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Parametrization of LSDA + U for noncollinear magnetic configurations:
Multipolar magnetism in UO2
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To explore the formation of noncollinear magnetic configurations in materials with strongly correlated
electrons, we derive a noncollinear LSDA + U model involving only one parameter U , as opposed to the
difference between the Hubbard and Stoner parameters U − J . Computing U in the constrained random phase
approximation, we investigate noncollinear magnetism of uranium dioxide UO2 and find that the spin-orbit
coupling (SOC) stabilizes the 3k ordered magnetic ground state. The estimated SOC strength in UO2 is as
large as 0.73 eV per uranium atom, making spin and orbital degrees of freedom virtually inseparable. Using a
multipolar pseudospin Hamiltonian, we show how octupolar and dipole-dipole exchange coupling help establish
the 3k magnetic ground state with canted ordering of uranium f orbitals. The cooperative Jahn-Teller effect does
not appear to play a significant part in stabilizing the noncollinear 3k state, which has the lowest energy even
in an undistorted lattice. The choice of parameter U in the LSDA + U model has a notable quantitative effect
on the predicted properties of UO2, in particular on the magnetic exchange interaction and, perhaps trivially,
on the band gap: The value of U = 3.46 eV computed fully ab initio delivers the band gap of 2.11 eV in good
agreement with experiment, and a balanced account of other pertinent energy scales.

DOI: 10.1103/PhysRevMaterials.3.083802

I. INTRODUCTION

Predicting magnetic properties of complex materials by ab
initio simulations requires using models that do not constrain
the orientation of magnetic moments to a specific direction.
This is achieved using noncollinear magnetic density func-
tional theory approximations [1,2], where the direction of
local moments varies from point to point in real space. The
fact that magnetic noncollinearity does occur in real materi-
als is confirmed by experimental observations and ab initio
calculations [3–8]. Noncollinear magnetic ordering is particu-
larly evident in compounds characterized by strong spin-orbit
coupling (SOC) effects. Examples include f -electron systems
[9–11] and 5d transition metal oxides [12,13]. Noncollinear
magnetic fluctuations contribute to electric and thermal re-
sistivity of alloys [14] and influence electronic and magnetic
phase transitions [15,16]. Magnetic fluctuations are also re-
sponsible for the anomalous thermal conductivity of uranium
dioxide [17], a most commonly used nuclear fuel.

In metallic alloys, magnetic fluctuations represent one of
the modes of electronic excitations, contributing to electric
and thermal resistivity. In a semiconducting oxide like UO2,
where thermal conductivity is dominated by phonons, the
strong SOC couples atomic displacements with magnetic
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degrees of freedom and provides an additional channel of
dissipation [17]. The fact that lattice and magnetic degrees of
freedom in uranium dioxide are not independent is confirmed
by observations of piezo-magnetism [18]. In Ref. [18] exper-
imental observations were interpreted phenomenologically,
assuming a direct coupling between atomic displacements and
magnetic moments. At the electronic level, the effect stems
from the relativistic SOC involving magnetic moments of
uranium ions and their orbital degrees of freedom. The direc-
tional character of bonds associated with f orbitals generates
interatomic forces that depend on the orientation of magnetic
moments.

A magnetic metal and an actinide oxide like UO2 differ
in that magnetic orientation-dependent forces in a metal stem
from the position-dependent Heisenberg’s exchange [19],
whereas in an actinide oxide the forces result from a combina-
tion of Anderson’s superexchange [20,21], strong correlations
between electrons in f shells [22], and relativistic spin-orbit
interactions [23–25].

In this paper, we explore the electronic structure and
noncollinear magnetism of UO2 using a suitably adapted ab
initio LSDA + U model. An ab initio treatment of direc-
tional magnetic degrees of freedom in a material with strong
electron correlations requires a noncollinear model, which
at the same time must be suitable for the evaluation of the
total energy of the electronic system. An LSDA + U model,
often used for total energy calculations [26], was derived from
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a Hamiltonian similar to the Hamiltonians used earlier by
Anisimov et al. [27], and by Kotani and Yamazaki [22]. These
Hamiltonians are identical to the Hamiltonian of the collinear
Stoner model [28], and hence are not suitable for the treat-
ment of noncollinear magnetism. A noncollinear magnetic
LSDA + U model was proposed by Liechtenstein et al. [29]
and Solovyev et al. [30]. In Ref. [29] the choice of the
double counting term, which has the same form as in the
collinear case, cf. Eq. (4) of Ref. [29] and Eq. (3) of Ref. [28],
introduces an element of uncertainty in the total energy part of
the analysis. The mean-field treatment developed in Ref. [30]
involved the entire model Hamiltonian, making it difficult to
separate the LSDA + U treatment of correlations from the
exchange-correlation terms already included in the density
functional theory (DFT) approximation. Various forms of the
LSDA + U model were investigated in Refs. [31–36].

This study is based on a recent analysis by Coury et al. [37],
who found a way of transforming, through an exact calcula-
tion, the general second-quantized Hamiltonian for interacting
electrons into a form similar to that used in earlier LSDA + U
studies [26,27]. Coury et al. [37] showed that the model
Hamiltonians used earlier were missing a term contributing to
the LSDA + U correction. The inclusion of this term, as we
show below, simplifies the LSDA + U equations and enables
performing an effectively parameter-free DFT study, where
parameter U is deduced from a constrained random phase
approximation (cRPA) calculation.

Uranium dioxide, extensively studied in Refs. [10,38–49],
continues attracting considerable attention as the scope of
ab initio methods expands to enable the treatment of defects
[50] and their diffusion [51–53], given that defects and their
diffusion contribute to the overall performance of UO2 nuclear
fuel. The magnetic ground state of bulk crystalline UO2 has
been investigated experimentally and theoretically [10,38–
42,49,54], and there is extensive information about the surface
structure of UO2 derived from elevated temperature scanning
tunneling microscope observations [55–57]. There is still no
definitive verdict about what stabilizes its 3k magnetic ground
state and determines the spectrum of low-energy magnetic ex-
citations required, for example, for spin-lattice dynamics sim-
ulations [19,58,59]. Partly, the difficulty stems from the fact
that an ab initio treatment of UO2 requires exploring an energy
landscape with multiple local minima, which is difficult to
treat using conventional energy minimization algorithms [60].
It is also necessary to take into account relativistic effects,
giving rise to large SOC [43] and multipolar spin interactions.
In UO2, magnetism is associated with uranium f orbitals, with
the orbital magnetic moments of uranium ions being twice
the spin moments [61]. Magnetic order is also believed to be
linked to the Jahn-Teller (JT) lattice distortions [62].

Presently available LSDA + U models require using val-
ues of U and J as input parameters. These quantities are often
treated as being tunable, and are matched to the calculated
band gap, the equilibrium volume, the magnetic moment or
the formation energy [63]. Several approaches have been pro-
posed to compute U and J and avoid using phenomenological
considerations [64–67]. The cRPA accounts for the screen-
ing of Coulomb interaction between correlated electrons and
provides estimates for U and J in a constrained correlated

subspace. cRPA has been applied to a variety of materials, and
enabled obtaining fairly accurate values of U and J [68–71].
In the analysis below, we use cRPA to compute U and J , in
this way enabling a parameter-free LSDA + U simulation.
The approach based on Coury’s Hamiltonian [37] requires
computing only one parameter U .

