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Abstract: After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response
and its associated metabolic dysregulation are required for a full recovery of the patient. This process
is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic
evolution and the vaccination status of the population. We have here investigated the natural history
of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phe-
noreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized
recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered
patients do not show any metabolic fingerprint associated with the disease or immune alterations.
Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies
the exacerbated immunological response, resulting in a slow recovery time with a maximum proba-
bility of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion,
age and severity become factors that modulate their normalization time which, in turn, correlates
with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a
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model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic
risk, in line with the recent observation of an elevated number of cardiovascular episodes found in
post-COVID-19 cohorts.

Keywords: COVID-19; atherosclerotic risk; metabolomics; lipidomics; inflammation; long COVID

1. Introduction
Acute COVID-19 patients have been associated with a characteristic metabotype [1–5],

reflecting the systemic character of the disease. This metabolic dysregulation includes
central metabolites such as glucose, amino acids including arginine, glutamate and the
tryptophan/kynurenine pathway, porphyrins, lipids and the overall serum lipoprotein
composition [5–7]. Genetic alterations have also been associated with severe phenotypes of
COVID-19 [8,9] and, importantly, the characteristic metabotype associated with SARS-CoV-
2 infection qualitatively correlates with the inflammatory response observed in hospitalized
patients [10]. Thus, the restoration of the immunological response and the normalization
of the metabolic signature (phenoreversion) are both required for full recovery of the
disease [11,12] but the timescale of this normalization has not yet been studied in-depth
due to the limitations in the cohort size and the time frame of the existing longitudinal
studies [13].

Aside from the more-characterized hospitalized patients, the bulk of SARS-CoV-2
infections corresponds to mild or asymptomatic patients that undergo the disease without
a significant immune stress response [14]. These individuals are largely unnoticed by the
healthcare systems, and it is often difficult to obtain samples with the associated COVID-19
status from these cohorts. Consequently, the putative molecular fingerprint from mild or
asymptomatic patients has not been characterized with the same degree as acute patients.

The characteristic metabotype observed in acute COVID-19 patients suggests that
metabolomics may be a useful tool to investigate the natural history of the disease (i.e., the
time course of the disease towards recovery) [15]. Yet, during the pandemic, the virus has
evolved extensively both in genotype and virulence. On the other hand, the host has also
changed because of global vaccination. Thus, the natural history becomes manifold, with
several factors including severity, the lineage of the virus and the vaccination/medication
status of the patient largely modulating disease recovery at the molecular level.

Here, we have used NMR-based metabolomics and immunological assays to inves-
tigate the natural history of COVID-19 disease at the metabolic level. Most metabolomic
studies either use gas chromatography (GC) or liquid chromatography (LC) coupled to
mass spectrometry (MS) or NMR spectroscopy [16,17]. LC-MS and GC-MS show high
sensitivity, which enables monitoring the entire metabolism, but at the cost of limited
reproducibility since they may require sample derivatization and quantification relies on
the use of standards. Instead, NMR spectroscopy is highly complementary since it is fully
quantitative, requires no derivatization and it is very reproducible, but with low sensitivity,
which limits the accessible metabolome that can be investigated by this technique.

We have considered two different evolution scenarios of the disease: hospitalized
patients that evolve from an acute symptomatic phase towards full recovery and non-
hospitalized patients who self-reported having passed the disease and that already donate
samples in the recovery period (>7 days after the onset of the disease). Both possible disease
scenarios correspond to extremely opposite evolutions of the disease and they inflict a
very different effect on the serum metabolism, which in turn, is largely proportional to
the immune response [10]. Age at the disease onset is a risk factor for metabolic recovery
after COVID-19 infection while a post-vaccination status of the donor results in a negligible
effect in our metabolic model of the serum metabolism.
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2. Materials and Methods
2.1. Patient Recruitment and Sample Collection

COVID-19 cohorts were recruited from patients from Araba University Hospital,
Basurto University Hospital, Cruces University Hospital, Galdakao Hospital (Basque
Country), or San Carlos Clinical Hospital (Madrid). All enrolled patients tested positive
for SARS-CoV-2 infection from RT�PCR on nasopharyngeal swab samples during their
hospitalization. Control samples were acquired either pre-COVID-19 pandemic or during
2021 by Osarten Kooperativa Elkartea from employees of the Mondragon Cooperative
(Basque Country) in overnight fasting conditions and during the annual medical test.
Both cohorts were provided by the Basque Biobank for Research (BIOEF). Infection and
vaccination statuses for 2021 donors were ascertained using a questionnaire.

