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Understanding Forecast Reconciliation

Ross Hollymana,∗, Fotios Petropoulosa, Michael E. Tippingb

aSchool of Management, University of Bath, United Kingdom
bInstitute for Mathematical Innovation, University of Bath, United Kingdom

Abstract

A series of recent papers introduce the concept of Forecast Reconciliation, a process by which

independently generated forecasts of a collection of linearly related time series are reconciled

via the introduction of accounting aggregations that naturally apply to the data. Aside from its

clear presentational and operational virtues, the reconciliation approach generally improves the

accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this im-

provement is generated by re-formulating the reconciliation problem as a combination of direct

forecasts of each time series with additional indirect forecasts derived from the linear constraints.

Our work establishes a direct link between the nascent Forecast Reconciliation literature and the

extensive work on Forecast Combination. In the original hierarchical setting, our approach clari-

fies for the first time how unbiased forecasts for the entire collection can be generated from base

forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust

combined forecasts can be generated in any multivariate setting subject to linear constraints. In

an empirical example, we show that simple combinations of such forecasts generate significant

improvements in forecast accuracy where it matters most: Where noise levels are highest and the

forecasting task is at its most challenging.

Keywords: forecasting, forecast combinations, unbiasedness, top-down, hierarchies

1. Introduction

Multivariate time series where observations are grouped into a hierarchy occur in many con-

texts. For example, individual companies within the economy can be grouped by industry, then
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by broader sector and finally into an economy-wide whole. In an international setting, economic

or financial statistics may be reported by industry/sector and in parallel by country or region,

giving rise to multiple hierarchies. Within a company, sales forecasts might be grouped by indi-

vidual product, product category, and region. In a tourism context, one might be interested in

aggregations of data by geographic region and perhaps by purpose or mode of travel. Forecasts

often need to be made at different levels of a hierarchy, and may be of interest to, and indeed

generated by, different constituencies within an organisation. Such forecasts may be made using

different methods, driven both by the data at hand and by the needs and perhaps the statistical

sophistication of each particular interest group. Whilst historical data will naturally aggregate

over the hierarchy, forecasts will usually do so only by chance. Management decisions taken on

the basis of inconsistent and contradictory forecasts are likely to inherit the same shortcomings.

Historically this problem has been addressed either by making ad-hoc or heuristic adjust-

ments to existing sets of forecasts, or perhaps more systematically by building forecasts at a sin-

gle level in the hierarchy and making adjustments to fill out the other levels. A ‘Top Down’

approach focuses on forecasting the top level and applying proportions to fill out lower part of

the hierarchy. These proportions can be modelled in several ways, but essentially produce condi-

tional forecasts given the forecast of the top level; for three such approaches, see Athanasopoulos

et al. (2009). A ‘Bottom Up’ process builds forecasts at the bottom level and aggregates, and a

‘Middle Out’ approach splits proportionally downwards and aggregates upwards. All these three

approaches used in isolation fail to take account of the information embedded in data at other

levels within the hierarchy. Bottom level forecasts are often statistically noisy and volatile but

may contain rich information, perhaps on trend or seasonality, which is lost in aggregation. Ag-

gregate data are less noisy due to a portfolio effect: They represent combinations of noisy but less

than perfectly correlated series, and may well reveal trends which are difficult or impossible to

discern from the bottom level series alone.

In a series of recent papers, Hyndman et al. (2011), Hyndman et al. (2016), Wickramasuriya

et al. (2019) develop a principled, systematic, and scalable approach to forecast reconciliation

(FR) in such scenarios. The approach combines forecasts from different levels of the hierarchy

to form a new, reconciled set of forecasts which conform to the natural aggregations constraints

of the hierarchy. Empirical results show that not only do the reconciled forecasts ‘add up’ (a
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property which Panagiotelis et al. (2020) refers to as coherency), but are usually more accurate

than the original base forecasts.

The original insight that a combination of two or more forecasts reduces error variance dates

back several decades, and in particular, to Bates and Granger (1969). Whilst FR is clearly a form of

forecast combination, the matrix algebra which allows FR to scale efficiently can tend to obscure

the detail of precisely which forecasts are being combined. As Panagiotelis et al. (2020) note “This

setup can be counter-intuitive since a vector comprised of forecasts from different time series models is

also assumed to be the dependent variable in a regression model”. Panagiotelis et al. (2020) go on to

emphasise the importance of the linear aggregation constraints to the FR problem, and present

its solution in a multidimensional geometric setting. We share with these authors the view that

the key elements of FR are linear constraints within a multivariate setting, but adopt a different

expositional approach: We combine forecasts implied by the constraints with direct base forecasts

for each bottom level series. By doing so, we form a direct link between the rapidly growing

literature on FR and the extensive body of work on Forecast Combination (FC).

A portfolio perspective is the clearest way to understand the principles underlying forecast

combination. The mathematics underlying both settings are identical, hinging on the equation for

the sums of random variables. A portfolio formed of two (less than perfectly correlated) securities

benefits from a diversification effect: It can have lower volatility and will offer a more attractive

risk/return trade-off than that offered by either security in isolation. The portfolio analogy readily

extends to a hierarchical setting. Consider the example of a regional stock market index, perhaps

‘North America’ comprising the US and Canada. The regional index is simply a portfolio of the

two countries indices in known proportions. The equivalent economic exposure to Canada can

be created either via a long position in Canada or a long position in the regional index and a short

position in the US country index. From a forecasting perspective, and in a situation where there

exists a ‘Total’ series made up of two constituents, the analogous process creates two independent

forecasts for a given disaggregate series: the first is the direct forecast, and the second an indirect

forecast, made up of the forecast for the aggregate series less the forecast of other constituent.

The mathematics of this setting exactly mirror the index portfolio situation and underpin the

perspective adopted in the remainder of this paper.

A further important result emerges from viewing the FR problem from a FC perspective.
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Whilst the literature shows that top-down forecasts can often be more accurate than those made

on a bottom-up basis, Hyndman et al. (2011) show that the approach typically used to generate

them induces a bias in the reconciled forecasts when the input is a vector of unbiased uncondi-

tional base forecasts. We provide insight as to why the approach in the literature is problematic,

and our approach makes it possible to reconcile top-down forecasts in a manner that eliminates

this bias.

A key lesson from the extensive literature on FC is that simple combining techniques (i.e.,

those which do not depend on the estimation of forecast error covariances) often perform as

well or better than more statistically sophisticated approaches. Forecast combination achieves

its largest gains in the most challenging forecasting tasks: Where forecasts are inherently poor;

which is precisely where the statistical assumptions underlying more sophisticated techniques

break down. In financial applications, portfolio optimisation exercises taking large scale covari-

ance matrices as inputs are notoriously difficult to calibrate, for this reason the optimisation pro-

cess is often disparagingly referred to by experienced practitioners as ‘error maximisation’. The

work of Black (1992) spawned a literature detailing a shrinkage based approach to this prob-

lem. For these reasons, simple equally weighted combinations are good default priors for any

new combination based approach. Elliott and Timmermann (2013) set out the conditions un-

der which equal-weight approaches are optimal. The ‘MinT’ FR methodology of Wickramasuriya

et al. (2019) is elegant, easy to apply and scales efficiently to very large hierarchies, but is de-

pendent on the estimation of a high dimensional variance/covariance matrix. We develop an

alternative, but equally scalable approach based on equally weighted combinations of forecasts

derived from different hierarchical levels, which performs at its best on the noisiest bottom level

forecasts.

The following section briefly reviews the relevant literature on FR and FC. We then move on

to examine the FR problem from a FC perspective, and show how to generate unbiased top-down

and middle-out forecasts for a hierarchy. We then examine simple combinations of such forecasts,

which we apply to a large sample of tourism data. Finally, we offer some implications for decision

making, and our conclusions.
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2. Background and Literature Review

2.1. Forecast Reconciliation

The foundational ideas underlying the papers reviewed here are set out in Hyndman et al.

