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Abstract: This study presents the results of a traffic simula-
tion analysis and emissions (greenhouse gas and noise)
assessment comparing pre-pandemic (2019) and post-
pandemic (2022) periods. The estimation of road traffic de-
mand is based on conventional data sources and floating
car data; next, the traffic simulation procedure was per-
formed providing road network traffic volumes, which are
the input for the emissionmodels. The diffusion of telework-
ing, e-commerce, as well as the digitization of many pro-
cesses, services and activities, lead to a significant change
inurbanmobility. Results showa significant though still not
complete resumption of commuters travel activity (−10%
compared to pre-pandemic period) in the morning peak-
hour. This translates into an 11% reduction of greenhouse
gas emissions and a 0.1% increase in noise emissions.

Keywords: COVID-19, Italy’s coronavirus epidemic; pre-
pandemic era, post-pandemic era, traffic simulation, noise
mapping, greenhouse gas (GHG) emissions, urban noise
pollution

1 Introduction
On March 11th, 2020, the Italian Government led by Prime
Minister GiuseppeConte decided to impose anational “lock-
down” (the ‘stay at home’ decree), restricting people’s mo-
bility, except for essential work or health reasons, in re-
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sponse to growing concerns about the COVID-19 pandemic
situation in the country [1].

The mobility restriction led to a drastic reduction of
urban traffic volumes, with a consequent strong decrease
in road congestion, pollutant and noise emissions [2–10].
Moreover, the lockdown imposedby the ItalianGovernment
resulted in unprecedented increase in teleworking [11].

Recent scientific literature suggests that, in the “post-
covid” era, previously office-based workers around the
globe would like teleworking to become more promi-
nent [12], and it is generally accepted that teleworking leads
to a reduction in traffic, at least during the morning com-
muting peak-hour [13, 14]. Recent observations reveal that
the total number of Italian teleworkers in 2022 is 3.6 mil-
lion [15], corresponding to 15.5% of the Italian workforce. In
addition, the emergency has given a boost to e-commerce,
which has led to a reduction of costumers’ trips towards
shops and shopping centres [16] and an increase in last-
mile deliveries. Click & collect and proximity commerce
also have gained momentum during the pandemic [17]. In
the Italian context, the pandemic has also accelerated the
ongoing digitalization of public administration and the in-
troduction of “Smart Governance”, bringing citizens closer
to digital opportunities, with the possible effect of reducing
people’s travel needs.

The research presented in this paper aims at under-
standing to what extent teleworking arrangements, e-
commerce and digitalization affect peak-hour road traffic
volumes and related emissions (greenhouse gas and noise).
To this end, traffic simulations and emissions assessments
were run in two different periods: pre-pandemic (October
2019), and post-pandemic (October 2022). The remainder
of the paper is organized as follows. Section 2 outlines the
methodology used for passenger road transportation de-
mand, traffic simulation and emissions (GHG and noise).
Section 3 presents and discusses the results of the study.
Section 4 concludes and summarizes the paper, including
remarks for future research developments.
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2 Methodology
The first step of the methodology was to evaluate the morn-
ing peak-hour (8:30-9:30 am) traffic demand both for Octo-
ber 2019 (last pre-pandemic year) and October 2022 (first
post-pandemic year). Road traffic Origin-Destination matri-
ceswere estimated through conventional and emerging traf-
fic data collection technologies (such as automatic counts
and probe vehicles), according to the procedure defined
by Carrese et al. [18] and Nigro et al. [19]. To capture the
demand variation between 2019 and 2022 a Floating Car
Data (FCD) analysis was performed. Floating Car Data are
collected through black boxes, installed by insurance com-
panies, that record the position, speed, and type of vehicles
at regular intervals between 30 and 60 seconds. Through
the analysis of these data, it is possible to reconstruct users’
travel behaviour and to estimate traffic demand.

Following an initial pre-processing phase, designed to
remove acquisition errors about position and speed, the
drivers’ trajectories were reconstructed by analysing GPS
data, engine on/off state and movements. Then, for each
trajectory, the total distance travelled, total travel time and
intermediate stops times were calculated. It was necessary
to remove short stops, such as when dropping off passen-
gers, since they could mislead the estimation of actual ori-
gin and destination of the trips.

