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Abstract: In this paper, we investigate the problem of selective routing attack in wireless sensor
networks by considering a novel threat, named the upstream-node effect, which limits the accuracy of
the monitoring functions in deciding whether a monitored node is legitimate or malicious. To address
this limitation, we propose a one-dimensional one-class classifier, named relaxed flow conservation
constraint, as an intrusion detection scheme to counter the upstream node attack. Each node uses
four types of relaxed flow conservation constraints to monitor all of its neighbors. Three constraints
are applied by using one-hop knowledge, and the fourth one is calculated by monitoring two-hop
information. The latter is obtained by proposing two-hop energy-efficient and secure reporting
scheme. We theoretically analyze the security and performance of the proposed intrusion detection
method. We also show the superiority of relaxed flow conservation constraint in defending against
upstream node attack compared to other schemes. The simulation results show that the proposed
intrusion detection system achieves good results in terms of detection effectiveness.

Keywords: intrusion detection system; wireless sensor network; selective routing attack; two-hop
monitoring; relaxed flow conservation constraint

1. Introduction

A Wireless Sensor Network (WSN) [1] is a set of tiny sensor nodes, which are resource-constrained
in terms of energy, bandwidth, processing, and storage capacities. The main task of a
WSN is to collect/aggregate data from the sensor nodes to a base station (or sink) using a
hop-by-hop communication. The data collection can be either event-driven or periodic-based.
In the event-driven class, data are delivered to the sink after the occurrence of events. In the
periodic-based class, each sensor node periodically sends its measurement towards the sink.

Sensor nodes could be compromised and controlled by an attacker. For example, an adversary can
perform node capture attack by physically accessing the sensor node and uploading a malicious code
to launch different types of attacks [2,3]. To avoid this situation, some preventive security mechanisms
such as authentication, cryptography, and key management could be implemented [4,5]. However,
it is necessary to deploy intrusion detection systems (IDSes) [6–9] to deal with other non-preventive
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attacks, such as selective routing/forwarding attack, where a malicious node refuses to forward
some/all data packets that it receives. Some of the intrusion detection schemes that are proposed to
deal with this attack use the watchdog principle, in which a node u that sent a packet to node v can
overhear whether v has forwarded the packet to its downstream neighbor (or next hop) along the path
towards the sink or not.

This attack has been tackled in many research studies [10–23]. The simplest way to detect a
selective routing attack is to use the watchdog technique. This istechnique not sufficient for detecting
the selective routing attack as the leaf nodes, for example, in the tree-based topology are not monitored.
Hence, it is important to increase the coverage of monitoring by including the upstream neighbors
(previous hop). In addition, in some routing schemes [24–26], a node that is at l-hop away from
the sink can choose its next hop from l-hop, (l + 1)-hop, and (l − 1)-hop away from the sink node.
Thus, it is important for each node to monitor all its neighbors to make a correct routing choice.

The role of an IDS is to identify the malicious nodes. The detection effectiveness of the IDS
depends on the features that are used to describe the node’s normal behavior. If the feature with
respect to the monitored node exceeds a defined threshold, then the node is considered as malicious.
However, adopting some features might mislead the detection system, and make it falsely accuse a
legitimate node as malicious. Figure 1 clearly explains this situation. In the figure, each node monitors
the packet receiving rate of its upstream neighbor along the path toward the sink B. The value above
each link (a, b) indicates the sending rate (resp., receiving rate) to b (resp., from a). Figure 1a shows the
normal traffic rates of the network. Figure 1b shows the state of the network when nodes D, H, and K
become compromised and start behaving maliciously by dropping some packets. As D, H, and K
reduce their sending rates, their respective downstream neighbors I and L also have to reduce their
sending rates accordingly. As a result, node B will falsely accuse nodes I and L of being malicious
and, hence, a false positive is recorded. This attack is called upstream-node effect, i.e., node is falsely
accused as malicious because its upstream node is behaving maliciously.
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Figure 1. Impact of upstream-node effect on false positive rate: (a) normal sending rate, (b) sending
rate under packet dropping attack.

In this paper, we propose an intrusion detection system, which aims to detect the selective routing
attack, prevents the upstream-node effect, and ensures that each node can monitor all its neighbors.
The main contributions of the paper are the following:

• We propose a one-dimensional one-class classifier, named relaxed flow conservation constraint,
as an intrusion detection scheme to counter the upstream node effect. It determines a boundary
(i.e., threshold), which separates between normal packet loss and packet loss due to attacks.
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Instead of building the classifier using constrained optimization problem, as in one-class SVM [27],
the proposed classifier has two main characteristics: (1) it incurs less computational cost
and (2) it is most appropriate for networks that are operating under quasi-stable conditions
in terms of link quality. In this case, the instances that compose the normal training data set are
close to each other and can be grouped into one small bounded interval.

• We use four variants of the relaxed flow conservation constraint, depending on the type of
monitored node. Three constraints are applied using one-hop knowledge, and the fourth one
is applied while using two-hop information. To obtain the two-hop information, we propose
the two-hop energy-efficient reporting scheme, which is complemented with some security
mechanisms, such as authentication, encryption, filtering of ratings, and isolation.

• We analyze the security of the proposed IDS as well as its resilience probability against
selective routing attacks and unfair ratings. Contrary to the state-of-the art methods, we show
that the relaxed flow conservation constraint prevents the upstream node effect. We also
analytically and experimentally evaluate the performance of the proposed IDS-based relaxed flow
conservation constraints.

The rest of the paper is organized, as follows: Section 2 presents the related work. Section 3
provides the system model and problem statement. In Section 4, we justify our design choices. Section 5
describes the intrusion detection system that is based on the relaxed flow conservation constraints.
In Section 6, we analyze the security of the proposed IDS against some attacks as well as its resilience
probability against selective routing attacks and unfair ratings. In Section 7, we evaluate the resiliency
of the relaxed flow conservation constraint against upstream-node effect and then compare it with two
state-of-the-art features. The analysis of performance complexity, and node lifetime estimation are
provided in Section 8. In Section 9, we present the simulation results. Finally, Section 10 concludes
the paper.

2. Related Work

2.1. Intrusion Detection Schemes for Selective Routing Attacks

The selective routing attack has been widely studied in the literature. In order to counter the
selective routing attack, Karlof et al. [28] suggested sending the same packet on a set of disjoint paths.
However, this method shows poor security resilience if there is at least one compromised node along
each disjoint path. It also incurs high communication overhead and high energy consumption when
the number of paths increases.

In [11], each node counts the number of packets not forwarded by its downstream node. If this
number exceeds a given threshold, then an alarm is raised. In [10], each node counts the number of
packets not forwarded by its neighbor node within a time window; if the majority of monitoring nodes
produce an alarm regarding the same node, the latter will be considered to be malicious. This method
incurs a communication cost of O(N), where N is the number of nodes in the network. In [23],
each node calculates the received power rate and the arrival packet rate of its upstream neighbor.