(2011), Hyndman et al. (2016), Wickramasuriya et al. (2019). Assume we have a group of series

grouped together into some hierarchy so that there are in totalm series, of which n series comprise

the bottom level of the hierarchy. If y is a vector of all the m series at time t, and b is an n vector

of only the bottom-level observations for the same time period, then y = Sb where S represents

a m× n ‘summing matrix’ which describes the hierarchical structure of the data and is key to the

FR process. The m rows of matrix S represent the exposure of each series in the collection (at all

levels) to the n bottom level or disaggregate series contained in b.

Now assume at time t we have available an m vector of (unbiased) h-steps-ahead forecasts ŷ.

These are referred to as base forecasts. The idea is to estimate a new set of reconciled forecasts for

the n bottom level series β so that the complete set of m reconciled forecasts is given by ỹ = Sβ.

Hyndman et al. (2011) and Hyndman et al. (2016) write the regression model as

ŷ = Sβ + ε (1)

and choose β to minimise the aggregate reconciliation error ε, representing the difference between

the original forecasts ŷ and the reconciled forecasts ỹ, so the estimated residuals from (1) are given

by ε̃ = ŷ− ỹ. For forecasting purposes, however, the main objective is the production of accurate

(but reconciled) forecasts, i.e., to choose β so as to minimise some function of the reconciled

forecast errors ε, i.e., to write

ỹ = Sβ + ε. (2)

So the estimated residuals are ε̃ = y− ỹ. This is the approach taken in Wickramasuriya et al.

(2019), who show that all linear reconciliation approaches can be written as

ỹ = SGŷ (3)

for some n×m matrix G. The role of G is to map the base forecasts ŷ to reconciled bottom-level

forecasts (β) which are then aggregated by S to produce reconciled mid- and top-level forecasts.

The matrix G can be chosen to reconcile forecasts in the various ways described above, or can be

estimated based on the error covariance matrix of ŷ to form an ‘optimal’ forecast reconciliation,

5



weighting forecasts at different hierarchical levels. Wickramasuriya et al. (2019) present ‘MinT’

– an efficient, scalable FR algorithm which adopts this approach. For the special case of Bottom

Up, β = b̂ in which b̂ is the vector of the bottom-level base forecasts. The Top Down case can be

obtained when ỹ = SqŷT where q is a vector of proportions by which the top-level base forecast, ŷT,

is disaggregated to the bottom-level series (Hyndman and Athanasopoulos, 2018). This equation

suggests ỹT = ŷT, where ỹT represents the top-level reconciled forecast.

The fundamental ideas set out above have been extended in several directions from the orig-

inal cross-sectional setting. Perhaps most significantly, Athanasopoulos et al. (2017) adopt the S

matrix approach temporally to time-series where forecasts are required to aggregate over a num-

ber of future periods. Separate forecasts are made using underlying data aggregated at different

frequencies (eg. quarterly, half-yearly, and annually) which are then combined using similar tech-

niques to those discussed here. Clearly, such series will occur in many contexts, and the modelling

trade-offs are similar in nature to those which occur in the cross-section; lower-level data is plen-

tiful but noisy, whereas higher-level aggregates are easier to model and trends may be easier to

discern. Temporal FR allows all the available data to be used. Spiliotis et al. (2019) refine and

develop the temporal approach, pointing out that particular care must be taken when seasonal

data are aggregated. The same paper also discusses the situation where more than one forecast is

available for a particular layer of the hierarchy.

Most authors adopt what might be termed an ‘optimal structural scaling approach’ to tem-

poral reconciliation, accounting only for the differing variances of data observed at different fre-

quencies within the same ‘optimal’ framework of Wickramasuriya et al. (2019). Nystrup et al.

(2020) move away from the diagonal of the variance/covariance matrix, proposing several meth-

ods to deal with autocorrelation in the underlying series, although, as pointed out in the paper,

significant error autocorrelation would suggest that base forecasts might be improved before the

application of reconciliation. These authors find that the most significant benefits of their ap-

proach accrue to most inaccurate forecasts, a point to which we return below. Nystrup et al.

(2020) also explicitly allude to the connection between FR and FC, a linkage we make explicit in

this paper.

Spiliotis et al. (2020) and Kourentzes and Athanasopoulos (2019) examine the impact of com-

bining temporal and cross-sectional hierarchical approaches. Spiliotis et al. (2020) explore the
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effects of sequential reconciliation, applying cross-sectional and temporal reconciliation in se-

ries. Neither of these approaches, as Kourentzes and Athanasopoulos (2019) point out, result in

entirely coherent forecasts across both hierarchies. The latter authors reconcile temporally, and

then reconcile in the cross-section at each time horizon within the temporal hierarchy. A consen-

sus reconciliation matrix is then derived by averaging across the separate temporal levels. The

authors mention simultaneous cross sectional and temporal reconciliation, but foresee difficulty

in correctly designing a large S matrix and estimating W, the m dimensional variance/covariance

matrix of forecast errors, in such a context.

In a series of papers Shang (2017), Shang and Haberman (2017) and Shang and Hyndman

(2017) apply hierarchical forecasting to functional time series, where a function needs to vary

coherently across hierarchies. Their application is to forecasts of mortality rates, which are mod-

elled as a smooth function of age. Mortality statistics are often broken down by region, sex, and

socio-economic grouping, and it is desirable that future forecasts of mortality rates (also at differ-

ent time horizons) be presented in a coherent way across hierarchies.

Emphasising the scalability of the MinT approach, Ben Taieb et al. (2020) apply the approach

to a very large hierarchy of short time horizon electricity smart meter data, and produce proba-

bilistic forecasts for the hierarchy. A number of other authors consider utilising FR to generate

probabilistic rather than point forecasts, although most authors fail to account for uncertainty in

base model parameters, and all except Park and Nassar (2014) attempt to generate probabilistic

forecasts whilst working in a frequentist framework. A complication in generating probabilistic

time-series forecasts is accounting for dependence amongst series. Athanasopoulos et al. (2019)

outline a procedure similar in principle to ‘Filtered Historical Simulation’ (FHS) (see, for exam-

ple, Gurrola-Perez and Murphy (2015)) which has been used to simulate multivariate financial

returns in a risk management context. FHS samples from historic errors residual to fitted models

for volatility and correlation, and samples ‘strips’ of h period errors to account for temporal as

well as cross-sectional dependence. Ben Taieb et al. (2017) propose a procedure involving copulas

to measure series dependency, reordering of quantile forecasts, and LASSO estimation to gener-

ate probabilistic forecasts. Jeon et al. (2019) use a simpler cross-validation based approach, which

also addresses the issue of estimation error in W. Pennings and van Dalen (2017) develop the FR

approach in several directions, integrating it more closely in to the forecasting process, and derive
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forecasting benefits from doing so.

2.2. Forecast Combination

The initial idea of Forecast Combination dates to the late 1960’s, perhaps most notably to

Bates and Granger (1969). An extensive literature has built upon the topic, which is comprehen-

sively reviewed and summarised in Elliott and Timmermann (2013). The reader is referred to that

article for a comprehensive survey of the topic. An initial motivation for FC was a situation where

base forecasts are generated with the aid of private information not available to the analyst, mak-

ing it impossible to build an meta model. Whilst combining information sets and building such a

model may be theoretically optimal, in practice there exist several examples where combinations

of simpler sub-models are significantly more effective; see Elliott and Timmermann (2013) for

a comprehensive discussion. Rapach et al. (2010) compare the performance of combined fore-

casts of Stock Market Returns, demonstrating that a ‘kitchen sink’ model built on the basis of all

potential predictors at once performs particularly poorly, whereas combinations of several uni-

variate models are considerably more effective. Elliott and Timmermann (2013) outline several

circumstances where FC might be expected to add value, in particular, where:

• The nature of the underlying data generating process is unknown or uncertain;

• The parameters of the model are unknown or uncertain;

• The parameters (or indeed the model) are subject to breaks or changes over time;

• The underlying forecasts are based on different loss functions (thinking perhaps of incen-

tives within different parts of an organisation)

Clearly such situations are commonplace and describe most if not all forecasting problems in

management, economic, and social settings. For any variable of interest there are (at least) three

different ways of forecasting using combinations: (a) combining forecasts from different univari-

ate models, (b) decomposition of the series into components which are modelled and recombined,

and (c) modelling with different sets of predictors and combining the forecasts.

