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Abstract

The present paper reports a novel methodology that allows the intensity of, and the underlying

mechanism for, the amplitude and length-scale modulation (amplification or attenuation) of the

turbulent stresses in the inner layer of a channel flow at Reτ ≈ 5200 to be clarified. A unique aspect

of the present framework is the use of an auto-encoder algorithm to separate full-volume extremely

large DNS fields into large-scale and small-scale motions. This approach is adopted in preference

to the empirical mode decomposition (EMD) previously used by the present authors at the lower

Reynolds number, Reτ ≈ 1000, because the resource requirements posed by the EMD quickly

become untenable due to the extremely large direct numerical simulation (DNS) data set and the

large solution box needed to capture the wide spectrum of scales at the present Reynolds number.

A second original element is a formalism that derived the modulation, conditional on large-scale

fluctuations, from continuous statistical quantities represented as multivariable-joint probability-

density functions (pdfs), thus obviating the need for any discrete representation or binning beyond

that imposed by the discrete DNS solution. A third novel aspect is the use of the length-scale-wise

derivative of the second-order structure function to quantify the modulation (increase or decrease)

in the length scale, again conditional on the large-scale structures. Apart from illuminating the

modulation itself, the study examined the validity of the Quasi-Steady Hypothesis which proposes

that the near-wall turbulence is universal when scaled by the spatially and temporally varying

large-scale wall shear stress, rather than its time average.

I. INTRODUCTION

The notion that the local turbulent state in the near-wall region of a turbulent boundary

layer is divorced from structural properties – specifically, large-scale structures – hundreds of

wall units away from this region has been negated by many experimental and computational

studies over the past two decades. By implication, this connection is clearly also highly

pertinent to the skin friction, which presents a primary motivation for studying the subject.

One key observation, first reported in [1–3] and derived from hot-wire measurements in

boundary layers up to Reτ ≈ 19000, is that the near-wall turbulence is substantially per-
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turbed by “footprints” associated with distinctive large-scale outer structures in the log-layer

region at the wall-normal distance y+ ≈ 4
√
Reτ . Around this same location, the streamwise

turbulence energy is also observed to features a plateau [4, 5], or even a weak secondary peak

[6] relative to the principal maximum at y+ ≈ 12, either of which contradicts the continuous

logarithmic decline predicted by Townsend’s Attached-Eddy Hypothesis [7]. An important

consequence of footprinting is the amplification and attenuation of the small-scale motions

effected in harmony with positive and negative large-scale fluctuations, respectively — a

phenomenon referred to as “amplitude modulation”. The intensity of the modulation is

observed to go hand-in-hand with the intensity of the large-scale outer structures and their

footprints, the latter two rising with the Reynolds number [8]. In addition, a few recent

studies [9–12], discussed later, have provided evidence of “frequency modulation” – i.e., the

increase and reduction in the time scale of the near-wall turbulence.

Alongside a general wish to record and understand the above interactions, interest in

them is driven by three specific questions:

(i) What fundamental mechanisms drive the modulation process?

(ii) Is the near-wall turbulence – and, more specifically, its small-scale part – universal if

scaled with the large-scale skin-friction, rather than with the average value?

(iii) Do the interactions have consequences to the effectiveness of control schemes designed

to reduce the skin friction?

Question (ii) can also be recast as follows:

(iv) Does near-wall turbulence satisfy the quasi-steady hypothesis, wherein the small-scale

turbulence responds (almost) instantaneously and linearly to the large-scale perturba-

tions?

Statistical properties pertaining to the amplitude-modulation process have been reported,

discussed and dissected in many recent papers. Experimental studies, the large majority

performed with single hot-wire probes in boundary layers – e.g., [8, 11, 13–15] – cover

a wide range of Reynolds numbers, extending to Reτ ≈ 19000. While all provide valuable

insight into many aspects of the modulation process, none addresses specifically the questions

posed above, simply because of the restricted nature and volume of the data that could be
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extracted experimentally. In contrast, computational studies, among them [16–21], mostly

employ DNS and give access to full-volume realisations that allow the above questions to be

addressed, albeit at relatively low Reynolds numbers. This route has been taken by Agostini

and Leschziner [22] and Chernyshenko [23], the latter specifically in support of formulating

their quasi-steady (and quasi-homogeneous) theory pertaining to question (ii) and (iv) posed

above.

Agostini & Leschziner [22, 24, 25] have previously examined a variety of aspects of

the above large-scale/small-scale interactions by analysing the DNS data of Touber and

Leschziner [26] and Agostini and Leschziner [24] for channel flow at Reτ ≈ 1000, a value

for which the interactions are relatively weak, however. They did so by employing their

own spatially bi-dimensional Empirical Mode Decomposition (EMD) to separate the tur-

bulence spectrum across many full-volume DNS realisations into small, medium and large-

scale modes. This allowed them to construct small-scale statistics, conditional on large-scale

skin-friction footprints, so as to infer the mechanisms by which small-scale amplification by

positive footprints dominate asymmetrically over small-scale attenuation by negative foot-

prints, thus explaining the progressive rise in the perturbations of the near-wall layer by

footprinting.

Of particular relevance to question (i) in the above list on the mechanisms responsible

for the amplitude modulation are the recent studies by Agostini and Leschziner [22, 25, 27],

the last focusing specifically on the effects of modulation on the drag-reduction effectiveness

achieved by imposing oscillatory spanwise wall motion in channel flow at Reτ ≈ 1000. They

show that the mechanisms of amplification and attenuation are, essentially, the same in both

the canonical and actuated cases, the principal element being the increase and decrease

in near-wall turbulence generation provoked, respectively, by corresponding increase and

decrease in the strain rate close to the wall provoked by the large-scale fluctuations. However,

the effects are more pronounced in the low-drag actuated flow, in which the modulation due

to negative and positive large-scale fluctuations are substantially asymmetric, implying the

origin of the decline in drag-reduction effectiveness as the Reynolds number increases [28–30].

In contrast to amplitude modulation, frequency modulation has received far less atten-

tion. This rarity has provided strong impetus for one major element of the present study,

wherein a statistical analysis of the second-order structure function is proposed as a basic

for illuminating the modulation of the length scale of the near-wall turbulence by the foot-
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prints. To the authors’ knowledge, there are only four studies that focus on this type of

interaction for canonical flows – namely those by Ganapathisubramani et al. [9], Baars et al.

[10], Pathikonda and Christensen [11] and Iacobello et al. [12], the first three of which are

based purely on processing experimental data, while the fourth involves both experimental

and computational elements.

Ganapathisubramani et al. [9] examined the frequency modulation, alongside amplitude

modulation, in the near-wall region of a boundary layer at Reτ = 14150 (database ob-

tained by Nickels et al. [31]). They did so by counting the number of maxima and minima

in the recorded small-scale signals and analysing conditional small-scale spectra, observing

that frequency modulation is relatively weak, confined to y+ < 100 and being positively

correlated with the intensity of the large-scale motions. A limitation of the study, acknowl-

edged explicitly therein, is that the results were observed to be sensitive to the the width

of the bins used to separate samples of the large-scale motions as a basis of the conditional

characterisation of the modulation.