2.2. Sample Preparation, Instrumentation, and Sample Acquisition with IVDr NMR Metabolomics
Serum samples were handled under the same standard operating procedures and

stored at �80 �C until analysis. They were prepared both manually and automatically. For
manual preparation, serum was mixed with serum buffer (75 mM Na2HPO4, 2 mM NaN3,
4.6 mM sodium trimethylsilyl propionate-[2,2,3,3-2H4] (TSP) in 10% D2O, pH 7.4 ± 0.1)
in a 1:1 (v/v) ratio for a final volume of 600 µL into the 5 mm NMR tube. For automatic
preparation, a SamplePro Tube (Bruker BioSpin, Germany) robot system for liquid handling
with integrated temperature control was used. All samples were automatically prepared
with serum buffer at a 1:1 (v/v) ratio, at a final volume of 600 µL in 5 mm NMR tubes. NMR
measurements were done in a 600 MHz IVDr (Bruker BioSpin, Silberstreifen, Germany)
with a tempered SampleJet automatic sample changer mounted on it and a double reso-
nance broadband probe (BBI) probe head with a z gradient coil and BOSS-III shim system.
NMR sample tubes were stored inside the SampleJet at 5 �C until measurement. Every
morning the spectrometer was calibrated with three different samples: methanol, QuantRef
and sucrose to check the temperature (310 K), the quantification performance and optimal
shimming, respectively, following strict standard operation procedures, as previously de-
scribed [12]. Three different 1H NMR experiments were recorded in all samples: a standard
one-dimensional (1D) 1H NOESY spectrum (noesygppr1d) with water presaturation, a 1D
1H Carr–Purcell–Meiboom–Gill (CPMG) experiment (cpmgpr1d) implementing a T2 filter
to suppress the broad signals of proteins and other macromolecules, and a two-dimensional
J-resolved experiment (jresgpprqf).

2.3. NMR Quantifications
Absolute quantifications from 1H-NMR spectra were performed with Bruker IVDr

software: B.I.Quant-PS 2.0.0 to quantify 41 serum metabolites (mmol/L units) and B.I.LISA
(Lipoprotein Subclass Analysis) PL-5009-01/001 to quantify 112 serum lipoprotein classes
and subclasses (mg/dL units except for particle numbers that are expressed as nmol/L and
ratios which are dimensionless). Inflammation biomarkers (GlycA, GlycB and SPC) were
directly estimated from CPMG spectra, which were segmented into consecutive buckets
(bins) of fixed 0.03 ppm spectral width in the range between 0.5 and 9.5 ppm. Each bin
was represented as the summed intensity of their internal spectral points and normalized
by the total spectrum intensity. The region between 4.7 and 5.00 (residual water) was
excluded. GlycA, GlycB and SPC values were taken from bins centered at 2.06, 2.09 and
3.23, respectively.

2.4. Cytokine and Chemokine Quantification
The levels of the indicated cytokines and chemokines were measured in serum samples

by flow cytometry, using the LEGENDplexTM COVID-19 Cytokine Storm Panel 1 (13-
Plex) (BioLegend, San Diego, CA, USA) following the manufacturer’s instructions. A
minimum of 600 events for each address were acquired using a FACSymphony flow
cytometer (BD Biosciences, San Jose, CA, USA) and the mean fluorescence intensities (MFI)
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were obtained. Results were analyzed using The LEGENDplex™ Data Analysis Software
Suite (BioLegend).

2.5. Filtering of Samples
All samples were analyzed with DBSCAN (Density-based spatial clustering of ap-

plications with noise) in order to detect and remove extreme individuals (groups with
low density or isolated samples). Metabolites, lipoproteins, inflammation biomarkers and
calculated parameters were used as input variables after centering and standardization.
The used algorithm was implemented in dbscan R package (version 1.1-8). The number of
minimum points per region (minPts) was set to 5. After visualization of all 5-NN (near-
est neighbors) multivariate Euclidean distances, a value of 20 was selected for the eps
parameter. Those samples without assigned clusters (isolated) were discarded.