The idea of combining Exponential Smoothing forecasts with those of ARIMA models lay

behind the original work of Bates and Granger (1969), and Stock and Watson (1998) examine the

performance of several univariate models for the prediction of US Economic time series, finding
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that combinations of simple univariate models perform better than any other single approach.

Other examples of combining forecasts from different univariate models include the combination

of forecasts from a particular family of models (see, for example, Kolassa, 2011; Kourentzes et al.,

2019) and simple or weighted combinations across multiple different families (Petropoulos and

Svetunkov, 2020; Montero-Manso et al., 2020).

Decomposition-based methods include the temporal hierarchies as described above, and the

theta method (Assimakopoulos and Nikolopoulos, 2000; Fiorucci et al., 2016) where the seasonally-

adjusted signal is separated into long- and short-term variations. In the same category we could

place bagging-related approaches (Bergmeir et al., 2016; Petropoulos et al., 2018), where the orig-

inal series is used to produce several bootstrap series; these bootstraps are forecasted indepen-

dently (using the same or different models), and, finally, the forecasts from all bootstraps are

aggregated (combined).

Rapach et al. (2010) is an example of using an array of different predictors, and Elliott (2015)

take approach (c) to a logical (frequentist) conclusion and compute and average over forecasts

using all possible subsets of models from a group of predictors.

Economics and finance dominate in terms of applications of FC, but some interesting exam-

ples in different sectors include Bordignon et al. (2013) and Graefe et al. (2014). In addition to

combination strategies, a large variety of combining methodologies and weighting schemes ex-

ist, including the inverse MSE approach of Bates and Granger (1969), regression models (Granger

and Ramanathan, 1984; Diebold and Pauly, 1990) and principal components models (Bansal et al.,

2015; Stock, 2002). These can be static or time-varying and based on in-sample or out-of-sample

forecast errors. Stock and Watson (2004) and Rapach et al. (2010) compare several approaches

on economic and financial time series respectively. Rapach et al. (2019) select and then com-

bine sets of predictors; the same principles underlie Bayesian approaches which average across

a number of different models, using the ‘spike and slab’ model of George and McCulloch (1993)

and Mitchell and Beauchamp (1988). Whilst effective on small to medium sized problems, these

approaches based on discrete random variables struggle to deal with large numbers of potential

predictors where combinatorial complexity affects performance. More recently approaches, such

as Carvalho et al. (2010) and Thomson et al. (2019), perform well on large problems. From the

limited set of examples outlined above, it is clear that the FC literature is substantial, and re-
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searchers will doubtless find several ideas within it that can be usefully applied to reconciliation

problems.

A criticism often levelled at FC based approaches is that if adding a new model improves fore-

cast accuracy, then the original model was clearly miss-specified. The direct implication of such

an argument is modelling oversight, rather than inherent uncertainty in the problem at hand.

Were the same argument to be made in a financial context, along the lines of diversification being

a crutch for inadequate security analysts, most would rightly suspect behavioural overconfidence

on the part of the critic. The empirical success of FC suggests that a little humility goes a long

way in improving forecast accuracy. We now propose a FC-based approach to the reconciliation

of a simple hierarchy.

3. Hierarchical Reconciliation as Forecast Combination

Consider initially a simple hierarchy composed of three series, two bottom-level (n = 2) or

disaggregate time series A and B, and a total, T, such that T = A + B. The total number of series in

this simple hierarchy is m = 3. We assume that forecasts are available for T, A, and B, along with

an estimate of the covariance matrix of forecast errors, W. The base or unreconciled forecasts for

the individual series are ŷ = [ŷT, ŷA, ŷB]′, representing the inputs to the FR process. The process

itself is characterised by two matrices G and S, and the output is a set of reconciled forecasts ỹ

such that

ỹ = SGŷ. (4)

In earlier literature G (or sometimes P) is referred to in different ways, we refer to it inter-

changeably as a reconciliation or weighting matrix; as we shall see that it plays the role of a

weighting matrix in all reconciliation approaches based on (4), be they top-down, bottom-up,

middle-out or ‘optimal’. The summing matrix for this simple hierarchy is

S =


1 1

1 0

0 1

 , (5)

while the weighting matrix G, is of order 2× 3 containing the reconciliation weights:

G =

gAT gAA gAB

gBT gBA gBB

 , (6)
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with gXY denoting the contribution weight of the base forecast of node Y to the reconciled forecast

of node X. For the reconciled forecasts to be unbiased, GS = In (Wickramasuriya et al., 2019),

where In is an identity matrix of order n. This implies the following set of constraints:

gAT + gAA = 1, gAT + gAB = 0,

gBT + gBA = 0, gBT + gBB = 1.

The constraints can be incorporated directly into the matrix G, so equation (6) becomes:

G =

(1− gAA) gAA (gAA − 1)

(1− gBB) (gBB − 1) gBB

 . (7)

Equation (4) can now be written as
ỹT

ỹA

ỹB

 =


1 1

1 0

0 1


(1− gAA) gAA (gAA − 1)

(1− gBB) (gBB − 1) gBB



ŷT

ŷA

ŷB

 , (8)

which can be re-arranged as

ỹT = (2− gAA − gBB)ŷT + (gAA + gBB − 1)(ŷA + ŷB),

ỹA = gAAŷA + (1− gAA)(ŷT − ŷB),

ỹB = gBBŷB + (1− gBB)(ŷT − ŷA).

(9)

Therefore, for the hierarchy described by S in (5), two alternative forecasts are available for

each of the time series A, B, and T as a consequence of the aggregation constraints implied by

the hierarchy. Consider series A, for which the direct base forecast is ŷA. Because A = T − B,

and we have available forecasts for T and B, an additional implicit forecast for A is available as

(ŷT − ŷB). As per Bates and Granger (1969), if the direct and implicit forecasts are unbiased and

not perfectly correlated, a weighted combination of the two benefits from a diversification effect,

such that the combined forecast ỹA = gAAŷA + (1 − gAA)(ŷT − ŷB) will also be unbiased and will

have lower error variance than either ŷA or (ŷT− ŷB) alone. Panagiotelis et al. (2020) approach this

problem from a geometric perspective, but for most audiences we believe that our explanation of

FR, based on combining forecasts (and utilising a portfolio analogy) will be easier to understand.

Most empirical work in FC adopts a Mean Squared Error (MSE) loss function which is implicit

in our discussion above. Elliott and Timmermann (2013) and the references therein discuss the
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choice of loss function in FC in some detail. It is worth reiterating the point made by the same

authors; the variance of the combined forecast is always less than or equal that of the individual

forecasts, so under MSE loss FC never detracts value.

Equation (8) shows that G can be regarded as a weighting matrix, of a form constrained by

the hierarchy, which combines the base forecasts from the hierarchy to give reconciled forecasts

at the most disaggregate level (Gŷ). These new forecasts are in turn aggregated by S to produce

the complete set of reconciled forecasts ỹ. G in equation (7) represents the general form of the

weighting matrix for a hierarchy defined by the S in (5), with gAA and gBB representing the weights

on the direct base forecasts of A and B in the forecast combination equations (9). We set out our

approach in this way in order to understand the mechanics underlying FR; for anything other than

trivial hierarchies, using the matrices S and G directly will be much more tractable. Appendix B

sets out the forecast combination based approach for a more complex three level hierarchy.

The structure of (7) and (9) allows us to explore some useful special cases:

• If gAA = gBB = 1, then G becomes the bottom-up reconciliation matrix, similar to Hyndman

et al. (2011):

GBU =
[
0n×(m−n) In

]
. (10)

• If the weights on the base forecast of T in the combining equations for the disaggregate

series sum to 1, i.e. in this case (1 − gAA) + (1 − gBB) = 1, we can see that ỹT = ỹA + ỹB = ŷT,

that is the base forecast and reconciled forecast at the top level of the hierarchy are equal.

