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A B S T R A C T   

Carpool-style ridesharing, compared to traditional solo ride-hailing, can reduce traffic congestion, cut per- 
passenger carbon emissions, reduce parking infrastructure, and provide a more cost-effective way to travel. 
Despite these benefits, ridesharing only occupies a small percentage of the total ride-hailing trips in cities. This 
study integrates big trip data with machine learning and eXplainable AI (XAI) to understand the factors that 
influence willingness to take shared rides. We use the City of Chicago as a case study, and results show that users 
tend to adopt ridesharing for longer distance trips, and the cost of a trip remains the most important factor. We 
identify a strong diurnal pattern that people prefer to request shared trips during the morning and afternoon peak 
hours. We also find socio-economic disparities: users who requested trips from neighbourhoods with a high 
percentage of non-white, a low median household income, a low percentage of bachelor’s degrees, and high 
vehicle ownership are more likely to share a ride. The findings and the XAI-based analytical framework presented 
in this study can help transportation network companies and local governments understand ridesharing 
behaviour and suggest new strategies and policies to promote the proportion of ridesharing for more sustainable 
and efficient city transportation.   

1. Introduction 

Transportation network companies (TNCs), such as Uber and Lyft, 
provide ride-hailing services that have been a common mode of trans-
portation for residents in cities. According to a recent Juniper Research 
report published in December 2021, consumer spending on ride-hailing 
will approach US $937 billion by 2026, which is 50 times the total 
annual revenue of Transport for London, New York City’s MTA, and 
Beijing Metro in 2021 (Juniper Research, 2021). While there is a large 
market for ride-hailing and it provides a convenient way to get around, it 
is also reported that TNCs have negative effects on cities. Research 
shows that ride-hailing competes with urban public transport, increases 
vehicle miles travelled, intensifies pollution and traffic congestion 
(Erhardt et al., 2019; Diao et al., 2021; Li et al., 2021). However, one 
type of service nested within ride-hailing that has been overlooked is the 
carpool style ridesharing (also known as ride-splitting or ride-pooling) 
such as Lyft Line and Uber Pool. Ridesharing matches multiple users 
in the same vehicle going in a similar direction, with drivers picking up 
and dropping off passengers along the route. It is reported that when 
compared to solo ride-hailing, shared rides can reduce traffic 

congestion, cut per-passenger carbon emissions, decrease parking 
infrastructure demand, and provide a more cost-effective way to travel 
(Shaheen and Cohen, 2019). Despite these advantages, ridesharing is 
only available in a few cities, and it accounts for a small percentage of 
total ride-hailing trips (6 %–20 % in cities such as Chengdu, Toronto, 
and Chicago) (Li et al., 2019; Young et al., 2020; Dean and Kockelman, 
2021). There is a substantial opportunity to further adopt ride-sharing 
services to alleviate environmental and transportation issues. To that 
end, understanding why people choose to or not to take a shared ride is 
essential to potentially promoting ridesharing in current and new cities. 

Preference to share rides has been recently studied in the literature 
using both survey data and TNC trip data in different cities. For example, 
Werth et al. (2021) conducted an online survey to determine public 
acceptance of ride-pooling. Based on the responses of 224 users in 
Germany, the findings show that attitudes toward use, perceived use-
fulness, and performance expectancy all affect behavioral intentions to 
use ride-pooling services. Environmental awareness, pricing value, and 
effort expectation, on the other hand, had no strong effect. Alonso--
González et al. (2021) performed a choice modelling analysis based on 
the collected 1077 questionnaires. Results show that the percentage of 
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people who prefer to share rides is mostly determined by the time–cost 
trade-off. Individuals who are accustomed to driving are also less likely 
to switch to more communal modes of transportation. They also 
discovered that the choice is dependent on the number of additional 
passengers. Kang et al. (2021) gathered data from 953 people in Austin, 
Texas about their preference for pooled versus private ride-hailing. They 
discovered that women, elderly people, and non-Hispanic/non-Latino 
whites have a low inclination to choose the pooled ride-hailing mode, 
but employed individuals, highly educated individuals, and those living 
in densely populated urban regions have a high propensity. 

However, the major limitation of survey-based studies is that the 
small sample size may not reflect the distribution of the population 
(Kang et al., 2021; Werth et al. 2021). To that end, as big trip data from 
TNCs are becoming publicly available, more research is using statistical 
and machine learning models to explore factors that are associated with 
willingness to share. Brown (2020), for example, analysed Lyft trip data 
in Los Angeles County in 2016 with logistic and zero-inflated Poisson 
regression models and showed that people living in low-income neigh-
bourhoods take shorter, cheaper, and more shared rides than those 
living in higher-income neighbourhoods. They also discovered that, 
with everything else being equal, journeys beginning in majority-white 
communities are less likely to be shared than trips originating in other 
racial-ethnic majority neighbourhoods. The models used in Brown 
(2020)’s study assume linear relationships between independent and 
dependent variables; however, there are possible complex non-linear 
relationships and interaction effects associated with willingness to 
share trips that are more appropriately modelled using machine learning 
methods (Hou et al. 2020; Xu et al., 2021; Wang and Noland 2021; Tu 
et al. 2021). For example, Hou et al. (2020) built a linear regression 
model and an eXtreme Gradient Boosting (XGBoost) machine learning 
model to predict the proportion of the trips that are pooled between the 
origin and destination census tracts based on 15-minute bins in the city 
of Chicago. They found that XGBoost model outperformed linear 
regression model and identified that income level and airport trips are 
the most important factors that are associated with the willingness to 
pool. Xu et al. (2021) applied Random Forest (RF) machine learning 
model to predict the ride splitting adoption rate for each O-D census 
tract pair and identified ethnic composition, income, and education 
level as the most important variables. They explored their nonlinear 
associations with ride splitting preference using partial dependence and 
accumulated local effects (ALE) plots. Also using RF model, Wang and 
Noland (2021) examined the importance and marginal effects of total 
price and trip duration in affecting people’s willingness and found that 
the probability of authorizing a ride-sharing trip is highly elastic to the 
price per mile. In an Asian city context, with DiDi trip data in Chengdu, 
China, Tu et al. (2021) examined the non-linear effects of the built 
environment on the ridesplitting ratio using Gradient Boosting Decision 
Trees (GBDT) and found that distance to the city center is the most 
important among built environment factors. 

