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Abstract—Despite success in the same-scene hyperspectral
image classification (HSIC), for the cross-scene classification,
samples between source and target scenes are not drawn from the
independent and identical distribution, resulting in a significant
performance drop. To tackle this issue, a novel unsupervised
domain adaptation (UDA) framework towards multi-level fea-
tures and decision boundaries (ToMF-B) is proposed for the
cross-scene HSIC, which can align task-related features and
learn task-specific decision boundaries in parallel. Based on the
maximum classifier discrepancy, a two-stage alignment scheme
is proposed to bridge the interdomain gap and generate dis-
criminative decision boundaries. In addition, to fully learn task-
related and domain-confusing features, a CNN and Transformer-
based multi-level features extractor (generator) is developed to
enrich the feature representation of two domains. Furthermore,
to alleviate the harmless even the negative transfer to UDA caused
by task-irrelevant features, a task-oriented feature decomposi-
tion method is leveraged to enhance the task-related features
while suppressing task-irrelevant features, enabling the aligned
domain-invariant features to explicitly improve the classification.
Extensive experiments on three cross-scene HSI benchmarks have
validated the effectiveness of the proposed framework.

Index Terms—Hyperspectral image, cross-scene classification,
unsupervised domain adaptation, task-specific, task-irrelevant.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), delivering advantages
stemming from continuous spectrum data and rich spa-

tial information [1], [2], span a broad range of applications
[3], such as environmental monitoring [4], ecological science
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[5] and smart city [6]. Similar to dense prediction tasks, hy-
perspectral image classification (HSIC), hyperspectral image
classification (HSIC) aims at assigning one of the predefined
categories to each pixel [7], which is the most common
downstream task in hyperspectral earth observation or remote
sensing. In the past decades, an impressive number of HSIC
methods for the same scene have been investigated. These
HSIC methods for the same scene generally follow a common
assumption, that is, the training and test data are drawn from
independent and identical distribution within the same HSI.
These methods can be divided as traditional machine learning
category, such as support vector machine (SVM) [8], [9],
sparse representation [10], [11] and clustering-based methods
[12], [13], and later deep learning-based (DL-based) cate-
gory, such as multilayer perceptron (MLP) based [14], [15],
convolutional neural network (CNN) based [16], [17], graph
neural network (GNN) based [18], [19] and Transformer-
based methods [20], [21]. The superiority of these supervised
and semi-supervised machine learning based methods has
been demonstrated on many HSIC datasets. However, most
mainstream DL-based methods usually require big datasets to
achieve excellent performance, but collecting and annotating
plenty of samples for each new sense or each new task are
costly and time-consuming for the HSIC [22], [23].

The remarkable success of aforementioned methods benefits
from the massive annotated data and same distribution between
training and test data, and it will yield a significant perfor-
mance drop when the model lacks enough labeled training
data or generalizes to another unlabeled scene. But in practice,
it is often encountered that training data and testing data are
originated from different scenes in realistic applications. This
is a new challenge task called cross-scene HSIC, aiming to
train a classifier on source scenes yet test it on target scenes.
Therefore, it is natural and reasonable to explore transferable
models for the cross-scene HSIC. How to transfer the same
or task-related knowledge to other scenes or tasks is crucial
for addressing the problem of cross-scene HSIC. In the DL
field, transferability lies at the core of the whole lifecycle of
deep learning. The most commonly used task-generic transfer
paradigm of computer vision (CV) tasks and natural language
processing (NLP) tasks is that pre-trained on the upstream
task and fine-tuning to the specific downstream task [24]–
[26]. However, the technique of pretrain and finetune may be
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suboptimal for the cross-scene HSIC, as we may be impossible
to build a large-scale HSI dataset like Imagenet [27] and CoCo
[28]. Moreover, the spectral drift problem for the HSIs from
different regions and sensors is quite serious, and different
land covers may have similar spectral reflectance. Thus the
generic and transferable representations learned from upstream
tasks may be hardly to generalize to downstream specific
tasks due to the interclass similarity and intraclass variability.
Consequently, specific task-oriented transfer learning, also
known as domain adaptation (DA), which aims to bridge the
distribution gap between source and target domains to transfer
the task-related knowledge, may be more suitable for the cross-
scene HSIC task.

In recent years, DA-based HSIC methods have been de-
veloped to remedy the poor generalization of conventional
DL models when the data comes from different scenes.
These methods can be divided into two categories: 1) Semi-
supervised DA [29]–[32], aiming to leverage both the small
number of labeled target samples and massive unlabeled target
samples to alleviate the inter-domain shifts; 2) Unsupervised
domain adaptation (UDA), which predicts the target data
without leveraging any labeling information from the target
domain. In this work, we will focus on UDA, because it is
more in line with the real HSIC task. From the viewpoint of
general machine learning, prior UDA methods can be roughly
categorized as two seminal lines: 1) Domain discrepancy
minimization-based methods [33]–[37], e.g., maximum mean
discrepancy (MMD) [34], [38], concentrating on explicitly
aligning the distribution by mitigating the domain discrep-
ancy. 2) Adversarial-based methods [39]–[45], e.g., Domain
Adversarial Neural Networks (DANN), borrowing ideas from
Generative Adversarial Network (GAN) [46]. DANN instances
the hypothesis-induced domain divergence into a binary clas-
sifier and encourages the model to learn the domain-confused
features in an adversarial manner, thereby reducing the do-
main divergence. Apart from these mainstream methods, some
researches attend to seek a common subspace to implicitly
transfer the knowledge [47], [48], for instance, Yao et al. [49]
proposed a method based on the tensor alignment to project
original tensors into an invariant subspace. Encouraged by the
excellent performance of cross-attention in the multi-modal,
Xu et al. proposed CDTrans [50] to reduce the gap between
domains by aligning the instances from source-target pairs.
Moreover, due to the MMD-based methods cannot take into
account the geometric distribution of data when estimating
the discrepancy between two domains, Zhang et al. [51]
first investigate a novel topological structure and Semantic
information Transfer network (TSTnet) by considering the
alignment of statistical distribution and geometric distribution
at the same time. Motivated by the semi-supervised learning,
Fang et al. [52] proposed a confident learning-based DA for
HSIC.

Numerous advances have manifested that both the domain
discrepancy minimization based methods and the DANN-
based methods can perform well when there only existed the
difference of marginal distribution between domains However,
in many cases, when the joint distributions of features and
classes changes, only taking the alignment of marginal distri-

bution into consideration may be not enough. Therefore, some
advanced methods tried to align the marginal distribution and
joint distribution between the source and target domain. For
example, JDA [53] aligns conditional distribution through the
simultaneous alignment of marginal distribution and joint dis-
tribution. Conditional domain adversarial networks (CADNs)
[54] aim to align the joint distribution of features and classes
through the conditional GAN. Liu et al. [41] proposed a cross-
scene HSIC method to align the conditional distribution of
each class via combined class-wise DANN and MMD

In general, the core of UDA is to find the discriminative
features for downstream tasks of target domains, so how
to optimize the domain alignment task and discrimination
task in parallel is the key point of UDA. To fit this gap,
Maximum Classier Discrepancy (MCD) [55] starts to reduce
the domain discrepancy and improve the discrimination of
decision boundaries, which is the first technique to estimate
and optimize H∆H-Divergence [56] in a fully parameter-
ized manner. Lately, many variants of hypothesis adversarial
learning [57]–[59] are introduced for UDA. Although these
advanced adversarial-based methods have taken into account
both the domain alignment and classification tasks, their
motivation is to provide additional inductive information to the
discriminator in the domain level or decision level [60]. The
alignment of entire features prone to lead the negative transfer
of the model, that is, the task-irrelevant features may harm
the results of transfer learning and degrade the classification
performance. Especially for the methods based on multiple
different initialized classifiers, task-irrelevant features may
result in the amplification of the errors between classifiers.