Therefore the constraint,
∑
j gjT = 1 for j = 1...n can be used to generate top-down forecasts.

To our knowledge, all top-down weighting matrices previously suggested in the literature

resulted in biased reconciled forecasts. For example, Hyndman et al. (2011), Panagiotelis

et al. (2020) and references therein employ a top-down weighting matrix of the form:

G =
[
q 0n×(m−1)

]
, (11)

where q is a vector of size n which proportions the top level forecast across the disaggregate

series. The same authors point out that weighting matrices of this form can never satisfy

the constraint GS = In required for the resulting forecasts to be unbiased. G in the form set

out in (7) with (1−gAA)+(1−gBB) = 1 allows for unbiased top-down (or middle-out) forecast

reconciliation.
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• Weighted combinations of valid G matrices, for example of the form

G = w1G1 +w2G2 + ...+wkGk (12)

with
∑
wi = 1 and 0 ≤ w ≤ 1 are also valid G matrices, satisfying GS = In and can be applied

to a vector of base forecasts ŷ to generate simple and robust FR strategies. Gi might for

instance represent top-down, bottom-up, or middle-out weighting matrices.

If we can reasonably estimate the forecast error covariance matrix of ŷ, W, then we can

write the top row vector of G in (7), corresponding to the combining equation for series A, as

gA =
[
(1− gAA) gAA (gAA − 1)

]
and minimise the variance of ỹA, Var(ỹA) = gAWgT

A, to analyti-

cally calculate the optimal weight gAA. This is mathematically the same exercise as calculating

the minimum variance portfolio of two securities given their estimated variances and covari-

ances. The optimal weight gBB can be derived by direct analogy. Alternatively we can simultane-

ously estimate gAA and gBB, by minimising tr
(
GWGT

)
, where tr(·) is the trace operator that sums

the variances of ỹA and ỹB which appear on the diagonal of GWGT. The MinT FR approach of

Wickramasuriya et al. (2019) is likewise obtained by choosing the weighting matrix to minimise

tr
(
GWGT

)
using the constraints written out separately as GS = In.

4. Combinations of Unbiased Forecasts

In section 3, we showed that reconciliation matrices can be constructed to generate unbiased,

coherent forecasts corresponding to any level of a hierarchy. In this section we examine how

such reconciliation matrices can be constructed in practice without requiring the estimation of

large covariance matrices, and form averages of these separate components which can be used to

reconcile vectors of forecasts in the usual framework. We then suggest a simple modification to

this process which we believe will generate improved forecasts in many settings.

4.1. Simple Estimates of G

‘Bottom-up reconciled’ forecasts correspond to the case where reconciled forecasts (ỹj ) are

equal to base forecasts (ŷj ) for all of the bottom level series. ‘Top-down reconciled’ forecasts are

those where ỹT is equal to the base forecast ŷT for the top-level aggregate forecast, and other hier-

archical levels are filled out by proportion. ‘Middle-out reconciled’ forecasts can be constructed
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in a similar way. Generally, we call level-reconciled forecasts those were the reconciled forecasts

coincide with the base forecasts of a particular level.

Hyndman et al. (2011) write the bottom-up reconciliation matrix directly as equation (10).

They also suggest adopting a top-down reconciliation matrix of the form in (11), but point out

that such a weighting matrix can never satisfy the constraint GS = In required for the resulting

forecasts to be unbiased. We can also see that this is the case from the examination of the com-

bining equations (9). The point is also made from a geometric perspective by Panagiotelis et al.

(2020). As we note above, equation (4), with (1 − gAA) + (1 − gBB) = 1 gives unbiased top-down

reconciled forecasts if the base forecasts are unbiased, i.e. ỹT = ỹA + ỹB = ŷT. The issue of bias

induced by equation (11) is well flagged in the literature; indeed, the casual reader might easily

gain the mistaken impression that all top-down forecasts are inherently biased.

Taking for example series A in the simple hierarchy of section 3, from (9) we see that ỹA =

gAAŷA + (1− gAA)(ŷT − ŷB). In a forecast combination context, we know (Bates and Granger, 1969;

Elliott and Timmermann, 2013) that the optimal value for gAA is given by

gAA =
σ2

T-B − σA,T-B

σ2
T-B + σ2

A − 2σA,T-B
and (1− gAA) =

σ2
A − σA,T-B

σ2
T-B + σ2

A − 2σA,T-B
, (13)

where σA is the standard deviation of the forecast errors for series A and σA,T-B is the covariance

between the forecast errors of the direct forecast (A) and the indirect forecast (T − B).

It is common in FC exercises to ignore covariance terms and to write

(1− gAA) =
σ2

A

σ2
T-B + σ2

A

. (14)

In the case of top-down forecasts,
∑n
j=1(1 − gjj ) = 1 and (1 − gjj ) is given by equation (14).

Alternatively, taking ỹA = gAAŷA + (1− gAA)(ŷT − ŷB) and rearranging, we get

ỹA = ŷA + (1− gAA)(ŷT − ŷA − ŷB), (15)

which demonstrates that reconciled forecast is given by adding a proportion (1− gAA) of the total

cross hierarchy reconciliation error (ŷT − ŷA − ŷB) to the base forecast of A. In practice, we simply

set for each bottom level forecast j

(1− gj ) =
σ2
j∑n

j=1σ
2
j

, (16)
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which avoids the need to calculate ŷT-B. The two approaches give virtually identical results in

practice.

Although equation (11) produced reasonable forecasts in the work of Athanasopoulos et al.

(2009), it is a flawed approach as it fails to account for the forecast error variances of the bottom

level series in updating their expected reconciled values conditional on the forecast for T. We

expect our TD approach to outperform the top down approach suggested in the literature which

disregards the prior variance of A and B. The resulting top-down forecasts can still be expressed

as qyT where q is a m − n vector of proportions (Hyndman and Athanasopoulos, 2018), but the

proportions in q do not simply represent the historical proportions of the bottom series to the top

level.

Whilst it is a relatively straightforward matter to write down the weighting matrix G for a

simple hierarchy, this is not the case when the number of series becomes large and the hierarchy

complex. Appendix A sets out a simple procedure to calculate the weighting matrix G for any

hierarchy at any given level of aggregation. Once a set of G matrices have been generated we can

take their simple weighted average and reconcile the vector of base forecasts as per equation 12:

ỹ = S(w1G1 +w2G2 + ...+wkGk)ŷ = S(w1G1ŷ+w2G2ŷ+ ...+wkGkŷ). (17)

4.2. Combined Conditional Coherent Forecasts

Such top-down/middle-out reconciliation matrices fit in to the existing framework of equa-

tion (4), where a vector ofm existing base forecasts is pre-multiplied by SG to produce reconciled

forecasts which are now coherent but ‘close’ (Panagiotelis et al., 2020) to the base forecasts. This

similarity between base and reconciled forecasts is an advantage of forecast reconciliation, but may

actually be a disadvantage from a forecast combination perspective. The full benefits of combining

forecasts are obtained when forecasts are less correlated and more diverse. Can we capture these

benefits whilst holding on to the attractive and now familiar forecast reconciliation framework?

A (valid) criticism of the ‘top-down’ approach we advocate above is that we are not producing

truly ‘top-down’ forecasts – but actually a linear combination of forecasts of all hierarchical levels,

constructed so that the reconciliation process does not change the top level base forecast. In this

regard our top-down approach outlined above is similar to the ‘Top Down Forecast Proportions’

(TDFP) approach of Athanasopoulos et al. (2009). We can address this issue by building a new
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set of top-down forecasts which do not incorporate the base forecasts at the lower levels. These

forecasts take a top-level base forecast (yT), and require a model, or at least some assumptions, to

estimate the bottom levels conditional on the forecast of T, i.e. in the simple example above we are

interested in the conditional expectations E(A | T) and E(B | T).

