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Abstract

Magnetically confined thermonuclear fusion is promising as a future power source. However, the via-

bility of fusion power plants is strongly influenced by how well the thermal energy can be confined in

the plasma fuel. Often, the dominant process governing confinement is microinstability-driven plasma

turbulence. This thesis studies microinstabilities and turbulence using gyrokinetic simulations, which

may ultimately inform fusion reactor design and operation.

The effect of plasma triangularity on stability in spherical tokamaks (STs) is examined using lin-

ear simulations of hypothetical ST equilibria. It is found that the kinetic ballooning mode (KBM), an

electromagnetic pressure-driven microinstability, likely prohibits negative triangularity in ST power

plants, since negative triangularity closes the “second stability window” for n = ∞ ideal magne-

tohydrodynamic (MHD) ballooning modes. ST equilibria with positive triangularity can access the

second stability window, although remain weakly unstable to KBMs.

Secondly, microinstabilities are studied for the optimised stellarator Wendelstein 7-X (W7-X).

Electrostatic “stability valley” results are reproduced using stella: a gyrokinetic code which offers

flexibility in time-marching schemes by using operator splitting. stella is extended to include A‖

andB‖ fluctuations linearly using both implicit and explicit schemes. Benchmarking against the code

GS2 shows good agreement for electromagnetic tokamak simulations. Using this implementation,

the W7-X stability valley at finite β (=plasma pressure/magnetic pressure) is preliminarily explored.

The electromagnetic instabilities observed may be relevant to future W7-X experiments.

Finally, a non-interpolating semi-Lagrangian scheme, aiming to efficiently simulate electromag-

netic turbulence by eliminating the Courant-Freidrichs-Lewy timestep constraint in nonlinear gyroki-

netics, is implemented in stella. A new operator splitting scheme is developed and used to mix

single and multi-step numerical methods. Unfortunately, nonlinear tests show low accuracy and cur-

rently unexplained numerical instability. Elucidating the reasons for this would be an interesting area

of future research.
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5.16 Gyrokinetic ŝ− alpha scans for the positive triangularity ST equilibrium . . . . . . 104
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Garcı́a-Regaña, a collaborator based at CIEMAT, Madrid, as well as Hanne Thienpondt and Antonio
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Chapter 1

Introduction and Background

1.1 Controlled thermonuclear fusion

It has long been known (see e.g. [1, 2]) that the fusing of light atomic nuclei releases energy, owing

to differences in the average binding energy per nucleon of the reactants and products. This has

motivated efforts to use controlled nuclear fusion as a power source (for a brief history and current

status, see [3] and [4]). Fusion now forms part of the energy policy of several nations (see e.g. [5, 6]).

Benefits of fusion energy include reliability and security of energy supply, high energy-density of

reactants and relatively benign waste products. However, there are serious challenges which must be

overcome in order to realise economical fusion power plants. As of today, there are no fusion devices

which provide a net surplus of electricity (or indeed a net surplus of energy in a useful way.)

Fusion requires the reactant nuclei to overcome their electrostatic repulsion (the “Coulomb bar-

rier”) and this behooves a thermonuclear approach, whereby the fuel is confined and heated to suffi-

ciently high density and temperature. Each reactant nucleus undergoes (on average) many collisions,

and a small fraction of these are sufficiently energetic for fusion to occur. Confinement of fuel at high

temperature is challenging, and thus virtually all fusion efforts focus on the DT reaction:

2
1D +3

1 T→4
2 He +1

0 n (1.1.1)

(where 2
1D,31 T,42 He,10 n respectively denote deuterium, tritium, helium-4 ()and a neutron), which has a

high reactivity at relatively low temperatures (∼ 10− 100keV) [7] (hydrogenic reactants, in general,

have higher reactivities at lower temperatures as their low charge minimises the Coulomb barrier).

The DT reaction also has a high energy yield (17.6MeV; En = 14.1MeV in the neutron and Eα =

14
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3.5MeV in the α (i.e. the helium-4) particle). Deuterium is naturally abundant and although tritium

is not, it can be synthesised by bombarding lithium with energetic neutrons. Since 14.1MeV neutrons

are a DT product, it is thought that DT reactors can be self-sustaining by breeding their own supply

of tritium [4].

The problem remains to confine the mixture of DT fuel at sufficiently high temperature and den-

sity for fusion to occur. A popular metric parametrising this is the fusion triple product, nTτE

[8]. By considering the balance of heating power (externally injected heating PH plus fusion α

heating Pα) with the power lost from the fuel (characterised by the energy confinement time τE ,
dW
dt = −Pl ' −W/τE where W is the stored thermal energy of the fuel and Pl the power loss rate),

it can be shown that the externally provided heating power must satisfy

PH = Pl − Pα '
(

3nT

τE
− n2

4
〈σv〉Eα

)
V, (1.1.2)

where n is the DT fuel number density, T the temperature, 〈σv〉 the reactivity of reaction (1.1.1) and

V the fuel volume. If one further applies the fit 〈σv〉 ' 1.1 × 10−24T 2m3s−1 (an approximation

which is reasonable for 10keV < T < 20keV) and sets PH = 0 one finds:

nTτE = 3× 1021m−3keV · s, (1.1.3)

which is a requirement for a self-heated (or “ignited”) fuel, and provides a ballpark estimate for

reactor viability.

To date, the most promising scheme to overcome the challenge of confinement (i.e. to satisfy

(1.1.3)) is magnetic confinement fusion (MCF), which utilises strong magnetic fields. Since the

heated fuel is a plasma (a highly ionised gas), the constituent particles experience a Lorentz force

F:

F = q(E + v× B), (1.1.4)

where q is the particle charge, v is the velocity and E and B are the electric and magnetic fields

respectively. F constrains particle motion perpendicular to B (to leading order) to the particle “Larmor

orbit” (see section 1.2.2), thus confining heat and particles.

However, the apparent simplicity of the MCF concept belies the enormous complexity of design-

ing and building a working machine. A principle (and unavoidable) difficulty is the plasma itself,
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which is extremely difficult to model accurately. Although the dynamics of each charged particle

may be almost completely described by the Lorentz force (1.1.4) and Maxwell’s equations:

∇ · E =
ρ

ε0
(1.1.5)

∇× E = −∂B
∂t

(1.1.6)

∇ · B = 0 (1.1.7)

∇× B = µ0j + µ0ε0
∂E
∂t

(1.1.8)

(where ρ is the charge density, ε0 the permittivity of free space, t is time, µ0 the permeability of free

space and j the charge density), particle interactions are long-range and thus each particle simultane-

ously interacts with many others. This gives rise to complex, collective and multiscale phenomena.

One example of this is plasma turbulence, which affects reactor performance as it effectively increases

the mobility of the plasma across equilibrium magnetic field lines. In many MCF designs, including

the front-running device, the tokamak, turbulence is often the dominant cross-field transport mech-

anism, and thus the greatest factor influencing nTτE . Understanding the causes and consequences

of plasma turbulence is therefore of great importance for commercial fusion power plants (and is the

main focus of this work).

Before discussing plasma turbulence, I first describe some basic magnetised plasma phenom-

ena. This is not intended to be an exhaustive catalogue, but covers some concepts which will recur

throughout this thesis.

1.2 Properties of magnetised plasmas

1.2.1 Definition of a plasma

A definition that describes fusion plasmas well is given by Chen [9]: “A plasma is a quasi-neutral

gas of charged and neutral particles which exhibits collective behaviour.” “Quasi-neutral” means that

the net electrical charge of any small parcel of plasma is very close to zero and thus large electrostatic

potentials do not exist in the plasma. The characteristic length scale above which the plasma is quasi-

neutral is the Debye length, λD, given by [9]:

λD =

√
ε0kBTe
ne2

, (1.2.1)
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where kB is Boltzmann’s constant, Te the electron temperature, n the electron number density and

e the fundamental unit of electronic charge. It can be shown [9] that the plasma is quasi-neutral on

length scales L > λD provided that the number of particles ND within the Debye sphere (a sphere of

radius λD) is large. ND is sometimes referred to as the “plasma parameter”.

“Collective behaviour” means that the dominant mechanisms affecting particle trajectories are

long-range and nonlocal, such that many particles interact simultaneously. In the case of plasma,

particle dynamics are governed by electromagnetic fields; each particle interacts with a large number

of nearby particles via the electromagnetic force. This differs from a conventional gas, in which the

trajectory of each particle is dominated by local, short-range collisions. The requirement that plasma

exhibits collective behaviour can be formalised as a requirement that the timescale of plasma phe-

nomena (say, an oscillation with frequency ω) is less than the typical timescale over which collisions

randomise particle trajectories τc.

Thus, the definition encompasses three conditions for a gas to be considered a plasma:

λD � L (1.2.2)

ND ≡
4

3
πλ3

Dn� 1 (1.2.3)

ωτc > 1, (1.2.4)

where L is the length scale of the system. Eq. (1.2.2) states that the Debye length is very small

compared to the typical length scales in the plasma; eq. (1.2.3) states that there are a very large

number of particles within the Debye sphere; eq. (1.2.4) states that collisions do not dominate particle

interactions.

1.2.2 Definition of a magnetised plasma

For simplicity, consider a particle with mass m and charge q in a uniform magnetic field B = Bẑ in

the absence of any other forces. Inserting eq. (1.1.4) into Newton’s second law gives

m
dv
dt

= m


dvx/dt

dvy/dt

dvz/dt

 = qv× B = q


vx

vy

vz

×


0

0

B

 = q


Bvy

−Bvx

0

 . (1.2.5)
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Since dvz/dt = 0, this magnetic field has no effect on the parallel velocity. The coupled equations in

x and y can be solved to give

d2vx(y)

dt2
= −q

2B2

m2
vx(y), (1.2.6)

which describes harmonic motion, known as a “Larmor motion” or “gyromotion”, with frequency

Ωgyro = qB
m . The Larmor radius or gyro-radius, ρgyro, is simply

ρgyro =

∣∣∣∣ v⊥Ωgyro

∣∣∣∣ , (1.2.7)

where v⊥ is the perpendicular particle speed. The typical spatial scale of the Larmor motion is

characterised by the thermal Lamor radius ρgyro,th ≡ |vth/Ωgyro| where vth is the thermal velocity.

This implies ρgyro,th ∝ m−1/2; less massive particles have bigger gyrofrequencies but smaller gryro-

radii.

A plasma may be considered “strongly magnetised” if the particle motion is determined, to lead-

ing order, by gyromotion i.e. if gyromotion is faster than any other physical behaviour of interest:

∣∣∣∣Ωgyro

ω

∣∣∣∣� 1, (1.2.8)

where again, ω is the frequency of some physical phenomenon (say, a plasma oscillation.) All plasmas

considered in this work satisfy eq. (1.2.8).

1.2.3 Conserved quantities and the “mirror force”

It can be shown that the total particle energy and the particle magnetic moment µ ≡ mv2
⊥/2B are

conserved as a particle moves in an electromagnetic field, provided that:

1. The electric and magnetic fields are static and approximately constant over ρgyro

2. The particle does not undergo any collisions (since collisions allow the particle to exchange

energy and momentum with other particles)

3. The non-relativistic limit is taken, such that (for example) the cyclotron radiation of gyrating

particles is neglected.

To show energy is conserved, one combines the Lorentz force law (1.1.4) with Newton’s second
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law of motion and dots with v:

m
dv
dt

= q(E + v× B) (1.2.9)

mv · dv
dt

=
m

2

dv2

dt
= q(v · E + v · (v× B)︸ ︷︷ ︸

=0

). (1.2.10)

Rewriting v · E as the convective derivative of the electrostatic potential φ:

v · E = −v ·∇φ = −∂x
∂t
· ∂φ
∂x

= −
(

dφ

dt
−
�
��
∂φ

∂t

)
(1.2.11)

and inserting into (1.2.10) yields

d

dt

(
1

2
mv2 + qφ

)
= 0, (1.2.12)

which expresses that the total energy is conserved.

A fairly straightforward proof of magnetic moment conservation is presented by Wesson [8], the

key point being that µ is an adiabatic invariant, i.e. is conserved provided that B varies slowly along

the trajectory of the particle. The conservation of energy and magnetic moment gives rise to an

important physical effect known as the “mirror force”. As a particle travels from a region of weak

to strong B, |v⊥| increases to conserve µ. Since (v2
‖ + v2

⊥) is also conserved (in the absence of an

electric field), |v‖| falls; the particle experiences a force in the parallel direction. If the change in B

from the weak field region (with B = B− and v⊥ = v⊥−) to the strong field region (with B = B+)

is such that

v2

B+
<
v⊥

2
−

B−
, (1.2.13)

then the particle cannot enter the stronger field region because E and µ cannot simultaneously be

conserved. This leads to particles becoming trapped in regions of weak magnetic field. Trapped

particles can have important effects in MCF plasmas.

1.2.4 Particle drifts

Another important feature of magnetised plasmas is particle drifts, which typically arise from electric

fields in the plasma or from an inhomogeneous magnetic field.

A starting point for this is to consider a particle in a uniform, constant magnetic field B = Bz êz
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in the presence of a uniform force perpendicular to B (F = Fxêx+Fy êy). The perpendicular velocity

can be decomposed into v = vgyro + v1 (where vgyro is gyromotion) and the equation of motion

becomes

m
d���vgyro + v1

dt
= F + q(���vgyro + v1)× B, (1.2.14)

and if v1 is assumed time-independent, the left hand side (LHS) vanishes. Crossing with B and

rearranging, one finds

v1⊥ =
F× B
qB2

. (1.2.15)

Eq. (1.2.15) reveals that, in a magnetised plasma, a force F perpendicular to B will result in the

particle drifting at a constant velocity in a direction mutually perpendicular to F and B. A physical

picture for this behaviour is that the particle Larmor orbits are slightly deformed by F: ρgyro grows

over half of the gyroperiod (when vgyro · F > 0 since v⊥ increases) and shrinks over the other half.

These nonuniform orbits give rise to a net drift superimposed on normal gyromotion. For a given

force, the drift is mass-independent (more massive particles are less readily accelerated, but this is

compensated by larger ρgyro).

Replacing F in (1.2.15) with the force arising from an electric field F = qE reveals the E × B

drift:

VE×B =
E× B
B2

, (1.2.16)

which is independent of the particle charge, mass and velocity (provided q 6= 0, m 6= 0, v 6= 0). If

one considers a curved magnetic field and replaces F with a centrifugal force F =
mv2
‖

RC
RC (where

v · B/B = v‖ and RC is the radius of curvature), one finds the curvature drift VC :

VC =
mv2
‖

qB2

RC × B
R2
C

, (1.2.17)

which is perpendicular to the field curvature and is charge-, mass- and velocity-dependent (although,

for thermal particles, the drift appears mass-independent since v‖,th ∝ m−1/2).

The final drift I derive is called the ∇B drift, arising from a change in magnetic field strength

perpendicular to B. If one assumes the length scale of the variation inB is much greater than the ρgyro,
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Figure 1.1: Left: a uniform magnetic field. Particles are not confined parallel to the field. Right: a “magnetic mirror”.
Most particles are confined by the “magnetic mirror” force, but a particular region of velocity space is unconfined, and this
region is constantly repopulated from the rest of velocity space by collisions.

one can Taylor expand B around the guiding center. Inserting into Newton’s law and considering the

êx component gives

m
∂vx
∂t

= qBvy = qvy

(
B0 +

v⊥
Ωgyro

cos
(
Ωgyrot

)∂B
∂y

)
. (1.2.18)

Taking vy = v⊥ cos
(
Ωgyrot

)
and averaging over a single gyro-orbit, one finds

m
∂v̄x
∂t

= q
v2
⊥

2Ωgyro

∂B

∂y
. (1.2.19)

Repeating the analysis for êy, one arrives at an expression for V∇B:

V∇B =
v⊥

2Ωgyro

B×∇B
B2

, (1.2.20)

which is charge-dependent through Ωgyro but, like VC , mass-independent for thermal particles.

1.3 MCF devices

A strong magnetic field ensures that particles are, to leading order, confined perpendicular to the field.

The first challenge of an MCF device is therefore to confine the motion parallel to the field; a uniform

magnetic field, such as shown in figure 1.1a, does not confine the plasma in the parallel direction.

One approach to this is the “magnetic mirror” concept (figure 1.1b ), in which parallel motion is
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x

y
z

x

y
z

Figure 1.2: Left: A circular magnetic field (i.e. a toroidal plasma with q = ∞). Confinement is limited by particle drifts
and the 1/R force. Right: A ring of closed magnetic loops (i.e. a toroidal plasma with a safety factor q = 0). Confinement
is limited by the 1/R force, the Hoop force and plasma instabilities.

confined by a gradient in B. The varying field strength gives rise to the mirror force, trapping the

particles in the region of low field. This concept has been explored fairly thoroughly (for a review see

[10]) and is still the subject of research (e.g. [11]), but is currently not a front-running fusion MCF

concept. A principal issue is that particles with sufficiently high v‖/v⊥ (i.e. sufficiently small µ) will

escape from the ends of the magnetic trap. Since collisions act to randomise the velocity distribution

of the particles, the region of phase space for which particles are not confined is continually being

repopulated. Thus, confinement in mirror systems tends to be uncompetitively low.

A more promising approach is to shape the magnetic field into a closed volume, for example a

circle, such that particles travelling along the field line remain in a fixed volume (such as shown in

figure 1.2). This confines the plasma to leading order.

The next challenge is to confine the perpendicular motion to higher order. For example, a simple

circular magnetic field (figure 1.2, left) gives rise to charge-dependent curvature drifts. Since these

are charge-dependent, they establish a vertical electric field, and hence an outward E × B drift. The

plasma is confined on the timescale of thermal streaming (O(1µs) for a hypothetical device of size

1m with plasma temperature of 10keV) but not on the scale of particle drifts (O(100µs) for this

hypothetical device, assuming a magnetic field of 1T and a curvature radius and ∇B length scale

of 1m). An additional problem in this configuration is that the magnetic field, and hence magnetic

pressure, is greater on the inboard side (i.e. at smaller radii) than on the outboard side. This results in

a net force (sometimes called the “1/R” force [12]) which pushes the plasma outwards and also leads
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to a loss of confinement.

A ring of closed magnetic loops generated by driving a current toroidally in the plasma, such as

figure 1.2b, also shows poor confinement. In this case, as well as the 1/R force, a force known as

the “Hoop force” [12], arising from the interaction of the current with its induced magnetic field, also

pushes the plasma outwards. Furthermore, this configuration is unstable to kink instabilities which

cause the plasma to quickly deform and lose confinement [8].

Several decades of research into optimal confinement (for a review, see [13]) have led to several

classes of device being widely accepted as plausible energy-producing MCF reactor concepts. In this

thesis, I focus on the two currently most popular of these: the tokamak and the stellarator.

1.3.1 The tokamak

The tokamak is currently the most widely adopted MCF design (for an early, contemporaneous de-

scription see [14]; for an extensive review, see [8]). The principle of the tokamak is to confine a

torus-shaped plasma using an axisymmetric helical magnetic field, such as is shown in figure 1.3.

The magnetic field is symmetric about the axis of rotation of the torus, which I refer to as the “sym-

metry axis”. The magnetic field lines form nested surfaces about an axis known as the “magnetic

axis”.

The helical magnetic field is established mostly by a combination of large magnets surrounding

the plasma vessel which produce a toroidal field, and a toroidal current in the plasma which generates

a poloidal magnetic field. The toroidal current can be achieved in several ways; a defining feature of

the tokamak is a central solenoid which induces a secondary current in the plasma. Other sources of

toroidal current include neutral beam injection, microwaves and self-driven currents from the plasma

itself. The poloidal magnetic field overcomes the issue of particle drifts described in the previous

section by connecting different vertical locations in the plasma such that a vertical electric field is not

established. The toroidal field is necessary to avoid large-scale plasma instabilities.

The helical field is described by the safety factor q (or its inverse, the rotational transform ι),

defined as the number of toroidal turns of the magnetic field required to make a full poloidal rotation:

q =
2π

ι
≡ #. toroidal turns

1 poloidal turn
, (1.3.1)

which roughly corresponds to the slope of the field line; q = 0 corresponds to zero toroidal field (i.e.

figure 1.2 b ), and q = ∞ to zero poloidal field (i.e. figure 1.2 a ). Magnetic field lines with q = 3
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Figure 1.3: Examples of magnetic field lines in tokamak. Left: Magnetic field with q = 3. Right: Magnetic field with
q = 0.1.

and q = 0.1 are shown in figure 1.3.

Experimental and theoretical tokamak research has shown their potential for energy production.

The tokamak JET (“Joint European Torus”), for example, ran a DT campaign in 1997 which set the

record for peak fusion power (16.1MW) and the total fusion energy of a single shot (21.7MJ) [15].

The latest DT campaign at JET achieved in December 2021 posted a record energy output of 59MJ

from a single shot lasting five seconds, with Q ≡ (fusion power/external heating power) = 0.33

[16]. The next generation of conventional tokamaks include ITER [17] and DEMO [18], which aim

to produce net energy (Q > 1) and, in the case of DEMO, a net supply of electricity.

A challenge facing the commercial viability of these machines is their large size, which makes the

capital cost high and presents engineering challenges. An alternative class of tokamak design which

may generally reduce the machine size is the spherical tokamak.

1.3.1.1 The spherical tokamak

The spherical tokamak, or spherical torus (ST), is characterised by a small machine aspect ratio

A ≡ R/r, where R (called the major radius) is the distance from the symmetry axis of the torus to

the magnetic axis and r is the distance from the magnetic axis to the vessel wall in the horizontal

plane (called the minor radius). Conventional tokamaks (CTs) have A ≥ 2.5, whereas STs typically

have A ∼ 1.5 [19]; the poloidal cross sections of two example plasmas with A = 3 and A = 1.5 are

shown in figure 1.4 (left).

Lower A reduces the space around the symmetry axis available for magnets. As a result, the



1.3. MCF DEVICES 25

0 R

Z rCTrST

RCT

RST

CT: A=3
ST: A=1.5

0 R

Z

δ=0, κ=1
δ=0, κ=2

δ=0.5, κ=1
δ=0.5, κ=2

Figure 1.4: Left: poloidal cross sections of conventional and spherical tokamak with zero triangularity (δ = 0) and unity
elongation (κ = 1). Right: spherical tokamak poloidal cross sections with constant major and minor radius and varying
(δ, κ).

strength of the achievable magnetic field in STs is more limited. In order to operate at a given pressure,

STs must therefore operate at a higher plasma β, defined as the ratio of plasma pressure to magnetic

pressure:

β ≡ p

B2/(2µ0)
, (1.3.2)

where p is the plasma pressure. Economically speaking, higher β is generally desirable, since it im-

plies a higher plasma pressure (and hence higher nTτE and more fusion power, since Pα ∝ n2T 2 ∝

p2) for a given magnetic field, or a lower magnetic field (and hence lower capital and operating costs)

for fixed p. Commercially viable ST power plants must operate at relatively high β due to the com-

paratively low field, with β around an order of magnitude greater than CTs (O(0.1) compared to

O(0.01) [8].)

The reason for higher attainable β in STs is the strong shaping of the plasmas, which improve

some plasma stability properties [20, 21]. The shaping typically consists of elongating the plasma

vertically and making the plasma more “pointy” on the outboard side (known as triangularity). Some

examples of different elongation κ and triangularity δ are shown in figure 1.4 (right). The maximum

achievable β for a tokamak is usually limited by magnetohydrodynamic instabilities, which gave rise
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to a semi-empirical β limit devised by Troyon et al. [22] :

βN ≡
βTRBT0

Ip
< 0.028, (1.3.3)

where βN is the normalised βT , βT ≡ 2µ0〈p〉/B2
T0 BT0 is the toroidal magnetic field on the mag-

netic axis, Ip the total plasma current and 〈p〉 the volume-averaged pressure. However, this limit is

routinely exceeded by STs, and further studies by Menard et al.[23] show that this is due to improved

magnetohydrodynamic stability in small-A, strongly shaped devices. The favourable properties of the

ST has led to considerable investment, including the planned building STEP (“Spherical Tokamak for

Energy Production”) [5], a proof-of-principle energy-producing ST reactor in the UK.

1.3.1.2 Flux surfaces

It is worth noting here that if q is irrational, the magnetic field will never join back up with itself,

and will instead ergodically sample a toroidal surface. Due to the high mobility of particles along the

magnetic field, certain quantities (such as density and temperature) become constant on this surface

(this is shown in the derivation presented in chapter 2). One such quantity is the enclosed poloidal

magnetic flux ψ =
∫

B · dS, where the integral is taken over the surface S which goes from the

magnetic axis to the toroidal surface while keeping the toroidal angle fixed. As a result, these nested

toroidal surfaces are referred to as “flux surface” and can be labelled by ψ.

1.3.2 The stellarator

Similar to the tokamak, stellarators also confine a toroidal plasma using a magnetic field. A key

difference in design is how the rotational transform ι is achieved. Rather than driving a current in the

plasma, stellarators principally use the magnetic coils to achieve the transform; either by elongating

the plasma flux surfaces and making them rotate poloidally as the toroidal angle changes, or by

making the magnetic axis non-planar [24]. Diagrams of the field coils and plasma for a tokamak and

stellarator are shown in figure 1.6. It is clear that the stellarator lacks the toroidal symmetry of the

tokamak and is an inherently three-dimensional configuration. The stellarator shown in figure 1.6

(Wendelstein 7-X) consists of five identical “field periods” connected to make a full toroidal rotation,

resulting in five-fold rotational invariance.

A number of differences exist between tokamaks and stellarators. By eliminating the challenge

of continually driving a toroidal current in the plasma, the stellarator is an inherently more steady-
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state device than the tokamak. In addition, the zero or very small toroidal currents make the plasma

less susceptible to current-driven plasma instabilities [25]. On the other hand, the bespoke field coil

designs make the stellarator more difficult and expensive to build[24]. An additional major difference

is the “neoclassical” transport in stellarators, arising from the collisionless trajectories of particles.

This is briefly described in the following section.

1.3.2.1 Neoclassical transport in tokamaks and stellarators

SinceB is not uniform along magnetic field lines in tokamaks and stellarators, a subset of particles are

trapped in regions of weak magnetic field. When combined with the magnetostatic drifts in tokamaks

(which are largely up-down symmetric), this gives rise to “banana orbits” as shown schematically in

figure 1.5 (left). These orbits remain local to a particular surface owing to a symmetry of the magnetic

drifts with respect to the magnetic well.

Trapped particle trajectories in stellarators are rather more complicated. In particular, multiple

magnetic wells exist along the field line, which result in a subset of particle orbits secularly departing

from their original surface. A simplified 2D picture to illustrate the general point is shown in figure

1.5 (right). However, it should be noted that since stellarator plasmas are not toroidally symmetric,

describing the dynamics with respect to a single poloidal cross section is unrealistic.

There are ways in which this neoclassical transport can be minimised by carefully optimising the

equilibrium field to have particular symmetry properties [26–28]. Such configurations are currently

the subject of theoretical and experimental investigation, most notably in the optimised stellarator

Wendelstein 7-X [29] in Greifswald, Germany. In addition to reducing neoclassical transport to

around the level of tokamaks, optimised stellarators also show remarkable properties with respect

to microinstabilities [30–32] (see section 1.4.3). I examine this topic in chapter 7.

1.4 Plasma equilibrium, instabilities and turbulence

1.4.1 Equilibrium

The typical density of an MCF plasma is O(10−8 − 10−7)kg ·m−3, but the typical magnitude of the

forces in an MCF device is large (for a typical magnetic field of 1T and a plasma current of 1MA

in a volume of 100m3, the typical force density is f = j × B ∼ I
V B = O(104)N · m−3). A small

imbalance of forces will therefore lead to large bulk acceleration of the plasma and a rapid loss of

confinement [8]. For this reason, a necessary (but not sufficient) condition for an MCF plasma to
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Figure 1.5: Schematic diagram of banana orbits in a tokamak (left) and stellarator (right) plasma about a circular flux
surface. Upper: trajectory of a single trapped particle (solid blue line) on a circular flux surface (black dashed line). Lower:
trajectory (solid blue) and magnetic field strength (solid black) as a function of poloidal angle.
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Figure 1.6: Schematic of (left) tokamak with conventional aspect ratio and (right) a stellarator, showing the plasma (yel-
low/orange) and magnetic field coils (blue). Figure reproduced from [25].

be well-confined it that the net force acting on each plasma element is zero. A plasma which is net

force-free everywhere is said to be in equilibrium.

The question of equilibrium is usually addressed using the theoretical framework of magnetohy-

drodynamics (MHD) (discussed more in chapter 4). For axisymmetric devices such as the tokamak,

this leads to the Grad-Shafranov equation [33]. Equilibrium in axially asymmetric devices such as

the stellarator is rather more involved, although simplified models (again starting from MHD theory)

have been developed [34]. Since fusion performance is determined by the properties of the equi-

librium, finding high-performance equilibria (i.e. those which maximise nTτE) is essential for the

commercial viability of fusion power plants.

1.4.2 Instabilities

Unfortunately, the requirement for a plasma to be in MHD equilibrium is not a sufficient condition

for the plasma to be well-confined; one must also consider plasma stability, that is, whether a small

perturbation from the equilibrium causes the system to return to equilibrium or depart further [35].

In the latter case, the equilibrium is said to be unstable since instabilities (seeded by small random

fluctuations) will cause the plasma to stray away from equilibrium in a short amount of time. An

analogous system is a ball resting on a surface, say, the apex of a hill or the base of a valley. The

former case is unstable (it being energetically favourable for the ball to roll down the hill, away from

the apex) and the latter is stable. A ball resting on a (locally) level surface is an example of marginal

stability, since an initial displacement of the ball will neither grow nor diminish.

The largest and most violent instabilities in an MCF plasma are rapidly-growing machine-size
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(“macroscopic”) instabilities, in which the magnitude of fluctuation (in density, current or tempera-

ture) relative to the equilibrium quantities is order unity. The worst of these can terminate the plasma

in a disruption event, by displacing the entire volume into the vessel wall, where it quickly cools and

recombines. Slightly less severe are large Edge-Localised Modes (ELMs) [36, 37]. In these large-

scale instabilities, the plasma loses a significant fraction of its energy, which is undesirable both for

fusion performance and the longevity of plasma-facing components, which are damaged by transient

high heat loads. For devices such as ITER, where heat loads on plasma-facing components are chal-

lenging even in steady state, large instabilities are considered unacceptable [38]. These instabilities

have important consequences for the viability of fusion devices, but are not the subject of this thesis.

1.4.3 Microinstabilities and turbulence

Another class of instabilities are so-called microinstabilities, which have a spatial scale comparable

to the ion or electron Larmor radius. Rather than causing large-scale disruptions, these grow, interact

nonlinearly with each other and eventually saturate, resulting in small-scale turbulence (small both

in terms of fluctuation amplitude and spatial size). The overall effect of this turbulence, which is

sometimes referred to as microturbulence, is to enhance transport across the equilibrium magnetic

field, which affects performance in several ways.

Firstly, the enhanced transport reduces the energy confinement time τE in the fusion triple product

nTτE , degrading performance; the fuel cannot self-heat as efficiently. Secondly, the turbulence tends

to grow strongly above some critical threshold, and so the n and T profiles become “stiff”: the

equilibrium becomes regulated by turbulence and cannot be pushed beyond some critical parameter

(e.g. a critical gradient in n, T or p) [39, 40]. Clearly, the gradients determine the volume-averaged

n and T so optimising equilibria to raise these gradients is desirable. A third consideration is the

transport of impurities; it is generally desirable to expel impurities (such as helium “ash” or material

eroded from the plasma-facing components) from the core to avoid dilution of the hydrogenic ions

and radiative cooling of the plasma. Plasma turbulence is a mechanism for impurity transport, so the

“right kind” of turbulence may be beneficial.

Thus, in addition to an MCF plasma satisfying MHD equilibrium, it must also be stable with re-

gards to the large-scale instabilities discussed previously, and must have sufficiently good microstabil-

ity properties that turbulence does not relax the profile (without confining impurities too efficiently).

Optimising MCF devices with regards to microstability is an overarching theme of this thesis.
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1.5 Modelling turbulence in MCF plasmas

The previous sections have shown that a magnetically confined fusion plasma can display a wealth of

interesting phenomena, spanning a huge range of spatio-temporal scales and with high dimensional-

ity (since each individual particle occupies a particular location in six-dimensional position-velocity

space, and its location varies as a function of time). This complexity presents a challenge for opti-

mising fusion devices; it is not reasonably possible to find characteristic outputs (fusion power, wall

loads, etc.) for a given set of plasma inputs (magnetic geometry, heating profile, fuelling rate, etc.)

using a single physical model.

However, one may study and optimise individual aspects of fusion plasmas using non-general

models. This thesis makes heavy use of gyrokinetic theory, which is particularly well-suited to study-

ing microinstabilities and turbulence. The gyrokinetic model yields a tractable set of equations, which

can be solved numerically or, in rare cases, analytically.

1.6 Structure of this thesis

This thesis is structured as follows. In this chapter, I have provided a brief background of magneti-

cally confined thermonuclear fusion and magnetised plasma phenomena. In chapter 2, I explain the

theoretical framework of gyrokinetics, and in chapter 3, how this theory is implemented in gyrokinetic

software.

Next (chapter 4), I describe ideal and kinetic ballooning modes (IBMs and KBMs), the latter

being an important microinstability in finite-β MCF plasmas and the former providing a useful proxy

for KBM stability. I then present (in chapter 5) a study of KBMs in reactor-relevant spherical tokamak

(ST) equilibria. I argue that the KBM imposes a design constraint on plasma triangularity (ST power

plants likely requiring positive triangularity to be commercially viable.)

The second half of this thesis makes use of the gyrokinetic code stella. In chapter 6 I de-

scribe the implementation of electromagnetic fluctuations in this code and the tests and benchmarks

performed. I then use stella to examine microstability in Wendelstein 7-X optimised stellarator

plasmas (chapter 7). This work presents electrostatic results using the original implementation of

stella and preliminary electromagnetic results using the newly developed code.

In chapter 8, I present a scheme which aims to eliminate the (sometimes restrictive) timestep

constraint associated with the E × B nonlinearity in the gyrokinetic equation. This final piece of

research contains preliminary results and describes features of the implementation which are currently
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poorly understood and might benefit from future work. Finally, an overall summary and outlook is

given in chapter 9.



Chapter 2

Gyrokinetics: Theory

2.1 Introduction

A complete classical description of a fully ionised plasma is provided by the Lorentz-Maxwell equa-

tions (1.1.4) to (1.1.8). Simulating the motion of all particles in any reasonably sized plasma is, how-

ever, intractable; storing the (x, v) coordinates for O(1020) particles would require O(1020) bytes

of memory, and updating these values once would require O(1020) floating-point operations. The

first step towards a tractable theoretical framework therefore is to dispense with the individual par-

ticle picture. As an alternative, one can use a statistical approach in which the plasma is described

by a distribution function fs(x, v, t): this describes the location of particles in a plasma in the six-

dimensional phase space of position x and velocity v at time t for species s (electron, deuteron, etc.).

Conceptually, fs can be considered the density of species s over position and velocity. Indeed, the

number density ns(x) is simply the integral of fs over v:

ns(x) =

∫
dvfs(x, v), (2.1.1)

where the integral is taken over all velocity space. Integrals containing fs over velocity space are

known as moments of fs.

An entirely general expression describing the temporal evolution of fs is given by the (micro-

scopic) kinetic equation [35]:

dfs
dt

=
∂fs
∂t

+
dx
dt
· ∂fs
∂x

+
dv
dt
· ∂fs
∂v

= 0, (2.1.2)

33
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which simply states that fs does not change along particle trajectories. This assumes that there are no

sources or sinks of particles, i.e. the number of particles in the system for each species is conserved;

an assumption used throughout this thesis. Nevertheless, since this essentially contains the same in-

formation as the single-particle picture, the kinetic-Maxwell equations are also intractable in practical

terms.

To simplify, it is convenient to take an ensemble average of (2.1.2), that is, to take a moving

average over a small region of phase space (δx, δv). For an arbitrary quantity g(x, v), the ensemble

average gensemble(x, v) is defined as:

gensemble(x, v) ≡ 〈g(x, v)〉ensemble =
1

V

∫ x+δx

x−δx

∫ v+δv

v−δv
dx′dv′g(x′, v′), (2.1.3)

where the angle brackets 〈〉 denote some kind of average (a notation used throughout this thesis),

V is the 6D phase space volume bounded by (x − δx, x + δx) and (v − δv, v + δv) and the prime

(′) indicates a dummy variable. δx and δv are assumed much smaller than any dynamically relevant

spatial or velocity scale of the system, such that the plasma dynamics are not affected by the ensemble

average. The ensemble average serves two purposes:

1. It ensures that the distribution function fs,ensemble is smooth, and thus amenable to a greater

range of mathematical analysis; fs, by contrast, is pathologically jagged down to the classical

limit.

2. By averaging over phase space, fs,ensemble effectively removes particle labelling; swapping the

phase space location of two identical particles changes fs but not fs,ensemble. fs,ensemble therefore

removes redundant information about the particles; a particular fs,ensemble describes a set of

microscopically unique but macroscopically (i.e. on any scale of physical interest) equivalent

plasmas.

Ensemble averaging eq. (2.1.2) yields

dfs,ensemble

dt
=
∂fs,ensemble

∂t
+

dx
dt
·
∂fs,ensemble

∂x
+

dv
dt
·
∂fs,ensemble

∂v
=

(
∂fs,ensemble

∂t

)
c

≡ C[fs,ensemble],

(2.1.4)

which I refer to as “the ensemble-averaged kinetic equation”. (Various names are given to equation

(2.1.4) in literature [35, 41, 42], usually based upon the form of the collision operator.) The RHS

describes the effect of close-range interactions, or Coulomb collisions, occurring on spatial scales
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much smaller than the Debye scale. The distinction between long-range interactions described by

the LHS of eq. (2.1.4) and the Coulomb collisions on the RHS is as follows. The latter happen over

very short spatio-temporal scales, and are able to cause large changes in particle velocities. Since the

timescale of the interaction is too small to be reasonably simulated, Coulomb collisions are taken to

occur instantaneously, and this causes fs,ensemble to change discontinuously in velocity space. As a

result, fs,ensemble is no longer conserved along its trajectory, and so
(
∂fs,ensemble

∂t

)
c

can be considered

a source/sink term which redistributes fs,ensemble over velocity space. By contrast, the forces arising

on the LHS are smoothly behaving over a 6D volume element, and fs,ensemble is conserved. It is

often convenient to represent the RHS as C[fs,ensemble] where C is a collision operator. As shall be

seen, one consequence of C[fs,ensemble] is to drive the equilibrium fs,ensemble towards a Maxwellian

distribution.

Eq. (2.1.4) is also, alas, intractable for any reasonably sized plasma. It is therefore necessary

to dispense with generalities and adopt a particular set of physical assumptions to address specific

plasma behaviours.

The gyrokinetic framework seeks to accurately describe gyro-radius scale low-frequency (com-

pared with the gyrofrequency) plasma instabilities and the turbulence these instabilities give rise to.

The low-frequency assumption allows the governing equations to be averaged over the particle gy-

rophase (“gyroaveraging”). Gyroaveraging replaces fs,ensemble with 〈fs,ensemble〉Xs : the distribution

function of “rings” of charged particles of species s, with guiding centre Xs and velocity distribution

specified by (v‖, v⊥). This helpfully eliminates one of the velocity dimensions and thus the result-

ing system of equations is five-dimensional. It also eliminates the fast timescale of gyration, making

numerical analysis more practical.

A concise derivation of a gyrokinetic framework is presented in the next section. A summary is

as follows. I first define a small parameter, ρ∗, then use this to express fs,ensemble as an asymptotic

series and mathematically define the ordering assumptions. I then define a new coordinate system,

well-suited to gyroaveraging, and write eq. (2.1.4) in this coordinate system, using the expansion

of fs,ensemble. This yields a set of equations ordered in ρ∗. The gyrokinetic equation is obtained by

taking the gyroaverage of the piece of the O(ρ2
∗Ωsfs,ensemble) equation which fluctuates on turbulent

spatio-temporal scales.

This derivation is presented using the SI formulation of electromagnetism. It is also relatively

common in gyrokinetics for the Gaussian convention to be used, the only difference being a factor

of c (the speed of light) in B in the Lorentz equation and a factor of c/(4πµ0) in Ampére’s law (eq.
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(1.1.8)). This derivation takes the same basic approach as Abel et al. [42] and Hazeltine and Meiss

[35].

