 1GB Raspbian Buster 4.19 PyTorch 1

As expected, the processing time of the Raspberry Pi is longer than that of the desktop

PC owing to the significantly faster CPU in the PC. However, the empirical results indicate

that the time required to process one image on the Raspberry Pi is very reasonable, ranging

between 4.06 ms on the smallest proposed model and 87.5 ms on the largest proposed model.

The empirical results also indicate that indeed time is correlated with FLOPs as the slowest

proposed model was also the largest in FLOPs. The space requirements across all data sets

were well within the bounds of both devices meaning that multiple models could comfortably

be deployed within both environments simultaneously. Space could be further reduced if

required by decreasing the batch size from 128 to a suitable lower value.

68



Table 14: Comparison of time and space required to process one image from a batch of 128

between a PC and Raspberry Pi. Time is reported as the time taken to process one image, in

milliseconds.

Model Widening Factor Data Set kFLOPs Memory (MB) Pi -
time
(ms)

PC -
time
(ms)

IoTNet-3-4 0.7 CIFAR-10 9900 392 87.50 0.78

IoTNet-3-2 0.68 CIFAR-10 4200 192 46.09 0.39

IoTNet-3-5 0.14 SVHN 499.7 15 5.94 0.20

IoTNet-3-2 0.22 GTSRB 531.0 27 4.61 0.13

IoTNet-3-2 0.18 GTSRB 301.6 14 4.06 0.16

3.4.12 Discussion

The related studies such as [5, 6, 7] employ depth-wise separable convolutions as a strategy to

reduce computational cost, which has proven to be successful pertaining to cost when com-

pared with much larger, state-of-the-art standard convolution-based models such as ResNet.

However, in comparison with the most recent works such as [9, 8], they are still quite large,

e.g., the MobileNet models contain between 41 and 569 million FLOPs. For much smaller

models, more suited to constrained IoT devices, the proposed approach of trading accuracy

with computational cost by factorizing 3x3 standard convolutions into pairs of 1x3 and 3x1

standard convolutions leads to significant improvements over the efficiency-focused bench-

mark models. The empirical results indicate that depth-wise separable convolution-based

networks scale down worse than the proposed approach due to a lack of parameters at smaller

scales, as demonstrated in the experimental studies. This detrimentally impacts their model

training processes as well as their performance as indicated within Tables 2, 8 and 11.

Comparing the proposed approach against scaled-down 3x3 standard convolution-based

models as illustrated in Figures 21–23, the empirical results indicate that on all data sets, the

proposed model outperforms its 3x3 counterpart greater at smaller scales, i.e., with less than

3 million FLOPs. One explanation for this was provided by [3], which highlighted that the

important factors to overall model accuracy are network depth and multiple downsampling

stages. In other words, deep models that perform downsampling in multiple stages are likely

to lead to promising accuracy rates, while shallower models with fewer downsampling opera-

tions are more inclined to suffer from poor performance. This is confirmed by the findings in

Tables 5, 7 and 10 where the best proposed candidate models always contained three groups.

A second explanation pertaining to an interesting side effect to the proposed approach of

factorizing a 3x3 standard convolution into a pair of 1x3 and 3x1 convolutions is that it also

doubles model depth. The empirical results indicate that this increase in depth was a key fac-

tor leading to the significant performance improvements observed in this study. An increase

in depth can, however, lead to overfitting within larger models, i.e., over 3 million FLOPs,

which is indicated by a narrower improvement in performance at larger scales against its 3x3

69



counterparts. As the proposed model is designed to improve performance at smaller scales

for resource-constrained environments, this trade-off is believed to be acceptable but could

be addressed in future directions by incorporating cutting-edge data augmentation strategies

such as [86].

70



4 Proposed PSO Based Architecture Generation for Image

Classification

4.1 Introduction

The motivation of this research is to design a automatic procedure for deep CNN model gen-

eration. The following novel contributions are proposed. 1) An encoding scheme which en-

sures particle positions form architecturally valid and solutions is proposed. Such a scheme

avoids the need for additional hard coded rules found in related studies [10], and reduces

wasteful function evaluations. 2) A particle velocity updating scheme is proposed to effec-

tively guide each particle through a complex search space so that more accurate networks can

be discovered quicker. Success is evaluated against the current state-of-the-art algorithms

[10] [11] and 3) Propose how to design efficient CNN models using an algorithm which is

both easy to understand and fast to run, so that the approach can be easily exploited in both

academia and industry settings with limited specialised knowledge, while not compromising

the overall performance. Fig. 24 illustrates an overview of the proposed deep architecture

generation model.

Figure 24: The proposed system architecture where the identified best model is indicated by

the global best solution

4.2 The Proposed Approach for Deep Architecture Generation

The proposed PSO variant incorporates a group-based encoding strategy as well as search

operations motivated by network configuration variations and weighted velocity strengths to

increase search diversity. Specifically, the proposed model adopts a group-based encoding

strategy to stimulate particle natural movement while guarding against invalid architectures.

It also employs a novel particle distance computation strategy for calculating the differences

between the current position of particle X and the global best gbest and personal best pbest

solutions, respectively. Such a search strategy enables the swarm to thoroughly explore the

search space between the particles and the local and global optimal signals in an attempt

71



to identify the network configuration gaps, therefore increasing the chances of achieving

global optimality. To increase diversification, a new velocity updating mechanism is adopted

to randomly select the layers from either the distance between X and gbest , or the distance

between X and pbest . Moreover, the proposed model weights the strength of velocity updates

to implement a granular movement to balance between exploration and exploitation.

The pseudo-code of the proposed PSO algorithm for deep architecture generation is illus-

trated in Algorithm 1. Firstly, the training and test sets are obtained for each image database.

A swarm of particles is initialized, where the position of each particle presents a potential

network architecture. The proposed PSO algorithm is used to evolve the architecture and

parameter settings of deep networks based on the proposed search operations. Specifically,

the particles explore the search space by using a new weighted position updating procedure.

During fitness evaluation, each particle encoded position is converted into a CNN model,

which is subsequently trained using the training data set. The average training entropy loss

is used as the fitness score to update those of pbest and gbest accordingly, if the current so-

lution is fitter. The best architecture is obtained based on the global best position identified

during the search process. It is then fully trained using the training set with a comparatively

larger training epoch, and tested using the unseen test set. Each key proposed component is

covered in detail within the following subsections.

4.2.1 The Proposed Encoding Strategy

A search space consists of all possible combinations of available settings including the num-

ber of layers and layer configurations. A particle represents one instance of a particular set

of encoded settings which are used to describe a model architecture. The proposed encoding

strategy adopts a group-based structure for describing a network, as shown in Fig. 25.

The underlying rationale of the group-based encoding strategy is as follows. It is de-

signed by embedding human knowledge to ensure that the convolutional layers will always

be followed by optional pooling layers. The number of pooling layers can be adjusted in

accordance with the input image size. In other words, the encoding process ensures that the

position of the pooling layers and the frequency of pooling operations will be valid, cor-

responding to the input image size. It simplifies implementation and does not artificially

disrupt the natural particle movement.

Specifically, a group contains a number of convolutional layers and an optional pooling

layer. A network contains multiple groups to vary down-sampling, but is limited by gmax

to ensure down-sampling does not occur too frequently. The final group in a network is

always followed by a fully connected layer for classification. This proposed group-based

deep network generation strategy ensures all the formulated CNN models are valid whilst

still providing sufficient flexibility for search space exploration without the requirement to

specify the additional guarding rules.

In addition to the layer type, hyperparameter meta-data are encoded. In the case of a

convolutional layer, the kernel size is encoded as {k ∈ R|kmin ≤ k ≤ kmax}, and the number

72



Algorithm 1 The proposed PSO-based deep architecture generation model
1: procedure PSO-BASED CNN MODEL GENERATION

2: Initialize training and test data sets

3: Initialize a swarm population

4: for (each t iteration) do
5: for (each particle X in swarm) do
6: Construct a new model based on the current particle position

7: loss← trainModel()

8: if loss < pbest . f itness then
9: pbest . f itness← loss

10: Update the personal best position

11: end if
12: if loss < gbest . f itness then
13: gbest . f itness← loss

14: Update the global best position

15: end if
16: Update the particle position by using the proposed weighted position updat-

ing procedure

17: end for
18: end for
19: Save gbest and initialize the identified best model based on gbest

20: Train the final network using the training set and a larger training epoch

21: Test the final model with the unseen test set

22: Output the classification error rate

23: end procedure

Figure 25: An example model containing two groups where each group contains convolu-

tional layers and an optional final pooling layer

of output channels as {cout ∈ R|outmin ≤ cout ≤ outmax}. Pertaining to the pooling layers,

the pooling type is encoded as {ptype ∈ R|0 ≤ ptype ≤ 1}. The type of the pooling layer is

selected according to the value of ptype. The types of pooling include the max and average

poolings, or none in which case pooling is skipped. Different types of pooling layers are

assigned based on a pre-determined threshold setting (see Section 4.3 for detail).

The proposed algorithm encodes the initial network depth as {d ∈R|1≤ d≤ dmax}which

73



Table 15: The optimized network parameters and their corresponding search ranges. The

settings of the search ranges adopted in the experiments are detailed in Section 4.3.

Layer Parameter Range
Convolution Kernel k {k ∈ R|kmin ≤ k ≤ kmax}

Number of channels cout {cout ∈ R|outmin ≤ cout ≤ outmax}
Pooling Pooling type ptype {ptype ∈ R|0≤ ptype ≤ 1}
Depth Number of layers l Automatically optimized during the velocity update evolving process

is subsequently split into groups. A network contains g groups where {g ∈R|1≤ g≤ gmax}.
The number of convolutional layers in each group is initialized by setting linitial using Equa-

tion 18 so that the initial number of layers is evenly distributed between groups. During the

evolving process, the number of convolutional layers for each group is further optimized.

The final layer of a group is always a pooling layer, where the pooling type or whether pool-

ing occurs is determined by the current value of ptype. As down-sampling halves the input

dimension size, another key advantage of the proposed group-based method is that gmax can

be set to reflect the dimension of the input images, thus ensuring down-sampling is omitted

in situations that can cause the model to become invalid, mitigating the need for additional

rules. In other words, the proposed approach ensures the position and maximum frequency of

the pooling always result in a valid model architecture without the need for complex govern-

ing rules such as those imposed by psoCNN, which interrupt the natural particle movements

and complicate the implementation. In this research, the number of groups is limited to 2,

owing to the input image size (i.e. 28x28). However, for data sets with larger images, the

number of groups can be increased accordingly.

linitial =
d
g

(18)

As the final group is always followed by a fully connected layer, the model maps the out-

put channel in the final network layer cout to the number of target classes nclass automatically.

The parameters optimized by the proposed PSO algorithm including their search ranges are

provided in Table 15.

4.2.2 Initialization

A swarm consists of N particles initialized with randomly assigned positions. The first step

of initialization is to randomly set the numbers of groups g and depth d for each particle. For

each group, l convolutional layers are initialized according to Equation 18 with one pooling

layer. Initializing a convolutional layer is performed by randomly assigning the kernel size

k and the number of output channel cout , respectively. The value of ptype is also randomly

selected for the pooling layer.

74



4.2.3 Fitness Evaluation

When evaluating the fitness of a particle, a new model is constructed based on the hyper-

parameter settings for a given particle. The model is then trained on the training set for 1

epoch. Next, the average loss of the Adam optimizer [156] is computed during the training

phase. This average training loss is used as the fitness score. The overall objective of the

PSO algorithm during the optimization process is to minimise the average loss. The model

with the most optimal network configuration is recommended as the global best solution. It

is subsequently trained with a larger number of epochs using the training set and evaluated

with the unseen test set for performance comparison.

4.2.4 Particle Distance Calculation

In the PSO algorithm, an individual particle X moves in the search space by following the

personal and global best solutions. The calculation of the distance from the particle’s per-

sonal best position pbest , and the distance from the global best position gbest is vital for search

space exploration. The proposed position distance computation between two particles is in-

troduced as follows.

Particles often have different lengths owing to different architecture configurations. As

such, on a group-by-group basis, the shallower group is padded to the same length by tem-

porarily appending the empty layers. Once both particle lengths match, the distance of par-

ticle X2 with respect to particle X1 defined as X1−X2 is calculated depending on the layer

types. For the convolutional layers, X1−X2 is computed by subtracting the current values

of k and cout of X2 from those of X1 to return the distances represented as ∆k and ∆cout . Two

special cases exist. Specifically, if a convolutional layer of X1 is empty, the output is empty.

Conversely, if a convolutional layer of X2 is empty, the configurations of the corresponding

convolutional layer for X1 are copied. Pertaining to the pooling layer, X1−X2 is com-

puted by subtracting the current value of ptype of X2, from that of X1 to return the distance

represented as ∆ptype. Fig. 26 visually demonstrates the proposed distance computation

mechanism between two particles, including the special and normal cases. The proposed

particle difference computation mechanism is applied to the distance computation between

the current particle and its personal and the global best solutions by replacing X1 with pbest

and gbest , respectively.

In comparison with the existing studies such as psoCNN [10], where the distance between

two particles is yielded by directly copying the layer configurations from pbest or gbest , the

proposed movement mechanism identifies the configuration variations between two particles

as indicated in Fig. 27 and effectively explores the search space between the current particle

and the local and global best solutions to avoid stagnation. In other words, the proposed

strategy is able to devise new layer configurations, instead of inheriting the existing layer

structures from pbest and gbest directly in order to increase search diversity. Therefore, the

resulting model is able to better explore the search space and attain global optimality. How

75



these position differences are used with respect to the velocity calculation is explained in the

next section.

Figure 26: Distance between particles calculated as X1−X2

4.2.5 Velocity Calculation

To calculate velocity V , the distances of X with respect to pbest and gbest is calculated. Veloc-

ity is calculated for each group respectively using the proposed distance calculation mecha-

nism. Fig. 27 illustrates an example for the distance calculation between the current particle

and the personal and global best solutions.

Figure 27: Distance calculation between particle X and pbest and gbest respectively

Next, both resulting gbest −X and pbest −X distances are padded to the same length by

temporarily appending the empty layers to the shallower group so that the same depth is

achieved.

Next, for every m layer, a choice is made which decides whether to keep the resulting

velocity calculation from gbest −X or pbest −X in the final velocity by generating a random

number {r ∈R|0≤ r≤ 1} and comparing it against a threshold α . The resulting velocity for

76



each element is determined using Equation 19, as shown in Fig. 28, where g represents the

group number and m denotes the number of layers in each group. In addition, α=0.5 was set

to best match the setting of [10], in order to facilitate a direct comparison with the existing

methods.

V g
m =

pg
best m−Xg

m if r ≤ α,

gg
best m−Xg

m otherwise
(19)

Figure 28: Calculating the final velocity by picking at random from pbest−X or gbest−X

4.2.6 Particle Update

Velocity V obtained from the process is subsequently used to update the position of particle

X . To facilitate a thorough exploration of the search space as well as increase the likelihood

of generating more diversified layer configurations, a weighted velocity strength for position

updating is used. Specifically, unlike the original PSO algorithm where the full velocity is

used for position updating, as indicated in Equation 6, a weighting factor β is used to apply

partial velocity for new position generation in the (t +1)-th iteration. The proposed position

updating formula is defined in Equation 20.