Stetsko et al. [12] proposed an intrusion detection system based on collaboration between neighbor
nodes. They built a profile of the monitored node that consists of two features: (i) packet dropping
rate, defined as: the number of packets sent to a certain node during a predefined period of time
but not forwarded by that node and (ii) packet forwarding rate, defined as the number of packets
received from its neighbors and consequently forwarded to its parent node during a predefined period
of time. Each measured profile is then broadcast to its neighbors. In this way, the monitoring node can
have different records on the same monitored node and can select the most accurate one. The main
drawback is that it is not explained how accurate records are selected and how it is possible to detect
unfair records provided by dishonest nodes.

Yu et al. [13,17] proposed a scheme that chooses some nodes as checkpoints along the path.
When a checkpoint node receives a packet, it sends an acknowledgment (ACK) packet to the source
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node via its upstream neighbor. If any intermediate node does not receive enough ACK packets from
its downstream neighbor during a time period, then it suspects that the packets have been dropped
by a downstream malicious node. In addition, each node uses a one-way hash key chain to ensure
the authenticity of packets. The problem with this scheme is that it consumes considerable energy
on sending acknowledgement packets and it does not seem suitable for resource-constrained WSNs.
If L is the average path length, then there is a need to forward O(|CHK|L) ACK packets for each data
packet, where |CHK| is the number of checkpoint nodes along a path. If L is proportional to

√
N and

m data packets are generated during each time period, then the overall message complexity of this
scheme for N nodes is O(|CHK| ×m× N

3
2 )/time period. In addition, it might detect the existence of

malicious activities but cannot identify exactly which node is malicious.
Brown and Du [16] proposed a cluster-based scheme in order to detect selective routing attack

using a heterogeneous WSN consisting of a few high-end sensor nodes (H-sensors or cluster heads)
and a large number of Low-end sensor nodes (L-sensors). The detection procedure is as follows:
each monitoring node passively listens to its downstream node. If the latter drops a packet, then the
monitoring node (L-sensor) will include the ID of the dropper node in a packet and send it to the cluster
head via another route. Based on the reports, the cluster head performs the sequential probability ratio
test, which calculates the percentage of dropped packets in all forwarding packets, to check whether
the L-sensor is compromised or not. This scheme has the following drawbacks: (1) it suffers from the
single node failure problem when the cluster head is compromised and (2) no reliable mechanism is
proposed to retransmit the dropped packets.

Li et al. [18] proposed a detection scheme based on the sequential mesh test method [29]. In [18],
the network is organized into clusters, and any node that does not observe the forwarding of its
downstream neighbor sends a report packet to the cluster head. The latter runs a sequential mesh test,
which extracts a small quantity of samples to run the test, instead of regulating the total time of test in
advance. This scheme also suffers from the single node failure problem.

Xin-sheng et al. [15] proposed a detection scheme based on a hexagonal WSN mesh topology.
This scheme uses the nodes, which are capable of monitoring the forwarding of two successive nodes
in the routing path. When these monitoring nodes detect selective routing attack, they resend the
dropped packets to the destination node. The problem with this scheme is that it depends on a static
and specific kind of topology. In addition, there is no countermeasure mechanism when the monitoring
node is compromised.

Kaplantzis et al. [14] proposed a centralized intrusion detection scheme that is based on One-class
Support Vector Machines (OSVMs). The detection process is performed by the sink and uses two
features, the incoming bandwidth, and the hop count taken by each packet to reach the sink node,
in order to detect selective routing and black hole attacks. If the observed behavior is different from
the trained one, then a detection alarm is raised.

Jamshidi et al. [30] proposed a distributed lightweight method based on learning automata in
order to select the most secure routes for forwarding packets, and thus avoiding those that contain
malicious nodes. Fu et al. [31] proposed data clustering algorithm to detect and isolate malicious
cluster heads that launch selective routing attacks. Mehetre et al. [32] introduced a trustable secure
routing method for clustered WSNs that can also offer security through encryption and verification
of packets on each source node. The proposed method offers advanced security, privacy, and energy
efficiency features, but it is a rather heavyweight method for WSNs both in terms of computational
overhead and increased complexity.

2.2. Discussion and Desired Design Principles

We can observe that the majority of schemes that are against selective routing attacks perform
a downstream monitoring, which does not allow for a node to ensure monitoring coverage of all its
neighbors. We can also observe that the majority of works use the following features to describe the
node’s behavior: packet dropping rate, packet forwarding rate, packet arrival rate, and number of Ack
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packets (i.e., number of received packets). In Section 7, we will show that these features do not prevent
the upstream-node effect and, hence, they incur poor detection accuracy and a high false positive rate.
Thus, an IDS against the selective routing attack should have the following properties:

• Effectiveness: the IDS should provide high detection rate while providing low false positive rate.
This aim is ensured by using path-free features to describe the node’s behavior.

• Full network monitoring coverage: the IDS should be able to monitor the whole network.
To achieve this, each node should include downstream and upstream monitoring processes.

• Localized and fully-distributed: the IDS should be localized, i.e., the tasks of each
node, e.g., data acquisition and data analysis should be based solely on the knowledge of its
local neighborhood. The watchdog technique, in which a node listens promiscuously to packets
passing by its neighborhood, is a good example of a localized solution as it does not incur any
additional communication overhead. Additionally, the IDS should be distributed across different
nodes, and does not rely on a centralized entity to avoid the single-point-of-failure problem.

• Minimized resource consumption: the IDS should be designed in a way that it can be lightweight
and implementable in the resource-constrained sensor nodes by using only a small number of
resources. Additionally, it is important that the IDS incurs less communication overhead to reduce
energy consumption and prolong the node and network lifetime.

3. System Model and Problem Statement

Given a set of N sensor nodes and a sink node, the network is structured as a tree-topology rooted
at the sink. At every time interval ∆t, each node i sends a data packet along the tree towards the sink
node, and monitors a set of nodes Wi ⊆ Li, such that Li denotes the set of i’s neighbors. We consider
two forms of the selective routing attack:

• An attacker i drops some/all data packets coming from all its upstream neighbors.
• An attacker stops generating its own data packets.

At every time interval ∆j = ∆, called the monitoring period, each node i, which monitors node
k’s behavior, constructs a vector (or profile) aik

j ∈ Nd that is composed of d attributes {aik
jl : l = 1 . . . d}.

The attributes can denote: the number of dropped packets, the number of received packets, the number
of generated packets, etc. To be able to perform monitoring, ∆j must be larger than ∆t. We remove the
superscripts i and k to ease the notation burden.

After a time period T, each sensor node has collected a set of n d-attribute profile vectors
aj = {ajl : l = 1 . . . d}, called the training data set. The latter can also be written as d× n matrix [ajl ],
where ajl is the number of occurrence of feature l in profile aj and n is the number of profiles. A profile
aj can be a one-attribute vector that records, for example, the number of packets sent/forwarded by
the monitored node during the monitoring period ∆j.

During the testing phase, the intrusion detection problem is to check at each ∆j (such that j > n)
if the observed profile aj is normal or not.

4. Design Choices

4.1. One-Class Classifier

Statistical-based and rule-based approaches [10,33,34] use some thresholds to distinguish between
normal and abnormal behaviors. These thresholds depend on some physical parameters, like signal
noise and other radio parameters that vary from a network deployment scenario to another. Hence,
it is not feasible to calculate the required threshold for each network deployment and upload the
corresponding binary code to the sensor node.

