
Letter to the Editor
Reply to: “Does ammonia really disrupt brain oxygen
homeostasis?”
To the Editor:
We are grateful for Drs. Sørensen and Vilstrup’s interest1 and
thoughtful consideration of our recent study2 and are encour-
aged that they agree with our substantive conclusions. We
welcome this opportunity to reply to their concerns regarding
our specific interpretation that decreased tissue pO2 could
contribute to the metabolic disruption seen in hepatic enceph-
alopathy (HE).

We understand they argue that observations of metabolic
disruption, such as decreased cerebral blood flow (CBF), are
secondary to a decrease in metabolic demand caused by
ammonia reducing central nervous system activity. We agree
that a reduction in metabolic demand is a significant component
contributing to the neuronal dysfunction seen in patients with
HE and believe that our hypotheses could be fully compatible.
We propose that a negative feedback loop is constructed be-
tween the supply and demand of all metabolic substrates in the
brain during the development of HE, as a result of the malad-
aptation of a number of homeostatic processes that would nor-
mally closely match energy demand and supply. Whether it is
demand or supply that is first to drop, it still feeds into the same
negative feedback loop that sees the brain less able to respond to
the metabolic demands of neurons, leading to neurological
dysfunction.

The first pillar of their concern relates to the baseline tissue
pO2 observed in our model. Specifically, that it is not sufficient to
induce significant metabolic disruption as some of the cohort
display a pO2 above a proposed ‘critical’ range of 8.8-6.7 mmHg
in healthy rats.3 We posit that the absolute concentration of
oxygen is immaterial to our hypothesis and our observation
simply provides evidence that a major metabolic component
(oxygen) is significantly lower in our model of HE when
compared to sham subjects. Any reduction in pO2 would impair
the brain’s ability to maintain metabolic sufficiency.

We argue that the absolute concentration of tissue oxygen is
not a reliable indicator for potential neuronal dysfunction.
Firstly, pO2 measurements are not generalizable given the lack
of homogeneity of tissue oxygenation within the brain and
differences in experimental conditions (such as anesthetics and
sampling locations) that would affect baseline tissue pO2

values. Additionally, the level of oxygen tension used by several
studies to mimic hypoxia is in the range of 20–25 mmHg,4,5

which is within the normal range of brain parenchymal pO2.6

However, there is substantial evidence that the brain responds
to reductions in oxygen tension before reaching 8.8mmHg.
Astrocytes are activated at �17mmHg causing elevations in
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intracellular calcium and release of ATP by exocytosis.7 Further,
in astrocytes, mild hypoxia activates a range of compensatory
mechanisms that rebalance metabolism; including inhibition of
mitochondrial respiration,8 production of potent vasodilators,8,9

and increases in the rate of lipid peroxidation, among other
effects.7 This may be important for local control of cerebral
microcirculation when pO2 decreases in a particular micro-
domain of the brain. Chronic activation of this pathway is ex-
pected to have detrimental effects on metabolic supply
matching, and consequently neuronal function. Our conclusions
merely speculate on the possible effects that a constraint of the
oxygen supply seen in our model may have on neuronal func-
tion given that the brain is an extremely energy intensive organ
with several systems having evolved to ensure constant energy
supply. Impairment of any one of these mechanisms would, at
the very least, put pressure on the reserve of the others to
effectively manage brain metabolic demand.

As for our interpretation of the observed low lactate con-
centration, we argue that the brain would reduce the pro-
duction of lactate in response to a gradual downward pressure
on both metabolic demand and supply in the brain. Increases
in lactate would be indicative of extreme metabolic distress as
there is sufficient tissue oxygenation even at 6.7 mmHg for
some level of aerobic metabolism to be maintained. It is worth
noting here that our model is one of mild HE. We agree that
CBF data is essential to our understanding of this complex
system, and we are in the process of addressing this unmet
need. Further, we believe that care should be taken when
interpreting decreased CMRglc in bile duct ligated (BDL)
animals10 as direct evidence of decreased CMRO2. Total glucose
uptake measured by FDG-PET does not inform on the mito-
chondrial oxidative reactions, which can be maintained by
alternative energy substrates.

Finally, although potentially contradictory to Drs. Sørensen
and Vilstrup’s data, recent in vitro (coculture of astrocytes and
neurons) and ex vivo studies (brain slices from BDL rats), have
shown that concentrations of ammonia as low as 5 lM induce
mitochondrial hyperpolarisation, lipid peroxidation, increased
reactive oxygen species production, as well as profound neuronal
death in the hippocampus.11

To summarize, we consider metabolic demand and supply
closely coupled in the pathophysiology of HE. Simultaneous in-
terventions on both would be the best approach to breaking the
reinforcement of our proposed negative feedback loop and
maximizing the possibility of complete reversal of neurological
impairment after resolution of hyperammonemia.
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