X t+1 = βV +X t (20)

where β is the weighting factor used to control the degree at which the position of a parti-

cle is changed with respect to the velocity. The setting of β=0.5 in Equation 20 was selected

based on trial-and-error. Moreover, position updates with respect to the kernel size k are

bound purely by kmin. Likewise, position updates with respect to the number of channels cout

are bound only by outmin, in order to ensure the values remain valid. Such a position updat-

ing mechanism provides a granular and thorough exploration of the search space to increase

the likelihood of finding global optimality and avoiding being trapped in local optima.

4.3 Experimental Studies

In these experimental studies, a swarm of 20 particles is initialized. Particle positions are

updated over a maximum of 10 iterations. Full details of the settings used to constrain the

search space when identifying the optimal network configurations are provided in Table 16.

77



The proposed model is implemented using PyTorch v1.5 [158]. During the optimization

process, each prospective model represented by a particle is trained for 1 epoch with a mini-

batch size of 64. Cross-entropy loss as the fitness criterion and Adam as the optimizer with

a learning rate of 0.001 was selected for fair comparison as these are the settings adopted by

closely related studies such as psoCNN [10]. The final best model indicated by the global

best solution is re-trained for 100 epochs using the training set, which is subsequently eval-

uated using the test set.

All convolutions are performed with the same convolution formulation where padding

is applied to the input to ensure matching between the input and output dimensions. Each

convolution within the CNN, except for the first one, is preceded with a dropout layer with a

dropout probability of 0.5. A convolutional layer is always followed by batch normalisation

[154] and a ReLu activation function [159]. For the pooling operations, a non-overlapping

2x2 pooling mechanism is adopted. The final layer of each yielded model is a fully connected

layer, which maps the outputs of the final convolutional layer to the number of classes of the

respective data set.

Table 16: Algorithm settings and the search space used in these experiments. The settings

selection was made to closely match those of existing studies [10] so that a fair comparison

can be made.

Name Description Value Used
kmin Minimum kernel size 3

kmax Maximum kernel size 7

outmin Minimum number of channels 3

outmax Maximum number of channels 256

dmax Maximum depth 20

gmax Maximum number of groups 2

α Layer selection boundary threshold 0.5

β Weighting factor 0.5

4.3.1 Algorithm Parameter Settings

The settings shown in Table 16 are used for all experiments. The values and constraints in

Table 16 are manually selected to best match those proposed in [10], in order to facilitate

direct comparison between the competing methods. As an example, the α parameter in

Equation 19 is used as the threshold to determine if each dimension of the new velocity

is generated using the position difference from the personal or global best solution. The

setting for α=0.5 was chosen to best match the setting adopted by psoCNN [10] to ensure

a fair comparison. Such a setting (i.e. α=0.5) gives an equal consideration of the position

difference from both best solutions as a reasonable trade-off. In these experiments, the setting

for β=0.5 in Equation 20 was chosen by performing a grid search at 0.1 intervals. β is the

78



weight factor used to control the degree at which the position of a particle is changed with

respect to the velocity. As the benchmark data sets used have a size of 28x28, a setting of

gmax = 2 was selected so that down-sampling does not cause the dimension to reduce below

8x8. Moreover, the pooling parameter, ptype, is optimized during the optimization process as

shown in Table 15. It has a search range of [0, 1]. Equation 24 is used to define the pooling

type according to the optimized value of ptype.

pooling =


NoPooling if ptype ≤ 0.33,

AvePooling if ptype > 0.33 & ptype ≤ 0.66,

MaxPooling otherwise

(21)

4.3.2 Benchmark Models

A number of hand-crafted networks and deep architecture generation methods are employed

for performance comparison. In particular, several PSO-based algorithms are used in the

experiments. As an example, IPPSO [13] is adopted which employs a test methodology

consisting of 20 particles over 10 iterations constrained to a maximum of 9 convolutional

layers and 3 fully connected layers.

Another state-of-the-art PSO-based architecture generation method, i.e. psoCNN [10],

is also selected for comparison. It adopts a test methodology consisting of 20 particles

optimized over 10 iterations. The search space constraints include a kernel size between 3x3

and 7x7 inclusive, a maximum of 256 channels and an upper limit of 20 layers comprising

a combination of convolutional, pooling and fully connected layers. During the training

phase, each candidate model is trained for 1 epoch using the Adam optimizer, where the

swarm objective is to minimise the average loss.

In addition to PSO-based approaches, a GA-based called EvoCNN [12] is selected for

performance comparison. EvoCNN employs the selection, crossover and mutation operators

for CNN architecture generation. It generates offspring chromosomes from an initial parent

pool size of 100. The variable-length gene encoding strategy is used to represent the CNN

architectures with diverse lengths where convolutional, pooling and fully connected layers

are embedded.

Moreover, MetaQNN [11] is used for performance comparison. It is a meta-modeling al-

gorithm based on reinforcement learning for generating high-performing CNN architectures.

Finally, three variants of the LeNet model [1] are also adopted as examples of hand-crafted

networks for performance comparison. The LeNet models include LeNet-1 which contains

twelve convolutional layers, two average pooling layers and one linear layer, LeNet-4 which

contains twenty convolutional layers, two average pooling layers and two linear layers, and

LeNet-5 which contains twenty-two convolutional layers, two average pooling layers and

three linear layers.

79



4.3.3 Data Sets

A total of eight well-known benchmark data sets were selected for performance compari-

son, namely Rectangles [160], Rectangles-I [160] which consists of rectangles against im-

age backgrounds, Convex [160], MNIST [1], and four MNIST variant data sets. These data

sets are selected to aid direct comparison between the proposed method and the aforemen-

tioned recent models. The MNIST data set [1] contains images of handwritten digits ranging

from 0 to 9, with size-normalized and centered. The data set consists of 60,000 training and

10,000 test samples. The MNIST variant data sets are comparatively more challenging than

MNIST because of the additional distraction factors. As an example, MNIST-RD [160] com-

prises rotated MNIST digits, while MNIST-RB [160] contains MNIST digits with random

background. MNIST-BI [160] consists of MNIST digits against background images, while

MNIST-RD+BI [160] contains rotated MNIST digits against background images. Table 17

provides a summary of the aforementioned data sets.

Table 17: A summary of the data sets used during the experiments, all of which have an

input size of 28 x 28 x 1

Data set Description Classes Train/Test Samples
MNIST Handwritten digits 10 60,000/10,000

MNIST-RD MNIST with rotated digits 10 12,000/50,000

MNIST-RB MNIST with random back-

grounds

10 12,000/50,000

MNIST-BI MNIST with background im-

ages

10 12,000/50,000

MNIST-RD+BI MNIST with rotated digits

and background images

10 12,000/50,000

Rectangles Rectangle border shapes 2 12,000/50,000

Rectangles-I Rectangle border shapes

against image backgrounds

2 12,000/50,000

Convex Convex shapes 2 8,000/50,000

4.3.4 Results

4.3.5 Performance Comparison with Existing Studies

Table 18 presents the experimental results for eight data sets. For the three LeNet models,

i.e. LeNet-1, LeNet-4 and LeNet-5, the results for the MNIST data set are taken from the

original publication [1]. Experiments are conducted using the three LeNet models for the

remaining data sets and present the results in Table 18. For all other benchmark methods, i.e.

MetaQNN [11], EvoCNN [12], IPPSO [13] and psoCNN [10], the results reported in their

original studies are provided, to ensure a fair comparison.

80



The last two rows in Table 18 present the mean classification error rate achieved by the

proposed method over 10 runs, as well as the best result from the 10 runs, for each data set.

The remaining rows are the mean and best error rates reported by the compared methods. The

results in which the proposed method outperforms the competitors are highlighted in bold.

As illustrated in Table 18, the proposed approach achieves a superior performance, indicated

by a reduction in the error rates reported across nearly all the test data sets in comparison

with all the baseline models, with the same swarm size, iterations and constrains. In addition,

psoCNN is the best performing baseline method across all data sets. In Table 19, the error

rates of the proposed model is compared against those of psoCNN [10], to clearly indicate

performance improvements.

Table 18: Experimental results compared against various benchmark methods in terms of

error rates. Results in bold indicate a reduction in error rate when compared with the bench-

mark methods. For the LeNet models, the results reported for MNIST are taken from the

original study [1]. The LeNet model results for the remaining data sets were obtained by

training the model from scratch. The results of MetaQNN, EvoCNN, IPPSO and psoCNN

are extracted from their original studies, i.e. [11], [12], [13] and [10], respectively.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
Hand-crafted architectures

LeNet-1 1.70% [1] 19.3% 7.50% 9.80% 40.06% 0.08% 16.92% 10.61%

LeNet-4 1.10% [1] 11.79% 6.18% 8.96% 33.83% 0.05% 16.09% 8.39%

LeNet-5 0.95% [1] 11.10% 5.99% 8.70% 34.64% 0.07% 12.48% 8.40%

Reinforcement learning techniques

MetaQNN (best) [11] 0.44% - - - - - - -

Evolutionary optimization techniques

EvoCNN (best) [12] 1.18% 5.22% 2.80% 4.53% 35.03% 0.01% 5.03% 4.82%

EvoCNN (mean) [12] 1.28% 5.46% 3.59% 4.62% 37.38% 0.01% 5.97% 5.39%

IPPSO (best) [13] 1.13% - - - 33% - - 8.48%

IPPSO (mean) [13] 1.21% - - - 34.50% - - 12.06%

psoCNN (best) [10] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%

psoCNN (mean) [10] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%

The proposed system

ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%
ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%

Table 19: The mean error rates over 10 runs for the proposed method and psoCNN [10],

along with the performance differences between the two methods (where the (-) symbol

indicates that the proposed model is better and the (+) symbol indicates that the proposed

model is worse).

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%
ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%

psoCNN (best) [10] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%

psoCNN (mean) [10] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%

error difference (best) 0.03%(+) 0.35%(-) 0.01%(+) 0.30%(+) 2.67%(-) 0.03%(-) 1.21%(-) 0.34%(-)
error difference (mean) 0.06%(-) 2.52%(-) 0.65%(-) 0.06%(+) 7.58%(-) 0.34%(-) 2.37%(-) 2.27%(-)

MNIST represents a relatively simple benchmark data set with limited room for improve-

ment. The networks devised by the proposed method achieve a mean error rate of 0.38%

for MNIST, which is an improvement of 0.06% as compared with those from the networks

yielded by psoCNN. The best CNN model constructed with the proposed method achieves

the best error rate of 0.35%, which is within a reasonable error margin as compared with the

81



Table 20: Result comparison between the proposed model using the encoding strategy only,

and the proposed model using both encoding and search strategies, over 10 runs.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
psoCNN (best) [10] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%

psoCNN (mean) [10] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%

ours (best) encoding + copy 0.36% 3.32% 2.07% 2.44% 15.68% 0.02% 1.58% 1.47%

ours (mean) encoding + copy 0.42% 4.76% 2.25% 3.43% 18.00% 0.47% 2.30% 1.94%

ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%

ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%

Table 21: The mean search time in minutes of the experiments using (1) purely the proposed

encoding strategy, and (2) the overall proposed model for the training and search phase over

10 runs and their corresponding improvements against those of psoCNN. The (-) symbol

indicates that the proposed strategies are better in computational costs. All experiments have

been conducted using one NVIDIA GeForce RTX 2080Ti consumer GPU.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
psoCNN (mean) [10] 276 47 49 56 43 14 46 33

ours (mean) encoding + copy 268 43 44 29 29 7 42 30

Speed improvement encoding + copy -3% -9% -10% -48% -33% -49% -8% -6%

ours (mean) 192 22 23 21 26 5 33 29

Speed improvement -30% -53% -53% -63% -40% -61% -29% -11%

best error rate of 0.32% from psoCNN.

With respect to the MNIST-RD data set, the psoCNN method obtains a mean error rate

of 6.42%. The proposed method constructed a network that produced a mean error rate of

3.9%, which illustrates an improvement of 2.52%. The devised best network achieves the

best error rate of 3.23%, outperforming the best model from psoCNN by 0.35%.

Moreover, for MNIST-RB, again psoCNN is the leading baseline method with a mean

error rate of 2.53%. The proposed method yields a network with a mean error rate of 1.88%,

and outperforms psoCNN by 0.65%.

For the MNIST-BI data set, the devised networks achieve a mean error rate of 2.46%.

The psoCNN model achieves a slightly better performance with a mean error rate of 2.4%.

For MNIST-RD+BI, the generated networks achieve a mean error rate of 13.4%, which

shows a significant improvement of 7.58% over the mean result of 20.98% obtained by the

networks devised by psoCNN. The identified best network also produces the best error rate

of 11.61%, and outperforms that yielded by psoCNN by 2.67%.

For the Rectangles data set, the approach achieves the mean and best error rates of 0%.

This indicates that the proposed approach is able to devise 10 CNN networks, all of which

achieve a 100% accuracy rate. On the other hand, psoCNN and EvoCNN obtain the mean

error rates of 0.34% and 0.01%, respectively.

For the Rectangles-I data set, the optimized networks achieve a mean error rate of 1.57%,

and outperform those generated by psoCNN by 2.37%. Moreover, the identified best CNN

model achieves the best error rate of 1.01%, which shows an improvement of 1.21% as

compared with the best network yielded by psoCNN.

For the Convex data set, the generated CNN models achieve a mean error rate of 1.63%,

which outperforms those produced by psoCNN by 2.27%.

82



A convergence curve comparison between the proposed model and psoCNN is provided.

Fig. 29 plots the mean entropy loss scores of the gbest solutions for both methods in the

training stage over 10 runs with respect to all data sets. The proposed model illustrates a

faster reduction in loss and continuous improvements in subsequent iterations compared to

psoCNN. As an example, for the MNIST-RD+BI data set, the mean loss of psoCNN flattens

after iteration 4. Comparatively, the proposed model continues to achieve improvements

until iteration 8. In short, the model shows faster convergence rates in comparison with

those of psoCNN pertaining to the architecture search for all the data sets.

4.3.6 Effectiveness of the Proposed Encoding and Search Strategies

To further indicate the effectiveness of the proposed encoding and search strategies, exper-

iments were conducted using purely the proposed encoding strategy as well as the overall

proposed model. Specifically, Table 20 illustrates the mean results of the proposed model

(1) with only the proposed encoding strategy, and (2) with both the proposed encoding and

search mechanisms, over a set of 10 runs. The results from the proposed encoding strat-

egy only are shown in rows 3 and 4 in Table 20. When evaluating the encoding strategy

in isolation, the same copying strategy of psoCNN [10] was used as the search operations.

Specifically, the layers are copied randomly from either the global or personal best position

using the same decision boundary setting of α = 0.5, as that used in psoCNN. When us-

ing the proposed encoding strategy only, the results indicate a reduction of the mean error

rates for 6 out of 8 data sets, as compared with those of psoCNN, as presented in Table 20.

Furthermore, the results indicate a further improvement across all 8 data sets when both the

proposed encoding and search strategies are combined, as illustrated in rows 5 and 6 in Table

20. This clearly ascertains the capability of the proposed search mechanisms to enhance the

performance over and above the improvements from adopting only the proposed encoding

strategy.

4.3.7 Computational Cost Comparison

Table 21 provides computational cost comparison for the architecture search during the train-

ing stage between the proposed model and psoCNN over 10 runs. To indicate the effective-

ness of the proposed strategies in reducing the computational cost, the table includes the

mean search time (in minutes) using (1) solely the proposed encoding strategy, and (2) the

overall proposed model. The proposed model and psoCNN adopt the same experimental

settings, i.e., with the mean training entropy loss as the fitness score and a training epoch of

one. In addition, the same swarm size of 20 is used, and the same maximum iteration cycle

of 10 so that the search duration of all methods can be compared directly and fairly. All the

experiments are conducted using one NVIDIA GeForce RTX 2080Ti consumer GPU.