The one-class classifier (OCC) assumes that all of the training instances belong to one class,
named positive class. The negative class, which represents abnormal behavior is absent or unknown.
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The aim of the classifier is to find a separating boundary between the normal instances and the rest of
instances [35]. The OCC is solved using either density estimation or boundary description methods.
In the density estimation method, an object is considered to be non-positive (or outlier) when the object
falls into a region with a density lower than some threshold value. However, this method requires large
data sets [36]. In the boundary description method, the classifier sets a boundary that encompasses
almost all of the positive points with the minimum radius. Any test instance that does not fall within
the learned boundary is declared as anomalous. The main issue that arises is when the training data
set is composed of different regions with different density levels. Instances in low-density regions
will be rejected although they are normal. Additionally, when the boundary of the dataset is long and
non-convex, the required number of training instances is likely to be very high [35]. Thus, the one-class
classifier gives its best results in terms of detection rate and false positive rate when the training
instances are close to each other and can be grouped into one small region. The question that might
arise is whether this small region can be constructed in WSNs or not. To answer this question, we are
going to state the following observations and results.

Lin et al. [37] experimentally studied the stability of a testbed WSN. In this study, the transmissions
are scheduled to avoid collisions and it is observed that the packet reception ratio of stable
links (i.e., link quality remains constant at a certain level) are experiencing small fluctuations that
are mainly caused by multi-path fading of wireless signals. According to this study, this case occurs,
especially at night when there is no human movement or Wi-Fi interference.

DOZER [38], KOALA [39], and DISSENSE [40] are three periodic-based data collection protocols
that are designed for long-term monitoring applications in WSNs, and have been implemented and
tested on real platforms. DOZER and DISSENSE provide a packet delivery ratio of 98–99%. KOALA,
on the other hand, achieves a ratio of 99.99%. This implies that the average packet reception ratio of a
link is also lower-bounded by 98–99%.

The above results show that the instances comprising the normal traffic behavior (i.e., number
of received packets) are close to each other and, hence, it is possible to build a small bounded region
composing all these instances. This implies that the choice of one-class classifier here is appropriate
and justified to monitor stable links or WSNs under quasi-stable conditions (i.e., constant flow rate,
collision-free transmissions, no mobility, no signal interference, . . ., etc). The boundary, which separates
between normal traffic and attack, is self-learned from each deployment setting, and it does not depend
on a predefined threshold as in the statistical-based and rule-based approaches. In this situation,
we adopt the one-class classifier to train the intrusion detection system.

4.2. Path-Free Features

The feature is a quantitative metric used by the monitoring node to evaluate the monitored
node’s behavior. As our objective is to design an IDS that prevents the upstream-node effect,
the computation of the node’s feature must not depend on the features that are related to its
upstream node. Thus, we classify the features used to monitor the node’s behavior as path-dependent
and path-free.

A feature is called path-dependent if the feature value assigned to a node depends on the feature
value assigned to its upstream neighbor. On the other hand, a feature is called path-free if the feature
value that is assigned to a node does not depend on the feature value assigned to its upstream neighbor.

Formally, we consider that a data flow is routed along the path [a, · · · , j, k, l, · · · , b]. Each node l
along the path monitors the activity of its upstream node k and measures the corresponding feature f tkl .
A feature is called path-dependent if any increase (resp., decrease) in f tjk will increase (resp., decrease)
f tkl . A feature is called path-free if the variation of f tkl does not depend on f tjk. For example, the packet
sending rate is a path-dependent feature, as its variation at a given node affects its downstream node.
Although the packet dropping and forwarding rates are considered to be path-free according to this
definition, they cannot prevent the upstream-node effect, as shown in Section 7.
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5. Intrusion Detection Scheme Based on Relaxed Flow Conservation Constraints

As stated in Section 2, the intrusion detection systems for selective routing attacks should at least
use (1) downstream and upstream monitoring processes, and (2) path-free features to describe the
network traffic. For this purpose, we propose path-free features that are based on the relaxed flow
conservation constraint [41].

5.1. One-Dimensional One-Class Classifier: Relaxed Flow Conservation Constraint

We model WSN as a directed tree G = (V, E), where each edge e = (u, v) has a defined capacity
denoted by C(e) or C(u, v). Each node m monitors its downstream neighbor (i.e., m’s parent denoted
by Parentm) and all of its upstream neighbors (i.e., m’s children denoted by Childm). Based on the
known multi-flow problem [42], we define a flow as a function f (u, v) : V ×V → N, which counts the
number of packets sent from node u to node v during a monitoring period of length ∆ and satisfies the
following constraints:

• Flow conservation constraint: the sum of flows entering v and that generated by v during a
monitoring period ∆

∆t must equal the flow leaving v towards Parentv for all nodes, except the sink
node and the leaf nodes in the tree-based topology, as depicted in Figure 2. Formally:(

∑
ω∈Childv

f (ω, v) +
∆
∆t

)
− f (v, Parentv) = 0

A flow f (u, v) can also be written as:

f (u, v) = sel fu + ∑
ω∈Childu

g(ω, u, v)

such that: sel fu is the flow actually generated by node u, and g(ω, u, v) is the flow received by
node u from node ω and forwarded later to node v.

• Capacity constraint: the flow along any edge must be positive and less than the capacity of that
edge. Formally: 0 ≤ f (u, v) ≤ C(u, v).

As the wireless channel is error-prone, some packets could be lost due to collisions, and thus the
flow conservation constraint cannot be ensured. To deal with this issue, we use instead a relaxed flow
conservation constraint, which represents the difference between (a) the flows leaving v, and (b) the
sum of flows entering v and the flow generated by v. The value of this difference is bounded between
0 and a given threshold ∈ N∗. Our objective is to determine the threshold that encompasses all the
normal instances dv such that:

dv =

(
∑

ω∈Childv

f (ω, v) +
∆
∆t

)
− f (v, Parentv)

To this end, the relaxed flow conservation constraint can be written as one-dimensional one-class
classifier that satisfies the following:

dv ≤ max
t∈[0,T]

δv(t) = δv

where δv(t) denotes the flow drop, defined as the number of packets sent and forwarded by node v
and lost due to normal failures during a monitoring period t. δv is the highest value of dv observed
during the training phase T. Formally, we have:

dv =

(
∑

ω∈Childv

f (ω, v) +
∆
∆t

)
− f (v, Parentv) ≤ δv
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The above constraint can also be written as:

dv =

(
∑

ω∈Childv

f (ω, v) +
∆
∆t

)
−
(

sel fv + ∑
ω∈Childv

g(ω, v, Parentv)

)
≤ δv

Proposition 1. dv is a path-free feature.

Proof. Let us consider the path u −→ v −→ Parentv. Let u be a malicious node, which drops some
packets. A feature is called dependent-path if and only if any increase in du will eventually increase dv.