2.6. Nomenclature for Days since COVID
For non-hospitalized recovered (NHR) individuals the number of days since COVID-

19 is simply calculated as the difference between the collection date and the COVID-19
reported date. For COVID-19 hospitalized patients, the first collected sample is considered
time zero (t = 0) if it was collected up to 7 days after hospitalization. In case of follow-up,
the time for the rest of the collected samples for the same person is calculated taking t = 0
as reference. If there is no t = 0 then the number of days since COVID-19 is calculated as
the difference between the collection date and the hospitalization date. COVID-19 samples
with t = 0 are considered in the acute phase.

2.7. Statistical Analysis
A comparison between HC cohort (controls) and AC (0 and 1) samples at t = 0 (cases)

was performed through multivariable linear models adjusted by gender and age. For each
variable, obtained p-values were corrected for multiple testing using the Benjamini and
Hochberg method (FDR—False Discovery Rate) to control for type I errors. The effect size
of COVID-19 against the control was expressed as standard deviation (SD) units, taking
as reference the SD in the control group. Those variables with adjusted p-value < 0.05
and a minimum of 0.5 absolute size effect were selected. In the case of highly correlated
variables (Pearson’s r > 0.8), only that with the maximum absolute size effect was kept.
For chemokine and cytokine comparative analysis, the Mann–Whitney–Wilcoxon test was
used to detect statistically significant differences (p-value < 0.05) and the binary logarithm
of fold-change (the mean of the case group divided by the mean of the control group) to
estimate the size effect.

2.8. COVID-19 Model
An Orthogonal partial least squares discriminant analysis (O-PLS-DA) was performed

between HC cohort and AC (0 and 1) samples at t = 0 using selected variables as input,
after being log-transformed and standardized (mean centering and unit variance). The
O-PLS-DA implementation was in the metabom8 (v. 0.4.4, https://github.com/tkimhofer/
metabom8, accessed on 15 July 2022) R package, combined with in-house R scripts for
performance evaluation. A model of two components (one predictive tpred and one or-
thonormal torth) was trained through a five-fold cross-validation process repeated 10 times.
A receiver operating characteristic (ROC) curve analysis based on tpred component from
training was used to determine the optimal cutoff according to Youden’s index. The area
under the ROC curve (AUC), sensitivity and specificity values were also calculated from
this analysis. The statistical significance of the different metrics (AUC, Sensitivity and
Specificity) was estimated through permutation tests (100 runs).

2.9. Estimation of Recovery Days
It was performed for those individuals with acute COVID-19 and at least one follow-

up sample with a minimum of 14 days since COVID-19. For each individual meeting this
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criterion, a linear model was built with tpred as the dependent variable and the number of
days since COVID-19 as the independent one. The slope and intercept of each model were
used to calculate the required number of days to reach the average tpred of the HC group.
The obtained distribution of recovery days was modeled as a Generalized Extreme Value
(GEV) distribution with evd (v. 2.3-6, https://cran.r-project.org/package=evd, accessed on
1 August 2022) R package to obtain their parameters of location, scale and shape.

3. Results
3.1. Cohorts under Consideration

To investigate the natural history of COVID-19 disease, we have obtained serum
samples from several hospitals in Spain (Basque Country and Madrid) to build up cohorts
that represent many of the potential scenarios of the disease (Table 1 and Figure 1). In
addition, we also collected samples from COVID-19-free subjects: samples collected before
2020 (HC cohort) [18] and samples collected in 2021 from unvaccinated and vaccinated
subjects that reported not having passed the disease (HC1 and HCV1 cohorts, respectively,
Table 1). To account for the severe infection cases, we have obtained serum samples from
hospitalized patients as close as possible to the onset of the disease (D0-7): cohorts AC0
and AC1, collected during 2020, and 2021. To investigate the metabolic and immunologic
normalization of severe patients, we expanded the AC0 and AC1 cohorts with longitudinal
studies that covered the recovery phase for 490 of these individuals: up to three samples
within sixty days from the onset of the disease and one sample beyond sixty days (RE0 and
RE1 cohorts, Table 1). Finally, we also collected samples obtained in the medical check-up
of the employees from a large corporation that include non-hospitalized patients who
self-reported having passed COVID-19 in the past (at least 7 days after the onset of the
disease, referred to herein as non-hospitalized recovered, NHR). Since the COVID-19 onset
date and vaccination status are known for these donors, cohorts are divided into NHR1 and
NHRV1 for the unvaccinated and vaccinated patients, respectively (Table 1 and Figure 1).
Of note, of the vaccinated people (n = 2740) 15.3% got COVID-19 as compared to the 28.5%
of the unvaccinated donors (n = 333). General characteristics and metadata for the different
cohorts are presented in Tables S1–S3.