When evaluating the encoding strategy only, the same copying search operation as that

of psoCNN is used. In Table 21 the mean computational costs of the proposed model us-

ing purely the encoding strategy are shown in row 2 and its cost reduction against those of

83



psoCNN in row 3. The proposed model with purely the encoding strategy illustrates en-

hanced computational efficiency in comparison with those of psoCNN for all data sets. This

is owing to the initialization of the swarm with valid and comparatively reasonable network

architectures using the proposed encoding strategy that is able to accelerate the search pro-

cess. In addition, the mean computational costs of the proposed model are reported using

both the proposed encoding and search strategies in row 4 and its cost reduction against those

of psoCNN in row 5. The results indicate that the overall proposed model shows a greater

computational cost reduction across all data sets, owing to the efficiency of the proposed

search mechanisms for architecture evolution during the search process.

Because of the adoption of different fitness evaluation strategies, this study was unable to

present a direct computational cost compared with other baseline methods, i.e. MetaQNN,

EvoCNN and IPPSO. Specifically, these models train and test each optimized candidate net-

work using the training and validation sets, respectively, which increases the search times

due to the use of additional steps (which are computationally heavy). According to the orig-

inal studies, MetaQNN [11] indicates a search time of 100 GPU days for the MNIST data

set, EvoCNN [12] requires average 2-3 days using two GTX 1080 GPU cards for each data

set, while IPPSO [13] consumes average 2.5 hours for the MNIST, MNIST-RD+BI and Con-

vex data sets, respectively. The proposed model and psoCNN illustrate better computational

efficiency in comparison with those of the aforementioned models in most of the test cases.

4.3.8 Discussion

4.3.9 Theoretical Justification

In this research, a group-based encoding strategy as well as new velocity and position updat-

ing mechanisms based on the key network configuration differences and weighted velocity

strengths was proposed. The advantages of the proposed model in comparison with the most

closely related one, i.e. psoCNN [10], are as follows.

The search process of the psoCNN model [10] generates a particular type of layer in

any number (e.g. multiple convolutional or pooling layers). It also generates any combi-

nation of convolutional, pooling and fully connected layers for devising CNN architectures.

Therefore, psoCNN requires additional governing rules to ensure the validity of the gener-

ated networks, which interrupts the exploration capability of the particles in the search space.

In order to tackle such limitations, the proposed group-based encoding strategy ensures all

the formulated CNN models are valid without the requirement of additional governing rules.

Specifically, each group contains at least one convolutional layer, which is followed by an

optional pooling layer. In other words, the pooling layer is always positioned as the final

layer in the group. Moreover, the number of groups can be adjusted in accordance with the

input image size. By restricting the number of groups, the frequency of pooling operations

can be tailored toward the input image size. This ensures the position of pooling layers and

the frequency of pooling operations are valid with respect to the input image size without the

84



Figure 29: Convergence curves of the proposed algorithm and psoCNN. The mean losses of

10 runs are plotted over 10 iterations for all data sets

need for any additional governing rules. Instead of generating several fully connected layers

as in psoCNN, the proposed model only attaches one fully connected layer as the last layer

of the final group in a network, which is similar to the approach in [3].

Moreover, in psoCNN [10], instead of creating new layer configurations, the existing

layer configurations from the personal and global best solutions are copied directly in the

velocity updating operation (as illustrated in the right-hand side in Fig. 30). In contrast, the

proposed model employs the key layer configuration differences between the current parti-

cle and the personal and global best solutions for new velocity generation (as illustrated in

the left-hand in Fig. 30). Therefore, the proposed model is more capable of devising new

network architectures using intermediate positions of the particles’ trajectories. In addition,

85



a new position updating mechanism that takes a partial strength of velocity updates to gen-

erate new positions was proposed. This provides the capabilities for the particles to explore

the search space with various momentums and scales, in order to increase search diversity.

Such a search mechanism allows a more granular exploration pertaining to the in-between

positions, increasing the chances of devising more diversified networks. Therefore, the pro-

posed model is less reliant on initialization, along with enhanced capabilities in evolving

architecture generation.

4.3.10 Experimental Observations in Comparison with Related Studies

This section discusses how the proposed encoding strategy and search mechanisms lead to

improvements in both speed and accuracy in comparison with those of psoCNN [10] through

experimental observations. This section firstly explains the rationale of the proposed encod-

ing strategy for enhancing both speed and accuracy. Then, a discussion is provided around

the benefits of combining both the proposed search and encoding strategies further to im-

prove the accuracy and speed of the final model.

To identify the contribution of the proposed encoding strategy in terms of computational

efficiency, the encoding strategy is isolated from the proposed search operations by combin-

ing it with the copying search strategy used in psoCNN [10]. Next, the time taken to perform

the architecture search in the training phase was recorded. The detailed computational costs

are presented in Table 21. As discussed earlier, the results indicate that across all 8 data sets,

the proposed encoding strategy improves the computational costs as compared with those

of psoCNN [10]. Specifically, a reduction in computational costs in the architecture search

stage by up to 49% on the Rectangles data set was observed. As indicated in Table 21,

the proposed encoding strategy is the primary reason for the enhancement of computational

efficiency. As an example, the encoding method of psoCNN allows the construction of mod-

els containing a large number of fully connected layers. In some cases, the models created

by psoCNN contain 8 consecutive fully connected layers, resulting in a long training time.

Subsequent iterations attempt to eliminate the additional fully connected layers and finally

recommend a model with one fully connected layer towards the end of the search process.

In contrast, as discussed above, the proposed encoding strategy avoids such a problem by

fixing the number of fully connected layers to one, as well as fixing its position to the final

layer of the model, therefore contributing toward the reduction in computational costs.

To identify the contribution of the proposed encoding strategy in terms of accuracy, Table

20 shows that by applying the proposed encoding strategy on its own and adopting the same

velocity updating mechanism as that of psoCNN (i.e. the layer copying strategy from pbest

or gbest), it results in an improvement in the mean accuracy rates (of 10 runs) pertaining to

the MNIST, MNIST-RD, MNIST-RB, MNIST-RD+BI, Rectangles-I and Convex data sets.

These empirical results reveal that psoCNN has constructed pooling layers one after another,

leading to poor performing networks and wasteful function evaluations. The experimental

results also indicate that the use of hardcoded rules in psoCNN for ensuring model validity

86



interrupts the natural particle movement. This is ascertained by the aforementioned accuracy

improvements when applying the proposed encoding strategy alone. The proposed encoding

strategy ensures that undesirable candidate models such as those containing stacks of pool-

ing layers are never constructed since the pooling position is determined by a group-based

structure in the proposed scheme. Each group can only contain at most one pooling layer,

which is always positioned as the final layer in the group after at least one convolutional

layer. Pooling layers, therefore, are never stacked. Furthermore, rules that can interrupt the

natural particle movement such as eliminating excessive pooling layers are not required in

the proposed scheme, as the maximum number of pooling layers is determined by the maxi-

mum number of groups. Therefore, the proposed model eliminates the possibility of having

excessive down-sampling operations that can cause the network to become invalid, mitigat-

ing the need for additional governing rules. Indeed, the proposed encoding strategy ensures

that each devised model is reasonably constructed that helps exploit the search space in a

comprehensive manner.

As indicated in Table 20 and Table 21, combining the proposed search mechanisms (both

velocity and position updating operations) and the proposed encoding strategy together re-

sults in further improvement of accuracy and computational efficiency as compared with

those yielded by using the proposed encoding strategy alone. By combining both strategies

together, the mean accuracy rate increases by up to 7.58% pertaining to the MNIST-RD+BI

data set and the mean computational cost reduces by up to 63% pertaining to the MNIST-BI

data set. This suggests that the copying search strategy adopted by psoCNN is less flexible

because such a strategy heavily relies on a good initialization. It does not create new layer

structures for new velocity generation but simply copies the existing layer configurations

from either the pbest or gbest solutions, as illustrated in the right-hand part of Fig. 30. Com-

paratively, the proposed velocity updating mechanism combined with a granular weighted

movement operation is able to formulate completely new particle solutions by identifying

the key layer configuration differences between particles, as shown in the left-hand part of

Fig. 30. In other words, the proposed search strategies are able to yield new layer configu-

rations which cannot be achieved by the copying operation of psoCNN. In addition, owing

to the capabilities of searching the intermediary positions, the proposed velocity and gran-

ular weighted position updating mechanisms have better diversification and intensification,

leading to better devised networks, as ascertained by the empirical results. In short, both

proposed encoding and search mechanisms illustrate superior efficiency in terms of speed

and performance in comparison with those of psoCNN.

The proposed model and psoCNN are significantly faster than reinforcement learning

and other evolutionary optimization methods for deep architecture generation, whilst not

sacrificing accuracy. The search cost of the proposed model consumes 5 to 192 minutes,

while that of psoCNN consumes 14 to 276 minutes, for all the test data sets. On the other

hand, MetaQNN [11], which is based on reinforcement learning, requires 100 GPU days for

processing the MNIST data set, while EvoCNN [12], which uses a GA-based method, needs

87



Figure 30: Comparison of particle distance calculations between the proposed approach and

the psoCNN method

on average 2-3 days of processing time with two GTX1080 GPU cards for each data set.

4.3.11 Discussion of Identified Models

The best CNN models identified by the proposed method for all the test data sets are shown

in Table 22. In some instances, such as on the Rectangles data set, numerous models that

achieve the same best performance (i.e. 0% error rate) are identified. While the compu-

tational cost is not an objective in the fitness function, significantly smaller models are

generated in this study as compared with those reported by psoCNN. As an example, the

best model contains two convolutional layers with 70 and 60 channels, respectively, for the

Rectangles data set, whereas the network produced by psoCNN contains three convolutional

layers with 139, 113, and 226 channels respectively. Average pooling is the most common

method of pooling identified in the experiments, which is the same observation found in re-

lated studies. The empirical results indicate that performance can be further improved by

using more iterations and larger population sizes.

88



Table 22: The best CNN models discovered by the proposed approach for the eight test data

sets

Data set Group Layer Type Layer Setting
MNIST 1 Convolution k = 5, cout = 165

1 Convolution k = 6, cout = 220

1 Convolution k = 5, cout = 215

1 Pooling Average Pooling

2 Convolution k = 4, cout = 120

2 Pooling Average Pooling

MNIST-RD 1 Convolution k = 6, cout = 66

1 Convolution k = 5, cout = 140

1 Convolution k = 6, cout = 192

1 Pooling Average Pooling

2 Convolution k = 7, cout = 217

2 Pooling Average Pooling

MNIST-RB 1 Convolution k = 4, cout = 230

1 Convolution k = 6, cout = 109

1 Convolution k = 4, cout = 219

1 Convolution k = 4, cout = 23

1 Convolution k = 5, cout = 112

1 Convolution k = 7, cout = 174

1 Convolution k = 5, cout = 36

1 Pooling Average Pooling

MNIST-BI 1 Convolution k = 4, cout = 153

1 Convolution k = 4, cout = 153

1 Convolution k = 7, cout = 159

1 Convolution k = 7, cout = 195

1 Convolution k = 7, cout = 18

1 Pooling Average Pooling

MNIST-RD+BI 1 Convolution k = 4, cout = 170

1 Convolution k = 4, cout = 247

1 Convolution k = 3, cout = 200

2 Convolution k = 5, cout = 136

2 Convolution k = 6, cout = 137

2 Convolution k = 6, cout = 38

2 Pooling Average Pooling

RECTANGLES 1 Convolution k = 7, cout = 70

1 Convolution k = 7, cout = 60

1 Pooling Average Pooling

RECTANGLES-I 1 Convolution k = 4, cout = 204

1 Convolution k = 5, cout = 202

1 Convolution k = 5, cout = 210

1 Convolution k = 5, cout = 44

1 Convolution k = 4, cout = 49

1 Pooling Average Pooling

2 Convolution k = 4, cout = 141

2 Convolution k = 4, cout = 176

2 Convolution k = 5, cout = 41

2 Pooling Average Pooling

CONVEX 1 Convolution k = 4, cout = 193

1 Convolution k = 5, cout = 225

1 Convolution k = 5, cout = 108

1 Convolution k = 5, cout = 222

2 Convolution k = 7, cout = 171

2 Convolution k = 5, cout = 184

2 Convolution k = 7, cout = 145

2 Convolution k = 6, cout = 31

2 Pooling Average Pooling

89



5 Proposed PSO Based Architecture Generation with Resid-

ual Connections for Image Classification

5.1 Introduction

The motivation of this research is to address the following weaknesses in the state-of-the-art

CNN architecture construction research. 1) Existing methods that perform automatic CNN

generation do not exploit residual connections. Residual connections are a recent technique

that enables deeper model constructions by avoiding the vanishing gradient problem. Resid-

ual connections provide an alternative path for data to flow by skipping layers. Residual

connections skip layers by connecting the output of a convolutional layer to the input of

a layer deeper in the network through an add operation. As skip connections establish a

shorter path between the first and final layers of the model, when gradients backpropagate

through the network during training, they are less likely to approach zero. Avoiding gradi-

ents approaching zero helps prevent the vanishing gradient problem so that a deeper network

construction is possible. Such approaches that do not adopt residual connections are there-

fore limited with respect to model depth. 2) CNN optimization techniques perform a limited

search on a base CNN model that may contain residual connections. Such optimization tech-

niques do not consider the optimization of parameters like kernel size or pooling types. Such

a limited search reduces the variety of the generated networks. 3) Existing PSO based CNN

generation techniques may become trapped in local optima due to following the personal and

global best leaders.

This research proposed the following novel contributions. 1) A new encoding strategy

and velocity updating mechanism is proposed. The proposed strategy is capable of con-

structing deep CNN architectures comprising residual connections. This proposed approach

maintains the ability to devise varied CNN architectures by automatically constructing net-

work architectures composed of different kernel sizes, pooling types, depths and widths. 2)

A novel search strategy that follows a non uniformly selected neighbouring best position

and global best position is proposed. 3) Both proposed strategies are evaluated against ex-

isting state-of-the-art research on a range of data sets. Fig 31 illustrates the proposed system

architecture.

5.2 The Proposed PSO-based Deep Architecture Generation

In this research, a PSO-based deep architecture generation method, namely resPsoCnn, to

devise deep networks with residual connections is proposed. The proposed PSO algorithm

incorporates a new encoding scheme and a new search mechanism guided by neighbour-

ing and global promising solutions for deep architecture search. Specifically, the proposed

encoding scheme is capable of representing deep CNN models comprising residual connec-

tions. The important settings, such as the numbers of groups and residual blocks, the kernel

size and number of filters for each residual block, as well as pooling layer choices for each

90



Figure 31: The proposed system architecture where the identified best model is indicated by

the global best solution

group, are optimized using the proposed PSO algorithm. Moreover, the search process led by

the swarm leader and non-uniformly randomly selected neighbouring promising solutions at

the fine-grained and global levels illustrates a better balance between diversification and ex-

ploitation and produces a rich assortment of residual architectures with great diversity. Each

key element of resPsoCnn is introduced in the following sub-sections.

5.2.1 Encoding Strategy and Initialization

The proposed encoding strategy stores multi-dimensional swarm position information for

representing CNN model architecture configurations. At the start of the optimization process,

a swarm containing a fixed number of particles is initialized with random particle positions

constrained by predetermined search ranges. The following elements summarize the CNN

architecture settings encoded within the proposed encoding strategy.