Below, we derive a noncollinear LSDA + U model, pro-
viding equations for the effective one-electron potential and
the double counting correction to the total energy, and find
that the model requires only one parameter U as opposed
to the difference U − J entering the existing LSDA + U
equations. cRPA is used for computing U . The stability of
the noncollinear 3k magnetic ground state in UO2 is inves-
tigated using an adiabatic occupation matrix approach. Anal-
ysis shows that the 3k structure represents the lowest energy
configuration even in an undistorted cubic lattice. Finally, we
discuss effective magnetic Hamiltonians for finite temperature
atomic and magnetic dynamic simulations.

II. A NONCOLLINEAR LSDA + U MODEL

An LSDA + U model aims to provide an improved de-
scription of the electronic structure of materials characterized
by strong electron correlations in spatially localized d and f
shells. This is achieved by adding a correction term to the
effective single particle electron potential [26,27,29],

V σ
jl = δELSDA+U

δρσ
l j

= δELSDA

δρσ
l j

+ (U − J )

[
1

2
δ jl − ρσ

jl

]
, (1)

and a double counting correction to the total electronic energy
[26],

Edc
LSDA+U = (U − J )

2

∑
σ, j,l

ρσ
jlρ

σ
l j . (2)

The latter is necessary since a sum of single particle energies
of interacting electrons does not represent their total energy;
see Eqs. (15) and (16) of Ref. [72]. In Eqs. (1) and (2), indexes
j, l refer to the orbitals associated with a lattice site, and σ is
the spin index.

Equations (1) and (2) were derived from a model tight-
binding Hamiltonian [22,73], where the on-site electron in-
teraction terms have the form,

Ĥ = U

2

∑
l,l ′,σ

n̂l,σ n̂l ′,−σ + (U − J )

2

∑
l,l ′,l �=l ′,σ

n̂l,σ n̂l ′,σ . (3)

It can be shown [28,37] that this Hamiltonian is identical to
the Hamiltonian of the collinear Stoner model,

Ĥ = U

2
(N̂2 − N̂ ) − J

4
(N̂2 − 2N̂ ) − J

4
M̂2, (4)

where N̂σ = ∑
l n̂l,σ , N̂ = N̂↑ + N̂↓, and M̂ = N̂↑ − N̂↓.

Equations (1) and (2) can be derived by evaluating the ex-
pectation values of either Eq. (3) or Eq. (4); see Ref. [26].

Despite the relative success of the LSDA + U model [32],
there are two points that require attention. It is unclear to what
extent the choice of the model Hamiltonian (3) affects the
form of Eqs. (1) and (2), and also how to generalize these
equations to noncollinear magnetic configurations [17,19,42].
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First, we note that there is a significant term miss-
ing in Hamiltonians (3) and (4). This missing term has
been identified in Ref. [37]. This term contributes to the
LSDA + U correction, changing its form. Second, we note
that the correction itself is not invariant in the extended
space of spin and orbital indexes, a point that can be readily
rectified using a suitable definition of the convolution of the
full spin- and orbital-dependent electron density matrix. The
required invariant form was proposed in [74] and already
implemented in VASP, although the coefficients used in the
numerical implementation were chosen as in Eqs. (1) and (2).
This now requires modification, as we show below.

An on-site Hamiltonian, describing interaction between
electrons occupying orbitals i, j, k, l , is given by a sum of
combinations of four creation and annihilation operators mul-
tiplied by a four-index matrix Vi j,lk :

Ĥ = 1

2

∑
i, j,k,l

∑
σξ

Vi j,lk ĉ†
i,σ ĉ†

j,ξ ĉk,ξ ĉl,σ . (5)

Matrix V has (2l + 1)4 elements, which in the case of
p(l = 1) electrons amounts to 34 = 81 elements, and 54 =
625 elements in the case of d electrons. Symmetry constraints
show that all the elements of Vi j,lk can be parametrized using
only two independent constants in the p-electron case, three
constants in the d-electron case, and four in the f -electron
case. In the p-electron cubic harmonic orbital case, using an
analogy with the theory of isotropic elasticity [75], where the
four-index matrix of elastic constants Ci jkl has the same sym-
metry as Vi j,lk , Hamiltonian (5) can be written exactly as [37]

Ĥ = 1

2

(
U − J

2

)
: N̂2 : −J

4
: M̂2 : +J

2

∑
i, j

: (n̂i j )
2 : . (6)

Here, N̂ = ∑
m,σ ĉ†

m,σ ĉm,σ is the operator of the total number

of electrons on a site, n̂kl = ∑
σ ĉ†

k,σ
ĉl,σ , and

M̂ =
∑

m,ξ ,ξ ′
ĉ†

m,ξσξξ ′ ĉm,ξ ′

is the total magnetic moment vector operator associated with
a site. In Eq. (6), :: denotes normal ordering of creation
and annihilation operators, and σξξ ′ are the Pauli matrices.
The normally ordered terms in Eq. (6), expressed using
conventional notations, have the form,

: N̂2 : = N̂2 − N̂,

: M̂2 : = M̂2 − 3N̂,

: M̂2
z : = M̂2

z − N̂,

: (n̂kl )
2 : =

∑
σ,ξ

ĉ†
k,σ

ĉ†
k,ξ

ĉl,ξ ĉl,σ . (7)

The first two terms in Eq. (6) are the same as the right-hand
side of Eq. (4), with the exception that now the magnetic
moment operator is a vector quantity. In addition, Hamiltonian
(6) includes an extra third term, required by symmetry and
absent in Eq. (4). This term is related to the orbital moment of
electrons on a lattice site [37]. We note that Hamiltonian (6) is
exact in the sense that no procedure of “directional” averaging
is involved in the transformation from Eq. (5) to Eq. (6). The

central approximation associated with a Hamiltonian of the
form (6) is that it represents a subset of localized orbitals
on an individual site taken in isolation, and does not include
the fact that the self-consistent field of neighboring ions
might influence its rotational invariance. Also, the mean-field
approximation adopted in the treatment below, while being
fairly well documented in the context of LSDA + U models,
requires critical assessment in applications.

We now follow the derivation given in Refs. [26,27] and
deduce the LSDA + U model from Hamiltonian (6). We iden-
tify the terms in Hamiltonian (6) that contain two creation and
two annihilation operators acting on the same electronic state
(m, σ ). In the mean-field approximation, these terms provide
contribution to the total energy proportional to n2

m,σ whereas
their exact expectation value is proportional to nm,σ . The
LSDA + U model correction equals the difference between
the exact and mean-field expectation values of these terms,
resulting in

ELSDA+U − ELSDA

=
[

1

2

(
U − J

2

)
− J

4
+ J

2

]∑
m,σ

(
nm,σ − n2

m,σ

)
. (8)

In the above expression, each term in square brackets corre-
sponds to a respective term in Hamiltonian (6), and nmσ is
the electron occupation number of an orbital state m with spin
index σ . The term (J/2)

∑
m,σ (nm,σ − n2

m,σ ), missing in the
derivations given in Refs. [26,27], results from the last term in
Eq. (6).

To illustrate the derivation of Eq. (8), consider, for ex-
ample, the term −(J/4)M̂2 in Eq. (6). In explicit form, this
operator can be written as

−J

4
M̂2 = −J

4

∑
α,ξ,ξ ′

∑
β,ζ ,ζ ′

(ĉ†
αξσξξ ′ ĉαξ ′ )(ĉ†

βζσζ ζ ′ ĉβζ ′ ).