Baars et al. [10] analysed hot-wire signals of the streamwise velocity in the same boundary

layer that considered by Ganapathisubramani et al. [9] but chose to use wavelet transforms

so as to extract the amplitude and frequency modulation simultaneously. The outcome

was in the form of time shifts between large-scale motions and amplitude and frequency

variations in the small scales. In essence, these results confirmed the conclusions derived

by Ganapathisubramani et al. [9], including the observation that frequency modulation

was weaker than amplitude modulation. However, significant uncertainties arise from the

sizeable sensitivity of the frequency modulation to the choice of the wavelet shapes forming

the basis of the analysis. Following Baars et al ’s wavelet-based methodology, Pathikonda

and Christensen [11] analysed the streamwise and wall-normal velocity fields in a boundary

layer in a water channel at Reτ ≈ 1400, arriving at similar conclusions in respect of the

frequency modulation being only significant within y+ < 100.

Iacobello et al. [12] applied the so-called Natural Visibility Graph (NVG) approach,

developed by Lacasa et al. [32], to the boundary layer at Reτ ≈ 14750, previously examined

in [9, 10], and to the channel flow of at Reτ ≈ 5200 [33]. The principle of this method is to

count how many times a signal at a point (a ”node”) can be linked to other discrete values

by straight lines without crossing any other parts of the signal. The shorter the wavelength

is, the fewer connections there are, while the reverse applies to longer wavelengths. As part
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of their study, Iacobello et al. [12] investigated the validity of the quasi-steady hypothesis

by relating the velocity-fluctuations signals at y+ ≈ 10 to the large-scale streamwise velocity

derived from Fourier-based filtering. To this end, they estimated the frequency of various

signal subsets for all three velocity components conditioned on bins of large-scale skin-

friction values, and they show that only the streamwise signal complies with the quasi-

steady scaling laws. Limitations of the method include rising uncertainties of the inter-

node counting process at large wavelength and the non-transparent relationship between

the counting formalism and the continuous power spectra of the signals being processed.

Contrasting with the previous studies on frequency modulation outlined above, the

present paper sets out a methodology that distinguishes itself by a clear and transpar-

ent formalism that rests on processing continuous statistical quantities - joint PDFs and the

structure function, in particular - and which does not require any discrete representation

or binning beyond that imposed by the discrete DNS solution at Reτ ≈ 5200. A unique

aspect of the present framework is the use of an auto-encoder algorithm to separate full-

volume DNS realisations into large-scale and small-scale motions. This approach is adopted

in preference to the EMD previously used by the present authors at the lower Reynolds

number Reτ ≈ 1000, because the resource requirements posed by the EMD quickly become

untenable due to extremely large DNS data set and the large solution box needed to capture

the wide spectrum of scales at the higher Reynolds number.

The present paper deals specifically with four aspects :

(1) the manner in which the decoder-encoder model is used to separate the scales over

full- volume DNS realisations;

(2) the method by which insightful conditional statistics are derived from the separated

fields;

(3) the manner in which the statistics under (2) provide insight into the mechanisms by

which the large scales affect the turbulent stresses, including the small-scale portions,

in terms of both amplitude and length-scale (or wavelength) modulation, the latter

distinct from frequency modulation;

(4) the manner in which the decomposition under (1) allows the quasi-steady hypothesis

to be tested in respect of both amplitude and length-scale modulation - i.e., the propo-
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sition that the turbulence fields are universal when scaled with the instantaneous and

local large-scale wall shear stress.

II. LARGE-SCALE / SMALL-SCALE SEPARATION

As noted earlier, the EMD becomes untenable at the present Reynolds number. In our

previous studies, at Reτ ≈ 1000, the size of the snapshot which could be post-processed by

the EMD was large enough for the large-scale motions to be well defined. At Reτ ≈ 5200, the

ratio between small and large scales is much larger, and the size of the snapshot that needs

to be accommodated for capturing the full spectrum of eddy increases dramatically. Hence,

the resources needed to process full snapshots become untenable, and the EMD has to be

applied to much smaller subsets in which only a small portion of the large-scale motion is

contained. A disadvantage of this approach, apart from the resource issue, is that it results

in a patch-wise variability of the decomposition and an ambiguity in the definition of what

constitutes the large scales. Thus, an alternative data-driven methodology, referred to as

”Auto-Encoder” (AE), has been adopted herein to separate the large-scale from small-scale

motions.

The exploitation of AE technology in fluid mechanics is relatively recent, and it has

been applied successfully as an aid to flow prediction and the analysis of turbulence physics

[34, 35]. However, it is not the purpose of this paper to provide a review of the various

strands of AE applications; interested readers may wish to refer to a broad description and

discussion in [36] of AE techniques as pertinent to fluid dynamics.

An AE is an unsupervised machine-learning (ML) algorithm that is trained to reconstruct

a representation of its inputs from a data set that is highly reduced in volume and detail

relative to the full input. As illustrated in figure 1, an AE has three parts: an encoder,

a bottleneck (latent space), and a decoder. Depending on how its architecture is defined,

an AE can served different purposes, functioning as denoisor [37], anomaly detector [38],

and estimators [39], for example. In the present study, the goal is to use the AE’s ability to

efficiently learn the most important features associated with large-scale outer-flow structures

in a pre-defined portion of the flow and to extract them from the fields in other parts of

the flow. The AE is thus used as an outer-flow-structure filter that yields a lower-order

representation of raw fluctuation field. To do so, raw streamwise velocity fields at the wall-
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normal location y+ = 4
√
Reτ ≈ 280, a location at which the structures are especially well

defined according to Mathis et al. [3], are fed to the AE. The fields consist of randomly

chosen subsets with size 1280 × 1280 data items, each being 1/48th of the total data items

in the plane. Subsets from seven DNS snapshots are used for this training, and subsets

from three other snapshots are used for validation. Here, it is important to point out that

the input of data in subsets is not equivalent to the patch-wise application of the EMD,

discussed earlier. In contrast to the EMD, the AE learns from the entire collection of

subsets, updating its knowledge of what constitutes the large-scale features for every subset

fed into it. One further advantage of the AE is that it learns to forget information which

is not statistically relevant – e.g., unusually large, rare, ejections or sweeps. This is an

advantage over the EMD or FFT-based methods, as it ensures that the distorting effects of

statistically irrelevant events in the restricted patches are suppressed or avoided altogether.

To force the AE to learn the most important features, the information passing through the

AE is drastically reduced by using a relatively narrow bottleneck. The information between

the input and the bottleneck is progressively reduced by using several convolutional layers,

helping the AE to gradually define which features are the most important by minimising the

absolute value of the reconstruction error (J =
∑1280,1280

i=1,j=1 (output(xi, zj)− input(xi, zj))
2),

so-called Mean Squared Error (MSE), steering the AE towards reconstructing the most

energetic scales, which correspond to large-scale motions in this case AE can be regarded

as a generalisation of the POD [40, 41]. Both encoder and decoder have six convolution

layers. Each layer contains two activation maps, and each is followed by a down-sampling

layer for the encoder, or is preceded by an up-sampling layer for the decoder, the function

‘exponential linear unit’ (elu) [42] is used as the activation function. To avoid over-fitting,

a Gaussian-noise layer and batch-normalisation layers are added to the AE’s architecture

during the training [43].