Table 1. COVID-19 and vaccination status for the cohorts under consideration.

Donor Type Cohort Days from
Disease Onset N Recollection

Time
Expected COVID-19

Variants Vaccinated

Hospitalized
COVID-19

patients

AC0 0 697
Apr–Dec 2020

FL, ↵, � No

RE0 (0,7], (7–14], (14–30],
(30,60], >60, TOT

137, 96, 104, 97,
10, 444 FL, ↵, � No

AC1 0 189
Jan–Oct 2021

�, � Mixed

RE1 (0,7], (7–14], (14–30],
(30,60], >60, TOT

100,1,15, 158, 79,
353 �, � Mixed

General
population

HC no COVID 8664 Before 2020 none No

NHR1 (7–14],
(30,60], >60, TOT 1, 16, 78, 95 Jun–Nov 2021 �, o No

NHRV1 (0,7], (7–14], (14–30],
(30,60], >60, TOT

1, 2, 8, 27, 380,
418 Jun–Dec 2021 �, o Yes

HC1 no COVID 238 May–Nov 2021 none No

HCV1 no COVID 2322 May–Dec 2021 none Yes

Abbreviations: TOT, total number; FL, first Lineage; ↵, alpha/B1.1.7; �, beta/B.1.351, �, gamma/P.1, �,
delta/B1.617.2; o, omicron/BA.1/2.

Serum samples were collected and analyzed using strict standard operating procedures
to minimize sample biases (see Section 2). These procedures included the use of samples
without heat-inactivation, restriction to only one thawing step and immediate sample
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measurement after thawing (<5 h) [19]. Serum analysis for the entire dataset included
metabolite quantification and lipoprotein profile characterization by NMR spectroscopy;
GlycA and GlycB quantitative determination [20] and the supramolecular phospholipid
composite (SPC) cardiovascular risk associated marker quantification [21]. For a selected
subset of the samples (226 samples in total), a representative panel of inflammation markers
(cytokines and chemokines, see Section 2) [22–25] was also determined. A fraction of the
samples for the prospective study of hospitalized patients have already been reported [2].
Samples belonging to different hospitals could not be discriminated in a PCA analysis
(Figure S1), in line with the strict standard operating procedures used during sample
recollection, preparation and measurement.
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Figure 1. The COVID-19 disease time evolution, showing the approximate duration of the dif-
ferent lineages of the virus and the times when serum samples from the different cohorts were
collected. The COVID-19 status and general characteristics of the cohorts are described in Table 1 and
Tables S1–S3, respectively.

3.2. Early Metabolic Alterations in Acute and Mild COVID-19 Patients
COVID-19 cases that require hospitalization present a severe phenotype compared to

mild or asymptomatic patients. Metabolic analysis of sera from hospitalized patients in the
acute phase of the disease revealed many dysregulated metabolic pathways and an altered
lipoprotein composition [2,5,7]. Using all the available samples that are close to the disease
onset (cohorts AC0 and AC1), we generated a metabolic model that discriminates between
COVID-19 patients and healthy individuals (Figure 2A). Consistent with previous observa-
tions [4,21,26,27], the metabolic alterations as measured by NMR spectroscopy can clearly
separate severe COVID-19 patients from non-infected subjects, with an AUROC value of
0.998 (Figure 2B, Table S4). Indeed, only a subset of 38 parameters (obtained by univariate
analysis) is needed for full discrimination between the two classes, including metabolites
found upregulated in COVID-19 (phenylalanine, glucose, glutamate, choline, . . . ); down-
regulated metabolites (glutamine, histidine, lysine, . . . ); upregulated inflammation markers,
and parameters that account for the lipoprotein profile rearrangement (Figure 2C). This
complex alteration of metabolism is consistent with an elevated atherogenic risk, transient
diabetes and liver damage, as previously reported [2,5,28].
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Figure 2. (A) Score plot from O-PLS-DA model that discriminates between COVID-19 patients (red
circles, AC0 and AC1 cohorts) and healthy individuals (green circles, HC cohort). Dashed line
corresponds to the value that maximizes Youden’s index. (B) Receiver operating characteristic curve
for the O-PLS-DA model shown in Figure 2A. The area under the curve (AUC) is 0.998. In red
it is indicated the tpred value that maximizes the Youden’s index and the resulting specificity and
sensitivity between parentheses. (C) Circular bar plot with the 38 metabolic parameters used for the
discrimination model. The bars are proportional to the weight in the discrimination. (D) Forest plot
with some inflammation markers under consideration. Filled circles represent statistically significant
differences (p-value < 0.05). Horizontal lines are standard errors.