2.2 Concise derivation of the gyrokinetic equation

2.2.1 Gyrokinetic orderings

I begin by formally defining ρ∗, which is taken to be the ratio of the thermal Larmor radius of a

species s to the plasma minor radius a = r:

ρ∗ ≡
ρs
a
� 1, (2.2.1)

where ρs ≡ |vth,s/Ωs| and vth,s =
√

2Ts/ms. The choice of r in defining ρ∗ is somewhat arbitrary;

it is chosen because it usually represents the spatial scale over which the equilibrium varies. It should

be noted that where this does not hold, one should pay careful attention to whether the assumptions

underpinning gyrokinetics are satisfied. In “high confinement mode” (H-mode) [43] plasmas for ex-

ample, the equilibrium changes over a relatively small region of the plasma known as the pedestal.

One may then wish to define ρ∗ ≡ ρs/wped where wped is the pedestal width. However, in experi-

mental conditions ρs/wped is not necessarily much less than 1 and so may violate (2.2.1).

It is also worth noting that ρ∗ is species-specific via ρs. For example, assuming a main ion species

i and an electron species e at the same temperature, ρ∗,i > ρ∗,e (e.g. ρ∗,i/ρ∗,e = 60 for a deuterium

plasma.) Clearly, ρ∗,e � 1 is automatically satisfied by requiring that ρ∗,i � 1. However, very

massive or very fast particles, such as impurity ions or fusion α particles respectively, risk violating

(2.2.1). For the ordering of the fields (which are species-independent) to be consistent, I take ρ∗ to be

the same order for all species e.g. ρ∗,e ∼ O(ρ∗,i).

To distinguish between the pieces of the distribution function which fluctuate on turbulent spatio-

temporal scales and those which do not, the distribution function is written as fs,ensemble = Fs + δfs,

where Fs represents the turbulence-independent, or non-fluctuating, piece of the distribution function

and δfs represents the fluctuating piece (I have dropped the subscript ensemble for convenience). These

satisfy:

〈Fs〉fluc = Fs (2.2.2)

〈δfs〉fluc = 0, (2.2.3)
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Figure 2.1: Illustration of the separation of scales in a plasma. Left: hypothetical density profiles of n0s and δn1s across
the plasma at some given poloidal angle (which is modelled simplistically as sinusoidal). Right, upper: n0s and δn1s in the
domain Lfluc. δn1s varies on the scale of ρs and vanishes when averaged over Lfluc. Lower: gradients ∂

∂r
of n0s and δn1s.

In this example, Lfluc/a = 0.05 and ρ∗ = 0.005. All densities are normalised to n0s at r = 0 and all distances normalised
to a, taken as r at the last closed flux surface.

where 〈g〉fluc is the quantity g averaged over some “turbulence spatio-temporal scale” (Lfluc, tfluc),

which sits between (but is asymptotically separated from) the Larmor and equilibrium scales: ρs �

Lfluc � a, Ωs � tfluc � teq [42]. With Lfluc being much larger than the size of turbulent features

and tfluc much greater than the timescale of the fluctuations, 〈〉fluc can be thought of as an “average

over the turbulence”. An illustration of the distinction between equilibrium and fluctuating quantities

is shown in figure 2.1.

2.2.1.1 Scale assumptions

Given these definitions, the assumptions underpinning this derivation can be expressed mathemati-

cally:

1. That the amplitude of the turbulent fluctuations of fs are small (O(ρ∗)) compared with the

equilibrium amplitude of fs. Thus, fs is expanded as follows:

fs = (F0s + F1s + F2s + δf1s + δf2s + . . .) , (2.2.4)
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with

F1s

F0s
∼ δf1s

F0s
∼ δf2s

δf1s
∼ . . . ∼ O(ρ∗). (2.2.5)

F0s is the largest component of fs and represents the lowest order equilibrium distribution

function. Higher-order non-fluctuating components (F1s, F2s, . . .) represent spatially large-

scale corrections to equilibrium, and are known as neoclassical corrections. δf1s represents the

leading order turbulent fluctuations, which is to be solved for in subsequent chapters.

The electromagnetic fields are also asymptotically expanded:

E = E0 + E1 + E2 + . . . (2.2.6)

B = B0 + B1 + B2 + . . . (2.2.7)

E1

E0
∼ E2

E1
∼ B1

B0
∼ ... ∼ O(ρ∗). (2.2.8)

The size of the electric and magnetic fields are related to one another by

Eα ∼ vth,sBα. (2.2.9)

In other words, the force from the electric field Eα is equal to the typical force arising from the

magnetic field Bα for each component α.

2. That E0 = 0. This is known as drift-ordering [35], or the low-flow limit, since this assumption

implies the maximum E× B velocity has a magnitude:

vE ∼
E1 × B0

B2
0

∼ E1

B0
∼ ρ∗vth,s. (2.2.10)

If one allows E0 6= 0 (the high-flow limit, or MHD ordering), then vE ∼ vth,s (i.e. sonic flows)

are permitted. This may be the case in tokamak plasmas, but rather complicates the picture,

since equilibrium flows and flow shear affect the turbulence (the reader is directed to Abel et al.

[42] for more details). This thesis exclusively uses the low-flow formulation of gyrokinetics.

3. That the timescale of turbulent fluctuations is much greater (O(1/ρ∗)) than the gyro period,

but much less (at least O(ρ∗)) than the timescale over which the equilibrium evolves. In this

work the non-fluctuating timescale is taken to be O(ρ3
∗) smaller than the gyro-period (known
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as transport ordering [35, 42]), that is

∂

∂t

∣∣∣∣
non-fluc

∼ ρ3
∗Ωs;

∂

∂t

∣∣∣∣
fluc
∼ ω ∼ ρ∗Ωs, (2.2.11)

where ∂
∂t

∣∣
fluc (non-fluc) represents the derivative of either a turbulent-fluctuating quantity (such as

δfs) or a non-fluctuating quantity (such as Fs).

4. That the spatial scale for the turbulent features which are perpendicular to B0 is similar to the

gyro-radius, but the scale parallel to B0 is similar to the equilibrium length scale. Thus:

∇‖
∣∣
non-fluc ∼ ∇⊥|non-fluc ∼ ∇‖

∣∣
fluc ∼

1

a
; ∇⊥|non-fluc ∼

1

ρs
, (2.2.12)

where I define the parallel (‖) and perpendicular (⊥) directions with respect to B0. An illustra-

tion of perpendicular spatial derivatives is shown in figure 2.1.

2.2.1.2 Electrostatic and magnetic potentials

The fields can be written in terms of the electrostatic and magnetic vector potentials (ϕ, A):

B = ∇× A; E = −∇ϕ− ∂A
∂t
. (2.2.13)

The Coulomb gauge is chosen, so that ∇ · A = 0. I also asymptotically expand A and ϕ; A =

A0 + A1 + ... and ϕ = ϕ0 + ϕ1 + ... where

eϕ1

Ts
∼
evth,sA1

Ts
∼ ρ∗. (2.2.14)

Note that the magnitude of a field arising from a given potential depends on the length or time scale

over which the potential varies. For example, splitting ϕ1 into a fluctuating piece δϕ1 and a non-

fluctuating piece Φ1, it is clear that

∇Φ1 ∼
ϕ1

a
∼∇‖δϕ1 ∼ ρ∗∇⊥δϕ1. (2.2.15)

Thus, Φ1 contributes to E2, whereas δϕ1 contributes to E2 in the parallel direction and E1 in the

perpendicular direction.
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Figure 2.2: Illustration of guiding centres. Left: gyro-orbits of an ion (blue) and an electron (orange), with identical guiding
centre Xs = Xi = Xe. Crosses indicate the spatial position of each at gyrophase αs = αi = αe. Right: gyro-orbits of
an ion and an electron with identical spatial position x and identical gyrophase, but different guiding centres. For clarity I
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√
10, which is equivalent to increasing the electron mass to mi/10.

2.2.2 Choice of coordinates

Anticipating the gyroaveraging, I select a particular set of coordinates well-suited to gyroaverag-

ing. These are: the guiding centre Xs ≡ x − ρs (where ρs = Ω−1
s b × v and b ≡ B0/B0 is

the unit vector parallel to B0); the parallel velocity v‖ = v · b; the magnetic moment with re-

spect to the equilibrium magnetic field µs =
mv2
⊥

2B0
; the gyrophase angle αs (defined implicitly by

v⊥ = v⊥(cos(αs)ê2 − sin(αs)ê1) where ê1 and ê2 are unit vectors perpendicular to b such that

(b, ê1, ê2) form an orthonormal set of basis vectors). The distinction between x and Xs is illustrated

in figure 2.2.

With this choice of coordinates, eq. (2.1.4) becomes

dfs
dt

=
∂fs
∂t

+
dX
dt
· ∂fs
∂X

+
dv‖

dt
· ∂fs
∂v‖

+
dµs
dt
· ∂fs
∂µs

+
dαs
dt
· ∂fs
∂αs

= C[fs] (2.2.16)

(where the subscript ensemble) is dropped for convenience).

2.2.3 Calculation of terms

I now insert (2.2.4) into (2.2.16), and order the terms by ρ∗. The first three orders of the equation

(the O(ρ0
∗ΩsF0s), O(ρ1

∗ΩsF0s) and O(ρ2
∗ΩsF0s) equation) will then be studied. The first step is to

calculate d
dt of Xs, v‖, µs and αs.
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2.2.3.1 Calculation of d
dt(Xs, v‖, µs, αs)

dXs
dt can be written as

dXs

dt
=

dx
dt
· ∂Xs

∂x

∣∣∣∣
t,v

+
dv
dt
· ∂Xs

∂v

∣∣∣∣
t,x
, (2.2.17)

= v · ∂Xs

∂x
+
Zse

m
(E + v× B) · ∂Xs

∂v
. (2.2.18)

Writing v = v‖ + v⊥ and using the asymptotic expansions for the fields gives

dXs

dt
= v‖︸︷︷︸
O(vth)

+ vE + Ω−1
s

[
v× (v ·∇b)− 1

B0
v× b ((v ·∇B0)

]
− 1

B0
b× (v× B1)︸ ︷︷ ︸

O(ρ∗vth)

+O(ρ2
∗vth),

(2.2.19)

where

vE =
E1 × B0

B2
0

. (2.2.20)

dXs
dt can be interpreted as the velocity of the guiding centres at fixed (v‖, µs, αs). The physical sig-

nificance of the terms in (2.2.19) are as follows. The first term (v‖) is “parallel streaming” of guiding

centres along the equilibrium magnetic field, and is unaffected by gyroaveraging. The second term

(vE) is the E × B drift arising from electric field E1, and is predominantly electrostatic (i.e. arising

from Φ0 and ϕ1), with a higher-order electromagnetic correction from ∂A1
∂t . The terms appearing in

the square brackets, upon gyroaveraging, will turn into the curvature and ∇B drifts described in sec-

tion 1.2.4. The final explicit term relates to Larmor motion arising from the perturbed magnetic field.

Upon gyroaveraging, this will create fluctuating magnetic drifts arising from the fluctuating magnetic

field B1.

It is also worth emphasising that streaming is the dominant term (the only term entering at

O(vth)); guiding centres stream quickly along the equilibrium field lines and drift slowly across

them.

Likewise,
dv‖
dt can be written as

dv‖

dt
= v · (v ·∇b) +

Zse

ms
E1 · b +

Zse

msc
(v× B1) · b, (2.2.21)

where the first and third terms areO(ρ∗Ωsvth), but the parallel electric field term isO(ρ2
∗Ωsvth). dµs

dt
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can be written as

dµs
dt

= − µs
B0

v ·∇B0 −
msv‖

B0
v⊥ · (v ·∇b) +

Zse

B0

(
E1 · v⊥ +

1

c
(v‖ × B1) · v⊥

)
. (2.2.22)

Since the motion perpendicular to the field is gyromotion to leading order, dαs
dt can be written as

dαs
dt

= Ωs +O(ρ∗Ωs) + . . . (2.2.23)

As shall be seen, it is not necessary to calculate the terms in dαs
dt beyond leading order.

2.2.3.2 Gyroaveraging

In order to eliminate the gyrophase αs, I will take the gyroaverage of the expanded kinetic equation,

where the gyroaveraging operator is defined as

〈g〉Xs ≡
(

1

2π

∫ 2π

0
gdαs

)∣∣∣∣
Xs,v‖,µs,t

, (2.2.24)

where g is an arbitrary quantity. Naturally the coordinates (Xs, v‖, µs) will be invariant with respect

to gyroaveraging (e.g.
〈
v‖
〉

Xs
= v‖), as will quantities which do not fluctuate over the spatial scale ρs

(e.g. 〈F0s〉Xs = F0s). However, quantities which do fluctuate over ρs will have some (undetermined)

gyrophase dependency, e.g. 〈δf1s〉Xs 6= δf1s. The expressions for d
dt , together with the definition of

the gyroaverage (2.2.24), are now used to examine different orders of the ensemble-averaged kinetic

equation.

2.2.4 The expanded ensemble-averaged kinetic equation: zeroth order (O(ρ0
∗ΩsF0s))

Only the dαs
dt

∂F0s
∂αs

term contributes to this order, which gives

Ωs
∂F0s

∂αs
= 0. (2.2.25)

Thus F0s is gyrophase-independent.
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2.2.5 The expanded ensemble-averaged kinetic equation: The first order (O(ρ∗ΩsF0s))

Considering the O(ρ1
∗ΩsF0s) component, one finds

v‖ ·
∂F0s

∂X

+

(
v · (v ·∇b) +

Zse

msc
(v× B1) · b

)
∂F0s

∂v‖

+

[
− µs
B0

v ·∇B0 −
msv‖

2B0
v⊥ · (v ·∇b) +

Zse

B0

(
E1 · v⊥ +

1

c
(v‖ × B1) · v⊥

)]
∂F0s

∂µs

+ Ωs
∂

∂αs
(F1s + δf1s) = C[F0s]. (2.2.26)

Gyroaveraging gives

v‖ ·
∂F0s

∂X
− µs
ms

b ·∇B0
∂F0s

∂v‖
= C[F0s] (2.2.27)

It is useful here to make a change of variables (Xs, v‖, µs, αs)→ (Xs, εs, µs, αs) where εs ≡ msv
2/2

is the particle kinetic energy. The derivative ∂F0s
∂X can be written as:

∂F0s

∂Xs

∣∣∣∣
v‖,µs,αs

=
∂Xs

∂Xs

∣∣∣∣
v‖,µs,αs

· ∂F0s

∂Xs

∣∣∣∣
εs,µs,αs

+
∂εs
∂Xs

∣∣∣∣
v‖,µs,αs

· ∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

+

=0︷ ︸︸ ︷
��

���
��∂µs

∂Xs

∣∣∣∣
v‖,µs,αs

· ∂F0s

∂µs

∣∣∣∣
Xs,εs,αs

+

=0︷ ︸︸ ︷
��

���
��∂αs

∂Xs

∣∣∣∣
v‖,µs,αs

· ∂F0s

∂αs

∣∣∣∣
Xs,εs,µs

(2.2.28)

=
∂F0s

∂Xs

∣∣∣∣
εs,µs,αs

+
∂

∂Xs

∣∣∣∣
v‖,µs,αs

(
1

2
msv

2
‖ + µsB0

)
∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

(2.2.29)

=
∂F0s

∂Xs

∣∣∣∣
εs,µs,αs

+ µs
∂B0

∂Xs

∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

(2.2.30)
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Likewise, ∂F0s
∂v‖

can be written:

∂F0s

∂v‖

∣∣∣∣
Xs,µs,αs

=

=0︷ ︸︸ ︷
��

���
��∂Xs

∂v‖

∣∣∣∣
Xs,µs,αs

· ∂F0s

∂Xs

∣∣∣∣
εs,µs,αs

+
∂εs
∂v‖

∣∣∣∣
Xs,µs,αs

∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

+

=0︷ ︸︸ ︷
�
���

���∂µs
∂v‖

∣∣∣∣
Xs,µs,αs

∂F0s

∂µs

∣∣∣∣
Xs,εs,αs

+

=0︷ ︸︸ ︷
���

����∂αs
∂v‖

∣∣∣∣
Xs,µs,αs

∂F0s

∂αs

∣∣∣∣
Xs,εs,µs

(2.2.31)

= msv‖
∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

(2.2.32)

Inserting (2.2.30) and (2.2.32) into (2.2.27) gives

LHS = v‖ ·
∂F0s

∂X
− µs
ms

b ·∇B0
∂F0s

∂v‖
(2.2.33)

= v‖ ·

(
∂F0s

∂Xs

∣∣∣∣
εs,µs,αs

+ µs
∂B0

∂Xs

∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

)
− µs
ms

b ·∇B0

(
msv‖

∂F0s

∂εs

∣∣∣∣
Xs,µs,αs

)
(2.2.34)

= v‖ ·
∂F0s

∂X

∣∣∣∣
εs,µs,αs

= C[F0s] (2.2.35)

Multiplying by (1 + lnF0s) and integrating over x and v, one can show that

∫
d3xd3v lnF0sC[F0s] = 0. (2.2.36)

By Boltzmann’s H-theorem, this implies F0s is a Maxwellian [42]. As a consequence, C[F0s] = 0

and so

v‖ ·
∂F0s

∂X

∣∣∣∣
ε

= 0. (2.2.37)

In other words, F0s is constant along field lines. If the field lines form nested tori, as in tokamaks,

this demonstrates that F0s is a flux surface quantity in (εs, µs) coordinates.
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Thus, an explicit expression for F0s is

F0s = ns

[
ms

2πTs

]3/2

exp

(
−εs
Ts

)
= ns

[
ms

2πTs

]3/2

exp

(
−msv

2

2Ts

)
(2.2.38)

= ns

[
ms

2πTs

]3/2

exp

(
−msv

2
‖

2Ts
− µsB0

Ts

)
. (2.2.39)

2.2.5.1 The Boltzmann Response

Eq. (2.2.39) is now substituted into (2.2.26), enabling the properties of F1s and δf1s to be examined.

After making a series of cancellations, this yields

Zse

Ts
v⊥ · (∇ϕ1)F0s = −Ωs

∂

∂αs
(F1s + δf1s) +O(ρ2

∗Ωsfs). (2.2.40)

Using the identity Ωs
∂g
∂αs

∣∣∣
X

= v⊥ ·∇g + Ωs
∂g
∂αs

∣∣∣
x
, this becomes

Zse

Ts
F0sΩs

∂ϕ1

∂αs
= −Ωs

∂

∂αs
(F1s + δf1s) +O(ρ2

∗Ωsfs). (2.2.41)

Eq. (2.2.41) contains both fluctuating and non-fluctuating terms. Since they vary over different scales,

one can consider the mean (non-fluctuating) part of the equation and the fluctuating part separately;

both must be independently satisfied. The non-fluctuating part is simply:

∂F1s

∂αs
= 0, (2.2.42)

demonstrating that F1s is independent of gyrophase. The fluctuating components are

−Zse
Ts

F0s
∂ϕ1

∂αs
=
∂(δf1s)

∂αs
, (2.2.43)

which can be integrated with respect to αs to yield

δf1s =
−Zseϕ1

Ts
F0s + hs, (2.2.44)

where hs is a constant of integration and hence gyrophase-independent. The first term on the RHS of

(2.2.44) describes the gyrophase-dependent part of δf1s and is called the Boltzmann response. The

equation determining hs is the gyrokinetic equation, which is obtained from the next order of (2.2.16).
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2.2.6 The expanded ensemble-averaged kinetic equation: The second order (O(ρ2
∗ΩsF0s))

The O(ρ2
∗ΩsF0s) components of eq. (2.2.16) contain terms arising from F0s, F1s, δf1s (about which

some of the information is known), but unfortunately also contains the terms (Ωs
∂F2s
∂αs

, Ωs
∂δf2s

∂αs
).

These relate to F2s and δf2s, which at this point are entirely unknown quantities. Fortunately, these

contributions are eliminated by taking the gyroaverage. Moreover, by only considering the fluctuating

components, several terms relating to F0s and F1s are eliminated (equilibrium magnetic drifts acting

on F0s, for example).

The gyroaveraged fluctuating O(ρ2
∗ΩsF0s) piece of (2.2.16) can be written as

〈(
dX
dt
· ∂Fs
∂X

+
dv‖

dt

∂Fs
∂v‖

+
dµs
dt

∂Fs
∂µs

+
dαs
dt

∂Fs
∂αs

)
fl,O(ε2Ωsfs)

〉
Xs

+

〈
∂hs
∂t

+

(
dX
dt
· ∂hs
∂X

+
dv‖

dt

∂hs
∂v‖

+
dµs
dt

∂hs
∂µs

+
dαs
dt

∂hs
∂αs

)
O(ε2Ωsfs)

〉
Xs

−

〈(
Zse

Ts

d

dt
(ϕ1F0s)

)
O(ε2Ωsfs)

〉
Xs

= 0, (2.2.45)

where for convenience I have ignored collisions. Inserting the expressions for d
dt(Xs, v‖, µs) and

performing some manipulations, one arrives at the (collisionless) gyrokinetic equation:

∂hs
∂t

+ (v‖ + vMs + 〈vχ〉Xs) ·∇Xshs −
µs
ms

b ·∇B0
∂hs
∂v‖

+ 〈vχ〉Xs ·∇
∣∣∣
ε
F0s −

Zse

Ts
F0s

∂ 〈χ〉Xs
∂t

= 0,

(2.2.46)

where

〈χ〉Xs = 〈ϕ1〉Xs − v‖
〈
A1‖
〉

Xs
− 〈v⊥ · A1⊥〉Xs , (2.2.47)

〈vχ〉Xs = − 1

B0
∇Xs 〈χ〉Xs × b. (2.2.48)

〈χ〉Xs is known as the gyrokinetic potential and is comprised of fluctuating electric and magnetic

potentials. 〈vχ〉Xs can be considered a generalised E × B drift, arising from a combination of an

electrostatic drift given by ϕ1 and the motion of guiding centres along perturbed field lines.
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2.3 Maxwell’s equations in the gyrokinetic framework

The fluctuating electromagnetic fields are determined by quasi-neutrality and Ampére’s law. Apply-

ing quasi-neutrality to fluctuating O(ρ∗ns) quantities gives

∑
s

Zseδns = 0, (2.3.1)

which can be written in terms of hs as

∑
s

Zse

∫
d3vδf1s =

∑
s

Zse

∫
d3v

(
hs −

Zse

Ts
F0sϕ1

)
= 0. (2.3.2)

Ampére’s law in the non-relativistic limit, applied to fluctuating O(B1) quantities can be written as

∇× δB = µ0δj1. (2.3.3)

δB can be written as δB = ∇⊥A1‖ × b + B1‖b [44]; to obtain an expression for B1‖, eq. (2.3.3) is

crossed with b and then dotted with ∇ to obtain

∇ · (b× (∇× δB)) = µ0

∑
s

Zse

∫
d3v∇ · (δf1s(b× v⊥)) (2.3.4)

= ∇2B1‖ = ∇2
⊥B1‖ = µ0

∑
s

Zse

∫
d3v∇ · (hs(b× v⊥)), (2.3.5)

where the Boltzmann response has been eliminated since it will vanish when integrated over v⊥. To

find an expression for A1‖, eq. (2.3.3) is dotted with b to obtain

−∇2
⊥A1‖ = µ0

∑
s

Zse

∫
d3vv‖δf1s (2.3.6)

= µ0

∑
s

Zse

∫
d3vv‖hs, (2.3.7)

where the Boltzmann response has been eliminated since it is symmetric in v‖, and so will vanish

when multiplied by v‖ and integrated over v‖.

It should also be emphasised that these field equations are evaluated at a fixed position x rather

than Xs, since the fields E and B are functions of x.
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2.4 Some properties of the gyrokinetic-Maxwell equations

Having derived the physical equations, it is useful to enumerate some of their properties:

1. The system of equations is five-dimensional (Xs, v‖ and µs). The model equations consist of

the three field equations (2.3.2), (2.3.5), (2.3.7), and the gyrokinetic equation (2.2.46) for each

species.

2. The system of equations is multiscale in space. This is because the parallel spatial scale is

always the system scale a (fast streaming forbids fluctuating quantities from varying quickly),

but there are a mixture of perpendicular length scales: turbulent quantities vary on the scale

ρs and non-fluctuating quantities vary on scale a. This disparity often results in gyrokinetic

codes treating parallel and perpendicular spatial dimensions differently. Local gyrokinetics, for

example, exploits this scale separation by only simulating a small perpendicular spatial extent

(∼ O(Lfluc)) but large parallel spatial extents (∼ O(a)). This is discussed in greater detail in

chapter 3.

3. Although all terms in the GKE are the same size in ρ∗, the system of equations may be multi-

scale in the magnitude of terms, due to the difference in mass between ion and electron species.

The reason for this is that some, but not all, of the terms in (2.2.46) have a dependence on

species mass. For example, consider a turbulent feature with a perpendicular spatial scale ap-

proximately that of the ion Larmor radius ρi. Since the ions and electrons are coupled by the

fields, both hi and he will have this spatial scale, such that ∇⊥hi ∼ hi/ρi, ∇⊥he ∼ he/ρi.

Examining the streaming and drift terms for ions and electrons reveals:

ion parallel streaming: v‖ ·∇Xshi ∼
vth,i
a
hi, (2.4.1)

ion magnetostatic drifts: vMs ·∇Xshi ∼
ρi
a
vth,i

hi
ρi
∼
vth,i
a
hi, (2.4.2)

electron parallel streaming: v‖ ·∇Xshe ∼
vth,e
a
he, (2.4.3)

electron magnetostatic drifts: vMs ·∇Xshe ∼
ρe
a
vth,e

he
ρi
∼ ρe
ρi

vth,e
a
he. (2.4.4)

In the ion GKE the streaming and magnetostatic drift terms are of the same magnitude. How-

ever, in the electron GKE the drift term is naturally smaller than the streaming term by a factor

of ρeρi ∼
√
me/mi ∼ 1/60 for deuterium ions.

This multiscale-ness can be either favourable or unfavourable. On one hand, it may introduce
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numerical difficulties by mixing terms of differing magnitudes. On the other hand, it can allow

simplifications; taking the limit
√
me/mi� 1, most terms in the electron GKE become small

for ion-scale features, so that he can be calculated without solving the electron GKE (the “adi-

abatic” or “Boltzmann” treatment of electrons [45]). A similar simplification can be applied

to the ion GKE if one considers electron-scale features, such that the temporal scale is that of

the electron transit timescale; ∂
∂t ∼ vth,e/a. In the limit

√
me/mi � 1, the ∂hi

∂t term is much

greater than all the other terms, and so to leading order ∂hi∂t = 0.

4. The system of equations is integro-differential, with integrals over (v‖, µs, s) required to eval-

uate the fields.

5. The system of equations is nonlinear in hs, due to the 〈vχ〉Xs ·∇Xshs term in the GKE (since

〈vχ〉Xs is a function of hs). The physical interpretation of the nonlinearity is as follows. In the

absence of this term, the GKE-Maxwell system of equations is linear i.e.

∂hs
∂t

= L(hs), (2.4.5)

where L is a linear (integro-differential) operator. Being linear, the general solution takes the

form

hs = hs(t = 0) exp(−iΩt), (2.4.6)

where Ω = ω + iγ is the complex mode frequency, ω the real frequency and γ the growth

rate. Solving (2.4.5)(“linear gyrokinetics”) thus yields information about microinstabilities in

the plasma, which will grow or decay exponentially so long as the nonlinear term is negligible.

This provides valuable insights into the physics underlying the instabilities. When the nonlinear

term is included and becomes non-negligible, nonlinear interactions cause the linear features

to couple, and deviate from the exponential behaviour. This may cause the turbulence to sat-

urate, i.e. reach some statistically steady-state amplitude. Saturated turbulence is observed

experimentally, so it is reassuring that a physical mechanism exists for this within gyrokinetics

(although it should be noted that flow shear can also play a role in turbulence saturation). It

is also worth emphasising that gyrokinetics can be used to consider plasmas which are not ex-

perimentally attainable. Thus, the observation of saturation in experimental plasmas does not

guarantee that hypothetical gyrokinetic plasmas should reach turbulence saturation.
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6. Since I include electrostatic and magnetic fluctuations, equations (2.2.46), (2.3.2), (2.3.5),

(2.3.7) may be described as the electromagnetic gyrokinetic-Maxwell set of equations. If one

forbids fluctuations in the magnetic field i.e. δB1 = 0, one recovers the gyrokinetic-Poisson

equations:

∂hs
∂t

+ (v‖ + vMs + vE) ·∇Xshs −
µs
ms

b ·∇XsB0
∂hs
∂v‖

+ vE ·
∂F0s

∂X
− Zse

Ts
F0s

∂ 〈ϕ1〉Xs
∂t

= 0

(2.4.7)∑
s

Zse

∫
d3vδf1s =

∑
s

Zse

∫
d3v

(
hs −

Zse

Ts
F0sϕ1

)
= 0.

(2.4.8)

(NB eq. (2.4.8) is identical to (2.3.2) and (2.4.7) has simply applied χ→ ϕ1 to (2.2.46)).

The parameter determining the importance of magnetic fluctuations is the plasma β. This can

be shown by applying the gyrokinetic orderings to (2.3.3). The LHS is ordered like

∇× δB ∼ δB

ρx
, (2.4.9)

where ρx is the gyro-radius of a “typical” species. The RHS is ordered like

µ0δj = µ0

∑
s

∫
v3vhs (2.4.10)

∼ µ0

∑
s

vth,sρ∗ns (2.4.11)

∼ µ0vth,xρ∗nx. (2.4.12)

Combining the LHS and RHS and rearranging, one finds

δB1 ∼
nxTx
B2

0/µ0
ρ∗B0, (2.4.13)

∼ βxρ∗B0, (2.4.14)

where βx = nxTx/(B
2
0/µ0); the plasma β for the “typical” species x. Eq. (2.4.14) shows that,

as expected, δB1 is ordered like ρ∗. However, it will also tend to scale with β; at high β, the

equilibrium magnetic field (for some fixed plasma pressure) is weaker, so turbulent fluctuations

can more readily perturb the magnetic field.
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2.5 Solving the gyrokinetic-Maxwell equations

The computational cost of finding solutions to the gyrokinetic-Maxwell set of equations is highly vari-

able, depending on the exact “flavour” of gyrokinetic theory used and code implementation choices.

The full-f global code GT5D, for example, has reported results of nonlinear simulations, taking

∼ 105CPU-hours and memory consumption ∼ 750GB[46]. Such simulations are valuable as they

capture the greatest amount of physics, but are too expensive for routine simulations; one may wish,

for example, to simulate many equilibria, under different conditions, to find ways of optimising trans-

port. Relatively inexpensive codes have been developed to this end by making further physical ap-

proximations.

A simplification, already discussed, is to use a δf formulation rather than full-f ; this is usually

reasonable in the core and edge, though not in the scrape-off layer, where fluctuations can have

approximately the same magnitude as the equilibrium [47]. Another approximation, which greatly

reduces computational time, is the local approximation, which takes advantage of the short length

scale perpendicular to the equilibrium magnetic field.

This thesis makes heavy use of two local δf gyrokinetic codes; stella and GS2. In the fol-

lowing chapter I describe how the simulation equations for these codes are derived from the physical

equations (2.2.46) (2.3.2), (2.3.5), (2.3.7), and how they are solved computationally.

2.6 Concluding remarks

This chapter describes and derives the gyrokinetic system using an asymptotic expansion in ρ∗ =

ρs/a. This reduces the entirely general kinetic-Maxwell equations to a five-dimensional set of equa-

tions, and eliminates timescales which are either much faster (e.g. gyro-motion) or much slower

(e.g. equilibrium variation) than that of the turbulent fluctuations. This represents an enormous im-

provement in tractability. However, the gyrokinetic system is five-dimensional, multiscale, integro-

differential and nonlinear and therefore still far from trivial to solve, often requiring computational

calculation. This is done using gyrokinetic codes which are the subject of the next chapter.



Chapter 3

Local gyrokinetics: stella and GS2

3.1 Introduction

Chapter 2 derived the gyrokinetic-Maxwell equations eqs. (2.2.46), (2.3.2), (2.3.5) and (2.3.7), de-

scribing microinstabilities and turbulence in magnetically confined fusion plasmas. This chapter de-

scribes how these equations are translated into gyrokinetic software.

3.1.1 stella and GS2

This thesis presents results from two gyrokinetic codes, stella [45, 48] and GS2 [49]. These are

similar in that both spectrally solve the δf gyrokinetic system in the local limit using time-marching

schemes. The physical model (and thus, the regime of validity) is the same between the two codes.

Both are capable of simulating either tokamaks and stellarators: GS2 was extended to simulate non-

axisymmetric plasmas by Baumgaertel et al. [50] and stella was built with non-axisymmetric

plasmas in mind and has been benchmarked against several other gyrokinetic codes in stellarator

geometry [51, 52].

A significant difference between stella and GS2 is their choice coordinates used to describe

velocity space. GS2 uses (εs, µs), which makes the mirror force implicit in the GKE. This enables the

linear terms to be advanced reasonably straightforwardly using an implicit numerical scheme (see sec-

tion 3.10). By contrast stella uses (v‖, µs) coordinates which introduces a ∂
∂v‖

operator. Solving

the linear system implicitly would become rather complicated, but is made possible using a flexible

operator splitting scheme. This has the additional benefit of giving stella greater freedom in the

choice of numerical scheme (numerical schemes can be “mixed and matched” to suit the problem at

hand, and different schemes can be easily compared).

52
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Another important difference is that the main branch of stella, as of today, is electrostatic.

For this reason, the code GS2 is used in chapter 5 to study electromagnetic instabilities in spherical

tokamaks. Incorporating electromagnetic effects in stella is presented in chapter 6 in order to

study electromagnetic instabilities in stellarators. An advantage of stella over GS2 in the context

of stellarator simulations is that stella is under active development with the needs of stellarator

simulations firmly in mind.

For definiteness, in this chapter I describe the electrostatic implementation of stella in flux tube

geometry. However, I will also make reference to (electromagnetic) GS2 where there is a significant

divergence between the codes.

Advancing from eqs. (2.2.46), (2.3.2), (2.3.5) and (2.3.7) to (electrostatic) stella consists of

the following steps:

1. Taking the electrostatic limit; A1‖ = B1‖ = 0 (which corresponds to the limit β → 0).

2. Applying the local approximation, which allows the simulation domain to be a “flux tube”

rather than a full plasma, and for a 2D Fourier transform to be applied perpendicular to the

equilibrium field.

3. Changing variable from hs to gs ≡ hs − Zse
Ts
F0s 〈ϕ1〉Xs .

4. Normalisation, such that simulation variables are order unity.

5. Operator splitting, which allows different terms in the gyrokinetic equation to be separated and

solved by different numerical schemes.

6. Discretisation in (kx, ky, z, v‖, µs, t).

The electrostatic limit simply replaces gyrokinetic-Maxwell equations with the gyrokinetic-Poisson,

or gyrokinetic-quasi-neutral system of equations (equations (2.4.7) and (2.4.8)). The other steps are

discussed in greater detail in the following sections.

3.2 The local approximation

The local approximation in gyrokinetics takes advantage of the separation of spatial scales by as-

suming that, since Lfluc � a, the value of equilibrium quantities (e.g. F0s,B0) are fixed over the

perpendicular simulation domain Lfluc. Thus, properties of the equilibrium field, such as ∇B0, are
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only a function of the parallel coordinate z. Note that although equilibrium quantities are assumed

fixed over Lfluc, it is consistent to treat their gradients as finite (illustrated pictorially in figure 2.1).

Another benefit of the local approximation is that, if the perpendicular spatial domain is taken

to be large enough that the turbulence is statistically decorrelated across the domain, a 2D Fourier

transform can be applied in the perpendicular directions; the simulation equations become spectral

in perpendicular dimensions x and y. The local field-aligned coordinate system and the spectral

treatment are described in the following sections.

3.2.1 Local coordinates (x, y, z)

The local field-aligned coordinates are described well by Highcock [53]; a brief summary is pro-

vided here. Firstly, a coordinate system is defined using the basis vectors (ψ̂ ≡ ∇ψ/|∇ψ|, α̂ ≡

∇α/|∇α|,b ≡ B0/B0), where ψ is the poloidal flux function and α is a scalar quantity satisfying

B0 = ∇α×∇ψ (3.2.1)

(NB this is known as the Clebsch representation and by definition ensures ∇ · B0 = 0). α can be

written as [54]:

α = φ+ q(ψ)θ + ν(φ, θ, ψ), (3.2.2)

where φ is the toroidal angle, θ is the poloidal angle and ν is a function which is periodic in φ and

θ. On a given surface, α is constant along a field line so can be considered a “field line label” (just

as ψ can be considered a “flux surface label”). It is worth noting that ψ̂ and α̂ are, by definition,

perpendicular to b, but not to one another in the presence of finite magnetic shear as α̂ contains a term

like θ∇q ∝ ψ̂.

Local coordinates (i.e. local to a particular field line labelled by ψ0 and α0) x and y can be defined

as

x =
∂x

∂ψ
(ψ − ψ0) (3.2.3)

y =
∂y

∂α
(α− α0), (3.2.4)

and parallel coordinate z (discussed in section 3.2.2). The local basis is (x̂ ≡ ∇x/|∇x|, ŷ ≡

∇y/|∇y|,b). NB since y is defined by α, it is a function of x and z (y = y(x, z)), and ŷ is not,
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in general, perpendicular to x̂.

3.2.2 The parallel coordinate z

In tokamak simulations, it is common to use a poloidal angle-like variable as the parallel coordinate

z (for this reason, GS2 refers to the parallel coordinate as θ or theta). There are several choices of

definition for z. One example is what I will refer to as “geometric z”, equal to arctan
(
Z−Z0
R−R0

)
, where

(R,Z) are cylindrical coordinates and (R0, Z0) is the geometric centre of the flux surface, with the

sign and phase appropriately chosen to span from 0 to 2π. Another choice is θMiller, which is used

in the local analytic model for flux surfaces derived by Miller et al. [55] (this is discussed in section

5.5.1.1). In all of these definitions, z = 0 corresponds to the outboard midplane by convention.

In stellarator simulations in stella the parallel domain is defined by the number of field periods

the user chooses to include. Hence, the parallel coordinate is related to the toroidal angle ζ, but is

normalised to the range −π ≤ z ≤ π. NB if the number of field periods simulated is equal to the

number of field periods in the device (e.g. 5 in W7-X) multiplied by q, then z can again be interpreted

as the poloidal angle.

3.2.3 Spectral representation of the gyrokinetic system

I now perform a Fourier transform of the gyrokinetic-Maxwell equations in x and y. A complex

2D Fourier transform represents an arbitrary quantity f(x, y) in the range (−Lx/2 ≤ x ≤ Lx/2,

−Ly/2 ≤ y ≤ Ly/2) as [56]:

f(x, y) =

∞∑
r=−∞

∞∑
s=−∞

f̂r,s exp i

(
2πrx

Lx
+

2πsy

Ly

)
, (3.2.5)

where kx ≡ 2rπ
Lx

and ky ≡ 2sπ
Ly

are the Fourier wavenumbers of the system. In local gyrokinetics,

fluctuating quantities are represented on a discrete, finite grid of (kx, ky); an arbitrary quantity f can

be written as [45]:

f(x, y, z, v‖, µs, t) =

kx,max∑
−kx,max

ky,max∑
−ky,max

f̂kx,ky(z, v‖, µs, t) exp i(kxx+ kyy), (3.2.6)

where kx and ky have a user-defined spacing ∆kx and ∆ky respectively. kx(y),max defines the spatial

resolution in x(y), and ∆kx(y) determines the largest spatial scale simulated (i.e. the perpendicular

size of the flux tube, or “box size”). The distribution function and fields are required to be purely real,
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which is satisfied by imposing f̂kx,ky = f̂∗−kx,−ky , where ∗ denotes the complex conjugate. For this

reason, stella and GS2 do not simulate negative ky values since they can be calculated trivially

from the positive ky modes.

