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We propose a simple scaling theory describing critical effects at rounded meniscus osculation
transitions which occur when the Laplace radius of a condensed macroscopic drop of liquid coincides
with the local radius of curvature Rw in a confining parabolic geometry. We argue that the exponent
βosc characterising the scale of the interfacial height `0 ∝ Rβosc

w at osculation, for large Rw, falls
into two regimes representing fluctuation-dominated and mean-field like behaviour, respectively.
These two regimes are separated by an upper critical dimension, which is determined here explicitly
and which depends on the range of the intermolecular forces. In the fluctuation-dominated regime,
representing the universality class of systems with short-ranged forces, the exponent is related to
the value of the interfacial wandering exponent ζ by βosc = 3ζ/(4 − ζ). In contrast, in the mean-
field regime, which has not been previously identified, and which occurs for systems with longer
ranged forces (and higher dimensions), the exponent βosc takes the same value as the exponent
βco

s for complete wetting which is determined directly by the intermolecular forces. The prediction
βosc = 3/7 in d = 2 for systems with short-ranged forces (corresponding to ζ = 1/2) is confirmed
using an interfacial Hamiltonian model which determines the exact scaling form for the decay of
the interfacial height probability distribution function. A numerical study in d = 3, based on a
microscopic model Density Functional Theory, determines that βosc ≈ βco

s ≈ 0.326 close to the
predicted value 1/3 appropriate to the mean-field regime for dispersion forces.

I. INTRODUCTION

It has long been recognised that fluids adsorbed at
solid substrates display a wealth of new physical phe-
nomena that are not present in the bulk. These in-
clude wetting and prewetting transitions at planar walls
[1–3] and capillary condensation or evaporation for con-
finement in pores and between parallel plates [4], which
have received extensive theoretical and experimental at-
tention. By sculpting the solid surface, which is now pos-
sible in the laboratory, many more examples of surface
phase transitions can be induced even in rather simple
geometries. For example, wedge filling is an example of
an interfacial phase transition that is distinct from wet-
ting [5–13]. Also, by merely capping a capillary the en-
suing condensation can be changed from first order to
continuous [14–28]. As well as being of interest to the
fundamental statistical mechanical theory of inhomoge-
neous fluids and surface phase transitions, these studies
are also of relevance to microfluidics, for example.

A particularly simple example of a sculpted surface is
one which is completely wet (corresponding to zero con-
tact angle) and contoured to the shape of a paraboloid
or parabolic groove. Previous theoretical [29, 30] and
experimental [31, 32] studies of adsorption isotherms on
this substrate have focused on the geometry dominated

growth which occurs as the bulk pressure is increased
towards saturation. However, in a recent paper [33] we
pointed out that an additional rounded phase transition
– which we termed meniscus osculation – occurs when the
pressure is tuned so that the radius of curvature of the
meniscus coincides with the geometrical radius of curva-
ture of the parabola. This marks the value of the pressure
at which the adsorption changes from being microscopic,
determined by intermolecular forces or interfacial fluctu-
ations, to being macroscopic due to the local condensa-
tion of a liquid drop. Meniscus osculation offers another
example of fluid interfacial behaviour showing non-trivial
scaling and critical effects which is related to but distinct
from wetting, filling and capillary condensation.

In this paper we develop a comprehensive scaling the-
ory for critical effects occurring at meniscus osculation
and, in particular, determine the value of the upper crit-
ical dimension which distinguishes a mean-field regime
from a fluctuation-dominated one. The scaling proper-
ties which characterise the adsorption are very different
in these two regimes and are related to the underlying
wetting properties via distinct critical exponent identi-
ties. This improves upon our earlier analysis which did
not identify the upper critical dimension or the mean-
field regime. Two explicit calculations, one mesoscopic
and the other microscopic, are presented which determine
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the value of the osculation critical exponent and verify
that there are indeed two separate fluctuation regimes.
More specifically, we show that analogous to the theory
of complete wetting [34–36], meniscus osculation shows
two scaling regimes; one, which is fluctuation-dominated,
characterised by universal critical exponents that are re-
lated to the value of the wandering exponent ζ, which
characterises the scaling relation