E(A | T) is of course a regression of A on T, which suggests a number of ways of building such

conditional forecasts. Models for E(A | T) and E(B | T) may or may not produce a set of forecasts

for the hierarchy which are coherent, but if this is not the case they can easily be reconciled with

an appropriate G matrix, produced as described above, which does not change the value of the

base forecast at the top level. If this exercise is repeated at each level of the hierarchy (producing

conditional forecasts based on the base forecasts of a particular hierarchical level), the result will

be several sets of reconciled forecasts. These forecasts are conditional on the base forecasts at each

level and coherent in the usual sense that they aggregate across the hierarchy. We propose to then

combine them to form Combined Conditional Coherent (CCC) forecasts.

Effectively, we can produce multiple ŷ vectors, apply the corresponding G matrices, and com-

bine the reconciled forecasts:

ỹ = S(w1G1ŷ1 +w2G2ŷ2 + ...+wkGkŷk). (18)

The set of k forecasts (where k is the number of levels in the hierarchy) form a relatively di-

verse pool or ensemble of coherent forecasts which when combined deliver the full diversification

benefit of forecast combination.

In our empirical work below we use a very simple approach to produce the conditional fore-

casts; essentially a ‘seasonal average’ model. We calculate the calendar month mean and variance

of each bottom level series. Our ‘base’ forecasts for the top level of the hierarchy then comprised

of the forecast value of the top level, and the historic mean values (of the respective month) for

the bottom-level series. These base forecasts are then reconciled via a top-down G matrix as

described above, with the forecast error variances required to estimate G being the sample vari-

ances of the base series. Clearly several richer and potentially more accurate conditional models

are possible.

The information set at time t for our CCC forecasts generated at level i in the hierarchy is

comprised of the base forecasts for the time series in level i and the sample data for the series of

the hierarchy. As such, the forecasts are directly comparable with the two top-down forecasting
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approaches that are based on historical proportions (‘HP1’ and ‘HP2’) of Athanasopoulos et al.

(2009). The third top-down approach (TDFP) considered by these authors augments the historical

data with forecasts of the bottom-level series. The TDFP approach therefore has more in common

with equation (17) whereas the approach described in this section is similar in nature to HP1 and

HP2.

As discussed above, a key finding of the FC literature is that simple combination methods

are difficult to beat in practice and often outperform more complex approaches. In the words of

Elliott and Timmermann (2013): “Equally weighted combinations occupy a special place in the fore-

cast combination literature”. These authors cite several empirical examples where simple schemes

have proven superior to approaches based on variance/covariance matrix estimation, and discuss

the theoretical conditions where such an approach may be optimal. It is not hard to see why this

might be the case, especially in a multivariate context: equal weighting requires no further pa-

rameter estimation, whilst variance/covariance schemes requires the estimation of a large matrix

that is itself conditional on the parameters of the underlying forecasting models. On this basis,

where it is hard to argue a priori for the superiority of any particular forecasting approach, and/or

where the models under consideration have similar error variance, equal weighting is the sensible

default option. In a hierarchical forecasting context, Abouarghoub et al. (2018) again show that

an equally weighted forecast combination is effective in forecasting freight rates in the context

of international shipping data, and provides more accurate forecasts than an ‘optimal’ approach.

In an organisational context, it is sometimes the case that more than one forecast is produced

for some hierarchical levels. These situations are easily handled within our framework, which

potentially allows for several forecasts for any hierarchical level. In section 5, we apply just such

an equally weighted forecast combination approach to a substantial data set from the Australian

tourism sector.

4.3. General Multivariate Forecasting with Linear Constraints

We echo the views of Panagiotelis et al. (2020) that approaches developed to deal with hierar-

chical time series apply more broadly to any multivariate collection subject to linear constraints.

Equations (9) and (14) comprise a very simple and robust approach to forecasting in these set-

tings. For the example above, no S matrix is required and we can simply write T = A + B (or

A = T − B) where there is no clear hierarchy of variables. We then produce base forecasts ŷj of
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each component j ∈ [T,A,B] and conditional forecasts of the other variables given each j and rec-

oncile these if necessary. The final set of forecasts for the entire collection is simply a weighted

combination
∑
wj ỹj with

∑
wj = 1.

5. Reconciled Forecasts for Australian Domestic Tourism

We explore an empirical application of various forecast reconciliation approaches to a sub-

stantial set of time series from the Tourism sector. The data describe the number of nights spent

away from home, classified both by destination and purpose of travel for domestic tourism with

Australia between 1998 and 2016 1. The data comprises n = 304 disaggregate series, which are

aggregated both geographically and by purpose of travel, resulting in 8 hierarchical levels and

a total of m = 555 monthly time series. We follow Wickramasuriya et al. (2019) and build base

forecasts for each series over a 96-month rolling window, using Exponential Smoothing models

(on default settings) from Rob Hyndman’s automated R package forecast2. Wickramasuriya et al.

(2019) have shown that the ‘MinT’ approach performs well on this data set, generating meaning-

ful improvements in forecast accuracy. We focus on Exponential Smoothing Models (ETS), as the

original authors show that this methodology produces substantially more accurate base forecasts

than ARIMA based models in this setting, therefore presenting a more challenging environment

for forecast combination techniques we consider.

Base forecasts, in-sample fitted values, and model errors from each ETS model are calculated

for each forecast month, and out of sample forecasts out to a 12-month horizon are produced

using a variety of reconciliation approaches:

• Base Forecasts – unreconciled forecasts for each level of the hierarchy

• Bottom Up (BU) – Forecasts from the most disaggregate series, aggregated via the summing

matrix S.

• Top Down (TD) – Forecasts from the top level of the hierarchy, reconciled using the process

described in Section 4 and Appendix A.

1The data was downloaded from https://robjhyndman.com/publications/mint/
2https://pkg.robjhyndman.com/forecast/
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• Top Down Historic Proportions (TDHP) – Forecasts from the top level of the hierarchy,

reconciled using the ‘HP2’ approach of Athanasopoulos et al. (2009).

• OLS – The original FR model of Hyndman et al. (2011). A simple approach which assumes

that the base forecasts are independent and identically distributed; an assumption clearly

violated in the data. OLS is calculated by setting W = I in the MinT reconciliation approach

of Wickramasuriya et al. (2019).

• WLSv – Again based on equation MinT but with the error variances of each series taken

into account, i.e., the forecast errors are assumed to be unbiased and independent but with

differing variances. W is set equal to a diagonal matrix of the variances of the base forecast

errors.

• MinTShrink – The optimal approach of Wickramasuriya et al. (2019) based on a shrinkage

estimator of the covariance matrix of forecast errors.

• CCC – an equally weighted average of 8 forecasts for each series derived from 8 levels of

the hierarchy. We combine 6 middle-out approaches, plus bottom-up and top-down. For

the Top Down and Middle Out forecasts which, along with bottom-up forecasts comprise

the CCC approach, the reconciled forecasts for each level are produced by allocating recon-

ciliation error in proportion to the variance of each disaggregate series measured over the

preceding 96 months. The variances are calculated on a seasonally adjusted basis, i.e., by

using the mean for each calendar month as the location parameter in the variance calcula-

tion. This results in 8 sets of forecasts, each corresponding to the forecast information at a

particular level of the hierarchy. The G matrix for each i is applied to generate bottom level

forecasts, which are then aggregated for the entire hierarchy via the usual S matrix. Final

CCC forecasts are formed as an equally weighted average of these eight forecasts.