Using the trajectories reconstructed, the total vehicle
kilometres travelled (VKT) during the peak-hour and the
number of monitored vehicles (n) were calculated, respec-
tively, for heavy and light vehicles in the different years.
Based on the official data released by the Automobile Club
Italia (ACI), concerning the composition and numerosity
of the vehicle fleet, the percentage of detected vehicle was
calculated, distinguishing between two vehicular classes:
heavy (PH) and light vehicles (PL). Then, the detected sam-
ple was extended to the universe, and in the same way also
the VKT, considering the passenger-car equivalent factor
(c).

Finally, the demand variation (Dv) was calculated as
follows:

Dv =
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This formulation addresses a critical issue experienced in
the use of FCD data, i.e., the variability of the number of
vehicles observed, which, even if slowly, changes between
successive years according to the marketing ability of in-

surance companies. For this reason, the ratio of VKT was
normalized by the number of vehicles monitored.

The demand variation was used to update the Origin-
Destination demandmatrix using the previously calibrated
2019 matrix as a starting point.

Origin-Destination matrices were loaded onto the traf-
fic network of Rome, which was modelled with about 1,400
centroids (zones) and about 82,000 directional road links;
of these, about 63,000 are intra-urban links. Traffic simu-
lation was performed through a static deterministic equi-
librium assignment with the Emme/4 software. The assign-
ment problem is defined as follows [20]:
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where:
fa is the vehicular flow on the link a; FODp is the flow on
the path p connecting the Origin-Destination (O-D) pair;
δa,p is 1 if link a is part of path p, 0 otherwise. As for the
volume-delay functions ta(fa), the usual Bureau of Public
Roads (BPR) [21] were used for highway and freeway links:

ta = t0a

(︃
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(︂
fa
Ca

)︂β
)︃

where:
t0a is the free flow time of link a; α and β are characteristic
parameters of the road segment; Ca is the capacity of link a.
As for urban links, where time spent at intersections is an
essential component of the link travel time, Doherty-type
functions were used [22]:
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where:
Z is the limit of the saturation degree (generally between
0.90 and 0.95); 𝛾1 e 𝛾2 are parameters that depend on the
value of Z (for Z = 0.95 we have 𝛾1 = 209 and 𝛾2 = 220); K is a
constant that depends on the law of arrivals at the intersec-
tion (generally between 0.55 and 0.60); g is the green traffic
light time available for the link a; TC is the duration of the
traffic light cycle; S is the saturation flow, corresponding to
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the capacity in the event that the approach always had the
green light.

The output of the traffic simulation (i.e., traffic volume,
the travel time, and speed for every link of the roadnetwork)
was used for GHG and noise emissions assessment.

The GHG emissions assessment was performed follow-
ing the Well-to-Wheel (WTW) approach, which consists of
two components: Well-to-Tank (WTT) and Tank-to-Wheel
(TTW) analysis. The former refers to the production, pro-
cessing and delivery of a fuel or energy vector. The latter
refers to the use of the power source during driving. Emis-
sion factors by vehicle type and context (highway or urban

Table 1: Emissions factors per unit distance travelled

kqCO2eq/km
Urban road Highways

ICEV gasoline 0.309 0.171
ICEV diesel 0.284 0.182
LPG 0.261 0.200
CNG 0.376 0.212
HEV gasoline 0.068 0.171
HEV diesel 0.067 0.182
BEV 0.068 0.078

Table 2: Vehicle fleet composition circulating in Rome in 2019 and
2021 [24, 25]

Year 2019 Year 2021
Propulsion n∘ % n∘ %
ICEV
gasoline

1,424,986 49.45 1,323,413 48.58

ICEV diesel 1,148,833 39.86 1,019,479 37.42
LPG 266,739 9.26 247,251 9.08
GPL 21,235 0.74 23,238 0.85
HEV
gasoline

19,259 0.67 94,717 3.48

HEV diesel 201 0.01 5,214 0.19
BEV 703 0.02 10,805 0.40
TOTAL 2,881,956 - 2,724,117 -

Table 3: Italian generation mix, reference year 2020 [32]

Energy source Share (%)
Renewable sources 45.04
Coal 6.34
Natural gas 42.28
Petroleum oil 0.48
Nuclear 3.22
Other sources 2.64

road) are shown in Table 1 and were taken from previous
research [23]. Table 2 shows the vehicle fleet composition
circulating in the metropolitan city of Rome in 2019 and
2021 (vehicle fleet data are not yet available for the year
2022).