ξ⊥ ∝ ξζ
‖ , (1)

between the perpendicular and parallel correlation length
for planar interfaces [36]. There is also a mean-field
regime where the exponents are sensitive to the range
of the intermolecular forces where fluctuation effects are
negligible. The values of the critical exponents in the
fluctuation-dominated regime, its dependence on ζ, and
also the value of the upper critical dimension, are differ-
ent to that of the complete wetting transition. A central
result of our paper is that the value of the upper critical
dimension for meniscus osculation is given by

d∗osc = 3− 8
3r + 4

, (2)

where r = 2 corresponds to dispersion forces and r = ∞
corresponds to short range forces. Our predictions are
supported in two dimensions (d = 2) using a droplet
model treatment of an effective interfacial Hamiltonian
[38]. This determines explicitly the tail of the prob-
ability distribution for the interfacial height above the
groove bottom and identifies that the osculation critical
exponent takes the value βosc = 3/7 in the fluctuation-
dominated regime – confirming an earlier scaling pre-
dictions, which is understood to be valid only in the
fluctuation-dominated regime [33]. In three dimensions
(d = 3) numerical studies based on a microscopic Density
Functional Theory (DFT) with dispersion forces deter-
mines that βosc ≈ 0.326 which is close to the expectation
of our scaling theory, βosc = βco

s = 1/3, within the mean-
field regime.

Our paper is arranged as follows. We begin with a re-
cap of the scaling theory of the fluctuation regimes and
the critical singularities for complete wetting transitions
at planar walls before developing a crossover scaling the-
ory which identifies the relevant length scales and critical
singularities at meniscus osculation. A general scaling
theory is presented which, similar to complete wetting,
separates critical singularities into fluctuation-dominated
and mean-field regimes. Explicit examples which confirm
these predictions in d = 2 and d = 3 are presented. We
finish our paper with a brief summary and discussion of
possible further work.

II. SCALING THEORY FOR COMPLETE
WETTING

To begin, we recall some details of the well developed
fluctuation theory of complete wetting [1, 34–36] which

FIG. 1: a) Schematic illustration of the equilibrium interfacial

thickness `π ∝ δp−βco
s , parallel correlation length ξ‖ ∝ δµ

−νco
‖

and interfacial roughness ξ⊥ ∝ ξζ
‖ for complete wetting by liq-

uid (blue) at a planar wall-gas interface. b) Illustration of a
droplet configuration in d = 2 constrained to pass through a
point at height ` � `π, i.e. one a scale much larger than the
length scales shown in Fig. 1a), far above the wall. The free-

energy cost ∆F (`) ∝ δp1/2`3/2 of the droplet determines the
asymptotic scaling form of the interfacial height probability
distribution function P (`), identifying explicitly that for sys-
tems with short-ranged forces βco

s = 1/3. The droplet area S,
interfacial length `m and the length of contact with the wall
`w are shown.

we will need in our analysis of meniscus osculation. The
complete wetting transition refers to the divergence in
the adsorption, Γ, of liquid at a planar wall-gas inter-
face (say), as the pressure p (or chemical potential µ) is
increased to saturation psat, above a wetting tempera-
ture, i.e. when the macroscopic contact angle θ = 0. As
δp = psat − p → 0, a number of length scales diverge, in
particular

`π ∝ δp−βco
s ; ξ‖ ∝ δp−νco

‖ . (3)

Here, `π is the wetting layer thickness which is related to
the adsorption, Γ = ∆ρ`π, where ∆ρ is the difference be-
tween bulk liquid and gas densities, and ξ‖ is the parallel
correlation length arising from the build-up of capillary-
wave-like fluctuations near the unbinding liquid-gas in-
terface which leads also to the divergence of the inter-
facial roughness ξ⊥ – see Fig. 1a. For pure systems, as
pertinent to wall-fluid interfaces, it is well established
that the wandering exponent ζ = (3 − d)/2 for dimen-
sion d < 3, (with ξ2⊥ ∝ ln ξ‖ in d = 3 corresponding
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to ζ = 0) with its value also known for impure systems
(most commonly, random-bond and random-field disor-
der) [36]. For complete wetting, an exact sum-rule deter-
mines that ∂Γ/∂µ ∝ ξ2‖ , leading to the exact exponent
relation [39–41]