Despite the high accuracy and flexibility of machine learning, a big 
challenge for machine learning models is their interpretability and 
explainability. Machine learning models are often criticized as black 
boxes, where the predictions of the models are not well understood. 
Even though there are existing explanatory tools, such as variable 
importance scores and partial dependency plots, they are, in a sense, 
limited, providing only an ‘average’ explanation without acknowledging 
that such importance or relationship may vary in space and time (Li, 
2022). Recent developments in locally interpretable artificial intelli-
gence (XAI) offer the opportunity to extract useful insights from each 
individual data point. Two of the most applied local XAI tools are LIME 
(Local Interpretable Model-agnostic Explanation) and SHAP (SHapley 
Additive exPlanations). LIME uses local surrogate models with per-
turbed samples to locally explain machine learning predictions (Ribeiro 
et al., 2016). SHAP pushes LIME forward and combines it with game 
theory in Shapely values to provide additive explanations from features 
to model predictions while addressing some of the technical issues in 

LIME (Lundberg and Lee, 2017). Recent work has demonstrated the 
utility of SHAP when applied to spatial temporal data (Just et al. 2020; 
Chakraborty et al. 2021; Viana et al. 2021), but SHAP has limited ap-
plications in transport research and, to our knowledge, has not been 
applied to explain user willingness in ridesharing services. 

Consequently, the aim of this study is to develop an analytical 
framework that combines big trip data, a scalable machine learning 
model, and explainable artificial intelligence (XAI) to better understand 
the factors that are associated with people’s decisions to take shared 
rides. We are particularly interested in complex non-linearities and 
interaction effects that may have been overlooked in earlier in-
vestigations of the problem that used simple statistical methods. 
Although earlier machine learning-based research may have implicitly 
captured these complicated effects, it only provided limited explana-
tions and did not provide many insights into the relationships that un-
derlie ridesharing willingness. This work leverages the use of XAI to 
address challenges in both statistical and machine learning, brings 
attention to transportation researchers/practitioners of this new 
analytical framework, and provides an empirical application of under-
standing ridesharing willingness. Here, we use the city of Chicago as an 
example, and the workflow can be replicated to other cities of interest 
where trip data are available. The paper proceeds as follows. In Section 
2, the study area and data used in this study are introduced. Section 3 
describes the machine learning model and explanation method. The 
model performance and interpretations of the results are presented in 
Section 4. The paper concludes in Section 5 with discussions of policy 
implications, limitations, and future work. 

2. Study area and data used 

The City of Chicago publishes Uber, Lyft, and Via ride-hailing trip 
records from November 2018 to the most recent totalling 246 million 
records as of April 2022. Due to the COVID-19 pandemic, TNC sus-
pended their carpool-style ridesharing services since March 2020. 
Therefore, we selected data from the entire year of 2019, which reflects 
a normal travel pattern unaffected by COVID-19. Each trip record is 
timestamped to the nearest 15 min and geocoded with location infor-
mation. To protect privacy, most pick-up and drop-off locations are 
aggregated at the census tract level, but if there are two or fewer trips 
within a 15-minute time window in the same census tract, then the 
resulting location information is given at the community area leve1.1 

Given the size of the community area and the rarity of these trips, we 
only used records for which census tract level information is available. 
We also removed outlier trips with distances of less than 1 mile and 
greater than 50 miles, and duration of less than 5 min and greater than 2 
h. The most important variable in this dataset is a binary label that in-
dicates whether the user agreed to share a trip with others, regardless of 
whether the user was eventually matched. This variable is an explicit 
indicator of a user’s willingness to ridesharing, and it is the dependent 
variable we used in our machine learning model. 