To address the aforementioned problems, a novel unsuper-
vised domain adaptation (UDA) framework towards multi-
level features and boundaries (ToMF-B) is proposed for the
cross-scene HSIC in this paper. The ToMF-B mainly aims
to align the task-related features and learn the task-specific
decision boundaries in parallel. Specifically, to coordinate
the task of domain adaptation and the classification task,
ToMF-B adopts the maximum classifier discrepancy algorithm
to carry out the task of domain alignment by considering
classification-specific decision boundaries simultaneously. To
achieve the task of domain alignment, a two-stage alignment
scheme is introduced to bridge the interdomain distribution
gap of local features and instance-level features. Moreover,
to build richer and more diverse feature spaces for learning
the task-related domain-confused features, a hybrid model
based on CNN and Transformer is designed as the feature
extractor of ToMF-B, which can retain the local properties
and the long-distance contextual dependency of the HSI data.
Finally, to avoid the negative transfer caused by task-irrelevant
features, multi-level features obtained by the feature extractor
(generator) are decomposed into task-related features and task-
irrelevant features. By enhancing task-related features while
suppressing task-irrelevant features, features related to the
classification task are fed into the two classifiers to perform
the domain alignment, which enables the aligned domain-
confused features to explicitly serve classification tasks of
each classifier. The main contributions of this paper can be
summarized as follows:
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Fig. 1. An overview of the proposed ToMF-B, which consists of (a) feature extractor (generator), (b) two classifiers with different initialization. The feature
extractor (generator) combines CNN and Transformer, aiming to enrich the feature representation of two domains. Two classifiers are employed to perform
the domain align task and to obtain the task-specific decision boundaries. The classification meta-knowledge is adopted to obtain the task-related features.
Note that two branches are weight-sharing, and joint predictions of two classifiers are taken as test results of target scenes in the inference stage.

1) A novel cross-scene HSIC framework is proposed, which
is an unsupervised domain adaptation framework towards
multi-level features and decision boundaries (ToMF-
B). The design of ToMF-B is based on the maximum
classifier discrepancy criterion, which is consisted of a
feature extractor and two classifiers, so that the ToMF-
B can learn task-specific decision boundaries while can
align the distributions of source and target. Then a two-
stage alignment scheme allows the ToMF-B to bridge
the interdomain gap of local features and instance-level
features, that is, the local alignment ensures the similar
distribution of local features from CNN, and the global
alignment performed by minmax the discrepancy of two
classifiers will alleviate the interdomain distribution gap
of multi-level features space.

2) A hybrid model based on CNN and Transformer is
designed as the feature extractor of ToMF-B to generate
multi-level features. Specifically, the fusion of the local
features extracted by CNN and the long-range contextual
features built by the subsequent Transformer retains the
local properties and the long-distance contextual relation-
ship of the data, enriching the features representation
of two domains. Such multi-level features provide the
richer and more diverse feature spaces, which is helpful
for learning the commonly task-related features when
performing the task of domain alignment.

3) A task-oriented feature decomposition method based on
meta-knowledge of classification tasks is leveraged to
enhance the task-related features while suppressing the
task-irrelevant features. The task-related features can be

obtained by adopting the gradients of the predicted score
corresponding to the ground-truth class as the attention
weights of multi-level features, and the task-irrelevant
features are on the opposite side. By taking advantage of
the remaining task-related features, the aligned domain-
invariant features can explicitly serve the classification
tasks of each classifier, which will avoid the negative
transfer or mode collapse caused by task-irrelevant fea-
tures.

The remainder of this paper is organized as follows. In Sec-
tion II, the proposed ToMF-B is presented in detail. Sections
III presents and analyzes the experimental results in detail.
Finally, conclusions are reported in Section IV.

II. METHODOLOGY

The ToMF-B framework is illustrated in Fig. 1, which is
composed of a feature extractor and two classifiers. The goal
of ToMF-B is to align the task-related features and learn
the task-specific decision boundaries in parallel. At first, a
multi-level features extractor (generator), which hybrids the
CNN and Transformer, is designed to build the multi-level
features representation. The local feature maps are fed into
the Transformer to build the long-range contextual relationship
after the patch embedding. Moreover, the feature maps are
transformed into corresponding feature vectors with the same
dimension as the class token. Then the source multi-level
feature vectors fusing the local and long-range features are
decomposed into two task-related features based on the meta-
knowledge of each classifier. The source task-related and target
feature vectors are feed into two classifiers, and a two scheme
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is employed to bridge the interdomain gap. It is noteworthy
that we decompose the holistic feature based on the weights of
two classifiers to obtain their respective task-related features.
Therefore, the source features fed into two classifiers are
related to the classification task of each classifier. In the final
inference stage, the joint predictions of two classifiers are
taken as test results of target scenes.

A. Multi-level features extractor hybrid CNN and Transformer

The purpose of the multi-level features extractor is to
enrich the features representation of two domains and provide
the multi-level features for alignment. The features extractor
hybrid the CNN model and the Transformer model, thus the
fusion of the local features extracted by CNN and the long-
range contextual features built by the subsequent Transformer
will retain both the local properties and the long-range con-
textual relationship. Indeed, there are some advanced hybrid
models based on CNN and ViT, these works mainly focus
on combining the strengths of these two architectures while
avoiding their respective limitations. However, there are two
main purposes for us to adopt the hybrid model. Firstly, we
aim to enrich the feature representation via the hybrid model
so that task-related features and domain-invariant features can
be fully learned. Secondly, by aligning the local features
from the CNN and the instance-level features extracted by
Transformer, the domain shifts will be further bridged in two-
stage manner. Assumed the labeled samples Xs = {xsi}

ns
i ∈

RD with corresponding class labels Y s = {ysi }
ns
i are from

the source HSI Rs ∈ RHs×Ws×D and the target samples
Xt = {xti}

nt
i ∈ RD with no access to the labels are from

the target HSI Rt ∈ RHt×Wt×D. ns and nt denote the size
of source samples and target samples, respectively. D is the
number of spectral bands, and the spectral dimension of HSIs
from two scenes/domains have been sampled to be the same.
Importantly, we will only focus on the close-set cross-scene
classification, hence the Y s, Y t ∈ RC , where the C is the
number of class.