The severity of the disease has been associated with a systemic exacerbated immune re-
sponse [10]. For a subset of the acute cohort (n = 50), we measured a panel of 13 chemokines
and cytokines already associated with the COVID-19 immunological response (see Materi-
als and Methods and Figure S2) and compared them to equivalent determinations on the
control cohort (n = 37). We found up to seven cytokine/chemokines significantly increased
in hospitalized COVID-19 patients; with IL-1RA, IP-10 and IL-6 being about two-fold or
higher upregulated as compared to the normal values measured in the healthy individuals
(Figure 2D). These patients also showed a decrease in lymphocyte and monocyte counts,
and an increase in neutrophils (Tables S1 and S2). Consistently, the GlycA and GlycB inflam-
mation markers are also elevated (Figure 2D). Altogether, this immunological phenotype is
consistent with an elevated risk of thrombus formation (IL-6) [29] and with an attempt of
the body to decrease the inflammatory response caused by the infection with SARS-CoV-2
(elevated IL-1RA levels) [30].

Next, we investigated the samples from non-hospitalized recovered donors of previous
COVID-19 infection (from the cohorts NHR1 and NHRV1). This cohort was validated by
antigen testing and includes asymptomatic subjects as well as patients who self-reported
compatible mild symptomatology at the time of the infection. Still, this cohort would
not represent mild patients since the collected sample happened in the recovery phase.
We decided not to discriminate between vaccinated and non-vaccinated donors because
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the impact of vaccination on our metabolic model is largely negligible (vide infra), so we
refer to NHR1 + NHRV1 as NHR. Metabolomic serum analysis of this cohort revealed
little variations from the control cohort (HC or HC1), indicating that this group does not
develop a specific metabotype associated with the former SARS-CoV-2 infection meaning
that, if a specific metabotype was developed near the onset, now it is no longer present.
Moreover, when projected in the O-PLS-DA representation of the discrimination model
for the COVID-19 acute patients, the NHR group falls in the region populated by healthy
individuals (Figure S3). Finally, the associated inflammation markers (GlycA and GlycB)
and the cytokine and chemokine quantification (Figure S4) did not report abnormal values
for this cohort, except for MCP-1, which is significantly elevated (p = 0.022).

3.3. Metabolic Phenoreversion over Time for Hospitalized and Non-Hospitalized Recovered Patients
We have used the longitudinal recovery studies collected during 2020 and 2021 (com-

bining cohorts RE0 and RE1) to investigate the metabolic restoration (or phenorever-
sion [11,12]) of COVID-19 hospitalized patients. Figure 3A,B show the projection on the
O-PLS-DA model for COVID-19 discrimination of the recovery samples at different times.
At the population level, this is a proper way to monitor COVID-19 metabolic phenorever-
sion: at short recovery times (t < 30 days) the metabotype ensemble overlaps with the acute
phase one, while at longer times (t > 30 days) the metabotype ensemble migrates towards
the distribution representing the healthy controls (HC). An important observation is that,
on average, metabolic phenoreversion largely exceeds the hospitalization period taking
place over several weeks, consistent with previous observations [11].