The part of the above operator expression where the indexes
of all the creation and annihilation operators coincide, is

−J

4

∑
α,ζ

ĉ†
αζ ĉαζ )ĉ†

αζ ĉαζ (σξξ · σζ ζ ).

Since σ x
ζ ζ σ

x
ζ ζ + σ

y
ζ ζ σ

y
ζ ζ + σ z

ζ ζ σ
z
ζ ζ = 1, we see that the form of

the operator expression that requires applying the LSDA + U
correction is the same as the operator form arising from the N̂2

term, and hence the contribution to the LSDA + U functional
from the −(J/4)M̂2 term in Hamiltonian (6) equals

−J

4

∑
α,ζ

(
nαζ − n2

αζ

)
.

Applying this procedure to all the terms in (6), we see that
the terms in the LSDA + U correction Eq. (8) that contain
parameter J cancel each other exactly, and only the term
proportional to parameter U remains. The sum of the first two
terms in square brackets (U − J/2)/2 − J/4 = (U − J )/2
equals the coefficient found in earlier derivations [26] based
on Hamiltonian (4). The third term in square brackets in
Eq. (8) stems from the last term in Hamiltonian (6), missing
in (4). We note that the complete cancellation of the terms
containing parameter J in a derivation based on a full Hamil-
tonian (6) should not come as a surprise. For example, the
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original form of the Hubbard Hamiltonian [76] contains no
J terms but still generates a variety of magnetic solutions,
originating solely from strong on-site electron correlations.
Furthermore, despite the appealing simplicity of Hamiltonian
(3), it was in fact never derived directly from the four-index
matrix form (5) and hence it is not unexpected that a direct
derivation undertaken by Coury et al. [37] showed that Eqs.
(3) and (5) were not fully consistent.

A general form of Eq. (8), invariant with respect to the
choice of electronic orbitals and spin quantization axis, is

ELSDA+U − ELSDA = U

2
[Trρ − Trρ2]

= U

2

[∑
m,σ

ρσσ
mm −

∑
m,σ ;m′,σ ′

ρσσ ′
mm′ρ

σ ′σ
m′m

]
, (9)

where ρ is the full orbital and spin-dependent one-electron
density matrix.

In the collinear approximation, where the density matrix is
diagonal with respect to the subset of its spin indexes ρσσ ′

mm′ =
ρσ

mm′δσσ ′ , Eq. (9) is similar to Eq. (5) of Ref. [26], however,
the prefactor in the formula is still different.

An invariant orbital- and spin-dependent noncollinear form
of LSDA + U (1) and (2) is now

V σσ ′
jl = δELSDA+U

δρσσ ′
l j

= δELSDA

δρσσ ′
l j

+ U

[
1

2
δ jlδσσ ′ − ρσσ ′

jl

]
, (10)

and

Edc
LSDA+U = U

2

∑
σ,σ ′, j,l

ρσσ ′
jl ρσ ′σ

l j . (11)

The need to add the double counting term (11) to the total en-
ergy, evaluated using the conventional Kohn-Sham procedure,
stems from the fact that the single-particle electron potential
(10) depends on the occupancy of electron orbitals through
a term proportional to ρσσ ′

jl . It is this occupancy-dependent
term in Eq. (10) that makes a sum of one-particle energies
different from the total energy given by Eq. (9). The above
equations show that, in addition to correcting the prefactor in
the formula, an invariant LSDA + U model requires convolut-
ing the density matrix over the full set of its orbital and spin
indexes, a point that was not included in earlier derivations
[26,27,29]. The LSDA + U correction of the form (9) and
(11) has already been implemented in VASP [74], but with the
coefficients given by Eqs. (1) and (2). The derivation above
shows that in a practical calculation it is sufficient to set J = 0
in the existing noncollinear implementation of the method
[74] to arrive at the LSDA + U correction consistent with the
full model Hamiltonian (6).

The terms containing parameter J also cancel exactly if
we perform the above derivation for the d-electron case [37].
The most direct way of showing this involves starting from
Eq. (22) of Ref. [37] and noting that in the d-electron case, all
the terms containing parameter J can be expressed in terms
of a renormalized parameter J − 6	J , resulting in the same
Eq. (9) above, plus small terms proportional to 	J , which
together amount to a small fraction of an electronvolt per atom
and are normally neglected in applications [32]. This suggests
that the single-parameter form of the LSDA + U correction

given by Eq. (10) and Eq. (11) remains sufficiently accurate
and applicable to d-electron orbitals, and other types of shells
containing correlated electrons. Parameter U , according to the
analysis given in [31,68], is an effective quantity, characteriz-
ing the strength of electron-electron interactions and modified
by many-body self-screening.

Concluding this section and before proceeding to the ab
initio analysis, we note that Eqs. (9)–(11) amount to only
a small correction to the established exchange-correlation
functionals of density functional theory. The magnitude of the
correction term (9) does not exceed (U/8) times the number
of partially filled orbitals, which in practical calculations
amounts to approximately no more than one electron-volt per
ion.

III. AB INITIO METHODOLOGY

All the calculations below were carried out using the
Vienna ab initio simulation package (VASP) [77,78], where
the noncollinear LSDA + U scheme (9) and (11) is imple-
mented [74,79] with the full inclusion of relativistic effects
and self-consistent treatment of spin-orbit coupling [7]. A
robust energy cutoff up to 700 eV with the convergence
precision of 10−6 eV was used in all the calculations, and the
Brillouin zone was sampled using a 6 × 6 × 6 k-point mesh.
Atomic positions were optimized with the lattice parameters
fixed at their observed value (a = 5.469 Å) [80]. Among the
points that we explore in detail below are (A) the evalua-
tion of interaction parameters U and J using the cRPA, (B)
magnetically constrained DFT calculations, (C) spin adiabatic
occupation matrix analysis of the magnetic energy landscape,
(D) parametrization of the multipolar pseudospin Hamiltonian
and exchange coupling, and (E) evaluation of the strength of
SOC.

A. Constrained random phase approximation

Interaction parameters U and J were computed from first
principles using the constrained random phase approximation
[64]. In the cRPA, the Coulomb repulsion and Hund’s cou-
pling parameters U and J are derived from the matrix ele-
ments of Ui jkl written in terms of the Wannier basis functions,
representing the correlated subspace (uranium f states),

Ui jkl = lim
ω→0

∫∫
drdr′w∗

i (r)w∗
j (r′)U (r, r′, ω)wk (r)wl (r′).

(12)

U and J are the matrix elements Ui ji j and Ui j ji, respectively. In
Eq. (12), U is the partially screened interaction kernel, which
is evaluated by solving the Dyson-like equation,

U−1 = V−1 − χ r, (13)

where V is the bare (unscreened) interaction kernel and χ r =
χ − χ t is the polarizability, excluding contributions from
the “target” correlated f subspace, χ t . Following the above
procedure, we find U cRPA = 3.46 eV and JcRPA = 0.30 eV,
corresponding to the effective interaction parameter U cRPA

eff =
3.16 eV. These values are smaller than those extracted from
optical spectroscopic estimates [81]: U = 4.50 eV and J =
0.54 eV, Ueff = 3.96 eV. In order to estimate the effect of the
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FIG. 1. Schematic plots of the 〈001〉-AFM, 3k (longitudinal)
and 〈110〉-AFM noncollinear spin configurations considered in this
study.

prefactor in Eq. (9) on magnetic properties of UO2, we have
compared four different choices of interaction parameters,
namely

(1) U = 3.16 eV (i.e., U cRPA
eff )

(2) U = 3.46 eV (i.e., U cRPA)
(3) U = 3.96 eV (i.e., “Expt.” Ueff )
(4) U = 4.50 eV (i.e., “Expt.” U )

B. Magnetically constrained noncollinear DFT + U

To model the noncollinear magnetic ground state of UO2

we have minimized the total energy, treating it as a function of
directions of spin moments through magnetically constrained
noncollinear DFT + U [7,13,82]. We have inspected spin
rotations that transform the system from a characteristic non-
collinear 3k state into collinear antiferromagnetically (AFM)
ordered 〈001〉 and 〈110〉 configurations [42], illustrated in
Fig. 1. A noncollinear 3k phase is described by three indepen-
dent wave vectors and can be represented by a combination
of three different phases, one longitudinal and two equivalent
transverse. To facilitate the construction of the canted mag-
netic energy landscape, we used the longitudinal 3k ordered
magnetic structure shown in Fig. 1 as a starting configuration.
The two other ordered AFM configurations, 〈001〉 and 〈110〉,
belong to the 1k (one wave vector) and 2k (two wave vectors)
categories, respectively.