From the literature, people’s willingness to share a trip is expected to 
be influenced by the spatial–temporal dimension of the trip and the 
socioeconomics and built environment of the census tract where the 
passenger was picked up and dropped off (Hou et al., 2020; Dean and 
Kockelman, 2021; Xu et al., 2021). For trip attributes, we avoided 
including post-trip information that was not available when the user 
made the sharing decision. An example of this information is the actual 
trip distance, which is expected to be longer for shared trips than for 
private trips due to the detours to pick up or drop off other passengers. 
We argue that post-trip information does not have a direct causal asso-
ciation with the willingness to share the trip, though these factors are 
usually included in similar studies such as Hou et al., 2020 and Wang 

1 http://dev.cityofchicago.org/open%20data/data%20portal/2019/04/12 
/tnp-taxi-privacy.html. 
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and Noland (2021). Instead, we used the Euclidean distance between the 
two census tracts as an estimate for the user-perceived trip distance. This 
also reflects the fact that users usually have a rather rough perception of 
how far they are going (e.g. an airport trip is ~ 10 km, a trip to down-
town is ~ 3 km). Similarly, for the cost of the trip, we included trip fare, 
additional charges (e.g. taxes, fees, discounts), and excluded the tip 
amount, which is an estimated upfront price when the user requests a 
trip. Based on the time of the pick-up, we calculated several temporal 
features, including working and non-working days (weekends and 
public holidays) and the hour of the day of the trip. To account for the 
weather, we linked the pick-up time with the Local Climatological Data 
(LCD) from the National Oceanic and Atmospheric Administration 
(NOAA), and included hourly wind, rain, and temperature conditions at 
the time the user started the trip. 

For socioeconomics, we obtained median household income, edu-
cation, race, gender ratio, and vehicle ownership statistics from the 
United States American Community Survey (ACS) 2014–2018 5-year 
estimate dataset at the census tract level. We removed census tracts 
with fewer than 500 people to avoid sampling uncertainties in the ACS 
data. For the built environment, we downloaded the US Environmental 
Protection Agency’s Smart Location Database (SLD) version 3.0 and 
selected residential density, employment density, road network density, 
transit accessibility, and national walkability index. SLD data are orig-
inally at the census group block level but were aggregated (area 
weighted for density variables) to the census tract level. 

Because shared trips only account for around 20 % of the total 
number of trips, the ride-share data were evenly balanced using a 
random under-sampling so that the final dataset has the same number of 
shared and non-shared trips. This is to avoid model bias towards the 
dominant class when input labels (shared vs not shared) are imbalanced 
(Sun et al., 2009). Under-sampling was preferred over over-sampling in 
this case because under-sampling keeps all the original sharing records, 
but an over-sampling approach will add non-authentic data, which in-
troduces unnecessary assumptions and noise. The resulting dataset has 
19.6 million trip records, which pertains to a high level of representa-
tiveness and was used as the input to the machine learning model. A 
complete list of features, their descriptions, and the summary statistics 
at the individual trip level can be found in Table 1. 

3. Machine learning model and explanation 

In this study, we used Extreme Gradient Boosting (XGBoost) as our 
machine learning model. XGBoost is a gradient boosting method that 
uses a gradient descent optimization algorithm to sequentially ensemble 
decision trees to minimize model error (Chen and Guestrin, 2016). 
XGBoost is one of the most commonly used machine learning methods 
for supervised classification and regression tasks, and it has been re-
ported that XGBoost typically outperforms other approaches, such as 
random forest or deep neural networks, on tabular data (Zamani 
Joharestani et al., 2019; Shwartz-Ziv and Armon, 2022). Additionally, 
XGBoost is highly scalable, which is appropriate for the data size in this 
study. The ride-sharing dataset was divided into 80/20 segments for 
training and testing, respectively. The hyperparameters of the XGBoost 
model were tuned using a Bayesian optimization algorithm with a 5-fold 
cross validation on the training set using the hyper-opt python package 
(Bergstra et al., 2015). We also fitted a logistic regression model as the 
baseline for performance comparison. 

Then we used a local interpretable machine learning method SHAP 
(SHapley Additive exPlanations) to explain and attribute the XGBoost 
predictions (Lundberg and Lee, 2017) to each feature. SHAP has its 
theoretical roots in game theory as Shapley values, which were initially 
used to properly distribute player contributions when they jointly ach-
ieve a goal (Shapley, 1953). The approach was further applied to ma-
chine learning to quantify the contribution of each feature to the model 
prediction (Štrumbelj and Kononenko, 2014). The Shapley value for 

feature Xj in a model is given by: 

Shapley
(
Xj
)
=

∑

S⊆N\{Xj}

k!(p − k − 1)!
p!

(f (S ∪ {j}) − f (S)) (1) 

where p is the total number of features, N\{Xj} is a set of all possible 
combinations of features excluding Xj, S is a feature set in N\{Xj} , f(S) is 
the model prediction with features in S, and f(S ∪ {j}) is the model 
prediction with features in S plus feature Xj. As indicated in Eq. (2), 
SHAP values break down each individual prediction into additive 
components, with each additive term shap(.) denoting the impact of the 
relevant feature on the model prediction: 

Table 1 
Variables, descriptions, and summary statistics of features used in the model.  