1 + βco
s = 2νco

‖ . (4)

The values of the critical exponents can be determined,
quite generally, from analysis of the simple interfacial
model [34, 35]

H[`] =
∫
dx

[γ
2
(∇`)2 +W (`)

]
, (5)

where `(x) is the interfacial coordinate (measuring the
local height of the wetting layer at the position x along
the wall), γ is the surface tension which resists interfacial
fluctuations and

W (`) = δp`+
A

`r
+ · · · (6)

is the binding potential which includes the effect of in-
termolecular forces characterised by the exponent r (with
A a Hamaker constant), which maybe derived from more
microscopic theory [2]. Heuristic scaling arguments sug-
gest that the interfacial wandering leads to an effective
entropic repulsion, decaying as `−τ where τ = 2(1−ζ)/ζ,
which competes with the direct intermolecular contribu-
tion in W (`), leading to two scaling regimes:

Fluctuation-dominated regime. For r > τ , fluctuations
dominate leading to scaling behaviour, characterised by
`π ∝ ξ⊥ ∝ ξζ

‖ , with universal non-classical critical expo-
nents [34]

βco
s =

ζ

2− ζ
, νco

‖ =
ζ

2− ζ
. (7)

The dependence on the wandering exponent ζ here is
quite general and applies also to impure systems. Thus
in d = 2 the critical exponent βco

s = 1/3 for pure systems
(ζ = 1/2), while βco

s = 1/2 for systems with random-
bond disorder (ζ = 2/3).

Mean-field regime. For r < τ , on the other hand, the
intermolecular forces dominate leading to mean-field-like
critical behaviour for which `π � ξ⊥ with critical expo-
nents

βco
s =

1
1 + r

, νco
‖ =

2 + r

2(1 + r)
, (8)

which follow from simple minimization of the binding po-
tential.

For fixed r, and systems with just thermal disorder,
these regimes determine the upper critical dimension

d∗ = 3− 4
r + 2

, (9)

below which fluctuations dominate and above which they
are negligible [34]. In d = 3 and with dispersion forces

FIG. 2: a) Schematic illustration of the height `0 = (R −
Rw)2/2Rw and width x0 =

√
R2 −R2

w of a macroscopic drop
adsorbed in a parabolic groove in the regime R > Rw close
to bulk coexistence (with R = γ/δp the Laplace radius). For
R < Rw there is no macroscopic drop and the adsorption
remains microscopic arising from interfacial fluctuations or
intermolecular forces. b) Illustration of the constrained fluc-
tuation droplet configuration in d = 2 which determines the
free energy and asymptotic scaling form of the PDF for the
interfacial height (above the groove bottom) allowing us to
identify that βosc = 3/7.

(r = 2) this implies βco
s = 1/3 (and νco

‖ = 2/3), as pre-
dicted many years ago by Derjaguin and which has been
confirmed exhaustively in numerous experiments [1, 3].

In d = 2 these heuristic expectations are also fully con-
firmed using discrete and continuum interfacial Hamilto-
nians [35, 42]. The partition function for the interfacial
model (5) can be determined exactly using continuum
transfer matrix methods, equivalent to solving the eigen-
functions and eigenvalues of the Schrodinger-like equa-
tion

− 1
2β2γ

ψ′′n(`) +W (`)ψn(`) = Enψn(`) , (10)

where β = 1/kBT which we hereafter set to unity. This
elegant transfer matrix method determines, for exam-
ple, that the probability distribution function (PDF)
of finding the interface at height ` is P (`) = |ψ0(`)|2,
which determines both `π and ξ⊥, and also identifies that
ξ‖ = 1/(E1 − E0). For the systems with short-ranged
forces (representing the scaling regime for r > 2), the
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eigenfunctions are given by ψn(`) ∝ Ai((2γδp)1/3`+λn),
where the λn are the zeros of the Airy function Ai(x)
with corresponding eigenvalues En = 2−1/3|λn|(δp)2/3.
The power-law dependence on δp within P (`) immedi-
ately determines that βco

s = 1/3, consistent with (7) on
setting ζ = 1/2 as appropriate to d = 2. The decay of
the Airy function then determines that far from the wall
the PDF decays as