Thus, an arbitrary gyrophase-independent quantity g(Xs) (such as hs) can be written as:

g(Xs, v‖, µs, t) = g(x, αs, v‖, µs, t) (3.2.7)

=
∑
kx,ky

ĝ′kx,ky(αs, z, v‖, µs, t) exp i(xkx + yky) (3.2.8)

=
∑
kx,ky

ĝkx,ky(z, v‖, µs, t) exp i((Xs · x̂)kx + (Xs · ŷ)ky), (3.2.9)

where the prime (′) is used to denote that the Fourier coefficients in (3.2.8) and (3.2.9) are differ-

ent; (3.2.8) is a straightforward application of (3.2.6), and (3.2.9) takes advantage of the gyrophase-

independence of g (such that ĝkx,ky is not a function of α). The formulation (3.2.9) is used exclusively

which ensures that ĝkx,ky are unaffected by gyroaveraging at fixed Xs for gyrophase-independent

quantities:

〈
g(Xs, v‖, µs, t)

〉
Xs

= g(Xs, v‖, µs, t) =
∑
kx,ky

ĝkx,ky(z, v‖, µs, t) exp i(Xs · (kxx̂ + kyŷ)). (3.2.10)

The fields ϕ,A1‖, B1‖, which are a function of x but not v, can be written as

f(x, t) =
∑
kx,ky

fkx,ky(z, t) exp i(kxx+ kyy), (3.2.11)

where f =
{
ϕ,A1‖, B1‖

}
. Calculating the gyroaverage of f at fixed Xs (as required by the GKE) is
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done using the identity x = Xs + ρs:

f(x, v, t) = f(x, v‖, µs, t) =
∑
kx,ky

f̂kx,ky(z, v‖, µs, t) exp i(x · (kxx̂ + kyŷ)) (3.2.12)

〈f(x, v, t)〉Xs =

〈∑
kx,ky

f̂kx,ky(z, v‖, µs, t) exp i(Xs · (kxx̂ + kyŷ)) exp i(ρs · (kxx̂ + kyŷ))

〉
Xs

(3.2.13)

=
∑
kx,ky

f̂kx,ky(z, v‖, µs, t) exp i(Xs · (kxx̂ + kyŷ)) 〈exp i(ρs · (kxx̂ + kyŷ))〉Xs

(3.2.14)

=
∑
kx,ky

f̂kx,ky(z, v‖, µs, t) exp i(Xs · (kxx̂ + kyŷ))J0(γs), (3.2.15)

where γs = k⊥v⊥
Ωs

, k2
⊥ = k2

x|∇x|2 + k2
y|∇y|2 + 2kxky∇x ·∇y and I have used the identity

Jn(x) =
1

2π

∫ π

−π
exp i(x sin τ − nτ)dτ, (3.2.16)

where Jn(x) is an ordinary Bessel function of the first kind. Similarly, the field equations for ϕ1

and A1‖ require integrating hs (or some other gyrophase-independent quantity g) over d3v at fixed x,

which can be written as:

g(X, v‖, µs, t) =
∑
kx,ky

ĝkx,ky(z, v‖, µs, t) exp i(x · (kxx̂ + kyŷ)) exp i(−ρs · (kxx̂ + kyŷ))

(3.2.17)∫
d3vg(X, v‖, µs, t) =

∫
dv‖dv

2
⊥dαsg(X, v‖, µs, t) (3.2.18)

=

∫
dv‖

(
B0

ms

)
dµsdαs

∑
kx,ky

ĝkx,ky(z, v‖, µs, t) exp i(x · (kxx̂ + kyŷ)) exp i(−ρs · (kxx̂ + kyŷ))

(3.2.19)

=

∫
dv‖

(
B0

ms

)
dµs

∑
kx,ky

ĝkx,ky(z, v‖, µs, t) exp i(x · (kxx̂ + kyŷ)) · 2πJ0(γs). (3.2.20)

To obtain B1‖ requires integrating ∇ · (hs(b × v⊥)) over d3v (see equation (2.3.5)). This can be
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written as:

∫
d3v∇ · (hs(X, v‖, µs, t)(b× v⊥)) =

∫
dv‖

(
B0

ms

)
dµsdαs∇ · (hs(b× v⊥)) (3.2.21)

=

∫
dv‖

(
B0

ms

)
dµsdαs∇ ·

∑
kx,ky

ĥs,kx,ky(z, v‖, µs, t) exp i(x · k) exp i(−ρs · k)(b× v⊥)

(3.2.22)

=

∫
dv‖

(
B0

ms

)
dµsdαs ·

∑
kx,ky

ĥs,kx,ky(z, v‖, µs, t) exp i(x · k) exp i(−ρs · k)ik · (b× v⊥)

(3.2.23)

=

∫
dv‖

(
B0

ms

)
dµsdαs ·

∑
kx,ky

ĥs,kx,ky exp i(x · k) exp i(γs sin(αs))(−k⊥v⊥)
(
eiαs − e−iαs

)
(3.2.24)

=

∫
dv‖

(
B0

ms

)
dµsdαs ·

∑
kx,ky

ĥs,kx,ky exp i(x · k)k⊥v⊥2πJ1(γs), (3.2.25)

where use has been made of the identity J−n(x) = (−1)nJn(x).

3.2.4 Benefits of spectral codes

Spectral codes have several advantages:

1. Perpendicular gradients (∇⊥) of fluctuating quantities can be evaluated spectrally, which is

cheaper and more accurate than finite difference schemes.

2. The gyroaverage is easily calculated.

3. Excluding the nonlinear term, the GKE-Maxwell equations are linear in gs; thus, each spectral

coefficient ĝkx,ky is independent and can be considered separately (subject to the boundary con-

dition in z, discussed in section 3.6). This effectively eliminates two spatial dimensions from

the linear system of equations (dependence on x and y is prescribed) and provides physics in-

sight by separating the spatial scales of fluctuations. The nonlinear source term mixes different

(kx, ky) so requires a grid of k to be constructed. However, the linear source terms can still

be calculated spectrally and the nonlinear term calculated pseudo-spectrally (as discussed in

section 3.5).
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3.3 Choice of distribution function variable

stella’s choice of distribution variable gs ≡ hs − Zse
Ts
F0s 〈ϕ1〉Xs eliminates the

(
∂〈ϕ1〉Xs
∂t

)
term

from the GKE, such that only gs appears in a temporal derivative. This makes stella’s operator

splitting more straightforward as well as simplifying the source terms when using explicit numerical

schemes. GS2 also uses gs in electrostatic simulations, but in electromagnetic simulations uses the

variable

gs,GS2 ≡ hs −
Zse

Ts
F0s

(
〈ϕ1〉Xs − 〈v⊥ · A1⊥〉Xs

)
, (3.3.1)

such that B1‖ is also included in the distribution function [57]1. With this definition, a term like(
∂A1‖
∂t

)
appears in the GKE, but because the operator splitting in GS2 is different, the problems

encountered by stella are avoided.

3.4 Normalisations

It is natural and convenient for gyrokinetic codes to normalise all quantities to ensure they are near

to unity. This helps avoid computational issues associated with computing very large or very small

numbers, and makes the simulation equations dimensionless. The fundamental normalising quantities

used are: the mass, temperature and number density of a “reference” species mr, Tr nr, a reference

value of magnetic field strengthBr and a reference macroscopic scale length a. Zr could also be used

as a normalising quantity but for consistency with Barnes et al. [45] I take Zr = 1. With these, the

following compound normalising quantities can be constructed:

vth,r =

√
2Tr
mr

, Ωr =
eBr
mr

, ρr =
vth,r
Ωr

, (3.4.1)

the thermal velocity, Larmor frequency and thermal Larmor radius of the reference species, respec-

tively. With these, stella normalises the terms in the gyrokinetic-Maxwell equations as follows
1A possible source of confusion is that in the GS2 code the non-adiabatic piece of the distribution function is labelled

gs and the modified distribution function is labelled hs i.e. the opposite of stella. So that this thesis is self-consistent, I
will refer to GS2’s modified distribution function as gs,GS2
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[45]:

t̃ = tvth,r/a, T̃s = Ts/Tr, ṽ‖ = v‖/vth,s, (3.4.2)

∇̃‖ = a∇‖, µ̃s = µs
Br
2Ts

, B̃0 = B/Br, (3.4.3)

ṽs = v/vth,s, ñs = ns/nr, k̃x = kxρr, (3.4.4)

k̃y = kyρr, ϕ̃1k =
eϕ1k

Tr

a

ρr
, g̃k,s = ĝkx,ky

e−ṽ
2
s

F0s

a

ρr
, (3.4.5)

where the tilde (˜) indicates a normalised quantity. GS2’s normalisation is very similar [53]. One

notable difference is that GS2’s distribution function is normalised g̃GS2,k,s = (ĝGS2,kx,ky/F0s)
a
ρr

(i.e. missing e−ṽ
2
s ). stella’s choice is necessary to ensure |g̃k,s| → 0 as ṽ‖ → ±∞ so that a

zero-incoming boundary condition can be used in ṽ‖ in stella.

3.5 Simulation equations in stella

Taking the above points in mind one arrives at the simulation equations solved by the gyrokinetic

codes. For stella, these are:

GKE:
∂g̃k,s

∂t̃
+

streaming︷ ︸︸ ︷
ṽth,sṽ‖(b · ∇̃z)

(
∂g̃k,s

∂z
+
Zs

T̃s

∂J0(γs)ϕ̃1k

∂z
e−ṽ

2
s

)
−

mirror︷ ︸︸ ︷
ṽth,sµ̃sb · ∇̃B̃0

∂g̃k,s

∂ṽ‖

+ iωd,k,s

(
g̃k,s +

Zs

T̃s
J0(γs)ϕ̃1ke

−ṽ2
s

)
︸ ︷︷ ︸

drifts

+ iω∗,k,sJ0(γs)ϕ̃1k︸ ︷︷ ︸
diamagnetic

+ Nk,s︸︷︷︸
E×B nonlinearity

= 0

(3.5.1)

Quasi-neutrality:
∑
s

Zsñs

(
2B̃0√
π

∫ ∞
−∞

dṽ‖

∫ ∞
0

dµ̃sJ0(γs)g̃k,s +
Zs

T̃s
(Γ0(bs)− 1)ϕ̃1k

)
= 0,

(3.5.2)
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where

ωd,k,s =
T̃s

ZsB̃0

(
ṽ2
‖vκ + µ̃sv∇B

)
· (k̃y∇y + k̃x∇x) (3.5.3)

ω∗,k,s =
k̃y
2
aBr

dy

dα
e−ṽ

2
s
d lnF0s

ψ
, (3.5.4)

Nk,s =
Br
2

dy

dα

dx

dψ
Fk

[
F−1

k

[
ik̃yJ0(γs)ϕ̃1k

]
F−1

k

[
ik̃xg̃k,s

]
−F−1

k

[
ik̃xJ0(γs)ϕ̃1k

]
F−1

k

[
ik̃y g̃k,s

]]
,

(3.5.5)

Γ0(bs) = e−bsI0(bs) where I0 is a modified Bessel function of the first kind, bs = k2
⊥ρ

2
s/2, vκ =

b×
(

b · ∇̃b
)

, v∇B = b× ∇̃B̃0 and F (−1)
k indicates a(n) (inverse) Fourier transform.

I refer to all terms in the GKE except ∂g̃k,s
∂t as “source terms” (since eq. (3.5.1) can be written as

∂g̃k,s
∂t̃

= {source terms}). The source terms are, in order of appearance: (1) parallel streaming (i.e.

advection along z with normalised velocity ṽ‖), (2) parallel acceleration (i.e. advection in ṽ‖) arising

from the mirror force, (3) ∇B and curvature magnetostatic drifts (i.e. advection in x and y), (4) a

diamagnetic drift-like term arising from gradients in F0s, acting on ϕ̃1k and (5) the nonlinear E × B

drift (nonlinear advection in x and y). Of these source terms, the diamagnetic term usually plays

a dominant role in driving instabilities; physically, this is the term which “accesses” the potential

energy associated with the equilibrium density and temperature gradients.

The GS2 simulation equations are very similar in the electrostatic limit, although the mirror term

is missing due to the (εs, µs) coordinates used. Electromagnetically, a term proportional to
∂A1‖
∂t

appears, as do the normalised field equations for A1‖ and B1‖. These field equations are virtually

identical to the electromagnetic stella field equations presented in chapter 6 so are not reproduced

here.

3.5.1 The nonlinear source term Ns

In both stella and GS2, the nonlinear term is treated pseudo-spectrally: the gradients of ϕ̃1 and

g̃s are calculated in Fourier space, then transformed into real space, where the nonlinear term is cal-

culated. The nonlinear term is then transformed back to Fourier space. To avoid unphysical aliasing,

the number of physical gridpoints x, y are each greater by 50% than the number of Fourier modes

included; the upper third of the Fourier modes in (k̃x, k̃y) are padded with zeros. Recalling that neg-

ative ky modes are included in the Fourier expansion but not explicitly simulated due to the reality

condition (section 3.2.3) gives nk̃x ' (2/3)nx, nk̃y ' ny/3.
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3.6 Boundary conditions in z

Physical periodicity means that all physical quantities A must be periodic in poloidal and toroidal

angle:

A(ψ, φ, θ) = A(ψ, φ+ 2nπ, θ + 2mφ), (3.6.1)

for all integers n and m. Applied to the field-aligned coordinate system, this becomes a periodicity

requirement in the parallel coordinate z; physical quantities must be periodic, matching the periodicity

of the magnetic geometry. Assuming z represents the poloidal angle, this can be expressed as

A(x, y(x, z), z) = A(x, y(x, z + 2pπ), z + 2pπ), (3.6.2)

where p = n/Np, n is an integer and Np is the number of field periods of the magnetic geometry (so

the magnetic geometry is periodic in z with periodicity 2π/Np) (NB the non-spatial dependencies in

A have been dropped for brevity). For axisymmetric devices, Np = 1.

In the local limit, non-fluctuating physical quantities (e.g. magnetic geometry) are a function of z

only; thus, periodicity for non-fluctuating quantities is straightforward. For fluctuating quantities, eq.

(3.6.2) means that

∑
kx,ky

Âkx,ky(z) exp i(kxx+ kyy(x, z)) =
∑
kx,ky

Âkx,ky(z + 2pπ) exp i(kxx+ kyy(x, z + 2pπ)).

(3.6.3)

When combined with the orthogonality condition of the Fourier harmonics, this means that the Fourier

coefficients Âkx,ky obey

Âkx,ky = Âk′x,ky exp i

(
2pπky

dy

dα
q(ψ0)

)
, (3.6.4)

where k′x = kx + 2pπky
dy
dα

dq
dx . In other words, each Fourier harmonic is not periodic in z (unless

dq
dx = 0 or ky = 0); rather, the modes have a “twist-and-shift”, or “linked”, boundary condition,

whereby different values of kx are coupled at boundary values of z, which I refer to as±zmax (referred
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to as z0 by Barnes et al. [45]). An alternative description is to write the Fourier transform as

A(x, y, z) =
∑
kx,ky

Âkx,ky(z) exp i(k⊥ · x), (3.6.5)

where

k⊥ = kyŷ + (kx + ky ŝz)x̂ ≡ kyŷ + kx,effx̂ (3.6.6)

kx,eff = (kx + ky ŝz) = ky ŝ(z − θ0) (3.6.7)

and (θ0 ≡ −kx/(ky ŝ)). Thus, a particular Fourier mode Âkx,ky has a perpendicular wavenumber k⊥

and an “effective” kx, which varies continuously as a function of z. The twist-and-shift boundary

condition is simply that for each k̃y, different k̃x modes are linked together to form extended domains

in z, such that the value of k̃x,eff matches at the join. A zero-incoming boundary condition is applied

at the extrema of the extended domains, z = ±zmax, ext.

The requirement to form linked domains imposes a constraint in the k̃x spacing, since one re-

quires
(

2k̃y ŝzmax

∆k̃x

)
to be an integer. In stella and GS2 this quantity is a user-defined parameter

called jtwist, which controls the relative spacing in k̃x and k̃y. Since k̃x,eff(z) varies with k̃y,

these extended domains have, in general, different lengths; the longest extended domains occur at the

minimum nonzero k̃y value (i.e. k̃y = ∆k̃y). An illustration of extended domains, showing k̃x,eff(z)

matching between different k̃x, is shown in figure 3.1. An illustration of linked k̃x modes for different

values of k̃y and jtwist is shown in figure 3.2 (with credit to Stephen Biggs-Fox for the inspiration).
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Figure 3.1: Illustration of the extended z domain for plasma with Np = 1 (e.g. a tokamak plasma). Upper: equilibrium
quantity B0, which is periodic in z. Middle and lower plots: k̃x,eff(z) for a simulation with (∆k̃y = 1, ŝ = 1, nk̃y = 2,

nk̃x = 5). Middle plot has jtwist= 1, so that ∆k̃x = 2zmax. Lower plot has jtwist = 2, so ∆k̃x = zmax.

Figure 3.2: Pictorial representation of extended z domains for different values of jtwist. Each coloured box represents
a single (k̃x, k̃y). For each k̃y , modes with the same colour are part of the same extended z domain.
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The zero-incoming condition at the end of extended domains (z = ±zmax, ext) is physically well-

behaved provided that g̃k,s → 0 as zext → ±zmax, ext. If this is not the case, the simulation result

becomes sensitive to the value of zmax, ext, which is a non-physical parameter, since it is a feature of

the simulation but not the gyrokinetic model. Fortunately, g̃k,s → 0 as zext → ±∞ tends to occur

naturally because the argument of the Bessel function γs increases with z (via k⊥). As zext → ±∞,

J0(γs) → 0 so the diamagnetic term in the GKE vanishes (provided that |ϕ̃1k|, which also appears

in the diamagnetic term, does not grow with |z| faster than J0(γs) falls). As discussed in section 3.5,

the diamagnetic term is often the driving term, so as it vanishes the mode ceases to grow. A physical

interpretation of this is that physical structures are “sheared apart” by the equilibrium magnetic shear:

as one follows a particular feature along a magnetic field line, it deforms (becomes stretched and

thinned) perpendicular to the field line due to radial variation in q (i.e. variation in magnetic pitch

angle). As the perpendicular spatial size of the feature shrinks, it becomes “averaged out” by particle

gyrations.

The twist-and-shift boundary condition is used in nonlinear simulations, which require the sim-

ulation of many (k̃x, k̃y). Linear simulations simply use a zero-incoming boundary on each (k̃x, k̃y)

(unless k̃y = 0 or ŝ = 0), but can extend the z domain arbitrarily far; this allows the user to extend

the z domain sufficiently far to ensure that g̃k,s → 0 as zext → ±zmax, ext, such that a physical mode

can be recovered. This is effectively the same as twist-and-shift, without explicitly defining different

values of k̃x.

The boundary conditions in z for g̃k,s in stella, imposed by physical periodicity, can thus be

summarised as:

1. If k̃y = 0 or ŝ = 0, g̃k,s is 2π/Np-periodic in poloidal angle (g̃k,s(z + 2pπ) = g̃k,s(z)).

2. If k̃y 6= 0 and ŝ 6= 0 but only a single mode is being considered (e.g. in linear simulations), the

boundary condition is zero incoming, but the z domain can be extended arbitrarily far.

3. If k̃y 6= 0 and ŝ 6= 0 and the simulation is nonlinear, the boundary condition is “twist and

shift”, with different k̃x modes linking to form extended domains in the parallel coordinate,

with extended z coordinate zext.

4. The boundary condition for the extrema of extended parallel domains is zero-incoming.
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3.7 Boundary conditions in x, y, ṽ‖, µ̃s

As previously discussed, the spectral flux tube approach implicitly imposes a periodic boundary con-

dition in x and y. The boundary condition in ṽ‖ is zero-incoming, justified provided that g̃k,s → 0 as

ṽ‖ → ±ṽ‖,max, where ṽ‖max is the largest value of ṽ‖ in the simulation. Unlike z and ṽ‖, the values

of g̃k,s at different points in µ̃s are not coupled, except by the field (i.e. there are no terms containing
∂
∂µ̃s

in the GKE). Thus, no explicit boundary conditions for the µs grid are required. For the same

reason, there is no explicit boundary condition of εs in GS2.

3.8 Temporal discretisation and choice of time-marching scheme

In general, the simulation equations eqs. (3.5.1) and (3.5.2) are not analytically soluble, and so require

numerical solution. Some codes cast the linear simulation equations as an eigenvalue problem and use

eigensolvers to find solutions (NB this is option in GS2). However, the focus here is time-marching

schemes, which are applicable to both linear and nonlinear gyrokinetics. In time-marching schemes,

some initial value of g̃k,s(k̃x, k̃y, z, ṽ‖, µ̃s, t̃ = t̃0) is specified, and the simulation equations are used

to advance g̃k,s in discrete time steps (t̃1, t̃2, t̃3, ...) until some later time t̃final is reached. As an

illustration of temporal discretisation, the general two-level scheme can be written as

∂g

∂t
=
g(tn+1)− g(tn)

∆t
= G1(g(tn+1), tn + ∆t) + G2(g(tn), tn), (3.8.1)

where g is an arbitrary function (such as g̃k,s), (tn+1 = tn + ∆t), ∆t is the timestep size and G1,2 are

operators. The classification “two-level” (or equivalently “single step”) refers to the fact that (3.8.1)

only contains terms from two discrete points in time (t and tn+1). Algorithms containing information

from m time points are known as m-level methods (“multistep” if m > 2).

The exact form of Gx depends on the discretisation algorithm, or time-marching scheme, used.

The choice of scheme has a large effect on the accuracy and computational cost of simulation; a

detailed background is beyond the scope of this thesis, so I focus on the schemes used by stella

and GS2.

Explicit numerical schemes have G1 = 0, and so the solution for g(tn+1) depends only on the

information from the current (and possibly previous) timestep(s), which is usually known. Examples

of explicit scheme include the Runge-Kutta (an option in stella) and Adams-Bashforth (used in

GS2 for nonlinear term) family of algorithms [58]. Explicit schemes are usually relatively easy to
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implement, and have low cost per timestep. A disadvantage of explicit schemes is that they tend to

have poor numerical stability properties; for example, the well-known Courant-Friedrichs-Lewy (see

chapter 8 condition imposes a constraint in the timestep size ∆t, beyond which non-physical solutions

will grow exponentially.

Implicit numerical schemes, which have G1 6= 0, often have improved numerical stability; in

particular, they are less susceptible to a CFL condition, and can allow a larger timestep ∆t to be

taken. A disadvantage is that the cost per timestep is usually greater than for explicit schemes, since

one usually solves by matrix inversion, by rearranging (3.8.1) as

g(tn+1) = g(tn) + ∆t ·
[
G1(g(tn+1), tn+1) + G2(g(tn), tn)

]
(3.8.2)

[I −∆tG1] g(tn+1) = g(tn) + ∆tG2(g(tn), tn) (3.8.3)

g(tn+1) = [I −∆tG1]−1 (g(tn) + ∆tG2(g(tn), tn))) , (3.8.4)

where I is the identity operator.

A challenge for using implicit schemes in gyrokinetics is that the source terms of the GKE con-

tain (ϕ̃n+1
1k , Ãn+1

1‖k , B̃
n+1
1‖k ), which are non-trivial integrals of g̃n+1

k,s ; the calculation and inversion of G1

is thus rather difficult. Fortunately, an elegant solution, in which the fields (ϕ̃n+1
1k , Ãn+1

1‖k , B̃
n+1
1‖k ) are

calculated before g̃n+1
k,s , allowing the linear GKE to be advanced implicitly at relatively low computa-

tional cost, was presented by Kotschenreuter et al. [59]. This is often referred to as “Kotschenreuter’s

implicit algorithm”, and is described in section 3.10.

Before describing Kotschenreuter’s algorithm, I first describe stella’s operator splitting, a pow-

erful tool which allows for different terms in the GKE to be treated by different schemes.

3.9 Operator splitting in stella

Suppose one wishes to evolve a system governed by a differential equation:

dg

dt
= (A+B + C)g, (3.9.1)

where A, B and C are arbitrary non-commuting operators. The aim of splitting schemes is to treat

operators (A,B,C) separately. The simplest splitting scheme is Lie-Trotter splitting, which can be
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written as [58]:

(
dg

dt

)
1

= Ag (3.9.2)(
dg

dt

)
2

= Bg (3.9.3)(
dg

dt

)
3

= Cg. (3.9.4)

One can then solve eqs. (3.9.2) to (3.9.4) sequentially; one advances eq. (3.9.2) by one timestep ∆t

with initial value g(tn) ≡ gn to obtain some intermediate value of g, which I call g†. One then uses

g† as the value of gn to advance eq. (3.9.3) by ∆t to obtain g‡. Finally, one advances g‡ by ∆t

using eq. (3.9.4) to obtain a value for gn+1 ≡ g(tn + ∆t). It can be shown this scheme is first-order

accurate (that is, the error ε in the solution for some given simulation time is proportional to ∆t)

for non-commuting operators, and second-order accurate (ε ∝ (∆t)2) for commuting operators. The

scheme extends trivially for an arbitrary number of operators.

An alternative splitting scheme is flip-flop, in which the order of operators is swapped every

timestep; on (say) odd timesteps (n odd), one advances (3.9.2), then (3.9.3), then (3.9.4). On even

timesteps (n even), one advances (3.9.4), then (3.9.3), then (3.9.2). This scheme can be shown to

be second-order accurate for non-commuting linear operators and first-order accurate if nonlinear

operators are included [58].

stella allows the user to select either Lie-Trotter or flip-flop splitting. By default it splits eq.

(3.5.1) as follows:

(
∂g̃k,s

∂t̃

)
1

+ ṽth,sṽ‖(b · ∇̃z)

(
∂g̃k,s

∂z
+
Zs

T̃s

∂J0(γs)ϕ̃1k

∂z
e−ṽ

2
s

)
= 0, (3.9.5)

(
∂g̃k,s

∂t̃

)
2

− ṽth,sµ̃sb · ∇̃B̃0
∂g̃k,s

∂ṽ‖
= 0, (3.9.6)

(
∂g̃k,s

∂t̃

)
3

+ iωd,k,s

(
g̃k,s +

Zs

T̃s
J0(γs)ϕ̃1ke

−ṽ2
s

)
+ iω∗,k,sJ0(γs)ϕ̃1k +Nk,s = 0, (3.9.7)

and sequentially solves using Kotschenreuter’s algorithm, a two-level semi-Lagrange scheme [45]

(not discussed here, though semi-Lagrange schemes are described in a different context in chapter

8) and explicitly using a strong stability-preserving RK method (SSP RK2, SSP RK3 and SSP RK4

are supported). This splitting separates the dynamics of streaming (eq. (3.9.5)) and the mirror term
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(eq. (3.9.6)) (both of which scale with ṽth,s ∼
√

1/m̃s, and risk becoming large when electrons are

simulated) from the dynamics of the magnetostatic drifts, diamagnetic term and nonlinear term (eq.

(3.9.7)). The user also has the freedom to include the streaming and/or mirror term(s) in eq. (3.9.7);

hence, running simulations fully explicitly is an option. Solving eq. (3.9.6) by matrix inversion is

also an option.

3.10 Kotschenreuter’s implicit algorithm

In this section I present Kotschenreuter’s implicit algorithm, as used in stella to advance (3.9.5).

Eq. (3.9.5) is discretised in t̃ and z as follows: derivatives in time (∂f∂t for arbitrary f ) are given by:

(
∂f

∂t̃

)n∗
≡ fn+1 − fn

∆t̃
, (3.10.1)

where the superscripts n,n+1 denotes the timestep and n∗ indicates that the derivative is evaluated at

time t̃n∗, defined as

t̃n∗ ≡ 1− ut
2

t̃n +
1 + ut

2
t̃n+1, (3.10.2)

where ut is the user-controlled temporal upwinding parameter, which can vary from 0 (in which case
∂
∂t is time-centered, and second-order accurate in ∆t̃) to 1 (in which case ∂

∂t̃
is fully upwinded, and is

first-order accurate in ∆t̃). It is usual to set ut close to zero, although a small amount of upwinding

can improve numerical stability.

All other time-dependent quantities in eq. (3.9.5) are also evaluated at tn∗ i.e. an arbitrary time-

dependent quantity f is evaluated as

fn∗ =
1− ut

2
fn +

1 + ut
2

fn+1. (3.10.3)

Similarly, z derivatives are evaluated at zi∗ as follows:

zi∗ ≡
1∓ uz

2
zi +

1± uz
2

zi+1 (3.10.4)(
∂f

∂z

)
i∗
≡ fi+1 − fi

∆z
(3.10.5)

fi∗ =
1∓ uz

2
fi +

1± uz
2

fi+1, (3.10.6)
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where uz is the z centering parameter and ∆z is the spacing in z (∆z = zi+1−zi). The sign preceding

uz is determined by the sign of ṽ‖; the upper is used for ṽ‖ > 0 and lower for ṽ‖ < 0, ensuring that the

derivative is either upwinded (uz > 0) or centered (uz = 0) (i.e. never downwinded). The derivative

is second order accurate in ∆z in the centered scheme and first order accurate for the fully upwinded

scheme.

Applying these discretisations to eq. (3.9.5) gives:(
1∓uz

2 g̃n+1
k,s i + 1±uz

2 g̃n+1
k,s i+1

)
−
(

1∓uz
2 g̃nk,si + 1±uz

2 g̃nk,si+1

)
∆t̃

+ ṽth,sṽ‖(b · ∇̃z)i∗


(

1−ut
2 g̃nk,si+1 + 1+ut

2 g̃n+1
k,s i+1

)
−
(

1−ut
2 g̃nk,si + 1+ut

2 g̃n+1
k,s i

)
∆z

+
Zs

T̃s

(
1−ut

2 J0(γs)i+1ϕ̃
n
1ki+1 + 1+ut

2 J0(γs)i+1ϕ̃
n+1
1k i+1

)
−
(

1−ut
2 J0(γs)iϕ̃

n
1ki + 1+ut

2 J0(γs)iϕ̃
n+1
1k i

)
∆z

e−ṽs
2
i∗

]
= 0. (3.10.7)

To conceptually understand Kotschenreuter’s algorithm one can write eq. (3.10.7) symbolically as

A1,i∗g̃
n+1
k,s i +A2,i∗g̃

n+1
k,s i+1 +B1,i∗g̃

n
k,si +B2,i∗g̃

n
k,si+1

+C1,i∗ϕ̃
n+1
1k i + C2,i∗ϕ̃

n+1
1k i+1 +D1,i∗ϕ̃

n
1ki +D2,i∗ϕ̃

n
1ki+1 = 0, (3.10.8)

where, in general, the coefficients A − D{1,2},i∗ are functions of (ky, kx, z, v‖, µs), but are time-

independent. To proceed, split gn+1 into a “homogeneous” piece and an “inhomogeneous” piece:

g̃n+1
k,s i = g̃n+1

k,s h,i + g̃n+1
k,s inh,i ≡ gh,i + ginh,i, (3.10.9)

(where I have temporarily dropped some of the cumbersome labels for readability), where ginh satis-

fies

A1,i∗ginh,i +A2,i∗ginh,i+1 +B1,i∗g̃
n
k,si +B2,i∗g̃

n
k,si+1 +D1,i∗ϕ̃

n
1ki +D2,i∗ϕ̃

n
1ki+1 = 0, (3.10.10)

and so gh satisfies (to be consistent with eq. 3.10.8)

A1,i∗gh,i +A2,i∗gh,i+1 + C1,i∗ϕ̃
n+1
1k i + C2,i∗ϕ̃

n+1
1k i+1 = 0. (3.10.11)
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In other words, the inhomogeneous piece g̃n+1
k,s depends only on ϕ̃1k at the old timestep (ϕ̃n1k), and

the homogeneous piece contains the dependency of g̃n+1
k,s on ϕ̃n+1

1k .

The inhomogeneous equation eq. (3.10.10) can be straightforwardly solved as a bidiagonal matrix

equation for ginh(z) (upper or lower bidiagonal depending on the sign of ṽ‖). This is solved for all

(ṽ‖, µ̃s) (which are decoupled) to obtain ginh(z).

One then takes advantage of the linearity of (3.10.7) (i.e. that gh responds linearly to ϕ̃n+1
1k ) to

calculate the updated fields ϕ̃n+1
1k using a Green’s function approach. This is done by writing ϕ̃n+1

1k i

as

ϕ̃n+1
1k i = ϕ̃n+1

1k inh,i + ϕ̃n+1
1k h,i ≡ ϕinh,i + ϕh,i, (3.10.12)

where ϕinh,i is the piece of ϕ̃n+1
1k i which arises from inserting ginh,i into quasi-neutrality (3.5.2) and

ϕh,i arises from gh,i i.e.

∑
s

Zsñs

(
2B̃0√
π

∫ ∞
−∞

dṽ‖

∫ ∞
0

dµ̃sJ0(γs)ginh(h),i +
Zs

T̃s
(Γ0(bs)− 1)ϕinh(h),i

)
= 0, (3.10.13)

which can be expressed as

ϕinh(h),i =
l1(ginh(h),i)

K11,i
, (3.10.14)

where l1 is an operator which integrates over velocity and sums over species, and K11 is time-

independent. The subscripts 1 and 11 in l1 and K11 are used for consistency with the material pre-

sented in chapter 6. ϕinh,i can be readily calculated once ginh,i has been found. Then, writing gh,i

as

gh,i =
∑
j

[
∂gh,i

∂ϕ̃n+1
1k j

]
ϕ̃n+1

1k j , (3.10.15)

and substituting into (3.10.14), ϕh,i can be eliminated from (3.10.12):

ϕ̃n+1
1k i = ϕinh,i +

l1
(∑

j

[
∂gh,i
∂ϕ̃n+1

1k j

]
ϕ̃n+1

1k j

)
K11,i

= ϕinh,i +

∑
j l1
(

∂gh,i
∂ϕ̃n+1

1k j

)
ϕ̃n+1

1k j

K11,i
, (3.10.16)

where ϕ̃n+1
1k j , having no velocity- or species-dependence, can be brought outside the operator l1. This
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can be written in matrix form as:

Rϕ̃n+1
1k (z) = ϕinh(z), (3.10.17)

ϕ̃n+1
1k (z) = R−1ϕinh(z), (3.10.18)

whereR is known as the response matrix, and is given by

R = I −
l1
(

∂gh
∂ϕ̃n+1

1k

)
K11

. (3.10.19)

Eq. (3.10.18) can be solved for ϕ̃n+1
1k (z), which is finally inserted into (3.10.8) to find g̃n+1

k,s (z).

R is a dense matrix of sizeNz,ext×Nz,ext for each extended domain (whereNz,ext is the number of

z gridpoints in the extended domain), but is time-independent. In stella it is calculated once at the

start of the simulation by applying a unit impulse to ϕ̃n+1
1k at every location in z and calculating gh(z)

using (3.10.11). After R is calculated, it is LU -decomposed. On each timestep, back substitution is

used to solve (3.10.18). A caveat is that R depends non-trivially on ∆t, so if ∆t changes throughout

the simulation (which can happen in nonlinear simulations),R must be recalculated.

To summarise, Kotschenreuter’s implicit algorithm for streaming in stella for a single timestep

consists of the following steps: (1) the inhomogeneous streaming equation is solved for ginh(z), (2)

the associated potential ϕinh(z) is calculated, (3) eq. (3.10.18) is solved to find ϕ̃n+1
1k (z) and (4) the

full streaming equation is solved for g̃n+1
k,s . A pseudocode representation of the steps performed by

stella is given in appendix A.1.

3.10.1 Kotschenreuter’s algorithm in GS2

GS2 also employs Kotschenreuter’s algorithm, but with some minor differences. Firstly, all linear

terms are included, rather than just streaming. In addition, Ã1‖k and B̃1‖k are included in the electro-

magnetic version. The symbolic discretised equation is thus:

A1,i∗g̃
n+1
k,s i +A2,i∗g̃

n+1
k,s i+1 +B1,i∗g̃

n
k,si +B2,i∗g̃

n
k,si+1

+C1,i∗ϕ̃
n+1
1k i + C2,i∗ϕ̃

n+1
1k i+1 +D1,i∗ϕ̃

n
1ki +D2,i∗ϕ̃

n
1ki+1

+E1,i∗Ã
n+1
1‖k i + E2,i∗Ã

n+1
1‖k i+1 + F1,i∗Ã

n
1‖ki + F2,i∗Ã

n
1‖ki+1

+G1,i∗B̃
n+1
1‖k i +G2,i∗B̃

n+1
1‖k i+1 +H1,i∗B̃

n
1‖ki +H2,i∗B̃

n
1‖ki+1 = 0, (3.10.20)
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Parameter Codes applicable to Code variable Comment
nz stella, GS2 nzed (stella), ntheta (GS2) Number of z gridpoints per 2π z interval
nperiod stella, GS2 nperiod (stella, GS2) Number of 2π z intervals in a single (non-extended)

z domain
nfp stella nfield periods Number of identical toroidal segments spanned by z

per 2π z interval
∆t̃ stella, GS2 code dta (stella, GS2) Simulation timestep
nstep stella, GS2 nstep Number of timesteps simulated
nṽ‖ stella nvgrid Number of ṽ‖ gridpoints per sign (+/−) (total ṽ‖

gridpoints is 2nṽ‖ )
ṽ‖ ,max stella vpa max Sets the extent of the ṽ‖ grid
nµ̃s stella nmu Number of µ̃s gridpoints
ṽ⊥ ,max stella vperp max Sets the extent of the µ̃s grid
ngauss GS2 ngauss Controls v-space resolution for trapped particles
nE GS2 negrid Number of energy gridpoints
uv‖ stella vpa upwind Sets ṽ‖ upwinding in implicit schemes. uv‖ = 0 is

fully centered, uv‖ = 1 is fully upwinded.
uz stella, GS2 zed upwind (stella), bakdif (GS2) Sets z upwinding in implicit schemes. uz = 0 is

fully centered, uz = 1 is fully upwinded.
ut, ut,GS2 stella, GS2 time upwind (stella), fexpr (GS2) Sets t̃ upwinding in implicit schemes. ut = 0

(in stella) or ut,GS2 = 0.5 (in GS2) is fully
centered, ut, ut,GS2 = 1 is fully upwinded.

Table 3.1: Description of selected non-physical parameters for stella and GS2.

a∆t̃ is set by the input parameter delt but used (and possibly changed) by the code as code dt.

and eq. (3.10.15) becomes

gh,i =
∑
j

[
∂gh,i

∂ϕ̃n+1
1k j

]
ϕ̃n+1

1k j +
∑
j

[
∂gh,i

∂Ãn+1
1‖k j

]
Ãn+1

1‖k j +
∑
j

[
∂gh,i

∂B̃n+1
1‖k j

]
B̃n+1

1‖k j , (3.10.21)

which results inR having dimensions 3Nz,ext × 3Nz,ext. The electromagnetic algorithm is described

in greater detail (in the context of stella) in chapter 6.

3.11 Non-physical simulation parameters

Some important variables required to describe a gyrokinetic simulation, but not appearing in the

gyrokinetic model, are given in table 3.1. This is not intended to be an exhaustive list, but is intended

to aid understanding in future chapters.

3.12 Concluding remarks

In this chapter I derive the simulation equations which stella and GS2 seek to solve, and describe

the algorithms used to “march” the distribution function and fields forwards in time. Provided that the

physical assumptions are upheld, that the non-physical parameters in the simulation are well-chosen

to accurately capture the physics of interest, and numerical instability can be avoided, codes such as
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stella and GS2 can thus provide a realistic description of turbulence phenomena in MCF plasmas.

This is the goal of the research presented in chapters 5 and 7.

Chapter 5 uses GS2 to study a particular instability: the kinetic ballooning mode (KBM). Before

presenting these results, it is worth describing the basic physics of this instability.



Chapter 4

Ideal and kinetic ballooning modes:

theory

4.1 Introduction

The purpose of this chapter is to describe the fundamental physics and typical properties of the ki-

netic ballooning mode (KBM), a pressure-driven electromagnetic microinstability. Since the typical

parameter space in which the KBM is unstable (particularly, plasmas with high β and/or large pres-

sure gradients) overlaps with the parameter space for fusion reactor plasmas, managing KBM stability

is likely to be an important factor when fusion power plants are designed and operated.

There are a number of ways in which KBMs can be theoretically studied beyond gyrokinetic

simulation. By far the simplest model for the KBM is the n = ∞ ideal magnetohydrodynamic

(MHD) ballooning mode (abbreviated here to “ideal ballooning mode”, or IBM). Deriving from ideal

MHD, the IBM ignores kinetic effects such as finite Larmor radius effects (e.g. gyroaveraging) and

the effect of trapped particles. However, the IBM describes the basic physics of the instability; a

competition between the stabilising effect of magnetic field line bending and the destabilising effect

of a plasma pressure gradient combined with “bad” magnetic curvature. IBM stability is also easily

assessed for a given plasma, and is sometimes used as a proxy for KBM stability in models such as the

predictive pedestal model EPED [60–63]. For these reasons, and because IBM stability is discussed

in chapter 5, I provide a background on the IBM here.

This chapter is structured as follows. I begin (section 4.2.1) by describing the linearised ideal

MHD equations describing instabilities, and the “energy principle” (section 4.2.2), which is a use-

ful and physically informative way of assessing linear stability in the ideal MHD framework. Next

75



76 CHAPTER 4. IDEAL AND KINETIC BALLOONING MODES: THEORY

(section 4.2.3) I show how these general equations can be used to derive the IBM. In the limit of

large n, IBM stability becomes local to each individual magnetic field line with mode structure F0

and Ω2
0 (where Ω0 is the leading order mode frequency) governed by a one-dimensional second-order

differential equation (a Sturm-Liouville equation). I then describe (section 4.3) how the GS2 module

ideal ball assesses IBM stability of a particular field line using Newcomb’s theorem. Finally I

discuss the KBM as a “kinetic analogue” of the IBM (section 4.4).