Variable Description Min Mean Max SD 

Trip attributes 
Fare Fare of the trip ($)  2.5  8.6  50.0  4.5 
Additional 

Charges 
Taxes, fees, and other 
additional charges ($)  

0.0  2.0  17.7  1.2 

Distance Euclidean distance of the 
origin and destination 
census tracts (km)  

0.0  4.9  41.3  3.6 

Distance to 
downtown 

Euclidean distance from 
the pick-up/drop-off 
location to downtown2 

Chicago (km)  

0.3  5.6  27.1  4.1 

Direction Trip heading direction 
(◦)  

− 180.0  8.1  180.0  102.0  

Temporal attributes 
Month Month of the trip  1.0  6.0  12.0  3.4 
Working day Whether the trip is on a 

working day (non-public 
holidays, non-weekends)  

0.0  0.8  1.0  0.4 

Hour Hour of the trip starting 
time  

0.0  14.3  23.0  6.0 

Wind Hourly wind speed 
(miles/hr)  

0.0  10.4  38.0  5.2 

Rain Hourly rain condition (0: 
No; 1: Light; 2: Moderate; 
3: Heavy)  

0.0  0.1  3.0  0.3 

Temperature Hourly temperature (◦F)  –32.0  38.8  79.0  20.2  

Socioeconomics 
Median 

income 
Median household 
income ($1000)  

9.8  89.6  178.8  35.4 

Pct non-white Percentage of non-white 
population  

3.3  34.6  100.0  22.8 

Pct no car Percentage of households 
with no vehicle  

0.7  33.1  77.8  14.1 

Sex ratio Sex ratio (male/female)  37.9  100.4  866.0  25.6 
Pct age 18–29 Percentage of people 

aged 18 to 29  
5.7  29.2  84.0  12.6 

Pct bach Percentage of people 
with bachelor’s degrees  

0.0  30.8  77.0  13.8  

Built environment 
Residential 

density 
Log of gross residential 
density  

− 4.3  0.3  4.4  2.1 

Employment 
density 

Log of gross Employment 
density  

− 5.3  0.8  7.1  2.9 

Network 
density 

Log of total road network 
density  

− 0.2  2.3  4.2  1.1 

Transit 
accessibility 

Distance to the nearest 
transit stop (m)  

23.5  298.1  861.0  111.6 

Metro station Whether the census tract 
has a metro station  

0.0  0.4  1.0  0.5 

Walkability National walkability 
index  

4.6  12.2  18.8  3.2 

2The coordinates of downtown (41.8757◦ N, 87.6243◦ W) are obtained from 
Google. 
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ŷi = shap0 + shap(X1i)+ shap(X2i)+⋯+ shap
(
Xpi

)
(2) 

where ŷi is the model prediction value for the sample i, shap0 = E(ŷ)
is the mean prediction over all data, and shap(Xji) refers to the SHAP 
value of the jth feature for sample i, which represents the marginal 
contribution of the feature to the prediction when keeping other features 
constant. In this way, the sum of all the SHAP values is equal to the 
difference between the actual prediction and the average prediction 
across all the data. In our study, because there are same number of 
shared and solo trips after under sampling, shap0 = E(ŷ) = 0. In 
addition, the absolute SHAP value can measure the importance of a 
given feature to the local prediction (Molnar, 2019). SHAP is a model- 
agnostic explanation framework that can be applied to any machine 
learning models; however, the generic SHAP algorithm is quite 
computationally intensive. To address this problem, Lundberg et al. 
(2020) proposed the Tree SHAP algorithm, which works in polynomial 
time for tree ensemble models such as random forests and gradient 
boosting trees. To that end, we employed Tree SHAP to efficiently es-
timate SHAP values for XGBoost predictions in this study. For classifi-
cation problems, the SHAP values are reported as log-odds, and we 
converted them to probabilities that canters at zero for easy interpre-
tation which is as shown in Eq. (3): 

Shapprob =
exp

(
Shaplog− odds

)

1 + exp
(
shaplog− odds

) − 0.5 (3) 

The calculated SHAP value measures contributions of features to the 
probability of each trip being classified as a shared trip or a private trip. 
A positive SHAP value indicates that the feature contributes positively 
towards predicting a shared trip, whereas a negative SHAP value sug-
gests that the feature contribute towards predicting a private trip. Both 
the sign and the magnitude of the SHAP value can be used to quanti-
tively measure the willingness to share. 

To summarize the section, we developed an analytical workflow that 
integrates the big trip data, scalable machine learning models, and XAI 
approaches to understand people’s willingness to ridesharing, which is 
depicted in Fig. 1. The reproducible code that analysed, modelled, and 
interpreted the data can be found at this public repository: https://gith 
ub.com/Ziqi-Li/Chicago_rideshare_XAI. 

4. Results and discussion 

4.1. Model accuracy assessment 

Accuracy assessment measures of the XGBoost model and the base-
line logistic regression (LR) models are shown in Table 2. For XGBoost, 
the out of sample model accuracy achieves 90.5 % for the independently 
held testing data with a true positive rate (shared rides correctly clas-
sified as shared rides) of 86.0 % and a true negative rate (solo rides 
correctly classified as solo rides) of 95.0 %. The F-1 score which balances 
the precision and recall of the model is 0.90. The model’s testing ac-
curacy is closely consistent with its training accuracy, which indicates a 

robust hyperparameter tuning and model fitting and process. XGBoost 
also shows excellent predictive accuracy compared to the baseline lo-
gistic regression model (an overall accuracy of 72.4 %). This is due to the 
fact that logistic regression only considers linear additive relationships, 
however potential non-linearities and interactions of features do exist, 
as will be seen in later sections. 

Fig. 2 shows the ROC (Receiver Operating Characteristic) curves 
measuring the performance of the classifier at all classification cut-offs 
in. The scale invariant Area Under the Curve (AUC) can be used to 
quantify the ability of the model to separate shared and solo rides. An 
AUC of 0.5 means that the model has no separability, and an AUC of 1 
means that it perfectly distinguishes the binary outcomes. Our XGBoost 
model has an AUC of 0.90, which indicates a satisfactory performance. 
As comparison, the logistic regression model has an AUC of 0.72. 