Let f t(u, v), dt
v, sel f t

v, and gt(u, v, Parentv) be the value of f (u, v), dv, sel fv and g(u, v, Parentv)

at time t. dt
v can be written as:

(
∑

ω∈Childv

f t(ω, v) +
∆
∆t

)
− f t(v, Parentv). At time t′ > (t + ∆) node

u starts behaving maliciously by dropping some/all packets, its dt′
u > δu, and it can be written as:(

∑
ω∈Childu

f t′ (ω, u) +
∆
∆t

)
− f t′ (u, v). f t′(u, v) is composed of two terms: sel f t′

u and ∑w∈Childu gt′(w, u, v).

When u is acting maliciously, sel f t′
u < sel f t

u and/or ∑ω∈Childu gt′(ω, u, v) < ∑ω∈Childu gt(ω, u, v),
and hence dt′

u > dt
u.

Node v is behaving normally at time t and t′. Thus, dt
v =

(
∑

ω∈Childv

f t(ω, v) +
∆
∆t

)
−

f t(v, Parentv) < δv, and dt′
v =

(
∑

ω∈Childv

f t′(ω, v) +
∆
∆t

)
− f t′(v, Parentv) < δv.

As f t′(u, v) < f t(u, v), ∑w∈Childv f t′(w, v) < ∑ω∈Childv f t(ω, v). In addition, node v will send at
time t′ less packets compared to time t.

Formally, f t′(v, Parentv) < f t(v, Parentv) as:
sel f t′

u = sel f t
u, and

∑
ω∈Childv

gt′ (ω, v, Parentv) < ∑
w∈Childv

gt(w, v, Parentv)

At time t′, there will be less traffic flow in the neighborhood of node v when compared to time t,
and we will obviously observe less channel contentions and less packet collisions, which decreases the
flow drop. Formally, dt′

v < dt
v. As a result, an increase in du has not made v increase its dv and, hence,

dv is a path-free feature.

Based on the above constraint, we derive the three following monitoring detection constraints
(or path-free features) C1, C2, and C3 used by the monitoring node m to monitor its downstream node
v and its upstream node u (as shown in Figure 2).
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Figure 2. Flow conservation constraint.
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C1 : f (m, v)− g(m, v, Parentv) = d1
v ≤ ϕv

m

C2 : ∆
∆t − sel fu = d2

u ≤ φu
m

C3 : ∑
ω∈Childu

f (ω, u)− ∑
ω∈Childu

g(ω, u, m) = d3
u ≤ ψu

m

ϕ
j
i , φ

j
i , and ψ

j
i denote the thresholds used by the monitoring node m to check constraint (C1),

constraint (C2), and constraint (C3) satisfaction with respect to the monitored downstream node v and
upstream node u. ϕv

m, φu
m, and ψu

m are the highest values of d1
v, d2

u, and d3
u, respectively, observed by

the monitoring node m during the training phase.
C1 (or one-hop downstream monitoring and detection process) can be applied by each sensor

node except for the sink node. Node m, using the watchdog technique, checks if the data packets
that it has sent to its parent node v are forwarded by the latter. If the difference between the two
elements, f (m, v) and g(m, v, Parentv), exceeds the threshold ϕv

m, node v will be considered malicious.
Otherwise, it is normal.

C2 (or one-hop upstream monitoring and detection process) can be applied by each sensor node,
except for the leaf nodes in the tree-based network topology. As each node u (except the sink node) has
to generate ∆

∆t packets during each monitoring period and send them to its parent node. Node m checks
if the number of packets sel fu received from its upstream node u is less than ( ∆

∆t − φu
m). If so, node u is

considered to be malicious. If node u is a leaf node, this judgment is sufficient for node m. Otherwise,
node m still cannot judge node u and it needs to check constraint (C3).

C3 (or two-hop upstream monitoring and detection process) can be applied by each sensor node
except for the leaf nodes as well as their parents in the tree-based network topology. The monitoring
node m checks whether the data packets, where node u received from its children, are forwarded by
node u to node m. If the difference between the two elements ∑

ω∈Childu

f (ω, u) and ∑
ω∈Childu

g(ω, u, m)

exceeds the threshold ψu
m, node u will be considered as malicious. Otherwise, it is normal. We can

notice that all the terms of constraint (C3) are one-hop information and can be directly obtained by
node m, except for ∑

ω∈Childu

f (ω, u). The issue here is how to report this two-hop information to node

m so that constraint C3 can be verified.

5.2. Two-Hop Energy-Efficient and Secure Reporting Scheme

In order to report information to a two-hop neighbor (i.e., grandparent in the tree), the trivial
solution is that each node ω ∈ Childu acts as a witness and sends a packet containing f (ω, u) to
the monitoring node m through an intermediate node. However, a malicious intermediate node can
simply drop this packet and prevent node m from receiving it. The other solution is to use an adaptive
power transmission that can reach the two-hop neighbors by using higher power transmission level.
However, this solution exhausts the node’s battery faster than the normal power and makes the packet
contend with more transmitting nodes.

To address the above drawbacks, we propose an energy-efficient and secure method, allowing for
nodes that can monitor the flows entering and leaving u to report their observations to the monitoring
node m.

5.2.1. Witness Set Model

When the monitoring node m cannot judge directly based on its own observations whether
the behavior of its upstream node u is normal or not, it has to collect ratings on node u from other
nodes, called the witness nodes. Witness nodes that can rate u are: (1) nodes, which can overhear the
transmission of node u and at least one of u’s children and (2) u’s children.
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To define the set of witness nodes, as denoted by WNu, which can rate node u, we have to define
first the witness region for the transmitter relay pair (ω, u) as:

WRω→u = {p = (x, y) ∈ R2 : dis(p, ω) ≤ r ∧ dis(p, u) ≤ r}

where r denotes the node transmission radius, and dis(p1, p2) denotes the euclidean distance between
two points p1 and p2. Figure 3a shows the witness region for (u1, u) as shaded region. The total
witness region for node u, which is shown in Figure 3b, is defined by WRu =

⋃
ω∈Childu

WRω→u.

u1

rr

m

d

u2

u3

u

w1

w2

(a) WRu1→u

u1

rr

m

d

u2

u3

u

w1

w2

(b) WRu

Figure 3. Witness region for (u1, u) and total witness region for u.

The set of witness nodes WNu are the nodes that are located in the witness region WRu, except for
node u. Let us consider that a witness node w can overhear the transmission between a set of nodes
Child[w]

u ⊆ Childu and node u. The witness node w applies the following constraint C4 to rate node u.

C4: witu
w = ∑

ω∈Child[w]
u

f (ω, u)− ∑
ω∈Child[w]

u

g(ω, u, Parentu) ≤ χu
w

C4 (or one-hop witness monitoring and detection process) node w checks if the data packets,
which were sent by nodes ∈ Child[w]

u to node u, are forwarded by node u. If the difference between the
two elements: ∑

ω∈Child[w]
u

f (ω, u) and ∑
ω∈Child[w]

u

g(ω, u, Parentu) exceeds the threshold χu
w, node u will be

considered as malicious. Otherwise, it is normal. χu
w is the highest value of witu

w recorded by node w
while observing node u during the training phase.

