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Behavioral origin of sound-evoked activity in 
mouse visual cortex

Célian Bimbard    1 , Timothy P. H. Sit2,3,4, Anna Lebedeva2,3,4, 
Charu B. Reddy    1, Kenneth D. Harris    3 & Matteo Carandini    1

Sensory cortices can be affected by stimuli of multiple modalities and are 
thus increasingly thought to be multisensory. For instance, primary visual 
cortex (V1) is influenced not only by images but also by sounds. Here we show 
that the activity evoked by sounds in V1, measured with Neuropixels probes, 
is stereotyped across neurons and even across mice. It is independent of 
projections from auditory cortex and resembles activity evoked in the 
hippocampal formation, which receives little direct auditory input. Its 
low-dimensional nature starkly contrasts the high-dimensional code that 
V1 uses to represent images. Furthermore, this sound-evoked activity can 
be precisely predicted by small body movements that are elicited by each 
sound and are stereotyped across trials and mice. Thus, neural activity that 
is apparently multisensory may simply arise from low-dimensional signals 
associated with internal state and behavior.

Many studies suggest that all cortical sensory areas, including primary 
ones, are multisensory1. For instance, mouse’s primary visual cortex (V1) 
is influenced by sounds. Sounds may provide V1 with global inhibition2, 
modify the neurons’ tuning3,4, boost detection of visual events5 or even 
provide tone-specific information, reinforced by prolonged exposure6 
or training7. This sound-evoked activity is thought to originate from 
direct projections from the auditory cortex2,3,5,7—it may be suppressed 
by inhibition of the auditory cortex2,5, and it may be mimicked by stimu-
lation of auditory fibers2,3.

Here we consider a possible alternative explanation for these mul-
tisensory signals, based on low-dimensional changes in internal state 
and behavior8,9. Behavioral and state signals have profound effects on 
sensory areas. For instance, the activity of V1 neurons carries strong 
signals related to running10,11, pupil dilation11,12, whisking13 and other 
movements14. These behavioral and state signals are low-dimensional 
and largely orthogonal13 to the high-dimensional code that V1 uses to 
represent images15.

We hypothesized, therefore, that the activity evoked by sounds 
in V1 reflects sound-elicited changes in internal state and behavior. 
This seems possible because sounds can change internal state and 
evoke uninstructed body movements16–20. This hypothesis predicts 
that sound-evoked activity in V1 should have the typical attributes of 

behavioral signals: low dimension13 and a broad footprint14,21,22 that 
extends beyond the cortex13. Moreover, sound-evoked activity should 
be independent of direct inputs from auditory cortex and should be 
predictable from the behavioral effects of sounds.

To test these predictions, we recorded the responses of hundreds 
of neurons in mouse V1 to audiovisual stimuli, while filming the mouse 
to assess the movements elicited by the sounds. As predicted by our 
hypothesis, the activity evoked by sounds in V1 had a low dimension: it 
was largely one-dimensional. Moreover, it was essentially identical to 
activity evoked in another brain region, the hippocampal formation. 
Furthermore, it was independent of direct projections from auditory 
cortex, and it tightly correlated with the uninstructed movements 
evoked by the sounds. These movements were small but specific to 
each sound and stereotyped across trials and across mice. Thus much 
of the multisensory activity that has been observed in visual cortex 
may have a simpler, behavioral origin.

Results
To explore the influence of sounds on V1 activity, we implanted Neu-
ropixels 1.0 and 2.0 probes23,24 in eight mice and recorded from them 
during head fixation while playing naturalistic audiovisual stimuli. We 
selected 11 naturalistic movie clips25, each made of a video (gray-scaled) 
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each sound, averaged across all concurrent videos. These measures 
were then ‘marginalized’ by subtracting the grand average over all 
videos and sounds (Fig. 1d).

Sounds evoked activity in a large fraction of V1 neurons, and this 
activity was reliably different across sounds. Some sounds barely 
evoked any activity, while others evoked stereotyped responses, at 
different points in time (Fig. 1e). From the marginalized single-trial 
population responses, we could decode not only the identity of each 
video (with 95 ± 1% accuracy, s.e., P = 0.0039, Wilcoxon right-tailed 
signed rank test, n = 8 mice) but also the identity of each sound (with 
18 ± 2% accuracy, P = 0.0039, Wilcoxon right-tailed signed rank test, 
n = 8 mice; Fig. 1f).

The activity evoked by sounds was so stereotyped across respon-
sive neurons that it was essentially one-dimensional. We analyzed the 
sound-related population responses with cross-validated Principal 

and a sound (loudness, 50–80 dB SPL; Supplementary Fig. 1), together 
with a blank movie (gray screen, no sound). On each trial, we presented 
a combination of the sound from one clip and the video from another 
(144 combinations repeated four times, in random order). Most neurons 
were recorded from layers 4 to 6.

Sounds evoke stereotyped responses in visual cortex
We then identified the visual and auditory components of each neu-
ron’s sensory response. A typical V1 neuron responded differently to 
different combinations of videos and sounds (Fig. 1a). To character-
ize these responses, we used a marginalization procedure similar to 
factorial ANOVA. To measure the neuron’s video-related responses 
(Fig. 1b), we computed its mean response to each video, averaged 
across all concurrent sounds. Similarly, to characterize the neuron’s 
sound-related responses (Fig. 1c), we computed the mean response to 
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Fig. 1 | Sounds evoke stereotyped responses in visual cortex. a, Responses 
of an example neuron to combinations of sounds (columns) and videos (rows). 
Responses were averaged over four repeats. b, Video-related time courses 
(averaged over all sound conditions, minus the grand average) for the example 
neuron in a. c, Same, for the sound-related time courses. d, Grand average 
over all conditions for the neuron. Scale bars in b–d: 20 spikes per second. e, 
Sound-related time courses for all 212 neurons in one experiment, sorted using 
rastermap13. f, Decoding accuracy for video versus sound (double asterisks 

indicate P = 0.0039, Wilcoxon right-tailed signed rank test, n = 8 mice). Dashed 
lines show chance level (1/12). g, Time courses of the first principal component 
of the sound-related responses in e (‘auditory PC1’, arbitrary units). h, Fraction 
of total variance explained by auditory PCs, for this example mouse; inset: 
distribution of the weights of auditory PC1 (arbitrary units), showing that weights 
were typically positive. i, Same, for visual PCs. j–l, Same as g–i, for individual mice 
(thin curves) and averaged across mice (thick curves).
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Component Analysis15 (cvPCA) and found that the time course of the 
first principal component (PC) of sound-related responses (‘auditory 
PC1’) for each sound was similar to the responses evoked in individual 
neurons (Fig. 1g). This first dimension explained most (55%) of the 
cross-validated sound-related variance (1.9% of the total variance) 
with subsequent dimensions explaining much smaller fractions  
(Fig. 1h). Furthermore, neurons showed distributed yet overall positive 
weights on this first PC, indicating a largely excitatory effect of sound 
(Fig. 1h, inset).

Similar results held across mice: the activity evoked by sounds in 
V1 was largely one-dimensional (auditory PC1 explained 53 ± 3% of the 
sound-related variance, s.e., n = 8 mice), and the first principal compo-
nent across mice had similar time courses and similar dependence on 
sound identity (Fig. 1j,k). Indeed, the correlation of auditory PC1 time 
courses evoked in different mice was 0.34, close to the test–retest 
correlation of 0.44 measured within individual mice (Extended Data  
Fig. 1c,e). Again, in all mice, the neuron’s weights for the auditory 
PC1 were widely distributed, with a positive bias (P = 0.0078, Wil-
coxon two-tailed signed rank test on the mean, n = 8 mice; Fig. 1k). 
Higher-order PCs were harder to compare across mice (Extended 
Data Fig. 1c,e). Components 2, 3 and 4 also encoded auditory stimuli 
markedly but explained much less variance (Fig. 1h and Extended Data 
Fig.1c,d). Thus sounds evoke essentially one-dimensional population 
activity, which follows a similar time course even across brains. In the 
rest of the paper, we will illustrate sound-evoked activity by using the 
time course of this single ‘auditory PC1’.