Table 1 sets out the results of the out of sample forecasting exercise. The table shows the av-

erage RMSE errors at each level of the hierarchy expressed as a proportion of the RMSE of the

base forecasts, less 1. Therefore positive numbers in the table represent the percentage deterio-

ration in forecast relative to base forecasts, whereas a negative numbers represent the percentage

improvement relative to base.
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Forecast horizon

All purposes By purpose of travel

Approach 1 2 3 6 12 1-6 1-12 1 2 3 6 12 1-6 1-12

A
u

st
ra

li
a

BU 10.8 5.3 3.8 4.9 6.8 5.7 6.5 7.8 3.6 3.3 4.5 4.5 4.5 4.5

TD -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 10.8 11.3 10.9 8.6 3.0 9.9 5.0

TDHP -0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 17.4 16.6 13.1 4.5 15.4 7.7

OLS -1.3 -1.5 -1.6 -0.7 0.6 -1.3 -0.2 -0.5 -0.2 -0.2 -0.4 -1.0 -0.4 -0.5

WLSv 2.0 -0.6 -1.1 0.7 3.2 0.0 1.9 1.1 -0.3 -0.4 0.3 0.6 -0.1 0.4

MinTShrink -0.0 -1.7 -2.4 -0.9 1.3 -1.5 -0.1 -0.4 -1.1 -1.2 -0.6 -0.4 -1.0 -0.5

CCC 1.1 -1.0 -1.4 0.4 2.8 -0.4 1.5 1.9 1.3 1.1 0.9 -0.0 1.0 0.2

St
at

es

BU 3.1 1.9 2.7 4.5 3.9 2.9 3.8 2.3 1.9 0.7 1.5 0.6 1.6 1.6

TD 2.5 4.4 5.6 5.6 2.4 4.6 3.8 5.1 5.8 5.0 4.4 -0.8 4.9 1.9

TDHP 3.0 5.0 6.1 6.1 2.5 5.1 4.0 7.7 8.5 7.4 6.5 0.2 7.3 3.3

OLS -2.2 -1.4 -0.7 -0.4 -0.7 -1.1 -0.9 -1.1 -0.7 -1.0 -1.2 -2.5 -0.9 -1.5

WLSv -2.2 -1.5 -0.6 0.5 0.4 -1.0 -0.2 -1.2 -0.7 -1.5 -1.4 -2.7 -1.2 -1.6

MinTShrink -2.8 -1.8 -1.0 -0.2 -0.5 -1.4 -1.2 -1.7 -1.0 -1.8 -1.7 -3.1 -1.5 -2.0

CCC -2.9 -1.9 -1.0 0.2 0.0 -1.4 -0.4 -1.3 -0.6 -1.4 -1.4 -3.6 -1.3 -2.2

Z
on

es

BU 1.7 1.2 1.2 2.1 2.4 1.8 2.9 0.9 0.3 0.1 0.6 1.7 0.6 1.5

TD 0.0 0.8 0.6 -0.1 -2.2 0.5 -0.6 0.8 0.9 0.3 0.1 -2.0 0.4 -1.1

TDHP 0.4 1.2 0.9 0.3 -2.2 0.8 -0.5 2.1 2.3 1.6 1.2 -1.5 1.6 -0.3

OLS -1.2 -0.9 -1.1 -1.6 -1.4 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.2

WLSv -1.5 -1.3 -1.3 -1.4 -1.0 -1.2 -0.7 -1.5 -1.5 -1.7 -1.5 -1.4 -1.6 -1.4

MinTShrink -2.1 -1.8 -1.7 -1.9 -1.7 -1.7 -1.5 -1.9 -1.9 -2.0 -1.9 -1.8 -2.0 -1.9

CCC -2.8 -2.6 -2.7 -2.7 -2.6 -2.5 -2.1 -2.4 -2.4 -2.8 -2.7 -3.1 -2.6 -2.9

R
eg

io
ns

BU 0.9 -0.5 0.4 1.3 2.3 0.7 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TD -1.6 -1.9 -1.4 -1.8 -2.3 -1.7 -2.2 -0.7 -0.4 -0.8 -1.5 -3.6 -1.0 -2.9

TDHP -0.5 -0.8 -0.5 -0.9 -1.7 -0.7 -1.5 0.5 0.8 0.3 -0.4 -3.0 0.1 -2.1

OLS -1.1 -1.7 -1.5 -1.4 -1.1 -1.4 -1.4 -1.0 -0.7 -0.8 -1.0 -1.6 -1.0 -1.5

WLSv -1.6 -2.4 -1.9 -1.5 -0.8 -1.8 -1.4 -1.3 -1.1 -1.3 -1.4 -2.0 -1.4 -2.0

MinTShrink -1.9 -2.7 -2.2 -1.9 -1.2 -2.1 -1.9 -1.7 -1.5 -1.6 -1.8 -2.4 -1.8 -2.3

CCC -3.3 -3.9 -3.4 -3.4 -2.8 -3.5 -3.3 -2.9 -2.7 -3.0 -3.4 -4.5 -3.2 -4.2

Table 1: The left-hand columns represent results grouped geographically. Right-hand side columns set out results for

the same geographies split by purpose of travel. The data becomes more disaggregate reading downwards and to the

right, with the bottom right hand side representing the most disaggregate forecasts, and overall totals in the top left

corner. The numbers represent the percentage increase or decrease in RMSE of reconciled forecasts relative to the

base forecasts. Bold entries identify the best performing approaches. All base forecasts were generated using the ETS

routine of the R package ‘forecast’.
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Forecast horizon

All purposes By purpose of travel

Approach 1 2 3 6 12 1-6 1-12 1 2 3 6 12 1-6 1-12

A
u

st
ra

li
a

BU 12.3 8.0 5.3 5.4 9.2 7.5 8.9 12.1 7.5 6.9 6.8 6.7 7.2 6.5

TD -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 12.1 11.2 10.7 9.6 6.0 10.1 7.1

TDHP -0.0 0.0 0.0 -0.0 0.0 -0.0 0.0 16.7 15.8 14.9 12.8 7.0 14.0 9.0

OLS -1.2 -1.0 -1.0 -1.0 0.5 -1.0 -0.2 2.6 0.9 1.2 0.8 0.5 1.2 0.7

WLSv 1.9 1.3 -0.2 0.5 4.2 0.9 3.0 4.5 2.2 2.1 1.1 2.6 1.8 2.1

MinTShrink -0.1 0.2 -1.5 -1.1 1.9 -0.5 0.8 2.7 0.9 0.5 -0.3 0.9 0.4 0.5

CCC 0.9 0.7 -0.7 -0.1 3.6 0.3 2.5 5.1 3.6 3.1 2.2 2.6 2.8 2.4

St
at

es

BU 4.3 1.5 2.6 3.7 4.3 2.9 4.1 1.0 0.0 -0.2 0.6 -0.7 0.4 -0.2

TD 1.5 1.4 2.1 2.2 0.4 1.8 1.5 1.6 1.1 0.5 0.7 -2.4 0.9 -1.0

TDHP 3.3 3.0 3.8 3.3 0.2 3.3 1.8 2.3 1.6 1.0 1.2 -2.2 1.4 -0.7

OLS -0.8 -0.4 0.3 0.0 -1.5 -0.3 -0.8 2.5 1.8 2.0 1.3 1.0 1.9 1.0

WLSv -0.8 -1.7 -1.0 -0.2 0.5 -1.0 0.1 -1.6 -2.2 -2.4 -2.1 -2.7 -2.0 -2.5

MinTShrink -1.2 -2.0 -1.6 -0.9 -0.5 -1.5 -0.9 -2.1 -2.6 -2.9 -2.4 -3.1 -2.4 -2.9

CCC -1.8 -2.6 -2.0 -1.1 -0.5 -2.0 -0.8 -2.2 -2.6 -3.2 -2.7 -4.2 -2.7 -3.5

Z
on

es

BU 1.1 0.5 0.5 1.6 1.8 1.1 1.5 -0.6 -0.6 -0.6 -0.3 0.1 -0.5 -0.1

TD -1.1 -1.3 -1.7 -1.7 -2.7 -1.5 -2.1 -0.4 -0.6 -0.7 -0.7 -1.7 -0.7 -1.4

TDHP -1.1 -1.2 -1.6 -1.9 -3.0 -1.5 -2.4 -0.3 -0.5 -0.6 -0.7 -1.9 -0.6 -1.5

OLS -0.2 -0.6 -0.9 -0.8 -1.2 -0.6 -1.0 6.9 6.5 6.8 5.7 6.5 6.6 5.9

WLSv -1.8 -2.0 -1.9 -1.5 -1.0 -1.7 -1.2 -1.5 -1.5 -1.5 -1.4 -1.1 -1.5 -1.3

MinTShrink -2.2 -2.4 -2.4 -2.0 -1.5 -2.2 -1.8 -1.8 -1.7 -1.7 -1.6 -1.3 -1.7 -1.5

CCC -3.1 -3.3 -3.5 -3.1 -2.8 -3.2 -2.9 -2.6 -2.5 -2.5 -2.5 -2.6 -2.6 -2.6

R
eg

io
ns

BU -1.6 -1.9 -1.5 -1.5 -1.0 -1.6 -1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TD -2.7 -2.9 -2.7 -3.3 -3.8 -3.0 -3.5 0.6 0.4 0.2 -0.1 -1.0 0.2 -0.5