In the current AE architecture, the encoder has 6 convolutional layers with two filters,

each followed by a subsampling layer (maxpooling). This architecture leads to a dramatic

reduction in information: input images are compressed by a factor 1/2048, from a size of

1280× 1280 data points to 20× 20× 2 points in the latent space (Bottleneck). Thus, only

0.05% of the original information is available to the decoder for constructing a reduced-

order version of the original input that preserves the energetic LS structures present in the

original.
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Initially, the AE is trained to learn only the features associated with the outer-flow

structures – i.e., the data used for training are streamwise-velocity-fluctuation fields at the

wall-normal location y+ ≈ 280. By reducing the amount of information passing through the

AE’s bottleneck, the AE must learn the most significant features of the input so that the

output image is as close as possible to the input image. The level of closeness is defined by

the absolute value of the reconstruction error J . Once the training (learning) is achieved

– here done by feeding in sub-domains of size 1280 × 1280 wall units, chosen randomly

from seven DNS 2D fields at y+ ≈ 280 – the AE will only use the ”library” of features

learned at y+ ≈ 280, from the streamwise velocity fields, for reconstructing all velocity

components of the flow at any wall-normal plane. In this way, the large-scale motions

associated with the outer-flow structures are extracted by the AE from the raw data at

each and every wall-normal location. The outcome of the above process is illustrated —

arguably verified, if only in a qualitative sense – in two ways. First, figures 2 and 3, show

fields decomposition, spectra and streamwise energy profiles for the large-scale and small-

scale motions respectively. Second, figure 4 compares the AE-generated decomposition with

the more conventional empirical-model decomposition (BEMD) applied in previous studies

by Agostini and Leschziner [22, 24] of channel flow at Reτ = 1000. Figure 2 shows sub-

domains of streamwise-fluctuations fields across the wall-normal planes y+ ≈ 280 and and

y+ ≈ 12 on the left-hand side and right-hand side, respectively, both covering the sub-

domain x+ × z+ ≈ 16000× 8000, corresponding to 1/8 and 1/6 of the total computational-

box dimensions, respectively. The plots, from top to bottom, are for the full streamwise-

fluctuations fields, the large-scale motions and the residual small-scale fields. Specific feature

that deserve to be underlined are, first, the strong dominance of the large-scale component

at the outer location; second, the presence of large-scale footprints in the near-wall layer;

third, the fine-grained small-scale features in the near-wall layer; and fourth the influence of

the large-scale footprints on the intensity of the small-scale structures in the near-wall layer.

Figure 3 demonstrates the scale-separation process by way of pre-multiplied energy-

density spectra, in the y+ − λ+
z (spanwise wavelength) plane for – top to bottom rows –

the streamwise, wall-normal and spanwise components, respectively. The red contours iden-

tify the large scales, while the blue contours pertain to the small scales, the sum of the two

being identified by the black contours. The corresponding energy profiles in the wall-normal

direction are given in the middle column, while the plots on the right-hand-side plots show
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the spectra with the energy density normalised by the total-energy profiles given in the

middle column. The purpose of including the last set of plots is to bring out more clearly

the proportion of large-scale and small-scale energy density in regions in which the magni-

tude of the energy is low. The plots convey a well-defined scale separation, with the large

scales confined to wavelength values λ+
z > 800, which compares to λ+

z ≈ 100 at which the

streamwise energy density peaks at y+ ≈ 13. The normalised spectra for the streamwise

fluctuations also bring out prominently the penetration of the large-scale energy right down

to the wall. This penetration, as well as the high level of large-scale energy, relative to

the respective total levels, is further brought out in the energy-profile plots. An interest-

ing observation is the exceptionally high anisotropy in the large-scale stress components,

implied by the precipitous decline in the wall-normal stress towards the wall. One facet

of this behaviour is that small-scale structures tend to be more isotropic than large-scale

eddies. Another aspect arises from the large-scale/small-scale analysis reported by Agostini

and Leschziner [22, 24, 25] for channel flow at Reτ ≈ 1000, which strongly suggests that

footprinting is closely associated with large-scale sweeps, ejection and quasi-steady stream-

wise vortices. Specifically, sweeps result in ”splatting” due to inviscid wall blocking and the

enhanced transfer of energy from the wall-normal component to the wall-parallel directions.

Next, figure 4 provides some comparisons between the AE- and BEMD-derived decompo-

sitions. Here, it needs to be reiterated that the BEMD is too resource-intensive to be used

across the entire solution domain. For this reason, the comparisons shown in figure 4 restrict

themselves to two partial y-planes of size x+×z+ = 16000×8000 containing 1280×1280 data

points within one DNS realisation. The BEMD is a purely data-driven method, wherein the

LS filter characteristics are defined directly from the snapshot. Hence, if the snapshot is not

large enough to capture the full length-scale range of the structures populating the flow, the

LS filter will be slightly different from snapshot to snapshot, which is one further resource-

related limitation of the use of the BEMD for the present Reynolds number. In agreement

with earlier studies in [22, 24], the BEMD is used to decompose the spectrum into 5 modes,

each encapsulating a narrow range of length scales. Also, as done before, the upper two

modes (strictly mode 4 and the residual) are defined as representing the large-scale portion

of the spectrum. In figure 4, the two images in the top row show the raw data at y+ = 280

and 12, respectively, while the second and third rows convey the decomposition returned by

the AE and BEMD, respectively. While this visual representation is essentially qualitative
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FIG. 1: Schematic representation of the process of extracting the large-scale motions by

using a multi-layer Auto-Encoder. Patches on the plane y+ ≈ 280 are 8× 6 sub-domains

(in x and z directions, respectively) of size ∆x+ ≈ 1280 and ∆z+ = 1280 used for the

learning process.

in nature, it demonstrates strong similarities of the large scales LS derived from both meth-

ods. The raw field at y+ ≈ 12, figure 4(b), shows clearly the modulation of the small-scale

motions by the outer-flow structures, and figures 4(d) and 4(f) convey qualitatively the fact

this modulation is correlated with the the large scales extracted by using either the AE or

the BEMD. It is important to recall here that the AE is only trained at y+ ≈ 280. While

both reconstructions at y+ = 12 are very similar, the AE-based decomposition seems to

provide LS structures that are more continuously correlated in the streamwise direction,

which complies better with the expectation of streamwise-coherent LS regions.

The scale separation process – specifically, the wavelength separating the small scales

from the large scales - is influenced by the AE architecture – in particular, the number of

convolutional layers, the number of down-sampling layers and the number of filters used for

each convolutional layer. As indicated in Fig.1, the AE configuration used in this study
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FIG. 2: Illustration of scale decomposition using the approach shown in Fig. 1 at two

wall-normal locations over a portion of the x− z DNS box (1/8th in streamwise direction

and 1/6th in streamwise direction); (a),(c),(e): y+ ≈ 280; (b),(d),(f): y+ ≈ 13; (a),(b): full

streamwise-fluctuations fields (input to the auto-encoder); (c),(d): large-scale fluctuations

fields (output of the auto-encoder); (e),(f): small-scale fluctuations (total minus large-scale

fluctuations).

features twelve convolutional layers, each containing two filters, the sixth layer being the

bottleneck. The sensitivity of the scale separation to the number of filters is investigated by

varying the filter number in the bottleneck within the range 1 to 8, resulting in the decoder

having access, correspondingly, to between 0.025% and 0.200% of the original information.