If a witness node gives fair rating, then it is called honest. Otherwise, it is called liar. We can
notice that each witness node located in WRu partially monitors the traffic flow coming to node

u. As Child[w]
u 6= Child[w

′ ]
u , the amount of traffic monitored by w differs from that of w’ and, hence,

it is impossible to fairly compare between two ratings witu
w and witu

w′ that resulted from different
observations and tell which one is honest or liar. Figure 3 shows that the nodes, which are witnessing
node u, are {w1, w2, u1, u2, u3}. Nodes w1, u1, and u2 can only monitor the traffic flows (u1, u) and
(u2, u). On the other hand, nodes w2, u1, and u3 can only monitor the traffic flows (u1, u) and (u3, u).
To deal with this issue, we use binary values to rate node u. Formally, the reputation rating held by
witness node w about node u, denoted as ratingu

w, is set to 1 if u is normal and 0 otherwise.

5.2.2. Two-Hop Energy-Efficient Reporting Scheme

We propose a lightweight method for reporting node w’s opinions about node u to node
Parentu = m. Each node i stores the following variables: (1) Childi (i.e., the set of i’s upstream nodes
in the tree-based routing topology), (2) Witnessingi (i.e., the set of witness nodes that can monitor any
node in Childi), (3) Witnessedi (i.e., the set of nodes that node i can monitor, ordered according to the
lexicographical order (where 0 < 1 < 2 . . .)), (4) Relayi (i.e., the set of witness nodes that use i as a relay
to reach their two-hop monitoring nodes). The method is executed in two phases: (a) initialization
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phase, executed once, and (b) a rating phase, executed periodically. Figure 4 shows the value of some
variables that resulted from executing the reporting scheme. In the figure, the directed links represent
the tree-based routing topology, and a dotted line drawn from a node w to link (ω, u) indicates that w
can overhear the messages transmitted by ω and u.

1
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WitnessedWitness ing
3m

Relay 12

Figure 4. Initialization and rating phases.

In the initialization phase, the following operations are carried out:

1. Each witness node w that can observe the network traffic traversing the link (ω, u) adds u to the
set Witnessedw. Subsequently, w broadcasts Witnessedw with TTL = 2.

2. When a monitoring node m receives Witnessedw and Ww = {Childm ∩Witnessedw} 6= ∅
(i.e., w can monitor at least one of i’s children), m adds w to Witnessingm. Subsequently, it stores
for each p ∈ Ww the position of p in Witnessedw. Afterwards, node m broadcasts a message
containing Witnessingm. In Figure 4, as node 3 can observe node m’s children, it is added
to Witnessingm.

3. When a node r receives Witnessingm, it checks for all j ∈ Witnessingm if (j ∈ Nr ∧ j /∈ Nm)

(i.e., witness node j cannot reach m directly, but only through r). If so, it adds j to Relayr.

In the rating phase, each node i has to report periodically its observations and forward
the observations of nodes in Relayi to the monitoring nodes (i.e., (|Relayi| + 1) observations are
periodically reported by node i). Each observation from node w has to include the ID of all nodes
j ∈ Witnessedw and their ratings. As N is the total number of nodes, the ID and the rating
can be encoded using log2 N bits and one bit, respectively. Thus, the size of this observation is:
|Witnessedw|(log2 N + 1) bits, and the total size of information that is transmitted periodically by
each node i is (∑w∈Relayi

|Witnessedw|+ |Witnessedi|)(log2 N + 1) bits. |Relayi| and |Witnessedw| are
upper-bounded by dmax, where dmax is the maximum node degree of the network. As, for example,
let us consider N = 1024 and dmax = 10, the size of one observation is 110 bits, and the total size
of observations to be sent by node i is: 1210 bits. To reduce this size, we apply a spatial-temporal
compression, as follows:

• Spatial compression: as the monitoring node knows the position of its children in Witnessedw,
we do not need to transmit the couple (j, ratingj

w) for each j ∈ Witnessedw. Instead,
w’s observation will consist of w’s ID, and a boolean bit vector, denoted by Repw and composed
of |Witnessedw| bits. Repw[i] = 1 if ratingj

w = 1 (i.e., node j, which is at position i in Witnessedw,
is rated normal by w, and 0 otherwise). In Figure 4, node m knows that the third and the fourth



Sensors 2020, 20, 6106 12 of 25

elements in Rep3 correspond to the ratings of its children 11 and 12, respectively. The size of
one observation is reduced to (log2 N + |Witnessedw|) bits. The above example gives 20 bits
per observation.

• Temporal compression: instead of transmitting all of the observations in one message, each node
i piggybacks each observation to one beacon message. To do so, it defines a time window TRi
composed of TB× (|Relayi|+ 2) time slots, where TB is the time between two beacon broadcasts.
|Relayi| slots are used to relay the ratings sent by nodes in Relayi. The last two time slots are
used to send i’s observation: one encrypted and sent to other relay nodes to reach i’s two-hop
monitoring nodes, and the non encrypted is broadcast by i to reach i’s one-hop monitoring nodes.
The encryption mechanism is described in Section 5.2.3.

5.2.3. Security Mechanisms for the Reporting Scheme

The observations that are exchanged among nodes are subject to many attacks, which aim at
spoofing the source of observations and/or altering their contents. Thus, we enhance the two-hop
energy-efficient reporting scheme by adding some security mechanisms.

In order to prevent the relay node r from altering the observations sent by w, each node i creates
its two-hop broadcast key THKi, which is a shared key between the node and its two-hop neighbors.
This key is unknown for the one-hop neighbors. The creation of this key, as described in [43],
is as follows: Each node i is preloaded with a transitory initial key KIN and a random number RNi.
It first computes its master key MKi = G(KIN , IDi), where G is pseudo random function and IDi is
node i’s identifier. Subsequently, it computes its two-hop broadcast key THKi = G(MKi, RNi||RNi).
Node i sends RNi encrypted with KIN to its two-hop neighbors. The latter use the received RNi to
derive MKi and THKi. We assume that an adversary can compromise a node only after Tmin time
units from network deployment. Before the expiration of Tmin, each node i erases KIN and RNi from
its memory in order to prevent an adversary from compromising the keys of other nodes. Node i uses
THKi to encrypt its observations.

An attacker might forge its identity to masquerade as another node and send fake observations.
To allow for two-hop authentication of the observation, each node i generates a two-hop one-way
hash chain (TOHC) (H0

i , H1
i , H2

i , · · · , HK
i ). Each node within i’s two-hop neighborhood is preloaded

with the last value (HK
i ). Upon generation of the d’th observation, node i appends (HK−d

i ) to Repi.
Each monitoring node that receives the d’th observation can authenticate the source i by applying the
one-way hash function on the received value HK−d

i and verifying whether the result is equal to the

pre-loaded TOHC value HK−(d−1)
i ; F(HK−d

i ) = HK−(d−1)
i .

When a node is physically captured, the adversary can retrieve all of the embedded security
credentials and turn the node into a liar that fabricates fake reports, without being detected by the
above security mechanisms. In the following subsections, we show how this issue is tackled under
two models of selective routing attacks.