4.2. SHAP explanations to the model 

Based on the predictions of the XGBoost model, SHAP values were 
calculated and converted into a marginal contribution to the probability 
of requesting a shared trip according to Eq. (3). The absolute SHAP 
values can be used to quantify the importance of the variables in the 
model. Due to the additivity property of the SHAP values, we can look at 
the impact of each group of features on the model prediction collec-
tively. Fig. 3 shows the SHAP-based global variable importance rankings 
for five groups of features. The cost of the trip, including the base fare of 
the trip and additional costs (e.g. fees, discounts, taxes), is shown as the 
most important factor influencing whether a user requests a shared ride 

Fig. 1. A framework that integrates big trip data, machine learning model and 
explainable artificial intelligence. 

Table 2 
Training and testing accuracy of the XGBoost and a baseline logistic regression 
model.   

XGBoost Logistic Regression  

Training Testing Training Testing 

True Positive  86.8 %  86.0 %  69.5 %  69.4 % 
True Negative  95.8 %  95.0 %  75.4 %  75.4 % 
False Positive  13.2 %  14.0 %  30.5 %  30.6 % 
False Negative  4.2 %  5.1 %  24.6 %  24.6 % 
F1  0.91  0.90  0.72  0.72 
Overall Accuracy  91.3 %  90.5 %  72.4 %  72.4 %  

Fig. 2. ROC curve of the XGBoost model and the logistic regression (LR) model.  
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with an average impact approaching 35 %. Other trip attributes, 
including trip distance, direction, and others, are ranked second, with an 
average impact of over 20 % on the probability to request shared rides. 
Temporal attributes and socioeconomics ranked third and fourth in 
influencing people’s willingness to share, with an average probability of 
more than 10 %. When other factors are controlled for, the built envi-
ronment variables have very little importance in the model. It is worth 
noting that the importance of the global variables only quantifies the 
average importance, but variation between trips is not observable from 

such a plot. 
Next, we explore the marginal relationships between features and the 

prediction while holding everything else constant using SHAP based 
partial dependence plots. Compared to the traditional global partial 
dependence plots which depict average relationships, SHAP based local 
partial dependence plots can show the variability of relationships across 
all trips in regard to the same feature value. The marginal relationships 
between trip attributes and the willingness to share are depicted in 
Fig. 4. Point that is above (below) the zero dashed line indicates that the 

Fig. 3. SHAP-based global feature importance ranking for five groups of features.  

Fig. 4. SHAP-based partial dependence plots for trip attributes including: (a) trip base fare, (b) trip heading direction, (c) distance to downtown (origin), and (d) 
distance to downtown (destination). The points on each scatter plot are colour coded by the trip distance, showing the interaction effect between travel distance and 
that feature. 
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trip’s feature has a positive (negative) contribution towards probability 
to share. Figures in Fig. 4 (and subsequent partial dependence plots) are 
coloured by the trip distances showing how trip distances interact with 
each feature and collectively contributes to the model prediction. Trip 
distance was chosen as the interaction effect of interest because it is a 
very objective factor related to the actual travel need, regardless of 
mode choice, and because it is one of the most important factors in the 
model. Due to the density of the points, a small amount of transparency 
was added to enhance the visualisation. In Fig. 4a, we can see that the 
trip fare has a non-linear relationship with the willingness to share a trip; 
that the willingness decreases drastically as the fare increases initially, 

then flattens out gradually. Also, for the same base fare, an interaction 
effect with perceived travel distance can be observed. For example, 
when the trip base fare is below $15 (which accounts for 89.0 % of total 
trips), longer trips have a higher probability of sharing. It is to be ex-
pected that there is a higher economic saving for shared travel if one 
considers the miles travelled per dollar. For more expensive trips which 
are dominated by long distance travels, this interaction is less visible. 
From Fig. 4b, we find a directional effect that those trips going towards a 
north-east or south-west heading direction a have a higher probability to 
share. We find a similar pattern in both Fig. 4c and Fig. 4d when con-
cerning trip origin/destination distance to downtown. When either the 

Fig. 5. SHAP-based partial dependence plots for temporal attributes including: (a) starting hour, (b) workday or not, (c) hourly temperature, (d) hourly wind speed, 
and (e) hourly rain condition. The points on each scatter plot are colour coded by the trip distance, showing the interaction effect between travel distance and 
that feature. 
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origin or destination is within 5 km near downtown, longer distance 
trips are more likely to be private. However, this relationship is reversed 
when the origin or destination is beyond 5 km from downtown, and 
longer trips are more likely to be shared. 