4.2 Ideal MHD ballooning modes

4.2.1 The ideal MHD model

As in gyrokinetics, one can derive the ideal MHD model by applying a mathematically defined set

of assumptions to the ensemble-averaged kinetic-Maxwell equations. A key difference between ideal

MHD and gyrokinetics is how the distribution function of the plasma in velocity space is treated: gy-

rokinetics considers the equations governing the distribution function (F0s, δfs) whereas ideal MHD

considers moments of the distribution function (mass, momentum, energy), which are combined to

construct a set single-fluid equations.

Derivations of the ideal MHD equations are widely available in literature (see e.g. Freidberg

[12]). The basic process is as follows: the first three moments of the ensemble-averaged kinetic

equation (eq. (2.1.4)) are taken, to give equations describing the mass, momentum and energy of

each species. These are combined with the low-frequency (ω � ωpe), long-wavelength (λD/k � 1)

and non-relativistic (ω/k � c) forms of Maxwell’s equations (where ω and k define the timescales

and spatial scales of MHD phenomena) to arrive at a two-fluid set of equations. From these, a single-

fluid description is derived by assuming Zi = 1, Ze = −1 and taking the limit me → 0 (such that the

electron response time is much faster than the timescale of MHD events).

At this point, the system of equations is unclosed (i.e. there are more unknowns than equations)

since the equation for each moment contains information about a higher-order moment. The system

is closed by taking the ideal MHD limit, consisting of (1) prescribing the equation of state:

d

dt

(
p

ργ

)
= 0, (4.2.1)

and (2) taking the plasma to be perfectly conducting. (1) is satisfied provided the plasma is collision-

ally dominated (such that the ions and electrons are described by Maxwellian distributions plus bulk
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flow). (2) is satisfied in the limit that kρi → 0 (this limit is discussed in section 4.4). The resulting

ideal MHD equations are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.2.2)

ρ
dv
dt

= J× B−∇p (4.2.3)

d

dt

(
p

ργ

)
= 0 (4.2.4)

E + v× B = 0 (4.2.5)

∇× E = −∂B
∂t

(4.2.6)

∇× B = µ0J (4.2.7)

∇ · B = 0, (4.2.8)

where ρ is the plasma mass density, v the plasma flow, J the plasma current, p the plasma pressure,

γ = 5/3 the ratio of specific heats, E the electric field and B the magnetic field. These equations

describe: conservation of mass (4.2.2), Newton’s second law (4.2.3), an equation of state (4.2.4),

generalised form of Ohm’s law ((4.2.5)) and Maxwell’s equations (eqs. (4.2.6) to (4.2.8)).

Thus, ideal MHD models the plasma as a single, perfectly conducting fluid described by bulk

properties (density, flow, temperature, pressure). The ideal MHD equations are three-dimensional,

making the system much simpler than gyrokinetics.

4.2.2 Stability and the energy principle

To study instabilities efficiently, it is common to linearise the ideal MHD equations by means of

asymptotic expansion (A = A0 + A1 + A2 + ... = A0 + O(ε1A0) + O(ε2A0) + ... where ε � 1)

of all physical parameters A. Unlike gyrokinetics, the spatial scale of the perturbation is taken to

be comparable to that of the equilibrium quantities (∇A1 ∼ ε∇A0). For simplicity, I assume the

plasma to be in static equilibrium (i.e. ∂A0
∂t = 0 and v0 = 0). Once can then define a small plasma

perturbation ξ as

v1 =
∂ξ

∂t
, (4.2.9)

and by considering the O(ε) terms in equations eqs. (4.2.2) to (4.2.8), arrive at a linear system of

equations describing the perturbation. The dynamical behaviour of ξ is given by the linearised form
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of (4.2.3):

ρ0
∂2ξ

∂t2
= F(ξ), (4.2.10)

where F(ξ) is the force operator:

F(ξ) ≡ J0 × B1 + J1 × B0 −∇p1, (4.2.11)

=
1

µ0
(∇× B0)× B1 +

1

µ0
(∇× B1)× B0 −∇p1, (4.2.12)

and B1 and p1 are related to ξ by the linearised forms of equations eqs. (4.2.2) and (4.2.4):

B1 = ∇× (ξ × B0) (4.2.13)

p1 = −ξ · p0 − γp0∇ · ξ. (4.2.14)

Taking fluctuating quantities to vary as A1 = A1(t = 0) exp(−iΩt), eq. (4.2.10) becomes

−Ω2ρ0ξ = F(ξ) (4.2.15)

with stability determined by the complex frequency Ω. It can be shown (see for example Freidberg

[12]) that F is self-adjoint, that is,

∫
η · F(ξ)dr =

∫
ξ · F(η)dr, (4.2.16)

for arbitrary vectors (η, ξ). This has the important consequence that Ω2 is purely real; one can then

assess stability of a mode ξ simply by checking the sign of Ω2.

The energy principle [64] states that a particular plasma equilibrium is stable if and only if

δW (ξ∗, ξ) ≡ −1

2

∫
drξ∗F(ξ) ≥ 0 (4.2.17)

(where ξ∗ is the complex conjugate of ξ) for all allowable trial functions ξ. Physically, δW represents

the change in the potential energy of the system arising from a plasma perturbation ξ. Whether a small

departure from equilibrium grows or decays depends upon the energetic favourability (whether δW

is positive or negative).

IBMs are an instability characterised by a long wavelength k‖ parallel to b and a short perpen-
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dicular wavelength k⊥, corresponding to high toroidal mode number n. This tends to localise the

instability to a particular flux surface in order to minimise the stabilising effect of magnetic field

bending (discussed shortly). For such internal, localised modes, one need only consider δW for the

plasma (rather than the surrounding vacuum/wall), which can be written in an “intuitive” form [12]

as

δW =
1

2µ0

∫
[

field line bending︷ ︸︸ ︷
|B1⊥|2 +

magnetic compression︷ ︸︸ ︷
B2|∇ · ξ⊥ + 2ξ⊥ · κ|2

+ µ0γp0|∇ · ξ|2︸ ︷︷ ︸
plasma compression

− 2µ0(ξ⊥ ·∇p0)(ξ∗⊥ · κ)︸ ︷︷ ︸
∇p drive

−µ0J‖ξ
∗
⊥ × b ·Q⊥(ξ⊥)︸ ︷︷ ︸
J‖ drive

]dr. (4.2.18)

The first three terms are always positive, and therefore stabilising; these correspond to the energy

required for ξ to bend the magnetic field, compress the magnetic field and compress the plasma

respectively. The last two terms may be positive or negative and thus drive instabilities.

Ideal MHD ballooning modes are pressure-driven, so the penultimate term is the driving mecha-

nism. As can be seen, the sign of this contribution depends on the sign of both ξ⊥ ·∇p0 and ξ∗⊥ · κ.

This can be minimised (made most negative) by ξ being large in regions of “bad curvature” (where

(ξ⊥ ·∇p0)(ξ∗⊥ · κ) < 0) and small in regions of “good curvature” (where (ξ⊥ ·∇p0)(ξ∗⊥ · κ) > 0).

However, variation of ξ along B0 causes greater field-line bending (see eq. (4.2.13)), which is stabil-

ising. Thus, the structure and stability ballooning modes are determined by a competition between

these two effects.

4.2.3 The one-dimensional ideal ballooning equation

Eq. (4.2.18) is physically informative but difficult to apply as it must be solved for all trial functions ξ.

Fortunately, an elegant approach for assessing ballooning stability was presented by Connor, Taylor

and Hastie [65]. A full description is beyond the scope of this thesis, but a summary of their procedure

is as follows:

1. One considers a single Fourier mode of the form ξ = ξ(ψ, χ) exp(inζ), where (ψ, ζ, χ) form

an orthogonal coordinate system [66]. This is then decomposed into three scalars (X,U,Z),

where X and U are proportional to ξn = ξ · n̂ and ξs = ξ · ŝ (where n̂ ≡ ∇ψ/|∇ψ| and

ŝ ≡ (∇ψ × b/|∇ψ|)) respectively.

2. Z is then eliminated from eq. (4.2.18) by minimising δW with respect to ξ‖. This is done by

noting that only the third term in eq. (4.2.18) has dependence on ξ‖. Provided the magnetic
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shear is non-vanishing, it is always possible to select ξ‖ such that ∇ · ξ = 0 and hence the sta-

bilising plasma compression term vanishes (i.e. the most unstable modes are incompressible).

3. One then minimises δW with respect to U by making an expansion in 1/n � 1, giving an

expression for δW in terms of X(ψ, χ) only.

4. δW is then minimised with respect to X , subject to a normalisation representing the kinetic

energy of the transverse motion of ξ. This is done using the principle of constrained varia-

tion, yielding a (rather cumbersome) two-dimensional differential eigenvalue equation where

X(ψ, χ) is the eigenfunction and (Ω(ψ, χ))2 is the eigenvalue.

5. At this point, a difficulty arises owing to the inconsistency between the periodicity requirements

of X(ψ, χ) (since X must be 2π-periodic in χ) and the effect of magnetic shear, which causes

a given bundle of magnetic field lines to become non-periodic in χ [12, 41, 65]. The solution

proposed by Connor et al. is the ballooning transform, in which the periodic function X(ψ, χ)

is represented by an infinite sum of non-periodic “quasi-modes” X̂(ψ, l):

X(ψ, χ) =
∑
m

exp

(
−2πimχ

χ0

)∫ ∞
−∞

dl exp

(
2πiml

χ0

)
X̂(ψ, l), (4.2.19)

which is well-behaved provided that the X̂ decays sufficiently quickly at large |l|. It can be

shown that the quasi-mode X̂ which is a solution to the two-dimensional ballooning mode

equation in the infinite domain −∞ < l < ∞ will generate a periodic solution X with the

same eigenvalue. To assess stability, one therefore only needs check the sign of Ω2 for the most

unstable quasi-mode.

6. An eikonal approach is then used to separate the rapid variation arising from large k⊥ and

slower variation:

X̂(ψ, l) = F (ψ, l) exp (iS) , (4.2.20)

where S = n
(
χ−

∫ l
l0

dχ
dl0
dl
)

(S is constant along a field line specified by (ψ, l0) but rapidly

varying across field lines) and F (ψ, y) is a slowly-varying “amplitude envelope”.

7. Inserting (4.2.20) into the two-dimensional equation and expanding in n1/2 (such that F =

F0 + F1 + ...), one removes all explicit dependence of F0 on ψ. F0 is then given by a one-

dimensional equation, sometimes referred to as the n =∞ ideal ballooning equation. This can
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be written as [67]:

field line bending︷ ︸︸ ︷
∂

∂l

(
k2
⊥
∂F0

∂l

)
−

∇p drive︷ ︸︸ ︷
2µ0

∂p0

∂ψ

(
κn
|∇ψ|

k2
n −

κs|∇ψ|
B0

knks

)
F0 = −Ω2

0

(
µ0ρ0

B2
0

k2
⊥

)
F0, (4.2.21)

where k⊥ = ∇S = kn|∇ψ|n̂ + ksB0/|∇ψ|̂s, k2
⊥ = k2

n|∇ψ|2 + k2
sB

2
0/|∇ψ|2 and κ ≡

b ·∇b = κnn̂ + κsŝ. The dependence of Ω0 and F0 on ψ arises only from the ψ-dependence

of equilibrium quantities and thus the lowest order equation can be solved for each flux surface

independently. Higher-order corrections (Ω1, F1) couple together these surfaces and tend to

have a stabilising effect. However, one can use eq. (4.2.21) to assess the stability of n = ∞

ballooning modes without appealing to higher order.

8. Finally, one finds the stability of eq. (4.2.21) (i.e. the sign of Ω2
0) using Newcomb’s procedure

[68]. This consists of letting Ω2
0 = 0 and solving eq. (4.2.21) for F0. It can be shown [68] that

the given field line is stable to the ballooning mode if and only if the trial function F0(Ω2
0 = 0)

does not vanish in the interval (−∞ < l <∞).

Thus, Connor et al.’s approach allows one to calculate stability quickly and easily by integrating

a one-dimensional differential equation (eq. (4.2.21)) for a field line specified by ψ and l0. This has

been numerically implemented in GS2’s module ideal ball, described in the following section.

4.3 Ideal ballooning stability analysis in GS2

Converting eq. (4.3.1) to GS2’s field-aligned coordinates and setting Ω2
0 = 0 gives the simulation

equation solved by ideal ball:

∂

∂z

(
G(z)

∂

∂z

)
F0 + C(z)F0 = 0, (4.3.1)

where

C = −1

2

∂β

∂ρ

cvdrift

B̃0 · (b ·∇z)
; G = |∇̃α|2 (b ·∇z)

B̃0

(4.3.2)

cvdrift =
1

B̃3
0

∂ψN
∂ρ

(b× ∇̃β) · ∇̃α+
2

B̃2
0

∂ψN
∂ρ
· ∇̃α, (4.3.3)
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Figure 4.1: Left: IBM stability as a function of normalised pressure gradient α and magnetic shear ŝ for the cyclone base
case. Right: ideal ball coefficients G and C for ŝ = 2.75, α = 1 (marked by blue cross in left plot).

where I have used the field line selected by θ0 = 0 as this is the implementation in the main branch

of the GS2 code and is often the most unstable field line for a given surface. Computing stability for

θ0 6= 0 is implemented in the branch feature/ideal-ball-theta0.

ideal ball has been used to study ballooning stability at low computational cost in axisym-

metric fusion devices (see e.g. Patel et al. [69]). Besides being able to compute IBM stability for a

given field line on a particular magnetic surface, ideal ball can efficiently scan the normalised

pressure gradient α ≡ β · (1/p) · ∂p/∂ψN (ψN ≡ ψ/ψLCFS will be used as the radial coordinate

in the GS2 results presented in this thesis) and magnetic shear ŝ ≡ ∂q/∂ψN for some fixed set of

geometric parameters1. An example of IBM stability for a flux surface as a function of (ŝ, α) is

shown in figure 4.1 (left), where the flux surface corresponds to the cyclone base case (CBC) [70]; a

circular, finite aspect ratio flux surface. Figure 4.1 (right) shows for reference the quantities G and C

corresponding to (α = 1, ŝ = 2.75). The unstable region in figure 4.1 (left) differs slightly at low ŝ

to examples shown e.g. by Wesson [8], which specify a flux surface using a “shifted circle” model

which is only strictly valid in the limit of large aspect ratio [55]. However, figure 4.1 qualitatively

agrees with similar finite aspect ratio flux surfaces e.g. Greene and Chance [71].

It will be helpful in later sections to describe the structure of IBM stability in (ŝ, α) space here.

One observes that for ŝ > ŝmin, the plasma is ballooning unstable for a range of pressure gradients
1The normalised pressure gradient α is not to be confused with the binormal coordinate α. The former appears in only

in this chapter and in chapter 5. The latter appears in this chapter, chapter 3 and chapter 7.
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(αcrit(ŝ) < α < α2nd(ŝ)). The region ŝ < ŝmin is referred to as the second stability window, in

which the plasma is stable for all α. The window size (i.e. the value of ŝmin) is particularly important

for spherical tokamak equilibria (e.g. [72]), since a high core β requires α(ψN ) to be large, and

typically α > αcrit is required.

4.4 Kinetic effects and the KBM

The IBM model presented here makes several assumptions regarding the plasma. Most notably it si-

multaneously takes the limits: (1) k⊥ρi � 1 (i.e. the mode’s perpendicular scale is much greater than

the Larmor radius, for ideal MHD to be applicable) and (2) k⊥L � 1, where L is the characteristic

equilibrium scale of the plasma (in order to make the high-n expansion). That is, the spatial scale of

the mode is asymptotically smaller than the typical equilibrium scale but asymptotically larger than

the gyro-radius. Simultaneously satisfying both requirements in a real plasma can be challenging,

and thus one requires caution when applying eq. (4.2.21) to a real plasma.

The focus of this thesis is microinstabilities, which by definition are Larmor radius-scaled; in gen-

eral, therefore, kinetic effects must be included, for example by using gyrokinetics. The gyrokinetic

equivalent of the IBM is the kinetic ballooning mode (KBM), which shares some of the features of

the IBM but is rather more complicated.

A general description of KBMs was presented by Antonsen and Lane [73] and by Tang et al. [74],

in which the linear EM GKE is solved for hs in terms of the fields φ, A1‖, B1‖ and the expression

for hs is inserted into the field equations. This results in three coupled, linear, integro-differential

equations which may then be solved in certain limits. In particular, (4.2.21) is recovered by Tang et

al. in the long-wavelength low frequency limit in the absence of trapped particles (the low-frequency

limit is of interest since it describes IBMs near marginal stability).

However, the complexity of these equations make it difficult to assess whether kinetic effects

have a net stabilising or net destabilising effect beyond simple limits. For example, Aleynokiva et al.

[75] rigorously showed that in a strongly-driven low-β (β ∼ ε = vth,i/(Ω
2a2) � 1) limit (although

this ordering is described as a “high β” ordering in the publication to distinguish from the ordering

β ∼ ε2), the KBM reduces to the IBM with a diamagnetic correction. This reduces the KBM stability

boundary with respect to the IBM boundary. However, as the pressure drive is reduced, additional

effects come into play which appear to have a stabilising role. Likewise, an investigation by Hastie and

Hasketh [76]studying the effect of finite Larmor radius (FLR) on the KBM shows this to be weakly
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destabilising at long wavelength but strongly stabilising at short wavelength. Drift resonances may

also provide kinetic destabilisation of the mode [73, 77], with the latter arguing that drift resonances

reduce αcrit and that FLR effects can provide stabilisation but cannot change αcrit (in a large-A,

low-β, vth,i/(Ωa) < 1 limit). Accurately describing KBMs in situations where these limits are not

satisfied (such as spherical tokamaks, which have low A and high β) therefore requires gyrokinetic

simulation.

4.5 Concluding remarks

The basic physics of the KBM is described by ideal MHD ballooning theory, for which stability can

be quickly and easily assessed using the approach given by Connor et al. [65]. This approach is

implemented in the GS2 module ideal ball, and the structure of IBM stability in (ŝ, α) space

can be easily calculated at low computational cost ((O)( CPU minutes)). For a given geometric flux

surface, scanning (ŝ, α) shows a “nose” of unstable phase space characterised by a “second stability

window size” ŝmin, below which the IBM is stable for all α. For ŝ > ŝmin, stability is parametrised by

αcrit(ŝ) and α2nd(ŝ). The KBM is modified by kinetic effects, which have been studied analytically

in the gyrokinetic framework. These approaches can make quantitative predictions for the KBM

complex frequency in certain limits.

More generally, one can study KBMs numerically by performing gyrokinetic simulations, as

has been widely reported (see for example [69, 78, 79]), which has the benefit that stability can be

examined for realistic geometries and plasma conditions. One example of their use is to inform the

design choice of fusion devices; hypothetical plasm equilibria must be sufficiently stable to KBMs to

ensure good confinement, such that power can be economically produced with reasonable levels of

heating and fuelling. This consideration is the subject of the next chapter.



Chapter 5

Kinetic ballooning modes as a constraint

on plasma triangularity in commercial

spherical tokamaks

5.1 Introduction

In this chapter, I address the stability of kinetic ballooning modes (KBMs) in spherical tokamaks

(STs) as the plasma triangularity is varied (triangularity will be defined mathematically in section

5.2). These results form the basis of a publication [80], which this chapter very closely matches.

5.2 Background and motivation

As noted in section 1.3.1.1, the ST is characterised by a relatively small aspect ratioA, strong shaping

and high plasma β. The reduced radial machine size lowers the capital cost, and the favourable

stability properties are likely to make high-performance plasmas more readily attainable. A recent

study predicted that an increase in the fusion triple product nTτE by a factor of 3 could be achieved in

an ST compared to a conventional tokamak with similar values of fusion power and field strength but

different machine size [81]. Spherical tokamaks are thus receiving significant attention in the fusion

community. Several devices have recently been built or upgraded, such as NSTX-U [82], ST40 [83]

and MAST-U [84]. Others are currently being designed or built, such as SMART [85] and STEP [86].

However, reactor-relevant equilibria must have sufficiently low turbulent transport to maintain their

density and temperature profiles with modest heating power (equivalently, nTτE must be sufficiently

85



86CHAPTER 5. KBMS AS A TRIANGULARITY CONSTRAINT IN SPHERICAL TOKAMAKS

(R0,Rt,Rb)

R

Z

r

δ=0

R0Rt
Rb

R

r

δ=0.3

R0 Rt
Rb

R

r

δ= −0.3

Figure 5.1: Examples of flux surface cross sections to illustrate the definition of triangularity. These cross sections have
aspect ratio A = rLCFS/R = 1.67 and elongation κ = 3. From left to right: zero triangularity (δ = 0), positive
triangularity (δ = 0.3), negative triangularity (δ = −0.3).

large). Optimising ST equilibria in this regard is an area of active research.

A novel approach to optimisation in conventional aspect ratio tokamaks (CTs) is to make the

plasma triangularity (δ) negative, where δ is defined for a given flux surface as

δ ≡ 1

2

2R0 −Rt −Rb
r

, (5.2.1)

whereRt(b) is the major radial location of the maximum (minimum) value of Z on the surface andR0

the major radius (where the subscript 0 is used to avoid confusion with the (R,Z) coordinate system).

This definition is illustrated in figure 5.1, and 3D pictorial examples of differing triangularity in CTs

and STs are shown in figure 5.2. Experiments in TCV [88] and DIII-D [89] reported reduced turbu-

lence for negative triangularity plasmas. For DIII-D, stored energy increased by 25% and electron

energy confinement time by 26% compared to L-mode positive triangularity shots.

However, no L-H transition occurred for the negative triangularity discharge (which was per-

formed in a limiter, rather than divertor, configuration), even at high heating power. This was found

to coincide with the (modelled) H-mode pedestal being unstable to IBMs [90]. Saarelma et al [90]

proposed that L-H transition in negative triangularity is only achievable when the pedestal can occupy
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Figure 5.2: 3D visualisation of differing triangularities in tokamak plasmas. Upper row: aspect ratio A = 3, unity
elongation (κ = 1). Lower row: aspect ratio A = 1.67, κ = 3. From left to right: zero triangularity (δ = 0), positive
triangularity (δ = 0.3), negative triangularity (δ = −0.3). Images generated using paramak [87].

the second stability window. Without second stability access, the pedestal becomes IBM-unstable as it

tries to form and strong KBM-driven turbulence prevents pedestal formation: H-mode is suppressed.

IBMs (and thus, presumably, KBMs) are known to be destabilised by negative triangularity [91], and

this raises the question of whether negative triangularity is viable in commercial STs, which typically

access second stability across the full radius [72].

This work seeks to answer two questions: (1) Do KBMs prohibit strongly negative triangularity

in commercial ST reactors? (2) Are KBMs likely to be problematic in positive triangularity ST equi-

libria? To this end, gyrokinetic simulations with GS2 are used to examine the ion-scale instabilities

in three strongly shaped hypothetical ST equilibria, constructed with a commercial reactor in mind.

5.3 Equilibria selected

The equilibria used (which are publicly available [92]) are generated by the fixed-boundary equi-

librium code SCENE [93], which simultaneously solves the Grad-Shafranov equation and the neo-

classical current contributions to generate an equilibrium with self-consistent current profiles. Some

important equilibria properties are shown in table 5.1 and the radial profiles of electron density ne,

electron temperature Te, safety factor q, triangularity δ and elongation κ ≡ Rt−Rb
r are plotted in figure

5.3. For simplicity Te = Ti is used throughout this work. Since fusion αs preferentially heat elec-

trons, it is plausible that Te would exceed Ti in practice. However, the focus of this study is ballooning

modes, which are typically sensitive to the total pressure gradient rather than to the contribution of

individual species.
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A R0 q0 qLCFS δLCFS κLCFS 〈β〉V βN IT (MA) BT0 (T) V (m3) PH (MW) Pfus (MW)
“-ve tri” 1.67 2.50 2.58 4.50 −0.300 2.80 18.1% 4.21 16.5 1.93 310 60 514
“high q0” 1.67 2.50 2.71 8.97 0.543 2.80 18.6% 5.47 16.5 1.83 287 60 808
“low q0” 1.67 2.50 1.38 9.16 0.543 2.80 18.5% 5.50 16.5 1.83 288 60 839

Table 5.1: Key equilibria quantities: aspect ratio A, magnetic axis major radius R0, q on-axis and at LCFS, LCFS
triangularity and elongation (δLCFS , κLCFS), plasma β and normalised β (both volume-averaged), toroidal current IT ,
on-axis toroidal field BT0, volume V , heating power PH and fusion power Pfus.

0.0

0.5

1.0

1.5

2.0

2.5

n e
(×

10
20
m

3 )

0

5

10

15

T e
(k
eV

)

-ve tri
low q0
high q0

0.0 0.2 0.4 0.6 0.8 1.0
ψN

2

4

6

8

q

2 4

−4

−2

0

2

4

Z(
m
)

-ve tri

2 4
R(m)

low q0

2 4

high q0

0.0 0.5 1.0
ψN

2.8

3.0

3.2

3.4

3.6

3.8

κ

-ve tri
low q0
high q0

0.0 0.5 1.0
ψN

−0.2

0.0

0.2

0.4

δ

Figure 5.3: Flux surfaces and radial profiles of ne, Te, q, κ, δ for the three equilibria used in this study.

The equilibria are constructed with identical major radius and elongation on the last closed flux

surface (LCFS), total toroidal current and auxiliary heating/current drive power. The density and

temperature profiles are reasonable models but not the results of transport simulations.

Two equilibria (which I label “high q0” and “low q0”) are given strongly positive LCFS triangu-

larity (0.543), the main difference being their on-axis safety factor q0. The third (“-ve tri”) has LCFS

triangularity of −0.3. Although this leads to a greater plasma volume, the density pedestal gradient

is lower, resulting in a reduced fusion power of 40% compared to the positive triangularity cases.
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5.4 Gyrokinetic analysis

I examine the KBM and other microinstabilities using GS2, including A‖ and B‖ fluctuations but

omitting the nonlinear term. For the most part, these simulations find the complex frequency Ω =

ω + iγ of the dominant mode as a function of (ψN , k̃y, k̃x) in each equilibrium. The “reference”

gyro-radius here is the proton thermal gyro-radius of the surface (ρr(ψN ) ≡
√

2T/mp/Ωp where

mp is the proton mass and Ωp the proton gyrofrequency). I will also connect kyρr to toroidal mode

number n = A(ψN )(kyρr) whereA is a weakly varying function of ψN . The research presented here

uses GS2 commit 142c787 (version 8.1).

5.4.1 Effect of sheared plasma rotation

The gyrokinetic-Maxwell equations used here assume negligible plasma rotation. In reality, sheared

rotation in tokamak plasmas does exist and can stabilise microinstabilities [94]. To gauge the magni-

tude of this effect, the Hahm-Burrel shearing rate |ωHB| [94] is estimated by calculating the E × B

flow arising from the diamagnetic flow in the equilibrium. That is, the E× B flow shear is estimated

from the balance of electric field and pressure gradient forces in the equilibrium, in the absence of

externally driven rotation (as expected for reactor-grade tokamak plasmas).

Similar to the approach used by Applegate et. al [95], I estimate the shearing rate as

ωHB =
(∂ψ/∂r)2

B

∂2Φ

∂ψ2
, (5.4.1)

where B is the magnetic field strength and Φ is the equilibrium electrostatic potential. Φ is estimated

by taking the equilibrium force balance

∇p
nie

= V× B + E (5.4.2)

(where p is the ion pressure, ηi = (T ′ini)/(Tin
′
i), ′ denotes a derivative with respect to ψ, V is the ion

flow velocity and E the equilibrium electric field) and setting V = 0. A little manipulation yields

ωHB =
(∂ψ/∂r)2

B · nie

(
∂2p

∂ψ2
+

1

p · (1 + ηi)

(
∂p

∂ψ

)2
)
, (5.4.3)

where B is taken as the field strength on the surface at the location of the magnetic axis.
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5.4.2 Simulation parameters, species choice and collisions

The results presented here simulate a kinetic electron species and a single ion species with (Zi = 1,

m̃s = 2.5); this effectively simulates a DT plasma with equal densities of deuterium and tritium.

Collisions are ignored in this work.

The values of non-physical simulation parameters are chosen to minimise computational cost

without compromising accuracy of the simulations. This choice is justified by comparing a selection

of (ψN , kyρr, θ0) for the three equilibria to higher-fidelity simulations. In particular, the difference

in growth rate ∆γ = γ0 − γhf (where γ0 is the growth rate found with the study parameters and

γhf the growth rate for a higher-fidelity simulation) is used as a figure of merit. In some cases γ0,hf

is low, resulting in large fractional errors. Accordingly, the absolute error (in normalised units of

vth,r/rLCFS) is reported here.

The parameters governing the parallel coordinate are nperiod = 3, nz = 192 (although it is

sometimes necessary to adjust nz owing to difficulties encountered in GS2’s gridgen module).

nperiod = 3 is insufficient to resolve extended micro-tearing structures which have been seen in

high-β equilibria [69], but is sufficient to resolve KBMs. Preliminary research did not reveal any

(dominant) extended structures at long wavelength. Comparing nperiod = 3 to nperiod = 5, I find

max(|∆γ|) = 4E−3 with rms value ∆γrms ≡
√∑

N (∆γ)2
N/N = 4E−4. Increasing nz = 192 to

nz = 394 results in ∆γrms = 5E−3 for ψN <= 0.9 and ∆γrms = 0.02 for ψN > 0.9, reflecting a

difficulty in the calculation of geometric quantities in GS2 for strongly-shaped numerically-prescribed

surfaces.

The equilibrium data provides profiles for the density n(ψN ) of electrons, the main ion species,

helium ash and two impurity species: tungsten (with typical density nW /ne ∼ 10−5) and xenon

(nXe/ne ∼ 10−4) (both assumed fully ionised). Lacking simulated temperature profiles, it is assumed

that T (ψN ) is identical for all species (the effect of fast α particles could be an interesting area of

future research.) Comparing simulations with the five kinetic species to the “reduced” simulation

with two kinetic species (in which ni = ne is set to ensure quasi-neutrality) results in a difference of

∆γrms = 0.02.

Collisions are ignored in the results presented here. Comparing collisionless to collisional sim-

ulations found ∆γrms = 0.01 for ψN ≤ 0.9 and ∆γrms = 0.09 for ψN > 0.9 (consistent with the

lower temperatures, and hence increased collisionality, near the edge).

To summarise, the tests described above find that these simulations present a realistic picture for

kyρr <∼ 1 over most of the plasma (ψN <∼ 0.9). Near the edge (ψN > 0.9) collisionality becomes
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Figure 5.4: “-ve tri” equilibrium stability properties vs ψN . Upper: Equilibrium shear (ŝ) and second stability “window
size” (ŝmin). Middle: Equilibrium pressure gradient (α), marginally IBM-unstable α (αcrit, α2nd); shaded region indicates
IBM-unstable plasma parameters. Lower: Gyrokinetic growth rate (γ(ψN )) for several kyρr and θ0 = 0 (solid lines).
Dashed line indicates estimated Hahm-Burrel shearing rate |ωHB |.

more important and the strong shaping presents challenges to the calculation of GS2’s z grid; these

edge results should therefore be interpreted qualitatively, rather than quantitatively. Suprathermal α

particles are included in the equilibrium calculations, but in the gyrokinetic simulation they are incor-

porated into the ion species by increasing ni and ensuring the kinetic profiles matched the prescribed

pressure gradient while maintaining ni = ne and Ti = Te.

5.5 Stability properties of the negative triangularity equilibrium

In the “-ve tri” equilibrium, second stability is blocked across the entire plasma (ŝmin < 0) and

α(ψ) > αcrit(ψ) (shown in figure 5.4). As a result, the equilibrium is ideal MHD ballooning unstable

over the core. In the pedestal, α strays into the second stable region (α > α2nd), coinciding with a

sharp drop in the normalised gyrokinetic growth rate γ(ψN ) (lower plot). This supports the picture

(validated in section 5.7.1) that, where the plasma is IBM-unstable, long-wavelength KBMs are the

dominant instability. It should be noted that the gyrokinetic growth rate γ is normalised to the thermal

velocity associated with the flux surface, so the absolute growth rates have a different (but qualitatively

similar) trend.
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Figure 5.5: Gyrokinetic growth rate γ for several flux surfaces for “-ve tri” equilibrium. Left: γ(kyρr) for θ0 = 0,
(n = 10 and n = 50 marked with filled circles and diamonds respectively). Middle and right: γ(θ0) for kyρr = 0.05 and
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At ψN >∼ 0.97, there are strongly growing instabilities, as the equilibrium again becomes

ballooning-unstable. However, the estimated |ωHB| is high in this region, so flow shear (as well

as collisions) would likely need be included in simulations to give a realistic picture of stability.

Figure 5.5 shows γ(kyρr, θ0) for several values of ψN . For ψN = 0.5, 0.8, the instability spans a

wide range of low kyρr, suggestive of an “ideal” KBM, largely governed by ideal MHD physics [75,

96]. These KBMs are also wide in θ0, and thus less easily stabilised by flow shear. ψN = 0.9 shows

the KBM being less unstable for modes with kyρr <∼ 0.1, before the onset of a negative-frequency

tearing parity mode at kyρr <∼ 0.01. At such low kyρr, the validity of the local approximation as

applied to this equilibrium becomes questionable. However, some discussion is given to the instability

in section 5.7.1.

Although nonlinear gyrokinetic simulations would be needed to calculate the turbulent fluxes of

particles and energy, these linear results indicate that those fluxes would be large in the core, since

the linear growth rate is moderately large over a wide range of (kyρr, θ0). It has previously been

reported that turbulent fluxes (in particular, the electron heat flux) increase strongly as β exceeds

the marginally stable value for the KBM [97], which is clearly the case here. It should be noted

that reliable nonlinear results may be difficult to obtain, since electromagnetic nonlinear simulations

often fail to saturate, for reasons which may be physical (e.g. [98]) or non-physical. Electromagnetic

nonlinear stellarator simulations reported by McKinney et al. [99], for example, only saturate when

the lowest-ky modes are linearly stable to KBMs. Given the wide range of KBM-unstable ky values,

this condition would not be satisfied here.
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5.5.1 Second stability access in the negative triangularity regime

Section 5.5 supports a simple picture: KBM growth rates tracking IBM stability, and are likely unac-

ceptably high for steady-state operation. This prompts the question: is the closing of second stability

a general feature of negative triangularity STs, or could a configuration exist with second stability

access?

To test this, theψN = 0.5 surface from the negative triangularity equilibrium is Miller-parametrised.

The triangularity and elongation are then varied in isolation, to elucidate the underlying causes of re-

duced stability and to investigate whether the destabilising effect of negative triangularity can be

compensated by tuning other plasma parameters. A description of the parametrisation process is

given in the following section.

5.5.1.1 Miller parametrisation

Miller et al.’s finite-A equilibrium model [55] describes each surface by nine dimensionless param-

eters: aspect ratio A, elongation κ, triangularity δ, the radial derivatives of major radius, elongation

and triangularity sκ, sδ, ∂R0/∂ψN , the safety factor q, normalised magnetic shear ŝ ≡ ∂q/∂ψN , and

normalised pressure gradient α ≡ −∂β/∂ψN . These specify the shape of the flux surface and its

poloidal magnetic field:

R = R0 + r cos[θM + x sin θM ], (5.5.1)

Z = κr sin θM , (5.5.2)

Bp =
(∂ψ/∂r)κ−1R−1[sin2(θM+x sin θM )(1+x cos θM )2+κ2 cos2 θM ]

1/2

cos(x sin θM )+(∂R0/∂r) cos θM+[sκ−sδ cos θM+(1+sκ)x cos θM ] sin θM sin(θM+x sin θM )
, (5.5.3)

where R and Z are cylindrical coordinates (with the magnetic axis located at Z = 0), Bp the poloidal

magnetic field and θM a poloidal coordinate ranging from 0 to 2π and x = sin−1(δ). (NB ŝ and α do

not appear in equations (5.5.1) to (5.5.3) so can be freely chosen for a given (R, Z, Bp).)

Miller parameters for the numerical SCENE flux surface data are found as follows. Firstly, the

numerical values of R, Z and Bp for the flux surface of interest are extracted from the SCENE data.

R and Z are used to construct θgeo, a poloidal coordinate defined by

θgeo = arctan((Z − Zmaxis)/(R−Rmaxis)), where (Rmaxis, Zmaxis) is the location of the mag-

netic axis, and is taken from the SCENE equilibrium. Splines of R(θgeo) and Z(θgeo) are used to

upsample R and Z, and from this calculate the values for A, r, κ, δ and construct Miller’s poloidal
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coordinate by defining

θM ≡ arcsin((Z − Zmaxis)/(κr)). (5.5.4)

Bp(θM ) is then constructed and fitted to (5.5.3), with fitting parameters sκ, sδ, ∂rR0, ∂ψ/∂r (the

latter determining q).

The above process yields an estimate of the Miller parameters describing a particular surface.

However, it treats the parameters (A, r, κ, δ) on a different footing to (sκ, sδ, ∂rR0, q); calculating

the former from R and Z does not guarantee an optimal fit of Bp, or indeed of (R,Z) (since most

of the R, Z points are ignored.) Therefore, having fitted these values, I apply an additional step of

simultaneously fitting (RM (θM ), ZM (θM ), BpM (θM )) to (R(θM ), Z(θM ), Bp(θM )), allowing all 8

parameters to vary freely. The previously calculated values are used as initial guesses. This method

ensures that Bp is treated on the same footing as R and Z, at the expense of allowing (A, r, κ, δ)

to deviate from their geometric values. Finally, the values of ŝ and α are selected. A caveat of the

scheme presented above is that for reasons of convenience, I use the numerical equilibrium value of

q rather than the value derived from ∂rR0.

Plots of the Miller parametrisation for several flux surfaces for each equilibrium are shown in



5.5. STABILITY PROPERTIES OF THE NEGATIVE TRIANGULARITY EQUILIBRIUM 95

Miller quantity “-ve tri” ψN = 0.5 “high q0” ψN = 0.5 “low q0” ψN = 0.5

A 2.94 2.67 2.79

κ 3.28 2.85 2.79

δ −0.154 0.340 0.305

sκ −1.99 −0.936 −0.673

sδ −0.359 0.145 0.220

shift≡ ∂R0/∂r −0.462 −0.508 −0.482

q 3.05 3.50 3.09

ŝ 0.583 0.536 0.644

α 0.791 1.15 1.13

Table 5.2: Miller parameters for the ψN = 0.5 surfaces of each equilibria.

figure 5.6. R,Z,Bp(θM ) and (R,Z) show good agreement between the SCENE data and the Miller

fit in the core, with slightly worse agreement towards the edge; in particular, the fitted Bp for the “-ve

tri” has a tendency to artificially peak on the inboard side. Another systematic feature is that the κ

tends to be underestimated for the positive triangularity cases and overestimated for “-ve tri” with the

effect becoming more exaggerated at higher ψN .

5.5.1.2 Results of parametrisation investigation

The role of reducing δ is to reduce both ŝmin and αcrit i.e. to close the second stability window and

shrink the first stability region. For negative δ, the effect of increasing κ is to increase αcrit but reduce

ŝmin. These results are illustrated in figure 5.7.

It should be noted that the other Miller parameters, such as q, also affect ŝmin. A general study

of the parametric dependencies of the IBM is beyond the scope of this work, but it is found that that

relatively large changes to the Miller parameters of this surface are required to open second stability

at fixed (δ, κ). As an example, achieving ŝmin > 0 for the “-ve tri” ψN = 0.5 surface requires

increasing q from 3.0 to 5.4 with all other parameters kept fixed.

I also explore the effect of adjusting the local Shafranov shift parameter, |∂R0/∂ψN |. This is

generally higher in the positive triangularity equilibria than for negative triangularity (e.g. “high q0”

has 10% greater shift than “-ve tri” at ψN = 0.5), probably due to the reduced core pressure in the

latter. Scanning |∂R0/∂ψN | shows that ŝmin decreases (i.e. became more negative) as the magnitude

of |∂R0/∂ψN | increases from its original Miller-fitted value. Whilst this is not exactly the same

as recalculating the global equilibrium with an increased core βN , this suggests that attempting to

operate at higher β is unlikely to alleviate the problem of second stability access.
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5.5.2 β limits for negative triangularity

These results indicate that δ < 0 is not an attractive option with respect to IBMs, unless β is suffi-

ciently low that the equilibrium remains in the first stable region. However, as can be seen by figure

5.4 (middle), the first stable region is small; a normalised pressure profile confined to this region

(α(ψN ) = αcrit(ψN )) would reduce α by a factor of ∼ 2-3 over most of the plasma. The volume-

averaged plasma β would consequently fall by a similar amount.