• A model contains at least one group. The number of groups is optimized between 1

and gmax.

• A group contains at least one residual block. The number of blocks the model can

contain during initialization is set between 1 and bmax. The number of residual blocks

in each group is optimized.

• All blocks within a group share the same number of channels for compatibility. The

number of channels used by a group between outmin and outmax is optimized.

• A group contains an optional pooling layer, which can be of type max pooling, aver-

age pooling or no pooling. The pooling type is optimized by dividing a search range

between 0 and 1 into three regions and attributing a pooling type to each region.

91



• A block contains a stack of convolutions layers, performing same convolutions, i.e.

the appropriate padding is used to ensure the dimensions of the output match those of

the input volume. The degree of padding depends on the kernel size. The kernel size

of a convolutional layer is optimized on a block-by-block basis between kmin and kmax.

This is necessary as the kernel size controls the receptive field, which in turn controls

the visibility degree of an image with respect to one filter, at one time. [27].

The parameters optimized by the proposed PSO algorithm, including their search ranges,

are summarized in Table 23.

Table 23: The optimized network parameters and their corresponding search ranges. The

settings of the search ranges used in the conducted experiments are provided in Section 5.3.

Domain Parameter Range
Model Number of groups 1 to gmax

Group Number of residual blocks 1 to bmax

Group The number of channels cout for all blocks in a group outmin to outmax

Convolution Kernel size k kmin to kmax

Pooling Pooling type ptype 0 to 1

5.2.2 Decoding Strategy

The position information encoded within a particle is decoded to construct a valid CNN

model architecture. As an example, a high level overview of a constructed CNN model after

the decoding process is visualized in Fig. 32.

Figure 32: An example decoded network where the model configurations, i.e. the number

of groups, the number of blocks per group, and the contents of each group (e.g. the kernel

size of each ResNet block, the number of channels and the pooling type for each group), are

embedded in the encoding process.

Residual connections require the number of output channels from the previous layer to

match that of the current layer so that an add operation can be performed. A transition layer

that precedes each group is used to either increase or decrease the number of output channels

so that the dimension of the input fed into a group matches the expected dimension of the

group. A transition block comprises a 1x1 convolution and a ReLU activation function. A

ResNet block comprises two stacked sets of single convolutional layers, followed by a batch

normalization layer and a ReLU layer. Both the transition block and the ResNet block are

visualised in Fig. 33.

92



Figure 33: The structures of a ResNet block (left) and a transition block (right)

In addition, the final group of a model is followed by an adaptive average pooling layer

and a linear layer. The linear layer performs the final image classification with the number

of neurons set as the number of target classes in the data set.

Table 24 introduces the notations used in the following sections to represent particle

encoded information such as the kernel size k of a particular block b, within the group g of a

particle position X .

5.2.3 Optimization Strategy

The search for optimal architectures is conducted by optimizing important hyper parameters

such as the kernel size and model depth. A list of the hyperparameters to be optimized is

provided in Table 23. The optimization process is outlined in the following steps. In step

1, the particle distance is calculated in respect to the global and neighbouring best solutions

as indicated in Section 5.2.4. In step 2, a new velocity based on the distances between the

current particle position, and the global and neighbouring best solutions is calculated. This

step is covered in more detail in Section 5.2.9. In step 3, the calculated velocity is combined

with the current particle position to perform a particle position update as defined in Section

5.2.10. The fitness of a new particle is then evaluated using the fitness function, as defined in

Section 5.2.11. The above search process iterates until the termination criterion is fulfilled.

Table 24 introduces the notation used in the subsequent subsections of this research.

Table 24: A summary of the notations

Notation Description
Xi The position X of the ith particle in the swarm

gn The nth group

bm The mth block

k(Xignbm) Kernel size for the mth block of the nth group of the ith particle in position X

93



5.2.4 Particle Distance Calculation

During the optimization process, the generation of new particle velocity is an important step.

The new velocity guides the particle movement by considering the distances between the

best known positions, namely nbest and gbest , and the current particle position. In this re-

search, a velocity update rule for guiding particle search is proposed. Such a velocity update

calculation requires a mechanism for calculating the distance between a pair of particles. For

this purpose, a new particle distance calculation method is also proposed. At a high level,

the distance of X2 with respect to X1 is calculated as X1−X2. This means that the resulting

distance could be negative or positive, where the former indicates that a setting should be

reduced and the latter indicates that a setting should be increased. The proposed particle

distance calculation method, as well as the new velocity and position updating formulae are

covered in the following sub-sections.

5.2.5 Distance Calculation between Groups with respect to the Number of Channels
cout

The particle distance is calculated on a group-by-group basis. A group maintains a record of

the number of output channels cout that each block within the group should use. The distance

with respect to cout between particles X1 and X2 is therefore calculated by subtracting the

current setting of cout with respect to particle X2 from that of particle X1 on a group-by-

group basis to return ∆cout for each group.

5.2.6 Distance Calculation between Groups with respect to the Number of Blocks

Groups vary with respect to the number of ResNet blocks they contain. A strategy to tem-

porarily pad the groups of both particles to the same length by adding empty blocks to the

one with a fewer number of blocks is proposed, as shown in Fig. 34. The location of the

empty block is used to decide where a block should be added or removed, as explained in

Section 5.2.9.

Figure 34: Groups from particles X1 and X2 which are temporarily padded to the same length

in preparation for the particle distance calculation.

94



5.2.7 Distance Calculation with respect to the Block Kernel Size k

The distance between two blocks is computed with respect to the kernel size k by calculating

∆k = k(X1gnbm)− k(X2gnbm). Two special cases exist, i.e. (1) if the block from X1 is an empty

block as a result of the group padding described in Section 5.2.6, the output is also empty.

Conversely, (2) if the block from X2 is an empty block then the distance for the mth block is

set as ∆k = k(X1gnbm) as shown in Fig. 35.

Figure 35: An example particle distance computation for X1−X2

5.2.8 Distance Calculation with respect to the Pooling Type ptype

The distance between two pooling layers with respect to the kernel pooling type ptype is

calculated by subtracting the pooling type from the respective group of X2 from that of X1,

in order to calculate ∆ptype.

5.2.9 Velocity Calculation

Within a PSO algorithm, the velocity Vi of particle i is calculated by computing the distances

of particle position Xi with respect to the global best solution gbest , and its personal best so-

lution pbest . A novel mechanism of velocity calculation is proposed with two new features,

1) calculates velocity based on gbest and a randomly selected neighbouring best solution,

namely nbest and 2) allows velocity to be calculated based on the aforementioned encoding

scheme. The hypothesis for using nbest instead of pbest within the proposed velocity cal-

culation is to increase social communications and learning between neighbouring particles.

95



The adoption of randomly selected neighbouring elite solutions is able to add a degree of

randomness and encourage global exploration before converging toward the swarm leader.

The neighbouring best position nbest is a non-uniform randomly selected particle from

the swarm. Random selection is implemented using the python numpy [161] function ran-

dom.choice(). The random.choice() function accepts a probability array containing values

between 0 and 1. To compute the probability array, the losses of the entire swarm from the

previous iteration losst−1 is used. Note that losses closer to 0 indicate better particle posi-

tions, and the intention is to favor such particles by giving them a higher probability. To

achieve this, the losses are first inverted and then scaled to between 0 and 1. The resulting

values are used to populate a probability array. A higher probability score for index i results

a higher chance for particle i to be selected as nbest .

From the observations of the experiments, the selected neighbouring promising solution

in each iteration is more likely to be one of the top solutions in the swarm. Such an operation

not only adds randomness to the guiding signals in the search process but also ensures that

the swarm is more likely to be guided towards optimal regions.

After determining nbest , the distance between nbest and the current particle i, i.e. nbest−Xi

is computed, as well as the distance between gbest and the particle i, i.e. gbest −Xi. Next,

the network layers are iterated over. For every layer, a random number r is generated with

a value between 0 and 1. The random number r is then compared against a threshold α . If

r≤ α , the distance of gbest−Xi is selected, otherwise the distance of nbest−Xi is adopted, as

shown in Fig. 36. A similar process is also conducted for pooling layer generation.

The above velocity updating operation is conducted in three steps, i.e. 1) a selection is

made for ∆cout for each group, 2) a selection is made for ∆k, for each ResNet block within

each group, and 3) a selection is made for ∆ptype for each group. The velocity generation

procedure is diversified by introducing randomness into the selection criteria in each step, as

depicted in Equation 22. Owing to the guidance of multiple neighbouring and global elite

solutions in velocity updating at block and group levels, the search process is equipped with

better diversity and capabilities in overcoming local optima traps.

velocitySelectionPerGroupAndBlock =

gbest−Xi if r ≤ α

nbest−Xi otherwise
(22)

5.2.10 Position Updating

Once the new velocity Vi has been calculated, the position of particle X t+1
i can be updated

by adding the weighted velocity to the current particle position X t
i . The weighting factor β

controls the degree to which the new velocity is added to the current position. Higher values

of β result in larger degrees of movement, whereby smaller values of β encourage a granular

search of intermediate positions. The setting of β = 0.5 is selected for the experiences to

give the best balance between exploration and exploitation. The modified position updating

formula is provided in Equation 23.

96



Figure 36: An example of velocity calculation between the selection of nbest−Xi and gbest−
Xi

Two special cases exist when applying velocity. (1) If an empty block within velocity

Vi corresponds to a non-empty block in particle position Xi, the block is removed from the

particle position Xi. (2) If a non-empty block within Vi corresponds to an empty block in

particle position Xi, the block from velocity Vi is copied into particle position Xi. In this way,

a positive value of k is ensured based on the definitions of both special cases.

X t+1
i = βVi +X t

i (23)

5.2.11 Fitness Evaluation

Each particle i within a swarm is evaluated by decoding the particle position X to construct a

new CNN model. The new model is trained on a training set using the Adam optimizer [156]

with a learning rate of 0.001 for 1 epoch. The average cross-entropy loss during training is

used as the fitness score. The overall objective of the optimization process is to minimize the

fitness scores by improving the particle positions over a number of iterations.

97



5.3 Experimental Studies

5.3.1 Data Sets

The proposed method is evaluated on six well-known benchmark data sets for direct compar-

ison against closely related works so that the proposed method can be compared in similar

settings. The test data sets are Rectangles-I, MNIST and four MNIST variant data sets. In

comparison with the MNIST data set, the four MNIST variant data sets are more challenging

owing to the transformations such as rotations, the addition of backgrounds, as well as other

distracting factors.

Table 25 provides a summary of the aforementioned data sets including the official train-

ing and test split sample sizes.

Table 25: A summary of the data sets used in the experiments. All data sets have an input

size of 28 x 28 x 1.

Data set Description Classes Train/Test Samples
MNIST [1] Handwritten digits 10 60,000/10,000

MNIST-RD [160] [162] Rotated MNIST digits 10 12,000/50,000

MNIST-RB [160] [162] MNIST digits with random

background noise

10 12,000/50,000

MNIST-BI [160] [162] MNIST digits with back-

ground images

10 12,000/50,000

MNIST-RD+BI [160] [162] Rotated MNIST digits with

background images

10 12,000/50,000

Rectangles-I [160] [162] Rectangle border shapes with

background images

2 12,000/50,000

5.3.2 Parameter Settings

The following settings shown in Table 26 are used in the experiments. Specifically, the max-

imum number of groups gmax is set as 2 owing to the selected input image sizes (28x28)

from the data sets. As each group could potentially contain a pooling layer, and each pooling

layer halves the output dimension size, adding more groups would negatively impact perfor-

mance by reducing the output dimension too aggressively. For data sets containing larger

input sizes, larger values for gmax could be selected.

The pooling layer type of a group is determined based on the current value of ptype, which

has a value range between 0 and 1. The pooling operation selected based on the current value

of ptype is explained in Equation 24.

98



Table 26: Algorithm settings and the search space used in the experiments. The settings

are selected to closely match those of existing studies [10] so that a fair comparison can be

made.

Name Description Value Used
kmin Minimum kernel size 3

kmax Maximum kernel size 7

outmin Minimum number of channels 16

outmax Maximum number of channels 256

bmax Maximum number of blocks 15

gmax Maximum number of groups 2

α Layer selection boundary threshold 0.5

β Velocity weighting factor 0.5

pooling =


NoPooling if ptype ≤ 0.33,

AvePooling if ptype > 0.33 & ptype ≤ 0.66,

MaxPooling otherwise

(24)

5.3.3 Benchmark Models

To test model efficiency, hand-crafted networks such as LeNet [1] and several deep architec-

ture generation methods, i.e. IPPSO [13], MBO-ABCFE [139], GeNet [31], DNN-COCA

[147], psoCNN [10] and sosCNN [14], are employed for performance comparison.

IPPSO [13] is a PSO-based approach for designing CNN architectures which employ a

test methodology consisting of 20 particles over 10 iterations, constrained to a maximum

of 9 convolutional layers with kernel sizes ranging between 1 and 8, and 3 fully connected

layers.

MBO-ABCFE [139] is a variant of the MBO algorithm [138], which incorporates the

search mechanisms of ABC [141] and FA [142] to increase exploration and exploitation of

MBO, respectively. The experiment was conducted with a population size of 50, over 50

iterations and their optimized hyper parameters include the number of convolutional layers

between 1 and 4, kernel size between 2 and 9, and a number of filters as either of the follow-

ing, i.e. 8, 16, 32, 64, 128, 256, 512, and 1024. Their model also optimized the activation

function type as either ReLU or a linear activation function, and batch size as 25, 50, 100 or

200.

GeNet [31] is a GA-based approach for deep network generation. GeNet adopts a block

based architecture design with fixed kernel size and a fixed number of filters per block. Their

work adopts a search strategy that optimizes the connections between network blocks, form-

ing nonlinear block connection patterns. The model was evaluated using the MNIST data set

achieving a 0.34% error rate, with a population size of 20 individuals over 50 iterations.

99



DNN-COCA [147] employs a multi-population strategy which adopts competitive and

cooperative neuroevolution methods for the search of optimal architectures. The work was

evaluated using the MNIST data set achieving an accuracy rate of 98.7% by evolving CNNs

of depths between 5 and 7 layers.

psoCNN [10] is a PSO-based deep architecture generation strategy. It introduces a flex-

ible encoding mechanism which describes a CNN model as an array. Each element within

the array denotes a type of layer. The possible layer types comprise convolutions layers with

kernel sizes between 3x3 and 7x7 inclusive and a maximum of 256 channels, as well as

pooling layers and fully connected layers. Based on a selection criterion, the position of a

particle within a swarm size of 20 is optimized over 10 iterations on a layer-by-layer basis.

The new layer type and its settings are determined by choosing either the global or personal

best solution.

Finally, sosCNN [14] is also selected for comparison. sosCNN is a SOS [119] based

deep architecture generation method that generates CNNs without residual connections. This

method uses a swarm of 20 individuals, optimized over 10 iterations. The hyperparameters

selected for optimization are the layer types, i.e convolution layers with kernel sizes between

3x3 and 7x7, and up to 256 filters, pooling layers or fully connected layers. The maximum

number of layers is limited to a total of 20.

5.3.4 Results

5.3.5 Performance Comparison with Existing Studies

The following settings in the experimental studies are used, i.e. a population of 20 and a

maximum number of iterations of 10. During the search stage, each devised network gets

trained with 1 epoch. The best model identified at the end of the search phase is trained for

100 epochs. Each experiment is repeated 10 times.