Fig. 5 depicts how temporal features are linked to the willingness to 
share. When it comes to when the travel was requested during the day, 
we discover a clear diurnal pattern. During the morning and afternoon 
commute hours, people are more likely to request shared rides, with the 
highest possibility occurring at 8 am and 5 pm. One possible explanation 
is that a solo ride can be substantially more expensive than a shared ride 

during these peak hours due to dynamic surge pricing. Private trips are 
favoured over shared trips in the evening (7 pm–12am), which indicates 
a certain level of reluctance when sharing with unknown passengers for 
night-time travels. A similar temporal pattern was identified in Los 
Angeles, California, based on Lyft trip data (Brown, 2020). Moreover, 
people prefer to travel privately on non-workdays (holidays and week-
ends), because even while these travels are private (single party), they 
may include multiple passengers, such as friends or family members. In 
terms of weather, users prefer solo trips when the hourly temperature is 
below − 20 ◦F (-29 ◦C). There is no particular pattern for wind condition, 

Fig. 6. SHAP-based partial dependence plots for socioeconomic variables (a) percentage of people with a bachelor’s degree, (b) median household income in 1,000 
dollars, (c) percentage of non-White population, (d) sex ratio, (e) percentage of population aged between 18 and 29, and (f) percentage of households with no cars in 
the origin (O) pick-up census tract. The points on each scatter plot are colour coded by the trip distance, showing the interaction effect between travel distance and 
that feature. 
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and people request more shared trips on rainy days (hourly rain con-
dition >=1), probably to avoid taking public transportation. There are 
no strong interaction effects between trip distance and temporal 
parameters. 

Fig. 6 shows the marginal associations between socioeconomic fac-
tors and willingness to share. When all other factors are held constant, 
education has a substantial association with willingness to share, and it 
appears to be a non-linear relationship in which neighborhoods with 
more people without degrees are more likely to share rides. There is also 
a noticeable interaction effect between trip distance and education that 
lower education attainment neighborhoods tend to use ridesharing for 

longer trips while higher education attainment neighborhoods prefer 
private rides for longer trips. Median household income is adversely 
related to the willingness to share that those travels originate from high- 
income (>$75,000) neighborhoods are more likely to be private. In 
Fig. 6c, we also show that non-white neighborhoods are more inclined to 
share. At the census tract level, the sex ratio has no discernible rela-
tionship with the willingness to share. Additionally, we discover that 
neighborhoods with a higher proportion of young age (18–29) group 
population are more willing to share, but the effect is minor as measured 
by the SHAP values. The link between socioeconomics and willingness 
to share is generally consistent with existing analyses in the literature at 

Fig. 7. SHAP based partial dependence plots for built environment features (a) residential density, (b) employment density, (c) network density, (d) transit 
accessibility, (e) walkability, and (f) having metro stations or not in the origin (O) census tract. The points on each scatter plot are colour coded by the trip distance, 
showing the interaction effect between travel distance and that feature. 
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the trip or census tract level (Brown, 2020; Dean and Kockelman, 2021); 
however, these studies do not show such detailed localized non-linear 
relationships nor how these relationships interact with trip distances 
as revealed by of the XAI methodology. One intriguing finding is that 
vehicle ownership is adversely associated with willingness to share, and 
that neighborhoods with a higher proportion of non-vehicle households 
prefer shared rides, implying that shared rides may compete with 
driving personal vehicles. This possibly due to the traffic and parking 
concern in Chicago. This also suggests that if ridesharing becomes more 
available and accessible, there is an opportunity to reduce the utilization 
of existing vehicles and further decrease the vehicle ownership. 

After all other factors held constant, we do not find substantial 
linkages between the built-environment variables and the willingness to 
share at the trip level as shown in Fig. 7. The magnitude of impact the 
model is minimal (mostly less than 5 %). Though Dean and Kockelman 
(2021) found built environment variables are useful in predicting ratio 
of sharing in a census tract in Chicago, such analysis was based on 
aggregated trip data that the finding may not hold at the individual trip 
level. 

SHAP provides explanations for each individual trip which allows us 
to examine the factors influencing willingness to share that may vary 
across trips. To further demonstrate the local nature of the SHAP ex-
planations, we selected two neighborhoods: 1) Neighborhood A, located 
to the northwest of downtown Chicago, with a median household in-
come of $168,353 and 36.3 % of people holding a bachelor’s degree; 2) 
and Neighborhood B, located to the southwest of downtown Chicago, 
with a median household income of $32,308 and 2.0 % of people 

holding a bachelor’s degree. For Neighborhood A, we chose two trips, a 
shared trip to downtown Chicago in the morning (8am) and a private 
trip back to the neighborhood in the evening (10 pm). For neighbour-
hood B, we also selected a shared trip to downtown Chicago in the 
morning (7am). Three example trips are shown in Fig. 8. SHAP values 
were computed for the three trips, and the results are shown in Table 3. 
We compared the time of the trip and the contribution of the two socio- 
economic variables in predicting the shared or private trips for these 
three trips. For trips between neighbourhood A and downtown, the 
probability of an 8am trip being a shared trip increased by 22.4 % 
because of the time of the request, while the probability of an evening 
trip being a shared trip decreased by 15.5 %. This suggests a strong 
temporal pattern that is shown in Fig. 5a. Median household income and 
educational attainment of neighborhood A did not contribute signifi-
cantly to either trip. For the trip from B to the downtown, we can see that 
the probability of being shared is pushed up by 13.0 % attributed to 
median income of neighborhood B, by 17.4 % attributed to education 
and by 16.2 % due to it being a morning (7am) trip. These observations 
indicate that feature contributions to the prediction outcome are varying 
across trips. 