Initially, a CNN with four 2-D convolutional blocks is
utilized to extract the local features of the source and target
samples. As for the each convolutional block, it consists of a
convolution layer with 3×3 kernel size, a batch normalization
(BN) layer and ReLU. It is noteworthy that the following
derivations take the source as an example, and the corre-
sponding results of the target domain can be obtained in the
same way. Denoted θ as the CNN, taking the sample xsi and
surrounding pixels as the input HSI cube rsi ∈ RP×P×D, where
the P×P is the spatial size of HSI cube, then the local feature
map can be obtained by

Fsi = θ(rsi ), Fsi ∈ RP×P×d (1)

where d is the output dimension of the last convolution block
and the spatial size of feature maps is same as the input cube
due to the padding operation. The obtained feature map Fsi
is transformed as the local feature vector fsθi via the flatten
operation and MLP’s mapping. Moreover, following the Vision
Transformer (ViT), the feature map Fsi is also separated into
M non-overlapping patches Fsi,m ∈ Rp×p×d,m ∈ M by a

patch embedding module. Each patch is treated as a token
fsi,m ∈ R1×1×d̂, where d̂ is the embedding dimension. It is
noteworthy that fsθi is also a d̂-dimensional feature vector.

Then a Transformer network with four Transformer blocks
is employed to model the long-range contextual representation.
Let ψ represent the Transformer network, then the final class
token that aggregates the classification useful information can
be denoted as

f
sψ
i = ψ(Fsi ), f

sψ
i ∈ R1×1×d̂ (2)

After that, the multi-level feature can be acquired by the
fusion of local feature vector fsθi and the class token f

sψ
i

contained the long-range contextual relationship. To control
the contribution of the two features for different hyperspectral
data, we adopted a trade-off parameter α to balance the
importance of local properties and the long-range contextual
relationship. As such, the output feature vector of the generator
can be represented as

fsi = G(rsi ) = αfsθi + (1− α)fsψi (3)

where fsi ∈ R1×1×d̂ has the same dimension as the class
token. G(·) = ψ(θ(·)) is a composite function of CNN model
θ(·) and transformer network ψ(·).

B. Domain alignment towards multi-level features and classi-
fication boundaries

To learn task-specific decision boundaries while aligning
the distributions of source and target, the design of ToMF-
B is based on maximum classifier discrepancy [55], which is
consisted of a feature extractor and two classifiers. In UDA,
a common belief is that the source and target domain share
the same or close feature space but are drive from different
marginal distributions, that is, P,Q ∈ RX×Y , Px 6= Qx. P and
Q are the source and target distribution over X × Y , where
the X is the instance space and the Y is the label space. Px
and Qx indicate the marginal distribution of source and target
domain over X .

1) The UDA theory based on H∆H-Divergence: The core
idea of the domain adaptive theory is to build the relationship
of generalization error between two domains, which can
implicitly reduce target domain error by optimizing the source
domain. Base on this objective, Ben-David et al. [56] proposed
a seminal theory by characterizing the disagreement between
any pair of labeling hypotheses. The error of hypothesis h
(e.g., models or classifiers) on the target domain Q is denoted
as

EQ (h) ≤ EP (h) + d (P,Q) + λ,

λ = EP (h∗) + EQ (h∗)
(4)

where the h∗ = argmin
h∈H

[EP (h∗) + EQ (h∗)]. To sum up this

inequality, the error EQ (h) is constrained by the three terms:
1) the error of h on the source domain, which can be optimized
by source domain labeled data; 2) the shared error of ideal
joint hypothesis λ, which can be viewed as a constant because
it should be sufficiently small; 3) the disparity difference
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between P and Q, which cannot be estimated directly due to
the target labels is inaccessible. Therefore, the goal of the UDA
is to reduce the bound of disparity difference, the paper [56]
proposed the H∆H-Divergence to measure the upper bound,
and the H∆H-Divergence between P and Q is denoted as

dH4H (P,Q) , sup
h,h′∈H

|Es (h, h′)− Et (h, h′)| (5)

The key innovation of [56] presents that a distribution distance
can be estimated based on a hypothesis space H{0,1} of binary
classification, therefore, the disparity can be expressed as

dH4H (Px, Qx) , sup
h,h′∈H{0,1}

|EQxI [h 6= h′]− EPxI [h 6= h′]|

(6)
where the EQxI [h 6= h′] = Ex∼QxI [h (x) 6= h′ (x)], the dis-
parity between h and h′ can be specified a measurable subset
{x ∈ X|h (x) 6= h′ (x)}. In this way, the distribution distance
between Px and Qx can be measured on the subsets by taking
the supremum over all pairs of h, h′ ∈ H{0,1}. To this end, we
adopted the L1−distance draw from the MCD [55] to measure
the disagreements,

Ex∼D
1

K
‖(h(ϕ(x)))− (h′(ϕ(x)))‖1 (7)

where ϕ is the learnable network, and D is the distribution
of x. To close the supremum of target domain error, the
optimization objective of UDA can be defined as

min
h,ϕ

EPϕx (h) + Ex∼QxI [h (ϕ(x)) 6= h′ (ϕ(x))] ,

max
h,h′

Ex∼QxI [h (ϕ(x)) 6= h′ (ϕ(x))]
(8)

which suggests the model to reduce the error of target domain
in an adversarial manner. As a result, the goal of the domain
alignment is to optimize the three items in formula (8).

2) Specific procedures for the optimization task: At be-
ginning, three modules for classifier F1, classifier F2 and
generator G are built, and we ensemble the two classifiers
into the features extractor via build two classification heads
similar to linear probe. To improve the nonlinear capability of
classification heads, the additional Batch normalization (BN)
layers and hidden layers are added to the heads. This design
allows the gradient of classification heads to feed back to the
backbone G in the process of backward, which develops a
pathway for the subsequent method of features decomposition
guided by classification meta-knowledge. The training of our
model are mainly divided into three steps, minimizing the error
of source domain, maximizing the discrepancy of classifiers
F1,F2 and the alignment of distribution (minimize discrep-
ancy by G), which are responsible for the three optimization
terms of (8), respectively. In addition, the first-stage alignment
is employed into step one to reduce the interdomain gap of
local features, and the step two and three can be viewed as
the second-stage alignment, i.e., the alignment instance-level
features.

Step one, for the term of source error EPϕx (h), the model
can be trained by minimizing the loss of labeled source data
as

min
G,F1,F2

LSrccls (Xs, Y s) (9)

where the LSrccls (Xs, Y s) is the classification loss of source
domain. Defined the cross entropy loss as

L(pi, yi) = −
C∑
c=1

yci log p
c
i (10)

where the yi is the one-hot encoding of labels and the pi is the
probabilistic predictions obtained by the softmax layer. Hence
the classification loss of classifier can be defined as

LSrccls1 (X
s, Y s) =

1

ns

ns∑
i=1

L(ps1i , yi) (11)

Noted that the ps1i is obtained by the task-related feature, and
the details of task-related features will be explained in the
section C. In addition to the minimization of source error,
a MMD loss is employed to align local feature vectors in
this step, which will ensure that local feature vectors of
two domains have similar statistical distribution. Denoted the
Llocal as the loss of local alignment, then local alignment loss
can be drown as

Llocal
(
Xs, Xt

)
=

∥∥∥∥∥∥ 1

ns

ns∑
i=1

fsθi −
1

nt

nt∑
j=1

f tθi

∥∥∥∥∥∥
2

H

, (12)

where the fθ(i) is the local feature vectors from the CNN. The
meaning of the formula is to calculate the mean discrepancy
of local features between SD and TD in reproducing kernel
Hilbert space.