In Table 27, the results comparing the proposed approach against those of the aforemen-

tioned benchmark models, namely hand-crafted models, i.e. LeNet-1, LeNet-4 and LeNet-5

[1], as well as evolutionary based approaches, i.e. IPPSO [13], MBO-ABCFE [139], GeNet

[31], DNN-COCA [147], psoCNN [10], and sosCNN [14] are reported. All reported results

for the aforementioned benchmark models are taken from their respective publications for a

fair comparison.

In the last two rows of Table 27, The best and mean classification error rates over 10 runs

achieved by the proposed model are listed. The remaining rows are the best and the mean

error rates (where available) reported by the compared methods in their original studies. The

best performing results are highlighted in bold for a given data set.

As indicated by the reductions in the error rates reported across all the benchmark data

sets, in comparison with the baseline methods, the proposed model shows better perfor-

mances in most test cases. In addition, sosCNN is the best performing baseline method

across all data sets. In Table 28, the error rates of the proposed model against those of

100



Table 27: Experimental results of the proposed method (resPsoCnn) and benchmark models,

where the results of the benchmark models are extracted from their original studies.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I
Hand-crafted architectures

LeNet-1 [1] 1.70% 19.3% 7.50% 9.80% 40.06% 16.92%

LeNet-4 [1] 1.10% 11.79% 6.18% 8.96% 33.83% 16.09%

LeNet-5 [1] 0.95% 11.10% 5.99% 8.70% 34.64% 12.48%

Evolutionary algorithms for architecture generation

IPPSO (best) [13] 1.13% - - - 33% -

IPPSO (mean) [13] 1.21% - - - 34.50% -

MBO-ABCFE (best) [139] 0.34% - - - - -

GeNET (best) [31] 0.34% - - - - -

DNN-COCA (mean) [147] 1.30% - - - - -

psoCNN (best) [10] 0.32% 3.58% 1.79% 1.90% 14.28% 2.22%

psoCNN (mean) [10] 0.44% 6.42% 2.53% 2.40% 20.98% 3.94%

sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%

sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%

resPsoCnn (best) 0.31% 2.67% 1.70% 1.74% 8.76% 1.19%

resPsoCnn (mean) 0.33% 3.02% 1.76% 1.90% 9.27% 1.47%

sosCNN [14] are listed, to clearly indicate performance improvements.

Table 28: The best and mean error rates over 10 runs for the proposed method (resPsoCnn)

and sosCNN [14], where a (-) symbol indicates that the proposed model performs better

whereas a (+) symbol indicates that the proposed model performs worse.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I
resPsoCnn (best) 0.31% 2.67% 1.70% 1.74% 8.76% 1.19%
resPsoCnn (mean) 0.33% 3.02% 1.76% 1.90% 9.27% 1.47%
sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%

sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%

error difference (best) 0.01%(+) -0.34%(-) 0.21%(+) 0.06%(+) -1.89%(-) -0.38%(-)
error difference (mean) -0.07%(-) -0.76%(-) -0.13%(-) -0.08%(-) -4.34%(-) -0.90%(-)

MNIST represents a relatively simple handwritten digit classification problem with a

small margin available for improvement. For MNIST, sosCNN is the best performing bench-

mark model, achieving a mean error rate of 0.40%. In comparison, the proposed approach

achieves the highest mean error rate of 0.33%, which is an improvement of 0.07%.

For the MNIST-RD data set, sosCNN reported a mean error rate of 3.78%. The proposed

model shows the lowest mean error rate of 3.02%, with an improvement of 0.76% over that

of sosCNN. Moreover, the proposed model achieves a top 1 error rate of 2.67%, with an

improvement of 0.34%, when compared with the top 1 result of sosCNN.

For the MNIST-RB data set, again the sosCNN method reported the lowest mean error

rate of 1.89% among the benchmark models. The proposed approach obtains a mean error

rate of 1.76%, with an improvement of 0.13%.

The proposed approach achieves a mean error rate of 1.90% with respect to the MNIST-

BI data set,with an improvement of 0.08% over the mean error rate of 1.98% obtained by the

best performing benchmark model sosCNN.

The MNIST-RD+BI data set depicts a more challenging classification problem due to

101



consisting of rotated MNIST digits and background images. For this data set, sosCNN was

the best performing benchmark model, reporting a mean error rate of 13.61%, and a top 1

error rate of 10.65%. The proposed approach shows a mean error rate of 9.27%, and a top

1 error rate of 8.76%, which indicate improvements of 4.34% and 1.89%, for the mean and

best error rates, respectively.

For the Rectangles-I data set, sosCNN was again the best performing benchmark model,

reporting a mean error rate of 2.37%, and a top 1 error rate of 1.57%. The proposed ap-

proach depicts a mean error rate of 1.47%, and a top 1 error rate of 1.19%, which indicate

improvements of 0.38% and 0.90%, for the mean and best error rates, respectively.

5.3.6 Evaluation of the Proposed Encoding and Search Strategies

To identify the contributions to the overall results gained from the proposed encoding scheme

and multiple leader guided search strategy, additional experiments have been conducted to

isolate the two proposals. Rows 1 and 2 of Table 29 indicate the mean and top 1 error

rates of the best performing benchmark model sosCNN. Rows 3 and 4 include the results

of the encoding strategy in combination with the traditional PSO operation for position and

velocity calculation. Rows 5 and 6 indicate the performance of the overall proposed model

(i.e. the proposed encoding scheme in combination with the proposed search strategy, where

the velocity calculation is based on the global best solution and a non-uniformly selected

neighbouring best solution).

Table 29: Evaluation results of the state-of-the-art benchmark model sosCNN, the proposed

encoding scheme in combination with the original PSO operation guided by the personal

and global best solutions denoted as resPsoCnn-PB-GB, as well as the proposed encoding

scheme in combination with the proposed search strategy guided by the neighbouring and

global best solutions, denoted as resPsoCnn

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles-I
sosCNN (best) [14] 0.30% 3.01% 1.49% 1.68% 10.65% 1.57%

sosCNN (mean) [14] 0.40% 3.78% 1.89% 1.98% 13.61% 2.37%

resPsoCnn-PB-GB) (best) 0.30% 2.84% 1.51% 1.79% 9.20% 0.89%

resPsoCnn-PB-GB) (mean) 0.40% 3.23% 1.76% 2.02% 9.74% 1.66%

resPsoCnn (best) 0.31%(+) 2.67%(-) 1.70%(+) 1.74%(+) 8.76%(-) 1.19%(+)

resPsoCnn (mean) 0.33%(-) 3.02%(-) 1.76%(-) 1.90%(-) 9.27%(-) 1.47%(-)

For the MNIST data set, the mean and top 1 error rates of sosCNN are 0.40% and 0.30%,

respectively. The proposed encoding strategy alone results in identical results. When the

proposed encoding strategy is combined with the proposed search operation, the proposed

method achieves a mean error rate of 0.33% which is an improvement of 0.07%, and a top 1

error rate of 0.31% within a reasonable margin of error.

For the MNIST-RD data set, the proposed encoding strategy in isolation achieves a mean

error rate of 3.23%, and a top 1 error rate of 2.84%, with improvements of 0.55% and 0.17%

over those of sosCNN, respectively. Furthermore, when the proposed encoding and search

102



strategies are combined, further improvements are observed as indicated by a mean error rate

improvement of 0.76% and a top 1 error rate improvement of 0.34%.

With respect to the MNIST-RB data set, the mean error rate reported by sosCNN is

1.89%. The mean error rates for the encoding strategy alone and the encoding strategy

combined with the search strategy are both 1.76%, i.e an improvement of 0.13% against that

of sosCNN. Furthermore, the results indicate that the encoding strategy in isolation performs

the best with respect to the top 1 error rate than when combined with the proposed search

strategy, with a top 1 error difference of 0.19% between these two versions of the proposed

model.

For the MNIST-BI data set, the mean error rate reported by sosCNN is 1.98%. The mean

error rate for the proposed encoding strategy alone is 2.02%, whilst when combined with the

proposed search strategy, the error rate is improved to 1.90%, which is a 0.08% improvement

against that of sosCNN. The best top 1 error rate, i.e. 1.68%, is achieved by sosCNN, whereas

the proposed encoding scheme combined with the proposed search strategy achieves a top 1

error rate of 1.74%.

For the MNIST-RD+BI data set, the mean and the top 1 error rates using the proposed

encoding strategy alone are 9.74% and 9.20%, respectively, with improvements of 3.87% and

1.45% over those of sosCNN, respectively. Furthermore, the mean and the top 1 error rates

of the proposed encoding strategy combined with the proposed search strategy are 9.27%,

with of 8.76%, respectively, with improvements of 4.34% and 1.89% over those of sosCNN.

For the Rectangles-I data set, the proposed encoding strategy in isolation achieves the

lowest top 1 error rate of 0.89%, which is a 0.68% reduction when compared to the top

1 result of sosCNN. The proposed encoding strategy combined with the proposed search

strategy achieves the lowest mean error rate of 1.47%, which is a 0.9% reduction than the

mean result of sosCNN.

5.3.7 Theoretical Justification

In this research, firstly, a novel encoding scheme capable of describing deep CNN models

comprising residual blocks has been proposed. Secondly, a new search strategy that up-

dates the particle position based on the global best solution and a non-uniformly selected

neighbouring best solution to overcome stagnation was proposed.

The version using the proposed encoding strategy isolated from the proposed search

strategy is denoted as resPsoCnn-PB-GB. This method employs the original PSO operation

guided by the personal and global best solutions found in related works such as psoCNN and

sosCNN. The overall proposed model (i.e. the proposed encoding scheme combined with the

proposed search strategy based on the global and neighbouring best solutions) is denoted as

resPsoCnn, to demonstrate the benefits of the combination of both proposed strategies. The

purpose of providing two sets of results is to demonstrate the contribution of each strategy

in isolation from each other.

In Figure 37, the depths of the best networks produced by resPsoCnn-PB-GB and resP-

103



soCnn against those of the benchmark models of IPPSO, psoCNN and sosCNN are com-

pared. The empirical results indicate that resPsoCnn-PB-GB and resPsoCnn are capable of

producing deeper network architectures as indicated by greater network depths across all data

sets, owing to the introduction of residual connections. On the contrary, the related works

show limited capabilities in producing deeper networks. Specifically, the related methods

are limited in terms of the maximum depths due to vanishing gradients, which may impact

a model’s ability to learn. In the cases of vanishing gradients, backpropagation is unable to

adjust weights as the gradients become 0, therefore the learning stops. Residual connections

minimize vanishing gradient problems and therefore allow the two versions of the proposed

model to form deeper networks. The empirical results in Table 27 indicate that the advantage

of constructing deeper models is the improvement of performance, as indicated by the reduc-

tions in the mean error rates across all data sets for both resPsoCnn-PB-GB and resPsoCnn

against those of the baseline methods.

Figure 37: A comparison of model depths between those devised by the baseline benchmark

models and the proposed approaches denoted as resPsoCnn-PB-GB and resPsoCnn, across

all test data sets

Furthermore, the results in Table 29 indicate that resPsoCnn outperforms resPsoCnn-

104



PB-GB in terms of the mean error rates across all data sets, which confirms the benefits of

combining the proposed encoding scheme and the search strategy based on the neighbouring

and global best solutions. The empirical results indicate that the proposed search mechanism

improves search diversity and avoids being trapped in a local optima owing to the random-

ness introduced by the non-uniform neighbouring selection strategy introduced in Section

5.2.9.

Table 30 presents the structures of the best models generated by resPsoCnn-PB-GB,

while Table 31 presents the topologies of the best models devised by resPsoCnn. TB indi-

cates a transitional block, and RB indicates a residual block as presented in Figure 33. FC de-

notes the final fully connected layer (i.e. the linear layer) of the model as presented in Figure

32. The models constructed by resPsoCnn tend to have more variety in the selected pooling

layers. As indicated in Table 30, all pooling types selected by resPsoCnn-PB-GB are aver-

age pooling with the exception of MNIST-RD which selects no pooling for the first group.

In contrast, as shown in Table 31, resPsoCnn selects max-pooling in the second groups for

MNIST-RB and MNIST-BI, and no pooling for any groups for Rectangles-I. This greater

variety suggests that resPsoCnn has more search diversity by selecting from the global and

neighbouring best solutions for block and group configuration generation. It shows better

capabilities in escaping from local optimum traps in relation to the pooling layer selection.

Moreover the improvement of the search exploration has in turn resulted in the reductions in

the error rates of resPsoCnn in comparison with those of resPsoCnn-PB-GB, as indicated in

Table 29.

105



Table 30: The discovered best models for all benchmark data sets using resPsoCnn-PB-GB.

TB indicates a transitional block which contains a single 1x1 convolutional layer and RB

indicates a ResNet block which contains two convolutions, as indicated in Figure 33. FC

indicates a fully connected layer.

Dataset Structure

MNIST [1] TB(cin = 1 cout = 177) + RB(177x4x4) + RB(177x4x4) + RB(177x6x6) + AveragePool + TB(cin = 177 cout =

175) + RB(175x6x6) + RB(175x6x6) + RB(175x5x5) + RB(175x3x3) + AveragePool + FC

MNIST-RD [160]

[162]

TB(cin = 1 cout = 161) + RB(161x5x5) + RB(161x7x7) + RB(161x6x6) + RB(161x6x6) + RB(161x4x4) +

RB(161x5x5) + RB(161x7x7) + TB(cin = 161 cout = 115) + RB(115x5x5) + RB(115x7x7) + RB(115x5x5) +

RB(115x6x6) + RB(115x3x3) + RB(115x7x7) + RB(115x4x4) + AveragePool + FC

MNIST-RB [160]

[162]

TB(cin = 1 cout = 153) + RB(153x4x4) + RB(153x6x6) + + RB(153x4x4) + RB(153x3x3) AveragePool +

TB(cin = 153 cout = 183) + RB(183x4x4) + RB(183x6x6) + RB(183x7x7) + AveragePool + FC

MNIST-BI [160]

[162]

TB(cin = 1 cout = 136) + RB(136x4x4) + RB(136x3x3) + RB(136x5x5) + RB(136x3x3) + AveragePool +

TB(cin = 136 cout = 136) + RB(136x6x6) + RB(136x5x5) + RB(136x5x5) + RB(136x3x3) + RB(136x3x3) +

RB(136x3x3) + AveragePool + FC

MNIST-RD+BI

[160] [162]

TB(cin = 1 cout = 150) + RB(231x5x5) + RB(231x5x5) + RB(231x7x7) + RB(231x3x3) + AveragePool +

TB(cin = 150 cout = 98) + RB(120x4x4) + RB(120x6x6) + RB(120x6x6) + RB(120x5x5) + AveragePool + FC

RECTANGLES-I

[160] [162]

TB(cin = 1 cout = 195) + RB(195x3x3) + RB(195x6x6) + RB(195x3x3) + AveragePool + TB(cin = 195 cout =

85) + RB(85x7x7) + RB(85x5x5) + RB(85x3x3) + AveragePool + FC

106



Table 31: The discovered best models for all benchmark data sets using resPsoCnn. TB in-

dicates a transitional block which contains a single 1x1 convolutional layer and RB indicates

a ResNet block which contains two convolutions, as indicated in Figure 33. FC indicates a

fully connected layer.