Well-to-Tank GHG emissions from the use of battery
electric vehicles (BEVs) strongly depends on each country’s
electricity generationmix [26–30]. For a proper comparison
between the pre-pandemic (2019) and the post-pandemic
period (2022), it should be considered the impact of the war
in Ukraine on Italian generationmix since Italy gets around
40% of its natural gas from Russia [31]. However, for data
availability reasons, this study referred to the same Italian
generation of the year 2020 for both periods (Table 3).

Traffic simulation data –i.e., the flow and the speed
at single-link level– were used to assess noise emissions
for the whole road network, as per the guidelines provided
within the Common Noise Assessment Methods in Europe
(CNOSSOS-EU) [33]. In Chapter III, the CNOSSOS-EU docu-
ment defines a four-vehicle type classification framework,
with equations and coefficients for the calculation of their
corresponding sound power emissions: Category 1 - Light
motor vehicles; Category 2 - Medium heavy vehicles; Cate-
gory 3 - Heavy vehicles; Category 4 - Powered two-wheelers
(actually, a Category 5 has been set up for future technolog-
ical developments, but no further information is available
at the moment). Since the traffic demand was simulated as
equivalent-vehicle trips (using passenger cars as the refer-
ence vehicle) the samewas done for the noise emissions cal-
culation and only Category 1 vehicles as per the CNOSSOS-
EU were considered with the same flows on the links of
the network. According to the CNOSSOS-EU protocol, the
noise emission of a traffic flow on a given link of a network
can be characterized as the directional sound power of a
line source, per metre, per frequency, based on the cumu-
lative sound emissions of individual vehicles, as a function
of speed. The directional sound power per metre per fre-
quency band of the line source LW′ ,eq,line,i,m (expressed in
dB) is calculated based on a traffic flow of Qm vehicles of
categorym with a known average speed vm [33]. Several as-
sumptions were made to simplify the calculations applied
within the CNOSSOS-EUmethod, which have also been pre-
viously implemented in literature [2, 24]. Links with traffic
volume = 0 were excluded from the calculations, as they
would not contribute to actual noise emissions.
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3 Results
Assuming that the total mileage (vehicle kilometres trav-
elled – VKT) can be split proportionally to the fleet compo-
sition (Table 2), one can calculate GHG emission by using
factors shown in Table 1. The results of the traffic simulation
as well as GHG emissions are shown in Table 4. Morning
peak-hour traffic volumes decrease by 10% when compar-
ing the year 2022 with 2019, and this corresponds to an 11%
reduction of GHG emissions. Such a reduction could be at-
tributed to the growth in telecommuting and e-commerce
and to a minor extent to the replacement of internal com-
bustion engine vehicles with electric vehicles (hybrid or full
electric). For sake of completeness, it should be noted that
a reduction of customer trips is associated to an increase
in the traffic of couriers and vans for home delivery [16].
Since this study focuses on passenger mobility, the environ-
mental impact of urban freight distribution was neglected.
An interesting future development is to consider freight
traffic by performing a multiclass assignment; and thus,
explicitly taking into account the contributions of different
vehicular classes on the road network links. The first re-
sults of the analysis of the FCD show that the percentage of
commercial vehicles’ mileage (VKT) increased significantly
between 2019 and 2022, by about 9%.

As for the noise emissions of the traffic flow, these were
calculated following the sections III.2.1, III.2.3, III.2.4, and
Appendix III-A of the CNOSSOS-EU protocol for each link
of the road network (excluding those with volume = 0) as a
source line with a directional sound power per metre, by
one-octave frequency band (63 Hz – 8 kHz) [33]. Such val-
ues were subsequently integrated into a single LW′ ,eq,line,m
value. Figure 1 and Figure 2 show the distributions of sound
power values of the road network links for the 2019 and
2022 simulations, respectively: visual inspections of the two
samples suggested noise emissions to be non-normally dis-
tributed, and indeed numerical analysis confirmed the dis-
tributions to be positively kurtosed. Therefore, for the sake
of statistical comparison, a non-parametric approach was
sought. Comparisons for noise emissions were conducted
separately for Urban roads and Highways. Data are medi-
ans unless otherwise stated. For Urban roads, noise emis-
sions in 2022 were slightly higher than in 2019 for 84.5% of
the network links. A Wilcoxon signed-rank test determined
that there was a statistically significant median increase
in LW′ ,eq,line,m value (0.1 dB) in 2022 (78.6 dB) compared to
2019 (78.5 dB), z =−128.397,p < .001. Likewise, forHighways,
noise emissions in 2022 were slightly higher than in 2019
for 88.0% of the network links. AWilcoxon signed-rank test
determined, similarly, that there was a statistically signifi-