For fixed plasma size and plasma pressure (to ensure the same fusion power), a low-β device

would require a large magnetic field, which is difficult to achieve in STs due to the reduced cen-

tre column space. High temperature superconductors may provide a possible pathway but present

engineering challenges.

5.6 Stability properties of positive triangularity equilibria

ideal ball simulations of the positive triangularity equilibria reveal better IBM stability, with

ŝmin > 0 everywhere (this is shown in figure 5.8). Despite this, the “low q0” equilibrium is unstable

near the magnetic axis (ψN <∼ 0.5), illustrating the importance of current distribution (via its effect

on q) on ballooning stability. A “high q0” is achieved with a hollow current profile, and this is IBM-

stable across the plasma. Plots of IBM stability for flux surfaces ψN = 0.1 and ψN = 0.9 for all 3

equilibria are shown in figure 5.9.
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equilibrium. NB for “high q0”, ŝ < ŝmin for all values of ψN , so αcrit and α2nd is undefined.

The gyrokinetic γ(ψN ) (shown in figure 5.10) show similar behaviour between “high q0” and

“low q0” for ψN >∼ 0.5 (consistent with the similarity of q, κ, δ). In this region, instabilities with

shorter wavelengths (kyρr ∼ 0.5) are dominant for θ0 = 0, peaking near the pedestal top. However,

as shown in figure 5.11, γ(θ0) is very narrow, and hence highly susceptible to E×B shear stabilisation.

However, γ(ψN ) differs in the core (ψN <∼ 0.5), coinciding with differences in IBM stability.

“low q0” exhibits a long-wavelength “ideal” KBM (γ(kyρr) shown in figure 5.11), arising because

the plasma is on or over the ideal ballooning boundary. “high q0” has small but finite γ at long

wavelength. Identification of these dominant instabilities is discussed in the following section.

For both equilibria, γ(ψN ) is lower than for “-ve tri”, unstable over a smaller range of kyρr

(figure 5.11) and of similar magnitude to |ωHB| over much of the plasma. This represents a dramatic

improvement in microstability, as a direct result of making the triangularity positive.

5.7 Instability identification

5.7.1 Negative triangularity

The goal of this section is to identify the core and pedestal instabilities in the “-ve tri” equilibrium, by

considering (kyρr = 0.05, θ0 = 0) for the ψN = 0.5 (core) and ψN = 0.9 (pedestal) flux surfaces.

I first verify that the dominant instability tracks the IBM stability boundary in ŝ − α space (as
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Figure 5.9: IBM stability for three sample flux surfaces for each equilibria. Rows, from top to bottom, are (“-ve tri”, “high
q0”, “low q0”). Columns, from left to right, are (ψN = 0.1, 0.5, 0.9). Crosses marks equilibrium values of ŝ, α.
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100CHAPTER 5. KBMS AS A TRIANGULARITY CONSTRAINT IN SPHERICAL TOKAMAKS

Figure 5.12: Gyrokinetic ŝ−α plot for the ψN = 0.5 (left 4 plots) surface of “-ve tri” equilibrium (kyρr = 0.05, θ0 = 0)
and ψN = 0.9 (right 4 plots). Top row shows mode frequency ω and lower shows growth rate γ. Left column: fixed β.
Right column: fixed gradients. Crosses mark equilibrium ŝ, α.

shown in figure 5.12). For both surfaces, the complex frequency Ω tracks the IBM boundary fairly

well; γ is high across the unstable region and the frequency is smooth and in the ion diamagnetic di-

rection. To self-consistently change α, one must scale the simulation value of β and/or the normalised

kinetic gradients (n′i,e/ni,e, T
′
i,e/Ti,e). Both of these choices are shown in figure 5.12.

Given that the KBM is expected to be sensitive to α, the next test is to examine the dependence

of the instability on (∂T/∂ψN , ∂n/∂ψ, β). This is done by scanning f ≡ β · (1/T ) · (∂T/∂ψN ), in

three cases:

1. Scaling (1/T ) · (∂T/∂ψN ) at fixed β, adjusting (1/n) · (∂n/∂ψN ) to keep α constant.

2. Scaling (1/T ) · (∂T/∂ψN ) at fixed β but keeping η ≡ (n · ∂T/∂ψN )/(T · ∂n/∂ψN ) fixed

(such that f changes α, with f = 0 corresponding to α = 0).

3. Keeping the gradients constant but scaling β.

In all cases, the magnetic geometry is kept fixed (i.e. not changed to be consistent with α). Figure

5.13 (left) shows that Ω(f) and the parallel electric field max(E‖(θ))(f) ≡ max(−∂φ/∂θ−∂A‖/∂t)

(normalised to the electrostatic potential φ) are constant when α is fixed (case 1) for the ψN = 0.5 sur-

face. Cases (2) and (3) demonstrate that the kinetic gradients and β are approximately interchangeable

in driving the mode (provided β > 0). Moreover, the normalised mode structures (|φ̂(θ)|, |Â‖(θ)|,

|B̂‖(θ)|) (figure 5.13 (right)) are virtually identical when f is scanned at fixed α. This confirms the

mode is indeed driven by α. These same features are observed for the (ψN = 0.9, kyρr = 0.05)

instability (figures 5.14 (left) and 5.15 (left)), although the mode structures show some variation.
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Finally, I attempt to classify the negative-frequency tearing-parity mode observed at very long

wavelength on the ψN = 0.9 surface (shown in figure 5.5) by repeating this analysis for k̃y = 0.0021.

The results, shown in figures 5.14 (right) and 5.15 (right), show that this mode is also sensitive to

pressure gradient, with Ω and mode structure insensitive to n′, T ′ at fixed p′. It is possible that this

is a tearing-parity KBM (TKBM), which has been previously reported by McKinney et al. [99]. The

dependence of the mode on β at fixed α is investigated by doubling β and halving the kinetic gradients

(mode structure shown in 5.15, right); the dominant instability in this case has positive frequency and

tearing parity mode. This mode has a with a 10% larger growth rate then the suspected TKBM, so it

is possible that the latter is indeed driven by α, but is obscured by a more unstable mode. The tearing

parity of the “TKBM” may be connected to the fact that θ0 = 0 is not the most unstable mode, i.e.

the KBM “wants” to peak at θM 6= 0.

To conclude, the instability observed across the core is an “ideal MHD”-like KBM, with the

following features:

1. γ tracks the ideal MHD boundary well.

2. The frequency is in the ion diamagnetic direction.

3. The mode has a low parallel electric field E‖(θ), indicative of MHD-like modes [96].
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4. The mode amplitude is greatest in the bad curvature region and has twisting parity.

5. The mode preferentially occurs at long wavelength.

6. The mode structure and complex frequency are sensitive to α but not to kinetic gradients or β

individually.

The kyρr = 0.05 instability found in the pedestal has all of these above properties, although γ is

more sensitive to (kyρr) at long wavelength (shown in figure 5.5). I speculate that this is a “non-

ideal” KBM, destabilised by some kinetic effect(s), allowing it to slightly exceed the ideal boundary.

The very-long wavelength (kyρr = 0.0021) mode is also pressure-driven and may be a TKBM.

5.7.2 Positive triangularity

This analysis is repeated for (ψN = 0.5, kyρr = 0.05, θ0 = 0) for the “high q0” and “low q0”

equilibria. Departures from the ideal MHD stability boundary are seen in ŝ − α space (figure 5.16),

with the KBM smoothly extending across the IBM boundary into the second stability window. This

smooth transition, is confirmed by a fine scan in ŝ at fixed α (shown in figure 5.17).

Like the KBMs discussed in 5.7.1, the mode has a frequency in the ion diamagnetic direction

and twisting parity. E‖ is low, but rises smoothly as ŝ leaves the IBM unstable region. Scanning

f ≡ β ·(1/T ) ·(∂T/∂ψN ) for “high q0” (shown in figure 5.18), again shows the mode to be α-driven.

These features are also found for other flux surfaces sampled across the core, and for kyρr = 0.5 (f

scan for (ψN = 0.8, kyρr = 0.5) shown in figure 5.18). These observations support the conclusion

that, although ideal ballooning stable, the dominant long-wavelength instability in these equilibria is

a “non-ideal” KBM.

5.8 Sensitivity to B1‖ fluctuations

An additional phenomenon common to “-ve tri” and the positive triangularity equilibria is that the

KBMs are strongly stabilised by omitting B1‖ fluctuations from the simulation (B1‖ = 0). This is

illustrated by a gyrokinetic (ŝ−α) scan at fixed β = 0.11 (corresponding to the equilibrium β value)

of the “high q0 ψN = 0.5 flux surface shown in figure 5.16 (bottom row): even over a wide range of

(ŝ, α) the instability growth rate drops to γ < 0.02 and the dominant instability no longer tracks the

IBM boundary. It is possible that the KBM is weakly unstable in these simulations, but the growth

rate is reduced by an at least around an order of magnitude at the equilibrium (ŝ, α) compared with
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Figure 5.16: Gyrokinetic ŝ − α plots for the ψN = 0.5 surface for kyρr = 0.05, θ0 = 0 at fixed β. Left column shows
γ(ŝ, α) over a large range, middle column shows γ(ŝ, α) over a small range and right column shows ω(ŝ, α) over a small
range. Top row: “high q0”. Middle row: “low q0”; γ(ŝ, α). Bottom row: “high q0”, but with B1‖ = 0 (note different
colour scale). Simulations performed at fixed β. Crosses indicate equilibrium ŝ, α. Red contour shows IBM stability
boundary.
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ηîfixed
T∥̂fixed
equilibrium

0

0.4

0.8

ω
(v

th
,r
/r L

CF
S)

0

1

2

γ(
v t

h,
r/r

LC
FS
)

0 0.2 0.4 0.6 0.8 1
f≡ (βT ′/T)/αeq

0

1

m
ax

(|
̂ E ∥
|)

p′̂fixed
ηîfixed
T∥̂fixed
equilibrium

Figure 5.18: “high q0” equilibrium; ω, γ, |Ê‖| as f ≡ β · (1/T ) · (∂T/∂ψN ) is scanned. Left: ψN = 0.5, kyρr =
0.05, θ0 = 0. Right: ψN = 0.8, kyρr = 0.5, θ0 = 0.

the B1‖ 6= 0 scans. In these simulations, the geometry, including the magnetic drifts, retain finite-β

corrections i.e. are the same between the B1‖ = 0 and B1‖ 6= 0 cases. The stabilising effect of

B1‖ = 0 on KBMs is also demonstrated by Aleynikova et al. [79].

A reason for B1‖ = 0 having a stabilising effect for MHD-like modes is presented by Graves et

al. [100] by considering its role in the “magnetic compression” term in δW (see eq. (4.2.18)). If B1‖

is ignored then this term is minimised incorrectly which has a stabilising effect on pressure-driven

modes. Graves et al. show this for IBMs in the analytic case of large A and small β, concluding the

effect is small. However, these ST equilibria operate at low A, high β; by performing investigations

with the cyclone base case (CBC) at varying β, I find that the stabilising effect of neglecting B1‖

is greater at higher β. Thus, including B1‖ fluctuations in simulations is important when modelling

KBM stability in STs. This is worth emphasising since, as noted by Graves et al., a number of

gyrokinetic codes do not calculate B1‖.

5.9 Concluding remarks

IBM stability is studied for three hypothetical ST equilibria, constructed with a commercial power-

producing reactor in mind. In each equilibrium, α is sufficiently large that it exceeds the first stable

region in ŝ − α space; the equilibrium is either in the unstable region or in the second stability



106CHAPTER 5. KBMS AS A TRIANGULARITY CONSTRAINT IN SPHERICAL TOKAMAKS

window. In the negative triangularity case, the second stability window does not exist at positive

magnetic shear, meaning the plasma is ideal ballooning unstable across the core; this coincides with

strongly growing KBMs and indicates that this is unlikely to be a feasible equilibrium in the context of

transport. By testing the dependency of second stability access on shaping parameters using a Miller

fit, it is shown that second stability may be obtained either by making triangularity more positive, or

reducing the elongation, but the latter requires a fairly extreme change to make ŝmin > 0 (changing

κ = 3.3 to κ < 2 for the ψN = 0.5 surface). Similarly, for the ψN = 0.5 surface the safety factor

would need to increase from q = 3.0 to q = 5.4 to recover ŝmin > 0. Tokamaks are able to achieve

negative magnetic shear across regions of the core [101], but since ŝmin < 0 across the entire plasma,

tokamaks with reversed shear would be unable to alleviate the problem.

These results suggest that the KBM prohibits negative triangularity as an option in commercial

STs unless they can be stabilised by flow shear. However, the amount of flow shear required for

stabilisation is likely much larger than the diamagnetic level of flow shear, and would unlikely be

achieved by external momentum injection in a commercial reactor.

The positive triangularity equilibria show better stability properties. In these, IBM second stability

access exists across the plasma and, provided the on-axis safety factor is not too low, the equilibrium

occupies the second stability window. Microinstability growth rates are correspondingly low. How-

ever, there remains a weakly growing instability with KBM-like properties, namely: pressure-driven,

twisting parity, smoothly connecting to the “ideal MHD” KBM, low parallel electric field and, in

some cases, the modes are pervasive at long wavelength. I speculate that the KBM is destabilised by

kinetic effects. Being weakly growing, these could feasibly be stabilised by flow shear or may impose

a soft β limit on STs. Identifying these effects would be an interesting area of future work, and may

be necessary if one wished to build a predictive model of ST H-mode pedestals in a similar manner to

EPED. Finally I note the importance of including B1‖ fluctuations when studying microinstabilities

in STs.



Chapter 6

Implementing and testing

electromagnetic effects linearly in the

stella code

6.1 Introduction

Chapter 5 illustrates the value of linear electromagnetic (EM) gyrokinetic simulations for informing

the design of fusion power plants. Such simulations have huge potential for the optimisation of fusion

plasmas.

However, several challenges face the gyrokinetic community. An unavoidable problem is the

large number of instabilities which exist in fusion plasmas, many of which are not fully understood

and may be difficult to capture in simulations. An example of this is a branch of the micro-tearing

mode (MTM) which has a very extended structure along the field line [69, 102] and hence can be

challenging to resolve.

Another issue is numerical difficulties which may be encountered in gyrokinetic codes, affecting

their consistency, convergence, accuracy or numerical stability. A general feature of explicit codes

for example is the Courant-Friedrichs-Lewy (CLF) condition [103]. This limits the timestep ∆t̃ for

explicit time-marching schemes, beyond which numerical instabilities cause the solution to unphys-

ically blow up. The fluctuating magnetic field introduces additional terms into the EM GKE scaling

with the species thermal velocity vth,s ∼ m
−1/2
s , which tends to make the CFL condition more restric-

tive in EM simulations (in which kinetic electrons are vital since they have the dominant contribution

107



108 CHAPTER 6. IMPLEMENTING AND TESTING EM EFFECTS IN STELLA

to δB).

More subtle numerical problems can be difficult to diagnose and remedy, since in general the

gyrokinetic system of equations is five-dimensional, multiscale, integro-differential and nonlinear.

Having a range of codes which can be applied to particular problems can therefore increase the ro-

bustness of the physical conclusions. If new codes are able to reduce the computational cost of

simulation without loss of accuracy, so much the better.

To this end, I seek to implement electromagnetic effects in the code stella using both implicit

and explicit numerical schemes. This provides a new tool by which electromagnetic turbulence in

tokamaks and stellarators can be studied, and enables cross-code validation. stella is also ideally

suited to experimenting with different numerical algorithms by virtue of its operator splitting scheme,

which enables very flexible use of time-marching schemes. An additional benefit is that stella was

designed (and is regularly used) to perform simulations for both axisymmetric and non-axisymmetric

geometries. Relatively few other codes can perform electromagnetic stellarator simulations. These

include EUTERPE [104], GKV-X [105], GENE [106], Gkeyll [107] and GS2 [50]; the last three of

these report electromagnetic results.

This code development falls into two categories. The first, the focus of this chapter, is to imple-

ment and benchmark linear EM effects in stella. I describe the simulation equations in section

6.2 and their implementation in section 6.3. I then perform a set of tests and benchmarks to verify

and validate the code. These tests also give an indication of the computational cost of the different

approaches. Some preliminary investigations of EM instabilities in the Wendelstein 7-X stellarator

are presented in chapter 7.

The second is to treat the E×B nonlinearity using a semi-Lagrange scheme, in order to eliminate

the CFL timestep constraint in nonlinear simulations. This is described in chapter 8.

6.2 Simulation Equations

6.2.1 Formulation in ḡs

The (collisionless) EM gyrokinetic equation (GKE) is eq. (2.2.46), reproduced here for convenience:

∂hs
∂t

+ (v‖ + vMs + 〈vχ〉Xs) ·∇Xshs −
µs
ms

b ·∇B0
∂hs
∂v‖

+ 〈vχ〉Xs ·∇
∣∣∣
ε
F0s −

Zse

Ts
F0s

∂ 〈χ〉Xs
∂t

= 0.

(6.2.1)



6.2. SIMULATION EQUATIONS 109

In the electrostatic case, the term Zse
Ts
F0s

∂〈ϕ1〉Xs
∂t is eliminated by defining a new distribution func-

tion gs ≡ hs − Zse
Ts
F0s 〈ϕ1〉Xs (see section 3.3). Analogously, one could avoid Zse

Ts
F0s

∂〈χ〉Xs
∂t from

explicitly appearing in the EM GKE by defining

ḡs ≡ hs −
Zse

Ts
F0s 〈χ〉Xs , (6.2.2)

(where 〈χ〉Xs is the gyrokinetic potential defined in eq. (2.2.47)) and writing the GKE in terms of ḡs:

∂ḡs
∂t

+ v‖(b ·∇z)

(
∂ḡs
∂z

+
Zse

Ts
F0s

∂ 〈χ〉Xs
∂z

)
+ vMs ·∇Xs

(
ḡs +

Zse

Ts
F0s 〈χ〉Xs

)

+ 〈vχ〉Xs ·∇Xs ḡs + 〈vχ〉Xs ·∇
∣∣∣
ε
F0s −

µs
ms

b ·∇B0
∂ḡs
∂v‖
− µs
ms

b ·∇B0
Zse

Ts
F0s

〈
A1‖
〉

Xs
= 0.

(6.2.3)

The advantage of eq. 6.2.3 is that it allows the GKE to be split into equations of the form

(
∂ḡs
∂t

)
m

+ Sm
(
ḡs, 〈ϕ1〉Xs ,

〈
A1‖
〉

Xs
,
〈
B1‖
〉

Xs

)
= 0, (6.2.4)

where Sm is a source term with no explicit time dependence. This approach is implemented in

stella, but is found to have slow convergence with nz (i.e. parallel resolution) at moderate β when

benchmarked against GS2.

An example of this behaviour is shown in figure 6.1. In this fully electromagnetic benchmark,

β is scanned at fixed geometry (with β′ = 0 used in the calculation of geometric quantities) for

the cyclone base case (CBC) [70] for wavenumber k̃x = 0, k̃y = 0.5. The left plot of figure 6.1

shows the normalised complex frequency (Ω̃(β) ≡ Ωa/vth,r) for two GS2 simulations (differing

only in parallel fidelity) and a range of parallel resolutions for the stella implementation (all of

which evaluate the source terms using the SSP RK3 algorithm). All scans show the usual ITG-KBM

transition seen elsewhere (e.g. [78]). In the right plot, Ω̃ values for all simulations are compared with

the higher-fidelity GS2 simulation, which is used as a fiducial simulation.

Figure 6.1 (right) shows the GS2 simulation to be reasonably converged in (nperiod, nz) for values

(nperiod = 2, nz = 32), with ω̃ and γ̃ changing by ≤ 10% and ≤ 2% respectively as fidelity is

increased (and by ∆ω̃ ≤ 2% and ∆γ̃ ≤ 0.5% for β ≥ 0.02). In contrast, stella shows serious

disagreement in the KBM region for the same parallel simulation parameters (with ∆γ̃ ≥ 20% in the

KBM region). Good agreement is recovered in the limit that nz becomes large, but it is surprising
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that such high resolution is required for the CBC geometry (which is a circular, large-aspect ratio flux

surface).

I argue the reason for this slow convergence is as follows. Examining the mass- and β-dependence

of terms in eq. (6.2.1), one finds

∼m̃0
s︷︸︸︷

∂hs
∂t

+(

∼m̃−1/2
s︷︸︸︷
v‖ +

∼m̃0
s︷︸︸︷

vMs +

∼m̃−1/2
s β︷ ︸︸ ︷
〈vχ〉Xs ) ·

∼m̃0
s︷ ︸︸ ︷

∇Xshs−

∼m̃−1/2
s︷ ︸︸ ︷

µs
ms

b ·∇B0
∂hs
∂v‖

+

∼m̃−1/2
s β︷ ︸︸ ︷

〈vχ〉Xs ·∇
∣∣∣
ε
F0s−

∼m̃−1/2
s β︷ ︸︸ ︷

Zse

Ts
F0s

∂ 〈χ〉Xs
∂t

= 0, (6.2.5)

where the β-related terms arise from the A1‖ component of 〈χ〉Xs : (−v‖
〈
A1‖
〉

Xs
) ∼ βvth,s ∼

βm̃
−1/2
s , where the scaling A1‖ ∼ β is based on the heuristic argument given in section 2.4. Here,

the most extreme mass scaling is m̃−1/2
s . In the ḡs formulation, ḡs ∼ (m̃

−1/2
s β) from the A1‖ term

and so the electromagnetic components of eq. (6.2.3) scale as:

∼m̃−1/2
s β︷︸︸︷
∂ḡs
∂t

+

m̃−1
s β︷ ︸︸ ︷

v‖(b ·∇z)
∂ḡs
∂z

+

m̃−1
s β︷ ︸︸ ︷

v‖(b ·∇z)
Zse

Ts
F0s

∂ 〈χ〉Xs
∂z

+

∼m̃−1/2
s β︷ ︸︸ ︷

vMs ·∇Xs

(
ḡs +

Zse

Ts
F0s 〈χ〉Xs

)
+

∼m̃−1
s β︷ ︸︸ ︷

〈vχ〉Xs ·∇Xs ḡs +

∼m̃−1/2
s β︷ ︸︸ ︷

〈vχ〉Xs ·∇
∣∣∣
ε
F0s

−

∼m̃−1
s β︷ ︸︸ ︷

µs
ms

b ·∇B0
∂ḡs
∂v‖
−

∼m̃−1
s β︷ ︸︸ ︷

µs
ms

b ·∇B0
Zse

Ts
F0s

〈
A1‖
〉

Xs
= 0, (6.2.6)

where terms in blue have a mass scaling of m̃−1
s . By making the change of variable hs → ḡs, artificial

large terms are introduced into the GKE; terms in blue become unphysically large when electrons are

simulated and β is sufficiently large. One then requires all ∼ m̃−1
s terms to cancel to leading order,

leaving behind terms of size ∼ m̃
−1/2
s . However, these terms contain finite difference derivatives

(over z, v‖) which, for reasons of numerical stability, are not all computed in the same way. This leads

to inexact numerical cancellation and hence inaccuracy in the solution, which becomes worse with

increasing β. Convergence at high resolution is achieved as the derivatives become more accurate.

The slowness of convergence with nz increases computational cost in two ways. Firstly, increas-

ing nz increases the cost per timestep since more points are simulated. Secondly, if the parallel
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stellã(implicit)̃(nz=128,̃nperiod=2)
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Figure 6.1: Benchmark of electromagnetic stella implementation with the source terms formulated in ˜̄gk,s (eq. (6.2.3).
Left: frequency ω̃ and growth rate γ̃ for CBC β scan at fixed geometry with kyρi = 0.5 Left: . Right: % difference in ω̃, γ̃
compared to the GS2 simulation with higher nz, nperiod (see table 3.1 for definitions of nz, nperiod).

streaming source term is calculated explicitly, increasing nz makes the CFL condition more restric-

tive (since ∆z is reduced). If this forces a smaller timestep, nstep must increase for a given amount of

simulation time.

The shortfalls of the “ḡs formulation” motivate an alternative approach, which is described in the

next section.

6.2.2 A “mixed” formulation in ḡs and hs

This approach uses ḡs to remove
∂〈χ〉Xs
∂t but keeps the remaining source terms in hs:

∼m̃−1/2
s β︷︸︸︷
∂ḡs
∂t

+ (

∼m̃−1/2
s︷︸︸︷

v‖ +

∼m̃0
s︷︸︸︷

vMs +

∼m̃−1/2
s β︷ ︸︸ ︷
〈vχ〉Xs ) ·

∼m̃0
s︷ ︸︸ ︷

∇Xshs−

∼m̃−1/2
s︷ ︸︸ ︷

µs
ms

b ·∇B0
∂hs
∂v‖

+ 〈vχ〉Xs ·∇
∣∣∣
ε
F0s︸ ︷︷ ︸

∼m̃−1/2
s β

= 0 (6.2.7)
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(for which no terms scale like m̃−1
s ). Applying the Fourier transform and normalisations, the simula-

tion GKE is

∂ ˜̄gk,s

∂t̃
+ ṽ‖ṽth,s(b · ∇̃z)

∂h̃k,s

∂z
+ iω̃dskh̃k,s +Nk,EM + iω∗k 〈χ̃k〉Xs − ṽth,sµ̃s

(
b · ∇̃B̃0

) ∂h̃k,s

∂ṽ‖
= 0,

(6.2.8)

where

˜̄gk,s =
ḡk,s

F0s
exp
(
−ṽ2

s

) a
ρr

= h̃k,s −
Zs

T̃s
exp
(
−ṽ2

s

)
〈χ̃k〉Xs , (6.2.9)

〈χ̃k〉Xs =

[
J0(γs)ϕ̃1k − 2ṽ‖ṽth,sJ0(γs)Ã1‖k − 4µ̃s

T̃s
Z

J1(γs)

γs
B̃1‖k

]
, (6.2.10)

Ã1‖k = A1‖k
a

Brρ2
r

= A1‖k
1

Brρ∗ρr
(6.2.11)

B̃1‖k = B1‖k
a

Brρr
= B1‖k

1

Brρ∗
, (6.2.12)

Nk,EM =
Br
2

dy

dα

dx

dψ
Fk

[
F−1

k

[
ik̃y 〈χ̃k〉Xs

]
F−1

k

[
ik̃xh̃k,s

]
− F−1

k

[
ik̃x 〈χ̃k〉Xs ϕ̃1k

]
F−1

k

[
ik̃yh̃k,s

]]
. (6.2.13)

(NB the implementation and testing of the EM nonlinearity Nk,EM is still in progress). It is worth

noting that there is a factor 2 difference in the normalisation of Ã1‖k between stella and GS2. In

the benchmarking results later shown, Ã1‖k is reported using stella’s normalisation.

6.2.3 Field equations

As shall be seen, implementing eq. (6.2.8) using implicit numerical schemes requires the field solve

calculations to be performed when the distribution function is expressed in either ˜̄gk,s (to update the

fields after ˜̄gk,s is updated explicitly) or h̃k,s (to update the fields in implicit schemes, before ˜̄gk,s is



6.3. IMPLEMENTATION DETAILS 113

updated). The simulation field equations in ˜̄gk,s are:

Quasi-neutrality:∑
s

Zsñs

(
2B̃0√
π

∫
dṽ‖dµ̃sJ0(γs)˜̄gk,s +

Zs

T̃s
(Γ0(bs)− 1)ϕ̃1k +

1

B̃0

Γ1(bs)B̃1‖k

)
= 0, (6.2.14)

Parallel Ampére’s law:(
1− β

(k⊥ρr)2

∑
s

Z2
s ñs
m̃s

Γ0(bs)

)
Ã1‖k = − β

(k⊥ρr)2

2√
π
B̃0

∑
s

Zsñsṽth,s

∫
dṽ‖dµ̃sJ0(γs)ṽ‖ ˜̄gk,s,

(6.2.15)

Perpendicular Ampére’s law:(
β

2B̃0

∑
s

ZsñsΓ1(bs)

)
ϕ̃1k +

(
1 +

β

2B̃0

∑
s

ZsñsT̃sΓ2(bs)

)
B̃1‖k =

−4βB̃0√
π

∑
s

ñsT̃s

∫
dṽ‖dµ̃sµ̃s

J1(γs)

γs
˜̄gk,s, (6.2.16)

where Γ0(bs) = I0(bs)e
−bs , Γ1(bs) = (I0(bs) − I1(bs))e

−bs , I0,1 are modified Bessel functions of

the first kind (these identities are given by Howes et al. [108]), bs = k̃2
⊥/2 and I define β = 8πnrTr

B2
r

.

The simulation field equations in h̃k,s are:

Quasi-neutrality:
∑
s

Zsñs

(
2B̃0√
π

∫
dṽ‖dµ̃sJ0(γs)h̃k,s −

Zs

T̃s
ϕ̃1k

)
= 0, (6.2.17)

Parallel Ampére’s law: Ã1‖k = − β

(k⊥ρr)2

2√
π
B̃0

∑
s

Zsñsṽth,s

∫
dṽ‖dµ̃sJ0(γs)ṽ‖h̃k,s, (6.2.18)

Perpendicular Ampére’s law: B̃1‖k =
−4βB̃0√

π

∑
s

ñsT̃s

∫
dṽ‖dµ̃sµ̃s

J1(γs)

γs
h̃k,s. (6.2.19)

Like GS2, the field equations for ϕ̃1k and B̃1‖k are coupled in the ˜̄gk,s simulation equations.

6.3 Implementation details

The implementation described here (and results presented) correspond to the stella commit f5355ba.
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6.3.1 Field solve

Firstly, I implement the subroutines required to solve the normalised field equations. eqs. (6.2.14)

to (6.2.16) can be symbolically written as a matrix equation:


K11 0 K13

0 K22 0

K31 0 K33



ϕ̃1k

Ã1‖k

B̃1‖k

 ≡ Kf =


l1(˜̄gk,s)

l2(˜̄gk,s)

l3(˜̄gk,s)

 ≡ l(˜̄gk,s), (6.3.1)

where

f =


ϕ̃1k

Ã1‖k

B̃1‖k

 . (6.3.2)

KXX represents a time-independent integral over velocity and species, and lX(˜̄gk,s) represents an

integral of ˜̄gk,s over velocity and species. This can be solved as

f = K−1l(˜̄gk,s) ≡ J l(˜̄gk,s), (6.3.3)

or, explicitly,

ϕ̃1k =
l1(˜̄gk,s)− (K13/K33) · l3(˜̄gk,s)

K11 − (K13 ·K31/K33)
(6.3.4)

Ã1‖k =
l2(˜̄gk,s)

K22
(6.3.5)

B̃1‖k =
l3(˜̄gk,s)− (K31/K11) · l1(˜̄gk,s)

K33 − (K13 ·K31/K11)
, (6.3.6)
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where

K11 =
∑
s

Z2
s ñs

T̃s
· 2B̃0√

π

∫
dṽ‖dµ̃s

(
exp
(
−ṽ2

s

) [
1− J0(γs)

2
])

(6.3.7)

K13 = −4
∑
s

Zsñs ·
2B̃0√
π

∫
dṽ‖dµ̃s

(
exp
(
−ṽ2

s

)
µ̃sJ0(γs)

J1(γs)

γs

)
(6.3.8)

K22 = k̃2
⊥ + 2β0

∑
s

Z2
s ñs
m̃s

· 2B̃0√
π

∫
dṽ‖dµ̃s

(
exp
(
−ṽ2

s

)
ṽ2
‖J0(γs)

2
)

(6.3.9)

K31 = 2β0

∑
s

Zsñs ·
2B̃0√
π

∫
dṽ‖dµ̃s

(
exp
(
−ṽ2

s

)
µ̃sJ0(γs)

J1(γs)

γs

)
(6.3.10)

K33 = 1 + 8β0

∑
s

T̃sñs ·
2B̃0√
π

∫
dṽ‖dµ̃s

(
exp
(
−ṽ2

s

)
µ̃2
s

(
J1(γs)

γs

)2
)

(6.3.11)

l1(˜̄gk,s) =
∑
s

Zsñs ·
2B̃0√
π

∫
dṽ‖dµ̃s (ḡk,sJ0(γs)) (6.3.12)

l2(˜̄gk,s) = β0

∑
s

Zsñsṽth,s ·
2B̃0√
π

∫
dṽ‖dµ̃s

(
˜̄gk,sṽ‖J0(γs)

)
(6.3.13)

l3(˜̄gk,s) = −2β0

∑
s

ñsT̃s ·
2B̃0√
π

∫
dṽ‖dµ̃s

(
˜̄gk,sµ̃s

J1(γs)

γs

)
. (6.3.14)

KXX are time-independent and are calculated once, at the start of the simulation. lX(˜̄gk,s) are calcu-

lated each time the field solve subroutine (advance fields) is called.

It should be noted that the ˜̄gk,s formulation risks a well-known cancellation problem at long

wavelengths, known as the Ampére cancellation problem [107]. The cause of this can be seen from

comparing equations (6.2.15) and (6.2.18); the second term on the LHS of (6.2.15) should cancel with

the Zs
T̃s

exp
(
−ṽ2

s

)
〈χ̃k〉Xs term appearing in the integral on the RHS to reduce to (6.2.18). However,

this term becomes much larger than the first term on the LHS when k̃⊥ is small, and so small errors

from inexact cancellation lead to a large error in Ã1‖k. However, promisingly, large errors in the ˜̄gk,s

field solve at long wavelength are not observed in the field solve tests.

The field equations in h̃k,s in stella notation are:

K
h
f = l(h̃k,s), (6.3.15)
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or, explicitly:

ϕ̃1k =
l1(h̃k,s)

K11,h
(6.3.16)

Ã1‖k =
l2(h̃k,s)

K22,h
(6.3.17)

B̃1‖k =
l3(h̃k,s)

K33,h
(6.3.18)

where

K11,h =
∑
s

Z2
s ñs

T̃s
· 2B̃0√

π

∫
dṽ‖dµ̃s exp

(
−ṽ2

s

)
; K22,h = k̃2

⊥; K33,h = 1, (6.3.19)

where the integral required to calculate K11,h is performed numerically (rather than analytically) to

ensure consistency with the calculation of K11.

6.3.2 Explicit source terms

The implementation of the source terms explicitly in stella is relatively straightforward, with code

changes falling into two categories:

1. The replacement of the distribution function g̃k,s with h̃k,s. These changes are:

1.1. Making the replacement ∂g̃k,s
∂z + Z

T e
−ṽ2

s ∂ϕ̃1k
∂z → ∂h̃k,s

∂z in the parallel streaming source

term.

1.2. Making the replacement g̃k,s + Z
T e
−ṽ2

s ϕ̃1k → h̃k,s in the magnetic drift source term.

1.3. Making the replacement ∂g̃k,s
∂ṽ‖
→ ∂h̃k,s

∂ṽ‖
in the mirror term.

2. Making the replacement 〈ϕ̃1k〉Xs → 〈χ̃k〉Xs in the driving (diamagnetic-like) term and the

nonlinear term.

6.3.3 Implicit streaming and mirror terms

A fully explicit implementation is sufficient, but the timestep is restricted by the Courant-Friedrichs-

Lewy (CFL) condition (discussed in greater detail in section 8.2) for each source term. To partially

circumvent this, I implement implicit schemes for the streaming and mirror terms, which are found

to have the most restrictive timestep constraint in the CBC benchmarking simulations. To treat the

streaming and mirror terms implicitly, (6.2.8) is split as follows:
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(
∂ ˜̄gk,s

∂t̃

)
1

+ ṽ‖ṽth,s(b · ∇̃z)
∂h̃k,s

∂z
= 0, (6.3.20)(

∂ ˜̄gk,s

∂t̃

)
2

− ṽth,sµ̃s
(

b · ∇̃B̃0

) ∂h̃k,s

∂ṽ‖
= 0, (6.3.21)(

∂ ˜̄gk,s

∂t̃

)
3

+ iω̃dskh̃k,s +Nk,EM + iω∗k 〈χ̃k〉Xs = 0. (6.3.22)

Compared to the implicit streaming algorithm described in section 3.10, the EM implicit stream-

ing algorithm requires all three fields to be included in the response matrix calculation (similar to that

done in GS2). This is described in section 6.3.3.1.

One also requires a response matrix approach for the electromagnetic mirror term, since the sim-

ulation equation with source term in h̃k,s (eq. (6.3.21)) is no longer simple advection; the updated

fields are required to update ˜̄gk,s. This is described briefly in section 6.3.3.2.

Making the remaining terms in the GKE implicit would be a relatively straightforward piece of

future work. In the benchmarking simulations presented in section 6.4.3, the CFL constraint arising

from these terms is found to restrict ∆t̃ by around an order of magnitude between simulations with

nperiod = 2 and nperiod = 4 (the latter being more restrictive as k⊥ increases with z), so the savings

realised by this could be significant when a large parallel simulation domain is required.

6.3.3.1 The electromagnetic implicit streaming algorithm

Beginning with the streaming equation:

∂ ˜̄gk,s

∂t̃
+ ṽ‖ṽth,s(b · ∇̃z)

∂h̃k,s

∂z
= 0, (6.3.23)
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I replace ˜̄gk,s → h̃k,s − Z
T e
−ṽ2

s 〈χ̃k〉Xs and temporally discretise to arrive at

h̃n+1
k,s − h̃nk,s −

Z
T e
−ṽ2

s

(
〈χ̃k〉n+1

Xs − 〈χ̃k〉nXs
)

∆t̃
+ ṽ‖ṽth,s(b · ∇̃z)

(
∂h̃n∗k,s

∂z

)
= 0 (6.3.24)

h̃n+1
k,s − h̃

n
k,s −

Z

T
e−ṽ

2
s
(
∆ 〈χ̃k〉Xs

)
+ ∆t̃ṽ‖ṽth,s(b · ∇̃z)

(
∂h̃n∗k,s

∂z

)
= 0 (6.3.25)

h̃n+1
k,s − h̃

n
k,s −

Z

T
e−ṽ

2
s
(
∆ 〈χ̃k〉Xs

)
+ ∆t̃ṽ‖ṽth,s(b · ∇̃z)

(
1 + ut

2

∂h̃n+1
k,s

∂z
+

1− ut
2

∂h̃nk,s
∂z

)
= 0,

(6.3.26)

where, as before (see section 3.10), the superscripts n, n+1, n∗ denote evaluation at time t̃n, t̃n+1, t̃n∗

respectively,

t̃n∗ ≡ 1− ut
2

t̃n +
1 + ut

2
t̃n+1, (6.3.27)

and 0 ≤ ut ≤ 1 is the user-specified temporal upwinding parameter. I have also defined:

∆ 〈χ̃k〉Xs ≡ 〈χ̃k〉n+1
Xs − 〈χ̃k〉nXs (6.3.28)

=

[
J0(γs)∆ϕ̃1k − 2ṽ‖ṽth,sJ0(γs)∆Ã1‖k − 4µ̃s

T̃s
Z

J1(γs)

γs
∆B̃1‖k

]
. (6.3.29)

I then write h̃n+1
k,s = h̃k,s,inh + h̃k,s,hom, where h̃k,s,inh and h̃k,s,hom are the inhomogeneous and homo-

geneous pieces of h̃n+1
k,s , defined as

h̃k,s,inh − h̃nk,s + ∆t̃ṽ‖ṽth,s(b · ∇̃z)

(
1 + ut

2

∂h̃k,s,inh

∂z
+

1− ut
2

∂h̃nk,s
∂z

)
= 0 (6.3.30)

h̃k,s,hom + ∆t̃ṽ‖ṽth,s(b · ∇̃z)
1 + ut

2

∂h̃k,s,hom

∂z
− Z

T
e−ṽ

2
s∆ 〈χ̃k〉Xs = 0. (6.3.31)

The inhomogeneous equation, eq. 6.3.30, does not depend on ∆ 〈χ̃k〉Xs so can be solved straightfor-

wardly.

To calculate the change in the fields ∆f, I use the familiar response matrix approach. Each field

(e.g. ϕ̃1k) can be updated at each z location zi by splitting ∆ϕ̃1k,i as follows:

∆ϕ̃1k,i ≡ ϕ̃n+1
1k,i − ϕ̃

n
1k,i = ∆ϕ̃1k,inh,i + ∆ϕ̃1k,hom,i, (6.3.32)
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where

∆ϕ̃1k,inh,i =
l1(h̃k,s,inh,i)− l1(h̃nk,s,i)

K11h,i
(6.3.33)

∆ϕ̃1k,hom,i =
l1(h̃k,s,hom,i)

K11h,i
(6.3.34)

=
1

K11h,i
l1

∑
j

∂h̃k,s,hom,i

∂∆ϕ̃1k,j
∆ϕ̃1k,j +

∑
j

∂h̃k,s,hom,i

∂∆Ã1‖k,j
∆Ã1‖k,j +

∑
j

∂h̃k,s,hom,i

∂∆B̃1‖k,j
∆B̃1‖k,j

 .