Dataset Structure

MNIST [1] TB(cin = 1 cout = 176) + RB(176x4x4) + RB(176x5x5) + RB(176x5x5) + RB(176x4x4) + RB(176x5x5) +

RB(176x3x3) + AveragePool + TB(cin = 176 cout = 198) + RB(198x5x5) + RB(198x6x6) + RB(198x4x4) +

RB(198x4x4) + AveragePool + FC

MNIST-RD [160]

[162]

TB(cin = 1 cout = 184) + RB(184x4x4) + RB(184x4x4) + RB(184x5x5) + RB(184x4x4) + RB(184x3x3) +

RB(184x3x3) + AveragePool + TB(cin = 184 cout = 146) + RB(146x4x4) + RB(146x4x4) + RB(146x5x5) +

RB(146x3x3) + AveragePool + FC

MNIST-RB [160]

[162]

TB(cin = 1 cout = 216) + RB(216x5x5) + RB(216x6x6) + AveragePool + TB(cin = 216 cout = 158) +

RB(158x7x7) + RB(158x4x4) + MaxPool + FC

MNIST-BI [160]

[162]

TB(cin = 1 cout = 188) + RB(188x4x4) + RB(188x5x5) + RB(188x5x5) + RB(188x4x4) + RB(188x4x4) +

RB(188x3x3) + RB(188x3x3) + AveragePool + TB(cin = 188 cout = 177) + RB(177x5x5) + RB(177x3x3) +

RB(177x3x3) + RB(177x3x3) + MaxPool + FC

MNIST-RD+BI

[160] [162]

TB(cin = 1 cout = 231) + RB(231x4x4) + RB(231x5x5) + RB(231x5x5) + RB(231x4x4) + RB(231x3x3) +

RB(231x4x4) + AveragePool + TB(cin = 231 cout = 120) + RB(120x5x5) + RB(120x5x5) + RB(120x3x3) +

RB(120x4x4) + RB(120x4x4) + RB(120x3x3) + RB(120x3x3) + AveragePool + FC

RECTANGLES-I

[160] [162]

TB(cin = 1 cout = 71) + RB(71x4x4) + RB(71x3x3) + RB(71x7x7) + RB(71x6x6) + RB(71x6x6) + RB(71x6x6)

+ TB(cin = 71 cout = 21) + RB(21x5x5) + RB(21x4x4) + RB(21x6x6) + RB(21x6x6) + RB(21x7x7) +

RB(21x4x4) + FC

107



6 Conclusions

The main contributions of this research is the proposal of a new efficiency focused CNN

model which achieves greater accuracy and more computational efficiency when compared

to the current state-of-the-art efficiency focused CNN models. This work is important as

resource constrained environments such as IoT deployments and CCTV cameras often lack

GPU acceleration capabilities, therefore a more efficient and accurate model means more ac-

curate models could run on the CPU. Furthermore, new strategies for automatically designing

CNN models that embed human knowledge in a PSO based search strategies are introduced.

The proposed PSO search strategies outperformed the current state-of-the-art approaches.

Such an automated approach can be applied to other domains and data sets to generate cus-

tom models for different tasks. Automated approaches for model construction are important

as they reduce the need to apply transfer learning to large base models unsuitable for re-

source constrained environments. Instead of transfer learning, automated approaches can be

used to construct a new architecture specifically for the task at hand. Search bounds such as

the maximum model depth and width can be set to ensure proposed solutions fit within the

target hardware making such an approach suitable for all environments including resource

constrained ones.

6.1 Efficiency Focused CNN Architecture Conclusion

The aim of the research in Section 3 was to propose an efficiency focused CNN model

that reduces computational complexity whilst maximizing accuracy so that more accurate

models can be deployed in constrained environments such as CCTV cameras. This raised

the following research question:

• Is there a better way to construct a CNN model so that the model achieves greater

accuracy levels with less computational cost, resulting in more accurate CNN models

that can be deployed into resource contained environments such as IoT devices?

The research question was addressed through the development of IoTNet, a new effi-

ciency focused CNN architecture that saves computation cost by factorising 3x3 standard

convolutions into pairs of 1x3 and 3x1 standard convolutions, rather than performing depth-

wise separable convolutions. Depth-wise separable convolutions used in existing efficiency

focused CNN models to computational cost at the detriment of accuracy.

The experimental results of the proposed IoTNet model produced accuracy improve-

ments and computational cost savings when compared against influential efficiency-focused

architectures that save computational cost by utilising depth-wise separable convolutions.

For example, IotNet outperformed MobileNetV2 on CIFAR-10 with an accuracy improve-

ment of 13.43% with 39.63% fewer FLOPs, ShuffleNet on SVHN with an accuracy improve-

ment of 6.49% with 31.84% fewer FLOPs and over MobileNet on GTSRB with an accuracy

improvement of 5% with 0.38% fewer FLOPs.

108



The proposed model also outperformed the current state-of-the-art efficiency-focused

model that incorporates 1x3 and 3x1 depth-wise separable convolutions to save computa-

tional cost such as EffNet (EffNet V1 or EffNet V2), across all data sets. IoTNet improved

accuracy on CIFAR-10 by 9.7% with 13% fewer FLOPs, on SVHN by 1.92% with 58.5%

fewer FLOPs and on GTSRB by 2.77% with 24.63% fewer FLOPs. The experimental studies

also indicate that the proposed model delivers greater accuracy with a lower computational

cost in comparison with those of the scaled-down 3x3 convolution-based counterpart model,

representative of state-of-the-art WideResnet, ResNet and PyramidNet.

The main contributions of this research are as follows.

• A new efficiency focused CNN model is proposed, namely IoTNet. IoTNet was de-

signed specifically for performance constrained environments such as IoT devices,

CCTV or embedded systems. It trades accuracy with a reduction in computational

cost differently from existing methods by employing novel pairs of 1x3 and 3x1 nor-

mal convolutions, rather than using depth-wise separable convolutions.

• An in-depth comparison of the proposed architecture against efficiency-focused mod-

els including MobileNet [5], MobileNetV2 [7], ShuffleNet [6] and EffNet [9] has been

conducted using CIFAR-10 [18], Street View House Numbers (SVHN) [44] and Ger-

man Traffic Sign Recognition Benchmark (GTSRB) [45] data sets. The empirical re-

sults indicate that the proposed block architecture constructed exclusively from pairs

of 1x3 and 3x1 normal convolutions, with average pooling for downsampling, outper-

forms the current state-of-the-art depth-wise separable convolution-based architectures

in terms of accuracy and cost.

The benefit of this work is that more powerful models can now be deployed within tightly

constrained environments. which is significant as the use cases for CNNs within resource-

constrained environments are extremely broad, e.g., IoT and smartphone-based deployments,

medical diagnosis, image and video analysis. Lighter and faster models also enable re-

searchers to prototype ideas faster with fewer resources. The empirical results indicate that

the proposed architecture improves the trade-off between accuracy and computational cost

over existing, depth-wise-based approaches which are typically used in efficiency-focused

models.

6.2 Automating CNN Architecture Generation Conclusion

The aim of the research in Section 4 was to propose a PSO based search strategy for auto-

matically designing efficient networks for the data set at hand, that produces more accurate

models when compared against the current state-of-the-art approaches. This raised the fol-

lowing research question:

• Can CNN model architectures be encoded in a way that it is ensured to be both ar-

chitecturally valid and reasonably built to avoid the need for additional hard coded

109



governing rules [10] or wasteful function evaluations?

• Can each particle be guided effectively through a complex search space efficiently in

order to construct more effective networks, that are faster than the current state-of-the-

art algorithms [10] [11]?

• Can CNN models be designed to be more efficient using an algorithm that is both

easy to understand and fast to run, so that the approach can be easily exploited in both

academia and industry settings with limited specialised knowledge while not compro-

mising the overall performance?

The first research question was achieved by proposing a group-based encoding strategy

that removed the need for additional hard-coded rules. The proposed strategy adopts a natural

particle movement and simplifies implementation.

The second research question was achieved by proposing a novel particle distance calcu-

lation scheme. It performs distance calculation at a parameter level to address the drawback

of the existing methods which copy the layers directly at random from either pbest or gbest .

Moreover, a weighted position updating mechanism has been developed, with the use of a

weighting factor that provides granular movement control in the search space. Combining

the proposed distance computation strategy with the new position updating mechanism, the

proposed method is equipped with superior search diversity and is less dependent on good

initialization, as compared with related methods such as psoCNN.

The third research question was achieved by performing an experimental analysis us-

ing identical settings to closely related studies, i.e. no data augmentation, the same swarm

size, iteration numbers, and search ranges. The experimental results demonstrated that the

proposed method achieves superior performance in eight benchmark data sets, and achieves

up to 7.58% improvement in accuracy and up to 63% reduction in computational cost in

comparison with those of existing methods. The convergence curves of the proposed model

across all data sets indicate a steady reduction in loss, indicating convergence of the particles

without being trapped in local optima.

The main contributions of this research are as follows.

• A new group-based encoding strategy was proposed. A group consists of an optional

pooling layer for downsampling and at least one convolutional layer. The maximum

number of groups is can be adjusted in accordance with the input image size. As the

position of pooling layers is guaranteed within a group and the maximum frequency

pooling occurs is set by the maximum number of groups, valid model architecture can

be constructed without the need for additional governing rules.

• A new velocity updating mechanism is proposed that overcomes weaknesses in ex-

isting methods such as psoCNN [10]. The velocity calculation in psoCNN computes

which layers to copy from the global or personal best position. PsoCNN is not able to

explore intermediate layer settings. For example, if the current particle position for the

110



first block has a kernel size of 3, and the global best has a kernel size of 5, psoCNN

cannot try using a kernel size of 4. The proposed velocity updating mechanism over-

comes this limitation by identifying the differences between layer configurations like

the kernel size and pooling types. The proposed approach is also less dependent on the

requirement of a good random swarm initialization.

• A new position updating mechanism with weighted velocity strengths has been pro-

posed. The granular position updating mechanism enables a thorough exploration of

the search space and increases the likelihood of generating diversified network con-

figurations. It employs a weighted strength of the velocity updates for new position

generation, leading to the exploration of the search space in various forces and scales

to increase the chances of formulating diversified networks. Such a granular move-

ment also enables a better balance between intensification and diversification in order

to increase the chances of finding global optimality.

• A comprehensive evaluation of the proposed model with several data sets is conducted.

The proposed model compares favourably with the state-of-the-art models such as

psoCNN [10] and notable alternative methods including EvoCNN [12]. Serving as

a practical alternative to deep network generation, the proposed model achieves up

to 7.58% improvement in accuracy and up to 63% reduction in computational cost,

in comparison with those from the current state-of-the-art methods. Importantly, the

proposed model is repeatable and easy to implement with limited hardware resources.

The benefit of the proposed approach is that without specialist knowledge of how to con-

struct CNN architectures, the proposed approach can be used to automatically generate CNN

models with greater accuracy than was possible using existing CNN automatic architecture

generation techniques.

6.3 Automating Residual CNN Architecture Generation Conclusion

The aim of the research in Section 5 was to propose a PSO based search strategy capable of

generating deeper CNN architectures owing to the inclusion of residual connections. This

raised the following research question:

• Can a rich CNN model architecture search be performed whilst exploiting advanced

techniques such as residual connections so that larger models can be constructed?

• How can a search be performed that is not susceptible to becoming trapped in local

optima?

The first research question was achieved by proposing a novel residual based encoding

strategy capable of overcoming the vanishing gradient problems so that larger models could

be constructed. The results in Figure 37 indicate that the model is capable of generating

111



deeper architectures than those yielded by closely related studies such as IPPSO, psoCNN

and sosCNN, all of which do not exploit residual connections. In addition, the devised

networks show better capabilities in tackling vanishing gradients owing to the adoption of

residual connections. Moreover, the results also indicate that the deeper models produced by

resPsoCnn-PB-GB lead to more accurate solutions, specifically an accuracy improvement on

MNIST-RD, MNIST-RB, MNIST-RD+BI and Rectangles-I data sets, as indicated in Table

29.

The second research question was achieved by proposing a novel search process guided

by neighbouring and global best solutions to avoid local optima traps. With respect to the

proposed search strategy guided by neighbouring and global best solutions, the empirical

results indicate that across all six data sets, that the proposed search strategy results in more

accurate models when compared to the models yielded by closely related studies such as

IPPSO, psoCNN and sosCNN, as indicated in Table 27.

In Table 29, the results of resPsoCnn show the effectiveness of the proposed search strat-

egy as indicated by an improvement in model accuracy when compared directly against

resPsoCnn-PB-GB, which adopts a traditional PSO search strategy, based on the global and

personal best positions, i.e. identical to the strategies adopted by PSO, IPPSO, psoCNN and

sosCNN.

Furthermore, the results in Table 27 indicate that the combination of the proposed move-

ment and encoding strategies results in a further improvement of performance when com-

pared to the related studies. Specifically, the proposed model resPsoCnn achieves the most

significant improvement of 4.43% over the best baseline method, sosCNN, on MNIST-

RD+BI.

The main contributions of this research are as follows.

• A novel PSO algorithm, namely resPsoCnn, is proposed for residual deep architecture

generation. First, a new group-based encoding scheme is proposed which provides

compatibility with residual connections. Each group contains one or more residual

convolutional blocks and an optional pooling layer. Each residual block inside a group

shares the same number of filters so that the residual operation can be performed.

The number of filters per group is optimised to control the network width. Before

each group, a transitional layer is used to increase or decrease the number of filters

to the number required by the subsequent group. The kernel sizes of convolutional

layers are individually encoded, giving fine-grained control over the receptive field of

each block. The number of blocks within each group can vary in order to increase or

decrease the model depth, while different pooling layer types are embedded to control

downsampling.

• Proposing an optimization strategy that exploits the advantages of residual connec-

tions to avoid the vanishing gradient problem. Such a strategy addresses weaknesses

in related studies which either 1) perform optimization tasks only on fixed skeleton

112



models (e.g. fixed numbers of blocks) that make use of residual connections, but re-

strict diversity as settings such as kernel sizes and pooling types are fixed, or 2) do

not use residual connections and instead optimize a range of hyperparameter settings,

capable of producing diverse, but shallow networks. Our proposed strategy addresses

both of the aforementioned weaknesses by providing the ability to make use of residual

connections to construct deep network architectures, whilst also optimizing a range of

network settings to improve diversity.

• Proposing a new velocity updating mechanism that adds randomness to the updating

of the group and block hyperparameters. Specifically, it employs multiple elite signals,

i.e. the swarm leader and the non-uniformly randomly selected neighbouring best so-

lutions, for searching optimal hyper-parameters. The hyperparameter updating at the

group and block levels is conducted by either selecting from the distance between the

current particle and the global best solution, or the distance between the current parti-

cle and a neighbouring best solution, to increase search diversity. The proposed search

mechanism optimizes the number of groups, network width and depth, kernel sizes,

and pooling layer choices to produce a rich assortment of candidate best solutions

of residual deep architectures. Owing to the guidance of multiple elite signals (e.g.

the global best and neighbouring promising solutions), the proposed search process

achieves a better balance between exploration and exploitation, and addresses a weak-

ness in existing search methods where the search processes led by the single leader

are prone to being trapped in local optima and converge prematurely. Evaluated using

a number of benchmark data sets, the devised networks show superior performances

against those yielded by several state-of-the-art existing methods.

The benefit of the proposed approach is that an automatic CNN architecture generation

technique that considers residual connections got introduced. To the best of my knowledge,

this is the first such work in this area. The results indicate that constructing residual CNN

models produces deeper models, plus more accurate solutions. The benefits in respect to

the neighbouring best search strategy could get exploited in other related areas. Other areas

include all related works which adopt a traditional guided search that follows the global and

personal best positions.