Metabolic normalization after COVID-19 infection of the ensemble can be also repre-
sented by using a quantitative parameter “D” that accounts for the statistical distance to the
HC metabotype (D = tpred[t] � tpred[cutoff] + k, see Materials and Methods). Such distance
is represented as a function of time in Figure 3C (circles), also showing the percentage
of patients with normalized metabolism within the size and color of the circles. At short
times, serum from hospitalized patients exhibits a large distance from the average HC
metabotype, consistent with the associated metabolic dysregulation observed during acute
infection. Yet, phenoreversion occurs for the hospitalized COVID-19 patient population
at a close-to-exponential rate (on average), with about 50% recovery in 60 days. Such
long times indicate that, on average, the hospitalized COVID-19 population is exposed to
abnormal metabolite concentrations and a dysregulated lipoprotein profile for a time that
may be long enough to significantly modify the atheroma plaque, providing an explanation
for the recent observation that COVID-19 patients undergo an elevated risk of cardiovas-
cular events [14]. At the metabolite level, phenoreversion occurs in a rather concerted
way (Figure S5), with most of the altered metabolites and lipoproteins showing similar
time-domain profiles (Figure S6).

It has been demonstrated that metabolic normalization is heterogeneous and it is
largely patient-dependent [11]. In line with this observation, we have also analyzed the
individual metabolic phenoreversion for the subjects that donated three or more samples
(n = 351). Here, a linear model is used to calculate the metabolic recovery time for each sub-
ject which is represented in the histogram of Figure 3D. The comparison of the individual
metabolic normalization times shows a skewed distribution, and the experimental recovery
times can be adjusted to a generalized extreme value distribution (location, 62.44; scale,
30.16; shape, 0.34). The full model (blue line) also indicates a maximum probability for
metabolic recovery in 62 days, with 95% of the population normalizing their metabolism
before 284 days. Recovery is age-dependent and elder patients showed longer metabolic
normalization times than younger ones (color code in Figure 3D). Consistently, the recov-
ery function for the cohort is also age-dependent and subjects younger than 65 years old
recover significantly faster than the elder ones (Figure 3F). Importantly, metabolic phenore-
version is also dependent on the severity of the disease and a clinical sub-classification of
the acute patients (between severe and moderate/mild) also modulates the distributions,
as shown in Figure 3D: green and red lines are sub-models that, respectively, take into
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account only patients that have been classified as mild-moderate or severe by hospitals (see
Tables S1 and S2). The maximum probability of metabolic recovery for mild-moderate pa-
tients is 59 days, with 95% of the population with metabolic normalization before 258 days.
For severe patients, the metabolic recovery period is 82 days, with 95% experiencing
metabolic phenoreversion before 309 days.
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Figure 3. (A) Projection of the recovery samples (blue triangles, RE0 and RE1 cohorts) in the O-PLS-
DA model that discriminates between COVID-19 patients (red circles, AC0 and AC1 cohorts) and
healthy individuals (green circles, HC cohort), as a function of the recovery time for the sample, as
indicated in the plots. (B) Projection of the recovery trajectory on the O-PLS-DA model of COVID-
19 discrimination for hospitalized patients (blue circles) and non-hospitalized recovered (NHR)
(yellow circles). (C) distance to recovery (D) as a function of the days from the infection onset for
hospitalized patients (circles) and NHR individuals (triangles). The color and the size of the circles
or triangles is proportional to the fraction of recovered people at a given time, as indicated in the
legend. (D) Histogram of the individual recovery times for the metabolic phenotype assuming a linear
recovery model. The distribution fits well to a GEV function (blue line), whose fitting parameters are
enclosed. The green and red lines show the same type of model but using only a subset of patients
according to the hospital’s severity criteria: mild-moderate (green) or severe (red). The color code for
the histogram bars displays the average age, as indicated in the legend. (E) Boxplots showing the time
evolution of serum concentration corresponding to the four cytokines/chemokines that were found
significantly upregulated in hospitalized patients. Statistical significance of the difference between
the two groups was estimated by the p-value: 0.01 (**) and 0.0001 (****). (F) distance to recovery (D)
as a function of the days from the infection onset for hospitalized patients as a function of age: people
above/below 65 years old are represented by circles/triangles. The color and the size of the circles
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or triangles are proportional to the fraction of recovered people at a given time, as indicated in the
legend. (G) Correlation between the variation of MCP-1 over time (assuming a linear decay from day
8) and the individual recovery time (assuming linear recovery). The blue line corresponds to the best
linear fit, with the confidence levels depicted in gray.