cant median increase in LW′ ,eq,line,m value (0.1 dB) in 2022
(78.7 dB) compared to 2019 (78.6 dB), z = −81.831, p < .001.
Furthermore, following the traffic simulation approach, a
similar calculation was performed to explore the change
in noise emissions between 2019 and 2022. Table 5 shows
the sound power levels change, clustered as per road type
(i.e., Urban roads or Highways). It is worth highlighting
that “summing” dB-values as per the traffic flows simula-
tion is not a commonly used method, and it only provides
an indication of decibels “leaving or entering” the network;
yet other studies have also proposed this approach [2, 24].
Table 5 confirms a similar trend as per the distributional
analysis, with almost no change in terms of decibels emit-
ted on the network, and even very marginal increases from
2019 to 2022, +0.1% for both Urban Roads and Highways
(and for the network as a whole).

Figure 1: Distributions of the directional sound power per meter
values for 2019 simulation; bars stacked by road type

Figure 2: Distributions of the directional sound power per meter
values for 2022 simulation; bars stacked by road type
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Table 4: Traflc simulation and GHG emissions calculations

Year 2019
Urban roads Highways TOT

VKT [veh•km] 1,870,422 3,230,519 5,100,941
GHG emissions [tCO2eq] 548,649 575,263 1,123,912

Year 2022
VKT [veh•km] 1,681,527 2,907,326 4,588,853
GHG emissions [tCO2eq] 480,903 515,977 996,881

∆ (2022-2019)
VKT [%] −10.10% −10.00% −10.04%
GHG emissions [%] −12.35% −10.31% −11.30%

Table 5: Noise emissions calculations

Noise emissions (dB)
Urban roads Highways TOT

Year 2019 3,233,609 1,032,250 4,338,148
Year 2022 3,240,647 1,033,770 4,352,190
∆ (2022–
2019)

+0.1% +0.1% +0.1%

While statistically significant, the observed changes in
noise emissions are effectively minimal/negligible and of
limited practical relevance. The data seems to signal that,
at least noise-wise, the situation as of 2022 went “back to
normal” pre-pandemic levels. The fact that no noise reduc-
tions (and even very small increases) are observed despite
reductions of other types of emissions and reduced traffic
volumes may be explained by a higher average network
speed (leading to increased noise emission). Yet, in terms
of distribution of noise emission levels, the 2022 sample
(Figure 2) shows a reduced kurtosis compared to the 2019
scenario and seems to tend more towards a normal distri-
bution.

4 Conclusions
This study explored how the COVID-19 pandemic has
brought changes to urban mobility by comparing the pre-
pandemic (2019) and post-pandemic (2022) road traffic vol-
umes and related emissions. The first evidence of these
changes in mobility habits is represented by the diffusion
of teleworking, which has become for many companies a
structural, and not temporary, working arrangement. The
pandemic has also fostered the digitization of many pro-
cesses, services and activities; among these, e-commerce
has the highest implication on urban mobility. Traffic and

environmental implications of such changes are evaluated
through a methodology that couples transport demand
modelling and simulation tools with greenhouse gas and
noise emissions assessment.

Our findings indicate that the diffusion of teleworking
arrangements, e-commerce, as well as the digitization of
many processes, has led to a 10% reduction in morning
peak-hour traffic volumes, compared to pre-pandemic pe-
riod (2019). This resulted into an 11% reduction of green-
house gas emissions and a 0.1% increase in noise emissions
(i.e., no effective changes in noise emissions).

This study confirmed that flexible work arrangements
may lead to a reduction in morning peak-hour traffic vol-
umes; however, it is not yet clear whether teleworking
causes a reduction only in work-related travels or in total
mobility. Some authors found rebound effects from tele-
working, since flexible working might generate an increase
in frequency and length of non-work-related trips [34–36].
Future research is needed to understand the impact of tele-
working on within-day and day-to-day travel patterns and
the related environmental issues.

As for the impact of e-commerce on urban mobility, it
should be noted that this study focused on the reduction
of road passenger trips, neglecting the increase in traffic of
couriers and vans for home delivery. Therefore, an impor-
tant further development, already in progress, is to explic-
itly consider freight traffic volumes, performing amulticlass
traffic assignment. Here the difficulty is to reconstruct the
freight Origin-Destination matrix.
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