6.4 Limitations

Potential limitations around statistical significance tests when comparing against benchmark

models exist. This study made direct comparisons with related works using the same meth-

ods for evaluation, specifically calculating the mean and max accuracy over 10 runs. Al-

ternative tests such as Wilcoxon and rank sum do exist but the data to calculate such tests

was not published by closely related studies. The proposed methods for automatically evolv-

ing convolutional neural networks contained a single object for the cost. Alternative cost

113



functions considering multiple objectives such as minimizing the number of FLOPS, whilst

maximizing accuracy has been considered for future work.

6.5 Future Direction

The proposed efficiency focused model IoTNet and proposed mechanisms for automatically

generating deep CNN architectures has shown superior performance when compared against

their respective state-of-the-art research. Despite this, future work could further enhance

performance. The possible avenues for future research have been summaries in the following

list:

• Augmentation strategies highlighted in related works such as [86] could be exploited

to further improve performance. Methods such as these will be especially helpful on

imbalanced data sets such as GTSRB.

• The proposed efficiency focused IoTNet model could be combined with the proposed

CNN architecture generation techniques. Such work could consider using a cost func-

tion that calculates the cost based on the accuracy of a proposed CNN model and the

computational cost for the proposed CNN model measured in floating point operations

and memory footprint. Such work could further improve the proposed architecture.

• Research could be conducted to explore hybrid deep networks such as the combination

of CNN with Long Short-Term Memory (LSTM) networks. Such hybrid models will

be useful for undertaking various image understanding and time series prediction tasks.

• Different swarm sizes and iteration counts could be explored for the proposed CNN

architecture generation techniques.

• The settings selected for CNN architecture optimization were based on the constraints

reported in the related paper. [10], in order to ensure that a fair comparison can be

made. It is envisaged that optimal settings can be formulated, e.g. with the use of

adaptive strategies for α and β . Future work could benefit from using an adaptive

strategy to alter α slightly after each iteration so that the position differences to the

global best solution are given more emphasis than those from earlier iterations.

• Hybrid search strategies based on the integration of the proposed CNN architecture

generation techniques with other swarm intelligence algorithms, e.g. Firefly Algorithm

[142], Cuckoo Search [109], Dragonfly Algorithm [163] and Grey Wolf Optimizer

[164] could further enhance search capabilities.

• Applying CNN architecture generation techniques to other domains such as object de-

tection, semantic segmentation, video description and visual question generation may

result in the discovery of novel object detection models. Such work could also consider

exploring the proposed 1x3 and 3x1 kernel sizes when considering computational cost

reduction.

114



• When performing CNN architecture generation, future research could be conducted

that considers adding dense connections and optimizing the connection types. For

example, the optimization process could be adapted to select between residual and

dense connections. As a more general form, each CNN layer could be encoded with

metadata to define connections with zero or many other layers.

• Related works in the field of automated data augmentation discovery could be com-

bined with the proposed CNN architecture generation techniques.

• An exponential moving average of the most recent velocities used to update particle

positions could be considered. Such an approach could smooth particle movements.

6.6 Application of Research Over 3-5 Years

This research resulted in the proposal of a new efficiency focused CNN model architecture.

The proposed efficiency focused CNN model save computational cost by factorising 3x3

standard convolutions into pairs of 1x3 and 3x1 standard convolutions. This contribution

has advanced existing knowledge by proposing a novel CNN model construction that better

trades off accuracy with computation cost when compared to existing research methods. The

applications for this advancement over the next 3-5 years benefit both academia and industry.

Efficiency focused models are important as they require less expensive hardware to train,

making training such models faster and accessible. Efficient CNN models require fewer

resources to run, making it possible to run CNN models on resource-constrained devices

such as CCTV cameras and IoT devices with greater accuracy than what was possible before.

Since the publication of the proposed model, researchers at Google have also published work

containing CNN models constructed from 1x3 and 3x1 kernels [165] that focused on training

keyword spotters with limited training data. Such publications show that the applications

over the next 3-5 years covers many research topics. In industry, a model which can achieve

greater accuracy with less computational resources means that such a model is easier to scale,

and are more suitable for edge deployments in limited hardware resources. In academia, a

model achieving greater accuracy with fewer resource requirements means that more novel

research can be conducted quicker and in constrained environments such as robotics research

and wearable devices. Furthermore, researchers with limited hardware availability can also

use such methods to conduct research.

The research conducted that proposed new methods for automatically constructing CNN

models have advanced existing knowledge by proposing methods for automatically con-

structing more accurate CNN models. The proposed methods introduced novelties including

new search and encoding strategies. Such advances have applications in both academia and

industry. Over the next 3-5 years, the proposed approaches for automatically generating

CNN models means that new and novel problems can be solved without the need for in

depth knowledge in CNN model construction. For research settings, the novelty can come

from the application area rather than the model construction. In such research given a new

115



and novel data set, the proposed approach could be applied to construct a suitable model to

solve the task at hand. For example, [166] referenced the proposed approach when conduct-

ing a PSO based approach for automatic CNN architecture generation within the domain of

tuberculosis X-Ray image classification. Within similar research areas, the advancement in

knowledge could be built upon over the next 3-5 years. Likewise in industry, rapid prototyp-

ing and development could be conducted with less manual trial and error.

116



References

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[4] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[6] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–

4520, 2018.

[8] Ziyang He, Xiaoqing Zhang, Yangjie Cao, Zhi Liu, Bo Zhang, and Xiaoyan Wang.

Litenet: Lightweight neural network for detecting arrhythmias at resource-constrained

mobile devices. Sensors, 18(4):1229, 2018.

[9] Ido Freeman, Lutz Roese-Koerner, and Anton Kummert. Effnet: An efficient structure

for convolutional neural networks. In 2018 25th IEEE International Conference on

Image Processing (ICIP), pages 6–10. IEEE, 2018.

[10] Francisco Erivaldo Fernandes Junior and Gary G Yen. Particle swarm optimization of

deep neural networks architectures for image classification. Swarm and Evolutionary

Computation, 49:62–74, 2019.

[11] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural

network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167,

2016.

117



[12] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Evolving deep convolu-

tional neural networks for image classification. IEEE Transactions on Evolutionary

Computation, 24(2):394–407, 2019.

[13] Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. Evolving deep convolutional

neural networks by variable-length particle swarm optimization for image classifica-

tion. In 2018 IEEE Congress on Evolutionary Computation (CEC), pages 1–8. IEEE,

2018.

[14] Fahui Miao, Li Yao, and Xiaojie Zhao. Evolving convolutional neural networks by

symbiotic organisms search algorithm for image classification. Applied Soft Comput-

ing, 109:107537, 2021.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected

convolutional networks. In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2261–2269, 2017.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, 2009.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-

manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in

context. In European conference on computer vision, pages 740–755. Springer, 2014.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009.

[19] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang

Liu. A survey on deep transfer learning. In International conference on artificial

neural networks, pages 270–279. Springer, 2018.

[20] Mengjun Zeng and Nanfeng Xiao. Effective combination of densenet and bilstm for

keyword spotting. IEEE Access, 7:10767–10775, 2019.

[21] Swarnambiga Ayyachamy, Varghese Alex, Mahendra Khened, and Ganapathy Krish-

namurthi. Medical image retrieval using Resnet-18. In Po-Hao Chen and Peter R.

Bak, editors, Medical Imaging 2019: Imaging Informatics for Healthcare, Research,

and Applications, volume 10954, pages 233 – 241. International Society for Optics

and Photonics, SPIE, 2019.

[22] Guangfen Wei, Gang Li, Jie Zhao, and Aixiang He. Development of a lenet-5 gas

identification cnn structure for electronic noses. Sensors, 19(1):217, 2019.

[23] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering, 22(10):1345–1359, 2010.

118



[24] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling opera-

tions in convolutional architectures for object recognition. In International conference

on artificial neural networks, pages 92–101. Springer, 2010.

[25] Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in neural nets: Backprop-

agation, conjugate gradient, and early stopping. In Advances in neural information

processing systems, pages 402–408, 2001.

[26] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolu-

tional neural networks. arXiv preprint arXiv:1905.11946, 2019.

[27] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effec-

tive receptive field in deep convolutional neural networks. In Proceedings of the 30th

International Conference on Neural Information Processing Systems, pages 4905–

4913, 2016.

[28] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation

for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[29] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-

ing convolutional neural networks for resource efficient inference. arXiv preprint

arXiv:1611.06440, 2016.

[30] Edmar Rezende, Guilherme Ruppert, Tiago Carvalho, Fabio Ramos, and Paulo

De Geus. Malicious software classification using transfer learning of resnet-50 deep

neural network. In 2017 16th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 1011–1014. IEEE, 2017.

[31] Lingxi Xie and Alan Yuille. Genetic cnn. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 1388–1397, 2017.

[32] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-

International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE,

1995.

[33] Y. Sun, G. G. Yen, and Z. Yi. Evolving unsupervised deep neural networks for learn-

ing meaningful representations. IEEE Transactions on Evolutionary Computation,

23(1):89–103, 2019.

[34] Xin-She Yang. Nature-inspired optimization algorithms: Challenges and open prob-

lems. Journal of Computational Science, 46:101104, 2020. 20 years of computational

science.

[35] Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. A hybrid differential evolution

approach to designing deep convolutional neural networks for image classification. In

119



Tanja Mitrovic, Bing Xue, and Xiaodong Li, editors, AI 2018: Advances in Artificial

Intelligence, pages 237–250, Cham, 2018. Springer International Publishing.

[36] John Henry Holland et al. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence. MIT

press, 1992.

[37] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780, 11 1997.

[39] Ben Fielding and Li Zhang. Evolving deep denseblock architecture ensembles for

image classification. Electronics, 9(11), 2020.

[40] B. Wang, B. Xue, and M. Zhang. Particle swarm optimisation for evolving deep

neural networks for image classification by evolving and stacking transferable blocks.

In IEEE Congress on Evolutionary Computation (CEC), pages 1–8, 2020.

[41] Kuruge Abeyrathna and Chawalit Jeenanunta. Escape local minima with improved

particle swarm optimization algorithm. 11 2019.

[42] D. Steinkraus, I. Buck, and P.Y. Simard. Using gpus for machine learning algo-

rithms. In Eighth International Conference on Document Analysis and Recognition

(ICDAR’05), pages 1115–1120 Vol. 2, 2005.

[43] Morty Eisen. Introduction to poe and the ieee802. 3af and 802.3 at standards. Marcum

Technology: New York, NY, USA, 2009.

[44] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew

Ng. Reading digits in natural images with unsupervised feature learning. NIPS, 01

2011.

[45] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German

Traffic Sign Recognition Benchmark: A multi-class classification competition. In

IEEE International Joint Conference on Neural Networks, pages 1453–1460, 2011.

[46] Tom Lawrence and Li Zhang. Iotnet: An efficient and accurate convolutional neural

network for iot devices. Sensors, 19(24), 2019.

[47] Tom Lawrence, Li Zhang, Chee Peng Lim, and Emma-Jane Phillips. Particle swarm

optimization for automatically evolving convolutional neural networks for image clas-

sification. IEEE Access, 9:14369–14386, 2021.

[48] Tom Lawrence, Li Zhang, Kay Rogage, and Chee Peng Lim. Evolving deep archi-

tecture generation with residual connections for image classification using particle

swarm optimization. Sensors, 21(23), 2021.

120



[49] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-

putational learning theory, pages 144–152, 1992.

[50] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-

tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[51] John S Bridle. Probabilistic interpretation of feedforward classification network out-

puts, with relationships to statistical pattern recognition. In Neurocomputing, pages

227–236. Springer, 1990.

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[53] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[54] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. In International Conference on Learning Representations,

2015.

[56] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 5927–5935, 2017.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[58] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 4700–4708, 2017.

[59] Rahul Mazumder, Jerome H Friedman, and Trevor Hastie. Sparsenet: Coordinate

descent with nonconvex penalties. Journal of the American Statistical Association,

106(495):1125–1138, 2011.

[60] Fatma Karray, Mohamed W Jmal, Alberto Garcia-Ortiz, Mohamed Abid, and Abdul-

fattah M Obeid. A comprehensive survey on wireless sensor node hardware platforms.

Computer Networks, 144:89–110, 2018.

121



[61] Roberto Saia, Salvatore Carta, Diego Reforgiato Recupero, and Gianni Fenu. Internet

of entities (ioe): A blockchain-based distributed paradigm for data exchange between

wireless-based devices. In 8th International Conference on Sensor Networks, SEN-

SORNETS 2019, pages 77–84. SciTePress, 2019.

[62] Fernando Castaño, Stanisław Strzelczak, Alberto Villalonga, Rodolfo E Haber, and

Joanna Kossakowska. Sensor reliability in cyber-physical systems using internet-of-

things data: A review and case study. Remote Sensing, 11(19):2252, 2019.

[63] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2818–2826,

2016.

[64] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning. In

Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[65] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[66] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database.

IEEE Engineering in Medicine and Biology Magazine, 20(3):45–50, 2001.

[67] A. S. Gaikwad and M. El-Sharkawy. Pruning convolution neural network (squeezenet)

using taylor expansion-based criterion. In 2018 IEEE International Symposium on

Signal Processing and Information Technology (ISSPIT), pages 1–5, Dec 2018.

[68] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri. Stability based filter prun-

ing for accelerating deep cnns. In 2019 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 1166–1174, Jan 2019.

[69] Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Fran-

cisco Herrera. Ordering-based pruning for improving the performance of ensembles of

classifiers in the framework of imbalanced datasets. Information Sciences, 354:178–

196, 2016.

[70] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li. Toward compact convnets via structure-

sparsity regularized filter pruning. IEEE Transactions on Neural Networks and Learn-

ing Systems, pages 1–15, 2019.

[71] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.

com/exdb/lenet, 20:5, 2015.

[72] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

122



[73] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. CoRR, abs/1409.1556, 2014.

[74] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural in-

formation processing systems, pages 91–99, 2015.

[75] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution

for image classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

[76] Z. Zhong, J. Yan, W. Wu, J. Shao, and C. Liu. Practical block-wise neural network ar-

chitecture generation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2423–2432, June 2018.

[77] E. Bochinski, T. Senst, and T. Sikora. Hyper-parameter optimization for convolu-

tional neural network committees based on evolutionary algorithms. In 2017 IEEE

International Conference on Image Processing (ICIP), pages 3924–3928, Sep. 2017.

[78] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Automatically designing

cnn architectures using genetic algorithm for image classification. arXiv preprint

arXiv:1808.03818, 2018.

[79] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

[80] Michel Tokic. Adaptive ε-greedy exploration in reinforcement learning based on

value differences. In Annual Conference on Artificial Intelligence, pages 203–210.

Springer, 2010.

[81] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes

used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages

69–93. Elsevier, 1991.

[82] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng.

Bi-real net: Enhancing the performance of 1-bit cnns with improved representational

capability and advanced training algorithm. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 722–737, 2018.

[83] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip

Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable bina-

rized neural network inference. In Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.

[84] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakr-

ishnan. Training deep neural networks with 8-bit floating point numbers. In Advances

in neural information processing systems, pages 7675–7684, 2018.

123



[85] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. In European

Conference on Computer Vision, pages 525–542. Springer, 2016.

[86] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

Autoaugment: Learning augmentation strategies from data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 113–123, 2019.

[87] Treesukon Treebupachatsakul and Suvit Poomrittigul. Bacteria classification using

image processing and deep learning. In 2019 34th International Technical Conference

on Circuits/Systems, Computers and Communications (ITC-CSCC), pages 1–3, 2019.