The 〈001〉–3k–〈110〉 magnetic structure transformation
pathway can be defined by a concerted variation of angle θ on
the four inequivalent uranium sites in a UO2 magnetic unit cell
[see Figs. 2(a) and 2(c)]. Constrained energy minimization as
a function of θ along the transformation pathway is achieved
by considering the energy penalty arising from a constraint
applied to the direction of the spin magnetic moment, defined
by the function,

E = E0({Mi}) +
∑

i

γ
[
Mi − M0

i

(
M0

i · Mi
)]2

. (14)

Here E0 is the unconstrained DFT total energy, whereas the
second term is a penalty contribution defined as a noncollinear
directional constraint on the direction of local moments Mi

with respect to an arbitrary set of unit vectors M0
i on sites i.

Mi is the magnetic moment computed by integrating over a
Wigner-Seitz cell centered on atom i (the effective Wigner-
Seitz radius is 1.588 Å for a U ion and 0.82 Å for an O ion).
Parameter γ defines the magnitude of the energy penalty term.
By progressively increasing γ , functional (14) is driven to
convergence towards the DFT total energy [82]. We used the
value of γ = 10 eV/μ2

B that guarantees that the expectation

FIG. 2. Schematic view of (a) spin and (b) orbital moments in a
3k (longitudinal) magnetic unit cell of UO2. Panel (c) shows the total
energy as a function of the canting angle θ along the 〈001〉-AFM–
3k–〈110〉-AFM transformation pathway. Blue and green arrows
show the spin and orbital moments, respectively. The inset explains
the definition of the spin canting angle θ adopted in our analysis.

value of the energy penalty term at the energy minimum
found through the application of the constrained minimization
procedure (14) is lower than 10−5 eV.

C. Adiabatic spin occupation matrix approach

A known drawback of DFT + U approaches is the dif-
ficulty associated with finding the lowest energy state of
a strongly correlated magnetic material. In most cases a
DFT + U functional exhibits a multitude of local minima
corresponding to a variety of spin and orbital occupancies in
the correlated electronic subspace [42,83–85]. The difficulty
with finding a global minimum stems from the curvature of
the energy surface as a function of orbital occupations [84].
In DFT calculations the energy surface is typically convex,
but the global minimum might correspond to a physically
unreasonable partial fractional orbital occupation predicting
a metallic state of a material that in reality is an insulator.
DFT + U corrects this by adding a term that penalizes frac-
tional occupations, but this correction changes the curvature
of the energy surface from convex to concave, producing
many local energy minima [84]. Dorado and coworkers ad-
dressed this point by performing a search involving a large
number of self-consistent calculations, each starting from
different initial occupation matrices, and selected the outcome
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corresponding to the lowest total energy [83]. This procedure
can be accelerated by adiabatically “turning on” the value of
parameter U starting from the DFT limit U = 0 and gradu-
ally converging to the true ground state with integral orbital
occupations [84]. The above issue is particularly pertinent
to noncollinear spin systems, where small rotations of spin
moments could give rise to many local minima, all contained
within a few meV energy interval.

Bearing in mind this aspect of energy minimization, we
have combined the occupation matrix approach with a gradual
adiabatic change of the spin moment direction, using the
magnetically constrained noncollinear DFT + U functional
described in the previous subsection [7,13,82]. Starting from
the 3k-type noncollinear spin-ordered state of UO2 [10,42,46]
shown in Fig. 2(a), we gradually changed the canting angle
θ , moving adiabatically from the noncollinear 3k state to
the energetically comparable AFM collinearly ordered 〈001〉
and 〈110〉 configurations shown in Fig. 2(c). At each canting
step, we initialized the occupation matrix to the one obtained
at the preceding step and performed a fully self-consistent
calculation. In this way, by gradually perturbing the wave
function of the 3k state, we were able to construct a smooth
total energy curve E(θ ) as a function of the canting angle θ ,
shown in Fig. 2(c). The absence of cusps and sudden jumps
guarantees that this energy curve represents the lowest energy
path linking the spin configurations considered here, and also
that the 3k state is indeed the global minimum with respect to
spin rotations. Probing other spin configurations (not shown
here) confirmed the outcome of this analysis and resulted in
spin configurations with the lowest total energies. We note
that the orbital moment mo remains antiparallel to the spin
moment ms everywhere on the transformation pathway, and
the magnitude of both moments remains almost indepen-
dent of the canting angle: ms ≈ 1.5 μB and mo ≈ 3.2 μB; see
Figs. 2(b) and 2(c).

D. Effective pseudospin Hamiltonian and exchange interactions

To characterize magnetic properties of a material and
understand the origin of the specific spin-ordered configura-
tion that it adopts, it is necessary to quantify the dominant
spin-spin interactions. For systems conserving the total spin
moment, magnetic coupling parameters can be analyzed in
terms of an effective Heisenberg spin Hamiltonian involving
conventional spin operators. In materials with strong spin-
orbit coupling, the spin moments alone are not conserved
and it is more appropriate to use the pseudospin operators
and pseudospin Hamiltonian [86] suitable for the treatment
of multipolar interactions [87–89],

In the pseudospin picture, spin and orbital degrees of
freedom are not independent, and the operator set is formed
by unit multipole (tensor) operators T Q

K (J ) [25,90,91] (here
J is the angular moment, K the rank, and Q = −K, ..., K).
In a general form, a multipolar exchange Hamiltonian can be
written as [25,91]

H =
∑

i j

∑
KQ

C
QiQj

KiKj
T Qi

Ki
T

Qj

Kj
, (15)

where i, j are the site indexes, and C
QiQj

KiKj
are the coupling

constants describing how the energy of the system changes

as a result of variation of the two multipole moments T Qi
Ki

and

T
Qj

Kj
.

UO2 adopts a noncollinear 3k-ordered magnetic configura-
tion, and the two-electron ( f 2) ground state of a uranium ion
is a �5 triplet, corresponding to the effective spin (pseudospin)
S̃ = 1 [23]. The �5 ground state is associated with cooperative
quadrupolar interactions that cannot be accounted for by using
an S = 1/2 Heisenberg model [11,23,25,54,92], but can be
modeled by means of a suitable pseudospin Hamiltonian.