This sensitivity is conveyed in Fig. 5(a) and (b), which shows spanwise spectra at y+ = 280

and 12, respectively, N being the number of filters. In accord with the full spectral map

in Fig.3(a), the energy in the outer region is dominated by the large scales, while in the
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FIG. 3: Statistical properties of small-scale and large-scale fluctuations in (a),(b),(c)

streamwise, (d),(e),(f) wall-normal and (g),(h),(i) spanwise directions, respectively;

(a),(d),(g): premultiplied power spectra – black contours identify total fluctuations, red

contours large-scale fluctuations, blue contours small-scale fluctuations; (b),(e),(h):

corresponding streamwise-energy profiles (colour code same as in LHS column); (c),(f),(i):

premultiplied power spectra normalised by the total energy (black) profiles in the middle

column.

near-wall region the energy peaks at λ+
z ≈ 100, signifying the separation distance of the

streaks. The energy level of the large scales in the near-wall region is around 40% of that

in the outer region, and this is in agreement with the y+-wise decline towards the wall

seen in Fig.3(a) around λ+
z = 5000 − 8000. As the number of bottleneck filters rises, the
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FIG. 4: Extraction of large-scale fluctuations at y+ ≈ 280 (left column) and y+ ≈ 12 (right

column) using Auto-Encoder (c,d) and bi-dimensional empirical mode decomposition (e,f).

quantity of information passing through the AE bottleneck increases, manifesting itself by

the AE output gradually encroaching upon the upper range of the low-wavelength scales,

thus resulting in a shift of the small-scale/large-scale boundary from λ+
z ≈ 1000 to ≈ 500.

This sensitivity clearly introduces a level of ambiguity into the scale-separation process.

However, this ambiguity is no different from that in any other scale-separation practice –

the simplest being an arbitrary choice of a hard wavelength low-pass/high-pass filter or

decisions on the attribution of EMD modes to the large-scale, intermediate-scale and small-

scale subranges. For the statistical analysis to follow, the choice has been made to use two

filters (N = 2), separating the large from the small scales at λ+
z ≈ 700. This value places

the mean separation wavelength roughly in the middle of the spectral map in Fig.3(b)

within the region separating the small-scale and large-scale energy peaks. In any event, it
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FIG. 5: Sensitivity of the small-scale/large-scale separation process to the number of filters

used in AE bottleneck; power spectral density of the AE output for the

streamwise-velocity fluctuations at (a) y+ = 280 and (b) y+ = 12.

is important to underline the fact that the precise scale-separation wavelength, within the

limits considered above, has no material consequence to the physical interpretations that

follow below.
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III. STATISTICAL CHARACTERISATION

A. Amplitude modulation

Although the principal purpose of this study is to examine length-scale modulation by

way of the second-order structure function, it is appropriate and natural to link it to earlier

studies on amplitude modulation by Agostini and Leschziner [22, 25]. The relevant statistical

processing is introduced here first, in a condensed form, to provide an essential background

necessary for understanding some results reported below on amplitude modulation. The

justification for including considerations on amplitude modulation rests on three arguments:

first, key parts of the particular statistical-processing methodology applied to the length-

scale modulation have been defined by reference to amplitude modulation. Second, previous

conclusions arose from DNS data at the much lower Reynolds number Reτ ≈ 1000. Third,

the present practice of large-scale/small-scale separation is quite different from the previous

EMD method.

A key aspect of the present statistical-processing method is to derive all statistical quan-

tities from the general joint PDF P (X1, ..., Xn, Y ) in which Xi identify any flow property

derived from the DNS – e.g., velocity fluctuations – and Y identifies a conditional vari-

able upon which the statistics of Xi are assembled. In the context of examining amplitude

modulation, Agostini and Leschziner examined a range of conditional statistics [22, 25, 27],

the two most important of which arise from the joint PDF and the PDF of the conditional

variable P (Y ), as derived from:

Xi|Y =

+∞∫
−∞

· · ·
+∞∫

−∞

Xi
P (X1, ..., Xn, Y )

P (Y )
dX1...dXn (1)

x′
ix

′
j|Y = (Xi −Xi|Y )(Xj −Xj|Y )|Y

= XiXj|Y −Xi|Y Xj|Y , (2)

where Y is chosen to be CfLS, representing the unsteady and locally varying skin friction

induced by the footprints of the large-scale motions. The merit of these conditional values

is that they bring out the influence of large-scale fluctuations on the quantities considered

at large positive and negative CfLS values without the obscuring influence, or weighting,
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of the low-density levels in P (CfLS). Other statistics can then be derived from the above

two, an example being the conditional production rates derived from products of the second

moments and the conditional strain rate – e.g.,
[
−u′v′dU/dy

]
|CfLS

shown in figure 11. Any

of these statistical properties can then be conveyed by respective fields in y+ −CfLS plane,

because of the x, z-wise homogeneity of the statistical properties, subject to the lag between

the large-scale CfLS fluctuations and the large-scale velocity fluctuations uLS at any y+

value being removed.

B. Length-scale modulation

The second-order structure function is proposed herein as a basis for investigating length-

scale modulation. Given the fields of velocity u(x, z) across any y-plane, and the large-scale

skin-friction CfLS(x, z), the latter being wall footprint of the outer-large scale structures

shifted forwards in streamwise direction by ∆x = ∆y tan θ, with θ ≈ 11o (see justification

to follow towards the end of this section), the starting point is the derivation of the PDFs

from the DNS data set in which su,δz = u(x, z + δz)− u(x, z) is the instantaneous difference

between velocity fluctuations separated by a given (i.e. chosen) value δz (the subscript y is

omitted henceforth).

The nth order structure function (Sn) for a given δz can be derived from:

Sn
u (δz) = ⟨|u(x, z + δz)− u(x, z)|n⟩ =

∫
snu,δzP (su,δz)dsu,δz (3)

The representation of the structure function via its PDF is important in the context

of, and is consistent with, the strategy of using the multi-variable joint PDF strategy, as

expressed by equation (1).

Here, the focus is on the second-order structure function, or rather its incremental deriva-

tive with respect to δz, used as the surrogate of the scale-wise distribution of the energy.

As demonstrated by Davidson et al. [44] and Agostini and Leschziner [45] , there is a close

relationship between the energy spectra and the derivative of the structure function, as is

exemplified by figures 6a and 6b for the total streamwise-fluctuation field.

There are several advantages that motivate the present use of the structure function.