In contrast, the activity evoked by videos in V1 neurons was mark-
edly larger and higher dimensional. The first visual PC explained a 
much higher fraction of total variance than the first auditory PC (17 ± 1% 
versus 1.5 ± 0.3% s.e., n = 8 mice; Fig. 1i,l). Furthermore, higher visual 
PCs explained substantial amounts of variance15.

Sounds evoke stereotyped responses in hippocampal formation
We next investigated whether these auditory-evoked signals were spe-
cific to visual cortex. Thanks to the length of Neuropixels probes, while 
recording from V1, we simultaneously recorded from the hippocampal 
formation (dorsal subiculum and prosubiculum, dentate gyrus and 
CA3; Fig. 2). These regions receive little input from auditory cortex 
and auditory thalamus26.

Sounds evoked strong activity in the hippocampal formation 
(HPF), and this activity was largely similar across cells and different 
across sounds (Fig. 2a). As in visual cortex, the activity in single trials 
could be used to decode sound identity (29 ± 2% and to a lesser extent 
video identity 19 ± 2%, P = 0.031 for both, Wilcoxon right-tailed signed 
rank test, n = 5 mice; Fig. 2b). Projection of the sound-related activity 
along the auditory PC1 showed different time courses across sounds 
(Fig. 2c,e), and this first PC explained most of the sound-related vari-
ance (65 ± 13% Fig. 2d,f). Similarly, the representation of videos was also 
low dimensional (Extended Data Fig. 2b).

The activity evoked by sounds in the hippocampal formation was 
remarkably similar to the activity evoked in visual cortex. Indeed, the 
time courses of the auditory PC1 in the two regions, averaged over mice, 
were hardly distinguishable (compare Fig. 2e–g and see Extended Data 
Fig. 1a,f), with a correlation of r = 0.82 (Fig. 2h). Because they explain 
much less variance, higher-order PCs were more variable across regions 
(Extended Data Fig. 1f). The time course of the visual PC1 also shared 
similarities with the visual PC1 found in visual cortex, but higher-order 
PCs did not (Extended Data Fig. 1b,f).

Sound responses are not due to inputs from auditory cortex
We next returned to the activity evoked by sounds in visual cortex and 
asked if this activity is due to projections from auditory cortex, as has 
been proposed2,3,5,7. We performed transectomies2 to cut the fibers 
between auditory and visual areas in one hemisphere and recorded 
bilaterally while presenting our audiovisual stimuli (Fig. 3a). The cut 

ran along the whole boundary between auditory and visual areas 
and was deep enough to reach into the white matter (Extended Data  
Fig. 3a–c). We carefully quantified the precise location and extent 
of the cut in 3D, based on the histology (Fig. 3b and Extended Data  
Fig. 3d). To estimate the fraction of fibers from auditory to visual areas 
that were cut, we extracted the trajectories of those fibers from the 
Allen Mouse Brain Connectivity Atlas26 and intersected them with the 
location of our cut. We thus estimated that the cut decreased the total 
input from the two auditory cortices to the visual areas ipsilateral to 
the cut by an average factor of >3.6 compared to the contralateral side 
(4.8, 2.5 and 3.6 in the three mice; Fig. 3c and Extended Data Fig. 3e–g). 
Thus, if auditory-evoked activity in visual cortex originates from audi-
tory cortex, it should be drastically reduced on the cut side.

The activity evoked by sounds in visual cortex was similar on 
the cut and the uncut side. Indeed, the time course of the activity 
projected along auditory PC1 on the side of the cut (Fig. 3d,e) was 
essentially identical to the time course of auditory PC1 in the opposite 
hemisphere (r = 0.9, Fig. 3f,g) and barely distinguishable from the one 
measured in the control mice (cut, r = 0.62 and uncut, r = 0.56; Fig. 
3h,i). Their relative timing was also identical, with a cross-correlation 
(measured at 1-ms resolution) that peaked at 0 delays. The distribu-
tion of the variance explained by the first auditory PCs and the distri-
bution of neuronal weights on the auditory PC1 were similar on the 
two sides (Fig. 3e versus g). The total variance of the activity related 
to sounds on the cut side was on average equal to the sound-related 
variance on the uncut side (Fig. 3j and see Extended Data Fig. 2c for 
all eigenspectra) and was significantly larger than expected from the 
few auditory fibers that were spared by the transectomies (P = 0.031, 
Wilcoxon two-tailed paired signed rank test, n = 6 experiments across 
three mice). Furthermore, decoding accuracy was similar across 
sides for both sounds (cut, 27 ± 3% and uncut, 24 ± 2%; P = 0.016 for 
both, Wilcoxon right-tailed signed rank test; comparison: P = 0.44, 
Wilcoxon two-sided paired signed rank test) and videos (cut, 90 ± 4% 
and uncut, 85 ± 6%; P = 0.016 for both, Wilcoxon right-tailed signed 
rank test; comparison: P = 0.31, Wilcoxon two-sided paired signed 
rank test; Fig. 3k).

These results indicate that the activity evoked by sounds in visual 
cortex in our experiments cannot be explained by direct inputs from 
auditory cortex.

Sounds evoke stereotyped uninstructed behaviors
Sounds evoked uninstructed body movements that were small but 
stereotyped across trials and mice and different across sounds. To 
measure body movements, we used a wide-angle camera that imaged 
the head, front paws and back (Fig. 4a). Sounds evoked a variety of 
uninstructed movements, ranging from rapid startle-like responses 
<50 ms after sound onset to more complex, gradual movements  
(Fig. 4b and see Extended Data Fig. 4 for all sounds). These movements 
were remarkably similar across trials and mice. The main and most com-
mon type of sound-evoked movements were subtle whisker twitches 
(Supplementary Video 1), which we quantified by plotting the first 
principal component of facial motion energy13 (Fig. 4b). These move-
ments were influenced by sound loudness, and to some extent by fre-
quency, but not by spatial location (Supplementary Fig. 2). Moreover, 
sounds evoked stereotyped changes in arousal, as observed by the 
time courses of pupil size, which were highly consistent across trials 
and mice (Extended Data Fig. 5).

Because sound-evoked movements were different across sounds 
and similar across trials, we could use them to decode sound identity 
with 16 ± 2% accuracy (s.e., P = 0.0078, Wilcoxon right-tailed signed 
rank test, n = 8 mice; Fig. 4e). This accuracy was not significantly differ-
ent from the 18 ± 2% accuracy of sound decoding from neural activity 
in visual cortex (P = 0.15, Wilcoxon two-sided paired signed rank test), 
suggesting a similar level of single-trial reliability in behavior and in 
neural activity.
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Behavior predicts sound-evoked responses in visual cortex
The body movements evoked by sounds had a remarkably similar time 
course to the activity evoked by sounds in area V1 (Fig. 4b,c). The two 
were highly correlated across time and sounds (r = 0.75; Fig. 4d and 
Extended Data Fig. 4). Furthermore, the accuracy of decoding sound 
identity from V1 activity and from behavior was highly correlated across 
mice (r = 0.73, P = 0.041, F-statistic versus constant model, n = 8 mice; 
Fig. 4f), suggesting that sound-specific neural activity was higher in 
mice that moved more consistently in response to sounds. As it hap-
pens, the cohort of transectomy mice showed higher sound decoding 
accuracy from their behavior compared to the main cohort. Consistent 
with our hypothesis, these same mice showed higher sound decoding 
accuracy from their V1 activity, regardless of hemisphere.

Moreover, the neural activity along auditory PC1 correlated with 
movements even during spontaneous behavior, when no stimulus was 
presented (r = 0.29 ± 0.03, s.e.; Fig. 4g,h). Movement preceded neural 
activity by a few tens of milliseconds (28 ± 7 ms, s.e., P = 0.031, Wilcoxon 
two-sided signed rank test, n = 8 mice; Fig. 4h and see Extended Data 
Fig. 6 for the hippocampal formation and for both sides of the visual 
cortex in transectomy experiments).