TDHP -2.7 -2.9 -2.7 -3.4 -3.8 -3.1 -3.5 0.4 0.3 0.2 -0.2 -1.2 0.1 -0.8

OLS -0.3 -0.6 -0.7 -1.1 -1.3 -0.8 -1.1 17.6 17.6 17.9 16.3 15.9 17.4 16.0

WLSv -2.8 -2.9 -2.8 -2.8 -2.5 -2.9 -2.6 -0.2 -0.1 -0.2 -0.2 -0.4 -0.2 -0.3

MinTShrink -3.1 -3.2 -3.1 -3.3 -2.9 -3.2 -3.0 -0.4 -0.3 -0.4 -0.4 -0.6 -0.4 -0.5

CCC -4.0 -4.2 -4.1 -4.3 -4.1 -4.2 -4.1 -0.8 -0.8 -0.9 -1.1 -1.6 -1.0 -1.4

Table 2: The left-hand columns represent results grouped geographically. Right-hand side columns set out results for

the same geographies split by purpose of travel. The numbers represent the percentage increase or decrease in MASE

(using the seasonal naive forecast) of reconciled forecasts relative to the base forecasts. Bold entries identify the best

performing approaches.
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The clear conclusion from Table 1 is the overwhelming superiority of CCC at the bottom

levels of the hierarchy. CCC is the best performing methodology for the bottom half (4 levels)

of the hierarchy at all time horizons. Wickramasuriya et al. (2019) describe how forecasts at the

bottom of the hierarchy are particularly difficult to generate, and how even the normally robust

ETS procedures fail to identify important features of the disaggregated level data. Reinforcing

the message from previous research, both in FR and FC, it is here, where accurate forecasting

becomes more difficult, that the benefits from combining forecasts become greater. At the same

time, however, the reliance on optimal approaches on variance/covariance estimation would seem

to make them less effective than simpler methodologies.

Table 2 sets out the Mean Absolute Scaled Error of Hyndman and Koehler (2006) for the var-

ious forecasting methods at different hierarchical levels. Again, the superiority of CCC at lower

hierarchical levels is very clear. By contrast, each of the optimal methods struggles to deal with

the increased levels of noise towards the bottom of the hierarchy. MinT generally performs better

than WLS suggesting that estimation of error variance is at least as problematic as covariance

terms for this data set. Averaging across the 8 hierarchical levels in Table 2 leads to Table 3. The

superiority of the CCC approach is clearly shown in this summary table. In a non-tabulated result,

we calculated a simple combination of top-down and bottom-up forecasts only, which performed

creditably although not as strongly as CCC.

The original FC paper of Bates and Granger (1969) suggested an ‘optimal’ forecast combi-

nation approach, but many researchers have found that simplified approaches work better in

practice. Our results echo these findings in a FR setting.

6. Implications for Decision Making

FR techniques bring two key benefits to the forecasting process; firstly they generate forecasts

which are coherent (the levels ‘add up’ in the same way as historical data), and secondly they

generally improve forecast accuracy via the well documented benefits of combining forecasts.

A further practical benefit of the FR approach as outlined in the literature is its applicability

to any set of base forecasts, although the optimal approaches developed to date are demanding in

terms of the quality and quantity of data necessary to operate the process. Whilst base forecast

error variances/covariances may be readily available when forecasting approaches are entirely
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quantitative at each level of the hierarchy, this will not be the case in many real world situations

that might otherwise benefit from FR techniques. In this paper we show that FR can be just

as effective (and indeed more so) without using any information on the forecast error variances

or co-variances. The benefits of FR are therefore made available to a potentially much wider

audience.

Combinations of forecasts will generally be more accurate than base forecasts as they help

to diversify forecast error, and assuming that top down forecasts are generally less volatile than

those lower down the hierarchy, apply a degree of shrinkage to bottom up forecasts. Such bene-

fits are likely to apply both to judgemental and quantitative forecasts (see Summers and Pritchett,

2014, for an interesting economic example of bias in judgemental forecasts) and as much to fore-

casts made by experts as generalists (see Miller and Gelman, 2020, for a link between behavioural

biases and a Bayesian approach to learning).

In an organisational context, embedding a FR process can democratise the forecasting process

taking in information from different sources across an organisation. The implications of our work

would suggest that:

• Forecasts should be made independently at different hierarchical levels, either by using

appropriate quantitative or judgemental methods;

• The methods described above should be used to map forecasts made at top and middle

levels of the hierarchy on to bottom level forecasts;

• These forecasts should be combined together (using equal weights unless there exists a com-

pelling reason to do otherwise) and summed to provide coherent forecasts for the hierarchy.

• In general, combined forecasts are a clear mathematical illustration of the benefits of what

might be termed a ‘democratic’ approach: Less correlated forecasts from diverse viewpoints

across an organisation make for better forecasts once pooled together, but are potentially

catastrophic if allowed to exist in parallel. ‘Groupthink’ results in a less diversified pool of

base forecasts and poorer outcomes.

• Managers should be made aware of the general result that pooled forecasts generally outper-

form the best individual forecast even when the identity of the best individual model is known

beforehand...

23



7. Conclusion

Hierarchical forecast reconciliation is a powerful management tool that generates coherent

forecasts of large collections of time series in an efficient and principled way. The techniques are

broadly applicable in many sectors of the economy and deserve to become an important com-

ponent of the forecasting toolbox. Firstly the process produces a single set of forecasts that can

systematically incorporate insight from different parts of an organisation, taking into account

knowledge and expertise embedded at each level. Forecasts generated via reconciliation tech-

niques inherit the benefits of combined forecasts, which have been validated in many empirical

settings, and indeed have often been shown to outperform even the best ex ante forecasting model.

We showed how to write simple reconciliation problems as forecast combinations, and explain

how the corresponding weighting matrix is constructed. We showed how to calculate statistically

unbiased reconciled forecasts from any level of a hierarchy, given unbiased base forecasts, and

confirm that simple equally weighted combinations of these forecasts significantly outperform

optimised methodologies on a benchmark data set, especially in the noisiest sections of the hier-

archy. In future work we plan to extend our approach to generate probabilistic forecasts within a

Bayesian framework and to examine different combination methodologies.

The gains from combination are particularly valuable as they are often at their greatest when

improvements are needed most: Where existing forecasts are of poor quality. Forecast combina-

tion can readily be explained to non-technical audiences via a portfolio diversification analogy,

and can act as a subtle behavioural ‘nudge’ to forecasting processes, adding beneficial diversifi-

cation, and an element of shrinkage as a counterweight to any tendency towards overconfidence.