P (`) ∝ 1
`1/2

exp
[
−4

3
(2γδp)1/2`3/2

]
, (11)

which, of course, still reveals the value of the complete
wetting exponent βco

s . This asymptotic behaviour is com-
pletely consistent with the droplet model expectation
that the PDF decays as [38]

P (`) ∝ e−∆F (`) , (12)

where ∆F (`) is the free-energy cost, in units of kBT , of
forming a constrained droplet of liquid which rises above
the wall forming a cusp at height ` (see Fig. 1b). For
large ` this free-energy cost is macroscopic and is simply
given by

∆F (`) = δpS + γ(`m − `w) , (13)

where S is the area of the droplet, `m is the interfa-
cial length and `w the length of contact with the wall
(see Fig. 1b). Either side of the cusp the droplet has
a parabolic shape with curvature δp/γ and a very sim-
ple calculation shows that both the area and interfacial
length contributions to the free-energy cost are the same
determining that ∆F (`) = 4

3 (2γδp)1/2`3/2, in precise
agreement with the transfer-matrix analysis (11). The
algebraic pre-factor in (11) is related to the interfacial
wandering at the points of contact of the droplet with
the wall, similar to discussions of the magnetization pro-
file in the semi-infinite Ising model [38]. We shall use this
droplet model trick later in application to the meniscus
osculation transition.

III. SCALING THEORY FOR MENISCUS
OSCULATION

We now turn our attention to the adsorption of fluid
near a completely wet wall which has the shape of a
parabolic groove (or parabolic pit) of cross-section

Z(x) =
x2

2Rw
, (14)

where Rw is the geometrical radius of curvature at the
bottom. The adsorption falls into two regimes depend-
ing on the deviation from bulk coexistence δp. Close
to coexistence, when R > Rw where R = γ/δp is the
Laplace radius, the groove induces the local condensa-
tion of a macroscopic liquid drop near the bottom. The
drop is characterised by a circular meniscus of radius R

that meets the walls tangentially (since θ = 0) – see
Fig. 2a. The size of this drop is determined trivially. For
example, the local height `0 and lateral extension x0 of
the drop are given by [33]

`0 =
(R−Rw)2

2Rw
, (15)

and

x0 =
√
R2 −R2

w , (16)

respectively. As we approach coexistence these diverge
as `0 ∝ R2 and x0 ∝ R which is the expected geometry-
dependent behaviour for the adsorption in a parabola
[29]. However, these results also indicate that these
length scales vanish as the pressure is reduced and R →
Rw and hence that further away from coexistence, corre-
sponding to pressures such that R < Rw, there is no local
condensation and the adsorption of fluid is microscopic.
We refer to the vanishing of the meniscus at R = Rw as
meniscus osculation. At a macroscopic level this is a con-
tinuous surface phase transition associated with a singu-
lar contribution to the surface free-energy which vanishes
as Fsing ≈ (R−Rw)7/2 [33].

Beyond macroscopic considerations meniscus oscula-
tion must correspond to a rounded phase transition since
there must still be some residual microscopic adsorp-
tion in the pressure regime δp > γ/Rw. The rounding
at meniscus osculation leads to novel scaling behaviour
characterising the influence of the geometry on the fluid
adsorption at the borderline of the macroscopic and mi-
croscopic regimes. Consider, for example, the height, `0,
of the liquid interface above the groove bottom exactly at
osculation R = Rw. Since the wall is completely wet, `0
must increase with Rw (maintaining the condition that
Rw = R) allowing us to define an osculation exponent
βosc:

`0 ∝ Rβosc
w , (17)

which characterises the local divergence of the film thick-
ness as we flatten the groove and recover the infinite ad-
sorption of a wet planar wall.