Step two, to maximize the domain discrepancy, e.g., the
term of maxh,h′ Ex∼QxI [h (x) 6= h′ (x)], freezing the G, two
independent classifier heads F1,F2 with different initialization
are trained to maximize the discrepancy of each other while
minimizing the source error, then the optimal objective can be
denoted as

min
F1,F2

L (Xs, Y s)− Ladv

(
Xt
)

(13)

where the L(Xt) is written as

Ladv

(
Xt
)
= Ext∼Xt

[
d
(
pt1
(
y | ϕ1(x

t)
)
, pt2

(
y | ϕ2(x

t)
))]

,

d
(
pt1
(
y | ϕ1(x

t)
)
, pt2

(
y | ϕ2(x

t)
))

=

1

C

C∑
c=1

∣∣pt1 (y = c|ϕ1(x
t)
)
− pt2

(
y = c|ϕ2(x

t)
)∣∣,

(14)
where the ϕ1(x

t) = F1(f
t
i ) and ϕ2(x

t) = F2(f
t
i ) are the

target outputs of two classifiers, and C is the class dimension
of final linear layer. After that, the decision boundary will be
far from the samples without discriminative representation in
the feature space.
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(a) (b)

Fig. 2. An illustration of difference between prior UDA methods of HSIC
and ours. (a) Prior hyperspectral UDA methods generally align the holistic
feature representation. (b) Task-oriented features decomposition only takes
task-related features into consideration via discarding task-irrelevant features.

Step three, to minimize the domain discrepancy, e.g., the
term of minh,h′ Ex∼QxI [h (x) 6= h′ (x)], fixing the F1 and
F2, the generator G is updated to reduce the interdomain
gap. After closing the distribution of local outputs of CNN
in the first stage (step one), the second-stage alignment aims
to minimize the discrepancy of instance-level features, that is

min
G
Ladv

(
Xt
)
. (15)

As such, the features extractor G will try to generate the target
features near/within the boundaries. Finally, repeat the step
two and step three for k times, and the ToMF-B can align
the task-related features and learn the task-specific decision
boundaries in parallel. To clarify the overall optimization
process, the three-step losses are summarized as follows

min
G,F1,F2

LSrccls (Xs, Y s) + Llocal
(
Xs, Xt

)
, (16)

min
F1,F2

L (Xs, Y s)− Ladv

(
Xt
)
, (17)

min
G
Ladv

(
Xt
)
. (18)

C. Task-oriented features decomposition for UDA

Task-irrelativant features may damage the discrimination
power of aligned features and further hurt the entire transfer
process, such as negative transfer or mode collapse. Accord-
ingly, it is crucial to learn the task-related domain-invariant
features. To address this, a task-oriented features decomposi-
tion based on the classification meta-knowledge is adopted to
enhance the task-related features while suppressing the task-
irrelevant features. Motivated by the Toalign [60] and the
CAM [61], a holistic feature vector can be decomposed into a
task-discriminative vector and a task-irrelevant (negative) one.
According to the formula (3), the source multi-feature vector
fsi ∈ R1×1×d̂ can be viewed as the holistic feature vector.
Therefore, our goal is to seek the task-related features from the
diversely multi-level feature representation, and the procedures
to get final features is designed as follows.

At first, the logits of all source classes are predicted by the
classification heads F1(·) and F2(·). Taking the classifier F1

as an example, based on the response of final linear layer, the
gradient Gcls

F1
∈ RC of yc can be denoted as

Gcls
F1

=
∂ysc
∂fsi

, (19)

where ysc is the predicted score corresponding to the class c,
and C is the class dimension of final linear layer.

Then, Gcls
F1

can drive the model to find the classification-
discriminative features from the view of channel-wise atten-
tion. In turn, the task-irrelevant feature can be drown by

f
sn1
i = −Gcls

F1
� fsi = −ηGcls

F1
� fsi (20)

where the � is the Hadamard product and the η is an adaptive
parameter to modulate the Gcls

F1
. The detailed η is drawn from

the Toalign, so the details of η see [60].
Finally, the task-related features can be obtained by sup-

pressing the task-irrelevant features, which is

f
sp1
i = fsi − λf

sn1
i (21)

where λ is a regularization parameters controlling the sup-
pressed degree of task-irrelevant features (contribution of
negative features). The task-related feature vectors of classifier
F1 can be obtained in the same manner. In this way, the
source feature vectors that will be fed into the classifiers is the
task-related features, which will avoid the harmless of task-
irrelevant features to the transfer process. The overall different
between the task-oriented features decomposition and prior
related studies is presented in Fig.2.

Overall, in order to achieve the distribution alignment of
two domains and the adaptation of classification boundaries in
parallel, the overall design of ToMF-B adopts MCD algorithm,
which consists of a feature extractor and two classifiers with
different initialization. However, the negative transfer caused
by some difficult samples may be amplified by two classifiers
with discrepancy when the input features learned from the fea-
tures extractor (generator) are unexpected. We wanted to avoid
this problem via feature decomposition-based approaches,
thus a task-based feature decomposition method is leveraged
to compress the task-irrelevant features. Furthermore, MCD
mainly focuses on the distribution alignment of instance-level
features, and a rich feature space will provide better task-
related and domain-invariant feature representation. Therefore,
a hybrid model is designed to enrich the feature representation,
and the alignment of local features can help the instance-level
alignment to further reduce the domain shift.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the details of three experimental datasets and
experimental settings are first introduced. Then, the results
of the proposed method and nine classical and state-of-the-
art methods on three HSI datasets are compared. Finally,
the ablation of the ToMF-B is analyzed in detail and some
parameters of the ToMF-B are also discussed.
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Fig. 3. An overview of the H-S dataset. (a) Pseudo color image of HangZhou. (b) Pseudo color image of ShangHai. (c) Ground-truth map of HangZhou. (d)
Ground-truth of ShangHai.
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Fig. 4. An overview of the PaviaU-C dataset. (a) Pseudo color image of University of Pavia. (b) Ground-truth map of University of Pavia.. (c) Pseudo color
image of Pavia Center. (d) Ground-truth of Pavia Center.

TABLE I
LAND COVER CLASSES AND THE NUMBER OF SAMPLES FOR THE

HANGZHOU-SHANGHAI DATASET

No. Land Cover Type Source / Train Target
C1 Water 18043 / 133 123123
C2 Land/Building 77450 / 571 161689
C3 Plant 40207 / 296 83188

Total 135700 / 1000 368000

TABLE II
LAND COVER CLASSES AND THE NUMBER OF SAMPLES FOR THE

PAVIAU-PAVIAC DATASET

No. Land Cover Type Source / Train Target
C1 Trees 3064 / 78 7598
C2 Bare soil 5029 / 24 6584
C3 Bitumen 1330 / 94 7287
C4 Brick 3682 / 34 2685
C5 Asphalt 6631 / 128 9248
C6 Meadow 18649 / 474 3090
C7 Shadow 947 / 168 2863

Total 39332 / 1000 39355

A. Datasets
Three benchmark HSI datasets, e.g., ShangHai-HangZhou

data [62], PaviaU-PaviaC1 data and HyRANK [63] data, are
1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote

Sensing Scenes

employed for performance assessment. These datasets are
collected by different sensors over different land covers, and
have been selected for experiments by many related papers.
The details of these datasets are given as follows.