5. Conclusion 

This work presents a machine learning model based on more than 20 
million trip records in the city of Chicago to understand users’ willing-
ness to share when requesting ride-hailing services. We demonstrated 
the use of the local explainable AI method, SHAP, to interpret the 

Fig. 8. A map of three example trips in the local SHAP analysis.  
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XGBoost machine learning model and identified key factors and re-
lationships that influence people’s ridesharing mode choice. Specif-
ically, the cost of the trip remains the dominant incentive for people to 
share a ride with others, and it shows a negative non-linear relationship 
with the probability of sharing. Trip attributes such as distance, direc-
tion, as well as temporal aspects are also identified to play a role in 
people’s decisions. In particular, people tend to request shared trips for 
longer distance trips and during morning and afternoon commute peak 
hours. Shared trips have a larger discount for longer trips when 
compared to solo trips, and during peak hours, solo rides have a surging 
price, which makes them less desirable. Regarding socioeconomics, 
users who requested trips from neighborhoods with a high percentage of 
non-white, a low median household income, a low percentage of de-
grees, and high car ownership are more likely to share rides. Riders from 
these neighborhoods may be relatively sensitive to price, therefore 
preferring shared rides over solo rides. We did not find that built- 
environment factors have substantive associations with willingness to 
share after other factors are controlled. We also investigated the po-
tential of using SHAP to explain individual trip behaviours. The local 
property of SHAP will be particularly useful to examine certain special 
situations, examples of which include studying local ridesharing pattern 
anomalies when the public transport is disrupted or when there is a large 
public event. We also identified challenges when applying SHAP. SHAP 
certainly presents a great opportunity to look at more granular re-
lationships and interactions. But with the advent of big data, we are now 
faced with “big explanations”, meaning that the amount of local ex-
planations will also expand and become overwhelmed, less interpret-
able, and hard to visualise. One of the possible solutions is to develop 
interactive visualisation (e.g. web-based dashboard) so that the end 
users can select data points that are of interest and to look at individual 
and aggregated explanations more at ease. 

These findings help local transportation agencies and TNCs to un-
derstand why people choose or not to choose a shared ride and lead to 
policy and strategy implications to better design geo-targeted and time- 
related pricing models to promote the use of shared rides over solo rides. 
From the socio-economic aspect, we find that private rides are preferred 
in more affluent neighbourhoods, possibly due to residents being less 
sensitive to price and/or the ride matching may be less effective, which 
leads to longer waits. It is suggested further advertisement in these areas 
can be beneficial to increase people’s awareness of the environmental 
benefits of ridesharing. Additionally, enlarging the price gap between 
shared and non-shared rides may bring more incentives to choose shared 
rides. Also, local transport and planning agencies can create High Oc-
cupancy Vehicle lanes, which are currently not available in Chicago, and 
build pick up/drop off zones and reduce toll prices to support the use of 
shared services. These actions have been shown to be effective in pro-
moting shared mobility (Shaheen and Cohen, 2019). Additionally, 
drivers that provide more shared services can be incentivised by the TNC 
company to increase the availability of shared services. One opportunity 
identified from this research is the relationship between willingness to 
share and vehicle ownership that shared rides are preferred in neigh-
bourhoods with high vehicle ownership. This suggests that sharing rides 
is an alternative to driving alone, and that if the incentives and avail-
ability of shared rides can be improved, it may further reduce vehicle 
ownership. From the temporal aspect, the results show a strong diurnal 
pattern that people prefer shared rides during commute hours, 
increasing service availability around these periods may further 
encourage the usage. In the nighttime, a decreased willingness to use 

shared services is observed, additional safety measures can be regulated 
to enhance the security of the riders (Chaudhry et al., 2018). 

The major limitations of this study are primarily due to the data 
availability. Firstly, the pick-up and drop-off locations and the socio-
economics are at the census tract level; therefore, the interpretation of 
the relationships cannot be made to each individual rider. Survey-based 
studies may be preferred for individual level analysis, but it is chal-
lenging to gather large and representative samples. On the other hand, 
policies cannot usually target specific sociodemographic groups due to 
ethical and equality considerations, so the findings at the census tract 
level still have useful implications for the stakeholders. One possible 
future work is to combine survey approach with big trip approach to 
offer a richer and complementary way to understand travel behaviour. 
Secondly, waiting time is expected to have a strong influence on the 
willingness to share but is not considered in the model because of data 
availability. It has been reported that shared rides usually have longer 
waiting times due to fewer drivers, especially for less serviced areas, and 
they are not preferred for time sensitive trips (Hou et al., 2020; Bahrami 
et al., 2022). This may partly explain why the model performs better 
when classifying solo rides, as riders would simply choose to ride alone 
because of the long waiting time for shared rides. Thirdly, the current 
trip data do not contain price comparison information when user mak-
ing the decision. It is expected that user will prefer to choose carpool if 
there is a larger discount. Hou et al. (2020) made an effort to estimate 
the discount information by aggregating trips and calculating the dif-
ference between the average regular fare and the average pooled trip 
fare. However, this variable is not important in their model, possibly due 
to the inaccurate estimate of the discount factor because of the loss of 
temporal granularity when combining. However, it would be useful to 
develop new methods to investigate how the sensitivity to price may 
vary across space and time and demographics. Fourthly, the data in this 
study can only support the findings of the direct competition between 
shared and solo rides. How shared rides compete with public trans-
portation remains a challenging and important problem, which has not 
been widely discussed in the literature. If more detailed pick-up and 
drop-off locations are available, researchers can match them up with 
public transit stops and schedules for mode choice comparison and 
analysis. Fifthly, the presented results and factors influencing willing-
ness to share are conditional on the data used in the model. For example, 
transit accessibility factor used in this study is measured by the distance 
to the nearest stop, which is provided in the SLD. Alternative accessi-
bility measures such as travel time and transit facility density may result 
in different model behaviours. Finally, due to service suspension, this 
research does not consider COVID-19 which is expected to have a sub-
stantial impact on transport systems, particularly on shared transport. 
For example, based on survey data from 2019 and 2020, Jabbari and 
MacKenzie (2020) found that people’s willingness to share to save 
money declined after the pandemic. As TNC gradually resumes their 
shared ride services and new data become available, it would be 
insightful to replicate the study with new data to investigate the changes 
in factors associated with willingness to share due to COVID-19. 
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Table 3 
Feature values and their SHAP contributes to three example trips in Fig. 8.  