Below, we adopt the multipolar spin Hamiltonian derived
by Mironov et al. [23], describing superexchange interactions
between neighboring U4+ ions in the 5 f 2 configuration. The
general form of the Mironov exchange Hamiltonian is

H = A0 + H1 + H2 + H3 + H4, (16)

where A0 is a spin-independent parameter, whereas the re-
maining terms account for various types of spin interactions,
which can be written using the conventional spin variables as

H1 = D
[(

Sz
A

)2 + (
Sz

B

)2]
+ E

[(
Sx

A

)2 − (
Sy

A

)2 + (
Sx

B

)2 − (
Sy

B

)2]
, (17)

H2 = JxSx
ASx

B + JySy
ASy

B + JzS
z
ASz

B, (18)

H3 = j1Sx
ASx

B

[(
Sz

A

)2 + (
Sz

B

)2] + 2 j1Sy
ASy

BSz
ASz

B

+ j2Sy
ASy

B

[(
Sz

A

)2 + (
Sz

B

)2] + 2 j2Sx
ASx

BSz
ASz

B, (19)

H4 = q1O(1)
A O(1)

B + q2O(2)
A O(2)

B + q3O(3)
A O(3)

B

+ q4
[
O(1)

A O(2)
B + O(2)

A O(1)
B

]
. (20)

Here, H1 is a single-spin term, quadratic in the spin compo-
nents and accounting for the zero field splitting (ZFS) dipolar
interactions; the ZFS parameters D and E describe the axial
and transversal components of magnetic dipole-dipole (DD)
interaction, respectively. H2 is bilinear in spins and describes
spin exchange interactions, parametrized by Jx, Jy, and Jz.
Term H3 describes four-spin exchange interactions with j as
the corresponding coupling constant. Finally, H4 accounts for
biquadratic quadrupole-quadrupole (QQ) interactions, where
O(n)

A,B are the components of the quadrupole operator, specifi-
cally:

O(1)
k = (

Sz
k

)2 − S(S + 1)/3, (21)

O(2)
k = (

Sx
k

)2 − (
Sy

k

)2
, (22)

O(3)
k = Sx

k Sy
k + Sy

kSx
k , (23)

where k = A, B. Labels A and B refer to the nearest neigh-
bor uranium ions (see Fig. 3 for details). There are four
inequivalent sites in a magnetic unit cell of UO2 [U1–U4;
see Fig. 2(a)] producing six inequivalent nearest neighbor AB
pairs: A=U1, B=U2; A=U1, B=U3; A=U1, B=U4; A=U2,
B=U3; A=U2, B=U4; A=U3, B=U4. SA and SB are the two
spins forming a distinct inequivalent AB pair, and x, y, and z
are the local quantization axes illustrated in Fig. 3. Cartesian
components of spins SA and SB in the local quantization axis
representation are given in the Supplemental Material [93].

083802-6



PARAMETRIZATION OF LSDA + U FOR NONCOLLINEAR … PHYSICAL REVIEW MATERIALS 3, 083802 (2019)

FIG. 3. Spin quantization axes x, y, and z and the geometry of the
exchange-coupled pair for neighboring U4+ exchange ions. There are
six inequivalent exchange-coupled pairs AB per a magnetic unit cell.

Performing fully ab initio evaluation of the superexchange
parameters is difficult [24,25]. Depending on the definition
of tensor operators, slightly different forms of superexchange
coupling have been proposed [11,23,25,92], impeding accu-
rate quantitative comparison.

In formulating the effective pseudospin Hamiltonian we
follow Mironov [23]. To estimate effective magnetic inter-
actions, Mironov et al. used a second-order perturbation ap-
proach, treating free-ion and cubic crystal-field parameters
and limiting the interaction to the two nearest-neighbor U
ions. We estimate the dominant exchange couplings by means
of a controlled fitting procedure, involving the mapping of
	E (θ ) onto DFT + U + SOC total energies using Eq. (16).
To achieve this, we have rewritten the four terms entering
Eq. (16) as functions of the canting angle θ , replacing com-
ponents of spins by their explicit expressions in terms of
local Cartesian components and arriving at the total magnetic
energy expressed as a function of θ . After some algebra, we
find that 	E (θ ) has the form,

	E (θ ) = B0 + B1 cos(θ ) + B2 cos(2θ ) + B3 cos(3θ )

+ B4 cos(4θ ) + C1 sin(θ ) + C2 sin(2θ )

+ C4 sin(4θ ), (24)

where the coefficients are given in terms of the 11 superex-
change parameters entering the Mironov Hamiltonian (D, E ,
Jx, Jy, Jz, j1, j2, q1, q2, q3, and q4):

B0 = 6D + 3/2Jx + 3/2Jy + 3Jz + 3 j1 + 3 j2

+ 3q1 + 3/2q2 + 3q4 − 2q1S + (4D − 2E

− 2 j1 − 2 j2 − 3/2Jx − 5/2Jy + 2Jz

+ 14/3q1 − 4q2 − 4q3 − q4)S2 + 2/3q4S3

+ 1/24(11q1 + 42q2 + 33q3 + 4q4

− 42 j1 − 42 j2)S4. (25)

B1 = (4D + 2Jz + 2 j1 + 2 j2 + 4q1 + 2q4)S − 4/3q1S2

− ( j1 + j2 − 5/3q1 + 3q4)S3. (26)

B2 = (2E − 1/2Jx + 1/2Jy + q4)S2 − 2/3q4S3

+ ( j1 + j2 + 1/2q1 − q2 + 3/2q3 − 2/3q4)S4. (27)

B3 = ( j1 + j2 + q1 + 3q4)S3. (28)

B4 = 1/8(6 j1 + 6 j2 + 3q1 − 6q2 + 9q3 + 4q4)S4. (29)

C1 = (4D + 2 j1 + 2 j2 + 2Jz + 4q1 + 2q4)
√

2S

− 4
√

2/3q1S2 +
√

2/6(q1 − 15 j1 − 15 j2)S3. (30)

C2 = (−4E + Jx − Jy − 2q4)
√

2S2

+ 4
√

2/3q4S3 +
√

2/3q4S4. (31)

C4 =
√

2/2q4S4. (32)

E. Evaluating the strength of spin-orbit coupling

We conclude this section with an estimate of the strength of
SOC in UO2. To produce this estimate, we relate the relativis-
tic total energies obtained from first principles calculations to
the relativistic atomic Hamiltonian for f orbitals:

HSOC = λ L · S, (33)

where λ defines the strength of SOC. Using the 14 f (l = 3)
spinors as a basis, we write the atomic Hamiltonian HSOC as a
(14 × 14) matrix; see Eq. (A1) in the Appendix.

The diagonalization of this matrix (A1) yields the follow-
ing eigenvalues: −2λ, −2λ, −2λ, −2λ, −2λ, −2λ, 3λ/2,
3λ/2, 3λ/2, 3λ/2, 3λ/2, 3λ/2, 3λ/2, 3λ/2. From these eigen-
values, we extract the SOC contribution to the total energy
	Esoc by considering either the SOC-induced splitting ( 7

2λ)
or the energy contribution arising from the occupied states.
We have followed the latter route, as in this case a suitable
mapping can be constructed between the atomic limit (HSOC)
and an ab initio calculation. Noting that U4+ ions in UO2 are
in the 5 f 2 electronic configuration, the two electrons occupy
the lowest two eigenvalues (−2λ) resulting in 	Esoc = −4λ.
An estimate of 	Esoc can be obtained from the DFT total
energy difference between a relativistic (with SOC) and a
nonrelativistic calculation (no SOC), i.e., 	Esoc = ESOC −
EnoSOC. To exclude the spurious energy contributions arising
from differences in the electronic ground states (insulating
vs metallic), this estimate was obtained using U = 0 and the
3k spin-ordered configuration. In this limit, both reference
states (with and without SOC) are metallic. On the other
hand, a DFT + U + SOC calculation delivers an insulating
solution, where DFT + U (without SOC) stabilizes an insu-
lating ground state. Exploring this would involve terms other
than SOC to the energy balance affecting the evaluation of
the SOC energy. Using the above U = 0 approach, we find
that 	Esoc = −2.90 eV per uranium ion, corresponding to
λ = −	Esoc/4 = 0.73 eV. We should mention that in the
metallic solution, the values of spin and orbital moments are
greatly reduced with respect to those found in the DFT +
U + SOC ground state (referred to in Table I), specifically
ms ≈ 1 μB and mo ≈ 1.5 μB.