TABLE III
LAND COVER CLASSES AND THE NUMBER OF SAMPLES FOR THE

DIONI-LOUKIA DATASET

No. Land Cover Type Source / Train Target
C1 Dense Urban Fabric 1262 /63 206
C2 Mineral Extraction Sites 204 / 5 54
C3 Non Irrigated Arable Land 614 / 31 426
C4 Fruit Trees 150 / 7 79
C5 Olive Groves 1768 / 88 1107
C6 Coniferous Forest 361 / 18 422
C7 Dense Sderophyllous Vegetation 5035 / 251 2996
C8 Sparce Sderophyllous Vegetation 6374 / 318 2361
C9 Sparcely Vegetated Areas 1754 / 88 399

C10 Rocks and Sand 492 / 25 453
C11 Water 1612 / 81 1393
C12 Coastal Water 398 / 20 421

Total 20024 / 1000 10317

1) ShangHai-HangZhou (S-H): This dataset was acquired by
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Fig. 5. An overview of the HyRANK dataset. (a) Pseudo color image of Dioni. (b) Pseudo color image of Loukia. (c) Ground-truth map of Dioni. (d)
Ground-truth of Loukia.

the REO-1 Hyperion hyperspectral sensor, which consists
of 198 spectral bands after removing 22 bad bands.
ShangHai data wass collected over ShangHai city on 1
April 2002, which includes roads, buildings, plants, and
the waters of the Yangtze River and Huangpu River.
The HangZhou data was acquired over HangZhou city
on 2 November 2002, including roads, buildings, plants,
West Lake, and the Qiantang River basin The size of
HangZhou and ShangHai is 590× 230 and 1600× 230,
respectively. The HangZhou is taken as source scene, and
the ShangHai is viewed as the target scene in this paper.
Three common land cover classes were selected for cross-
scene classification, which are listed in Table I, and their
pseudocolor iamge and ground-truth maps are presented
in Fig.3.

2) PaviaU-PaviaC (PaviaU-C): This dataset was acquired
by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor over the urban area surrounding the Uni-
versity of Pavia and Pavia center, Italy. The spatial size
of two data are 610× 340 and 1096× 715, respectively.
The spatial resolution is as high as 1.3 m/pixel, and both
datasets are sampled as same 102 spectral bands. The
PaivaU is taken as source scene, and the PaivaC is viewed
as the target scene in this paper. Seven common classes
are selected for this experiment, which are listed in Table
II, and their pseudocolor iamge and ground-truth maps
are presented in Fig.4.

3) HyRANK: The HyRANK dataset was collected by the
Hyperion sensor (EO-1, USGS), which has 176 spectral
bands. The size of two labeled scenes, Dioni and Loukia,
are 250 × 1376 and 246 × 945, respectively. There
are 12 common classes, which are listed in Table III.
The Dioni is taken as source scene, and the Loukia is
viewed as the target scene in this paper. The pseudocolor
representations and ground-truth maps of two scenes are
shown in Fig.5.

B. Implementation Details

All the experiments were implemented on the same hard-
ware platform GPU: GTX-3090, CPU: Intel 4210R and mem-
ory: 32G. The total of 1000 labeled source samples are
uniform sampled from per class for training, and the specific
number of training samples per class are listed in Tables I-III.
All methods for comparison are trained for 100 epochs without
any data augmentation, and the patch size of all experiments is
12× 12. The SGD is adopted as the optimizer, and the batch
size is 100. Meanwhile, the trade-off parameter of features
fusion α, the learning rate and parameter λ are empirically
set to 0.5, 1e−3, 1e−1, respectively. The repeat times k of
step three are empirically set as 5,5,15 for the S-H, PaviaU-
C and HyRANK datasets, respectively. The overall accuracy
(OA), class-specific accuracy, and the Kappa coefficient are
employed to evaluate the classification performance. To avoid
biased estimation, all experiments were conducted with ten
independent tests, and the average values were reported for
all the evaluation metrics.

C. Comparison With State-of-the-Art Methods

1) The settings of different methods: To show the over-
all classification performance of the proposed method, nine
representative methods belong to different categories with
different advantages are selected to compare with ToMF-B.
Specifically, these compared methods are: a baseline based
on the CNN, an advanced CNN-based deep network DBDA
[64], a Vision Transformer based network (ViT) [21], a semi-
supervised deep cross-domain few-shot learning(DCFSL) [30],
an confident learning-based unsupervised domain adaptation
(UDA) method (CLDA) [39], a deep metric learning based
UDA method (S-DMM) [37], a subspace learning-based UDA
method (DCA) [47], a classification boundaries-oriented UDA
method (MCD) [55], a UDA-based method for segmentation
tasks (CLAN) [65], and a network coupling CCN and GCN for
the alignment of statistical and geometric distribution (TSTnet)
[51]. In terms of source-only methods, i.e.,the CNN, DBDA
and ViT, they are trained on source scenes and directly test on
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Fig. 6. Classification maps of different methods on the target scene ShangHai. (a) Ground truth. (b) CNN. (c) DBDA. (d) ViT. (e) DCFSL. (f) CLDA. (g)
S-DMM. (h) DCA. (i) MCD. (j) CLAN. (k) TSTnet. (l) ToMF-B(ours). Compared with other methods, (g) and (l) have the smoother classification maps, but
the visualization results of (l) ours in the red and purple rectangle boxes contain more details and are more consistent with the ground truth (a) than other
methods.

(b) (c) (d) (e) (f) (g) (h) (i) (j) (k)(a)

(b) (c) (d) (e) (f) (g) (h) (i) (j) (k)(a)

(l)

Fig. 7. Classification maps of different methods on the target scene Pavia Center. (a) Ground truth. (b) CNN. (c) DBDA. (d) ViT. (e) DCFSL. (f) CLDA. (g)
S-DMM. (h) DCA. (i) MCD. (j) CLAN. (k) TSTnet. (l) ToMF-B(ours).

target scenes. The 12×12×4 HSI cube is selected as a group-
level token of the ViT. For the CLAN and MCD, the VGG is
chosen as the backbone for three datasets, and segmentation-
tailored classifiers of CLAN are replaced with general classi-
fiers for the classification tasks. The hyper-parameters of all
methods are consistent with the original settings, such as λ1
and λ2 in TSTnet, the embedding dimension in S-DMM and
et al. It is noted that the one-shot sample is given to DCFSL
for comparison.

