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Abstract

We provide a new tool for studying cluster algebras by introducing a new category fClus of

rooted cluster algebras. We characterize isomorphisms in our new category and show that it

is neither complete nor cocomplete. We give a recipe for constructing morphisms in fClus

with an interesting geometric interpretation and study the corresponding inverse systems.

We define and study a new family of algebras, called pro-cluster algebras, with cluster-

like combinatorics. The pro-cluster algebras are generated inside inverse limits of inverse

systems in the category fClus. Initially, the generators of a pro-cluster algebra are grouped

into certain subsets, called pro-clusters, of an inverse limit. In this new setting pro-clusters

take the role of clusters and we construct pro-cluster algebras which are modelled by the

combinatorics of infinitely marked surfaces and prove that all triangulations of those surfaces

arise as pro-clusters.
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1 Introduction

Cluster algebras are commutative rings living inside the field of rational functions. They

are defined combinatorially, with their generators being obtained via an iterated process of

mutation. Cluster algebras were introduced in [16] by S. Fomin and A. Zelevensky in an

attempt to establish a combinatorial framework for studying total positivity and canonical

bases in algebraic groups and remained a very active area of study ever since. As a con-

sequence, since their discovery, many connections between cluster algebras and other areas

of mathematics have been recognized and celebrated. There are links between cluster alge-

bras and combinatorial geometry [13], frieze patterns [1, 3] and discrete integrable systems

[20, 27], to only name a few. Throughout the rest of this introduction (and the rest of this

thesis) we will expose many more relationships between cluster algebras and other areas,

focusing on those that are directly related to our work presented here. For a more detailed

account of other domains where cluster algebra play an important role as well as for more

information regarding motivation for cluster algebras see Section 1.1 in [32] and references

therein.

The generators of a cluster algebra are known as cluster variables. The cluster variables

are grouped into overlapping subsets called clusters. Starting from an initial cluster, i.e. a set

of algebraically independent rational functions, we obtain all the remaining cluster variables

using mutations, exchanging one cluster variable with a new one at each mutation step. The

mutation process depends on skew-symmetrisable matrices, called exchange matrices. At

every mutation step we not only replace the cluster variable but also the exchange matrix,

according to certain rules. The skew-symmetrisable matrices can be represented graphically

using certain directed graphs, called quivers. The cluster variables within each cluster are

split into two non-overlapping sets. One set contains those cluster variables that can be

mutated and the other contains those cluster variables that cannot. The cluster variables

that can be mutated are called exchangeable variables and the cluster variables that cannot

be mutated are called frozen variables or coefficients. The triple

pcluster, exchangeable variables, exchange matrixq

is called a seed. A cluster algebra is of finite type if it has finitely many seeds. One of the
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seminal results in the research of cluster algebras is the classification of finite type cluster

algebras by Fomin and Zelevinsky [17]. Amazingly, the classification turned out to be the

same as the Cartan-Killing classification of semisimple Lie algebras and finite root systems

and a remarkable parametrization of cluster variables (in a finite type cluster algebra) by

certain susbsets of root systems, the so-called almost positive roots, was given in [17, Theorem

1.9].

Another striking result regarding cluster algebras is the fact that a large family of them

can be encoded via the combinatorial model of marked surfaces (see, for example, [15]).

In such a setting, cluster variables are identified with arcs, clusters with suitably defined

triangulations and mutations with quadrilateral flips. For example, the cluster algebras of

finite type An can be constructed using the triangulations of convex (n ` 3)-gons and the

cluster algebras of finite type Dn are built using the triangulations of once-punctured convex

n-gons. If a cluster algebra can be realized in this way, then we say that it comes from, or

that it is associated with, a given marked surface.

In the context of classifying cluster algebras it is natural to look at maps between cluster

algebras preserving their structure. A natural requirement for a ring homomorphism between

cluster algebras is that it should commute with mutations in an appropriate sense. For a

bijective morphism from a coefficient-free skew symmetric cluster algebra to itself, this gives

rise to the notion of cluster automorphisms, introduced in [4]. Another example in this

direction is [12], where Fraser defined maps between cluster algebras of the same type but

with different coefficients. In [2] Assem, Dupont and Schiffler introduced the notions of

rooted cluster algebra, that is cluster algebras that come as a pair together with a fixed seed

called the root, and of rooted cluster morphism. Informally, a rooted cluster morphism is a

ring homomorphism between cluster algebras that in addition satisfies the following three

conditions:

(i) it must send cluster variables in the fixed initial cluster (of the root) to cluster variables

of the root or to integers,

(ii) it must send exchangeable variables in the fixed initial cluster (of the root) to exchange-

able variables of the root or to integers,
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(iii) it must commute with mutations in an appropriate sense.

Identifying rooted cluster algebras as objects and rooted cluster morphisms as morphisms,

respectively, defines the category Clus (see [2, Definition 2.6]). In Clus, maps between

cluster algebras of different types are now allowed.

Originally, the clusters in a cluster algebra are defined to be finite sets [16]. In [21] Gratz

and Grabowski remove that restriction and define infinite rank cluster algebras by allowing

countably infinite clusters while keeping the other axioms of a cluster algebra unchanged.