One lies in the fact that it is a purely data-driven method, the results of which do not

depend upon a projection basis and on how the hyper parameters are tuned, as is the case
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for FFT and wavelet-based analyses (window size, window function, etc. see [46]). A second

advantage is that the signal does not need to be continuous – for example, in the case of a

signal with one harmonic which contains several periods but with parts of signal missing,

this would cause serious difficulties for a FFT-based approach. A third advantage relates to

the conditional nature of the statistics that form the basis for identifying the dependence

of the length scale on CfLS. As the conditional statistics are derived from the joint pdf of

the structure function, the conditional wavelength can be determined without any specific

constrains on the length of the input signal, as this latter can continuously vary with the

value of CfLS. Finally, the structure function can be determined reliably for long wave

lengths for which the signal is not represented by a full wave. This allows the contribution

of the largest scales resolved by the DNS to be represented much more accurately that via

the spectra, which suffer from limitation imposed by the FFT when the sample of scales

is sparse and the domain size limited. As will emerge below, length-scale shifts in this

derivative will be used to identify length-scale modulation conditional on CfLS.

(a)

101 102 103 104
λ +
z

100

101

102

103

y+

(b)

101 102 103 104
4δ +

z

100

101

102

103

y+

FIG. 6: Equivalence between (a) premultiplied energy spectra and (b) premutiplied

derivative of second-order structure function. Both maps consolidate the full data set for

the streamwise fluctuations.

By using the multi-variable PDF approach, the variation of the structure function and

its derivative conditional on CfLS can be investigated in the same sense as previously un-

dertaken in relation to amplitude modulation, by way of:

Sn
u (δz) =

∫∫
snu,δzP (su,δz, CfLS)dsu,δzdCfLS (4)
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Sn
u (δz)|CfLS

=

∫
snu,δz

P (su,δz, CfLS)

P (CfLS)
dsu,δz (5)

With the joint PDF, P (su,δz, CfLS), derived separately for each and every computational

y place and for a set of values δz, the second-order structure function conditional on CfLS

can be derived using equation (5) with n = 2. Alongside, the conditional structure function

S2
u(δz)|CfLS

, its premultiplied derivative δz dS2
u(δz)
dδz

|CfLS
can be computed at every wall-normal

location. It is this derivative on which attention focuses primarily. Again, the reason is that

the variation of this variable across δz is closely connected to the energy-density spectrum

Φuu(λz), with λz connected to the separation δz, as is discussed at length in [45].

A limitation posed by equations (4) and (5) arises from the fact that the separation

δz causes the two fluctuations u(x, z) and u(x, z + δz) to be located at different values of

CfLS. However, in practice the spatial variation of CfLS is modest within the range of δz of

interest and of thus of little effect on the contribution of the difference u(x, z+ δz)− u(x, z)

to the P (su,δz, CfLS) distributions. Tests with excluding samples of this difference when

the variation in CfLS exceeds prescribed limits have been performed by using a limiter W

given by equation (6), where only samples satisfying the relation W > α were retained, as

expressed by equation (7):

W =
2× CfLS(x, z + δz)× CfLS(x, z)

(CfLS(x, z + δz))2 + (CfLS(x, z))2
(6)

CfLS ⇐ CfLS(x, z + δz) + CfLS(x, z)

2
|W>α (7)

Use of different values of α, ranging from 0 to 0.995, was observed to have insignificant

consequences to the interpretation of the results.

A feature of the above conditional statistics that hinders an unambiguous interpretation

of the modulation process is that field of uLS is different at different y+ locations. The

objective here is, however, to examine statistics that are conditional on a single reference

field. This reference field is chosen to be CfLS. This allows questions to be asked about

the validity of the quasi-steady concept which hypothesizes that scaling the wall-normal

small-scale turbulence properties with the local large-scale wall shear stress τw,LS results in

identical statistics, i.e. statistics that do not vary with CfLS. However, a question that

needs to be addressed is whether the condition CfLS is equivalent to the condition uLS(y
+).
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This equivalence is substantially favoured by the fact that large-scale fluctuations are highly

correlated in y+, subject to a spatial streamwise lag, as is discussed by Hutchins et al. [2]

and several other studies. This has also been found to be the case in the present data set.

Hence, here, the assumption has been invoked that uLS is represented by CfLS, subject to

the spatial lag ∆x+ = ∆y+/ tan(θ), with the angle arising from the two-point correlation

maps. A consequence of this lag, and thus the gradient in uLS, is a degree of ambiguity as

regards the derivative of S(δz), which is conditional of uLS – or rather its CfLS equivalent.

This is a problem similar to that discussed earlier in relation to spanwise variations in uLS.

However, the lag between two neighbouring y+ planes is small and the effect on the statistics

is thus negligible.

C. Quasi-steady hypothesis

One objective of the present study is to investigate whether the quasi-steady hypoth-

esis (QSH) applies in respect of amplitude as well as length-scale modulation, the former

investigated by Agostini and Leschziner [22] for Reτ ≈ 1000. In essence, the QSH states

that the small-scale turbulence statistics, when normalised by the local and instantaneous

large-scale friction velocity, are universal – i.e., independent of the large-scale fluctuations.

Such a behaviour implies that the turbulence state adjusts itself rapidly to perturbations

provoked by the large-scale motion, or that the time scale governing small-scale mechanisms

is much shorter than the time scale of the large-scale motions.

In light of the foregoing argument, the QSH may be investigated upon a renormalisation

of all statistical properties by reference to the local friction velocity:

Xi|+,LS
CfLS

= Xi|+CfLS
× uτ/uτ,LS (8)

x′
ix

′
j|
+,LS
CfLS

= x′
ix

′
j|+CfLS

× (uτ/uτ,LS)
2 (9)

y+LS = y+ × uτ,LS/uτ (10)

Thus, when any of the properties is displayed as a map in the y+LS−CfLS maps, homogeneity

in the contours along the CfLS axis can be taken to signify the validity of the QSH.
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FIG. 7: PDF of the large-scale skin-friction fluctuations; (a) pdf with specific CfLS at

which profiles of statistical properties are given in figures to follow; (b) PDF premultiplied

by |CfLS/Cf | to accentuate the positive skewness.

IV. AMPLITUDE MODULATION AND MECHANISMS

Although the phenomenon of amplitude modulation has received considerable attention

over the years, in a variety of studies published by a number of groups, a study of particular

relevance in the present context is that of Agostini and Leschziner [22, 25]. One reason

is that the statistical framework applied herein, as explained in Section III, was first put

forward in that paper and used to examine modulation in channel flow at Reτ ≈ 1000.

More to the point, however, is the fact that Agostini and Leschziner [22, 25] were able to

identify, arguably beyond doubt, that the modulation is provoked by large-scale-induced

fluctuations in turbulence production associated with concurrent strain and shear-stress

fluctuations, the strain fluctuations accompanying large-scale ejections, sweeps and quasi-

streamwise vortices. It is natural, therefore, to examine the present flow, which is not only

at a much higher Reynolds number, but in which the large-scale/small-scale decomposition

is based in an entirely different strategy, relative to the EMD of Agostini and Leschziner

[22, 25]. As many of the physical interactions are discussed in considerable detail in these

studies, the present section restricts itself to discussing some essential results that are argued

to demonstrate consistency and compliance with the earlier observations. As will transpire

below, the essential message is that all conditional properties – stress components and pro-

duction – respond in unison to the large-scale fluctuations, due to the conditional strain-rate
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FIG. 8: Conditional response of the streamwise energy to the large-scale skin friction

CfLS; (a) contours of conditional energy; (b) Profiles of conditional energy at locations

marked on the inserted PDF; (c) contours in (a) re-scaled according to eqs.(8)-(10); (d)

profiles in (b) re-scaled according to eqs. (8)-(10).

fluctuations driving the stress productions, and hence the stresses themselves, in the same

direction.