Neighborhood Trip Shared Time SHAP (Hour) Median Income SHAP (Median Income) Pct Bach SHAP (Pct Bach) 

A A to Downtown Yes 8am  +22.4 % 168,352 − 0.2 % 36.3 % + 0.4 % 
Downtown to A No 10 pm  − 15.5 % − 2.6 % − 1.7 % 

B B to Downtown Yes 7am  +16.2 % 32,308 + 13.0 % 2.0 % +17.4 %  
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Chakraborty, D., Başağaoğlu, H., Winterle, J., 2021. Interpretable vs. noninterpretable 
machine learning models for data-driven hydro-climatological process modeling. 
Expert Syst. Appl. 170, 114498. 

Chaudhry, B., El-Amine, S., Shakshuki, E., 2018. Passenger safety in ride-sharing 
services. Proc. Comput. Sci. 130, 1044–1050. 

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of 
the 22nd acm sigkdd international conference on knowledge discovery and data mining, 
pp. 785–794. 

Dean, M.D., Kockelman, K.M., 2021. Spatial variation in shared ride-hail trip demand 
and factors contributing to sharing: Lessons from Chicago. J. Trans. Geogr. 91, 
102944. 

Diao, M., Kong, H., Zhao, J., 2021. Impacts of transportation network companies on 
urban mobility. Nat. Sustain. 4 (6), 494–500. 

Erhardt, G.D., Roy, S., Cooper, D., Sana, B., Chen, M., Castiglione, J., 2019. Do 
transportation network companies decrease or increase congestion? Sci. Adv. 5 (5), 
eaau2670. 

Hou, Y., Garikapati, V., Weigl, D., Henao, A., Moniot, M., Sperling, J., 2020. Factors 
influencing willingness to pool in ride-hailing trips. Transport. Res. Rec. 2674 (5), 
419–429. 

Jabbari, P., MacKenzie, D., 2020. Ride sharing attitudes before and during the COVID-19 
pandemic in the United States. Trans. Find. 26. 

Juniper Research (2021). Ride Sharing Spend by Consumers to Exceed $930 Billion 
Globally by 2026. Retrived from: https://www.juniperresearch.com/press/ride-sh 
aring-spend-by-consumers-exceed-930bn. 

Just, A.C., Arfer, K.B., Rush, J., Dorman, M., Shtein, A., Lyapustin, A., Kloog, I., 2020. 
Advancing methodologies for applying machine learning and evaluating 

spatiotemporal models of fine particulate matter (PM2. 5) using satellite data over 
large regions. Atmos. Environ. 239, 117649. 

Kang, S., Mondal, A., Bhat, A.C., Bhat, C.R., 2021. Pooled versus private ride-hailing: a 
joint revealed and stated preference analysis recognizing psycho-social factors. 
Transport. Res. Part C Emerg. Technol. 124, 102906. 

Li, Z., 2022. An investigation of using SHAP to extract spatial effects from machine 
learning models. Comput. Environ. Urban Syst. 96, 101845. 

Li, W., Pu, Z., Li, Y., Ban, X.J., 2019. Characterization of ridesplitting based on observed 
data: a case study of Chengdu, China. Transport. Res. Part C: Emerg. Technol. 100, 
330–353. 

Li, W., Pu, Z., Li, Y., Tu, M., 2021. How does ridesplitting reduce emissions from 
ridesourcing? A spatiotemporal analysis in Chengdu, China. Transport. Res. Part D 
Trans. Environ. 95, 102885. 

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Lee, S.I., 2020. 
From local explanations to global understanding with explainable AI for trees. Nat. 
Mach. Intell. 2 (1), 56–67. 

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. In: 
In ProceedIngs of the 31st International conference on neural Information processIng 
systems, pp. 4768–4777. 

Molnar, Christoph. “Interpretable machine learning. A Guide for Making Black Box 
Models Explainable”, 2019. https://christophm.github.io/interpretable-ml-book/. 

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. “ Why should i trust you?” Explaining the 
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining, pp. 1135–1144. 

Shaheen, S., Cohen, A., 2019. Shared ride services in North America: definitions, 
impacts, and the future of pooling. Transport Rev. 39 (4), 427–442. 

Shapley, L.S., 1953. A value for n-person games 17, 307–318. 
Shwartz-Ziv, R., Armon, A., 2022. Tabular data: Deep learning is not all you need. 

Inform. Fusion 81, 84–90. 
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