To determine the value of this exponent we suppose
that the macroscopic osculation transition is rounded
over a microscopic scale λ � R to be determined. It is
natural to speculate that this must be related to length
scales which characterise the underlying complete wet-
ting phenomena discussed above. Crossover scaling then
suggests that, in the vicinity of the phase boundary
R ≈ Rw, the macroscopic results (15) and (16) are mod-
ified as

`0 =
(R−Rw)2

2Rw
Losc

(
R−Rw

λosc

)
(18)

and

x0 =
√
R2 −R2

wXosc

(
R−Rw

λosc

)
, (19)
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where Losc(x) and Xosc(x) are scaling functions of the
dimensionless variable x = (R − Rw)/λ. Note that the
microscopic length scale λ is still allowed to diverge as
bulk coexistence is approached but we require that is
always much smaller than the purely macroscopic length-
scale R. We require that both scaling functions tend to
unity as x → ∞ and that both vanish as x → −∞ in
order to recover the macroscopic results. The crossover
length scale determines the values of `0 and x0 at the
macroscopic phase boundary R = Rw. In order that
these are finite and non-vanishing we require that Losc ∼
|x|−2 and Xosc ∼ |x|−1/2 as x→ 0, which identifies that

`0 ∝
λ2

R
, x0 ∝

√
Rλ ; R = Rw . (20)

From these we can immediately rule out that λ is similar
to the planar wetting layer thickness since in that case
`0 does not diverge with Rw as required. In Ref. [33]
we argued there were likely two possibilities. The sim-
plest, and perhaps most natural, hypothesis is that λ ∼
ξ‖. This is indeed the length scale which controls the
crossover scaling and rounding at meniscus depinning
transitions [43, 44] and also wetting on rough surfaces
(where it is sometimes referred to as the healing length
[45]). With this ansatz it follows from (4) and (20) that
`0 ∝ `π so that βosc = βco

s , i.e. the parabola doesn’t sig-
nificantly enhance the film thickness compared to that at
a planar wall, although it is likely to be a multiple of it.
However, there is an alternate possibility that is also jus-
tifiable, which is that deep in the pre-osculation regime
(R� Rw) the influence of the geometry on the film thick-
ness is to shift and reduce the effective pressure from δp
to δp − γ/Rw. This geometrically induced shift would
be consistent with the effective increase in the pressure,
which is known for wetting on the outside of a sphere
or cylinder [37, 47–50]. This means that as Rw → ∞
the local height tends to `0 ∝ (1/R − 1/Rw)−βco

s , which
is only compatible with the scaling hypothesis (18) if
λ2+βco

s ∝ R
1+2βco

s
w Rβco

s . With this identification for the
rounding length scale it follows from (20) that the value
of `0 is much larger than `π and diverges on approaching
coexistence with exponent βosc = 3βco

s /(2 + βco
s ), which

is larger than βco
s .

Here, we argue that both these possibilities are re-
alised and that they are characteristic of the rounding
occurring in two different scaling regimes demarcated
by an upper critical dimension. Consider, for exam-
ple, the rounding and scaling resulting from the asser-
tion that the substrate curvature decreases the effective
pressure δp to δp − γ/Rw. It is natural to assume that
this purely geometrical consideration occurs for systems
with sufficiently short-ranged forces where the influence
of intermolecular forces can be neglected. This is some-
what analogous to the “wedge covariance” known for wet-
ting and filling phenomena in systems with short-ranged
forces (in both pure and impure systems) which exactly
relates thermodynamic observables in a wedge (with tilt
angle α) to that at a planar wall via an effective shift

in the contact angle θ → θ − α [51]. Combining the
exponent relation βosc = 3βco

s /(2 + βco
s ) with the result

βco
s = ζ/(2−ζ) for short-ranged complete wetting leads to

the explicit identification βosc = 3ζ/(4− ζ) for meniscus
osculation. This is greater than the corresponding value
βco

s = ζ/(2− ζ) for complete wetting for all ζ < 1 – that
is, for all dimensions above the lower critical dimension
for bulk phase separation. Nevertheless, this is precisely
what we should expect if we assume that the phenomena
arise from interfacial fluctuations, since in that case we
can also anticipate that `0 ∝ xζ