The most obvious manifestation of modulation is the amplification and attenuation of

the streamwise energy – although the spanwise and wall-normal components also give clear

evidence of modulation, as demonstrated by Agostini and Leschziner [22, 25]. The response

of the streamwise energy is conveyed in four ways: first, figures 8a, 8b show contour plots

and profiles for the total (small-scale + large-scale components), respectively; second, figures

8c, 8d examine the validity of the quasi-steady hypothesis by way of the results in figures 8a,
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8b being recast according to equations (8)-(10); third, figures 9a, 9b pertain to the response

of the small-scale energy component only to the large scales; and forth. 9c, 9d corresponding

to figures 8c, 8d, expose the validity of the quasi-steady hypothesis for the small-scale energy

only. The profiles are given at the six values of CfLS marked in the PDF P (CfLS) given in

figure 7. The latter shows the PDF to be positively skewed, which implies the tendency for

large positive footprints to dominate over large negative ones. A positive skewness, albeit

more pronounced, was also observed when the empirical mode decomposition was used at

Reτ ≈ 1000.

Figures 8a, 8b expose the strong amplification and somewhat more moderate attenuation

of the streamwise energy in the buffer layer for positive and negative footprints, respectively.

In contrast, the energy in the outer layer is negatively correlated with the footprints. Both

features are well-known, having been reported in previous studies for other flows. As noted

already, and demonstrated below, this dependence reflects fluctuations in strain-induced

turbulence generation. Figures 8c, 8d suggest, again in qualitative agreement with previous

observations by Agostini and Leschziner [22, 25] for Reτ ≈ 1000, that the quasi-steady

hypothesis holds for the streamwise energy, but only in the viscosity-affected layer, up to

y+ ≈ 80 within which the time scale of the small-scale motions is substantially shorter than

that of the footprints.

With attention redirected to the results for the small-scale energy, in figure 9, it is observed

first that the amplification and attenuation levels in the buffer layer are very similar to

those of the total energy, figure 8, signifying the strong dominance of the small-scale energy

component at the wall. However, in the outer region, the large scales dominate, and the

sensitivity of the small-scale turbulence to the large scales is low. Again, in anticipation of

what is to follow, it is remarked here that the behaviour both in the inner and outer layers

is driven by conditional shear-strain fluctuations which are of opposite sign in the inner and

outer layers for any given CfLS value.

The generative mechanism which is responsible for the modulation shown in figure 8 is

clarified by way of the shear-stress profiles in figure 10 in conjunction with the streamwise-

energy production in figure 11. The latter profiles are shown in two ways: the default form

in 11a and the y+-premultiplied form in 11b. The latter profiles accentuate the sensitivity

in the outer layer in which actual production fluctuations are rather weak, but nevertheless

clearly present. The shear-stress profiles demonstrate that the modulation of this stress
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FIG. 9: Conditional response of the small-scale component of the streamwise energy to the

large-scale skin friction CfLS; (a): contours of conditional energy; (b) profiles of

conditional energy at locations marked on the inserted pdf ; (c) contours in (a) re-scaled

according to eqs. (8)-(10); (d) profiles in (b) re-scaled according to eqs. (8)-(10).

follows closely that of the streamwise energy. The fact that the production also follows the

same trends is due to the perturbations in the conditional shear strain (not included here,

but demonstrated in [22, 25]) being aligned with those of the shear stress: the near-wall

strain steepens for positive CfLS and weakens for negative values, the reverse occurring

in the outer layer. These strain fluctuations go hand-in-hand with large-scale sweeps, for

positive CfLS values, and ejections for negative values. While profiles of the shear-stress

production are not included herein, it is noted that these too follow similar tends as the

streamwise-stress production, because the wall-normal stress is also modulated in a manner
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FIG. 10: Conditional response of the shear-stress energy to the large-scale skin friction

CfLS; (a) Profiles of conditional stress at locations marked in figure 7; (b) profiles in (a)

re-scaled according to eqs. (8)-(10).
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FIG. 11: Conditional response of the production of the streamwise energy component to

the large-scale skin friction: (a) profiles of conditional production at locations marked in

figure 7; (b) profiles in (a) premultiplied by y+.

analogous to that of the other stress components. This includes the spanwise stress, profiles

of which are given in figure 12. While the production of this stress is zero, of course, the

pressure-strain-interaction mechanism transfers energy from the streamwise to the spanwise

stress component, thus causing a rise and fall in the near-wall stress alongside corresponding
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FIG. 12: Conditional response of the spanwise energy to the large-scale skin friction CfLS;

(a): profiles of conditional stress at locations marked in figure 7; (b): profiles in (a)

re-scaled according to eqs. (8)-(10).

variations in the streamwise stress. The shear stress is seen to comply with the quasi-steady

hypothesis, albeit over a reduced wall distance relative to the streamwise stress. Adherence

of the spanwise stress with the quasi-steady hypothesis is markedly worse, however, and

this departure has also been observed by Agostini and Leschziner [22] in their study of

channel flow at Reτ ≈ 1000. In that paper, the authors discuss in some detail (see figures

7 and 8 in that paper) the role of wall ”splatting” provoked by large-scale sweeps on the

near-wall behaviour of the spanwise stress. In particular, sweep-induced splatting causes

a substantial strengthening of the spanwise fluctuations close to the wall, which partially

decouples this stress from the processes governing the streamwise fluctuations and thus also

from the associated universal scaling with the large-scale streamwise wall shear stress. A

possible contributory reason for the indifferent behaviour shown in figure 12b is a time lag

between the elevation of the turbulence intensity by production and the transfer of some of

that energy to the spanwise stress, thus likely to weaken the universality of the scaling of

this stress with the large-scale wall shear stress.

26



(a)

100 101 102 103
4δz +

100

101

102

103
y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5(b)

100 101 102 103
4δz +

100

101

102

103

y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5

(c)

100 101 102 103
4δz +

100

101

102

103

y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5(d)

100 101 102 103
4δz +

100

101

102

103

y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5

(e)

100 101 102 103
4δz +

100

101

102

103

y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5(f)

100 101 102 103
4δz +

100

101

102

103

y+

1.0
1.9
2.9
3.8
4.8
5.7
6.6
7.6
8.5

FIG. 13: Maps of δz dS2
u(δz)
dδz

|+CfLS
in the y+ − δz+ plane conditional on the six CfLS shown

in figure 7; (a)-(f) arranged in order of rising CfLS values.
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V. LENGTH-SCALE MODULATION

Figure 13 shows six maps of the premultiplied derivative of the second-order structure

function in the δz+ − y+ plane at the 6 conditional values of CfLS shown in the pdf of

figure 7. Attention is first drawn the choice of the abscissa: 4δz+. The choice of this

multiplier is rooted in the correspondence between the derivative of the structure function

and the spectra, an equivalence demonstrated and discussed in Agostini and Leschziner [45]

and shown in figure 6. In the latter, the abscissa is conventionally the wave length λ+
z .