2) The quantitative results of compared methods: Quan-
titative results of different methods are reported in Table
IV-VI. Compared with other methods, the proposed ToMF-
B achieves the best performance in terms of the OA, the
class-specific accuracy and the Kappa coefficient. For the S-
H dataset, it can be observed that methods without domain
adaptive (DA) technique (CNN, DBDA and ViT) are generally
lower than DA-based methods, but DBDA and ViT also
achieve competitive performance. This can be inferred that
the DBDA and ViT are capable of extracting the features with

fine transferability on the H-S dataset. MCD and CLAN adopt
the same backbone (VGG) as CNN, and their results achieve
significant improvement when compared with CNN, which
may demonstrate the effectiveness of the UDA technique. The
performance of ToMF-B is better than other UDA-based meth-
ods in the H-S dataset, which might owe to the well-design
multi-level feature extractor and two-stage UDA technique.

For the PaviaU-C dataset, the performance of some UDA-
based methods are even worse than those of general net-
works, suggesting that the unfavorable UDA technique may
lead to negative transfer on some datasets. The ToMF-B can
still obtain the best performance, indicating that the feature-
oriented (task-related features) transfer may remedy the risk of
negative transfer. Note that the results of CLDA significantly
drop compared with the results of the original paper (92.80%
vs. 77.65%, OA), but the total number of labeled samples is
close (1260 vs. 1000). This is because the sampling criteria
are different, the original CLDA selected 180 labeled samples
per class, and our experimental setting is to select total 1000
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Fig. 8. Classification maps of different methods on the target scene Loukia. (a) Ground truth. (b) CNN. (c) DBDA. (d) ViT. (e) DCFSL. (f) CLDA. (g)
S-DMM. (h) DCA. (i) MCD. (j) CLAN. (k) TSTnet. (l) ToMF-B(ours).

TABLE IV
CLASSIFICATION ACCURACIES AND COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS ON THE TARGET SCENE SHANGHAI BY USING 1000

LABELED SAMPLES FROM THE SOURCE SCENE HANGZHOU.

Class Name CNN DBDA ViT DCFSL CLDA S-DMM DCA MCD CLAN TSTnet ToMF-B
Water 96.84 94.81 95.65 97.13 92.04 94.72 97.28 80.08 95.68 90.24 97.48±0.37

Land/Building 56.56 84.62 86.01 93.26 82.35 90.05 91.33 83.71 85.36 87.90 93.51±0.62
Plant 62.41 75.46 83.86 90.15 89.13 89.24 60.93 87.52 82.68 94.96 95.19±0.75

OA(%) 71.36 85.96 88.75 93.85 91.46 91.43 86.45 83.36 88.21 90.28 95.22±0.57
Kappa 0.59 0.80 0.83 0.91 0.87 0.89 0.85 0.74 0.82 0.86 0.93±0.01
Params 126,212 599,646 2,781,124 56,369 187,728 200,274 - 8,673,800 1,184,713 5,370,372 4,468,680
FLOPS 7,584,000 432,806,076 138,629,376 43,147,560 4,095,800 201,402 - 47,162,368 8,641,600 5,343,752 210,881,280
Time (s) 62.65 321.95 82.92 803.45 288.96 1043.58 328.17 128.87 93.82 1329.17 166.07

TABLE V
CLASSIFICATION ACCURACIES AND COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS ON THE TARGET SCENE PAVIAC BY USING 1000 LABELED

SAMPLES FROM THE SOURCE SCENE PAVIAU

Class Name CNN DBDA ViT DCFSL CLDA S-DMM DCA MCD CLAN TSTnet ToMF-B
Trees 84.25 93.36 92.52 98.84 93.69 89.39 99.66 88.82 93.67 83.78 84.26±2.30

Asphalt 65.57 81.98 71.83 82.70 85.11 75.19 53.63 86.49 80.76 72.70 89.21±3.23
Brick 68.86 22.97 52.16 78.35 12.66 73.90 5.29 40.00 34.61 33.83 80.03±2.91

Bitumen 50.60 87.53 0 45.83 79.87 49.71 9.05 77.85 76.32 6.06 84.80±6.44
Shadow 97.79 82.09 73.26 99.37 99.89 80.99 99.42 97.85 85.74 89.74 100.00±0.00
Meadow 66.89 75.78 65.08 68.29 88.13 61.29 53.75 54.81 71.65 68.40 69.02±4.50
Bare Soil 73.20 91.08 35.03 57.30 83.43 73.05 90.43 56.83 73.21 82.71 70.98±8.41
OA(%) 76.99 73.83 64.41 83.43 76.58 76.07 63.97 75.77 74.31 67.49 85.89±1.32
Kappa 0.72 0.68 0.57 0.73 0.71 0.73 0.55 0.71 0.70 0.65 0.84±0.02
Params 102,664 321,346 2,781,896 46,769 182,558 181,074 - 8,651,280 1,165,521 5,343,752 2,818,152
FLOPS 4,823,296 217,649,820 72,035,328 42,369,960 3,633,983 3,633,402 - 36,168,704 5,885,248 10,060,032 156,249,600
Time (s) 55.54 185.54 103.80 931.67 161.54 335.92 31.12 73.62 75.58 301.41 121.14

labeled samples via a same percentage per class. To improve
the objectivity of the experiment, we performed an additional
experiment with 180 source labeled samples on PaviaU-C
dataset, and the performance gain of ToMF-B is significant
(85.89 vs. 91.04, OA). Comparatively, the HyRANK dataset
has more complicated spatial land-cover distribution and sim-
ilar spectral distribution, which is a more challenging dataset
for cross-scenes HSIC methods. Thus it is more objective
to validate the effectiveness of different approaches. Obvi-
ously, the performance of the general backbones is poorer
than those of other DA-based methods, especially for the
evaluation index of the class-specific accuracy. The ToMF-
B not only obtains the highest classification accuracy, but
also distinguishes some samples hard to transfer, such as the

samples belong to the Fruit Trees and Arable Land which
cannot be correctly classified by most methods. Overall, the
ToMF-B outperforms non-UDA based methods, e.g., CNN
and ViT, which shows that the effectiveness of our method
benefits from the proposed UDA technique rather than the
backbones. Moreover, the ToMF-B consistently outperforms
those UDA-based counterparts, yielding the superiority of the
domain alignment method towards multi-level features and
classification boundaries.

3) The qualitative results of compared methods: In addition
to the quantitative analysis, the qualitative classification maps
are shown in Fig. 6-8. We mainly compare the qualitative
performance of different methods on H-S dataset, including
the region 1© in red rectangle box and the region 2© in purple
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TABLE VI
CLASSIFICATION ACCURACIES AND COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS ON THE TARGET SCENE LOUKIA BY USING 1000 LABELED

SAMPLES FROM THE SOURCE SCENE DIONI.