Another similarity between the neural activities evoked by sounds 
and by movement could be seen in their subspaces13, which substan-
tially overlapped with each other. To define the behavioral subspace, we 
applied reduced-rank regression to predict neural activity from move-
ments during the spontaneous period (in the absence of stimuli). This 
behavioral subspace largely overlapped with the auditory subspace: 
the first four components of the movement-related subspace explained 
75 ± 3% (s.e.; P < 0.05 for all mice separately, randomization test) of the 
sound-related variance, much more than the video-related variance13 

(35 ± 4%, comparison: P = 0.0078, Wilcoxon two-sided paired signed 
rank test; Fig. 4i,j). We observed a similar overlap in the hippocampal 
formation, and on both sides of visual cortex in the transectomy experi-
ments (Extended Data Fig. 6).

We then asked to what extent body movements could predict 
sound-evoked neural activity in V1. We fitted three models to the 
sound-related single-trial responses (projected onto the full auditory 
subspace) and used the models to predict trial averages of these sound 
responses on a different test set (Fig. 4k and Supplementary Fig. 3). 
The first was a purely auditory model where the time course of neural 
activity depends only on sound identity. This model is equivalent to a 
test–retest prediction, so it will perform well regardless of the origin of 
sound-evoked activity; it would fit perfectly with an infinite number of 
trials. The second was a purely behavioral model where neural activity 
is predicted by pupil area, eye position and motion, and facial move-
ments. This model would perform well only if behavioral variables 
observed in individual trials do predict the trial-averaged sound-evoked 
responses. The third was a full model where activity is due to the sum 
of both factors, auditory and behavioral.

This analysis revealed that the sounds themselves were unneces-
sary to predict sound-evoked activity in visual cortex, whereas the 
body movements elicited by sounds were sufficient. As expected, 
the auditory model was able to capture much of this activity. How-
ever, it performed worse than the full model and the behavioral model 
(P = 0.0078, Wilcoxon two-sided paired signed rank test; Fig. 4l,m). 
These models captured not only the average responses to the sounds 
(see Extended Data Fig. 1a for time courses across all sounds), but also 
the fine differences in neural activity between the train and test set, 
which the auditory model cannot predict (because the two sets share 
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Fig. 2 | Sounds evoke stereotyped responses in hippocampal formation. 
a, Sound-related time courses for all 28 neurons in HPF in one experiment, 
sorted using rastermap13. b, Decoding accuracy for video versus sound (asterisk 
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Time courses of the auditory PC1 in visual cortex (from Fig. 1), for comparison. 
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the same sounds). Remarkably, the behavioral model performed just as 
well as the full model (P = 0.25, Wilcoxon two-sided paired signed rank 
test; Fig. 4n), indicating that the sounds themselves were unnecessary 
to predict sound-evoked activity. Further analysis indicated that the 
main behavioral correlates of sound-evoked activity in V1 were move-
ments of the body and of the whiskers, rather than the eyes (Extended 
Data Fig. 7).

By contrast, and indeed as expected for a brain region that encodes 
images, a purely visual model explained a large fraction of the activity 
evoked in V1 by videos while the behavioral model did not (Extended 
Data Figs. 1g and 8a–c,j–o). Behavior explained a much smaller frac-
tion, mainly along visual PC1, which does not dominate the visual 
responses the way auditory PC1 dominates the auditory responses. In 

the hippocampal formation, finally, the behavioral model explained 
both the sound- and video-evoked activity, suggesting that any visual 
or auditory activity observed there is largely related to movements 
(Extended Data Figs. 1g and 8d–i).

Further confirming the role of body movements, we found that 
trial-by-trial variations in sound-evoked V1 activity were well-predicted 
by trial-by-trial variations in body movement (Extended Data Fig. 9).  
The movements elicited by each sound were stereotyped but not iden-
tical across trials. The behavioral model and the full model captured 
these trial-by-trial variations, which could not be captured by the audi-
tory model because (by definition) the sounds did not vary across 
repeats. The trial-by-trial variations of V1’s auditory PC1 showed a 
correlation of 0.39 with its cross-validated prediction from movements 
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in visual cortex (from Fig. 1). d, Comparison of the time courses of motion (taken 
from b) and of the auditory PC1 from V1 (taken from Fig. 1); all arbitrary units. e, 
Decoding of sound identity from the first 128 motion PCs was significantly above 
chance level (dashed lines) (double asterisks indicate P = 0.0078, Wilcoxon right-
tailed signed rank test, n = 8 mice). f, Across mice, there was a strong correlation 
between the accuracy of sound decoding from facial motion and from V1 activity. 
The linear regression is performed on the control mice from Fig. 1 (black dots). 
Data from transectomy mice (gray markers) confirm the trend, both on the cut 
side (crosses) and on the uncut side (circles). g, Time course of facial motion (top) 
and of V1 activity along auditory PC1 (bottom) in the absence of any stimulus, for 
an example mouse. h, Cross-correlogram of these time courses, for individual 

mice (gray) and their average (black). The positive lag indicates that movement 
precedes neural activity. i, Video- and sound-related variance explained by neural 
activity along the visual (left), auditory (middle) or behavioral (right) subspaces 
(first four PCs of each subspace), for one example mouse. The gray regions show 
90% confidence intervals expected by chance (random components). j, Overlap 
between the auditory or the visual subspace and the behavioral subspace for 
each mouse (open dots) and all mice (filled dot) (double asterisks indicate 
P = 0.0078, Wilcoxon two-sided paired signed rank test, n = 8 mice). Dashed lines 
show the significance threshold (95th percentile of the overlap with random 
dimensions) for each mouse. k, Schematics of the three encoding models trained 
to predict the average sound-related activity in the auditory subspace. l–n, Cross-
validated correlation of the actual sound responses and their predictions for all 
mice, comparing different models (auditory, behavioral and full; double asterisks 
indicate P = 0.0078, Wilcoxon two-sided paired signed rank test, n = 8 mice).
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(P = 0.0078, Wilcoxon two-sided signed rank test). In other words, the 
V1 activity evoked by sounds in individual trials followed a similar time 
course as the body movements observed in those trials.

Finally, the behavioral model confirmed the intuition obtained 
from the correlations (Fig. 4h)—movements preceded the activity 
evoked by sounds in visual cortex. The kernel of a behavioral model 
fit to predict auditory PC1 during spontaneous activity showed that 
movement could best predict neural activity occurring 25–50 ms 
later (Extended Data Fig. 10). This suggests that the activity evoked 
by sounds in visual cortex is driven by changes in internal and behav-
ioral state.

Discussion
These results confirm that sounds evoke activity in visual cortex2–7 but 
provide an alternative interpretation for this activity based on the wide-
spread neural correlates of internal state and body movement10,12–14,27. 
We found that different sounds evoke different uninstructed body 
movements such as whisking, which reflect rapid changes in the internal 
state. Crucially, we discovered that these movements are sufficient to 
explain the activity evoked by sounds in visual cortex in our experi-
ments. These results suggest that, at least in our experiments, the 
sound-evoked activity had a behavioral origin.

Confirming this interpretation, we found that sound-evoked 
activity in visual cortex was independent of projections from audi-
tory cortex. This result contrasts those of studies that ascribed the 
activity evoked by sounds in V1 to a direct input from auditory cortex. 
These studies used multiple methods: silencing of auditory cortex2,5, 
stimulation of its projections to visual cortex2,3 or transectomy of these 
projections2. However, the first two methods would interfere with audi-
tory processing, and thus could affect sound-evoked behavior. We thus 
opted for transectomy2, which is less likely to modify behavior, and we 
performed bilateral recordings to have an internal control—the uncut 
side—within the same mice and with the same behavior. In accord-
ance with our interpretation, these manipulations did not reduce 
sound-evoked activity in V1.

This result contrasts with the original study that introduced the 
transectomy2, and the difference in results may be due to differences 
in methods. First, the previous study was conducted intracellularly 
and mostly in layers 2/3 (where sounds hyperpolarized cells, unlike in 
other layers where sounds increased spiking), whereas we recorded 
extracellularly mainly in layers 4-6 (and observed mainly increases in 
spiking). Second, the previous study performed recordings hours after 
the transectomy, whereas we performed them days later. Third, the 
previous study anesthetized the mice, whereas we did not, a difference 
that can profoundly affect V1 activity28.