Multiplying δz+ by 4 is observed to shift the peak in the map at y+ = 12 and CfLS = 0 to

the value to 4δz+ ≈ 100, corresponding to λ+
z ≈ 100 – i.e., the accepted level of the spanwise

separation distance between streaks as derived from two-point correlations.

There are three observations that can now be made by reference to figure 13. First, as

CfLS increases, there is a progressive shift of the maximum towards the wall. This process

and the mechanisms responsible have been discussed in detail in Agostini and Leschziner

[25]. In essence, large positive CfLS levels cause a steepening of the strain close to the wall,

thus generating increased small-scale turbulence and thinning the viscous sublayer. More

interesting in the present context is that the increase in CfLS is also accompanied by a

progressive reduction in the length-scale maximum from 4δz+ ≈ 100 to around 65, which

may be interpreted as indicating the length-scale modulation. The third feature deserved

to be highlighted is the progressive widening of the scale spectra around the buffer layer

for increasing CfLS. This widening appears to be due primarily to a shift of the range of

short length scales towards lower values, a process especially noticeable when tracking the

left-most edge of the spectra at y+ ≈ 10. In contrast, the longer scales around the buffer

layer, at 4δz+ ≈ 200, experience no discernible shift (the downward-pointing tongues at

4δz+ > 1000 signify the footprinting process). The increased predominance of small scales

with increasing CfLS will be revisited later in the context of discussing the applicability of

the QSH to the length-scale modulation.

The length-scale reduction is well brought out in figure 14, which shows contours of the

premultiplied gradient of the second-order structure function in the CfLS-δz
+ plane, derived

by taking, for each value of CfLS (many more than included in figure 13), δz+-wise cuts

at levels y+ at which the peaks of the derivative arise. The black line is thus the locus

of the peak of the gradient across the CfLS range. This corresponds almost identically to
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in the y+ −CfLS plane derived from δz dS2

u(δz)
dδz

|+CfLS

(for streamwise fluctuations); (a) nominal field scaled with mean wall shear stress; (b) field

in (a) rescaled with large-scale wall shear stress (eq. (10)) to demonstrate adherence to the

quasi-steady hypothesis.

the location y+ ≈ 13, scaled with the mean wall shear stress. As seen, the length scale for

the location of the peak value in δz dS2
u(δz)
dδz

|+CfLS
reduces from around 100 at high negative

large-scale fluctuations to around 65 at the highest large-scale fluctuations.

To examine whether the QSH applies to the length-scale modulation, a map of contours

of the wave length corresponding to the maximum value of the derivative of the structure
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FIG. 16: Maps of conditional 4δz+|CfLS
in the y+ −CfLS plane derived from δz dS2

w(δz)
dδz

|+CfLS

(for spanwise fluctuations) ; (a) nominal field scaled with mean wall shear stress; (b) field

in (a) rescaled with large-scale wall shear stress (eq. (10)) to demonstrate adherence to the

quasi-steady hypothesis.

function at different y+ values and conditional on CfLS is derived. This is shown in figure

15a. The map demonstrates that the wave length of the maximum derivative location at

any given y+ is decreasing, as already observed by reference to Figures 13 and 14. For

example, at y+ ≈ 13, the wave length in figure 15a is seen to decline from 100 (green shade)

to around 70 (dark blue shade), which is clearly consistent with the black line in figure

14. Next, the map in figure 15a is re-scaled with the wall-normal distance and the wave

length normalised with the large-scale wall shear stress, in accordance with equation (10)

and δz+,LS = δz+ × uτ,LS/uτ . This yields the map given in figure 15b, which permits two

major observations to be made. First, the contours are broadly horizontal in the positive

range of CfLS, implying that the QSH applies to frequency modulations of the fluctuations

within the near-wall layer, y+ < 40. Second, the hypothesis is not satisfied for negative large-

scale fluctuations. As the length-scale modulation is here considered within the confines of

the near-wall layer, up to y+ of approximately 40, the lack of of adherence of length-scale

fluctuations with the QSH at negative CfLS is inconsistent with the behaviour observed in

respect of the amplitude modulation. Similar observations can be made in respect of the

maps shown in figure 16 for the structure function S2
w – i.e., those pertaining to the spanwise

fluctuations, which also show a limited correspondence to the quasi-steady hypothesis.

It can be argued that there is no compelling reason for why amplitude and length-scale
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modulation should strictly go hand-in-hand. A possible, albeit somewhat tentative, inter-

pretation of the behaviour in figures 15 and 16 starts from the observation that the width

of the spectra of scales in figure 13 is narrowing at negative CfLS and broadening for pos-

itive CfLS. As observed earlier, by reference to figure 14, the predominant feature of the

broadening spectrum to CfLS is a shift of the length-scale range towards lower values. It is

recalled that the conditional energy and shear strain increase for positive CfLS and decrease

for negative values, with the conditional strain and the velocity itself following suit. It is

reasonable to argue, therefore, that the likely response of the spectra to this increase and

decrease is the observed shift of the small-scale end of the scale spectra towards or away

from low values, respectively. In fact, this shift has already been highlighted earlier when

the spectra in figure 13 were discussed. A shift towards smaller scales will favour the QSH,

while a greater prevalence of larger scales will prejudice the hypothesis. Figure 15a indeed

shows a continuous decline in the length scale across the entire range of CfLS. The fact is,

however, that the large-scale shear stress in the negative CfLS range increases at a faster

rate than the rate at which the length scale drops, which then results in the violation of

the QSH in the left-hand-side part of figure 15b. Here, the objection might be raised that

the same does not apply to the stress components (except perhaps ww+). However, it is

reasonable to assume that velocity fluctuations are more closely tied to (and are more akin

to) the shear velocity than is the length scale. Hence, it is not entirely surprising to ob-

serve differences in the level of adherence to the hypothesis for physically different types of

statistical properties.

VI. DISCUSSION

Although the principal objective of the paper is to illuminate fundamental interactions

that do not necessarily have any practical implications, the question might justifiably be

posed as to what potentially useful messages can be taken forward into the domain of flow

and turbulence control. The discussion below aims to answer this question.

A significant practical aspect of the study pertains to the mechanisms by which the

turbulent drag is affected by outer structures and the manner in which these mechanisms

interact with drag-reducing control methods. These issues have previously been addressed

in previous studies [25, 27, 47], the last two in the context of drag reduction by transverse
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oscillatory wall motions, but in all cases at the much lower Reynolds number, Reτ ≈ 1000,

than in the present study. One key mechanism is the amplification of turbulence in the

buffer layer provoked by large-scale sweeps, and hence a strengthening of the streaks and an

increase in the drag. These sweeps are correlated with positive large-scale skin-friction fluc-

tuations, and they cause an increase in near-wall turbulence production, all part and parcel

of the modulation process. While large-scale ejections, associated with negative large-scale

skin-friction fluctuations, lead to a decline in near-wall turbulence, Agostini & Leschziner

[25, 47] show this part of the modulation to be weaker, the asymmetry in the process being

especially pronounced in the case of drag-reducing transverse wall motion. Previous studies

investigated channel flows at Reτ ≈ 1000 using the EMD. The present study, adopting the

AE scale-separation methodology, shows that the same mechanisms prevail at the much

higher Reynolds number – although, here, the flow is canonical rather than being actuated,

in which case the asymmetry in the attenuation and amplification elements of the modu-

lation is modest. Several studies [28, 30, 48] show that the drag- reduction effectiveness of

oscillatory wall motion declines with Reynolds number, and this provides strong motivation

for studying the modulation mechanisms at high Reynolds numbers. If the degradation

in drag-reduction effectiveness is indeed rooted in the streak strength responding to the

large-scale motions provoked by the outer structures, it follows that the design of control

strategies, capable of providing substantial drag reduction at higher Reynolds numbers, has

to rely on understanding the alteration of the small scale near-wall turbulence, in terms

of both magnitude and length/time scales, by the outer structures. This understanding is

aided by the present results.