(6.3.35)

Using vector notation this can be written compactly for all z and the three fields as

∆f = ∆finh + ∆fhom = K−1
h

(
l(h̃k,s,inh)− l(h̃k,s

n)
)

+K−1
h

l(h̃k,s,hom) (6.3.36)

= ∆finh +K−1
h

l

([
∂h̃k,s,hom

∂∆f

]
∆f

)
(6.3.37)

= ∆finh +K−1
h

l

([
∂h̃k,s,hom

∂∆f

])
∆f, (6.3.38)

which can be rearranged to give

R∆f =

(
I −K−1

h
l

([
∂h̃k,s,hom

∂∆f

]))
∆f = ∆finh, (6.3.39)

and solved for ∆f by inverting R:

∆f = R−1∆finh. (6.3.40)

Once ∆f is known, eq. (6.3.26) can finally be solved for h̃n+1
k,s . The full fields fn+1 are calculated and

used to make the conversion h̃n+1
k,s → ˜̄gn+1

k,s .

As in the electrostatic case, R is time-independent. It is calculated once at the beginning of the

simulation, by applying a unit impulse in ∆f for every field and every z location. R is then LU -

decomposed. On each simulation timestep, back substitution is used to calculate ∆f from ∆finh.

A pseudocode description of how stella implements this algorithm is given for completeness in

appendix A.2.
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6.3.3.2 The electromagnetic implicit mirror algorithm

The mirror equation,

∂ ˜̄gk,s

∂t̃
− ṽth,sµ̃s

(
b · ∇̃B̃0

) ∂h̃k,s

∂ṽ‖
= 0, (6.3.41)

has a very similar form to the streaming equation (eq. (6.3.23) ), and the algorithm used to implicitly

advance the mirror equation is virtually identical to that used for the streaming. One noteworthy

difference is that in eq. (6.3.41) different z locations are decoupled, but ṽ‖ gridpoints are coupled by

the ∂
∂ṽ‖

operator. A consequence of this is that the response matrix R has a total size (nz×nfields×

nfields) (a square matrix of order nfields) for each (k̃y, k̃x), rather than (n2
z ×nfields2) for

the streaming response matrix (a square matrix of order (nfields× nz)) for each (k̃y, k̃x).

For completeness, the algorithm is described in appendix B. An interesting feature of this scheme

is that ∆ϕ̃1k,inh,i and ∆B̃1‖k,inh,i are approximately zero because the inhomogeneous equation is

advection of h̃k,s in ṽ‖-space. This could plausibly create numerical problems in extremely high-

fidelity simulations, but nothing of this kind has been observed so far.

6.3.4 Centering of the derivative ∂
∂z

The benchmarking studies find that the stella simulations with implicit streaming are sensitive to

the value of uz , which controls the centering of spatial derivatives (see section 6.4.2). It is usual to

set uz to a small value (uz = 0.02 by default) in electrostatic (ES) simulations, which introduces a

small amount of numerical dissipation but generally improves numerical stability. However, in the

simulations presented here I set uz = 0 unless otherwise stated.

Given the sensitivity of the implicit implementation to z upwinding, one may wonder whether the

same is true when streaming is evaluated explicitly. The original version of stella calculates this

this derivative using a third-order upwinded scheme. To allow centering to vary whilst still allowing

the option of the original scheme, I implement an ad-hoc way of calculating the derivative:

(
∂

∂z

)
EM stella, expl

= uz,exp

(
∂

∂z

)
3rd order upw.

+ (1− uz,exp)

(
∂

∂z

)
2nd order cent.

, (6.3.42)

which linearly mixes the third-order upwinded scheme and the second-order centered scheme. By

default I set uz,exp = 0.1 (i.e. an almost-centered scheme), since numerical instability is observed

for uz,exp = 0 in some cases.
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6.4 Tests and Benchmarks

Here I present benchmarks of the electromagnetic implementation of stella. I first verify that the

field calculations to obtain ϕ̃1k, Ã1‖k and B̃1‖k are correctly implemented. stella is then bench-

marked against GS2 in an unsheared slab geometry. Finally, stella is compared with GS2 using

the CBC geometry. The effect of varying non-physical simulation parameters is tested, and the reader

is referred to table 3.1 for the meaning of these parameters.

An electrostatic benchmark is also performed between the electromagnetic implementation of

stella and the original stella implementation with stellarator geometry. However, since the

geometry and instabilities are not introduced until the next chapter, the description of this benchmark

is delayed until section 7.6.2.

6.4.1 Testing the field solve

6.4.1.1 ṽ‖-symmetric h̃k,s

The field solve subroutines are tested by initialising the distribution function (h̃k,s or ˜̄gk,s), such that

the fields (ϕ̃1k, Ã1‖k, B̃1‖k) have an analytic form. I first selected the distribution function to be either

h̃k,s = Zs exp−ṽ
2
s J0(γs), (6.4.1)

or

˜̄gk,s = Zs exp−ṽ
2
s J0(γs), (6.4.2)

and selected physical parameters ( Zi = 1, Ze = −1, T̃i = T̃e = ñi = ñe = 1). The solution for

variables appearing in the field solve equations are

l1(h̃k,s) = Γ0(bi) + Γ0(be), l2(h̃k,s) = 0, l3(h̃k,s) =
−2β

B̃0

(Γ1(be)− Γ1(bi)) (6.4.3)

K11,h = 2, K22,h = k̃2
⊥, K22 = k̃2

⊥ − β
(

Γ0(bi)

m̃i
+

Γ0(be)

m̃e

)
, (6.4.4)

K11 = 2− (Γ0(bi) + Γ0(be)), K13 =
1

B̃0

(Γ1(be)− Γ1(bi)), (6.4.5)

K31 =
β

B̃0

(Γ1(bi)− Γ1(be)), K33 = 1 +
β

B̃0

(Γ1(bi)− Γ1(be)), (6.4.6)
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where I have used identities given by Howes et al. [108]. The fields are calculated using stella

for a range of velocity space resolution parameters using species masses m̃i = 1, m̃e = 2.8 × 10−4

and k̃⊥ = 1. Firstly, ṽ⊥ parameters are set to a high-fidelity value (ṽ⊥,max = 5.0, nµ̃s = 144) and

the ṽ‖ resolution parameters (ṽ‖,max, nṽ‖) are varied. Next, ṽ‖ parameters are fixed (ṽ‖,max = 5.0,

nṽ‖ = 144) and ṽ⊥,max and nµ̃s are varied.

These results are shown in figures 6.2 and 6.3. For both the h̃k,s and ˜̄gk,s formulations, Ã1‖k

is zero to within a small (approximately machine precision) tolerance, and is insensitive to v-space

fidelity. This is likely due to the symmetry in the distribution function between positive and negative

values of ṽ‖, which cancel to within machine precision.

ϕ̃1k and B̃1‖k show the following general trend in all but one scenario. For low values of ṽ‖,max

or ṽ⊥,max (. 2), the dominant source of error is the truncation of the integral, and so the result is

insensitive to the number of gridpoints used. For ṽ‖,max, ṽ⊥,max > 2, there is a dependence on the

number of gridpoints for nµ̃s . 10 and nṽ‖ . 20 as this becomes the dominant error source. The

exception to this trend is the calculation of ϕ̃1k using the h̃k,s formulation of the field solve, for

which low error (∼ 10−12%) is observed for all values of (ṽ‖,max, nṽ‖). This is presumably caused

by compensating truncation errors in l1(h̃k,s) and K11,h, which ensure that ṽ‖-related parameters are

not dominant.

6.4.1.2 ṽ‖-antisymmetric h̃k,s

To test the field solve for Ã1‖k, the distribution function is set to

h̃k,s = Zsṽ‖ exp−ṽ
2
s J0(γs), (6.4.7)

or

˜̄gk,s = Zsṽ‖ exp−ṽ
2
s J0(γs), (6.4.8)

for which, using ( Zi = 1, Ze = −1, T̃i = T̃e = ñi = ñe = 1), the values of KXX are the same as

the previous test, but the lX(h̃k,s) values are:

l1(h̃k,s) = l3(h̃k,s) = 0, l2(h̃k,s) =
β

2

(
Γ0(bi)√
m̃i

+
Γ0(be)√
m̃e

)
, (6.4.9)
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As in the tests for ϕ̃1k and B̃1‖k, a comparison with the analytic result is made as v-space fidelity

parameters are varied. I also test the effect of changing k̃⊥ at fixed v-space resolution.

The results are shown in figure 6.4. As ṽ‖-related parameters are varied, the same behaviour

as was seen for ϕ̃1k and B̃1‖k tests is observed: the truncation error from ṽ‖,max dominates, except

for ṽ‖,max & 3, for which nṽ‖ dominates the error at low nṽ‖ . For ṽ⊥ variation, the dominant error

is set by ṽ⊥,max for ṽ‖,max . 3. Beyond this, there is a dependence on nµ̃s , but this is not always

with the expected trend (∆Ã1‖k ↓ as nµ̃s ↑). This may be peculiar to this particular test, for which

“accidental” good agreement occurs at low nµ̃s . The dependence of Ã1‖k on k̃⊥ shows an opposite

trend for the h̃k,s formulation (in which the error falls roughly log-linearly with increasing k̃⊥) and

the ˜̄gk,s formulation (in which the error tends to increase with k̃⊥).

It should be emphasised that the test is not a like-for-like comparison of the field solves in h̃k,s

and ˜̄gk,s, since the form of the distribution function is fixed between the tests rather than the fields

being fixed. For example, Ã1‖k becomes large at low k̃⊥ in the h̃k,s field test, but this does not occur

in the ˜̄gk,s test (shown in figure 6.5). A comparison in which the field is the same between the h̃k,s

and ˜̄gk,s would be a useful piece of additional work.

For brevity, results for ϕ̃1k and B̃1‖k in this test are not shown, but these are found to be small (in

agreement with expectation from the analytic theory that ϕ̃1k = B̃1‖k = 0).

Based on the above tests, I conclude that a choice of nṽ‖ = 20, nµ̃s = 10, ṽ‖,max = 3.0, ṽ⊥,max =

3.0 is sufficient to calculate the fields for these particular forms of distribution function with an error

of less than 0.1%. Increasing ṽ‖,max to 4.0 reduces this error to< 10−4%. Of course, these parameters

are not guaranteed to resolve the fields for an arbitrary distribution function, and also do not inform

the resolution required to accurately advance the GKE. However, this provides a starting point for

convergence tests.

6.4.2 The unsheared slab

The next test is performed in an “unsheared slab” geometry, representing an equilibrium magnetic

field which is spatially uniform and straight in Cartesian coordinates. I also set the kinetic gradients

in the plasma to zero, which removes the driving term. In this case, the Fourier-transformed stella-

normalised linear GKE in h̃k,s reduces to
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Figure 6.2: Error in field solve calculations for ṽ‖-symmetric distribution function with k̃⊥ = 1, β = 1 with varying ṽ‖
fidelity. Left column: fields calculated for a prescribed h̃k,s. Right column: fields calculated for a prescribed ˜̄gk,s.

∂h̃k,s

∂t̃
+ ṽ‖ṽth,s(b · ∇̃z)

(
∂h̃k,s

∂z

)
− Z

T̃s
exp
(
−ṽ2

s

)∂ 〈χ̃k〉Xs
∂t

= 0, (6.4.10)

where (b · ∇̃z) is a constant which is set to 1, and a periodic boundary condition is imposed in z.

This setup allows linearisation in z, such that one can consider each mode h̃k,kz ,s(k̃x, k̃y, z, t) =

h̃k,s(k̃x, k̃y) exp(ikzz) exp
(
−iΩ̃t̃

)
independently. Eq. (6.4.10) can be solved for h̃k,kz ,s to give

− iΩ̃h̃k,kz ,s + ṽ‖ṽth,s(ikz)h̃k,kz ,s −
Z

T̃s
exp
(
−ṽ2

s

) (
−iΩ̃ 〈χ̃k〉Xs

)
= 0 (6.4.11)

h̃k,kz ,s =
Zs

T̃s
exp
(
−ṽ2

s

) 〈χ̃k〉Xs
1− ṽth,sṽ‖kz

Ω̃

. (6.4.12)
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Figure 6.3: Error in field solve calculations for ṽ‖-symmetric distribution function with k̃⊥ = 1, β = 1 with varying ṽ⊥
fidelity. Left column: fields calculated for a prescribed h̃k,s. Right column: fields calculated for a prescribed ˜̄gk,s.

Eq. 6.4.12 for ions and electrons together with the field equations form a set of five simultaneous

equations describing the plasma. This system is rather difficult to solve in the general case but gives

rise to a plasma wave known as the kinetic shear Alfvén wave (KSAW) [109], a kinetic analogue of

the ideal MHD shear Alfvén wave.

Here I simulate a plasma with (β = 1, k̃y = 1) in GS2 and stella. The real part of the

distribution function in each case is normalised to

˜̄gk,s = −Zs exp−ṽ
2
s cos(z), (6.4.13)

and in GS2:

g̃GS2,k,s = −Zs cos(z). (6.4.14)
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Note that since the normalisation of g̃GS2,k,s contains an extra factor of exp
(
−ṽ2

s

)
and symmetry in

ṽ‖ implies Ã1‖k = 0, equations (6.4.13) and (6.4.14) correspond to the same initialisation of h̃k,s.

Simulations are run using GS2, stella (using RK3 scheme) and stella (using implicit

streaming) with physical parameters (β = 1, k̃y = 1, T̃i = T̃e = m̃i = 1, m̃e = 2.8 × 10−4)

and a fiducial set of non-physical parameters (given in appendix C). The fields at the final timestep

(normalised to have equal amplitudes), shown in figure 6.6 (left), show a box-scale mode with a π/2

phase difference between (ϕ̃1k, B̃1‖k) and Ã1‖k with excellent agreement between implementations.

Figure 6.6 (right) plots ϕ̃1k(z = 0, t̃) for each simulation, showing a damped oscillation in each case.

However, there is a clear difference in damping rate between stella and GS2.

The frequency and damping rate are calculated by fitting

ϕ̃1k(z = 0, t̃) = A exp
(
γ̃t̃
)

sin
(
B + ω̃t̃

)
, (6.4.15)

where (A, γ̃, B, ω̃) are free parameters. These simulations are then repeated with varying non-

physical parameters. The results are summarised in table 6.1. GS2 shows very little change in ω̃ for

all simulations. There is very little change in γ̃ when nz is varied (< 1%), a small change when the

t̃ and z derivatives are centered or when the timestep is reduced (∼ 7% in both cases), and a larger

change when the velocity-space resolution is increased from (ngauss = 12, nE = 16) to (ngauss = 24,

nE = 36) (∼ 15%). Increasing further to (ngauss = 48, nE = 72) results in only a small change in γ̃

(∼ 1%).

γ̃ for stella is insensitive to ∆t̃ and nz but sensitive to the centering of derivates. Numerical

instability is observed when uz departs from its fiducial value of zero in the implicit scheme. Ω̃ is

in good agreement between the implicit and RK3 schemes when derivatives are fully centered in the

former and ∂
∂z is fully centered in the latter (∆Ω̃ < 2%) which is promising, though γ̃ is ≥ 50%

lower than all GS2 simulations.

To conclude, there is persistent disagreement between the codes GS2 and stella for this high-β

benchmarking test, indicating that at least one of the codes is inaccurate at large β (β ∼ O(1)). Given

that GS2 is well-established, a reasonable assumption is that stella is inaccurate. However, an

additional benchmark against the GENE code (performed with a single set of simulation parameters

informed by the fiducial GS2 simulation) has reported a (renormalised) complex frequency of Ω̃ =

1.128 − i0.0184, which better matches the stella results [110]. A valuable piece of future work

would be comparing these codes against a simple analytic KSAW result.
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Code Simulation notes ω̃ ∆ω̃(%) γ̃ ∆γ̃(%)
GS2 Fiducial 1.1412 5E− 4 −0.0385 5E− 4

GS2 ∆t̃ = 4E− 4 1.1417 5E− 4 −0.0359 5E− 4
GS2 uz = 0, ut,GS2 = 0.5 1.1414 5E− 4 −0.0358 5E− 4
GS2 nz = 72 1.1390 5E− 4 −0.0384 5E− 4
GS2 nE = 36 1.1407 3E4 −0.0329 3E− 4
GS2 nE = 72 1.1403 3E4 −0.0333 3E− 4
stella Fiducial, implicit 1.1362 3E− 4 −0.0209 3E− 4

stella ∆t̃ = 4E− 4 1.1364 3E− 4 −0.0209 3E− 4
stella ut = 0.02 1.1363 3E− 4 −0.0215 3E− 4
stella ut = 0.1 1.1363 3E− 4 −0.0236 3E− 4
stella uz = 0.02 n/a (blowup) n/a n/a n/a
stella nz = 72 1.1342 3E− 4 −0.0209 3E− 4
stella nṽ‖ = 48, nµ̃s = 24 1.1290 3E− 4 −0.0206 3E− 4

stella Fiducial, explicit 1.1286 1E− 4 −0.0225 1E− 4
stella uz,exp = 0 1.1280 1E− 4 −0.0205 1E− 4
stella uz,exp = 0.5 1.1309 2E− 4 −0.0305 2E− 4
stella uz,exp = 1 1.1338 2E− 4 −0.0406 2E− 4

Table 6.1: Fitted frequency and damping rates for unsheared slab simulations. Fiducial parameters are given in appendix
C. Errors ∆ω̃,∆γ̃ correspond to the fitting error. For GS2, uz = 0 and ut,GS2 = 0.5 correspond to centered derivatives
(equivalent to uz = 0 and ut = 0 in stella) (see table 3.1.
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Figure 6.7: CBC β scan at fixed geometry with kyρi = 0.5 Left: ω̃(β) and γ̃(β). Right: % difference in ω̃, γ̃ compared
with the GS2 simulation with parallel fidelity.

6.4.3 The cyclone base case

I next test the linear simulations using the CBC as a realistic tokamak test case with kyρi = 0.5 (NB

this is the same test as presented in section 6.2.1. β is scanned at fixed geometry, including fixing

the geometric parameter ∂β
∂ψ , which is set to zero. GS2 and stella are tested for two different

resolutions of z-coordinate ((nperiod = 2, nz = 32) and (nperiod = 4, nz = 64)), with the stella

simulations treating streaming and mirror terms implicitly. Simulation parameters are given in ap-

pendix C. The simulation cost per timestep is similar (within 20%) between stella and GS2 with

these simulation parameters.

Ω̃(β) (figure 6.7) shows good agreement between codes across the full range of β with typical

differences below 10%. Mode structure comparisons at β = 0 (figure 6.8) and β = 0.04 (figure 6.9)

are produced interpolating the fields onto a common z grid and renormalising such that max(|ϕ̃1k|) =

1. These also show good cross-code agreement and agreement between implicit and explicit stella

implementations, although the fractional error becomes large where the field amplitudes are small.

Whether even better agreement between stella and GS2 can be obtained by adjusting other non-

physical parameters remains an open question.
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6.5 Concluding remarks

Electromagnetic field effects (A1‖ andB1‖) are implemented linearly in the gyrokinetic code stella

using a scheme which mixes distribution functions h̃k,s and ˜̄gk,s = h̃k,s − Zs
T̃s

exp
(
ṽ2
s

)
〈χ̃k〉Xs . This

enables Lie-Trotter and flip-flop operator splitting, without unphysically large terms appearing in

the GKE (as happens in a ˜̄gk,s-only approach, which shows slow convergence with nz as a result).

All source terms can be evaluated explicitly (using any of the SSP RK2, SSP RK3 and SSP RK4

schemes). In addition, the streaming and mirror terms are implemented implicitly using an electro-

magnetic Greens function approach (Kotschenreuter’s algorithm). It would be fairly straightforward

to implement the remaining linear terms implicitly, allowing linear simulations to be performed with-

out timestep constraint.

Analytic field solve tests and linear fully electromagnetic gyrokinetic benchmarking against GS2

is performed. The former show convergence as velocity-space fidelity increases. In the latter, good

agreement is found for the CBC (which exhibits the ITG at low β and the KBM at high β) at reason-

able resolution. Slab simulations observe the KSAW, for which the frequency matches well between

codes but the damping rate differs by order unity. With centered derivatives, the implicit and SSP RK3

implementations of stella are in agreement on ω̃ and γ̃ to < 2% for fiducial parameters. Compar-

ison with an analytic result for the KSAW to elucidate differences between stella and GS2 would

be a valuable area of future research.

The implementation of the electromagnetic nonlinear term is in progress. This is a particularly

important piece of ongoing work which would pave the way towards a fully implicit nonlinear EM

local δf gyrokinetic implementation (together with the material presented in chapter 8).

Whilst there are currently some unexplained features of the EM stella implementation, it

appears that accurate results can be obtained at reasonable simulation resolution. This is put to use

in the following chapter where electromagnetic instabilities in the Wendelstein 7-X stellarator are

preliminarily explored.



Chapter 7

A study of the stability valley in the

Wendelstein 7-X stellarator

7.1 Introduction

Although the stellarator concept has existed for over seventy years [111], studies of their transport

have tended to focus on neoclassical transport, rather than turbulence, since the former has been

historically dominant in experiments. This high neoclassical transport arises from the trajectories

of particles “trapped” in regions of weak field [112, 113] by the magnetic mirror force, for which

the bounce-averaged radial magnetic drift is nonzero in general. Trapped particles secularly drifting

away from their original flux surface gives rise to high transport compared with neoclassical transport

in tokamaks, or with turbulent transport. For this reason, stellarator microstability and turbulence

research is still in relative infancy.

However, several decades of study have arrived at “optimised” stellarator configurations, in which

trapped particle trajectories remain (almost) local to a flux surface (i.e. the bounce-averaged radial

drift nearly vanishes). This property is known as omnigeneity [114], and includes several classes

of magnetic topology, such as quasi-axisymmetry, quasi-helical symmetry and quasi-isodynamicity.

Modelled neoclassical transport levels in omnigenous or near-omnigenous stellarators is similar to

that of tokamaks, and comparable to or lower than estimated turbulent transport. The relative impor-

tance of turbulence in such optimised stellarators behooves the study of their microstability.

The largest optimised stellarator in the world is Wendelstein 7-X (W7-X), a large, HELIAS-

type [115], nearly quasi-isodynamic stellarator. A primary goal of W7-X is to demonstrate long

(≥ 1800s) pulses with fusion-relevant plasma conditions, though without DT fuel [116]. W7-X

132
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began operating in 2015 [116], and has been able to sustain long (up to ∼ 100s), stable pulses with

good core conditions and low neoclassical transport [116–119]. High-performance shots in W7-X

have reported plasma densities of 1 − 4.5 × 1019m−3, electron temperatures of 5 − 10keV and the

highest ever stellarator fusion triple product (nTiτE = 6.5× 1019keV·m−3s) [29, 118].

Regarding microstability, theoretical studies of quasi-isodynamic stellarators in general [120–

122] and W7-X in particular [32, 121] indicate novel microstability properties arising from their

complex magnetic geometry. An example in W7-X, and the focus of this research, is the so-called

“stability valley” [32, 121], in which instability growth rates are suppressed when the temperature and

density gradient length scales are approximately equal. This could plausibly enable plasmas to sustain

large kinetic gradients with low heating and fuelling; a highly desirable regime for economically

viable fusion reactors.

In this chapter, I use the code stella to investigate the electrostatic stability valley in W7-X

plasmas. I first provide a brief background on neoclassical optimisation in stellarators, W7-X and the

stability valley. I then describe the magnetic geometries and simulation parameters used in my study

(section 7.3), followed by an exploration of the stability valley using linear simulations (sections 7.4

and 7.5). Conclusions, including a discussion of the validity and limitations of this research, are

presented in section 7.7.

7.1.1 Acknowledgements

This research was performed in collaboration with the CIEMAT group in Madrid, in particular, with

Dr José-Manuel Garcı́a-Regaña, Hanne Thienpondt and Antonio González-Jerez. All results pre-
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performed by the CIEMAT group. This research is acknowledged and, where possible, cited. This

research collaboration was tangentially useful to a study of impurity transport in W7-X by Garcı́a-

Regaña et al.[123], although that is not the focus of this chapter.

7.2 Omnigeneity in stellarator plasmas

In order to study neoclassical transport in 3D equilibria, it is instructive to consider a simplified model

in which collisions, instabilities and turbulence are ignored. Thus, the dynamics of charged particles

are determined only by the equilibrium magnetic and electric fields, and transport can be explored by

considering trajectories of single particles. In the material presented here (based heavily on Helander
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[114]), arguments about stellarator optimisation are made using a Lagrangian formulation for the

guiding centre trajectories and making an asymptotic expansion in ρ∗ ≡ ρs/a.

Using the coordinate system (ψ, α, z) described in section 3.2.1, one can write the Lagrangian L

for the guiding centre of a charged particles as

L = T − V =
m
(
b · ∂Xs

∂t

)2
2

+ ZseA ·
∂Xs

∂t
− µsB − Zseϕ (7.2.1)

=
m

2

[
∂z

∂t
+ b ·

(
∂Xs

∂ψ

∂ψ

∂t
+
∂Xs

∂α

∂α

∂t

)]2

− Zseα
∂ψ

∂t
− µsB − Zseϕ, (7.2.2)

and the Hamiltonian H as

H = P · ∂Xs

∂t
− L (7.2.3)

=
mv2
‖

2
+ µsB + Zseϕ, (7.2.4)

(equal to the total energy of the guiding centre), where

P =
∂L

∂
(
∂Xs
∂t

) . (7.2.5)

Eq. (7.2.4) can be rearranged to provide an expression for v‖:

v‖ = ±
√

2(H − µsB − Zseϕ)

m
. (7.2.6)

Then, using the Euler-Lagrange equations one can arrive at

d

dt

(
ψ +

mv‖

Zse
b · ∂Xs

∂α

)
=
msv‖

Zse

∂v‖

∂α

∣∣∣∣
H,mus,ψ,z

. (7.2.7)

dψ
dt represents the leading order radial drift velocity of a guiding centre (which is O(ρ∗vth,s)).

To examine the confinement of the particles, one can consider the radial drift ∆ψ between two
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points z1 and z2:

∆ψ ≡
∫ z2

z1

∂ψ

∂t
dt =

∫ z2

z1

msv‖

Zse

∂v‖

∂α

∣∣∣∣
H,mus,ψ,z

dz

v‖
(7.2.8)

=
ms

Zse

∫ z2

z1

∂v‖

∂α

∣∣∣∣
H,mus,ψ,z

dz (7.2.9)

=
1

Zse

∂J
∂α

∣∣∣∣
H,µs,ψ,z

, (7.2.10)

where J is defined:

J (ψ, α, ε, µ) ≡
∫ z2

z1

mv‖dz. (7.2.11)

It is possible to show [113] that for passing particles, ∆ψ = 0 when the arc length z2−z1 is large

(i.e. in the limit that many toroidal turns are taken). Thus, passing particles are well-confined to first

order in ρ∗.

Trapped particles present a greater challenge, since ∆ψ taken between two successive bounce

points (z1, z2) is nonzero unless ∂J
∂α

∣∣
H,µs,ψ,z

= 0. This condition can be met in several ways. One

way is to ensure that the magnetic field strength is (locally) independent of α i.e. B = B(ψ, z); thus

v‖ and hence J are independent of α and so ∆ψ = 0. It can be shown [114] that this requires the

magnetic field be expressible asB = B(ψ,MθB−NφB) for a single value of (M,N), where θB and

φB are poloidal and toroidal Boozer coordinates [124]. Depending on the values on M and N , this

is known as quasi-axisymmetry (QAS) (N = 0), quasi-poloidal symmetry (QPS) (M = 0) or quasi-

helical symmetry (QHS) (M 6= 0, N 6= 0). The prefix “quasi” is used because B is independent of

α but other properties of the magnetic geometry are not; a QAS stellarator is not fully axisymmetric,

unlike the magnetic geometry of a tokamak.

It is possible for a plasma to satisfy omnigeneity without being quasi-symmetric. A particular

example of this is for the plasma to be quasi-isodynamic (QID), in which the magnetic field strength

cannot be written B = B(ψ, z), but nevertheless, contours of B on each surface are poloidally

closed. QID configurations are of particular interest since they also minimise the bootstrap current

[28]. Unfortunately, it has been shown that it is impossible for stellarators to achieve exact QAS,

QHS, QPD or QID [125, 126], although plasmas can very closely approximate QAS, QHD and QID

[113]. Landreman and Paul [127] have recently reported near-perfect computer-generated QAS and

QHS equilibria with deviations from quasisymmetry reduced to as low as δB/B0,0 ≤ 5 × 10−5,

where δB is the deviation and B0,0 the mean magnetic field.
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Figure 7.1: Left: Trapped particle orbits in W7-X, precessing poloidally on a flux surface. Right: Magnetic field strength
on the outermost flux surface of W7-X. Reproduced from [28]

A final point to note for omnigenous plasmas is that ∂J
∂α

∣∣
H,µs,ψ,z

= 0 implies that J is a flux

surface quantity, and is conserved (and is referred to as the second, or parallel, adiabatic invariant).

7.2.1 Wendelstein 7-X equilibria

Since the deficiencies of “classical stellarators” have been known, theoretical research on stellarator

optimisation has been performed in tandem with experiment [128]. The first “advanced stellarator”

was the partially-optimised stellarator W7-AS [129]. Its successor, W7-X, was designed using a “uni-

fied” optimisation procedure [128] which sought to minimise the neoclassical transport and maximise

the confinement of collisionless fast α particles, subject to a constraint of small bootstrap current.

An example of a W7-X equilibrium is given in figure 7.1. The left plot shows a trapped particle

trajectory, which is confined to a region of weak B and precesses poloidally around the flux surface,

without net radial transport. The right plot shows the magnetic field strength B of a surface in W7-X.

W7-X is “max-J ” configuration, meaning that J is maximum on the magnetic axis [120]. Having
∂J
∂ψ < 0 has been shown to bestow favourable microstability properties with regards to the interchange

instability [130].

7.3 Simulation details and convergence tests

The work presented here considers three W7-X reference magnetic geometries, referred to in literature

as EIM (“standard”), KJM (“high mirror”) and FTM/FSM (“high iota”) configurations [131]. In

the electrostatic studies, I use the vacuum field (i.e. β = 0) equilibria. In each, I select the s =

ψtor/ψtor,LCFS = 0.49 surface for study, where ψtor is the toroidal flux function. This corresponds to
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a radius of r/a = 0.7 (where r is the flux surface minor radius and a is the device minor radius).

Measurements of (n, Ti, Te) profiles reported by Carralero et al. [119] for an EIM configuration,

reproduced in figure 7.2, are used to estimate the experimentally relevant ranges of these values.

These discharges are split into 3 categories: (1) discharges heated entirely by Electron Cyclotron

Resonance Heating (ECRH), fuelled by gas puff (collectively referred to as “ECRH” discharges),

(2) discharges heated by a mixture of ECRH and neutral beam injection (“NBI”) and (3) ECRH-

heated discharges in which cryogenic fuel pellets are injected (“HP”). These are referred to as “High

Performance” discharges since the pellet injection transiently boosts the core ion temperature, plasma

density, stored energy and energy confinement time. In cases (1) and (2), the normalised kinetic

gradients (a/Lne, a/LT i, a/LTe) (where a/LA = −d lnA/dρ is the gradient length scale of A and

ρ = r/a) vanish on the magnetic axis, become large near the plasma edge, and in the intervening

region, either increase monotonically or plateau across part of the core (0.3 . r/a . 0.7). For

r/a = 0.7, the ranges of the gradients are (a/Lne . 1, a/LT i . 5 and 3 . a/LTe . 5). In

case (3), a/Lne and a/LTe increase monotonically across the plasma with (a/Lne(r/a = 0.7) ∼ 2,

a/LTe(r/a = 0.7) ∼ 6). a/LT i peaks around r/a = 0.8 and has a/LT i(r/a = 0.7) ∼ 6. Applying

this range of gradients to other magnetic geometries is a theoretical, rather than validation, exercise.

In this work I perform gyrokinetic simulations with stella (commit 5a0c0b), scanning k̃y and

(a/Ln,T ). I take the ion species as the reference species (such that m̃i = ñi = T̃i = 1 and k̃y = kyρi)

and assume a deuterium plasma (so that m̃e = 2.8×10−4). Impurity species are ignored in this work,

although they would likely have some effect on the microstability and turbulence.

It should also be noted that in these simulations I only consider a single magnetic field line (α =

0) (i.e. the toroidal location at which the magnetic field line passes through the outboard midplane is

the centre of a field period), which is a common choice as it often corresponds to the most unstable

field line [123]. This could be relaxed in future work. A gyrokinetic electron species is included in

all results presented here.

The dependence of the complex frequency Ω̃ = ω̃ + iγ̃ on non-physical simulation parameters

is tested as follows. I first construct a fiducial simulation using the “EIM” equilibrium with physical

parameters (k̃y = 3.5, a/Ln = a/LT = 3) and reasonably-chosen non-physical parameters. This

simulation is run for sufficiently long t̃ that Ω̃(t) converges (so that Ω̃ does not change with increasing

t̃ to within ∼ O(10−6%)). I then independently adjust the non-physical parameters which determine

the simulation timestep, the z grid and the velocity-space grid, until Ω̃ varies by less than 2% with

increased fidelity. These parameters are used to construct a template for the simulations. I again test
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Figure 7.2: Experimentally measured profiles of plasma density ne and ion (electron) temperature Ti(e). ρ ≡ r/a.
Reproduced from Carralero et al. [119].“HP” includes profiles before pellet injection (blue) and post-pellet injection
(black).

the variation of Ω̃ against non-physical parameters using this template. The results, shown in table

7.1, indicate a change in Ω̃ of under 2% with increasing fidelity in the simulation parameters nz , nfp,

nvgrid, nµ̃s , ṽ‖,max, ṽ⊥,max ∆t̃ . When increasing nfp, nz was also increased by the same factor

to keep the z resolution (nz/nfp) constant. Similarly, nṽ‖ and nµ̃s were increased when ṽ‖,max and

ṽ⊥,max were increased, respectively.

I show the shape of the flux surfaces for the EIM equilibrium, including the flux surface chosen,

in figure 7.3. I also show the magnitude of the equilibrium magnetic field B̃0 within the parallel

simulation domain used and the distribution of gridpoints in (ṽ‖, µ̃s) space in figure 7.4.

Some illustratory characteristics of a gyrokinetic simulation performed with k̃y = 3.5, a/Ln =

a/LT i = a/LTe = 3 are shown: Ω̃(t̃) (figure 7.5, left), the mode structure ϕ̃1k(z) corresponding to

g̃k,s(t̃ = t̃final) (figure 7.5, right) and g̃k,s(ṽ‖, µ̃s, t̃ = t̃final) in velocity space (figure 7.6). These serve

to illustrate some general features of local linear gyrokinetic simulations and stellarator microinsta-

bilities: (1) Ω̃(t) converges after some initial transient behaviour, (2) instability amplitudes tend to

peak in the region(s) of weak magnetic field (3) the instability distribution functions gi, e have fine
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Simulation parameter Value higher-fidelity value ∆ω̃(%) ∆γ̃(%)
nz 256 512 2.2 1.1
nfp 20 40 0.21 0.58
nṽ‖ 72 144 0.91 1.2

nµ̃s 24 48 0.023 0.16
ṽ‖ ,max 3.0 4.0 0.16 0.0085

ṽ⊥ ,max 3.0 4.0 0.070 0.19

∆t̃ 0.05 0.025 0.40 1.6

Table 7.1: Non-physical simulation parameters used in linear parameter scans for this investigation. The change in
Ω̃ = ω̃ + iγ̃ when these parameters are replaced with higher-fidelity values is shown.
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Figure 7.3: Flux surface shapes at varying toroidal angle ζ, spanning a single toroidal field period, with the flux surface
used for this study (r/a = 0.7) in red. Generated using STELLOPT [132].

and non-Maxwellian structure in (ṽ‖, µ̃s).

7.4 Instability characteristics

I first present (in figure 7.7) Ω̃(k̃y) for the “standard” (EIM) W7-X configuration, and some example

mode structures, for three sets of kinetic gradients: (1) a/Ln = 0, a/LT,i = a/LT,e = 6, (2)

a/Ln = 6, a/LT,i = a/LT,e = 0 and (3) a/Ln = a/LT,i = a/LT,e = 3. Properties of these scans

are discussed below.
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Figure 7.6: Structure of the distribution function gi,e(ṽ‖, µ̃s), averaged over z and normalised to 1.
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In all cases, γ̃ → 0 as k̃y → 0. This can be explained by considering the diamagnetic-like term,

iω∗,k,sJ0(γs)ϕ̃1k, responsible for “driving” the mode. If one allows k̃x = 0, then J0(γs) → 1 as

k̃y → 0 (as the instabilities become spatially large compared to the species gyroradii, gyroaveraging

has increasingly little effect on the instability dynamics). However, the prefactor

ω∗,k,s =
k̃y
2
aBr

dy

dα
e−ṽ

2
s
d lnF0s

ψ
(7.4.1)

vanishes as k̃y → 0. Thus, the driving term vanishes, and the mode becomes linearly stable.

In case (1), the dominant instability is a positive frequency mode (i.e. in the ion diamagnetic

direction) which is most strongly growing (γ̃ peaks) around k̃y ∼ 1.5. This is the ion temperature

gradient mode (ITG) [133]. For k̃y & 3, another mode becomes dominant with the opposite fre-

quency, for which γ̃ increases with k̃y. This is likely a electron temperature-gradient driven trapped

electron mode (TEM) [134]. If one sets a/LTe = 0, the dominant mode switches sign of frequency

and the growth rate is reduced. However, as shown in figure 7.7 (right), these modes are highly ex-

tended in z and would need an increased parallel domain to robustly capture the mode properties.

Thus, these higher-k̃y results presented here should be read qualitatively, rather than quantitatively.

In case (2), several distinct modes, each with their own peak in γ̃, appear in at low k̃y. The

negative frequency modes present in the region k̃y . 5 are likely the density-driven TEM; these

modes are completely stabilised when the electrons are simulated as adiabatic (i.e. when trapped

electron dynamics are not simulated). At higher k̃y (beyond that shown in figure 7.7), the dominant

instability also becomes a positive-frequency electron-scale mode. Both the TEM and the ITG in case

(1) have a mode structure largely confined to the central magnetic well of the flux tube.

Case (3), in which the total pressure gradient is the same but “split” between temperature and

density contributions, shows reduced γ̃(k̃y) across the k̃y range scanned. The dominant instability

has a smoothly changing mode structure above k̃y ∼ 2.4, and peaks at k̃y ∼ 4. This mode is likely

the ITG-TEM “mixed mode” (or “ion-driven trapped electron mode”, ITEM) reported by Alcusón

et al. [32]. As shown in figure 7.7 (right), the mode structure is a little different to the ITG or

TEM, and has several large peaks in adjacent magnetic wells. The improved stability, for constant

(a/Ln + a/LT ), is the hallmark of the “stability valley”.
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Figure 7.7: Left: Growth rate γ̃(k̃y) (upper) and frequency ω̃(k̃y) for 3 sets of kinetic gradients (a/Ln, a/LT ) EIM W7-X
configuration. Right: mode structures |φ(z)| for distinct instabilities. Filled squares in left plot indicates data points used
for the mode structures.

7.5 The stability valley in W7-X equilibria

I next investigate the stability valley in the EIM configuration by scanning a/Ln and a/LT (with

a/LT,i = a/LT,e in all cases). The linear growth rates and frequencies for several k̃y values (1.5, 3

and 4.5) are shown in figure 7.8. In all cases some common features are observed: (1) an ITG driven

unstable at low (a/Ln), high (a/LT ), (2) a TEM driven unstable at high (a/Ln), low (a/LT ), and a

“valley” of reduced γ̃ where Ln ∼ LT , in which the frequency is positive, corresponding to the mixed

mode. The reason for the existence of the valley (argued by Alcusón et al. [32]) it that in W7-X the

trapped electron population are largely separated from regions of large and unfavourable magnetic

curvature [135]. This means that for the ITEM which is dominant, the contribution of the trapped

electrons in conjunction with the density gradient has an overall stabilising effect. At k̃y = 4.5

(figure 7.8, rightmost plot), growth rates increase sharply beyond a/Ln & 7 for all a/LT . This could

provide a critical density gradient, although the experimental profiles shown in figure 7.2 suggest this

is beyond the experimentally relevant range of a/Ln.