Further support for this large value of λ comes from an
approximate scaling of the magnitude of SOC at atomic level,
where it is known that the SOC parameter λ scales as ∼Z2,
where Z is the atomic number [94]. By rescaling the SOC
strength of iridium (0.5 eV) [95] with the relative nuclear
charge of Ir (ZIr = 77) and U (ZU = 92) we find

λU ≈ λIr (ZU/ZIr )
2 = 0.5 eV × (92/77)2 = 0.71 eV,
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TABLE I. Values of spin (ms), orbital (mo), and total (mt ) mo-
ments (in μB) and the electronic band gap Eg (in eV) corresponding
to several different values of parameter U (in eV). The experimen-
tally observed band gap and the local total magnetic moment on
uranium ions are ≈2.0 eV [101] and 1.74 μB [102], respectively.

U = 3.16 U = 3.46 U = 3.96 U = 4.50

ms −1.52 −1.53 −1.54 −1.54
mo 3.18 3.19 3.21 3.22
mt 1.66 1.66 1.67 1.68
Eg 1.91 2.11 2.44 2.78

in good agreement with the ab initio estimate. An interpo-
lation formula λ(Z ) = 8 × 10−5Z2 (eV) appears to provide
a good match to the data available from literature on the
strength of SOC in relatively heavy elements (see Fig. 4),
where spin-orbit interaction plays a significant part.

IV. RESULTS AND DISCUSSION

The large SOC in UO2 is responsible for the formation
of a �5 triplet described by an effective pseudospin S̃ = 1
[23] state, where the spin and orbital moments are ordered
in a 3k magnetic structure [10,100]; see Figs. 2(a) and 2(b).
Moreover, the various types of (multipolar) superexchange in-
teractions acting in the 3k magnetic configuration are coupled
with the cooperative JT effect, manifested by a distortion of
the oxygen cage around the U4+ ions [11,18,39,91]. The com-
putational verification of these experimental observations and
their interpretation on a quantum level is a difficult task due
to a variety of factors: (i) magnetic noncollinearity, (ii) self-
interaction acting in the U- f manifold, and (iii) existence of
multiple local minima in a narrow energy interval [41,42,83].
As was noted above, a combination of fully relativistic and
magnetically constrained DFT + U with the adiabatic evolu-

0 20 40 60 80 100 120
atomic number, Z

0

0.2

0.4

0.6

0.8

1

sp
in

-o
rb

it 
co

up
lin

g 
co

ns
ta

nt
 (

eV
)

λ(Z)=8*10
-5

 Z
2

FIG. 4. Variation of the spin-orbit coupling constant λ as a func-
tion of nuclear charge Z compared with literature data for oxygen
[96], iron [97], rhodium [98], iridium [95,99], and uranium (this
work).

FIG. 5. Total energy as a function of the canting angle θ com-
puted for several different values of parameter U .

tion of the occupation matrix is able to predict the ground state
of UO2 [Fig. 2(c)] and should help decipher the subtleties of
electronic and magnetic effects in UO2.

To gain insight into the nature of magnetic interactions,
we compute the magnetic energy curves similar to the one
shown in Fig. 2, but this time we perform the calculations for
several different values of parameter U used in the DFT + U
formalism. The curves shown in Fig. 5 suggest that the non-
collinear 3k ordering remains the lowest energy state for any
value of U , but the energy difference between the 3k phase
and the competing AFM collinear phases 〈001〉 and 〈110〉,
illustrated in Fig. 1, depends sensitively on the choice of U .
As the value of parameter U increases, the relative stability
of the 3k state decreases, and it becomes progressively less
energetically costly to rotate the spins. This implies that the
value of the magnetic exchange interactions is also sensitive
to the choice of U . We shall discuss this later in the section.

The role of parameter U is also reflected in the fundamental
electronic and magnetic properties of the 3k ground state.
Table I gives values of the spin moment ms, the orbital
moment mo, and the insulating gap Eg computed for U =
3.16, 3.46, 3.96, and 4.50 eV. While the moments are only
marginally affected by the choice of U (and all of them
compare well with the observed total moment of 1.74 μB

[102]), the band gap varies significantly from 1.91 eV to
2.78 eV. The best agreement with experiment (Eg ≈ 2.0 eV
[101]) is found for the relatively small U , in agreement with
the first principles estimate of the Coulomb interaction param-
eters based on cRPA (see Sec. III A), and also in agreement
with results derived from a recent fitting analysis [44]. We also
note that even though the value of parameter J in UO2 is not
very large, 0.30 eV, reducing U by 0.3 eV reduces the band
gap by about 10% (Eg = 1.91 eV for U = U cRPA − JcRPA =
3.16 eV and Eg = 2.11 eV for U = U cRPA = 3.46 eV, both
fairly close to the observed band gap of approximately
2.0 eV).

Next, we examine the quantum mechanism responsible for
the onset of magnetic 3k ordering. We remind the reader
that in a Jahn-Teller-active material with strong SOC, the
JT instability and exchange interactions are antagonists since
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TABLE II. Relative energies (in meV/f.u.) of the 〈001〉-AFM
and 〈110〉-AFM with respect to 3k phases as a function of the
Jahn–Teller distortion (δJT , Å) and the strength of SOC, rescaled
to a half of the self-consistent value λ = 0.73 eV. The phases with
δJT = 0 and δJT = 0.003 are almost degenerate in energy within
10−5 eV/f.u., whereas the experimental structure (δJT = 0.014) is
0.84 meV/f.u. less stable than the self-consistently optimized one
(see Supplemental Material [93]). All the data given in the table were
computed for U = 3.46 eV.