Class Name CNN DBDA ViT DCFSL CLDA S-DMM DCA MCD CLAN TSTnet ToMF-B
Dense Urban Fabric 11.21 0 9.18 4.39 1.70 5.37 54.17 21.38 7.96 9.05 30.28±11.46

Mineral Extraction Sites 3.17 9.44 0 17.13 45.63 11.64 0 10.16 1.44 17.44 47.50±14.71
Non Irrigated Arable Land 1.59 0.05 2.02 29.76 16.13 2.94 26.38 14.13 15.61 14.14 28.64±11.43

Fruit Trees 23.41 13.80 0 16.67 1.25 14.91 2.37 9.22 2.05 0 16.66±9.48
Olive Groves 5.23 0 7.23 12.75 0.18 27.48 17.14 50.53 32.68 65.31 67.92±6.34

Coniferous Forest 0 59.03 3.01 37.18 10.21 0 0 14.09 3.25 6.73 36.12±12.54
Dense Sderophyllous Vegetation 66.68 70.73 74.71 42.43 65.32 72.18 65.85 71.17 71.10 69.03 71.21±2.49
Sparce Sderophyllous Vegetation 52.16 6.07 31.34 37.84 72.96 56.65 74.14 64.78 65.07 62.36 51.92±4.37

Sparcely Vegetated Areas 12.19 15.84 27.37 75.72 63.06 28.96 53.83 34.25 31.01 41.09 38.27±9.28
Rocks and Sand 29.36 65.78 34.17 62.37 21.53 0 66.06 56.41 28.35 25.90 67.82±13.18

Water 100.00 100.00 100.00 85.47 100.00 93.58 100.00 88.00 95.25 99.63 100.00±0.00
Coastal Water 100.00 72.54 98.31 87.53 99.75 67.61 100.00 98.08 100.00 100.00 100.00±0.00

OA(%) 51.69 44.46 51.36 46.10 63.21 53.79 62.68 62.31 59.39 62.71 65.53±1.85
Kappa 0.42 0.36 0.44 0.37 0.54 0.43 0.53 0.52 0.49 0.55 0.57±0.02
Params 102,664 536,847 2,782,861 54,169 187,728 183,328 - 8,661,128 1,197,403 5,366,349 4,090,434
FLOPS 4,823,296 383,500,404 124,757,184 42,969,360 4,095,800 22,835,400 - 44,627,968 8,027,008 12,192,512 198,363,072
Time (s) 42.89 238.25 67.25 1430.12 86.95 302.57 37.69 159.32 92.50 353.34 361.59

rectangle box. Compared with other methods, the results of
ToMF-B and MCD are closer to the real land-covers in red box
even with the complex spatial distribution. The clear bound-
aries may be benefited from the boundaries-oriented domain
alignment, which refines the classification boundaries. MCD is
also based on the boundaries-oriented domain alignment, but
the map of MCD is extremely noisy, this may be due to that
the simple CNN cannot provide the rich feature representation
for learning the discriminative domain-confused features like
our multi-level feature extractor. Furthermore, the region 2© in
purple box is a region that a small amount of water is mixed
in the vast land, thus samples belong to the Water prone to
be misclassified as the Land since the model tends to learn
a trivial solution. It is noteworthy that ToMF-B still has the
capacity to identify them, indicating that the decision boundary
of the proposed method may be more discriminative.

The ToMF-B achieve the excellent classification perfor-
mance closing to the supervised results on S-H dataset,
because that a large number of bands of H-S data provide
more spectral information to help the model learn the trans-
ferable knowledge. The two scenes of PaviaU-C data have
the higher spatial resolution but serious spectral drift, and the
performance gap between ToMF-B and other UDA-based is
significantly bigger than the other two datasets. The HyRANK
dataset has the lower spatial resolution and most land cover
categories, which is very challenging to UDA, and the ToMF-
B still achieve the best classification performance. Overall,
compared with some advanced methods, quantitative and
qualitative experiments on three datasets convey that ToMF-B
not only delivers the promising classification accuracy but also
has more clear classification maps.

4) The computational complexity of compared methods:
To clarify the trade-off between the performance of models
and model sizes, the computational complexities of different
methods are presented in Tables IV-VI. Note that the MCD
has no learnable parameters since the DCA is based on
the subspace transformation (i.e., traditional machine learning
based method), we can only give the processing times. The
results yield that the computational complexity of our model
is slightly high, but overall processing times of ToMF-B on

three datasets are acceptable. Moreover, the running time of
some methods does not match their sizes of parameters, such
as CLDA and S-DMM, because they need to predict the
pseudo labels or calculate the metric distance of target scenes,
which requires a lot of running time and memory. The model
size of ToMF-B is not particularly large compared with other
methods (i.e., fewer learnable parameters), which will avoid
the mismatch between the model complexity and the size of
the training set.

D. Ablation study and visualization

To further explore the effectiveness of our method and
different modules, three ablation studies are carried out in
this section. Firstly ,the ablation study of different components
are performed. Then the performance gains or drops brought
by different features are explored. Meanwhile, to intuitively
evaluate the transfer performance of ToMF-B, the distribution
of original samples and aligned features between domains are
visualized via t-SNE.

1) Effects of different components: Table VII shows the
classification performance achieved by ToMF-B with different
modules. The symbol “X” represents that the corresponding
component is added into the ToMF-B, while the symbol “×”
does not. The stage1, stage2 and Ta-R FE refer to local
alignment, global (instance-level) alignment and task-related
features decomposition, respectively. The results of Exp1 can

TABLE VII
OA (%) OF TOMF-B WITH DIFFERENT MODULES ON THREE DATASETS.

Module Stage1 Stage2 Ta-R FE S-H PaviaU-C HyRANK
Exp1 × × × 89.71±1.45 79.66±3.38 57.19±3.16
Exp2 × X × 94.35±0.76 83.73±2.16 63.80±2.43
Exp3 X X × 94.95±0.66 84.07±1.87 64.58±2.45
Exp4 X X X 95.54±0.53 85.89±1.32 65.53±1.85

be viewed as the Baseline without any additional components,
that is, the results of hybrid model training by source-only
data. The experimental results of Exp2 show that the UDA
technique towards feature and classification boundaries brings
the significant performance improvement. Note that the stage1
aims to reduce the distribution gap of local features output
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Fig. 9. The t-SNE visualization of embedding features on three datasets. The top row (a)-(d), middle row (e)-(h) and bottom row (i)-(l) represent the results
of H-S dataset, PaviaU-C dataset and HyRANK dataset, respectively. The first and third columns are the original distribution gap, and the second and forth
columns present the alignment performance after ToMF-B.

by CNN, but the alignment of final instance-level features is
the basis of cross-domain classification tasks. Therefore, after
carrying out the alignment of stage2, the performance gains
brought by the local alignment will meaningfully demonstrate
the effectiveness of stage1. Overall, the results of Exp2,
Exp3 and Exp4 yield remarkable performance improvements
after adopting the alignment of stage2, stage1 and the task-
related features decomposition, indicating the effectiveness of
different components.

2) UDA performance based on different features: To bet-
ter explore the effectiveness of our UDA method and task-
oriented feature decomposition, the performance with four
different settings is investigated in this section. Specifically,
the multi-level features extractor without UDA is termed as the
Baseline, and this setting aims to present the improvement of
our UDA method. Baseline+UDA, Baseline+UDA (Neg) and
Baseline+UDA(Pos) represent the domain alignment guided
by holistic feature vectors, task-irrelevant feature vectors and
task-related feature vectors, respectively. Fig.9 presents the
detailed results after alignment based on different features. The
Baseline represents that a model trained on the source domain
is directly applied to the target domain. The Baseline+UDA
means the ToMF-B driven by holistic features, that is, the
pure contribution of boundaries-oriented alignment. Compare
with the Baseline, the boundaries-oriented alignment (Base-
line+UDA) achieves the 7.93%, 8.25%, 11.03% improvement

on H-S, PaviaU-C and HyRANK datasets, respectively, which
shows the effectiveness of our boundaries-oriented UDA.