We have also measured the time evolution of the panel of inflammation markers. As
shown in Figure 3E and Figure S2, the levels of cytokines and chemokines that were upreg-
ulated progressively return to the values observed in the control cohort, within a similar
timescale to the metabolic phenoreversion. In an equivalent mode as for metabolic phenore-
version, we have calculated the average half-recovery time for each inflammation marker,
using a linear model. For MCP-1, we found a statistically significant correlation between
the metabolic and inflammatory recovery times (Figure 3G), indicating that both events
may be coupled temporally. Actually, MCP-1 is associated with triggering a metabolic
response essential for the earliest cellular responses of atherogenesis [31].

Finally, the non-hospitalized recovered cohort did not report any metabolic finger-
print associated with infection at a timeframe within a month of the onset of the disease,
indicating full metabolic normalization for this cohort during this time. In line with this
observation, samples spanning at longer times from the disease onset always showed
equivalent metabotypes to the HC cohort (Figure 3C, triangles).

3.4. On the Lineage-Specific Metabolic Response of SARS-CoV-2
Our longitudinal COVID-19 study spans more than one and a half years. During

this time, the virus has mutated extensively with variants that significantly differ in viru-
lence [32,33]. Figure 1 shows the SARS-CoV-2 lineage predominance in Spain according
to the European Centre for Disease Prevention and Control (https://www.ecdc.europa.
eu/en/covid-19/variants-concern, accessed on 1 September 2022). Even though it is very
difficult to establish strict boundaries for the different lineages of the virus, it seems clear
that the cohorts AC0 and RE0 mainly report on the effects of a subset of virus variants
(first lineage, alpha and beta) while the cohorts AC1 and RE1 will be most influenced by
the gamma and delta variants (Figure 1). To investigate the impact of the predominant
virus lineage on the metabolism we have compared the first 115 samples collected from the
AC0 cohort (115_AC0) with the last 115 ones collected in the AC1 cohort (AC1_115). Both
datasets can be well discriminated and Figure 4A shows the O-PLS-DA representation of
the discrimination model (see performance metrics in Table S5). Even though both datasets
retain the characteristic fingerprint associated with COVID-19 infection when compared
to HC, the AC1_115 and 115_AC0 cohorts can be discriminated due to specific changes in
a set of metabolites and lipoproteins (Figure 4C), while no changes could be detected in
the cytokine/chemokine profiles nor in the other inflammation markers (i.e., GlycA and
GlycB). The characteristic triglyceride (TG) dysregulation (higher population of TG in the
LDL subparticles for AC1_115, Figure 4D) could be associated with the highest virulence
observed with the delta variant (B.1.617.2) as compared to the former lineages of the virus.
In turn, the inflammation markers are mainly associated with the severity of the disease
and all patients in the cohort were hospitalized under severe conditions.

3.5. Potential Confounding Factors and Limitations of the Study
Many factors other than SARS-CoV-2 infection may affect metabolism and they must

be considered as putative confounding factors in the metabolomic analysis. Massive
campaigns of vaccination were promoted as a response to the pandemic after 2021 (Figure 1).
Most hospitalized patients (AC0 and AC1 cohorts) had not been vaccinated at the time
when samples were obtained. Still, we can investigate the effect of vaccination in our
metabolic model since we have access to the vaccination status for the general population
cohorts (NHR1, NHRV1, HC1 and HCV1). On average, samples of the cohort HCV1 were
obtained after 109 ± 55 days from the last vaccination of the donor. Under these conditions,
a comparison between HC1 and HCV1 cohorts reflects the minimum perturbations in our
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metabolic model due to vaccination (Figure S7). Specifically, no significant variations in
the lipoprotein profile can be attributed to vaccination and only a couple of metabolites
(glutamine and glycerol) show a statistically significant variation. Figure S8 represents
both metabolite levels as a function of the vaccine type to show that no differences are
observed among the different vaccines and, in all cases, a very small decrease/increase in
the glutamine/glycerol levels was observed when compared to non-vaccinated donors.
It is important to emphasize that we do not claim that vaccination does not produce any
alteration in the metabolism; our results just show that vaccination in the HCV1 cohort
does not significantly alter our metabolic readout, most likely due to the large time that, on
average, has passed after vaccination and sample collection.
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Age and gender are also important factors that modulate metabolism and need to be
considered. The selection of the 38 parameters within the univariate analysis considered
this including age and gender as covariates. The final model, shown in Figure 2A, did not
include age or gender as input parameters to avoid a potential bias. To demonstrate that
metabolomics parameters can distinguish COVID-19 independently of age or gender, an
alternative model was built using only matched sub-cohorts for the hospitalized COVID-19
and HC populations. This model renders equivalent specificity and sensitivity results
(Figure S9, Table S6). Even if two separate models are built for each sex the resulting
O-PLS-DA loadings of the predictive component remain with the same sign and very
similar magnitude (Figure S10).