JT effect E〈001〉−AFM − E3k E〈110〉−AFM − E3k

δJT = 0 3.86 1.01
δJT = 0.003 3.87 1.03
δJT = 0.014 3.88 0.94
SOC strength E〈001〉−AFM − E3k E〈110〉−AFM − E3k

λ 3.87 1.03
0.5λ −8.78 −11.28

the JT effect tends to stabilize states with quenched orbital
momentum whereas SOC tends to maximize the orbital mo-
mentum [103]. This conclusion is generally valid if the crystal
field is large, but in UO2 the strength of SOC is very large (≈
0.73 eV according to the estimate above) exceeding the energy
scale of crystal-field excitations (150–180 meV [100]), and
therefore the spin-orbit interaction can be safely considered
as the dominant energy scale and the leading factor stabilizing
the 3k state. To verify this hypothesis, we have calculated the
total energy of 1k, 2k, and 3k magnetically ordered states as
a function of strength of the JT effect, switching it on and
off. In the on mode we have tested both the self-consistently
derived (0.003 Å) and the experimentally observed (0.014 Å
[104]) values of JT displacements, and examined two values
of SOC, the full SOC strength λ = 0.73 eV and half the SOC
strength λ = 0.36 eV. The data, given in Table II, show that
the JT effect has virtually no effect on the relative energies
of magnetic configurations. The energy landscape and the
energy difference between the 1k, 2k, and 3k states are not
affected by the strength of JT distortion and remain essentially
unchanged (see Table II and Supplemental Material [93]).
This unequivocally demonstrates that the JT effect is not the
mechanism that drives the system towards the 3k ground
state [105]. On the other hand, rescaling the SOC strength
to half the original value (λ = 0.36 eV) causes a huge energy
change, favorable for both the 〈001〉-AFM and 〈110〉-AFM
configurations, where the latter as a result of halving the
SOC value becomes the most favorable one by more than
11 meV/f.u. This provides a clear indication that SOC is the
major driving force responsible for the stabilization of the 3k

TABLE III. Magnetic moments of uranium ions computed for
the 〈001〉-AFM, 〈110〉-AFM and 3k magnetic configurations. All the
values were computed assuming U = 3.46 eV.

〈001〉-AFM 〈110〉-AFM 3k

ms −1.55 −1.51 −1.53
mo 3.26 3.24 3.19
mt 1.70 1.73 1.66
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FIG. 6. Band structures of UO2 computed for the 〈001〉-AFM,
3k and 〈110〉-AFM ordered configurations assuming U = 3.46 eV.

state; reducing the SOC strength leads to the over-stabilization
of collinear magnetic structures.

To discern how SOC stabilizes the 3k ordering of mo-
ments, we have explored the differences between electronic
and magnetic properties of these three phases. Surprisingly,
there are only marginal changes in the magnitude of spin and
orbital moments (see Table III), in the band structure (see
Fig. 6), as well as in the occupation numbers of states in the
f manifold (see Table IV). A closer inspection of the band
structure shows that even though the overall bonding picture
in all the three magnetically ordered configurations is almost
identical (including the size of the band gap), the f manifold
in the 3k phase exhibits larger SOC-induced splitting, which
causes a change in the band topology.

To better understand the significance of this change in
the topology of band structure, in Fig. 7 we plot charge-
density isosurfaces for the occupied f orbitals in the energy
interval (−2, 0) eV, projected onto a (110) plane containing
both uranium and oxygen ions. The results show that the
3k configuration is the only spin arrangement exhibiting a
visible orbital anisotropy at the uranium sites, associated with
the canted ordering of f orbitals. The f orbitals are rotated
towards the nearest oxygen sites, following the same chess-

TABLE IV. Eigenvalues of the 14 × 14 occupation matrix of
the f manifold of uranium ions in UO2 computed for the 〈001〉-
AFM, 3k, and 〈110〉-AFM spin configurations. All the values were
computed for U = 3.46 eV.

〈001〉-AFM 3k 〈110〉-AFM

0.0268 0.0271 0.0273
0.0274 0.0282 0.0275
0.0296 0.0288 0.0296
0.0316 0.0341 0.0333
0.0348 0.0356 0.0359
0.0390 0.0365 0.0362
0.0397 0.0366 0.0375
0.0398 0.0384 0.0391
0.0454 0.0488 0.0477
0.0501 0.0508 0.0513
0.1233 0.1238 0.1238
0.1393 0.1407 0.1404
0.9852 0.9846 0.9846
0.9888 0.9858 0.9860
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FIG. 7. Charge densities of UO2 in a (110) plane computed for the 〈001〉-AFM, 3k, and 〈110〉-AFM spin-ordered configurations. All the
three plots were computed assuming that U = 3.46 eV.

board configuration of the 3k spin ordering as that shown in
Figs. 2(a) and 2(b). Remarkably, the effect of SOC, critical to
the stabilization of the 3k phase, is manifested primarily in the
shape of f orbitals rather than in the total orbital occupation,
as illustrated in Table IV. The energy required to stabilize the
3k state over the 〈001〉-AFM and 〈110〉-AFM configurations
is gained from a SOC-induced rotation of occupancies of
particular orbitals, which follows the rotation of the local spin
moments and enables constructive interaction with the oxygen
electronic states.

Having established the DFT + U cRPA + SOC as a suitable
theory for the ground state electronic properties of UO2,
highlighting the significance of SOC in this compound, we
are now ready to proceed to the analysis of superexchange
spin interaction mechanisms, to deduce information about
the quantum origin of the 3k state. As we noted in the
computational section, this can be done by fitting the magnetic
energy computed using ab initio methods, to the multipolar
Hamiltonian (24). The presence of 11 parameters in the
multipolar Hamiltonian clearly poses a well-known problem
for the multiparameter fitting procedure [106]. To handle this
complication, we rely on the analysis by Mironov et al. [23]
that can be summarized as follows. First, we note that using
the values of parameters evaluated by Mironov (collected in
Table V) in the pseudospin Hamiltonian, already leads to an
overall fairly good account of the first principles magnetic
energy, as illustrated graphically in Fig. 8. Even though the
two curves do not match well, Mironov’s parameters predict
the correct position of the energy minimum, located at the 3k
position, suggesting that all the relevant magnetic coupling
terms are correctly included in the theoretical treatment. How-
ever, Mironov’s parameters deliver a curve that varies over a
significantly narrower energy interval than the curve derived
from the first principles data, and as a result the relative
stability of the 3k state with respect to the collinear 1k and
2k states is underestimated by about 50%.

The exchange parameters in Mironov’s model fall into
four different categories, namely (i) single-spin parameters
D and E , (ii) bilinear parameters Jx, Jy, and Jz, (iii) pa-
rameters describing the four-spin terms j1 and j2, and (iv)
parameters of biquadratic interactions q1, q2, q3, and q4. The
accuracy of Mironov’s approach can be improved by noting
that, according to the calculations by Savrasov and coworkers,
the strength of quadrupolar (QQ) interactions computed by
Mironov is underestimated by an order of magnitude [25].
Following this argument, we have fitted 	E (θ ) by varying
the two largest quadrupolar terms (q1, q2) only, and keeping
all the other superexchange parameters fixed to the original
Mironov’s values. The resulting curve is in excellent agree-
ment with first principles energies (χ2

R = 0.9989; see Fig. 8),
and this improvement is associated with a very large increase
of the magnitude of the quadrupolar terms, approximately by
an order of magnitude (q1 + q2)/2 = 4.56 meV; see Table V.
However, this is in very good agreement with the earlier
DFT + U data (3.1 meV [25]) and the values extracted from
experimental spin-wave spectra (1.9 meV) [54]. As expected,
the values of q1 and q2 are sensitive to the choice of pa-
rameter U ; see Table VI. The strength of the QQ interaction
increases as a function of U ; this in particular applies to the
the anisotropic biquadratic interaction q2. Nevertheless, the
resulting values do not depend on the Jahn-Teller distortions;
using the undistorted cubic phase one obtains essentially the
same values of parameters, further demonstrating the fairly
negligible role played by the JT effect in stabilizing the 3k
noncollinear state.

We conclude the discussion of magnetic properties of UO2

by analyzing the individual contributions of various types of
superexchange mechanisms to the stabilization of the 3k state.
As was noted in the section on computational methods, the
total magnetic Hamiltonian is expressed as a sum of four
terms, each corresponding to a specific type of superexchange
interaction: H1 accounts for the DD interaction [Eq. (17)], H2

describes the bilinear exchange [Eq. (18)], H3 represents the

TABLE V. Magnetic coupling parameters (meV) estimated by Mironov [23] shown together with the fitted values of the dominant QQ
terms obtained by mapping the DFT + U cRPA + SOC energies onto the extended Mironov’s Hamiltonian. χ2

R serves as an indication of the
quality of the fit in terms of the reduced chi-squared test.