5.2.4. First Selective Routing Attack Model

In this model, a malicious node is defined as the one behaving maliciously against all od its
upstream neighbors. Let χω→u

w denotes the highest flow drop observed on the link (ω, u) by the
witness node w during the training phase. If node u is behaving maliciously against upstream neighbor
ω, then constraint (C4) applied on link (ω, u) will be as follows:

f (ω, u)− g(ω, u, Parentu) > χω→u
w

Proposition 2. Under the first selective routing attack model, any honest node located in WRu that
rates u positively (resp., negatively), the other honest nodes located in WRu must also rate u positively
(resp., negatively).
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Proof. If two witness nodes w and w′ are monitoring node u, four cases can occurs:

• Child[w]
u = Child[w

′ ]
u

• Child[w]
u ⊂ Child[w

′ ]
u

• (Child[w]
u 6= Child[w

′ ]
u ) ∧ (Child[w]

u ∩ Child[w
′ ]

u = ∅)

• (Child[w]
u 6= Child[w

′ ]
u ) ∧ (Child[w]

u ∩ Child[w
′ ]

u 6= ∅)

For all the four cases mentioned above, nodes w and w′ apply constraint (C4) on node u as follows:

∑
ω∈Child[w]

u

f (ω, u)− ∑
ω∈Child[w]

u

g(ω, u, Parentu) > ∑
ω∈Child[w]

u

χω→u
w = χu

w

∑
ω∈Child[w

′ ]
u

f (ω, u)− ∑
ω∈Child[w

′ ]
u

g(ω, u, Parentu) > ∑
ω∈Child[w

′ ]
u

χω→u
w′ = χu

w′

We can notice that both nodes w and w′ will reach the same opinion about node u’s reputation
(i.e., normal or malicious) and, hence, two honest witness nodes rate the same node alike.

From the above proposition, we can easily prove the following corollary:

Corollary 1. Under the first selective routing attack model, if two nodes located in WRu are rating u differently,
then one of them is liar and the other one is honest.

A captured node can give positive and negative unfair ratings, which might jeopardize the
whole reputation system and, thus, efficient protection against unfair rating is a basic requirement.
The methods used to filter the ratings can be classified into two groups:

• Endogenous methods: they exclude unfair ratings by assuming that the ratings provided by
honest witnesses are equal or statistically close to each other.

• Exogenous methods: they exclude unfair ratings by introducing external parameters like the
reputation of the witness nodes. They are based on the assumption that the witnesses with low
reputation are likely to give unfair ratings.

The exogenous approach is costly in terms of message overhead, as there is a need to collect
witness nodes’ reputations from many sources. In the endogenous approach, the monitoring node m
needs to get opinions from different M witness nodes about node v, which incurs a communication cost
of O(M). On the other hand, exogenous approach require collecting reputation information on each
witness node w to decide if w’s opinion will be excluded or not. If we consider that for each witness
node, K nodes on average rate w. This leads to an overall complexity of O(K × M). Accordingly,
we choose to use the endogenous approach. Node m checks constraint (C3) periodically by performing
the following two phases. In the first phase, the monitoring node m compares its own rating about node
v with the rating provided by a witness node w about the same node v. If the two ratings are different,
w will be excluded from its list of two-hop honest witness nodes Honestm, initialized to be the set of
m’s two-hop neighbors. In the second phase, a monitoring node m, by applying constraint (C1) knows
exactly how its downstream neighbor Parentm is behaving. If another node w gives a different opinion
about Parentm, node m can surely tell that w is a lying and it is excluded from Honestm. At the end of
each time period, node m calculates the sum of positive and negative ratings about all its upstream
nodes u, denoted by UpstreamPosu

i and UpstreamNegu
i , respectively. As proved above, any two honest

witness nodes that are monitoring the same transmitter relay pair (ω, u) report the same reputation
rating. We assume that, for any upstream node u, the majority of nodes in Honestm ∩WNu are honest.
Except for leaf nodes, ∀u : WNu 6= ∅ as Wu contains u’s upstream nodes. The necessary conditions for
node m to correctly rate its upstream node u are the following:

• There is at least one path with no liar or malicious nodes from each node in (Honestm ∩WNu) to
the monitoring node m.

• At least bHonestm∩WNu
2 c+ 1 nodes in (Honestm ∩WNu) are honest.
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5.2.5. Second Selective Routing Attack Model

Under this model, a malicious node behaves maliciously against some of its upstream neighbors.
Consequently, two honest witness nodes might not make the same judgment. For example, node 13
in Figure 4 can evade detection by behaving maliciously against node 8 but not against node 9.
In this case, the witness nodes 7 and 10 will make different observations and, hence, node m cannot
judge 13 correctly. If we assume that there is at least one honest node in Witnessingm, a monitoring
node m can judge its child u only when all nodes in Witnessingm report the same rating. Otherwise,
node m does not take any decision. Instead, u’s upstream node, which considers u to be malicious by
applying constraint (C1), stops routing data through u and switches to another parent node. If node u
chooses to continue behaving maliciously against other upstream nodes, it will be isolated by these
nodes and have no data to drop.

6. Security Analysis

6.1. Resilience against Some Attacks

In this section, we analyze the security of the two-hop reporting scheme, and discuss its resilience
against some potential attacks.

• Attacks against the key management system: if an adversary overhears exchanged messages
during the key establishment phase, only random numbers, which are encrypted with a preloaded
initial key, are exchanged among nodes. As the adversary is not preloaded with the initial key,
it cannot compute the master keys. Because KIN and RNi are erased before the expiration of Tmin,
the capture of one node does not reveal the master keys of other nodes. The adversary can only
access the two-hop broadcast keys stored on the capture node.

• Attacks against the authentication mechanism: one-way hash chain is largely used in
authentication. An adversary can only extract the hash chain of the captured node, and hence it
cannot generate observations using the identity of other nodes.

• Attacks using Fabrication: as a node does not have the two-hop broadcast keys of its neighbor,
it cannot alter the observations it has to relay to the monitoring node. However, an adversary
can make a captured node generate false observations. To deal with this problem, we use the
solutions that are presented in Sections 5.2.4 and 5.2.5.

• Beacon dropping attack: a malicious node might drop the beacon packets originated from honest
nodes. As long as there is one path with only honest and well-behaved nodes, the fair rating will
eventually reach the monitoring node.

6.2. Full-Resilience Probability Analysis

In this section, we provide the theoretical analysis of the full-resilience probability of the reputation
system against selective routing attacks and unfair ratings.

We assume that N nodes are uniformly distributed in a region of area A. The probability density
function (pdf) of the distance S between two nodes with a uniformly distributed node is given by [44]:

fS(s) =
ŝ

9π
[18π − 36 arcsin(

ŝ
2
)− 9ŝ

√
4− ŝ2]

where Ŝ = S
a , and a =

√
A
π .