Our results indicate that sound-evoked activity is widespread 
in visual cortex and even in the hippocampal formation, and in 
both regions, it is low-dimensional. These properties echo those of 
movement-related activity, which is distributed all over the brain13,14,22,27 
and low-dimensional13. We indeed found that movement-related neural 
activity even in the absence of sounds spanned essentially the same 
dimensions as sound-evoked activity. Moreover, the movements elic-
ited by the sounds in each trial accurately predicted the subsequent 
sound-evoked activity. This is remarkable considering that all the move-
ments we measured are in the face, and that our analyses are linear. 
It is possible that movements of other body parts, or more complex 
analyses, would provide even better predictions of the neural activity 
elicited by sounds.

Our findings do not exclude the possibility of genuine auditory 
signals inherited by visual cortex from auditory cortex. After all, projec-
tions from auditory to visual cortex exist and may carry auditory signals 
for other stimuli or in other behavioral contexts. Moreover, some 
discrepancies between our results and the literature2–7 could be due 
to differences in recording techniques and in the associated sampling 
biases29. Our V1 recordings were biased toward layers 4–6. However, 

layer 2/3 also exhibits substantial movement-related activity10–14, so 
its sound-evoked activity might be similarly explained by movements. 
Finally, it is also possible that auditory projections affect only a minor 
fraction of V1 neurons, or that they affect neurons that do not fire at 
high rates, and that we missed these neurons in our recordings.

Distinguishing putative auditory signals from the large contribu-
tion of internal state and behavior will require careful and systematic 
controls, which are rarely performed in passively listening mice. Some 
studies have controlled for eye movements5 or for overt behaviors such 
as licking7. However, even these studies may have overlooked the types 
of movement that we observed to correlate with neuronal activity, 
which were subtle twitches of the whiskers or the snout (Supplemen-
tary Video 1). An exception is a study20 that explored the contribution 
of whisking to sound-evoked activity V1 neurons in layer 1. In agreement 
with our results, this study found that whisking explains a fraction of 
those neurons’ sound-evoked activity. However, it did not explain all 
the neural activity. This discrepancy could be due to differences in 
recording methods (two-photon imaging versus electrophysiology) in 
cortical layers (layer 1 versus layers 4–6) or in the analyses. For instance, 
the previous study relied on a hard threshold to call a response audi-
tory versus movement-related, whereas we estimated the fraction of 
sound-evoked activity explained by movement.

Our results do not imply that cortical activity is directly due to 
body movements; instead, cortical activity and body movements may 
both arise from changes in the internal state. Consistent with this view, 
we found that sound-evoked activity in V1 is low-dimensional, and thus 
different from the high-dimensional representation of visual stimuli13. 
This interpretation would explain some of the sound-evoked activity in 
visual cortex under anesthesia2,3, where movements are not possible, 
but state changes are common and difficult to control and monitor30,31.

Finally, these observations suggest that changes in states or behav-
ior may also explain other aspects of neural activity that have been 
previously interpreted as being multisensory9. Stereotyped body move-
ments can be elicited not only by sounds16–19 but also by images32–36 and 
odors33,37. For instance, in our experiments, the videos evoked visual 
responses in both V1 and in hippocampal formation, and the latter 
could be largely explained by video-evoked body movements. Such 
movements may be even more likely in response to natural stimuli19, 
which are increasingly common in the field. Given the extensive cor-
relates of body movement observed throughout the brain13,14,21,27,38, 
these observations reinforce the importance of monitoring behavioral 
state and body movement when interpreting sensory-evoked activity.
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Methods
Experimental procedures at UCL were conducted according to the 
UK Animals Scientific Procedures Act (1986), approved by the Animal 
Welfare and Ethical Review Body (AWERB) at UCL and performed under 
personal and project licenses released by the Home Office following 
appropriate ethics review.

Surgery and recordings
Recordings were performed on eight mice (six male and two female), 
between 16 and 38 weeks of age. Mice were first implanted with a 
headplate designed for head fixation under isoflurane anesthesia 
(1–3% in O2). After recovery, neural activity was recorded using Neu-
ropixels 1.0 (n = 5) and 2.0 (n = 3, among which two had four shanks) 
probes implanted in left primary visual cortex (2.5 mm lateral, 3.5 mm 
posterior from Bregma, one probe per animal) and in the underlying 
hippocampal formation. In five of the mice, the probes were implanted 
permanently or with a recoverable implant as described in refs. 24,39, 
and in the remaining three, they were implanted with a recoverable 
implant of a different design (Yoh Isogai and Daniel Regester, personal 
communication). Results were not affected by the implantation strat-
egy. Electrophysiology data were acquired using SpikeGLX (https://
billkarsh.github.io/SpikeGLX/, versions 20190413, 20190919 and 
20201012). Sessions were automatically spike-sorted using Kilosort2 
(https://github.com/MouseLand/Kilosort/releases/tag/v2.0 (ref. 40)) 
and manually curated to select isolated single cells using Phy (https://
github.com/cortex-lab/phy). Because spike contamination is a key 
source of bias29, we took particular care in selecting cells with few or 
no violations in interspike interval (ISI), and we confirmed that a key 
measure used in our study, the reliability of auditory responses, did 
not correlate with the ISI violations score. In fact, it showed a slightly 
negative correlation, indicating that the best-isolated neurons tended 
to have the highest reliability. Reliability for both auditory and visual 
responses also grew with firing rate, as may be expected. The final 
number of cells was 640 in the primary visual cortex (eight mice, 
69/53/54/44/31/33/144/212 for each recording) and 233 in the hip-
pocampal formation (five mice, 49/15/28/64/77 for each recording, 
mainly from dorsal subiculum and prosubiculum). Probe location 
was checked post hoc by aligning it to the Allen Mouse Brain Atlas41 
visually or through custom software (www.github.com/petersaj/
AP_histology).

Before and in between experiments, mice were housed in indi-
vidually ventilated cages (IVC), with a 9 am light/9 pm dark cycle (no 
reverse/shifted light cycle). Temperature was maintained between 
20 °C and 24 °C and humidity was maintained between 50 and 70%.

Transectomy experiments
In three additional mice (all male of 10, 21 and 22 weeks of age), we 
performed transectomies to cut the fibers running from auditory to 
visual cortex and followed them with bilateral recordings in visual 
cortex. Mice expressed GCaMP6s in excitatory neurons (mouse 1 and 
3: Rorb.Camk2tTA.Ai96G6s_L_001; mouse 2: tet0-G6s x CaMK-tTA) 
so we could monitor the activity of the intact visual cortex through 
widefield imaging (data not shown). Before headplate implantation, 
we used a dental drill (13,000 rpm) to perform a narrow rectangular 
(0.3-mm wide) craniotomy along the anteroposterior axis (from 1.6 mm 
posterior to 4.3 mm posterior) centered at 4.3 mm lateral to Bregma. 
To make the transectomy, we then used an angled micro knife (angled 
15°, 10315-12 from Fine Science Tools), mounted on a Leica digital 
stereotaxic manipulator with a fine drive. Ensuring the skull was in 
a horizontal position (the difference between both DV coordinates 
did not exceed 0.1 mm), the knife was tilted 40° relative to the brain. 
The knife was inserted to a depth of 1.7 mm at the posterior end of the 
craniotomy and slowly moved to the anterior end with the manipula-
tor control. Any bleeding was stemmed by applying gelfoam soaked in 
cortex buffer. To protect the brain, we then applied a layer of Kwik-Sil 

(World Precision Instruments) followed by a generous layer of optical 
adhesive (NOA 81, Norland Products). Following this, we attached a 
headplate to the skull as described above and covered any exposed 
parts of the skull with more optical adhesive.

After a rest period of 1 week for recovery, we imaged the visual 
cortex under a widefield scope to confirm that it was healthy and 
responding normally to visual stimuli. Bilateral craniotomies were 
performed between 7 d and 14 d following the transectomy, and acute 
bilateral recordings were acquired using 4-shank Neuropixels 2.0 
probes targeting visual cortex over multiple days (3, 1 and 2 consecu-
tive days in the three mice). The total number of cells was 1059 (ipsi) 
and 914 (contra) (per recording, ipsi/contra: 164/185; 216/106; 254/324; 
58/59; 218/125; 149/115). We imaged the brains using serial section42 
two-photon43 tomography. Our microscope was controlled by Scan-
Image Basic (Vidrio Technologies) using BakingTray (https://github.
com/SainsburyWellcomeCentre/BakingTray, https://doi.org/10.5281/
zenodo.3631609). Images were assembled using StitchIt (https://
github.com/SainsburyWellcomeCentre/StitchIt, https://zenodo.org/
badge/latestdoi/57851444). Probe location was checked using brain-
reg44–46, showing that most recordings were in area V1, and partially 
VISpm and VISl. The exact location of the probe in visual cortex did 
not affect the results so we pooled all areas together under the name 
of visual.