To verify the effectiveness of task-oriented feature decom-
position method for UDA, the ToMF-B driven by task-related
features are built for comparison. It can be observed that
ToMF-B with task-related features yields the best perfor-
mance, and it significantly boosts the accuracy of Baseline.
Furthermore, compared with the UDA guided by holistic
feature, the task-related features based transfer boosts the
accuracy of Baseline+UDA 1.85%, 3.63% and 1.79% on three
datasets, respectively. To see the destruction of task-irrelevant
features, the performance ToMF-B with task-irrelevant fea-
tures is reported. Note that, to avoid the training collapse, we
just added the task-irrelevant features to the original features.
It can be seen that the task-irrelevant features drops the
accuracy even compare with Baseline, suggesting the harm
to the transfer task even it is not in the extreme case, e.g,
guided by purely task-irrelevant features.

3) T-SNE visualization of ToMF-B: In order to have an
intuitive understanding for the effectiveness of ToMF-B, in
Fig.10, two classes from each dataset are taken as toy examples
to visualize the distribution gap before and after ToMF-B.
The red and blue points represent the samples from source
and target domain with same classes, and the corresponding
ellipses are their 95% confidence regions. It is noteworthy that
the original data distribution of fractional samples between
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Fig. 10. Classification performance of ToMF-B with different ablation schemes on three datasets. (a) HangZhou-ShangHai. (b) PaviaU-C. (c) HyRANK.

(a) (b) (c)

Fig. 11. Sensitivity analysis of parameter λ and K for the proposed ToMF-B model on three HSI datasets. (a) HangZhou-ShangHai. (b) PaviaU-C. (c)
HyRANK.

source and target domains are overlapped, which is the reason
that model of training on source domain can obtain the
acceptable performance even directly test on the target domain.
However, it can be seen the obviously distribution gap between
two original domains via the confidence ellipses. Through the
domain alignment of ToMF-B, the domain discrepancy is sig-
nificantly reduced especially for the PaviaU-C and HyRANK
datasets. Notably, the distribution gaps of the class 2 from H-
S data, the class 2 from PaviaU-C data and class 12 from
HyRANK data are almost orthogonal, which is extremely
challenging for the model. After the alignment of ToMF-B,
those distribution become uniform and co-directional, yield
the superiority and robustness of our method.

E. Parameter analysis

In this section, the hyper-parameters sensitivity of ToMF-
B model on is mainly discussed, including the trade-off
parameter α in Eq(3) and λ in Eq(21), the repeat times of
minimizing the Eq(15), k, and the base learning rate lr.

1) The analysis of parameter α: At beginning, the lr, λ
and k are empirically fixed as 1e−3, 1e− 1 and 15 to explore
the effect of parameter α. For the parameter α, the candidate
interval is set to [0 : 0.25 : 1]. To show the advantage of
hybrid model for UDA, based on the same UDA methods

as ToMFB, the multi-level features extractor is replaced by
the CNN (VGG model) network and Vision Transformer
(ViT) model for comparison. The results of parameter α
are reported in Tabel VII. Obviously, although based on the
same UDA framework, multi-level feature fusion significantly
boosts the performance of UDA when compared with the
CNN- and ViT-only methods, indicating that the superiority of
our hybrid features extractor. Especially for the PaviaU-C and
HyRANK datasets, the the performance CNN-only method
yields a significantly drop on PaviaU-C dataset, and the ViT-
only exhibits the same case on HyRANK dataset. For the
multi-level feature extractor based methods, the performance
of ToMF-B with different α yields that the best performance
on different datasets come from different settings of α, which
can be inferred that the discriminative domain-confused rep-
resentation may be learned from the feature space of different
levels.

2) The sensitivity analysis of parameter λ and k: Then,
the lr and α are fixed as 1e−3 and 0.25 to explore the
sensitivity of λ and k. The sensitivity surfaces of λ and k
are reported in Fig.9. The candidate interval of λ and K are
set to [1e − 4 : 10 : 1e + 1] and [0:5:25], respectively. There
are several observations from the change trend of λ and k.
First, on the PaviaU-C and HyRANK datasets, when the λ
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TABLE VIII
OA (%) OF TOMF-B WITH DIFFERENT α ON THREE DATASETS.

α 0 0.25 0.5 0.75 1.0 CNN-only ViT-only
H-S 95.06 96.83 95.22 95.86 94.71 94.82 92.58

PaviaU-C 84.93 86.42 85.89 85.23 76.32 76.92 83.35
HyRANK 63.69 64.18 65.53 66.03 60.27 60.91 56.52

is in the range of 1e + 0 to 1e − 4, the model can achieve
the suboptimal results, which can be argued that the ToMF-B
is less sensitive to the λ on these two datasets. For the H-S
dataset, the performance of λ = 1e − 1 superior the other λ,
but the most results are stored at a well level, e.g., ≥93.00%.
Notably that, toward the H-S and PaviaU-C, the performance
of ToMF-B is relatively poor when the λ = 1e + 1, this is
resulted by the overfitting. Specifically, task-related features
dominate the contribution to classification but the land-covers
distribution of datasets are simple. In term of the parameter
K, when the K ≥ 5, the sensitivity of ToMF-B is low on H-
S and PaviaU-C datasets. Therefore, we select the K = 10
as the default setting, which can obtain a win-win result,
suboptimal performance and faster training time. Towards the
HyRANK dataset, the performance is relatively better if the
K is set to larger, but increase the training time at same
time. Comprehensively, on the H-S and PaviaU-C datasets,
the ToMF-B with λ = 1e − 1 and K = 10 can achieve the
suboptimal performance, and is less sensitive to these two
parameters. Aiming to the HyRANK dataset, ToMF-B with
λ = 1e+ 0 and K ≥ 15 will obtain better results.

IV. CONCLUSION

In this paper, a novel unsupervised domain adaptation
(UDA) framework towards multi-level features and decision
boundaries (ToMF-B) is proposed for the cross-scene HSIC.
The ToMF-B encourages the model to align the task-related
features and learn the task-specific decision boundaries in
parallel. Firstly, the design of ToMF-B is based on maximum
classifier discrepancy and a two-stage alignment scheme,
which can reduce the interdomain gap in a gradual manner
and learn the discriminative decision boundaries. Secondly, a
multi-level features extractor (generator) hybrid the CNN and
Transformer is developed to enrich the feature representation
of two domains, thereby it will be easier to learn the task-
related and domain-confused features. To the best of our
knowledge, this is the first work to introduce the hybrid model
as generator for the cross-scene HSIC task. Furthermore,
a task-oriented features decomposition method is leveraged
to enhance the task-related features while suppressing the
task-irrelevant features, which can avoid the harmless of
task-irrelevant features to the transfer process and enable
the aligned domain-invariant features to explicitly serve the
classification tasks of each classifier. Extensive experiments
and analysis suggest that the proposed ToMF-B outperforms
the state-of-the-art HSI UDA methods on three benchmark
datasets. In future work, we will extend the ToMF-B to the
cross-scene HSIs from the different sensors.
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