0 – that is the wandering
exponent is unchanged by the geometry. Combining this
expectation with the crossover scaling result (20) identi-
fies that, at osculation, λ ∝ R(2+ζ)/(4−ζ), which consis-
tently and independently identifies that βosc = 3ζ/(4−ζ).
This, we conjecture, is the appropriate rounding length-
scale and value of the osculation exponent for systems
with sufficiently short-ranged forces. However, this scal-
ing cannot apply universally. As we increase the dimen-
sionality the value of ζ decreases and eventually the oscu-
lation critical exponent reaches the value βosc = 1/(r+1)
implying that `0 ∝ `π and λ ∝ ξ‖. Since βosc cannot take
a smaller value than the corresponding value of βco

s (the
confining geometry cannot diminish the adsorption) it
is natural to assume that this scaling applies also in all
higher dimensions. Thus, analogous to complete wetting
we conjecture that meniscus osculation falls into one of
two scaling regimes:

Fluctuation-dominated regime. For r > 4(1 − ζ)/3ζ,
fluctuations dominate and the osculation exponent takes
the universal value

βosc =
3ζ

4− ζ
. (21)

In this scaling regime `0 ∼ xζ
0, implying that the ge-

ometry significantly enhances the adsorption, such that
`0 � `π. The crossover scaling and rounding of the
meniscus osculation transition is controlled by a length
scale λ ≈ R(2+ζ)/(4−ζ), which is larger than the corre-
sponding value of ξ‖ (at this pressure). Thus in d = 2 we
predict that the meniscus osculation is characterized by
the exponent βosc = 3/7 for pure systems (ζ = 1/2) and
βosc = 3/5 for random-bond disorder (ζ = 2/3). These
contrast with the corresponding prediction for compete
wetting βco

s = 1/3 (for ζ = 1/2) and βco
s = 1/2 (for

ζ = 2/3).
Mean-field regime. For r < 4(1−ζ)/3ζ, the intermolec-

ular forces dominate and the osculation exponent takes
the value

βosc =
1

r + 1
, (22)

which is identical to the value of βco
s . This implies that

the local interfacial height scales with the wetting layer
thickness, i.e. `0 ∝ `π. We anticipate that in general the
constant of proportionality is greater than unity, so that
the geometry still enhances the local adsorption of fluid.
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The rounding of the phase transition in this regime is
controlled by a crossover length scale λ ∝ ξ‖.

For fixed value of r, these two scaling regimes identify
that for pure systems that the upper critical dimension
is

d∗osc = 3− 8
3r + 4

, (23)

which is larger than the upper critical dimension for
complete wetting, except for systems with purely short-
ranged forces, for which d∗ = d∗osc = 3.

IV. MODEL CALCULATIONS

To finish our article, we test these predictions for the
two cases that are most relevant to experiments and stud-
ies of microscopic models: d = 2 with short-ranged forces
(r = ∞) and d = 3 with dispersion forces (r = 2).
In both these cases the values of the complete wetting
exponents are identical with βco

s = 1/3 and νco
‖ = 2/3

– although these correspond to distinct fluctuation and
mean-field regimes respectively. The predictions of the
scaling theory developed above are that in d = 2 the os-
culation exponent βosc = 3/7, different to that for com-
plete wetting, while in d = 3 it remains βosc = βco

s = 1/3.

A. d = 2, short-ranged forces

In d = 2 we may study meniscus osculation using
a continuum interfacial Hamiltonian adopting the same
droplet model method described earlier for complete wet-
ting. This, we anticipate, will exactly determine the
scaling form of the asymptotic probability distribution
for the local interfacial height above the groove bottom.
That is, we assume that

Posc(`) ∝ exp[−∆Fosc(`)] , (24)

where ∆Fosc(`) is the free-energy cost (in units of kBT )
for an interfacial fluctuation that forms a droplet which is
constrained to pass through a point at height ` at x = 0
– see Fig. 2b. Since no direct intermolecular forces are
present the free-energy cost of this droplet fluctuation is
again given by

∆Fosc(`) = δpS + γ(`m − `w) , (25)

where S is the area, `m is the interfacial length and `w the
length of contact with the parabolic wall. The droplet has
the shape of a symmetric cusp formed from two circular
menisci of Laplace radius R, centered at x = ±ξ that
meet the walls tangentially at x = ±x0. For x > 0
the local interfacial height is therefore described by the
function