Stimuli
In each session, mice were presented with a sequence of audio, visual 
or audiovisual movies, using Rigbox (https://github.com/cortex-lab/
Rigbox, version 2.3.1). The stimuli consisted of all combinations of 
auditory and visual streams extracted from a set of 11 naturalistic 
movies depicting the movement of animals such as cats, donkeys 
and seals, from the AudioSet database25. An additional visual stream 
consisted of a static full-field gray image and an additional auditory 
stream contained no sound. Movies lasted for 4 s and were separated 
by an intertrial interval of 2 s. The same randomized sequence of mov-
ies was repeated four times during each experiment, with the first and 
second repeat separated by a 5-min interval.

The movies were gray-scaled, spatially rescaled to match the 
dimensions of a single screen of the display, and duplicated across 
the three screens. The visual stream was sampled at 30 frames per sec-
ond. Visual stimuli were presented through three displays (Adafruit, 
LP097QX1), each with a resolution of 1024 × 768 pixels. The screens 
covered approximately 270 × 70 degrees of visual angle, with 0 degrees 
being directly in front of the mouse. The screens had a refresh rate of 
60 frames per second and were fitted with Fresnel lenses (Wuxi Bohai 
Optics, BHPA220-2-5) to ensure approximately equal luminance across 
viewing angles.

Sounds were presented through a pair of Logitech Z313 speakers 
placed below the screens. The auditory stream was sampled at 44.1 kHz 
with two channels and was scaled to a sound level of −20 dB relative 
to full scale.

In situ sound intensity and spectral content were estimated using 
a calibrated microphone (GRAS 40BF 1/4’ Ext. Polarized Free-field 
Microphone) positioned where the mice sit, and reference loudness 
was estimated using an acoustic calibrator (SV 30A; Supplementary 
Fig. 1). Mice were systematically habituated to the rig through 3 d of 
familiarizing with the rig’s environment and head-fixation sessions of 
progressive duration (from 10 min to 1 h). They were not habituated to 
the specific stimuli before the experiment. Two exceptions were the 
transectomy experiments, where mice were presented with the same 
protocol across the consecutive days of recordings (so a recording 
on day 2 would mean the mouse had been through the protocol once 
already), and in specific control experiments not shown here (n = 2 
mice). Presentation of the sounds over days (from 2 to 5 d) did not alter 
the observed behavioral and neural responses (n = 2 transectomy mice 
+ 2 control mice).
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Videography
Eye and body movements were monitored by illuminating the subject 
with infrared light (830 nm, Mightex SLS-0208-A). The right eye was 
monitored with a camera (The Imaging Source, DMK 23U618) fitted 
with zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs 
FEL0750), recording at 100 Hz. Body movements (face, ears, front 
paws and part of the back) were monitored with another camera (same 
model but with a different lens, Thorlabs MVL16M23) situated above 
the central screen, recording at 40 Hz for the experiments in V1 and 
HPF (Figs. 1 and 2) and 60 Hz for the transectomy experiments (Fig. 3). 
Video and stimulus time were aligned using the strobe pulses generated 
by the cameras, recorded alongside the output of a screen-monitoring 
photodiode and the input to the speakers, all sampled at 2,500 Hz. 
Video data was acquired on the computer using mmmGUI (https://
github.com/cortex-lab/mmmGUI). To compute the singular value 
decompositions of the face movie and to fit pupil area and position, we 
used the facemap algorithm13 (www.github.com/MouseLand/facemap, 
MATLAB version).

Behavior-only experiments
To test for the influence of basic acoustic properties on movements, 
we ran behavior-only experiments (that is, only with cameras film-
ing the mice, and no electrophysiology; Supplementary Fig. 2) on 
eight mice in which we played (1) white noise of various intensities, 
(2) pure tones of various frequencies and (3) white noise coming from 
various locations. In contrast with the previous experiments, auditory 
stimuli were presented using an array of seven speakers (102-1299-ND, 
Digikey), arranged below the screens at 30° azimuthal intervals from 
−60° to +60° (where −90°/+90° is directly to the left/right of the sub-
ject). Speakers were driven with an internal sound card (STRIX SOAR, 
ASUS) and a custom seven-channel amplifier (http://maxhunter.me/
portfolio/7champ/). As in the previous experiments, in situ sound 
intensity and spectral content were estimated using a calibrated micro-
phone (GRAS 40BF 1/4’ Ext. Polarized Free-field Microphone) posi-
tioned where the mice sit, and reference loudness was estimated using 
an acoustic calibrator (SV 30A). Body movements were monitored with 
a Chameleon3 camera (CM3-U3-13Y3C-S-BD, Teledyne FLIR) recording 
at 60 Hz. The movie was then processed with facemap.

The effect of each factor was then quantified using repeated- 
measures ANOVA with either the sound loudness, frequency or loca-
tion as a factor.

Data processing
MATLAB 2019b and 2022a were used for data analysis. For each experi-
ment, the neural responses constitute a five-dimensional array D of size 
Nt time bins × Nv videos × Na sounds × Nr repeats × Nc cells. The elements 
of this matrix are the responses dtvarc measured at time i, in video v, 
sound a, repeat r and cell c. D contains the binned firing rates (30 ms 
bin size) around the stimulus onset (from 1 s before onset to 3.8 s after 
onset), smoothed with a causal half Gaussian filter (standard deviation 
of 43 ms), and z scored for each neuron.

Pupil area and eye position were baseline-corrected to remove the 
slow fluctuations and focus on the fast, stimulus-evoked and trial-based 
fluctuations—the mean value of the pupil area or eye position over 
the second preceding stimulus onset was subtracted from each trial. 
Signed eye motion (horizontal and vertical) was computed as the dif-
ference of the eye position between time bins. The unsigned motion 
was obtained as the absolute value of the signed motion. The global 
eye motion was estimated as the absolute value of the movement in 
any direction (L2 norm). Eye variables values during identified blinks 
were interpolated based on their values before and after the identified 
blink. Body motion variables were defined as the first 128 body motion 
PCs. Both eye-related and body-related variables were then binned 
similarly to the neural data. We note that the timing precision for the 
face motion is limited by both the camera acquisition frame rate (40 fps, 

not aligned to stimulus onset), and the binning used here (30-ms bins, 
aligned on stimulus onset). Thus, real timings can differ by up to 25 ms.

All analyses that needed cross-validation (test–retest component 
covariance, decoding and prediction) were performed using a train-
ing set consisting of half of the trials (odd trials) and a test set based 
on the other half (even trials). Models were computed on the train set 
and tested on the test set. Then test and train sets were swapped, and 
quantities of interest were averaged over the two folds.

To estimate the correlation of the sound-evoked time courses 
across mice, the variable of interest was split between training and test 
set, averaged over all trials (for example, for sound-related activity, 
over videos and repeats), and the Pearson correlation coefficient was 
computed between the training set activity for each mouse and the 
test set activity of all mice (thus giving a cross-validated estimate of the 
auto- and the cross-correlation). Averages were obtained by Fisher’s 
Z-transforming each coefficient, averaging, and back-transforming 
this average.

Marginalization
To isolate the contribution of videos or sounds in the neural activity, 
we used a marginalization procedure similar to the one used in facto-
rial ANOVA. By dtvarc, we denote the firing rate of cell c to repeat r of the 
combination of auditory stimulus a and visual stimulus v, at time t 
after stimulus onset. The marginalization procedure decomposes dtvarc 
into components that are equal across stimuli, related to videos only, 
related to sounds only, related to audiovisual interactions and noise:

dtvarc = mtc + vtvc + atac + itvac + ϵtvarc

The first term is the mean of the population activity across videos, 
sounds and repeats:

mtc = dt⋅⋅⋅c =
1

NvNaNr
∑
v
∑
a
∑
r
dtvarc

where dots in the second term indicate averages over the missing 
subscripts, and Nv, Na, Nr denote the total number of visual stimuli, 
auditory stimuli and repeats.