We assume that all of the nodes have the same transmission radio range r. Two nodes establish a
link if they are located within a distance of r from each other. The probability that the distance between
two nodes is less than or equal to r is given by [45]:

P1 = P(S ≤ r) =
∫ r

0
fS(s)ds
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The necessary condition for a monitoring node m to correctly rate node u is WNu 6= ∅, i.e., at least
one node must reside in the region R1 of area A1(d), which results from the intersection of two circular
communication regions with radius r and centered at u and its child node ω. The distance d between
the two nodes u and ω, must be in the range between 0 and r. The area A1(d) is calculated, as follows:

A1(d) = 2r2cos−1(
d
2r

)− d

√
r2 − d2

4

The expected area E[A1] is calculated as follows:

E[A1] =
∫ r

0
fS(s)A1(s)ds

The expected number of witness nodes located in R1 is NA1 = E[A1]N
A

A monitoring node m is connected to the witness node w either directly or through a relay node.
The relay node must reside in the region R2 of area A2(d), which is resulted from the intersection
of two circular communication regions with radius r and centered at m and w. The area A2(d) is
calculated, as follows:

A2(d) = 2r2cos−1(
d
2r

)− d

√
r2 − d2

4
The expected area E[A2] is calculated, as follows:

E[A2] =
∫ 2r

r
fS(s)A2(s)ds

The expected number of relay nodes located in R2 is NA2 = E[A2]N
A

The probability that at least one relay node resides in the region R2 is given by:

I(d) = 1− (1− A2(d)
A

)N−2

The connection probability between the two nodes, which communicate in two hops and are
separated by a distance d ranging between r and 2r, is calculated as follows [46]:

P2 =
∫ 2r

r
fS(s)I(s)ds

We consider that a monitoring node can directly communicate with N1
A1 witness nodes and with

N2
A1 = (NA1 − N1

A1) witness nodes through relay nodes.
In Figure 5, the witness node w can reach the monitoring node m via the relay nodes u, w1, and w2.

Nodes w1 and w2 also witness the traffic transmitted on (u1, u) and (u2, u), respectively.

u

w
m

u1

w1

w2
u2

rr

Figure 5. Communication between witness and monitoring nodes.
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The average probability that the monitoring node m is connected to all NA1 witness nodes is
given by:

Pf ullcon = PN1
A1

1 PN2
A1

2

Let Pcomp be the probability that the node is compromised. The average probability that there is at
least one path, which is free from compromised nodes, between one witness node and the monitoring
node is:

Psec =

{
P1 × (1− Pcomp) one− hop
P2(1− Pcomp)(1− PNA2

comp) two− hop

The average probability that there is at least one path, which is free from compromised nodes,
between the majority of witness nodes and the monitoring node is:

(
NA1

∑
k=b NA1

2 c+1

CNA1
k Pk

sec(1− Psec)
NA1−k)× Pf ullcon

7. Comparative Analysis: Resiliency against Upstream-Node Effect

In this section, we compare between the relaxed flow conservation constraint, the packet sending
rate, and the packet dropping rate with respect to resiliency against the upstream-node effect,
as shown in Figure 6. In this comparison analysis, we consider two nodes: M, and P, and M is
sending packets to P. We consider the following notations:

• x is the number of packets dropped by the upstream node M .
• PFP denotes the number of packets that are forwarded by node P.
• PRP denotes the number of packets that are received by node P from node M.

Proposition 3. The packet sending rate feature is not resilient against upstream-node effect.

Proof. Node P is considered by a monitoring node O to be legitimate if PRP > ThSR. Otherwise,
it is considered as malicious.

A malicious node M drops x packets, and node P only receives and forwards PRP − x packets
accordingly. Thus, the packet sending rate observed at node P is (PRP − x). We will prove
Proposition 3 by contradiction: let us assume that node P is always considered by a monitoring
node as legitimate. Formally,

∀x : PRP − x > ThSR (1)

From (1), it follows that: ∀x : fSR(x) = PRP − x − ThSR > 0. As shown in Figure 6a, ∃x :
fSR(x) ≤ 0, which contradicts Assumption 1. Hence, for some values of x, node P is considered
by a monitoring node as malicious. Therefore, the packet sending rate feature cannot prevent the
upstream-node effect.

Proposition 4. The packet dropping rate feature is not resilient against upstream-node effect.

Proof. Node P is considered by a monitoring node O as legitimate if (1− PFP
PRP

) ≤ ThDR. Otherwise,
it is considered to be malicious.

A malicious node M drops x packets, and node P only receives and forwards PRP − x packets
accordingly. Thus, the packet dropping rate observed at node P is (1− ( PFP−x

PRP−x )). We will prove
Proposition 4 by contradiction: let us assume that node P is always considered by a monitoring node
as legitimate. Formally,

∀x : (1− (
PFP − x
PRP − x

)) ≤ ThDR (2)

From (2), it follows that: ∀x : fDR(x) = (1− ( PFP−x
PRP−x ) − ThDR) ≤ 0. As shown in Figure 6b,

∃x : fDR(x) > 0, which contradicts Equation (2). Hence, for some values of x, node P is considered
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by a monitoring node as malicious. Therefore, the packet dropping rate feature cannot prevent the
upstream-node effect.

Proposition 5. The relaxed flow conservation feature is resilient against upstream-node effect.

Proof. Node P is considered by a monitoring node O as legitimate if (PRP − PFP) ≤ ThRF. Otherwise,
it is considered as malicious.

A malicious node M drops x packets, and node P only receives and forwards PRP − x packets
accordingly. Thus, the relaxed flow conservation feature observed at node P is (PRP − PFP − x).
We check whether the following statement is correct:

∀x : (PRP − PFP − x) ≤ ThRF (3)

From (3), it follows that: ∀x : fRF(x) = (PRP − PFP − x − ThRF) ≤ 0, as shown in Figure 6c,
and which proves Proposition 5. Hence, P is always considered by a monitoring node as legitimate.
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Figure 6. Resiliency against upstream-node effect.

8. Performance Analysis

8.1. Complexity Analysis

In this section, we analyze the performance of the proposed intrusion detection system against
selective routing attacks. The performance is studied under the following metrics: communication
complexity and message complexity, which are defined as follows:
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• Communication complexity (CC): The number of one-hop transmission each node needs to
perform initially and periodically.

• Message complexity (MC): The size in terms of bits of control information transmitted by each
node initially and periodically.

The complexity results are summarized in Table 1. Initially, each node i broadcasts Witnessedi
with TTL = 2, i.e., the messages are broadcast by i and its neighbors. This operation leads to a
communication complexity of O(dmax + 1), where dmax is the maximum node degree of the network.
The same complexity is incurred by sending RNi. By adding the broadcast operation of Witnessingi,
the total communication cost becomes proportional to O(2dmax + 3) per node. Let RN and TC be the
size of RNi and TOHC value, respectively. As the size of Witnessedi and Witnessingi is O(dmax log2 N),
the message complexity in the initialization phase is O((d2

max + 2dmax) log2 N + (dmax + 1)RN).
The proposed IDS does not cause any additional packets during the periodic step, but it piggybacks
some control information to the beacon packet. During the time period of (|Relayi|+ 2) slots, each node
i relays the ratings of its neighbors in Relayi and its two own ratings. The periodic message complexity
is O(dmax + log2 N), as explained in Section 5.2.2. In addition, the TOHC value is appended to
each observation.

Table 1. Complexity analysis of the proposed IDS.