`(x) = `−
√
R2 − (x− ξ)2 +

√
R2 − ξ2 , (26)

which we may expand keeping terms of quartic order

`(x) = `− ξ2

2R
− ξ4

8R3
+

(x− ξ)2

2R
+

(x− ξ)4

8R3
, (27)

which is the order required to determine the scaling be-
haviour. We now sit exactly at osculation R = Rw

and define reduced variables ˜̀ = `/R, ξ̃ = ξ/R and
x̃0 = x0/R. Matching the interface and wall heights,
`(x0) = Z(x0), and derivatives `′(x0) = Z ′(x0) deter-
mines that

x̃0 = ξ̃ + (2ξ̃)1/3 (28)

and

˜̀=
3
8
ξ̃4/3 + ξ̃2 + ξ̃4 . (29)

Using these it is a straightforward matter to determine
the interfacial area S = 2

∫ x0

0
[(`(x)−Ψ(x)]dx, yielding

S
R2

=
3
10

(2ξ̃)5/3 +
3
16

(2ξ̃)7/3 + · · · , (30)

where the higher-order terms are of O(ξ̃3) which may
be neglected. Similarly, the surface terms, relat-
ing to the excess length of the droplet, `m − `w =
2

∫ x0

0
dx(

√
1 + `′(x)2 −

√
1 + ψ′(x)2) follow as

`m − `w
R

= − 3
10

(2ξ̃)5/3 − 1
8
(2ξ̃)7/3 + · · · , (31)

where the higher-order terms are also O(ξ̃3). The
leading-order terms in the area and length contributions
cancel implying that, exactly at osculation, the free-
energy cost of the drop scales with the local height as

∆Fosc =
γ

4
R− 3

4

(
8`
3

) 7
4

. (32)

Substitution to (24) then immediately determines that
the osculation exponent takes the predicted value

βosc =
3
7
. (33)

Fluctuations are important at this rounded phase tran-
sition so that, for example, the interfacial roughness also
scales as ξ⊥ ∝ R

3/7
w . We anticipate that in Eq. (24) there

is also an algebraic pre-factor associated with the inter-
facial wandering of the points of contact, similar to the
droplet model for complete wetting, although this is not
relevant to the scaling behaviour and the identification
of βosc.

B. d = 3, long-ranged forces

To study meniscus osculation in d = 3 we employ a
fully microscopic, classical DFT which is based on the



7

FIG. 3: Numerical DFT results for the equilibrium density
profile ρ(r) at osculation for a completely dry parabolic wall
(Rw = 100 σ) in contact with a bulk liquid showing the pref-
erential adsorption of low density gas at the bottom.
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FIG. 4: Log-log plot showing the growth of the interfacial
height `0 (open circles) )and the planar wetting thickness `π

(dark circles) for different radii of curvature Rw maintaining
the condition of meniscus osculation µosc = µsat + γ/∆ρRw.
The two straight lines shown are near parallel identifying
that βosc ≈ βco

s ≈ 0.326 with corresponding amplitude ra-
tio `0/`π ≈ 2.

minimization of a grand potential functional Ω[ρ] with
respect to the density distribution of the fluid particles
ρ(r) [52]:

Ω[ρ] = F [ρ] +
∫

drρ(r) [V (r)− µ] . (34)

Here, F [ρ] is the Helmholtz free energy functional which
contains all the information about the fluid interactions,
while V (r) is the potential of the parabolic wall whose
cross-section along the x-z plane is given by Eq. (14).
The wall is formed of atoms which are distributed uni-
formly with a density ρw over the whole space below its
surface demarcated by the curve (14) assuming transla-
tion invariance along the y-axis. The wall atoms inter-
act with the fluid atoms via a purely repulsive potential,
φ = 4ε(σ/r)6, hence the net wall potential is

V (r) = ρw

∫
φ(|r− r̃|)dr̃ , (35)

where the integration domain is the volume of the wall.
Here, ε is the strength of the potential, while σ is molec-

ular radius. The repulsive tail of the wall potential mod-
els dispersion interactions which, within the mesoscopic
interfacial model (5), generate a binding potential decay-
ing asymptotically according to a power-law with r = 2.
However, we note that in this context, because the inter-
molecular interaction is purely repulsive, we consider the
analogous drying phenomena when the repulsive wall is
brought in contact with bulk liquid. An advantage of this
is that the drying layer of gas does not exhibit volume
exclusion effects allowing us to access a greater range of
Rw values.