The second term, the video-related component, is the average 
of the population responses over sounds and repeats, relative to this 
mean response:

vtvc = dtv⋅⋅c −mtc

Similarly, the sound-related component is the average over videos 
and repeats, relative to the mean response:

atac = dt⋅a⋅c −mtc

The audiovisual interaction component is the variation in popula-
tion responses that is specific to each pair of sound and video:

itvac = dtva⋅c −mtc − vtvc − atac

Finally, the noise component is the variation across trials:

ϵ tvarc = dtvarc − dtva⋅c

In matrix notation, we will call A, V and I the arrays with elements 
atac, vtvc and itvac and size Nt × Na × Nc, Nt × Nv × Nc, and Nt × Nv × Na × Nc.

Dimensionality reduction
The arrays of sound-related activity A, of video-related activity V and 
of audiovisual interactions I describe the activity of many neurons. To 
summarize this activity, we used cvPCA15. In this approach, principal 
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component projections are found from one-half of the data, and an 
unbiased estimate of the reliable signal variance is found by comput-
ing their covariance with the same projections on the second half of 
the data.

We illustrate this procedure on the sound-related activity. In what 
follows, all arrays, array elements and averages (for example, A, atac, 
at·c) refer to training-set data (odd-numbered repeats), unless explic-
itly indicated with the subscript test (for example, Atest, atac;test, at·c;test).

We first isolate the sound-related activity A as described above 
from training set data (odd-numbered trials). We reshape this array to 
have two dimensions NtNa × Nc and perform PCA: T = AW  where T (NtNa 
× Np) is a set of time courses of the top Np principal components of A, 
and W is the PCA weight matrix (Nc × Np).

For cvPCA analysis, we took Np = Nc to estimate the amount of 
reliable stimulus-triggered variance in each dimension (Fig. 2f,i and 
Supplementary Fig. 2). We computed the projections of the mean 
response over a test set of even-numbered trials, using the same weight 
matrix: Ttest = AtestW and evaluated their covariance with the training-set 
projections:

̂Vk =
1

NtNa−1

NtNa
∑
j=1

(tjk − t⋅k) (tjk;test − t⋅k;test)

This method provides an unbiased estimate of the stimulus-related 
variance of each component15. Analogous methods were used to obtain 
the signal variance for principal components of the visual response 
and interaction, by replacing A with V or I (Supplementary Fig. 2). The 
cvPCA variances were normalized either by the sum for all auditory 
dimensions (for example, Fig. 2h j) or the sum for all dimensions from 
video-related, sound-related and interaction-related decompositions 
(Extended Data Fig. 2).

To determine if a cvPCA dimension had variance significantly 
above 0, we used a shuffling method. The shuffling was done by chang-
ing the labels of both the videos and the sounds for each repeat. We 
performed this randomization 1,000 times and chose a component 
to be significant if its test–retest covariance value was above the 99th 
percentile of the shuffled distribution. We defined the dimensionality 
as the number of significant components. For the video-related activ-
ity, we found an average of 79 significant components (±23 s.e., n = 8 
mice). As expected, this number grew with the number of recorded 
neurons15 (data not shown). For the sound-related activity, instead, 
we found only four significant components on average (±1 s.e., n = 8 
mice). For the interactions between videos and sounds, finally, we 
found zero significant components (0 ± 0 s.e., n = 8 mice) indicating 
that the population responses did not reflect significant interactions 
between videos and sounds.

For visualization of PC time courses (Figs. 1–3 and Extended Data 
Fig. 4), we computed the weight matrices W from the training set but 
we used the projection of the full dataset to compute the time courses 
of the first component. In Extended Data Fig. 1, instead, we computed 
W on the full dataset but we projected only the test set, to show the 
model’s cross-validated prediction.

Decoding
Single-trial decoding for video- or sound identity was performed using 
a template-matching decoder applied to neural or behavioral data. In 
this description, we will focus on decoding sound identity from neural 
data. The data were again split into training and test sets consisting of 
odd and even trials. Both test and trained trials contained a balanced 
number of trials for each sound.

When decoding sound-related neural activity (Figs. 1–3 and 
Extended Data Fig. 1), we took Np = 4, so the matrix T containing 
PC projections of the mean training-set sound-related activity had 
size NtNa × 4; using more components did not affect the results. To 
decode the auditory stimulus presented on a given test-set trial, 

we first removed the video-related component by subtracting the 
mean response to the video presented on that trial (averaged over 
all training-set trials). We then projected this using the training-set 
weight matrix W to obtain a Nt × 4 time course for the top auditory 
PCs and found the best-matching auditory stimulus by comparing 
it to the mean training-set time courses for each auditory stimulus 
using Euclidean distance. A similar analysis was used to decode visual 
stimuli, using Np = 30 components in visual cortex and Np = 4 in the 
hippocampal formation.

To decode the sound identity from behavioral data, we used the 
z-scored eye variables (pupil area and eye motion in Extended Data  
Fig. 5) or the first 128 principal components of the motion energy of 
the face movie (Fig. 4) and performed the template-matching the same 
way as the with the neural data.

The significance of the decoding accuracy (compared to chance) 
was computed by performing a Wilcoxon right-sided signed rank test 
to compare to chance level (1/12), treating each mouse as independent. 
The comparison between video identity and sound identity decoding 
accuracy was computed by performing a paired Wilcoxon two-sided 
signed rank test across mice.

Encoding
To predict neural activity from stimuli/behavioral variables (‘encoding 
model’; Fig. 4 and Supplementary Fig. 3), we again started by extracting 
audio- or video-related components and performing Principal Com-
ponent Analysis, as described above. However, this time the weight 
matrices were computed from the full dataset rather than only the 
training set. Again, we illustrate by describing how sound-related activ-
ity was predicted, for which we kept Np = 4 components; video-related 
activity was predicted similarly but with Np = 30 in visual cortex and 
Np = 4 in the hippocampal formation.

We predicted neural activity using linear regression. The target 
matrix Y contained the marginalized, sound-related activity on each 
trial, projected onto the top four auditory components: specifically, we 
compute the matrix with elements dtvarc− mtc− vtvc, reshape to a matrix 
of size NtNvNaNr × Nc, and multiply by the matrix of PC weights W. We 
predicted Y by regression: Y ≈ XB, where X is a feature matrix and B are 
weights fit by cross-validated ridge regression.

The feature matrix depended on the model. To predict from 
sensory stimulus identity (see ‘auditory predictors’ in Supplementary  
Fig. 3), X had one column for each combination of auditory stimulus 
and peristimulus timepoint, making NaNt = 1,524 columns, NtNvNa

Nr rows, and contained 1 during stimulus presentations in a column 
reflecting the stimulus identity and peristimulus time. With this fea-
ture matrix, the weights B represent the mean activity time course 
for each dimension and stimulus, and estimation is equivalent to 
averaging across the repeats of the train set. It is thus equivalent to a 
test–retest estimation and is not a model based on acoustic features 
of the sounds.

To predict from behavior, we used features for pupil area, pupil 
position (horizontal and vertical), eye motion (horizontal and vertical 
signed and unsigned), global eye motion (L2 norm of x and y motion, 
unsigned), blinks (thus nine eye-related predictors) and the first 128 
face motion PCs, with lags from −100 to 200 ms (thus 12 lags per pre-
dictor, 1,644 predictors total, see ‘eye predictors’ and ‘body motion 
predictors’ in Supplementary Fig. 3). As for the neural activity target 
matrix Y, all behavioral variables were first marginalized to extract the 
sound-related modulations. To predict from both stimulus identity and 
behavior, we concatenated the feature matrices, obtaining a matrix 
with 3,168 columns. The beginning and end of the time course for each 
trial were padded with NaNs (12—the number of lags—at the beginning 
and end of each trial, to avoid cross-trial predictions by temporal fil-
ters. Thus, the feature matrix has (Nt + 24)NvNaNr rows. A model with 
the eye variables only and a model with the face motion variables only 
were also constructed (Extended Data Fig. 7). Note that in the case of 
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mice for which the eye was not recorded (two of the eight mice, and all 
transectomy experiments), the behavioral model contained only the 
body motion variables.