The same features appear in the KJM and FSM configurations; figure 7.9 shows Ω̃(a/Ln, a/LT )

for both with k̃y = 3. I also note that the growth rates magnitudes, when appropriately renormalised,

are in reasonable agreement with Alcusón et al. (who produce similar plots, but showing the largest

growth rates over a range of kyρi). Rigorous quantitative comparison between stella and Alcusón

et al. was not performed but would be a valuable piece of future work.
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Figure 7.8: (Upper) frequency and (lower) growth rate and for “standard” EIM configuration for varying density and
temperature gradients. Left: kyρi = 1.5. Middle: kyρi = 3. Right: kyρi = 4.5

Figure 7.9: Ω̃(a/LN , a/LT ) for “high iota” FTM/FSM (left) and “high mirror” KJM (right) configurations in W7-X.
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7.5.1 Validity, complementary research and future work

This linear study illustrates a reduction of microstability growth rates where a/LT ∼ a/Ln. One

may therefore expect that heat and particle fluxes are reduced where a/LT ∼ a/Ln. If so, this could

explain the improved performance in the “HP” discharges; pellet injection causes the density profile to

peak, increasing a/Ln such that (a/Ln)/(a/LT ) approaches unity. This reduces turbulent transport,

hence transiently increasing Ti and τE .

However, it is worth making some qualifying remarks for this study. Firstly, I only consider a

single value of α (i.e. these results are only valid in the vicinity of a single magnetic field line), and

a single value of k̃x (k̃x = 0). (α = k̃x = 0) often corresponds to the most unstable mode, and

is likely to provide the dominant contribution to the turbulence. However, instability characteristics

of other k̃x values are likely to impact the nonlinear dynamics of the turbulence. A fuller picture

of the “stability valley” thus requires nonlinear simulations of multiple flux tubes (or indeed, full

flux-surface simulations), which could provide quantitative estimates of heat and particle transport.

One nonlinear study, performed by Thienpondt et al. [136, 137], simulates the α = 0 flux tube at

r/a = 0.49 of the EIM vacuum field equilibrium using stella. Increasing a/Ln = 1 to a/Ln = 2

at fixed a/LT i = a/LTe = 3 reduces Qi/QGB by a factor of 3 whereas γ̃ for the most unstable k̃y <

2 mode falls by ∼ 12%; this weak correlation (which is also seen in other stellarator simulations)

indicates that the linear stability valley is not the full picture. A weak correlation between γ̃ and

turbulent fluxes in stellarators is also reported by Garcı́a-Regaña et al. [123]. A second nonlinear

study, performed by Xanthopoulos et al. [138], also finds a strong reduction in ion heat diffusivity

as the stability valley is entered and concludes that this is the result of a transition from ITG-driven

turbulence to ITEM. The authors also note that the poloidal rotation generated by the ambipolar radial

electric field in W7-X has an additional stabilising effect.

A final caveat is that these simulations are electrostatic (Ã1‖k = B̃1‖k = 0), and thus only

strictly valid in the limit β = 0. The high-performance shots reported a volume-averaged β of

〈β〉 = 1.5% and achieving 〈β〉 up to 5% is mooted [118]. Thus, finite β effects may substantially

alter the dynamics of the instabilities. I perform some preliminary investigations at finite β in the

following section.
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7.6 Electromagnetic simulations in W7-X equilibria

Electromagnetic simulations are performed using the electromagnetic version of stella (commit

f5355ba) (I refer to this latter as “EM stella” to differentiate from the main branch of the code,

which I refer to as “original stella” (commit 5a0c0b)) described in chapter 6. For most of this

work I use the EIM β = 0 (“vacuum field”) equilibrium. It should be stressed that this equilibrium is

not consistent with finite β, and for a self-consistent W7-X simulation one requires finite-β equilibria.

The inconsistent approach is used here to enable β to be scanned easily, and to give qualitative indica-

tions of how finite β may change the nature of microinstabilities. To check if the results are similar in

a finite-β equilibrium and across different W7-X geometries, some analysis is repeated using a KJM

equilibrium with 〈β〉 = 3%.

This work consists of the following: Firstly, I compare the two versions of stella electrostati-

cally, since EM stella formulates the GKE differently (with source terms in h̃k,s rather than g̃k,s).

Secondly, β is scanned for a given (a/Ln, a/LT , k̃y), showing the transition from drift wave instabil-

ities to the KBM. The “stability valley” plots (figure 7.8) are reproduced at finite β to study the effect

on the valley at finite β. Finally, results KJM 〈β〉 = 3% equilibrium are compared.

7.6.1 Centering of derivatives ∂
∂z

, ∂
∂t̃

, ∂
∂ṽ‖

In the EM slab simulations presented in section 6.4.2 it is found that uz = 0 is required for numer-

ical stability and γ̃ is sensitive to ut, resulting in the choice uz = ut = 0 for fiducial simulations.

However, in electrostatic (ES) W7-X simulations this choice it is found to cause numerical instability.

EM simulations with small spatial upwinding have also reported numerical instability in GS2 [139]

(which recommends a small amount of spatial upwinding for ES simulations but zero spatial upwind-

ing for EM simulations [140]), and thus may be a general feature of the electromagnetic implicit

algorithm. The work presented selects uz , ut and uv‖ according to the following rules:

1. For original stella the default upwinding choices (ut = uz = uv‖ = 0.02) are used.

2. For partially implicit EM stella simulations (ut = uz = 0.02, uv‖ = 0) are used for ES

simulations and (ut = uz = uv‖ = 0) for EM simulations.

3. For fully explicit EM stella uz,exp = 0.1 is always used.
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7.6.2 Electrostatic comparison between original stella and EM stella

Electrostatic simulations are run using the EIM vacuum field configuration, with (a/Ln = 3 =

a/LT,i = a/LT,e = 3, k̃y = (1, 3.5)), using the simulation parameters given in table 7.1. For each

code version, the simulation is run fully explicitly using the SSP-RK2 scheme, and again using the

implicit treatment of streaming and the mirror term. In the latter case the simulation timestep is set

to ∆t̃ = 0.05; in the former it is restricted by the CFL constraint to ∆t̃ = 0.002. nstep is kept

constant for fully explicit and partially implicit simulations individually, but is greater in the former

case (2× 105 compared to 5× 103) due to the smaller timestep. Fully explicit simulations are run in

parallel over 16 cores, and partially implicit simulations over 4 cores.

A comparison of computational cost (CPU minutes per unit t̃ simulated) and Ω̃ = ω̃ + iγ̃ are

summarised in table 7.2 and mode structures shown in figure 7.10. For k̃y = 1, there is agreement to

within around 5% between the two original stella simulations and partially implicit EM stella.

There is also particularly good agreement in |ϕ̃1k|(z) between partially implicit original stella and

partially implicit EM stella. The fully explicit EM stella simulation converges more slowly

with t̃, which results in a greater uncertainty in ω̃ and γ̃. There is poorer agreement in ω̃ and |ϕ̃1k|(z)

for this simulation.

k̃y = 3.5 converges more quickly due to the larger instability growth rate. The disagreement

across simulations is between (2%-15%) for ω̃ and between (0.8%-4%) for γ̃, with ∆ω̃ ∼ ∆γ̃ ∼

2% between partially implicit original stella and EM stella. This is in qualitative agreement

with |ϕ̃1k|(z), showing strong similarity between partially implicit schemes. It is possible that the

dominant cause of disagreement is caused by different treatments of ∂
∂z , since the mode has sharp

variation in z and would therefore be sensitive to how this derivative is calculated (though these

difference are expected to vanish in the limit nz → ∞). ∂
∂z is calculated in the same way in the

partially implicit simulations which would explain their good agreement.

Regarding computational cost, two trends are observed: (1) fully explicit simulations are more

expensive per unit t̃ than partially implicit simulations (because the timestep ∆t̃ is much smaller)

and (2) EM stella is cheaper than original stella by a factor of around 1.5 − 2 implicitly and

3−3.7 explicitly. A more rigorous investigation would be required to come to a robust conclusion on

the savings realised by using EM stella, and one should also bear in mind the slow convergence

of fully explicit EM stella. However, one can speculate that the lower cost is a general feature of

the h̃k,s formulation, occurring because fewer source terms need be calculated in the code and this

reduces the number of calculations per timestep.
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k̃y Code branch Algorithm Cost (CPU minutes/t̃) ˜̃ω ˜̃γ
1 original stella fully explicit (SSP RK2) 28.4 0.1135± 3E− 4 0.1176± 1E− 4
1 original stella implicit streaming and mirror 1.01 0.1180± 1E− 4 0.1219± 1E− 4
1 EM stella fully explicit (SSP RK2) 7.50 0.15± 0.02 0.13± 0.02
1 EM stella implicit streaming and mirror 0.586 0.1114± 5E− 5 0.1155± 1E− 4
3.5 original stella fully explicit (SSP RK2) 28.7 0.3962± 1E− 11 0.2475± 2E− 10
3.5 original stella implicit streaming and mirror 0.891 0.4285± 3E− 5 0.2566± 1E− 5
3.5 EM stella fully explicit (SSP RK2) 9.17 0.3722± 1E− 9 0.2587± 2E− 9
3.5 EM stella implicit streaming and mirror 0.616 0.4195± 5E− 6 0.2521± 3E− 6

Table 7.2: Comparison of electrostatic simulations using the vacuum field EIM equilibrium. The uncertainty in ω̃ and γ̃
are taken as the standard deviation over the final 20% of the simulation time.
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Figure 7.10: |ϕ̃1k|(Z) comparison for original stella and EM stella simulations using EIM vacuum fields equilib-
rium. Left: k̃y = 1 Right: k̃y = 3.5.

To conclude, the partially implicit implementation of EM stella shows good agreement with

the original stella implementation (∆Ω̃ . 5%) for the simulation parameters used throughout

this chapter, and is the cheapest of all variations tried in terms of CPU minutes per unit t̃. There is

particularly good agreement with partially implicit original stella for k̃y = 3.5 (∆Ω̃ ∼ 2%). The

fully explicit version of EM stella is cheaper than fully explicit original stella but shows slow

convergence at k̃y = 1 and also poorer agreement in ω̃ at k̃y = 3.5 (∆ω̃ = 6%-15%).

7.6.3 Kinetic ballooning modes in the EIM vacuum field equilibrium

For the EIM vacuum field equilibrium, the “dynamical β” (i.e. β appearing in the field equations) is

scanned for several values of k̃y for (a/Ln = 3 = a/LT,i = a/LT,e = 3). Ω̃(β) is shown in figure

7.11, left. In simulations where the growth rate is low, slow convergence can result in spurious values

of ω̃ and γ̃ as reported by stella (which are here referred to as ω̃stella, γ̃stella). As an additional

diagnostic, figure 7.11 shows γ̃2(β), defined as

γ̃n2 =
1

2(t̃n − t̃m)
log

(
〈|ϕ̃n1k|2〉z
〈|ϕ̃m1k|2〉z

)
, (7.6.1)
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where n is the timestep and m = floor(n/2). γ̃n2 calculates the growth rate averaged over a long

time and is thus less susceptible to transient events in slowly-converging simulations.

For each k̃y value, a mode transition occurs at some critical β (βKBM) to a positive-frequency

mode (i.e. in the ion diamagnetic direction) with a growth rate increasing with increasing β. Qual-

itatively similar results have been reported by Mulholland et al. in W7-X simulations using GENE,

albeit at lower k̃y values (k̃y = 0.025) and using different equilibria [141], reporting the instability

to be a KBM (EM stella simulations at k̃y = 0.025 are found to display numerical instabilities

which are currently being investigated, and so are not included here). The KBM seems to be the

likely instability here as well, with Ω̃(β) showing similar trends to the CBC at fixed geometrical β

as shown in figure 6.7. In addition, the instability preferentially occurs at lower k̃y (with lower βKBM

and higher γ̃), is stabilised when B1‖ fluctuations are ignored and has twisting parity (see figure 7.11,

right); all properties which were identified in chapter 5 as KBM properties. The minimum value of

βKBM is between 2% and 3%, which is within the range of experimental relevance.

As can be seen by figure 7.11, right, the mode structure in z is well-confined, unlike the drift wave

modes seen hitherto. This raises the possibility of studying KBMs even more efficiently by careful

tuning of non-physical parameters. For example, the (k̃y = 1, β = 4%) simulation, repeated with

modified non-physical parameters (nfp: 20→ 4, nz: 256→ 128, nṽ‖ : 72→ 24, nµ̃s : 24→ 12), was

able to better resolve the mode structure in z and cost only 0.24 CPU seconds per unit t̃ (compared

with 2.7 for the original simulation). The two simulations agreed in ω̃ an γ̃ to within 0.1% and 2%

respectively, showing that KBMs can be efficiently simulated at low computational cost.

The stability valley plots (figure 7.8), reproduced with β = 1% and β = 3%, are shown in figures

7.12 and 7.13. At low k̃y, the stability valley can still be seen, with γ̃ increasing at (high a/LT , low

a/Ln) and (low a/Ln, high a/LT ). As k̃y increases, the stability valley is wiped out by a positive-

frequency pressure-driven mode. The mode structure for (β = 1%, a/Ln = a/LT = 7.7, k̃y = 4.5),

shown in figure 7.14, reveals tearing parity and this mode is not stabilised by setting B̃1‖k = 0.

Ω̃ and the mode structures are sensitive to the putting all of the pressure gradient contribution into

the density gradient or temperature gradient, and to scaling β at fixed β′; these phenomena point

against the instability being a KBM. The overall conclusion is that electromagnetic effects may ruin

the stability valley, but the picture is more complex picture than simply KBM destabilisation.
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Figure 7.11: Ω̃(β) and mode structures for the EIM β = 0 configuration.

Figure 7.12: Ω̃(a/Ln, a/LT ) for the EIM vacuum field equilibrium with dynamic β = 1%. Blue cross marks a simulation
for which the mode structure is plotted in figure 7.14.
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Figure 7.13: Ω̃(a/Ln, a/LT ) for the EIM vacuum field equilibrium with dynamic β = 3%.
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Figure 7.14: Mode structure for instability at (β = 1%, a/Ln = a/LT = 7.7, k̃y = 4.5) in EIM vacuum field configura-
tion.
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Figure 7.15: Ω̃(β) and mode structures for the KJM 〈β〉 = 3% configuration.

7.6.4 The KJM β = 3% equilibrium

The simulations of section 7.6.3 is repeated using a KJM 〈β〉 = 3% equilibrium. It should be noted

that in these simulations, as in the EIM vacuum equilibrium, the equilibrium is not regenerated as

the dynamical plasma β and/or gradients are scanned, meaning that the equilibrium β′ is inconsistent

with the dynamical β′. Aleynikova et al. [79] report that such “inconsistent” simulations significantly

alter KBM stability, specifically, that long-wavelength (k̃y . 0.4) KBMs are spuriously destabilised

when a β = 0 W7-X equilibrium is used.

The KBM transition with β, shown in figure 7.15, shows the same trends as in the EIM config-

uration: a B̃1‖k-dependent KBM destabilised at βKBM ∼ 2% for k̃y = 1. The robustness of this

result across different equilibria confirms that KBMs are likely to exist in the operational space of

W7-X. That this result is the same between a vacuum field and finite-β equilibrium is not in direct

contradiction with Aleynikova et al. [79] since their results address KBMs at lower k̃y.

The stability valley plots at β = 1% are shown in figure 7.16. As was the case in the EIM

simulation, EM effects are preferentially destabilising at higher k̃y, where a positive-frequency mode

tends to eliminate the “valley” of low γ̃. An interesting question would be whether nonlinearly the

stability valley matches this trend; one then might imagine a crude model for high-performance shots

where the kinetic gradients are set by a combination of the electrostatic stability valley at low gradients

and a critical limit set by electromagnetic pressure-driven modes.
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Figure 7.16: Ω̃(a/Ln, a/LT ) for the KJM 〈β〉 = 3% configuration with dynamic β = 1%.

7.7 Concluding remarks

To summarise, I study the ion-scale microstability properties of W7-X equilibria as a function of

(a/(Ln), a/(LT ), kyρi) using linear gyrokinetic simulations. I explore the properties of the instabil-

ities as k̃y varies and map the “stability valley” in three β = 0 W7-X configurations. This serves as

a useful validation of recently reported results [32], as well as providing a comparison (although not

quantitative) between gyrokinetic codes.

These linear results suggest, as proposed by others, that the “stability valley” could be an attractive

operating regime for W7-X. This could also explain the improved performance which occurs in the

“HP” discharges. Nonlinear studies performed by other researchers [123, 136, 138] also support the

picture that higher gradients can suppress turbulence. However, the changes to nonlinear fluxes tend to

be much greater than the changes to the obvious linear stability metrics such as γ̃ for the most unstable

mode. It is therefore not entirely clear that the reduction in fluxes arises as a direct consequence of

the stability valley, rather than other physical effects such as sub-dominant mode characteristics and

saturation dynamics. McKinney et al. [142], for example, have shown in a comparison between two

quasi-symmetric devices (HSX and NCSX) that nonlinear fluxes can display the opposite trend to

peak growth rates, emphasising the importance of nonlinear effects. Their study concludes that this
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reversal can be explained by the increased number of sub-dominant modes and more extended mode

structures in HSX (which has larger peak γ̃ but lower nonlinear heat fluxes), enabling a more efficient

energy transfer to stable modes.

I also examine electromagnetic (EM) effects in the EIM equilibrium using the electromagnetic

implementation of the stella code (“EM stella”). I first compare the code to the regular imple-

mentation in the electrostatic limit and find reasonable agreement and lower computational cost for

EM stella when the streaming and mirror terms are treated implicitly. I then scan dynamical β in

the EIM vacuum field equilibrium. A transition from drift wave instabilities to KBM is observed as β

rises, with the KBMs showing many similar characteristics to those studied in chapters 5 and 6. The

KBM critical β for gradients a/Lni,e = a/LTi,e = 3 is within the experimentally relevant range for

W7-X. The same qualitative result is found when using a finite β (〈β〉 = 3%) KJM equilibrium.

The stability valley is simulated at β = 1% and β = 3% using the EIM vacuum field equilib-

rium and the finite β KJM equilibrium. In both cases, the stability valley is most modified at high k̃y

by a (currently unidentified, but apparently non-KBM) electromagnetic tearing-parity mode. Since

this study does not recalculate the equilibrium to be self-consistent with β′ (which has been reported

to have significant impact on instability growth rates [143]), these results are suggestive rather than

predictive. However, they do indicate a how EM instabilities could play a role in future W7-X exper-

iments.

Electromagnetic microinstability research in W7-X remains a fascinating and largely unexplored

field of study. EM stella has shown that is has the potential to efficiently study such phenomena.

Continuing this work would be an interesting and worthwhile area of future research.



Chapter 8

Eliminating the

Courant-Friedrichs-Lewy timestep

constraint in nonlinear gyrokinetics

8.1 Introduction

A principal motivation for many fusion plasma researchers is to better understand how commercial

MCF reactors should be designed and operated. One requires, for example, a plasma with sufficiently

high density, temperature and confinement to satisfy the fusion triple product nTτE (defined in sec-

tion 1.1). Nonlinear gyrokinetic simulation can help inform whether the triple product can be met

by predicting (within the limitations of the model) turbulent transport properties for a given plasma.

Nonlinear gyrokinetics (i.e. simulations which include the 〈vχ〉Xs · ∇Xshs term in the GKE) are

more expensive than the linear simulations I have described thus far, but their ability to make quanti-

tative predictions of turbulent fluxes is a great advantage. To perform such simulations with as great

computational efficiency as possible is desirable.

Codes such as stella, GS2, GENE[144] and CGYRO [145] evaluate the nonlinear source term

Ns using explicit numerical schemes. This is algorithmically straightforward but places an upper

bound on the simulation timestep, beyond which numerical instability befalls the simulation. This is

known as the Courant-Friedrichs-Lewy (CFL) timestep constraint and as I discuss in 8.3.2, may be

restrictive in physically relevant scenarios (particularly in electromagnetic simulations with gyroki-

netic electrons). It could be beneficial to avoid this constraint by using an implicit numerical scheme

154
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to evaluate the nonlinearity.

In this chapter I describe such an implementation, in which semi-Lagrangian (SL) schemes are

used to advance Ns in the electrostatic version of the code stella. Circumventing the CFL condi-

tion allows the simulation timestep to be selected on a physical (rather than numerical stability) basis,

and hence may enable greater computational efficiency. Unfortunately, the results presented here are

largely negative, but may offer some useful guidance for further development.

This chapter is organised as follows. Firstly, I describe the CFL constraint, as it applies to GS2 and

stella. I then provide some background on SL schemes. In particular, I describe a leapfrog-like

three-level SL algorithm, and a variation proposed by Harold Ritchie [146], which avoids interpola-

tion (I refer to this throughout as the non-interpolating SL, or NISL, approach). Since these algorithms

are multistep (and ergo not obviously compatible with stella’s operator splitting), I propose a new

splitting scheme (described in section 8.5.1) which mixes single-step algorithms with a leapfrog-like

multistep scheme. Next, I describe the implementation of the splitting and SL schemes in the code

stella and report the behaviour observed when nonlinear simulations are performed. Conclusions

and future work are then described (section 8.7).

8.2 Timestep restrictions in explicit schemes

For a simple example, consider the advection of a function f(x, t) in x by a velocity U , which I

initially take to be spatially and temporally constant. Such a system is described by the equation:

∂f

∂t
+ U

∂f

∂x
= 0. (8.2.1)

An analytic solution can be found by noting that f can be written as a function of a single variable

f(x, t) = f(p), where p = (x − Ut). Thus, f is constant along trajectories of constant p, and the

general solution is

f(x, t) = f(x− U(t− t0), t0), (8.2.2)

where t0 is an arbitrary time. It is helpful to express f(x, t) as a sum of Fourier harmonics f =∑∞
k=−∞ Fk =

∑∞
k=−∞ fk(t) exp(ikx). Each Fk independently satisfies (8.2.1), has the analytic
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spatial derivative

∂Fk
∂x

= ikFk, (8.2.3)

and has the exact solution

Fk(x, t) = fk(t) exp(ikx) = fk(t0) exp(ik(x− U(t− t0))) (8.2.4)

= Fk(x, t0) exp(−ikU(t− t0)). (8.2.5)

Suppose one wishes to solve 8.2.1 using a time-marching scheme; for example the second-order

Runge-Kutta (RK2) scheme:

l1 = ∆t

(
∂f

∂t

)
(fn,tn)

(8.2.6)

fn† = fn +
l1
2

(8.2.7)

l2 = ∆t

(
∂f

∂t

)
(fn†,tn+∆t/2)

, (8.2.8)

f̃n+1 = fn + l2, (8.2.9)

where the tilde (˜ ) indicates that this is an approximate solution, and the dagger (n†) denotes an

intermediate variable. One can examine numerical stability by taking a single step using the RK2

scheme, and examining the “amplification factor” G ≡ |f̃n+1/fn|. The exact solution is fn+1
k =

fnk exp(−ikU∆t) and has |f̃n+1/fn| = 1. Assuming the spatial derivatives are calculated exactly,

applying the RK2 step to a Fourier component Fk gives:

F̃n+1
k =

(
1− ikU∆t− (kU∆t)2

2

)
Fnk (8.2.10)

G =

∣∣∣∣∣ F̃n+1
k

Fnk

∣∣∣∣∣ =

(
1 +

(kU∆t)4

4

)1/2

. (8.2.11)

One sees thatG > 1 for all values of (kU∆t). Thus, the amplitude of the solution will (unphysically)

exponentially grow with the number of steps; a numerical instability. Since the scheme is unstable

for any finite timestep (∆t > 0), it is said to be unconditionally unstable.

Such analysis is known as von Neumann’s method for calculating stability. It should be em-

phasised that numerical stability depends not only on the choice of marching scheme, but on other
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algorithmic choices, such as how the derivatives are calculated (the RK2 scheme is conditionally sta-

ble, for example, if the spatial derivative is taken using a first-order upwinded scheme.) As another

example, if (8.2.1) is advanced using the strong stability-preserving (SSP) RK3 scheme and spectral

spatial derivatives, one finds

|G|2 = 1− (kU∆t)4

12
+

(kU∆t)6

36
. (8.2.12)

This is conditionally stable, since |G| ≤ 1 provided |kU∆t| ≤
√

3. The constraint on the timestep,

for given (U, k) is an example of the Courant-Friedrichs-Lewy (CFL) condition. This is summarised

by Durran [103] as: “The CFL condition requires that the numerical domain of dependence of a finite-

difference scheme include the domain of dependence of the associated partial differential equation.”

Boyd [58] offers this useful rule-of-thumb: “The maximum timestep is the same order of magnitude

as the time scale for advection or diffusion or wave propagation or whatever across the SMALLEST

distance h between two grid points.” In this example, one can define h ≡ π/kmax where kmax is the

maximum wavenumber simulated, since kmax is the shortest-wavelength mode which can be resolved

on a grid with spacing h.

8.3 Advancing the E× B nonlinearity explicitly

The E×B nonlinear term in the electromagnetic gyrokinetic equation (eq. (2.2.46)), 〈vχ〉Xs ·∇Xshs,

physically represents advection of hs by 〈vχ〉Xs , a generalised drift arising from the perturbed elec-

tromagnetic fields. To date, the nonlinear E× B term has been evaluated explicitly both in stella

(using either SSP RK2, SSP RK3 or SSP RK4) and GS2 (which uses the third-order Adams-Bashforth

scheme).

Electrostatically, the nonlinear term in real space is 〈vE〉Xs ·∇Xshs where 〈vE〉Xs ≡ −
1
B0

∇Xs 〈ϕ1〉Xs×

b. The nonlinear term as evaluated in electrostatic stella is (equation (3.5.5), reproduced here):

Nk,s =
Br
2

dy

dα

dx

dψ
Fk

[
F−1

k

[
ik̃yJ0(γs)ϕ̃1k

]
F−1

k

[
ik̃xg̃k,s

]
−F−1

k

[
ik̃xJ0(γs)ϕ̃1k

]
F−1

k

[
ik̃y g̃k,s

]]
,

(8.3.1)

with gradients calculated spectrally and the source term calculated in real space. Being nonlinear,

the properties of explicit numerical schemes used to evaluate this source term are considerably more

difficult to assess. However, given that this problem suffers a CFL condition in the limit of a spatio-
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Figure 8.1:
∑
k̃x,k̃y

〈
|ϕ̃1k|2

〉
z

(t) for example CBC simulation. Data points (in red) are written every nwrite = 50 steps.

Blue crosses mark the times for which
〈
|ϕ̃1k|2

〉
z

(k̃x, k̃y) are plotted in figure 8.2. Right: normalised ion and electron heat
flux for the simulation.

temporally constant advecting velocity, and bearing in mind the remarks of Durran and Boyd, it

is unreasonable to expect unconditional stability. As a result, stella prescribes the maximum

allowable timestep ∆t̃max = cfl dt ∗ cfl cushion, where, for the nonlinear term,

cfl dt ≡ min

 2π

max
(
F−1

k

[
ik̃xJ0(γs)ϕ̃1k

])
· max(k̃y)

,
2π

max
(
F−1

k

[
ik̃yJ0(γs)ϕ̃1k

])
· max(k̃x)

 ,

(8.3.2)

is the rule-of-thumb magnitude of the CFL-limited ∆t̃ (where the max operator is taken over all

combinations of (k̃x, k̃y, z), the min operator is taken over the two arguments). cfl cushion is a

user-controlled parameter (cfl cushion = 0.5 by default). The difficulty in assessing numerical

stability means that cfl cushion is not usually selected in a theoretically rigorous way. Indeed,

in the limit that 〈ṽE〉Xs (〈vE〉Xs in normalised stella units) is spatially and temporally constant,

advancing the nonlinear term using stella’s SSP RK2 scheme is unconditionally unstable. One

might therefore expect this to present numerical difficulty for any finite timestep. However (as I later

show), nonlinear simulations have been successfully run using the SSP RK2 scheme, suggesting that

the numerical instability is unimportant compared to the linear source terms, which themselves induce

exponential-like growth and decay for each mode.
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Figure 8.2:
〈
|ϕ̃1k|2

〉
z

(k̃x, k̃y) at four simulation times. Top left (t̃ = 0): the simulation initialised to small amplitude
everywhere. Top right (t̃ = 22): linear growth phase. Bottom left (t̃ = 198) and bottom right (t̃ = 430): snapshots of the
saturated turbulence phase.
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8.3.1 Nonlinear simulations and saturation

Qualitatively typical plots of a saturated nonlinear (electrostatic) simulation are shown in figures 8.1

and 8.2. The simulation is performed by stella using physical parameters corresponding to the

cyclone base case (CBC). The input file is included in Appendix D.

Figure 8.1 (left) shows
∑

kx,ky

〈
|ϕ̃1k|2

〉
z

against t̃, which is equivalent to
〈
|ϕ̃|2

〉
x,y,z

[147], where

〈〉z denotes the field line average and
〈
|ϕ̃1k|2

〉
x,y,z

the average over x, y, z for the flux tube. Fig-

ure 8.1 (right) shows the gyro-Bohm-normalised ion and electron heat fluxes Qi,e/QGB , where

QGB = niTivth,iρ
2
i /a

2. Figure 8.2 shows |
〈
ϕ̃2

1k
〉
z
|2(k̃x, k̃y) at four different times showing the

initial condition, the exponential growth phase and saturation.

Since 〈ṽE〉Xs scales with the magnitude of the distribution function and the distribution is ini-

tialised with a small amplitude (see figure 8.2 (upper left)), Nk,s is negligible at early simulation

times. The system therefore evolves linearly such that the dominant mode(s) quickly emerge and

grow exponentially, dominating the behaviour of the system. This can be seen in figure 8.2 (upper

right):
〈
|ϕ̃1k|2

〉
z

is at its largest over the region (0.4 . k̃y . 1, −0.2 . k̃x . 0.2), which is typical

for the ITG instability. As the simulation evolves, Nk,s grows more rapidly than the linear source

terms until it competes with the linear behaviour at t̃ ∼ 60.

As previously noted, Nk,s can be interpreted as nonuniform advection in (x, y); this “transfers”

g̃k,s in k-space, with each mode pair (k1 = kx1x̂ + ky1ŷ, k2 = kx2x̂ + ky2ŷ; k1 6= k2) providing a

source term for modes (k3 = kx3x̂ + ky3ŷ) which have (kx3 = kx1 ± kx2, ky3 = ky1 ± ky2). The

unstable modes tend to “transfer” energy to the stable modes, which removes energy from the system.

This settles the simulation into a chaotic but statistically steady state (from times t̃ & 100 in figure

8.1); one sees (in figure 8.2 (bottom left and bottom right)) broadly the same features throughout the

saturated period. The heat fluxes (figure , left) also fluctuates around a mean value comparable with

a published results by Barnes et al. [45] for the same equilibrium using GS2 and stella.

A particularly noteworthy feature of turbulent plasmas are zonal modes, defined as modes with

k̃y = 0, which have several interesting properties [39, 148, 149]. One is that these modes are linearly

stable, since the driving term:

iω∗,k,sJ0(γs)ϕ̃1k =
k̃y
2
aBr

dy

dα
e−ṽ

2
s
d lnF0s

ψ
(8.3.3)

clearly vanishes when k̃y = 0; they are only fed by nonlinear interactions. Similarly, these modes

also do not contribute to radial fluxes in the plasma. These modes can then be considered a benign
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sink for turbulent energy, which is dissipated by Landau damping or, if included in the simulations,

collisions. The other stabilising role the zonal mode plays is via sheared zonal flows. That is, the

〈ṽE〉Xs drift generated by the zonal flows drives transfer from unstable to stable modes[150, 151].

As can be seen from 8.2 (bottom left and bottom right), low-k̃x zonal modes have relatively large

amplitudes during the saturated period and so are generating relatively large E× B flows.

A final comment is that the dominant modes in the saturated region differ to the dominant modes

in the linear phase, illustrating the nontrivial relationship between linear stability and nonlinear dy-

namics.

8.3.2 Restrictiveness of the CFL condition

Since ϕ̃1k scales with the distribution function, eq. (8.3.2) indicates that cfl dt will decrease over

the initial linear phase of the simulation. This may result in the timestep being decreased, incurring

additional computational expense since more steps are required to advance some given simulation

time. There are two cases where the CFL condition is particularly restrictive:

1. In electromagnetic simulations, wherein 〈vχ〉Xs contains a term which scales with species ther-

mal velocity:

〈vχk〉Xs = ik

(
J0(γs)ϕ̃1k − 2ṽ‖ṽth,sJ0(γs)Ã1‖k − 4µ̃s

T̃s
Z

J1(γs)

γs
B̃1‖k

)
. (8.3.4)

The rule-of-thumb CFL condition then becomes:

cfl dt ≡

min

 2π

max
(
F−1

k

[
ik̃x

(
J0(γs)ϕ̃1k − 2ṽ‖ṽth,sJ0(γs)Ã1‖k − 4µ̃s

T̃s
Z
J1(γs)
γs

B̃1‖k

)])
· max(k̃y)

,

2π

max
(
F−1

k

[
ik̃y

(
J0(γs)ϕ̃1k − 2ṽ‖ṽth,sJ0(γs)Ã1‖k − 4µ̃s

T̃s
Z
J1(γs)
γs

B̃1‖k

)])
· max(k̃x)

 .

(8.3.5)

When Ã1‖k is finite, this piece of 〈vχk〉Xs becomes large for electrons from the scaling vth,s ∼

m
−1/2
s . As discussed in section 2.4, B1 and therefore Ã1‖k tends to scale with plasma β, so

this becomes more important at higher β. Spherical tokamaks for example provide physically

interesting cases which suffer badly from the CFL constraint.
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(t) for GS2 CBC nonlinear simulations for three values of β. Right: simulation
timestep size ∆t̃ throughout the simulations.

2. When the potentials become large. This could happen for several reasons, including:

2.1. The simulation experiences “bursty” behaviour, in which the distribution becomes tran-

siently large, before settling into a lower state.

2.2. The simulation fails to saturate, or saturates into an extremely turbulent regime, for physi-

cal reasons. There is no a priori mathematical evidence that the gyrokinetic system should

saturate; one can imagine that if the mechanisms which dissipate energy are sufficiently

weak, the simulation could settle into an exponentially growing state. Indeed, a physical

mechanism by which electromagnetic simulations fail to saturate beyond a critical β has

been proposed by Pueschel et al. [152]. Of course, one would expect that simulations

of experimentally obtained steady-state plasmas should be able to saturate at a physically

reasonable level.

An illustration of timestep restriction is shown in figure 8.3. In these CBC simulations performed

with GS2, β is varied from 0 to 0.01. As β rises, ∆t̃ falls by several orders of magnitude. It is not

clear whether the β = 0.01 simulation will saturate, for example, but to find out would require high

computational cost since ∆t̃ becomes small.

Given this motivation, I now briefly describe SL schemes, which may be able to address this issue.
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8.4 Semi-Lagrangian schemes

In the example problem in section 8.2 (eq. 8.2.1), it was noted that f was conserved along trajectories

of constant p = x−U(t−t0). More generally in advection problems, f is conserved along trajectories

of constant p = x−
∫ t
t0
U(x, t′)dt′. One might then be tempted to move away from advancing f(x, t)

on a fixed spatial grid (an Eulerian scheme) to a “moving grid”, or Lagrangian, approach, whereby

f is initially sampled on a regular x grid of “markers”, and the spatial location of the markers are

advanced along the trajectory p. These schemes do not suffer from the CFL constraint. However,

they suffer a drawback that the markers tend to accumulate, leading to an uneven sampling of f in

phase space. Some regions end up highly sampled by accumulating many markers, whereas other

regions are poorly sampled. Unless remedied (for example, by periodically resampling the phase

space), this can lead to low accuracy in the poorly sampled regions. [103]

A modification, which eliminates the CFL constraint whilst retaining the even sampling of Eu-

lerian schemes, is the semi-Lagrangian (SL) approach. Here, one evaluates f on a regular grid by

taking each gridpoint to be a marker, and estimating the trajectory of each point backwards in time.

Having found the location of the marker at an earlier timestep (the “departure point” or “trajectory

foot”), one then calculates the value of f at the marker at the earlier time. Since the departure point is,

in general, not on a gridpoint, this is usually done by interpolation. As a concrete example, I describe

an SL scheme (which I will refer to as the “leapfrog three-level SL scheme”) for advection in one

spatial dimension in the following section.

8.4.1 The leapfrog three-level SL scheme

In this scheme equation (8.2.1) is solved as [153]

f(xi, t
n+1)− f(xi − 2αi, t

n−1)

2∆t
= 0, (8.4.1)

where αi is the distance travelled by the trajectory arriving at the location (xi, t
n+1) over one timestep

∆t. With this approach, the major algorithmic choices are: (1) how to calculate αi and (2) the

interpolation used to calculate f at the departure point (xi − 2αi, t
n−1). To address (1), Staniforth

and Côte[153] give the approximation

αi = ∆tU(xi − αi, tn), (8.4.2)
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which is second-order accurate but requires interpolation to find U(xi − αi, tn). αi can be found by

iteratively solving (8.4.2) a small number of times (. 3 [58, 153]) (using an initial guess e.g. αi = 0).

To address (2), many interpolation schemes are available [58, 103, 153]. The trade-off between

schemes is usually computational cost vs accuracy, with inaccuracy typically resulting in numerical

dissipation. Of course, in a spectral scheme, one can evaluate f at an arbitrary location with complete

accuracy (i.e. limited only by machine precision), but this cannot be done by Fast Fourier Transform.

Instead, one would need to sum the (nxny)-term Fourier series to calculate the value at a particular

location. This would need to be done for each (x, y) location to advance the nonlinearity for a given

(z, ṽ‖, µ̃s, s) so would require (O
(
nznṽ‖nµ̃s(nxny)

2
)

) operations per timestep, which would likely

be prohibitively expensive.

In the following section, I describe a scheme with avoids interpolation altogether: the non-

interpolating SL scheme.

8.4.2 The non-interpolating SL scheme

This scheme was proposed by Ritchie [146] and for eq. (8.2.1) can be written

f(xi, t
n+1)− f(xi − pi∆x, tn−1)

2∆t
= −U1i

∂f

∂x

∣∣∣∣
xi−

pi∆x

2
,tn
, (8.4.3)

where

pi = nint

(
2∆t

∆x
U

(
xi −

pi∆x

2

))
, (8.4.4)

U1i = U

(
xi −

pi∆x

2
, tn
)
− pi∆x

2∆t
. (8.4.5)

The basic idea is that rather than the markers following the trajectory of f exactly, they instead follow

the approximate trajectory of f such that the departure point coincides with a gridpoint. This is

shown pictorially in figure 8.4 (left). The residual velocity U1i accounts for the difference between

this trajectory and the actual trajectory of the gridpoint.

The residual velocity source term is explicit in (8.4.3) which introduces a CFL condition. How-

ever, Ritchie shows the scheme to be unconditionally stable when applied to two-dimensional advec-

tion by a spatio-temporally constant velocity, since the residual velocity is always sufficiently small(∣∣∣U1i∆t
∆x

∣∣∣ ≤ 1
4

)
that the CFL condition is always satisfied. However, I claim that when U is spatially

varying, this is not guaranteed. As an example, consider figure 8.4, in which U is spatially varying.
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Figure 8.4: Schematic diagrams of SL schemes in one dimension. Upper left: a three-level SL scheme. The trajectory
arriving at xi at time tn+1, represented by the blue curve, is approximated by an equivalent trajectory (purple arrow) with
the same departure point (green plus). This trajectory is determined based on the velocity at (xi − αi, tn) (orange star).
Lower left: the NISL scheme. The approximate trajectory (purple arrow) is split into a gridpoint-to-gridpoint trajectory
(dashed red arrow) and a small residual. Lower right: An issue with the NISL scheme as described by Ritchie [146], in
which no candidate trajectory (purple lines) arrive near to xi and thus the residual velocity is not guaranteed small.

For an example gridpoint αi, no choice of pi satisfies
∣∣∣U1i∆t

∆x

∣∣∣ ≤ 1
4 . This could be made stable by re-

ducing ∆t̃, but the motivation of the SL scheme is to avoid numerical timestep constraints. This issue

regarding the magnitude of the residual velocity for spatially-varying velocity fields is not mentioned

by Ritchie [146] or other works which describe the scheme [58, 103, 153]. Possibly this indicates that,

so far, the scheme is numerically well-behaved where it has been applied. Given this potential pitfall,

I deploy an alternative scheme to calculating pi and Ui for stella (described in section 8.6.2.1).

One may be tempted to incorporate the NISL scheme into a gyrokinetic code such as stella.

However, a challenge remains to combine the NISL scheme (which is multistep, requiring information

from two previous times) with single-step schemes used by stella to advance the linear terms. This

is addressed in the following section.
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8.5 Operator splitting with multi-step numerical schemes

Consider the system

∂f

∂t
+A(f) + B(f) + C(f) = 0, (8.5.1)

whereA,B, C are generic operators. Suppose that one wishes to treat the operatorA using a leapfrog-

like operator, i.e.

f̃n+1 = f̃n−1 + 2∆tA(fn), (8.5.2)

and operators B and C using single-step operators. Lie-Trotter splitting prescribes the approach

(
df

dt

)
1

= A(f) (8.5.3)(
df

dt

)
2

= B(f) (8.5.4)(
df

dt

)
3

= C(f), (8.5.5)

where fn is inserted into (8.5.3) and solved to obtain an intermediate solution fn†, which is inserted

into (8.5.4) to obtain fn‡, which is finally inserted into (8.5.5) to obtain fn+1. Lie-Trotter splitting

is ambiguous for multistep scheme. For example, should one use fn and fn−1 in (8.5.2), or some

intermediate variables such as f (n−1)†?