CC (Initial) O(2dmax + 3)
CC (Periodic) 0

MC (Initial) O((d2
max + 2dmax) log2 N + (dmax + 1)RN)

MC (Periodic) O(dmax + log2 N + TC)

8.2. Energy Dissipation and Node Lifetime Analysis

We use the radio energy model, as that in [47]. The energy dissipation of transmitting (resp.,
receiving) one bit of information is given by: ETx = Eelec + Eamp × Disα (resp., ERx = Eelec), where:
Dis is the distance separating two nodes, and α is the attenuation factor of the environment and can
be between 2 for free space and 4 for urban environment. The parameters that are used in [47] are as
follows: Eelec = 50nJ/bit, Eamp = 100pJ/bit/m2. Let D_Pkt and B_Pkt be the size in bit of data packet
and beacon packet sent at each time period TB, respectively. The tree-based routing protocol with
and without the proposed IDS is symmetric in the sense that every node executes the same code, i.e.,
every time that a node sends a message, it has to receive the same type of message from each neighbor
node. Subsequently, the energy dissipated by a node under a tree-based routing protocol is:

EW = (D_Pkt + B_Pkt)(ETx + dmaxERx)

In the case of the same routing protocol with the proposed IDS, the energy dissipated by a node is
composed of two terms: The first term is the energy dissipated during the initialization phase, and it is
computed as:

Ea
IDS = ((d2

max + 2dmax) log2 N + (dmax + 1)RN)(ETx + dmaxERx)

The second term, which is consumed periodically at each TB, is computed as:

Eb
IDS = (D_Pkt + B_Pkt + dmax + log2 N + TC)(ETx + dmaxERx)

Let the energy initial of each node be Einit. The node lifetime under the tree-based protocol is

TW = (
Einit
Ew

)× TB

The node lifetime under the IDS is:

TIDS = (
Einit − Ea

IDS

Eb
IDS

)× TB
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Let N = 1024, dmax = 10, RN = 32, TC = 32, and α = 2. For the rest of parameters, we use
the following, as in [48]: D_Pkt = 4000 bytes, B_Pkt = 20 bytes, Dis = 50 m, and Einit = 3J.
Therefore, we obtain: EW = 25.728mJ, Ea

IDS = 1.241mJ, Eb
IDS = 25.769mJ, TW = 116.60 × TB,

and TIDS = 116.37× TB.

9. Simulation Results

In this section, we study the performance of the proposed intrusion detection system against
selective routing attacks using GloMoSim simulator [49]. In our simulation scenarios, each malicious
node launches a selective routing attack with probability P for each packet that it receives. To simulate
a lossy wireless channel, we assume the Two-Ray path loss propagation model. In this model,

the received power Pr is modelled as: Pr = PtGtGr
h2

t h2
r

D4 where: Pt is the transmission power. Gt and Gr

are antenna gains of transmitter and receiver respectively. ht and hr are the heights of both antennas.
D is the distance between the transmitter and the receiver. The packet reception model is based on
the signal to noise ratio (SNR) threshold. When the SNR is larger than a defined threshold, the signal
is received without errors. Otherwise, the packet is dropped. The simulation parameters and their
values are shown in Table 2. We generate the topology of the network using the NetLogo library [50],
as shown in Figure 7.

Table 2. Simulation Parameters.

Parameters Values
Number of nodes 50
Dropping probability 1, 0.8, 0.5, 0.2, 0.1, 0.05, 0.04, 0.03, 0.02, 0.01
Monitoring period (∆) 10 s
Training period (T) 3, 5, 10, 20, 30, 40, 50 ×∆
Transmission power (Pt) 5 dBm
Gt, Gr 0 db
ht, hr 1.5 m
SNR Threshold 10 db

Figure 7. Network topology.
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Each node generates ten packets/second towards the sink, and each monitoring period lasts
for 10 s. After a training phase of T time periods, testing phase lasts for 1800 s. The role of the IDS,
which is implemented at each node i, is not just to detect if i’s neighbor (e.g., node j) is malicious or not,
but also to know whether node j is malicious during a given time period. The dataset that is produced
from the simulation can be found in [51]. We evaluate the performance of the IDS using the following
six metrics:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F− score =
2(Precision× Recall)

Precision + Recall

False positive rate =
TP

TP + FN

False negative rate =
FN

TP + FN

where TP, TN, FP, and FN denote the true positives, true negatives, false positives, and false
negatives, respectively.

Figure 8a shows the values of NLow that are observed by a given node in the network while
monitoring one of its neighbors. At lower training periods, NLow = 99 and it stabilizes at 98 starting
from T = 30. Figure 8b–e show the recall, precision, accuracy, and F-score of the proposed IDS,
respectively, as a function of dropping probability. The first observation we can draw from the figure
is that the recall is 100% when the dropping probability is higher than 0.05, and it is under 100% when
the dropping probability becomes 0.02 and 0.01. This can be explained, as follows: under very low
dropping probabilities, the malicious nodes perform at low intensities and their activities become
unnoticeable. This happens when it is difficult to distinguish between packet loss due to normal
activities and packet drop attack, and we can notice this when the dropping probability becomes very
close or less than the normal packet loss, which is, at most, 2% during each time period. The same
observation can be made from Figure 8c–e. However, they record lower results compared to recall
results due to the effect of false positives. Figure 8f–h show the recall, false negative rate, and false
positive rate of the IDS, respectively, as a function of the training period. The results are presented
under the following levels of dropping probability P = 1, 0.5, 0.1, 0.05, 0.01. Under high dropping
probabilities, the recall (resp., false negative rate) is 100% (resp., 0%) for all of the training periods.
Under low dropping probabilities, the detection rate decreases as the malicious behavior becomes very
close to the normal one. We can notice that the false positive rate becomes 0 when the training period T
reaches 30 in certain cases and 40 in others. At these values of the training period, N∗Low is observed and
the IDS can accurately distinguish between normal traffic and selective routing attack. For instance,
when the dropping probability is 0.5, the false positive rate becomes 0 at T = 30. Before N∗Low is
observed (i.e., T < 30 or T < 40), the false positive rate curves are random, as they depend on
the number of times the monitored profile is observed inside the interval [N∗Low, NLow], which itself
depends on the probability of packet loss.
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Figure 8. Performance of the proposed IDS.

10. Conclusions

In this paper, we have proposed an intrusion detection system against selective routing attack in
wireless sensor networks. To counter a novel threat, named upstream-node effect, the proposed IDS
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employs a one-dimensional one-class classifier, named relaxed flow conservation constraint. We have
derived four path-free features from the relaxed flow conservation constraint, in order to monitor all
its neighbors. Three features can be obtained directly using one-hop information and the fourth one is
obtained using the proposed two-hop energy-efficient and secure reporting scheme. We have analyzed
the security of the proposed IDS and its resilience probability against the selective routing attacks
and unfair ratings. We have also provided a performance complexity of the IDS and a comparison
between the relaxed flow conservation and other features. The node lifetime analysis demonstrates
that the energy consumption incurred by the IDS is insignificant. The simulation results show that
the proposed intrusion detection system achieves good results in terms of detection effectiveness.
It can achieve a recall of 100% when the dropping probability is higher than the normal packet loss
rate, and it can also achieve a false positive rate of 0% when N∗Low is observed during the training
phase. As a future work, we plan to relax some assumptions and consider different transmission rates.
Additionally, it would be interesting to integrate the blockchain technology with the proposed scheme.
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