The fluid-fluid interaction is modelled by a (short-
ranged) truncated Lennard-Jones potential (of strength
ε) and its contribution to the free energy functional is
described by a combination of Rosenfeld’s fundamental
measure theory [53] (approximating the repulsive part of
the interaction) and a simple mean-field treatment of the
attractive part of the interaction. More details about the
construction of the approximative F [ρ] and the numerical
details of minimization of Ω[ρ] can be found in Ref. [33]
where the same fluid model has been adopted.

In order to determine the exponent βosc, we first found
the equilibrium density profiles for various parabolic
walls with different curvatures with fixed chemical po-
tential, µosc = µsat + γ/(Rw∆ρ), ensuring that we sit
right at the osculation transition (see Fig. 3). From each
density profile we determined the interfacial height above
the groove bottom `0 using the mid-density rule. In Fig. 4
we display the log-log dependence of `0 with δµosc (with
δµosc ≡ µosc − µsat) comparing it also with the corre-
sponding divergence of the planar wetting thickness `π
for the same range of chemical potentials. This shows
convincingly that `0 and `π diverge with the same critical
exponent which we estimate as βosc ≈ βco

s ≈ 0.326 in ex-
cellent agreement with the predicted value of βosc = 1/3.
Our results indicate that the ration `0/`π ≈ 2 showing
that at meniscus osculation within this mean-field regime
the geometry increases the amplitude of the local adsorp-
tion but not the critical exponent.

V. SUMMARY

In this paper we have developed a simple scaling the-
ory for critical effects which arise from the rounding of
the meniscus osculation transition occurring when the
Laplace pressure of a condensed macroscopic drop of liq-
uid coincides with local radius of curvature Rw in a con-
fining parabolic geometry. We have argued that the expo-
nent βosc characterising the scale of the interfacial height
`0 ∝ Rβosc

w at osculation, falls into one of two regimes rep-
resenting fluctuation-dominated and mean-field like be-
haviour. In the fluctuation-dominated regime, represent-
ing the universality class of systems with short-ranged
forces, the exponent is related to the value of wander-
ing exponent by βosc = 3ζ/(4 − ζ) which is different to
the relation βco

s = 2/(2− ζ) pertinent for complete wet-
ting. This exponent relation can be understood to arise
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in two equivalent ways – either by assuming that when
fluctuations dominate the height `0 and lateral size x0

of the adsorbed layer scale as `0 ∼ xζ
0 or by enforcing

a condition on the crossover scaling function that in the
pre-osculation regime the geometry serves to lower the
effective partial pressure δp→ δp− γ/Rw. These simple
scaling considerations do not apply if the forces are suffi-
ciently long-ranged in which case the midpoint interfacial
height `0 ∝ `π and rounding length scale λ ≈ ξ‖ are more
directly and simply related to wetting length-scales. Our
prediction that in d = 2 and for short-ranged forces the
meniscus osculation exponent takes the value βosc = 3/7
is confirmed by a droplet model calculation based on
an interfacial Hamiltonian which determines the scaling
form of the asymptotic decay of the PDF for the local
interfacial height. Future studies could seek to extend
this to and determine, for example, the whole PDF in-
cluding the short-distance expansion near the wall which
we anticipate can be related to exact sum-rules similar
to studies of continuous wetting at planar walls [54]. In

d = 3 our DFT study indicates that in the mean-field
regime with dispersion forces the ratio of the interfacial
heights `0/`π ≈ 2. It would be interesting to see if the
value of this amplitude can be understood using simple
interfacial Hamiltonian models, which also allow for the
presence of long-ranged forces [55]. This would have im-
plications for understanding adsorption on other types
of surface [29, 30]. Finally, the adsorption of fluids in
substrates with parabolic pits has been considered ex-
perimentally previously [31, 32] although the meniscus
osculation was not addressed. We hope that the present
work stimulates such studies.
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