We used ridge regression to predict the single-trial version of Y 
from X on the training set. The best lambda parameter was selected 
using a threefold cross-validation within the training set.

To measure the accuracy of predicting trial-averaged 
sound-related activity (Fig. 4), we averaged the NtNvNaNr /2 × Np activity 
matrix Ytest over all test-set trials of a given auditory stimulus, to obtain 
a matrix of size NtNa × Nc, and did the same for the prediction matrix 
XtestB, and evaluated prediction quality by the elementwise Pearson 
correlation of these two matrices.

To evaluate predictions of trial-to-trial fluctuations (Extended 
Data Fig. 9b,c), we computed a ‘noise’ matrix of size NtNvNaNr /2 × Np by 
subtracting the mean response to each sound: ytvarp; test − yt⋅a⋅p; test, per-
formed the same subtraction on the prediction matrix XtestB, and evalu-
ated prediction quality by the elementwise Pearson correlation of these 
two matrices. Again, the average was obtained by Fisher’s 
Z-transforming each coefficient, averaging, and back-transforming 
this average.

To visualize the facial areas important to explain neural activity 
(Extended Data Fig. 7), we reconstructed the weights of the auditory 
PC1 prediction in pixel space. Let bbody

0  (1 × 128) be the weights predict-
ing neural auditory PC1 at lag 0 from each of the 128 body motion PCs. 
Let ω (128 × total number of pixels in the video) be the weights of each 
of these 128 face motion PCs in pixel space (as an output of the facemap 
algorithm). We obtained an image i of the pixel-to-neural weights by 
computing I = bbody

0 ω.
Finally, to explore the timing relationship between movement and 

neural activity, we looked at the cross-correlogram of the motion PC1 
and the auditory PC1 during the spontaneous (no stimulus) period (Fig. 4  
and Extended Data Fig. 6). The auditory PC1 was found by computing 
its weights without cross-validation. To maximize the temporal resolu-
tion, the regression analysis was performed on the spikes sampled at 
the rate of the camera acquisition (40 fps, thus 25 ms precision). We 
then computed the lag associated with the cross-correlogram, which 
showed that movement preceded neural activity by 25–50 ms. To avoid 
errors induced by ‘large’ cross-correlograms due to the autocorrela-
tion of the two signals, we also performed a ridge regression of the 
auditory PC1 from the motion PCs during the spontaneous period and 
looked at the peak of the weights of motion PC1 to predict auditory PC1 
(Extended Data Fig. 10).

Movement- and sound-related subspaces overlap
To quantify the overlap between the movement- and the sound-related 
subspaces of neural activity in V1, we computed how much of the 
sound-related variance the movement-related subspace could 
explain13. We first computed the movement-related subspace by com-
puting a reduced-rank regression model to predict the neural activity 
matrix S (Ns × Nc, with Ns being the number of time points) from the 
motion components matrix M with lags (Ns × 2,688, with the latter 
dimension coming from 128 motion components × 21 lags) during 
the spontaneous period (no stimulus), both binned at the face video 
frame rate (40 or 60 Hz). This yields a weight matrix B (2,688 × Nc) so 
that: S ≈ MB. The weight matrix B factorizes as a product of two matrices 
of sizes 2,688 × r and r × Nc, with r being the rank of the reduced-rank 
regression. The second part of this factorization, the matrix of size 
r × Nc of which transpose we call C (Nc × r), forms an orthonormal basis 
of the movement-related subspace of dimensionality r. Here, we chose 
r = 4 to match the size of the sound-related subspace, but the results 
were not affected by small changes in this value. Then, we projected 
the sound-related activity of the train set A and the test set Atest onto 
C and measured the covariance of these projections for each dimen-
sion of the movement-related subspace. This is similar to the cvPCA 
performed above to find the variance explained by auditory PCs, 

except the components are here the ones most explained by behavior 
and not by sound. The overlap between the movement-related and 
the sound-related subspaces was finally quantified as the ratio of the 
sound-related variance explained by the first four components of 
each subspace.

We note that the fact that the overlap between the sound-related 
subspace and the behavior-related subspace is not 100% may come 
from the noise in estimating the behavior-related subspace, which 
relies on the spontaneous period only which was less than 25 min.

Transectomy quantification
To visualize and estimate the extent of the transectomy, we used the 
software brainreg44–46 (https://github.com/brainglobe/brainreg) to 
register the brain to the Allen Mouse Brain Reference Atlas41 and manu-
ally trace the contours of the cut using brainreg-segment (https://
github.com/brainglobe/brainreg-segment). The cut was identified 
visually by observing the massive neuronal loss (made obvious by a 
loss of fluorescence) and scars.

To estimate the extent of the fibers that were cut by the transec-
tomy, we took advantage of the large-scale connectivity database 
of experiments performed by the Allen Brain Institute (Allen Mouse 
Brain Connectivity Atlas26, https://connectivity.brain-map.org/). Using 
custom Python scripts, we selected and downloaded the 53 experi-
ments where injections were performed in the auditory cortex and 
projections were observed in visual cortex (we subselected areas V1, 
VISualpm and VISl as targets because these were where the recordings 
were performed). We used the fiber tractography data to get the fib-
ers’ coordinates in the reference space of the Allen Mouse Brain Atlas, 
to which was also aligned the actual brain and the cut reconstruction. 
Using custom software, we selected only the fibers of which terminal 
were inside or within 50 µm of either ipsilateral or contralateral visual 
cortex. We identified the cut fibers as all fibers that were passing inside 
or within 50 µm of the cut. Because auditory cortex on one side sends 
projections to both sides (yet much more to the ipsilateral side), cut-
ting the fibers on one side could also affect responses on the other 
side. Moreover, residual sound-evoked activity on the side ipsilateral 
to the transectomy could possibly be explained by fibers coming from 
the contralateral auditory cortex. We thus quantified the auditory 
input to each visual cortex as the number of intact fibers coming from 
both auditory cortices, with one side being cut and the other being 
intact. We then made the hypothesis that the size of the responses, 
or more generally the variance explained by sounds in both popula-
tions, would linearly reflect these ‘auditory inputs’. We then compared 
the sound-related variance on the cut side to its prediction from the 
sound-related variance on the uncut side. This provided an internal 
control, with the same sounds and behavior. We took the sound-related 
variance as the cumulative sum of the variance explained by the first 
four auditory PCs, on both sides. We then used brainrender47 (https://
github.com/brainglobe/brainrender/releases/tag/v2.0.0.0) to visual-
ize all results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Preprocessed data can be accessed at https://doi.org/10.6084/
m9.figshare.21371247.v2. Raw data are available from the authors upon 
reasonable request. Stimuli were selected from the AudioSet Data-
base (https://research.google.com/audioset/). Connectivity patterns 
between auditory and visual cortices were extracted from the Allen 
Mouse Brain Connectivity Atlas (https://connectivity.brain-map.org/), 
and the exact list of experiments selected can be accessed at https://
github.com/cbimbo/Bimbard2022/blob/main/transecAnat/projec-
tion_search_results.csv.

http://www.nature.com/natureneuroscience
https://github.com/brainglobe/brainreg
https://github.com/brainglobe/brainreg-segment
https://github.com/brainglobe/brainreg-segment
https://connectivity.brain-map.org/
https://github.com/brainglobe/brainrender/releases/tag/v2.0.0.0
https://github.com/brainglobe/brainrender/releases/tag/v2.0.0.0
https://doi.org/10.6084/m9.figshare.21371247.v2
https://doi.org/10.6084/m9.figshare.21371247.v2
https://research.google.com/audioset/
https://connectivity.brain-map.org/
https://github.com/cbimbo/Bimbard2022/blob/main/transecAnat/projection_search_results.csv
https://github.com/cbimbo/Bimbard2022/blob/main/transecAnat/projection_search_results.csv
https://github.com/cbimbo/Bimbard2022/blob/main/transecAnat/projection_search_results.csv