[88] Shoji Kido, Yasusi Hirano, and Noriaki Hashimoto. Detection and classification of

lung abnormalities by use of convolutional neural network (cnn) and regions with

cnn features (r-cnn). In 2018 International Workshop on Advanced Image Technology

(IWAIT), pages 1–4, 2018.

[89] Guoming Chen, Yongchang Chen, Zeduo Yuan, Xuming Lu, Xiongyong Zhu, and

Wanyi Li. Breast cancer image classification based on cnn and bit-plane slicing.

In 2019 International Conference on Medical Imaging Physics and Engineering

(ICMIPE), pages 1–4, 2019.

[90] Zhang Jin, Luo Qingli, Li Yu, Feng Hao, and Wei Jujie. Oil spill detection us-

ing refined convolutional neural network based on quad-polarimetric sar images. In

2019 14th IEEE International Conference on Electronic Measurement Instruments

(ICEMI), pages 528–536, 2019.

[91] Kan Zeng and Yixiao Wang. A deep convolutional neural network for oil spill detec-

tion from spaceborne sar images. Remote Sensing, 12(6):1015, 2020.

[92] Samir S Yadav and Shivajirao M Jadhav. Deep convolutional neural network based

medical image classification for disease diagnosis. Journal of Big Data, 6(1):1–18,

2019.

[93] Mengmeng Zhang, Wei Li, and Qian Du. Diverse region-based cnn for hyperspec-

tral image classification. IEEE Transactions on Image Processing, 27(6):2623–2634,

2018.

[94] Chih-Cheng Chen, Zhen Liu, Guangsong Yang, Chia-Chun Wu, and Qiubo Ye. An

improved fault diagnosis using 1d-convolutional neural network model. Electronics,

10(1):59, 2021.

[95] Benjamin Staar, Michael Lütjen, and Michael Freitag. Anomaly detection with con-

volutional neural networks for industrial surface inspection. Procedia CIRP, 79:484

– 489, 2019. 12th CIRP Conference on Intelligent Computation in Manufacturing

Engineering, 18-20 July 2018, Gulf of Naples, Italy.

124



[96] T. Y. Tan, L. Zhang, C. P. Lim, B. Fielding, Y. Yu, and E. Anderson. Evolving en-

semble models for image segmentation using enhanced particle swarm optimization.

IEEE Access, 7:34004–34019, 2019.

[97] X. Zhou, L. Qian, P. You, Z. Ding, and Y. Han. Fall detection using convolutional

neural network with multi-sensor fusion. In 2018 IEEE International Conference on

Multimedia Expo Workshops (ICMEW), pages 1–5, 2018.

[98] Philip Kinghorn, Li Zhang, and Ling Shao. A region-based image caption generator

with refined descriptions. Neurocomputing, 272:416 – 424, 2018.

[99] Philip Kinghorn and Li Zhang. hierarchical and regional deep learning architecture

for image description generation. Pattern Recognition Letters, 119:77–85, 2019.

[100] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 779–788, 2016.

[101] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[102] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

[103] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(2):386–397, 2020.

[104] Xin-She Yang. Firefly algorithms for multimodal optimization. In International sym-

posium on stochastic algorithms, pages 169–178. Springer, 2009.

[105] Taha Mostafaie, Farzin Modarres Khiyabani, and Nima Jafari Navimipour. A sys-

tematic study on meta-heuristic approaches for solving the graph coloring problem.

Computers and Operations Research, 120:104850, 2020.

[106] Chunfeng Wang and Kui Liu. A randomly guided firefly algorithm based on elitist

strategy and its applications. IEEE Access, 7:130373–130387, 2019.

[107] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[108] M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning ap-

proach to the traveling salesman problem. IEEE Transactions on Evolutionary Com-

putation, 1(1):53–66, 1997.

[109] X. Yang and Suash Deb. Cuckoo search via lévy flights. In 2009 World Congress on

Nature Biologically Inspired Computing (NaBIC), pages 210–214, 2009.

[110] Micheal F Shlesinger, George M Zaslavsky, and Uriel Frisch. Lévy flights and related

topics in physics. 1995.

125



[111] Jinjin Ding, Qunjin Wang, Qian Zhang, Qiubo Ye, and Yuan Ma. A hybrid particle

swarm optimization-cuckoo search algorithm and its engineering applications. Math-

ematical Problems in Engineering, 2019, 2019.

[112] Li Huang, Shuai Ding, Shouhao Yu, Juan Wang, and Ke Lu. Chaos-enhanced cuckoo

search optimization algorithms for global optimization. Applied Mathematical Mod-

elling, 40(5):3860–3875, 2016.

[113] Kamlesh Mistry, Li Zhang, Siew Chin Neoh, Chee Peng Lim, and Ben Fielding. A

micro-ga embedded pso feature selection approach to intelligent facial emotion recog-

nition. IEEE transactions on cybernetics, 47(6):1496–1509, 2016.

[114] Teck Yan Tan, Li Zhang, and Chee Peng Lim. Intelligent skin cancer diagnosis us-

ing improved particle swarm optimization and deep learning models. Applied Soft

Computing, 84:105725, 2019.

[115] Teck Yan Tan and Li Zhang. Adaptive melanoma diagnosis using evolving clustering,

ensemble and deep neural networks. Knowledge-Based Systems, 187:104807, 2020.

[116] Worawut Srisukkham, Li Zhang, Siew Chin Neoh, Stephen Todryk, and Chee Peng

Lim. Intelligent leukaemia diagnosis with bare-bones pso based feature optimization.

Applied soft computing, 56:405–419, 2017.

[117] Ben Fielding and Li Zhang. Evolving image classification architectures with enhanced

particle swarm optimisation. IEEE Access, 6:68560–68575, 2018.

[118] Ben Fielding, Tom Lawrence, and Li Zhang. Evolving and ensembling deep cnn ar-

chitectures for image classification. In 2019 International Joint Conference on Neural

Networks (IJCNN), pages 1–8. IEEE, 2019.

[119] Min-Yuan Cheng and Doddy Prayogo. Symbiotic organisms search: A new meta-

heuristic optimization algorithm. Computers and Structures, 139:98–112, 2014.

[120] Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. Evolving deep neural networks

by multi-objective particle swarm optimization for image classification. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, GECCO ’19, page

490–498, New York, NY, USA, 2019. Association for Computing Machinery.

[121] Tulika Dutta, Sandip Dey, Siddhartha Bhattacharyya, and Somnath Mukhopadhyay.

Quantum fractional order darwinian particle swarm optimization for hyperspectral

multi-level image thresholding. Applied Soft Computing, page 107976, 2021.

[122] Daniela Szwarcman, Daniel Civitarese, and Marley Vellasco. Quantum-inspired neu-

ral architecture search. In 2019 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 2019.

126



[123] Li Zhang, Chee Peng Lim, and Yonghong Yu. Intelligent human action recognition

using an ensemble model of evolving deep networks with swarm-based optimization.

Knowledge-Based Systems, 220, 2021.

[124] Xiaobo Liu, Chaochao Zhang, Zhihua Cai, Jianfeng Yang, Zhilang Zhou, and Xin

Gong. Continuous particle swarm optimization-based deep learning architecture

search for hyperspectral image classification. Remote Sensing, 13(6), 2021.

[125] Chia-Feng Juang, Yu-Cheng Chang, and I-Fang Chung. Optimization of recur-

rent neural networks using evolutionary group-based particle swarm optimization for

hexapod robot gait generation. Hybrid Metaheuristics: Research And Applications,

84:227, 2018.

[126] Teck Yan Tan, Li Zhang, and Chee Peng Lim. Intelligent skin cancer diagnosis us-

ing improved particle swarm optimization and deep learning models. Applied Soft

Computing, 84:105725, 2019.

[127] Li Zhang and Chee Peng Lim. Intelligent optic disc segmentation using improved

particle swarm optimization and evolving ensemble models. Applied Soft Computing,

92:106328, 2020.

[128] Teck Yan Tan, Li Zhang, and Chee Peng Lim. Adaptive melanoma diagnosis using

evolving clustering, ensemble and deep neural networks. Knowledge-Based Systems,

187:104807, 2020.

[129] Long Zhang and Lin Zhao. High-quality face image generation using particle swarm

optimization-based generative adversarial networks. Future Generation Computer

Systems, 122:98–104, 2021.

[130] Zhongke Gao, Yanli Li, Yuxuan Yang, Xinmin Wang, Na Dong, and Hsiao-Dong Chi-

ang. A gpso-optimized convolutional neural networks for eeg-based emotion recog-

nition. Neurocomputing, 380:225 – 235, 2020.

[131] Y. Sun, B. Xue, M. Zhang, and G. G. Yen. Completely automated cnn architecture de-

sign based on blocks. IEEE Transactions on Neural Networks and Learning Systems,

31(4):1242–1254, 2020.

[132] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and Jiancheng Lv. Automatically

designing cnn architectures using the genetic algorithm for image classification. IEEE

Transactions on Cybernetics, 50(9):3840–3854, 2020.

[133] Brad L Miller, David E Goldberg, et al. Genetic algorithms, tournament selection,

and the effects of noise. Complex systems, 9(3):193–212, 1995.

127



[134] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures

for scalable image recognition. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8697–8710, 2018.

[135] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture

search. In International Conference on Learning Representations, pages 1729–1738,

2019.

[136] A. Kwasigroch, M. Grochowski, and A. Mikołajczyk. Neural architecture search for

skin lesion classification. IEEE Access, 8:9061–9071, 2020.

[137] Edvinas Byla and Wei Pang. ”deepswarm: Optimising convolutional neural networks

using swarm intelligence”. In Zhaojie Ju, Longzhi Yang, Chenguang Yang, Alexan-

der Gegov, and Dalin Zhou, editors, Advances in Computational Intelligence Sys-

tems. UKCI 2019., Advances in Intelligent Systems and Computing, pages 119–130.

Springer, August 2019.

[138] Gai-Ge Wang, Suash Deb, and Zhihua Cui. Monarch butterfly optimization. Neural

computing and applications, 31(7):1995–2014, 2019.

[139] Nebojsa Bacanin, Timea Bezdan, Eva Tuba, Ivana Strumberger, and Milan Tuba.

Monarch butterfly optimization based convolutional neural network design. Math-

ematics, 8(6), 2020.

[140] Ivana Strumberger, Eva Tuba, Nebojsa Bacanin, Marko Beko, and Milan Tuba. Mod-

ified and hybridized monarch butterfly algorithms for multi-objective optimization. In

Ana Maria Madureira, Ajith Abraham, Niketa Gandhi, and Maria Leonilde Varela, ed-

itors, Hybrid Intelligent Systems, pages 449–458, Cham, 2020. Springer International

Publishing.

[141] Nebojsa Bacanin and Milan Tuba. Artificial bee colony (abc) algorithm for con-

strained optimization improved with genetic operators. Studies in Informatics and

Control, 21:137–146, 06 2012.

[142] XS Yang. Firefly algorithm, nature inspired metaheuristic algorithms, 2010, 2010.

[143] Dechao Chen, Xiang Li, and Shuai Li. A novel convolutional neural network model

based on beetle antennae search optimization algorithm for computerized tomography

diagnosis. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12,

2021.

[144] Jiangyu Wang and Huanxin Chen. Bsas: Beetle swarm antennae search algorithm for

optimization problems. arXiv preprint arXiv:1807.10470, 2018.

128



[145] Ching-Hung Lee, Wei-Yu Lai, and Yu-Ching Lin. A tsk-type fuzzy neural network

(tfnn) systems for dynamic systems identification. In 42nd IEEE International Con-

ference on Decision and Control (IEEE Cat. No. 03CH37475), volume 4, pages 4002–

4007. IEEE, 2003.

[146] Meng Li, William Hsu, Xiaodong Xie, Jason Cong, and Wen Gao. Sacnn: Self-

attention convolutional neural network for low-dose ct denoising with self-supervised

perceptual loss network. IEEE transactions on medical imaging, 39(7):2289–2301,

2020.

[147] Sreenivas Sremath Tirumala. Evolving deep neural networks using coevolution-

ary algorithms with multi-population strategy. Neural Computing and Applications,

32(16):13051–13064, 2020.

[148] Maria G. Baldeon Calisto and Susana K. Lai-Yuen. Self-adaptive 2D-3D ensemble

of fully convolutional networks for medical image segmentation. In Ivana Išgum

and Bennett A. Landman, editors, Medical Imaging 2020: Image Processing, volume

11313, pages 459 – 469. International Society for Optics and Photonics, SPIE, 2020.

[149] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731,

2007.

[150] Geert Litjens, Robert Toth, Wendy van de Ven, Caroline Hoeks, Sjoerd Kerkstra,

Bram van Ginneken, Graham Vincent, Gwenael Guillard, Neil Birbeck, Jindang

Zhang, Robin Strand, Filip Malmberg, Yangming Ou, Christos Davatzikos, Matthias

Kirschner, Florian Jung, Jing Yuan, Wu Qiu, Qinquan Gao, Philip “Eddie” Edwards,

Bianca Maan, Ferdinand van der Heijden, Soumya Ghose, Jhimli Mitra, Jason Dowl-

ing, Dean Barratt, Henkjan Huisman, and Anant Madabhushi. Evaluation of prostate

segmentation algorithms for mri: The promise12 challenge. Medical Image Analysis,

18(2):359–373, 2014.

[151] Yulong Wang, Haoxin Zhang, and Guangwei Zhang. cpso-cnn: An efficient pso-based

algorithm for fine-tuning hyper-parameters of convolutional neural networks. Swarm

and Evolutionary Computation, 49:114 – 123, 2019.

[152] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and con-

nections for efficient neural network. In NIPS 28, pages 1135–1143. 2015.

[153] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding. In 4th Inter-

national Conference on Learning Representations, ICLR, San Juan, Puerto Rico, May

2-4, 2016.

129



[154] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, Lille, France, volume 37, pages

448–456, 2015.

[155] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial in-

telligence and statistics, pages 315–323, 2011.

[156] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In-

ternational Conference on Learning Representations, 12 2014.

[157] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-

tomatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[158] Bart Van Merriënboer, Olivier Breuleux, Arnaud Bergeron, and Pascal Lamblin. Auto-

matic differentiation in ml: Where we are and where we should be going. In Advances

in neural information processing systems, pages 8757–8767, 2018.

[159] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML-10, Haifa, Israel, pages 807–814, 2010.

[160] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Ben-

gio. An empirical evaluation of deep architectures on problems with many factors of

variation. In ICML ’07, page 473–480, New York, NY, USA, 2007.

[161] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew

Brett, Allan Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,

585(7825):357–362, September 2020.

[162] H Larochelle, D Erhan, and A Courville. icml2007data, Apr 2007.

[163] Seyedali Mirjalili. Dragonfly algorithm: a new meta-heuristic optimization technique

for solving single-objective, discrete, and multi-objective problems. Neural Comput-

ing and Applications, 27(4):1053–1073, 2016.

[164] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf opti-

mizer. Advances in Engineering Software, 69:46 – 61, 2014.

[165] James Lin, Kevin Kilgour, Dominik Roblek, and Matthew Sharifi. Training keyword

spotters with limited and synthesized speech data. In ICASSP 2020 - 2020 IEEE In-

130



ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

7474–7478, 2020.

[166] Marina Yusoff, Mohamad Syafiq Irfan Saaidi, Amirul Sadikin Md Afendi, and

Azrin Mohd Hassan. Tuberculosis x-ray images classification based dynamic update

particle swarm optimization with cnn. Journal of Hunan University Natural Sciences,

48(9), 2021.

131