A straightforward solution which incorporates SL scheme and non-advective source terms would

be to simply make the entire algorithm three-level by adding a source term to the right-hand side of

(8.4.1). For 2D advection, as is the case in the GKE, this looks like

f(xi, yj , t
n+1)− f(xi − 2αi, yj − 2βj , t

n−1)

2∆t
= R(xi − αi, yj − βj , tn) (8.5.6)

f(x, y, tn+1) = f(xi − 2αi, yj − 2βj , t
n−1) + 2∆tR(xi − αi, yj − βj , tn), (8.5.7)

where R(xi − αi, yj − βj , t
n) represents all of the linear terms from the GKE (and if the NISL

scheme is used, the residual 〈ṽE〉Xs). The source term could be calculated spectrally on the (k̃x, k̃y)

grid, transformed to real space and then interpolated to (xi − αi, yj − βj). However, I choose not

to employ this approach for two reasons. The first is to preserve the spectral accuracy of the linear

terms in the GKE. The second is that computing the linear source terms using an explicit leapfrog
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approach would be CFL-constrained, and would lose the benefits of stella’s implicit schemes and

the stability-preserving properties of the RK algorithms.

To take full advantage of these sophisticated linear algorithms, one could instead develop a new

operator splitting scheme which mixes general single-step schemes with a multistep scheme. This

would allow the user to mix numerical schemes for different terms in the GKE with full flexibility. I

present such a scheme in the following section.

8.5.1 A new splitting scheme

The proposed scheme for solving eq. (8.5.1) is as follows:

1. Advance fn−1 by B and then C using Lie-Trotter splitting:

(
df

dt

)
1

= B(f) (8.5.8)(
df

dt

)
2

= C(f) (8.5.9)

to obtain an intermediate variable f (n−1)†.

2. Advance f (n−1)† with the operator A using a leapfrog scheme to obtain f (n+1)‡:

f (n+1)‡ = f (n−1)† + 2∆tA(fn) (8.5.10)

3. Advance f (n+1)‡ by C and then B using Lie-Trotter splitting:

(
df

dt

)
4

= C(f) (8.5.11)(
df

dt

)
5

= B(f) (8.5.12)

By Taylor expansion it can be shown that the local truncation error is O(∆t3) if A, B and C are

linear time-independent operators. In this case, the exact solution fn±1 in terms of fn can be written:

fn±1 = exp(±(A+B + C)∆t)fn (8.5.13)

=

[
1± (A+B + C)∆t+

(∆t)2

2
(A+B + C)2 +O(∆t3)

]
fn, (8.5.14)

where A, B and C are time-independent matrices. By Taylor expanding the exponential, the scheme
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gives us

f (n−1)† = exp(B∆t) exp(C∆t)fn−1 (8.5.15)

=

[
1 +B∆t+

∆t2

2
B2 + ...

] [
1 + C∆t+

∆t2

2
C2 + ...

]
·[

1− (A+B + C)∆t+
(∆t)2

2
(A+B + C)2 + ...

]
fn (8.5.16)

=

[
1−A∆t+

(∆t)2

2
(A2 +AB +AC −BA+BC − CA− CB) + ...

]
fn (8.5.17)

f (n+1)‡ =

[
1 +A∆t+

(∆t)2

2
(A2 +AB +AC −BA+BC − CA− CB) + ...

]
fn (8.5.18)

fn+1 =

[
1 + C∆t+

∆t2

2
C2 + ...

] [
1 +B∆t+

∆t2

2
B2 + ...

]
·[

1 +A∆t+
(∆t)2

2
(A2 +AB +AC −BA+BC − CA− CB) + ...

]
fn (8.5.19)

=

[
1 + (A+B + C)∆t+

(∆t)2

2
(A+B + C)2 + ...

]
fn. (8.5.20)

(8.5.20) matches the exact solution up to and including (∆t)2, so the truncation error is O(∆t3) and

the splitting scheme is second-order accurate.

This scheme requires (2N −1) steps per timestep advanced for N single-step operations, making

it roughly twice as expensive as the Lie-Trotter or flip-flop schemes. However, this may be acceptable

if it allows the nonlinear CFL constraint to be avoided, which can reduce the timestep (and hence raise

the expense) by orders of magnitude (as shown in figure 8.3).

8.5.1.1 Starting the scheme

A problem with multistep schemes in general is that they are not self-starting. This is true of the

scheme presented here. To begin the scheme, I therefore use ordinary Lie-Trotter splitting for the first

step (to get from f0 = f(t = 0) to f1), using a single-step scheme such as RK for the operator A.

If one wishes to take a large timestep, which breaks the CFL condition for A using an RK scheme,

one can take multiple steps with a smaller timestep to go from f0 to f1. Once f1 is obtained, one can

revert to the larger timestep if the multistep scheme permits. This could be useful in stella, for

example, if one wishes to restart a simulation in which g̃k,s is large.
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8.6 Implementation in stella

The implementation described here (and results presented) correspond to the stella commit b777f76.

8.6.1 Operator splitting

As a starting point, I implement the splitting scheme described in section 8.5.1 linearly in stella;

the streaming and mirror terms are treated using the usual implicit schemes and the magnetostatic

drifts and diamagnetic-like drifts are evaluated using the leapfrog scheme.

The result for the cyclone base case (CBC) with (k̃y = 0.5, k̃x = 0) is shown in figure 8.5. There

is good agreement in the mode structure, but curious oscillations in the mode complex frequency

around the values predicted by conventional stella and GS2. It is possible that this is peculiar to

the algorithm used by stella to calculate Ω̃. stella’s approach compares the field-line average

of ϕ̃1k on two successive steps:

Ω̃n
stella =

i

∆t̃
ln

(
〈ϕ̃n1k〉z
〈ϕ̃n−1

1k 〉z

)
. (8.6.1)

However, when one computes γ over a longer time range:

γ̃n2 =
1

2(t̃n − t̃m)
ln

(
〈|ϕ̃n1k|2〉z
〈|ϕ̃m1k|2〉z

)
, (8.6.2)

wherem = floor(n/2), one finds that the growth rate converges to the conventional stella result

to within 0.08% (γ̃2(t̃) is shown in the lower left plot of figure 8.5). This discrepancy could plausibly

be the result of divergence between the solutions on odd and even timesteps, as sometimes happens

in leapfrog-like schemes. γ̃2 averages over many steps which would smooth out these high-frequency

features.

One can also use the splitting scheme to advance all of the linear terms in the usual way (implicit

and RK schemes), and advance the nonlinear term using a leapfrog-like scheme (rather than an SL

scheme). I show benchmarking results for this in the following section.
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Figure 8.5: Linear operator splitting benchmarking in (CBC, k̃y = 0.5). Left: Ω as calculated by stella and (bottom) γ̃
as calculated over many steps. Right: Normalised mode structure |ϕ̃1k|(z).

8.6.2 Implementation of the NISL scheme and nonlinear benchmarks

8.6.2.1 NISL implementation

There is a danger that implementing the NISL scheme as presented by Ritchie brings about large

residual velocities, which could give rise to numerical instability (see section 8.4.2). To avoid this, I

implement a finite volume scheme to approximate the departure point for each gridpoint.

In my approach, the trajectory of the gridpoint is “traced back” through cells to find the departure

point. The velocity in each cell is taken to be the velocity of the gridpoint at the cell centre at

time t̃n, and the (x̃, ỹ) grid is upsampled for 〈ṽE〉nXs such that it is evaluated on a grid with spacing

(∆x̃/2,∆ỹ/2). An illustrative example of the original and upsampled (x̃, ỹ) grids are shown in figure

8.6. The cell boundaries corresponding to these grids and an example map of 〈ṽE〉nXs (generated from

an example nonlinear simulation with nx = 10, ny = 14) is shown in figure 8.7. The trajectories for

each gridpoint calculated using this finite volume scheme is shown in figure 8.8 and the approximate

departure points for each gridpoint shown in figure 8.9. In this example, the velocities have been

linearly scaled from the simulation values such that the typical Courant number exceeds one (Cmax ≡

max
(∣∣〈ṽE〉nXs x∆t̃/∆x̃+ 〈ṽE〉nXs y∆t̃/∆ỹ

∣∣) = 3.47).

Once the estimated departure point (x̃′ij , ỹ
′
ij) for each gridpoint (x̃i, ỹj) is found, the effective
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velocity (Uij = Ux,ij x̂ + Uy,ij ŷ) is calculated:

Ux,ij =
x̃i − x̃′ij

2∆t̃
Uy,ij =

ỹj − ỹ′ij
2∆t̃

. (8.6.3)

Ux(y),ij is then split into a gridpoint-to-gridpoint trajectory U0x(y),ij and a residual U1x(y),ij :

U0x,ij = pij
∆x̃

2∆t̃
; U1x,ij = Ux,ij − U0x,ij (8.6.4)

U0y,ij = qij
∆ỹ

2∆t̃
; U1y,ij = Uy,ij − U0y,ij , (8.6.5)

where

pij = nint

(
2∆t̃Ux,ij

∆x̃

)
; qij = nint

(
2∆t̃Uy,ij

∆ỹ

)
. (8.6.6)

The distribution function gs is then updated in real space:

gn+1
s (x̃i, ỹj) = gn−1

s (x̃i − pij∆x̃, ỹj − qij∆ỹ)− U1x,ij
∂gns
∂x

∣∣∣∣
(x̃i−pij∆x̃/2,ỹj−qij∆ỹ/2)

− U1y,ij
∂gns
∂ỹ

∣∣∣∣
(x̃i−pij∆x̃/2,ỹj−qij∆ỹ/2)

, (8.6.7)

before finally being converted back to Fourier space. ∂gn

∂x̃(ỹ) is also upsampled onto the finer grid, such

that it can be evaluated when pij(qij) is odd.

It should be emphasised that although this approach seems reasonable and guarantees small resid-

ual velocities
(
|U1x(y),ij | ≤

∆x̃(ỹ)

4∆t̃

)
, the accuracy of this scheme is not proven. It also tends to lead

(see figure 8.9) to an accumulation of departure points in regions where the velocity is small and a

low density of departure points in regions of large velocity.

For completeness, the NISL approach as described by Ritchie [146] is illustrated in figures 8.10

and 8.11 for the same velocity field as shown in figure 8.7. Figure 8.10 shows the trajectories corre-

sponding to every location in the upsampled (x, y) grid. Figure 8.11 shows the departure and arrival

points for each of these trajectories. It can be seen here that certain locations on the (x, y) grid have

no nearby arrival points, which would result in large (i.e. CFL-breaking) residual velocities.
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Figure 8.6: Illustration of the NISL implementation: The (x̃, ỹ) grid for a stella simulation with (nx = 10, ny = 14)
(blue dots) and the upsampled grid (orange crosses) on which 〈ṽE〉Xs

and ∂gs
∂x,y

are evaluated.
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Figure 8.7: Illustration of the NISL implementation: The cells used in the finite volume trajectory-tracing approach (bound-
aries marked by grey lines). In each cell, the velocity is estimated using the upsampled grid. Blue arrows indicate relative
magnitude and direction of 〈ṽE〉Xs

field for example simulation.
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Figure 8.8: Illustration of the NISL implementation: For each point on the (non-upsampled) grid (blue dots), the departure
point is estimated by tracking backwards through cells. Trajectories are shown by red lines.
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Figure 8.9: Illustration of the NISL implementation: The estimated departure point (green dots) for each grid point (blue
dots) using an example velocity field. Departure points tend to accumulate in regions of small | 〈ṽE〉Xs

|.
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Figure 8.10: Illustration of the Ritchie’s NISL scheme: trajectories (blue arrows) from tn−1 to tn+1 are shown for every
upsampled gridpoint using 〈ṽE〉Xs

evaluated at tn.
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Figure 8.11: Illustration of the Ritchie’s NISL scheme: departure points (red crosses) and arrival point (green crosses) of
each possible trajectory are shown. Each point on the regular grid (blue dots) selects one of these trajectories to decompose
into a gridpoint-to-gridpoint trajectory and a residual.
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8.6.2.2 Interpolating SL implementation

Although the focus of this research is on the NISL scheme, the simple leapfrog three-level SL scheme

is also implemented, with interpolation performed using simple bilinear interpolation. The accuracy

of this approach is low and likely leads to unacceptable numerical dissipation, but serves as a starting

point for investigations.

8.6.2.3 Results: advancing the E× B nonlinearity only

Figure 8.12 shows results for low-resolution simulations in which all terms except the nonlinearity

are excluded. These simulations are not intended to accurately represent fusion plasmas, but enable

the properties of different numerical schemes to be tested.

In the first simulation set, shown in figure 8.12 (upper left), 〈ṽE〉Xs is overridden to be spatially

and temporally constant with 〈ṽE〉Xs x = 1, 〈ṽE〉Xs y = 0. max(k̃x) is set to 1, which determines

stella’s CFL timestep as cfl dt = 2π ∼ 6.28. The timestep is set to ∆t̃ = 0.02 � cfl dt;

ergo, this simulates the case where the Courant number is much less than unity. The exact solution is

simply a change in phase of each mode with no growth or decay.

Figure 8.12, upper left shows how
∑

kx,ky

〈
|ϕ̃1k|2

〉
z

(t) changes over the simulation time. The

solution for SSP RK2 increases in amplitude steadily over the simulation time, while SSP RK3 falls.

This is consistent with remarks made in section 8.2; |G| > 1 for SSP RK2 since the scheme is

unconditionally unstable, whereas |G| < 1 for SSP RK3 since (k̃x 〈ṽE〉Xs x∆t̃) <
√

3 for all k̃x. SSP

RK4, leapfrog and NISL schemes have very small deviation in
∑

kx,ky

〈
|ϕ̃1k|2

〉
z

(t) (≤ 2× 10−6%),

indicating a greater level of accuracy. The disagreement between leapfrog and NISL is comparable

with machine precision error (∼ 10−13), as expected; in the limit that the advecting velocity is small

compared to (∆x̃/∆t̃), the NISL scheme reduces to the leapfrog scheme, with essentially the same

algorithm implemented by two independent subroutines. The SL scheme with bilinear interpolation

shows a large change in
∑

kx,ky |ϕ̃1k|2(t) (∼ 80%) and so is not included in figure 8.12 (upper left).

In the second simulation set, shown in figure 8.12 (upper right), 〈ṽE〉Xs is again overridden, now

with 〈ṽE〉Xs x = 10, 〈ṽE〉Xs y = 0 (such that cfl dt = π/5 ∼ 0.628), and ∆t̃ increased to 0.2.

In this case, the leapfrog, SSP RK2 and SSP RK3 schemes experience rapid exponential growth

(“numerical blowup”), consistent with |G| > 1 (NB stability for the SSP RK3 scheme requires ∆t̃ ≤
√

3/(max(k̃x) 〈ṽE〉Xs x) ∼ 0.17). SSP RK4 remains stable but rapidly decays, presumably since |G|

is no longer close to 1. The NISL scheme, started with an SSP RK4 step, shows an oscillating error

at around 10%. However, when the analytic solution is used to solve the first timestep, the NISL
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Figure 8.12: stella simulations where only the nonlinear source term is included. Upper left: constant velocity field
with low Courant number (∆t̃/cfl dt = 0.003). Upper right: constant velocity field with moderate Courant number
(∆t̃/cfl dt = 0.3). Bottom plot: 〈ṽE〉Xs

calculated consistently with g̃k,s.

scheme becomes highly accurate, with a maximum error in
∑

kx,ky |ϕ̃1k|2(t) of ∼ 0.01%. Therefore,

in this test the NISL scheme’s accuracy is highly sensitive to how the scheme is started. The solution

when using the SL scheme using bilinear interpolation is quickly damped. I speculate this is due to

numerical “smoothing out” causing g̃k,s to be transferred to the (k̃x = k̃y = 0) mode, which is then

zeroed out by stella.

The third simulation set uses ∆t̃ = 0.02 but does not override 〈ṽE〉Xs ; thus the advecting

velocity is spatio-temporally varying in an unprescribed manner. Physical intuition suggests that∑
kx,ky

〈
|ϕ̃1k|2

〉
z

should be approximately constant, since g̃s(x̃, ỹ) is conserved. Figure 8.12, lower

shows the simulation results: SSP RK2, SSP RK3 and SSP RK4 behave reasonably and the inter-

polating SL scheme rapidly damps. The leapfrog scheme and NISL schemes behave similarly until

around t̃ = 100, whereupon some kind of numerical instability occurs. For the leapfrog scheme,

this results in numerical blowup and an extremely small timestep. For NISL, this appears to cause a

bifurcation to a high-amplitude state.
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Figure 8.13:
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|ϕ̃1k|2
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z

(t) for different numerical schemes for CBC nonlinear simulations containing linear source
terms. ∆t̃(t̃ = 0) is the same for all simulations, but drops in the Leapfrog scheme as stella’s CFL condition is hit.

8.6.2.4 Results: nonlinear Cyclone Base Case simulations

Figure 8.13 shows “full” nonlinear simulations for the CBC, in which all linear source terms are in-

cluded. The SSP RK2 simulation is the same as presented in section 8.3.1; the input file is included

for reference in appendix D. The leapfrog and NISL implementations (which have all the same sim-

ulation parameters except for specifying the leapfrog/NISL schemes) show similar behaviour to the

nonlinear-only simulations, with leapfrog experiencing a numerical instability and NISL bifurcating

to a higher-turbulence state. The interpolating SL scheme shows different behaviour to the nonlinear-

only simulations, also entering a high-turbulence state.

Figure 8.14 shows ϕ̃1k(k̃x, k̃y) for the last timestep of each simulation. It is interesting to note

that the three misbehaving simulations (leapfrog, NISL and interpolating SL) all display different

(and currently unexplained) characteristics. The leapfrog simulation is dominated by zonal modes,

but shows some fine structure in (k̃x, k̃y). The NISL simulation shows a strong contribution from the

lowest nonzero k̃y modes and a great degree of symmetry in k̃x about k̃x = 0. The SL implementation

with bilinear interpolation is dominated by zonal modes (possibly a result of numerical smoothing).
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(k̃x, k̃y, t̃ = t̃final) for different numerical schemes for CBC nonlinear simulations.

8.7 Concluding remarks

In this chapter, I develop a non-interpolating SL (NISL) scheme and novel operator splitting algo-

rithm and implement these in the electrostatic stella code. A linear test of the splitting scheme,

while showing curious oscillations in Ω(t̃) as calculated by stella, shows good agreement in mode

structure compared with the original stella and GS2. When averaged over many steps, the growth

rate also shows good agreement. The NISL scheme shows a greater level of accuracy for a spatio-

temporally constant velocity field than the SSP schemes and does not have a CFL constraint. How-

ever, when 〈ṽE〉Xs is allowed to vary, as is the case in gyrokinetics, the NISL simulation encounters

some kind of numerical instability and bifurcates to a higher-turbulence state. Numerical instabil-

ity also occurs when the nonlinear source term is calculated using a leapfrog approach, without SL.

An SL scheme using bilinear interpolation is also implemented, but in all tests the solution departs

rapidly from the expected behaviour and other schemes. This is likely due to a high level of numerical

diffusion arising from the low-accuracy interpolation scheme.

The reasons behind the poor performance of the NISL scheme are less easily explained. One
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possibility is that the finite volume scheme used to estimate the departure points is simply too in-

accurate. stella’s default approach calculates a source term in real space with spectral accuracy.

By departing from this, NISL may introduce unacceptably large errors. Another possibility is that

the leapfrog-like source term used to handle the residual velocity has poor stability properties, and

some particular feature of g̃k,s and/or 〈ṽE〉Xs causes a rapidly growing numerical instability. This

would explain why the leapfrog and NISL schemes both experience sharp jumps in
∑

k̃x,k̃y

〈
|ϕ̃1k|2

〉
z

at specific times. A third possibility is that the splitting scheme gives rise to instability in some cases.

With the last point in mind, a useful area of research could be whether a noninterpolating SL

scheme could be combined with an SSP RK method, with the latter used to calculate the source

term arising from the residual velocity. This may have improved stability properties compared to the

leapfrog approach. It would also avoid the need to use multistep splitting scheme with its (2N − 1)

advances per timestep, and hence reduce the computational cost further.



Chapter 9

Summary and discussion

Magnetically confined fusion (MCF) as a power source is likely within our reach. However, fusion

power plant optimisation remains an open question. A basic challenge is how to sustain a suffi-

ciently hot, dense plasma with an economically and technically acceptable level of external heating

and fuelling. This can be addressed by better understanding the physical processes by which heat and

particles are transported in the plasma. Often this transport is dominated by turbulence driven by Lar-

mor radius-scale microinstabilities. Thus, studying magnetised plasma turbulence and the underlying

instabilities in reactor-relevant conditions can inform fusion power plant design and operation. The

trend towards higher plasma β (for reasons of commercial viability) makes electromagnetic microin-

stabilities an increasingly important area of research.

Turbulence in strongly magnetised plasmas is often well-described by the theoretical framework

of gyrokinetics, consisting of a five-dimensional, integro-differential, multiscale and nonlinear sys-

tem of equations. The particular focus of this thesis is local spectral Eulerian δf time-marching

gyrokinetic codes which are able to simulate microinstabilities and turbulence in realistic geometry

at relatively low computational cost, thus making them a useful investigative tool. This thesis covers

two main categories: (1) the use of gyrokinetics to explore instabilities in advanced MCF reactor con-

cepts (namely, spherical tokamaks (STs) and the optimised stellarator Wendelstein 7-X (W7-X)) and

(2) the development of the gyrokinetic code stella to efficiently simulate electromagnetic gyroki-

netics using novel schemes. The material presented here can be posed as answers to three research

questions:
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Is negative plasma triangularity viable in commercial spherical toka-

maks?

Probably not, based on linear gyrokinetic simulations of hypothetical ST equilibria. Negative trian-

gularity, by increasing the bad curvature region of the field line, tends to have a destabilising effect on

kinetic ballooning modes (KBMs). For the model negative triangularity ST equilibrium studied, the

KBM growth rate is large across the core (which is unstable to n =∞ ideal MHD ballooning modes

(IBMs)) and would likely lead to unacceptably high levels of turbulent transport.

This poor stability can be interpreted as a closing of the window of “second stability” in (ŝ, α)

space, in which reactor-plausible ST equilibria typically operate, meaning that the attainable β gra-

dient is restricted to the “first stable region” (typically a factor of 2-3 lower than the equilibrium β

gradient). The closing of second stability occurs in both STs and conventional aspect ratio tokamaks

(CTs); however, the latter typically do not require second stability access across the core, and so may

retain reasonable density and temperature profiles with negative triangularity. By contrast, a negative

triangularity ST fusion power plant would either need to have a large machine size to maintain large

core β or would have to operate at a lower β, by reducing the plasma pressure and/or increasing the

magnetic field strength. A larger device increases the capital cost as well as presenting engineering

issues. Reducing the plasma pressure would significantly reduce the fusion power generated, and a

larger magnetic field would be challenging to achieve given the limited space in the ST central column

(and would likely be expensive to build and run). It is possible that these KBMs could be stabilised

by flow shear but since the KBM growth rate increases quickly above marginal stability, this level of

flow shear would need to be large, and thus unlikely to be achieved by external means in a reactor.

A parametric study of the dependence of the second stability window ŝmin on Miller parameters finds

that fairly extreme changes are required to achieve ŝmin > 0 for negative triangularity flux surfaces

(for example, reducing elongation from κ = 3.3 to κ < 2 or increasing the safety factor from q = 3.0

to q = 5.4 on the ψ/ψLCFS = 0.5 flux surface).

In contrast, hypothetical power plant ST equilibria with positive triangularity are able to com-

pletely avoid IBMs, provided the on-axis safety factor is sufficiently high (which could be achieved

by a hollow current profile, for example by off-axis heating or a large bootstrap current). The gy-

rokinetic growth rates are correspondingly lower. However, the dominant instability over much of the

core is still a KBM, albeit weakly growing, which is destabilised by some (yet undiagnosed) kinetic

effect. It would be interesting to examine how such equilibria behave nonlinearly to infer the levels
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of turbulent transport in these model equilibria.

How do microinstabilities in optimised W7-X geometries depend on tem-

perature and density gradients?

This work reproduces and builds on the electrostatic “stability valley” first reported by Alcusón et al.

[32]. Electrostatically, the ion-scale instabilities are the ion temperature gradient (ITG)-driven mode,

the trapped electron mode (TEM) driven by density gradients and an ITG-TEM “mixed” mode. The

growth rate is lower when the density and temperature gradients are approximately equal, producing

a “valley” of stability. Reproduction of these results using a new gyrokinetic code stella serves as

a useful validation of both the physics and the codes.

Simulations at finite β using the electromagnetic implementation of stella reveal electromag-

netic instabilities which are likely to complicate the stability valley. At fixed gradients and magnetic

geometry, scanning β is found to destabilise the KBM at some critical β, βcrit. These KBMs show sim-

ilar behaviour to those examined in STs: in particular they preferentially occur at shorter wavelength,

grow strongly for β > βcrit and are stabilised in the absence of B1‖ fluctuations. When gradients are

scanned at fixed geometry and fixed β, tearing-parity electromagnetic instabilities occur even before

the KBM is destabilised. These occur at larger kyρi and appear to be pressure-driven, which could

provide a stiff limit on kinetic profiles in W7-X plasmas. Given the rich and relatively unexplored

microinstability landscape of optimised stellarators, and the ability of the electromagnetic stella

code to simulate such geometries at low cost, this would be an exciting topic of future research.

Can novel algorithmic approaches be used to accurately simulate elec-

tromagnetic gyrokinetics in complex geometry at lower computational

cost?

The motivation for this research is that source terms appear in the electromagnetic GKE which are

proportional to v‖A1‖ (physically corresponding to streaming along a fluctuating magnetic field),

which scale with the species thermal velocity and plasma β. This can be challenging when electrons

are included in simulations by virtue of their large thermal velocity, which constrains explicit time-

marching schemes by the CFL condition. Reducing the computational cost of gyrokinetic codes

enables more results to be obtained for a given computational budget and so reduces the “time to
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science”. stella is an ideal code in which to implement novel schemes due to its flexible operator-

splitting scheme and its ability to simulate stellarator geometries.

To this end, electromagnetic effects are implemented in stella, using a GKE formulation which

ensures that no source terms are unphysically large (which is shown to lead to cancellation problems)

while still permitting fully general operator splitting. An additional benefit of this formulation is

to reduce the number of source terms, which are found to lower the computational cost in stellara-

tor simulations when compared with the original stella code by a factor of 1.5-3.7 in like-for-

like simulations. An electromagnetic form of Kotschenreuter’s implicit algorithm for the streaming

and mirror terms is implemented and benchmarked, and is shown to increase the timestep by an or-

der of magnitude in sensible-fidelity stellarator simulations compared to a fully explicit approach.

The numerical stability of the electromagnetic implementation is sometimes sensitive to how finite-

difference derivatives are treated and is in poor agreement with the code GS2 for the test case of the

kinetic shear Alfvén wave (with damping rate γ in disagreement by ≥ 50%). However, the code is

shown to be in good agreement with GS2 for electromagnetic tokamak (cyclone base case) simula-

tions with typical differences in complex frequency Ω̃ of < 10% . It also gives reasonable agreement

with the electrostatic version of the stella code (which formulates the GKE differently) (typical

∆Ω < 10%) when performing simulations with W7-X geometry.

Finally, a non-interpolating semi-Lagrange (NISL) treatment of the E× B nonlinearity is imple-

mented, with the ambition of reducing the cost of nonlinear electromagnetic simulations. The mixing

of single-step and multi-step algorithms is permitted by the development of a new operator splitting

scheme. A test of the splitting scheme for a linear problem shows promising results although oscil-

latory behaviour is seen in the complex frequency Ω̃ as calculated by stella. The NISL scheme

currently shows poor results, with unphysical behaviour being displayed. There are several avenues

of future research, including the use of conventional SL schemes for the treatment of the nonlinear

term.

9.1 Final remarks

This thesis addresses the numerical simulation of microinstabilities and turbulence in advanced MCF

plasmas; in particular, the spherical tokamak and optimised stellarator. Both of these are the subject of

immense interest as reactor concepts around the world. Future theoretical research into these topics,

including by means of electromagnetic gyrokinetic simulation, is likely to lead to steadily greater
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device performance and will ultimately increase the viability of controlled fusion as a power source.



Appendix A

Pseudocode for implicit parallel

streaming in stella

A.1 The electrostatic algorithm (original stella)

Before the first timestep is taken:

1. | For each ky:

1.1. | For each extended z domain:

1.1.1. | Construct an nz,ext × nz,ext array R.

1.1.2. | For each z value (labelled zj) in the extended domain:

1.1.2.1. | For each value of ṽ‖, µ̃s:

1.1.2.1.1. | Calculate the source terms in (3.10.11) arising from a unit impulse ϕ̃1k at zj . These are

1.1.2.1.1. | equal to C1,j∗ at location zj∗, and C2,(j−1)∗ at location z(j−1)∗.

1.1.2.1.2. | Solve (3.10.11) to find gh(z) arising from the unit impulse at zj .

1.1.2.2. | Solve quasi-neutrality to find ϕ̃1k arising from gh(z, ṽ‖, µ̃s); this is equal to
l1

(
∂gh

∂ϕ̃
n+1
1k j

)
K11

1.1.2.3. | Store δij −
l1

(
∂gh

∂ϕ̃
n+1
1k j

)
K11

in the jth column of R (where i is the row index and δij is

1.1.2.3. | the kronecker-delta function).

1.1.3. | Perform LU decomposition on R and store the result in R
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In each timestep:

1. | For each ky:

1.1. | For each extended z domain:

1.1.1. | For each value of z, ṽ‖, µ̃s:

1.1.1.1. | Calculate the source terms for the inhomogeneous equation (3.10.10).

1.1.2. | Solve (3.10.10) to find ginh(z).

1.1.3. | Solve quasi-neutrality (3.10.14) to find ϕinh(z).

1.1.4. | Use R to calculate ϕ̃n+1
1k (z) using (3.10.18)

1.1.5. | Calculate g̃n+1
k,s (z) using (3.10.8)
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A.2 The electromagnetic algorithm (EM stella)

Before the first timestep is taken:

1. | For each ky:

1.1. | For each extended z domain:

1.1.1. | Construct an (nfield · nz,ext)× (nfield · nz,ext) array R (where

1.1.1. | nfield = 3 when ϕ̃1k, Ã1‖k, B̃1‖k are included).

1.1.2. | Set ifield = 1.

1.1.3. | For each z value (labelled zj) in the extended domain:

1.1.3.1. | For each value of ṽ‖, µ̃s:

1.1.3.1.1. | Calculate the source terms in (3.10.11) arising from a unit impulse in ∆ϕ̃1k at zj .

1.1.3.1.2. | Solve (6.3.31) to find h̃k,s ,hom(z) arising from the unit impulse at zj .

1.1.3.2. | Solve the field equations to find (∆ϕ̃1k,∆Ã1‖k,∆B̃1‖k) arising from h̃k,s ,hom(z, ṽ‖, µ̃s); this

1.1.3.2. | is equal to K−1

h
l
(
∂h̃k,s ,hom
∂∆ϕ̃1kj

)
1.1.3.3. | Store δij −K−1

h
l
(
∂h̃k,s ,hom
∂∆ϕ̃1kj

)
in the (ifield− 1) · nz,ext + jth column of R (where i is the

1.1.3.3. | row index and δij is the kronecker-delta function).

1.1.4. | Repeat 1.1.3. with ifield = 2, applying a unit impulse in ∆Ã1‖k.

1.1.5. | Repeat 1.1.3. with ifield = 3, applying a unit impulse in ∆B̃1‖k.

1.1.6. | Perform LU decomposition on R and store the result in R

In each timestep:

1. | For each ky:

1.1. | For each extended z domain:

1.1.1. | Calculate h̃nk,s from ˜̄gnk,s and fn.

1.1.2. | For each value of z, ṽ‖, µ̃s:

1.1.2.1. | Calculate the source terms for the inhomogeneous equation (6.3.30).

1.1.3. | Solve (3.10.10) to find h̃k,s ,inh(z).

1.1.4. | Use (6.3.33) to find ∆finh.

1.1.5. | Use R to calculate ∆f(z) using (6.3.40).

1.1.6. | Calculate h̃n+1
k,s (z) using (6.3.26).

1.1.7. | Use h̃n+1
k,s to find (ϕ̃n+1

1k , Ãn+1
1‖k , B̃

n+1
1‖k ) and thus calculate ˜̄gn+1

k,s



Appendix B

The implicit mirror algorithm in

electromagnetic stella

By making the replacement ˜̄gk,s → h̃k,s − Z
T e
−ṽ2

s 〈χ̃k〉Xs in eq. (6.3.41) and temporally discretising,

one arrives at:

h̃n+1
k,s − h̃nk,s −

Z
T e
−ṽ2

s

(
〈χ̃k〉n+1

Xs − 〈χ̃k〉nXs
)

∆t̃
− ṽth,sµ̃sb · ∇̃B̃0

(
∂h̃n∗k,s

∂ṽ‖

)
= 0, (B.0.1)

h̃n+1
k,s − h̃

n
k,s −

Z

T
e−ṽ

2
s
(
∆ 〈χ̃k〉Xs

)
−∆t̃(ṽth,sµ̃sb · ∇̃B̃0)

(
∂h̃n∗k,s

∂ṽ‖

)
= 0, (B.0.2)

h̃n+1
k,s − h̃

n
k,s −

Z

T
e−ṽ

2
s
(
∆ 〈χ̃k〉Xs

)
−∆t̃(ṽth,sµ̃sb · ∇̃B̃0)

(
1 + ut

2

∂h̃n+1
k,s

∂ṽ‖
+

1− ut
2

∂h̃nk,s
∂ṽ‖

)
= 0

(B.0.3)

h̃n+1
k,s is then split into inhomogeneous and homogeneous pieces, h̃n+1

k,s = h̃k,s,inh + h̃k,s,hom, where

h̃k,s,inh − h̃nk,s −∆t̃(ṽth,sµ̃sb · ∇̃B̃0)

(
1 + ut

2

∂h̃k,s,inh

∂ṽ‖
+

1− ut
2

∂h̃nk,s
∂ṽ‖

)
= 0, (B.0.4)

h̃k,s,hom −∆t̃(ṽth,sµ̃sb · ∇̃B̃0)
1 + ut

2

∂h̃k,s,hom

∂ṽ‖
− Z

T
e−ṽ

2
s∆ 〈χ̃k〉Xs = 0. (B.0.5)

To advance from ˜̄gnk,s to ˜̄gn+1
k,s , h̃nk,s is calculated and (B.0.4) is solved to find h̃k,s,inh. The fields are

then calculated using the mirror response matrix:

∆f = R−1
m

∆finh, (B.0.6)
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where

∆f = ∆finh + ∆fhom = K−1
h

(
l(h̃k,s,inh)− l(h̃k,s

n)
)

+K−1
h

l(h̃k,s,hom) (B.0.7)

∆f is used to calculate h̃n+1
k,s using eq. (B.0.3) which is then converted to ˜̄gn+1

k,s .

It should be noted that this scheme fails if ∆finh = 0 (consider e.g. eq. (B.0.6)), and it is worth

considering if this occurs in practice. As an example, one could consider an electrostatic simulation

(A1‖ = B1‖ = 0). Eq. (B.0.7) then becomes

∆ϕ̃1k = ∆ϕ̃1k,inh + ∆ϕ̃1k,hom =
l1(h̃k,s,inh)− l1(h̃k,s

n)

K11,h
+
l1(h̃k,s,hom)

K11,h
. (B.0.8)

Since (B.0.4) is just an advection equation for h̃k,s in ṽ‖, one would expect l1(h̃k,s,inh) = l1(h̃k,s
n)

and therefore ∆ϕ̃1k,inh to vanish analytically, breaking the scheme. However, this scheme has been

benchmarked electrostatically without encountering any problems and has shown good agreement

with GS2 and the original stella implementation (see sections 6.4.3 and 7.6.2). It is possible that

this problem is averted by the fact that numerical inaccuracy ensures that l1(h̃k,s,inh)− l1(h̃k,s
n) does

not vanish, thereby allowing the scheme to remain well-behaved. It is possible this scheme would

become badly behaved if the velocity space is treated with extremely high fidelity.



Appendix C

Input parameters for linear stella

benchmarks

The fiducial parameters used in the linear stella tests described in section 6.4.2 are as follows:

1. For the unsheared slab geometry:

1.1. GS2: nperiod = 1, nz = 32, ∆t̃ = 0.04, nstep = 1000, uz = 0.05, ut,GS2 = 0.45, nE = 16

1.2. stella, implicit: nperiod = 1, nz = 32, ∆t̃ = 0.04, nstep = 1000, uz = 0, ut = 0,

nṽ‖ = 24, nµ̃s = 12, ṽ‖,max = 3, ṽ⊥,max = 3

1.3. stella, fully explicit: nperiod = 1, nz = 32, ∆t̃ = 4E − 4, nstep = 1te5, nṽ‖ = 24,

nµ̃s = 12, ṽ‖,max = 3, ṽ⊥,max = 3

2. For the CBC simulation:

2.1. GS2: ∆t̃ = 0.05, nstep = 2000, uz = 0.05, ut,GS2 = 0.45, ngauss = 18, nE = 18

2.2. stella, partially implicit: ∆t̃ = 0.01, nstep = 2000, uz = 0, ut = 0.02, uv‖ = 0.02,

nṽ‖ = 18, nµ̃s = 12, ṽ‖,max = 3, ṽ⊥,max = 3

2.3. stella, fully explicit: ∆t̃ = 0.001, nstep = 4E4, nṽ‖ = 18, nµ̃s = 12, ṽ‖,max = 3,

ṽ⊥,max = 3
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Nonlinear CBC input file for stella

&physics_flags

nonlinear = .true.

full_flux_surface = .false.

/

&init_g_knobs

chop_side = F

phiinit = 0.001 ! 1.0

!restart_file = "restart.nc"

restart_dir = "restart"

ginit_option = "default"

width0 = 1.0

/

&millergeo_parameters

nzed_local = 128

rhoc = 0.5

shat = 0.78

qinp = 1.38

rmaj = 2.72

rgeo = 2.72

shift = 0.0

kappa = 1.0

kapprim = 0.0

tri = 0.0

triprim = 0.0

betaprim = 0.0

d2qdr2 = 0.0

d2psidr2 = 0.0

betadbprim = 0.0

/

&parameters

zeff = 1.0

beta = 0.0

rhostar = 0.0

vnew_ref = 0.0

nine = 1.0

tite = 1.0

/

&species_knobs

nspec = 2

species_option = ’stella’

/

&species_parameters_1

z = 1.0

mass = 1.0

dens = 1.0

temp = 1.0

tprim = 2.537

fprim = 0.809

/

&species_parameters_2

z= -1.0

mass= 2.7e-4
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dens= 1.0

temp= 1.0

tprim= 2.49

fprim= 0.8

type=’electron’

/

&kt_grids_box_parameters

ny = 91

nx = 91

y0 = 15

/

&zgrid_parameters

nzed = 64

nperiod = 1

boundary_option = ’linked’

zed_equal_arc = T

/

&vpamu_grids_parameters

nvgrid = 24

nmu = 12

vpa_max = 3.0

vperp_max = 3.0

/

&knobs

fphi = 1.0

fapar = 0.0

fbpar = 0.0

delt = 0.05

nstep = 30000

cfl_cushion = 0.250

mat_read = .false.

mat_gen = .false.

LU_option = ’local’

/

&stella_diagnostics_knobs

nwrite = 100

nsave = 5000

save_for_restart = .true.

write_omega = .false.

write_kspectra = .true.

write_phi_vs_time = .false.

write_gvmus = .false.

write_moments = .true.

write_gzvs = .false.

/

&layouts_knobs

xyzs_layout = ’yxzs’

vms_layout = ’vms’

/

&neoclassical_input

include_neoclassical_terms = .false.

/

&sfincs_input

nproc_sfincs = 2

nxi = 16

nx = 5

/

&dissipation

hyper_dissipation = .false.

/

&geo_knobs

geo_option = ’miller’

/

&reinit_knobs

delt_adj = 2.0

delt_minimum = 1.e-4

/

&dist_fn_knobs

adiabatic_option = "iphi00=2"

/

&time_advance_knobs

explicit_option = "rk2"

/

&kt_grids_knobs

grid_option = ’box’

/

&kt_grids_range_parameters

nalpha = 1

/
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