A large number of acute patients received medication right after admission to the
hospital. Based on these premises, we compared the samples obtained at the hospitalization
time (obtained before administration of any drug) with samples collected after two days
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of hospitalization (with patients already enrolled in medication treatments), changes in
the metabolism or in the cytokine response were observed but with a much lower fold-
change (Figures S11 and S12). Indeed, the changes observed fit well with the metabolic
phenoreversion model (Figure 3). That said, we could not assess more specific tests to
account for the effect of specific medications, and this must be considered a limitation of
the study.

This study has other limitations. Additionally, even though most of the cohorts have a
large number of samples, the time distribution of the samples is not optimal (Table 1), and
so is the sampling for the inflammation markers. Finally, the control cohorts HC and HC1
do not correspond to the same patients that later on underwent the disease.

4. Discussion
Here, we have investigated the metabolic normalization of COVID-19 patients and,

to a lesser extent, the attenuation of the inflammatory response as well, always consider-
ing different scenarios of the disease. Population analysis of acute patients that required
hospitalization presented marked metabolic and lipoprotein dysregulation, as previously
described [34]. Cytokine and chemokine analyses suggest that these alterations mirror
the exacerbated immune response against SARS-CoV-2 infection, as expected [22]. The
longitudinal studies (cohorts RE0 and RE1) allowed the investigation of the metabolic
phenoreversion of the disease, with an average time of more than 62 days. Since COVID-
19 dysregulates lipoproteins profiles in a way that increases the atherosclerotic risk (i.e.,
elevated ApoB/Apo100, reduced SPC signal, . . . ) [21] such long recovery times raise the pos-
sibility that the serum-altered lipoprotein composition may inflict significant damage in the
arteries, engrossing the atheroma plaque. A recent study demonstrates that post-COVID-19
patients have an elevated risk of undergoing cardiovascular episodes as well as other
metabolic complications [35,36]. Our study provides a rationale for these observations.

At the individual level, it has been demonstrated that phenoreversion is largely
heterogeneous in recovery time [11]. To account for such variability, we estimated the
individual times for metabolic normalization using a linear model for phenoreversion.
The distribution of such values indicates that age and disease severity are conditioning
factors that ultimately affect metabolic phenoreversion: the recovery times for people
above 65 years old or clinically classified as severe are significantly longer than average
(Figure 3D,F). It is expected that other factors, such as some genetic variants, are associated
with a severe response to SARS-COV-2 infection [8], and may also effectively modulate the
recovery time for the metabolic response. Unfortunately, we do not have access to genetic
data for our cohorts.

For those patients for whom we also had cytokine/chemokine analyses, we did an
equivalent estimation of the decay in the inflammatory response. We could not find a corre-
lation between the magnitude of the inflammatory response, with the exception of MCP-1
(Figure 3G), a chemokine that has been linked to the early response to atherogenesis [31].
Indeed, MCP-1 has been associated with oxidative stress and the level of circulating MCP-1
is significantly increased in type 1 and type 2 diabetes

Finally, the design of our longitudinal studies allowed separating patients according
to the different variants of the virus, without complete discrimination, though. According
to epidemiological data (Figure 1), AC0 and RE0 are dominated by the original strain and
variants beta and alpha, while the AC1 and RE1 cohorts mainly provide information on
people infected by the alpha, gamma and delta variants of the virus. The comparison
between the two-time boundaries of the cohorts (115_AC0 versus AC1_115) reveals the
impact of the virus evolution on the metabolic response: as expected, samples dominated
by the gamma and delta variants produced a more severe metabolic dysregulation, affecting
mostly the fold-change in lipoproteins and metabolites.

In summary, we have investigated the metabolic natural history of COVID-19 disease
to find that the metabolic phenoreversion largely exceeds in time to the physical recovery
(symptomatology). This situation provides an explanation for the elevated atherosclerotic
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risk observed in post-COVID-19 cohorts. Future work will focus on the long-term effects (2
or more years after COVID) by monitoring cases of long COVID-19 and correlations with
associated cardiovascular events.
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