D E Jx Jy Jz j1 j2 q1 q2 q3 q4 χ 2
R

Mironov [23] −0.57 0.64 1.82 2.74 2.33 −0.04 0.05 0.22 0.32 0.07 −0.02
Fit (QQ) 7.18 1.94 0.9989
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FIG. 8. Comparison between the calculated (DFT + U cRPA +
SOC) and fitted (outfit using Mironov’s parameters) magnetic cant-
ing energies 	E (θ ). In our fit we employed an extension of the
Mironov model to all the U-U interactions and optimized the fit with
respect to the dominant quadrupolar terms q1 and q2, by keeping
all the other terms fixed to the corresponding values obtained by
Mironov [23] (see Table V).

four-spin exchange [Eq. (19)], and finally H4 takes care of
the quadrupolar coupling [Eq. (20)]. The data, summarized in
Fig. 9, clearly show that the formation of the 3k state occurs
as a result of a concerted action of the DD and octupolar
interactions. The contributions of bilinear exchanges (H2, J’s)
and four spin exchanges (H3, j’s) are essentially independent
of the canting angle, resulting in the rather flat curves. On
the other hand, the DD interactions have a quadraticlike trend
with a marked minimum at 3k and the fit-corrected quadrupo-
lar term (the right panel of Fig. 9) is not only minimum at 3k,
but also correctly describes the energy pathway from the 3k
to the 1k and 2k states, following the trend exhibited by the
first principles energies (see Fig. 8).

Based on the above results, we can conclude that the onset
of the 3k state in UO2 is driven, at the quantum level, by a
concerted action of the DD and QQ spin interactions. These
interactions are active in the undistorted and JT-distorted
crystal lattices, clearly indicating that, despite the existing
coupling between the spin and lattice degrees of freedom,
the JT instabilities do not contribute to the formation of the
noncollinear 3k ordered magnetic state, which is present also
in the undistorted cubic phase.

TABLE VI. Fitted quadrupolar parameters q1 and q2 (and their
average, in meV) as a function of U .

q1 q2 (q1 + q2)/2

U = 3.16 eV 6.55 0.36 3.46
U = 3.46 eV 7.18 1.94 4.56
U = 3.96 eV 7.64 3.77 5.71
U = 4.50 eV 7.81 5.19 6.50
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FIG. 9. Decomposition of the magnetic energy 	E (θ ) into four
components H1 [DD interaction, D & E , Eq. (17)], H2 [bilinear
exchange, J’s, Eq. (17)], H3 [four-spin exchange, j’s, Eq. (19)], and
H4 [quadrupolar, q’s, Eq. ( 20]. The right panel shows the difference
between the quadrupolar term derived directly from Mironov’s data
and our fitted curve.

V. SUMMARY AND CONCLUSIONS

In this study we have parametrized the LSDA + U model
for noncollinear magnetic systems and explained the origin
of the canted 3k state in UO2 by combining several com-
putational methods including the constrained random phase
approximation to compute the Coulomb repulsion parameter
U and the Hund’s coupling parameter J , thus rendering the
LSDA + U + SOC fully ab initio, magnetic constraints to
explore the dependence of the total energy on the direction of
the spin moment, the adiabatic propagation of the occupation
matrix to avoid the multiple minima problem in constructing
the magnetic energy landscape, and two different effective
Hamiltonians to extract from the ab initio data the spin-
orbit interaction parameter λ and the quadrupole-quadrupole
exchange interactions.

The outcome of our study is threefold. First, we have
derived an invariant orbital- and spin-dependent formalism
for the LSDA + U model suitable for noncollinear magnetism
involving spin and orbital contributions, and have shown
that the LSDA + U potential and double counting correction
depend only on one parameter U , and are independent of the
Hund coupling parameter J . Second, our data suggest that the
spin-orbit interaction parameter in UO2 is as large as 0.73 eV,
hence explaining many exotic physical phenomena emerging
from the intricate interplay between the spin, charge, and
orbital degrees of freedom, explicated by the formation of
a multipolar magnetic state with tilted orbital ordering in
the f -orbital manifold. Finally, we have uncovered the role
of dipole-dipole and quadrupole-quadrupole spin interactions
in the formation of the noncollinear 3k state and ruled out
Jahn-Teller distortions as a factor in stabilizing the 3k mag-
netic ordering. The most relevant energy scales defining the
properties of UO2 are summarized in Table VII.

In addition to elucidating the complexity of various phys-
ical scenarios, these results provide a reference for studies of
relativistic noncollinear magnetic materials, in particular 5d
transition metal oxides, and enable a quantitatively accurate
exploration of technologically relevant aspects of UO2 such
as spin and orbital magnetic dynamics, the formation and
evolution of structural defects, and their diffusion. From this
perspective, the study shows that an accurate account of
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TABLE VII. Summary of parameters controlling the magnitude
of the relevant energy scales in UO2: U & J (from cRPA), the SOC
strength parameter λ, the QQ exchange (from fitting to the spin
canting ab initio data), and DD exchange (from Mironov [23]).

U cRPA JcRPA λ QQ DD
3.46 eV 0.3 eV 0.73 eV 3.46 meV ≈0.6 meV

fundamental microscopic interactions derived from a direct
application of quantum mechanics can provide a quantitative
account of physical processes and critical parameters (see Ta-
ble VII) that can then be used as input for phenomenological
schemes describing macroscopic phenomena such as transport
and dissipation.
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APPENDIX: SOC MATRIX IN THE f SPINORS

Using the 14 f (l = 3) spinors as a basis in the following
order: |xyz,↑〉, |x(5x2 − 3r2),↑〉, |y(5y2 − 3r2),↑〉, |z(5z2 −
3r2),↑〉, |x(y2 − z2),↑〉, |y(z2 − x2),↑〉, |z(x2 − y2),↑〉 (plus
the corresponding ↑⇒↓ spinors), we write the atomic SOC
Hamiltonian HSOC (33) as a (14 × 14) matrix [107],

HSOC = λ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2i 0 0 0 0 2i 2 0
0 0 3i/2 0 0 it 0 0 0 0 −3/2 0 0 t
0 −3i/2 0 0 it 0 0 0 0 0 3i/2 0 0 it
0 0 0 0 0 0 0 0 3/2 −3i/2 0 t it 0
0 0 −it 0 0 −i/2 0 −2i 0 0 −t 0 0 1/2
0 −it 0 0 i/2 0 0 −2 0 0 −it 0 0 −i/2

−2i 0 0 0 0 0 0 0 −t −it 0 −1/2 i/2 0
0 0 0 0 2i −2 0 0 0 0 0 0 0 −2i
0 0 0 3/2 0 0 −t 0 0 −3i/2 0 0 −it 0
0 0 0 3i/2 0 0 it 0 3i/2 0 0 −it 0 0
0 −3/2 −3i/2 0 −t it 0 0 0 0 0 0 0 0

−2i 0 0 t 0 0 −1/2 0 0 it 0 0 i/2 0
2 0 0 −it 0 0 −i/2 0 it 0 0 −i/2 0 0
0 t −it 0 1/2 i/2 0 2i 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t =
√

15/2. (A1)
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