Another area to which the present study relates is the predictive modelling of modulation

by the use of correlations that link the intensity of the modulation in the inner region to

the large-scale outer fluctuations and the footprints. Since the introduction of the notions

of “footprint” and “modulation” by Marusic et al. [49], there have been numerous articles

on how to improve the predictive model they introduce, and a great deal of effort has been

devoted to defining the empirical parameters in the model. Marusic et al ’s model was

derived by reference to experimental observations. In contrast, Chernyshenko et al. [23, 50]

have introduced an elegant new theory based on the hypothesis that the near-wall statistics

follows the universal “law of wall” if scaled by the large-scale local skin friction, rather than

the mean value. Upon validating this theory, wall-bounded flow can then be accurately
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predicted up to upper part of the buffer layer by only using the footprints of the large-scale

outer structure and an universal canonical signal. The present paper examines the validity of

the quasi-steady theory and shows that, in respect of turbulence velocity statistics, the theory

applies only in the near-wall region, roughly up to y+ ≈ 80− 100. In contrast, the theory is

shown herein to extend only in a very restricted sense to the length-scale modulation. The

modulation models discussed above are restricted to streamwise fluctuations and streamwise

turbulence intensity only. As the EMD- and AE-based scale-resolving methods yield the

full spatial field of the large-scale skin friction and the fully three-dimensional field of the

associated large-scale motions, conditional on the skin-friction magnitude, this capability

opens the way to extending the conventional models to the modulation in the spanwise

direction. This may not be regarded as an especially fruitful or interesting proposition,

because the drag normal to the flow direction is rarely of interest. Moreover, the present

study shows that the quasi-steady hypothesis for the spanwise near-wall intensity is less

well satisfied than that of the streamwise intensity. However, one aspect that could be of

interest is the provision of information on the large-scale quasi-streamwise vortices, with

the objective of relating the rotational motions to any drag enhancement that is connected

to the momentum mixing caused by the large-scale vortices. This is one area that may be

explored further in future studies in future studies.

VII. CONCLUSIONS

This study combined a joint, multiple-variable joint-PDF methodology with two entirely

novel elements – a decoder-encoder-based scale-decomposition technique and the conditional

derivative of the structure function — for the purpose of analysing the response of the near-

wall layer in a turbulent channel flow at Reτ ≈ 5200 to energetic large-scale outer structures

in the log-layer. The joint-PDF technique, previously used to examine amplitude modulation

in channel flow at Reτ ≈ 1000, is here applied to channel flow at a much higher Reynolds

number by processing full-volume DNS realisations generated by Lee and Moser [33]. The

structure function, derived by sampling the DNS data conditionally on large-scale skin-

friction footprints, is used to investigate the modulation of the length scale in the near-wall

layer. The main conclusions can be summarised as follows:

• As is conveyed by the conceptual sketch in figure 17, the overarching conclusion of the
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FIG. 17: Conceptual representation of the modulation of the near-wall turbulence induced

by outer large-scale motions as predicted by the Quasi-Steady Hypothesis. Modulation

closely in portion with CfLS indicates adherence to QSH and represented by straight

diverging red and converging blue lines. Departure of length-scale modulation from QSH

for negative CfLS indicated by curved yellow lines.

study is that the modulation of the energy around the buffer layer rises in proportion

to the large-scale skin friction CfLS, while the length scale modulation declines at a

similar rate.

• The amplitude modulation of the stresses follows, qualitatively, that observed previ-

ously for Reτ ≈ 1000, but is more intense and more pronounced.

• The conditional streamwise stress in the buffer layer varies within the range of ap-

proximately 70% of the mean over the range of the skin-friction footprints. Similar

variations arise in the conditional shear stress and the spanwise energy. In all stress

components, the levels are amplified for positive large-scale skin-friction fluctuations

and are attenuated for negative ones. These variations are governed primarily by the

response of the small-scale components to the footprints – i.e., sweeps and ejections

produced by the outer large-scale structures.
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• The response of the conditional stresses in the outer layer is negatively correlated with

the footprints — i.e., their response is opposite to that of the near-wall stresses. In

this layer, the large-sale components dominate over the small-scale ones, and thus the

modulation is primarily a reflection of the role of the large-scale stresses.

• The generation rate of the streamwise energy varies in harmony with the stress com-

ponents — i.e., the generation is positively correlated with the large-scale footprints in

the buffer layer, while they are negatively correlated in the outer layer. This is entirely

in accord with previous observations and strengthens the conclusion that the modula-

tion is a consequence of the conditional production being driven by large-scale sweeps

and ejections, the former provoking buffer-layer implication and the latter outer-layer

amplification.

• Rescaling the conditional stresses, production and wall-normal distance with the large-

scale wall shear stress is shown to support the quasi-steady hypothesis, but the validity

of the hypothesis is confined to the near-wall layer, y+ < 80. Adherence of the spanwise

energy to the quasi-steady hypothesis is rather less good than that of the streamwise

and shear-stress components, and this is attributed to distortions associated with

sweep-induced ”splatting” (flattening the structures) at the wall, and with the time

lag between the production and the redistribution (pressure-strain) process.

• The modulation of the length scale is quantified primarily by examining the shift in

the peak of the conditional derivative of the second-order structure function for the

streamwise fluctuations in the buffer layer, at the location commensurate with that

of the maximum energy density in the spectrum. This maximum is found to decrease

progressively by about 40% across the range of the large-scale footprints. The shift

in the maximum declines with increasing y+ when judged by reference to the peak

at that y+ location. A qualitatively similar behaviour is observed in respect of the

structure function for the spanwise fluctuations.

• Only a tentative interpretation of the length-scale modulation can be offered. This

is based on the observation that the spectrum of scales widens with increasing CfLS

values, thus increasing the content and contribution of smaller scales and hence also

decreasing the length scale at the peak of the conditional derivative of the structure
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function.

• The conditional length scale is found to adhere to the quasi-steady hypothesis only

for positive large-scale footprints. In the negative range, the friction velocity declines

faster than the rate at which the length scale increases, so that the length scale, when

rescaled with the friction velocity of the footprints, is not constant across the CfLS

range (a limitation indicated schematically by the broken yellow lines in figure 17).

This is at variance with the behaviour observed in respect of the stresses, but there is

no compelling physical reason to believe that both should go strictly hand-in-hand.
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