These benefits are well-documented in an extensive literature spanning several decades, and our

paper forms a bridge from this to the more recent work on hierarchical reconciliation.
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Forecast horizon

Approach 1 2 3 6 12 1-6 1-12

BU 3.5 1.9 1.6 2.1 2.7 2.1 2.5

TD 1.4 1.1 1.0 0.8 -0.6 0.9 0.0

TDHP 2.2 2.0 1.8 1.4 -0.5 1.7 0.3

OLS 3.4 3.1 3.3 2.7 2.5 3.1 2.6

WLSv -0.3 -0.9 -1.0 -0.8 0.0 -0.8 -0.3

MinTShrink -1.0 -1.4 -1.6 -1.5 -0.8 -1.4 -1.1

CCC -1.1 -1.5 -1.7 -1.6 -1.1 -1.6 -1.2

Table 3: Mean Absolute Scaled Errors from Table 2 averaged across each of the 8 levels of the hierarchy. Bold entries

identify the best performing approach.
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Appendix A: Computing the weighting matrix

In order to quickly compute a top down combining matrix we utilise the following procedure:

1. For a given aggregate level k (perhaps composed of a number of aggregate series), choose

the proportioning vector(s) for k. In the spirit of Bates and Granger (1969) we write a vector

p proportional to the variance of the bottom level constituents from the in sample period.

i.e.:

p =
[
0mk

p0 ... pn

]
with pi = σ2

i /
∑n
j=1σ

2
j for i = 1 . . .n, the bottom-level series, and mk is the number of series

on level k. The summing matrix for aggregate k is Sk . p can be a matrix if there are more

than one aggregate series in level k, see Appendix B below for an example of this case.

2. Augment Sk with p′ to form matrix Ak :

Ak =
[
p′ Sk

]
3. Introduce Ḡk which is the usual G matrix, but with an additional row representing the com-

bination weights on the aggregate series of interest. For example, Ḡk for a simple hierarchy

where T = A + B:

Ḡk =


gTT gTA gTB

gAT gAA gAB

gBT gBA gBB

 , (19)

4. Write ḠkA = In+1 and solve for Ḡk . This step imposes the required conditions that the

combining weights on the direct forecasts of A and B in the resulting weight matrix sum to

one, i.e. (1 − gAA) + (1 − gBB) = 1 in the notation of equation (9). The bottom n rows of Ḡk

then form an unbiased top down weight matrix.

To illustrate this procedure, we utilize the simple hierarchy discussed above, assuming the

variances of series A and B are estimated as .7 and .3 respectively. The vector p is then:

p =
[
0.0 0.7 0.3

]
.

The matrix Ak is
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Ak =


0.0 1.0 1.0

0.7 1.0 0.0

0.3 0.0 1.0


and setting

ḠkAk =


gTT gTA gTB

gAT gAA gAB

gBT gBA gBB



0.0 1.0 1.0

0.7 1.0 0.0

0.3 0.0 1.0

 = I3 (20)

leads to

Ḡk =


−1.0 1.0 1.0

0.7 0.3 −0.7

0.3 −0.3 0.7

 (21)

and

G =

0.7 0.3 −0.7

0.3 −0.3 0.7

 . (22)

Appendix B: 3-Level Hierarchy

Assume a three-level hierarchy where T disaggregates to X and Y, while X disaggregates to A

and B and Y disaggregates to C, D, and E. The S matrix is:

1 1 1 1 1

1 1 0 0 0

0 0 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



. (23)
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The G matrix is: 

gAT gAX gAY gAA gAB gAC gAD gAE

gBT gBX gBY gBA gBB gBC gBD gBE

gCT gCX gCY gCA gCB gCC gCD gCE

gDT gDX gDY gDA gDB gDC gDD gDE

gET gEX gEY gEA gEB gEC gED gEE


. (24)

GS = I5 implies:



gAA + gAT + gAX gAB + gAT + gAX gAC + gAT + gAY gAD + gAT + gAY gAE + gAT + gAY

gBA + gBT + gBX gBB + gBT + gBX gBC + gBT + gBY gBD + gBT + gBY gBE + gBT + gBY

gCA + gCT + gCX gCB + gCT + gCX gCC + gCT + gCY gCD + gCT + gCY gCE + gCT + gCY

gDA + gDT + gDX gDB + gDT + gDX gDC + gDT + gDY gDD + gDT + gDY gDE + gDT + gDY

gEA + gET + gEX gEB + gET + gEX gEC + gET + gEY gED + gET + gEY gEE + gET + gEY


= I5.

Given the aggregation constraints embedded in the usual S matrix used in the literature, the

base forecast of Y is not included in the combination forecast for series A or B, i.e. pAY = pBY = 0,

likewise X for series C, D and E. The vector representing the top row of G can then be written as:[
gAT (1− gAT − gAA) 0 gAA (gAA − 1) −gAT −gAT −gAT

]
A little algebra leads to a forecast combination equation involving two unknown weights for

ỹA:

ỹA = gAAŷA + (1− gAA − gAT)(ŷX − ŷB) + gAT(ŷT −
∑

j∈[B,C,D,E]

ŷj ) (25)

The standard summing matrix S implies that the reconciled forecast equation for each disag-

gregate series is written as a combination of:

• the direct forecast,

• the middle level aggregate less the appropriate other disaggregate constituents,

• the total less all other disaggregate level series.
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We reiterate the point made in Panagiotelis et al. (2020) that the aggregation constraints in

complex hierarchies can be written in several different ways, corresponding to alternative forms

of the S matrix. An alternative forecast for A in this instance could be written as (T − Y − B).

Adding an additional aggregate row in to the summing matrix adds a new combining weight in

to the reconciliation equation (25).

We now show how an equally weighted forecast can be constructed from such a hierarchy,

assuming that the variances of the disaggregate series [A, B, C, D, E] are [.7, .3, .5, .1, .2].

Bottom Up Forecasts

These are trivially generated with the (5× 8) matrix:

G0 =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


. (26)

Middle Out Forecasts

The matrix AM for the middle level is as follows, incorporating the rows corresponding to X

and Y from the S matrix, and the proportionate variances of the constituents of X and Y in the

first two columns:

AM =



0.0 0.0 1.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 1.0 1.0

0.70 0.0 1.0 0.0 0.0 0.0 0.0

0.30 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.62 0.0 0.0 1.0 0.0 0.0

0.0 0.12 0.0 0.0 0.0 1.0 0.0

0.0 0.26 0.0 0.0 0.0 0.0 1.0



. (27)

We now solve ḠMAM = I7 which gives:
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ḠM =



−1.0 0.0 1.0 1.0 0.0 0.0 0.0

0.0 −1.0 0.0 0.0 1.0 1.0 1.0

0.7 0.0 0.3 −0.7 0.0 0.0 0.0

0.3 0.0 −0.3 0.7 0.0 0.0 0.0

0.0 0.63 0.0 0.0 0.37 −0.63 −0.63

0.0 0.12 0.0 0.0 −0.12 0.88 −0.12

0.0 0.25 0.0 0.0 −0.25 −0.25 0.75



(28)

Removing the top two rows and augmenting with a leading column vector of zeros leads to a

(5× 8) G matrix:

GM =



0.0 0.7 0.0 0.3 −0.7 0.0 0.0 0.0

0.0 0.3 0.0 −0.3 0.7 0.0 0.0 0.0

0.0 0.0 0.63 0.0 0.0 0.37 −0.63 −0.63

0.0 0.0 0.12 0.0 0.0 −0.12 0.88 −0.12

0.0 0.0 0.25 0.0 0.0 −0.25 −0.25 0.75


(29)

Top Down Forecasts

The matrix AT for the top level is as follows, incorporating the row corresponding to T from

the S matrix, and the proportionate variances of the disaggregate constituents in the first column:

AT =



0.0 1.0 1.0 1.0 1.0 1.0

0.39 1.0 0.0 0.0 0.0 0.0

0.17 0.0 1.0 0.0 0.0 0.0

0.28 0.0 0.0 1.0 0.0 0.0

0.06 0.0 0.0 0.0 1.0 0.0

0.11 0.0 0.0 0.0 0.0 1.0


. (30)
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Solving ḠTAT = I6 and re arranging to give a (5× 8) weight matrix gives:

GT =



0.39 0.0 0.0 0.61 −0.39 −0.39 −0.39 −0.39

0.17 0.0 0.0 −0.17 0.83 −0.17 −0.17 −0.17

0.28 0.0 0.0 −0.28 −0.28 0.72 −0.28 −0.28

0.06 0.0 0.0 −0.06 −0.06 −0.06 0.94 −0.06

0.11 0.0 0.0 −0.11 −0.11 −0.11 −0.11 0.89


. (31)
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