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01227-x

Code availability
Code for data analysis can be accessed at https://github.com/cbimbo/
Bimbard2022 (https://doi.org/10.5281/zenodo.7253394).
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Extended Data Fig. 1 | Coding of visual vs. auditory stimuli in visual cortex 
and hippocampal formation. a. Time courses of the auditory PC1 averaged 
across mice (z-scored), measured in visual cortex (VIS, top) and hippocampal 
formation (HPF, bottom). Traces show the actual data (purple) and the cross-
validated prediction from the behavioral model (black). b. Same as a, but for 
visual PC1 (green). c. Reliability of each auditory (left) or visual (right) PC, 
in VIS (top, n = 8 mice) or HPF (bottom, n = 5 mice). The large dot shows the 
z-transformed mean; the bounds of each box show the 25th and 75th percentiles; 
the whiskers show the minimum and maximum values that are not outliers; small 
dots show outliers (computed using the interquartile range); individual dots are 

also shown. d. Decoding accuracy of sound identity from auditory PCs (left) or 
video identity from visual PCs (right) measured in VIS, taking the full subspace 
or the full subspace except PC1. Sound decoding was significantly worse without 
auditory PC1 (*: p = 0.0156, two-sided paired Wilcoxon sign rank, n = 8 mice). 
e. Same as c but showing the similarity across animals. Reliability of each PC is 
shown for reference (gray, replotted from c). f. Similarity of visual and auditory 
PCs between VIS and HPF. g. Same as e, for the predictability of each PC by the 
behavioral model, measured by the cross-validated correlation between data and 
model prediction. The model can sometimes predict the test set better than the 
train set because it can predict fluctuations specific to the test set.
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visual cortex and hippocampal formation. a. Top: Total variance explained 
(normalized test-retest covariance) for visual PCs (left), auditory PCs (middle) 
and interactions PCs (right), for all 8 recordings in V1 (thin lines) and their average 
(filled dots). The total variance is measured from the normalized test-retest 

covariance, which can occasionally be negative (not visible in logarithmic scale). 
b. Same as a but with the 5 recordings from the HPF. c. Same as a but with the 12 
recordings from the visual cortices ipsilateral (6, crosses) and contralateral (6, 
filled dots) to the cut (6 sessions across 3 mice).
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Extended Data Fig. 3 | Transectomy cut most of the fibers from auditory 
to visual cortex. a. Schematic of the transectomy experiments: the 
connections between auditory (AUD) and visual (VIS) cortex are cut on one side. 
Subsequently, recordings are performed in visual cortex, in both hemispheres. 
b. Picture from above of the mouse skull during surgery, with a craniotomy 
performed on the left side. c. Histology of the three mouse brains, showing the 
cut (inset), and the probe tracks (DiI and DiO staining, mainly visible in mice 1 
and 3). d. 3D reconstructions of the cut, shown from a coronal view (left) or from 

above/sideways (right). e. Fiber tracks from the auditory cortex to the visual 
cortex in intact mice, from 53 experiments performed in the Allen Mouse Brain 
Connectivity atlas26, see Methods). f. Estimated intact fibers after the cut, for 
the 3 mice. g. Estimate of the number of fibers before the cut (abscissa) and after 
the cut (ordinate) for each mouse, in ipsilateral (left) and contralateral visual 
cortex (right). The color of the dots indicates the auditory area from which the 
fibers originated (Allen Mouse Brain Connectivity Atlas). The black dot shows the 
average over all 53 experiments performed for the Atlas.
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Extended Data Fig. 4 | Neural and behavioral responses differ across sounds 
but resemble each other. Responses along neural auditory PC1 from V1 (purple), 
and motion energy (blue) for all sounds. Responses are averaged over repeats, 
videos, and mice, and z-scored. The top trace (gray) shows the envelope of the 

corresponding sound. As in all main text figures, these responses are expressed 
relative to the grand average over sounds and videos; this explains the negative 
deflections seen in the responses to the blank stimulus.
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Extended Data Fig. 5 | Sounds trigger changes in arousal and eye movements. 
a. Sound-related responses changes in arousal as measured by pupil diameter, 
for one example mice, and all mice (6 of 8 were monitored with an eye camera). b. 
Decoding of video and sound identity using pupil area. (*: p = 0.0156, right-tailed 

Wilcoxon sign rank test, n = 6 mice) c. Comparison with the time course of the 
neural auditory PC1 from Fig. 1. d. Scatter plot of auditory PC1 vs. pupil area. f-h. 
Same as a-d. but for eye movements (in f, *: p = 0.0312 for videos and 0.0156 for 
sounds).
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Extended Data Fig. 6 | Timing of movements and sound-related neural 
activity and overlap between neural subspaces related to behavior and 
sounds. a. Left: Cross-correlogram of the motion energy and the neural activity 
on the auditory PC1 during the spontaneous period, for individual mice (gray) 
and averaged across mice (black). A positive lag means that movement preceded 
neural activity. Right: Overlap between the neural subspace related to behavior 
and the subspace related to video (left) or to sound (right), for each mouse (open 

dots) and averaged across mice (filled dot). Dashed lines show the significance 
threshold (95th percentile of the overlap with random dimensions) for each 
mouse (two-sided paired Wilcoxon sign rank test, n = 5 mice). b. Same as a for 
the recordings in visual cortex after a transectomy (***: p = 0.00048, two-sided 
paired Wilcoxon sign rank test, n = 12 recordings across 3 mice; comparison cut 
vs. uncut side: two-sided paired Wilcoxon sign rank test, n = 6 sessions across 3 
mice).
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Extended Data Fig. 7 | Sound-evoked V1 responses are mainly explained by 
whisker movements. a. Correlation of the actual data and their predictions 
for all mice, comparing a model containing both eye and body movements 
predictors (‘Eye and body’) to a model containing only body movements 
predictors (‘Body only’). The eye predictors only marginally increase the fit 
prediction accuracy (*: p = 0.039, two-sided paired Wilcoxon sign rank test, n = 6 

mice), suggesting that body movements are the best and main predictors. b. 
Example frame of the face, with the parts of the body that were visible. c. For each 
mouse, we analyzed the image of the mouse (left) and obtained the weights that 
best predicted the auditory PC1 (right). Most of the weights are related to the 
whiskers. The asymmetry of the weight distribution across the two sides of the 
face is likely due to differences in lighting.
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Extended Data Fig. 8 | Movements predict activity evoked by sounds in 
visual cortex and HPF, and by videos in HPF. a-c. Cross-validated correlation 
of the visual responses and their predictions for all mice, comparing 3 different 
models: one with videos only (‘Visual’), one with eye and body movements only 
(‘Behavioral’), and one with all predictors (‘Full’) (**: p = 0.0078, n = 8 mice). d-f. 
Same as a-c but for auditory responses for the HPF recordings (albeit the low 

number of animals did not allow for conclusions on significance). (n = 5 mice) 
g-i. Same as a-c but for visual responses for the HPF recordings. j-l. Same as 
a-c but for auditory responses for the transectomy experiment recordings (**: 
p = 0.00049, n = 12 recordings across 3 mice). m-o. Same as a-c but for visual 
responses for the transectomy experiment recordings. All tests are two-sided 
paired Wilcoxon sign rank test.
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Extended Data Fig. 9 | Sound-evoked body movements and sound-evoked 
brain activity fluctuate together. a. Single-trial, sound-related activity along 
auditory PC1 for one example mouse (purple). The prediction from the auditory 
model (gray) and the behavioral model (blue) are shown. b. Correlation between 

the single-trial noise in neural activity along auditory PC1 and the single-trial 
noise in the prediction for the same example mouse. c. Correlation values for all 
mice (open dots) and their average (filled dot).
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Extended Data Fig. 10 | Body movements precede brain activity. a. Weights of 
the regression model to predict neural auditory PC1 from motion PCs (z-scored 
motion PC1 weights only are shown) for each individual mice (gray) and the 
average across mice (black). The model was computed on the spontaneous (no 
stimulus) period for the visual cortex experiments (Fig. 1). b. Distribution of the 

delay to the peak of the weights. A positive delay means that movement precedes 
and predicts neural activity by such a delay. c, d. Same as a, b, but for recordings 
in the HPF (Fig. 2). e,f. Same as a, b, but for recordings in visual cortex during the 
transectomy experiment (Fig. 3) (both sides).
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