In particular, for a given initial seed, only finite sequences of mutations that start at that

initial seed are allowed. As a consequence, not every orientation of the initial quiver shows

up during the mutation process and the cluster algebras that one obtains depend on the

choice of the initial quiver in the initial seed.

In similar spirit, Çanakçi and Felikson [10] generalize cluster algebras coming from marked

surfaces to the case of infinitely marked surfaces. The surfaces are now allowed to have

countably infinitely many marked points, with finitely many accumulation marked points.

These authors show in [10] that in order to connect any two triangulations infinite sequences

of mutations, or equivalently, of diagonal flips, are necessary (see also [7]). Therefore, as in

the case of infinite rank cluster algebras of Gratz and Grabowski, one does not see all of the

triangulations of a (infinitely) marked surface at hand if one sticks to the classical setup and

only allows for finite sequences of mutations.

Instead, we consider certain limit construction in an appropriate category. This category,

the definition of which is one of the main outcomes of this thesis, has the same objects as

Clus but a different notion of morphisms, the so-called freezing rooted cluster morphisms

(Definition 5.2). Our definition (of morphisms) remains centered on the idea that morphisms

between cluster algebras should commute with mutations. However, in contrast to rooted

cluster morphisms, we allow exchangeable variables to be sent to frozen ones, while forbidding

frozen variables to be sent to exchangeable ones. Slightly more formally, the condition (ii)

is replaced by the condition (ii1):

(ii1): frozen variables can only be sent to frozen variables or to integers.

We call the collection of all rooted cluster algebras and all freezing rooted cluster morphisms
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between them fClus and by viewing rooted cluster algebras as objects and freezing rooted

cluster morphisms as morphisms between those objects we arrive at the following result.

Theorem 1. (Section 5.3). fClus ensembles into a category.

We consider inverse systems in fClus and define pro-clusters (Definition 6.2). These are

the subsets of the inverse limits (in the category of rings) lifted from clusters of the rooted

cluster algebras in the corresponding inverse system. Informally, we can think of pro-clusters

as a way of combining infinitely many clusters. With that notion, we then define a special

family of algebras, called pro-cluster algebras (Definition 6.6): a pro-cluster algebra is the

ring that is generated inside an inverse limit by all the distinct elements of all pro-clusters.

There is a remarkable connection between pro-cluster algebras and infinite rank cluster

algebras. The pro-cluster algebras that we compute in Theorems 6.24, 6.39 and 6.51 of

this thesis are equal as rings to the infinite cluster algebras of Gratz and Grabowski [21]

and of Çanakçi and Felikson [10] for a suitable choice of the initial quiver and the initial

triangulation, respectively. However, in comparison to previous constructions, our pro-cluster

algebras are defined in a more general, surface-independent, purely algebraic way. Moreover,

they have the advantage of seeing all orientations of the initial quiver, or equivalently, all

triangulations of a surface. To show this, we propose an algebraic interpretation of a two-

dimensional disk with a discrete set of marked points and certain accumulation marked

point(s) as linearly ordered sets. Suitably defined triangulations of those sets coincide with

the triangulations of the infinitely marked disks. We prove that under that interpretation:

Theorem 2. (Theorems 6.21, 6.36 and 6.48). All triangulations of the infinitely marked

disks show up as pro-clusters of pro-cluster algebras coming from a suitably defined inverse

systems of rooted cluster algebras and freezing rooted cluster morphisms between them.

The above mentioned combinatorics of triangulations of disks with finitely and infinitely

many marked points has been shown to provide a model for certain categories. For example,

Buan, Marsh, Reineke, Reiten and Todorov show in [9] that indecomposable objects in a

category C, the so-called cluster category, which is obtained as a quotient of the bounded

derived category of the module category of a finite-dimensional hereditary algebra over a

field, correspond to diagonals of a convex polygon with its triangulations corresponding to
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certain subcategories of C. Furthermore, in [23], [5] or [6], the respective authors extend

this idea further and consider categories that are modeled by the combinatorics of unit

circles with countably infinitely many marked points. In other words, certain categories

can be encoded using the underlying combinatorial models of pro-cluster algebras coming

from inverse systems in fClus and, thus, this thesis provides an algebraic counterpart, with

cluster-like combinatorics, for the description of such categories.

We also discuss different examples of freezing rooted cluster morphisms between cluster

algebras of different types and investigate certain properties of the category fClus. More

concretely, we show in Corollary 5.19 that the isomorphisms in the category fClus coincide

with the bijective freezing rooted cluster morphisms and in Theorem 5.20 that the category

fClus is neither complete nor cocomplete.

In [22] Gratz gave a necessary and sufficient condition for a ring homomorphism between

cluster algebras to give rise to a rooted cluster morphism that sends no cluster variable to

an integer. Here we take an initial step towards characterizing freezing morphisms, that is

the freezing rooted cluster morphisms that send exchangeable variables to frozen variables.

In Proposition 5.22, we provide a necessary condition for freezing of a single exchangeable

variable. We prove that if there is a unique exchangeable variable (in the cluster of the root)

that is sent to a frozen variable by a freezing morphism, then it is necessarily connected to

at least one frozen variable in the quiver of the root.

In [2, Section 4] the authors constructed rooted cluster morphisms from a rooted cluster

algebra associated with a convex n-gon to a rooted cluster algebra associated with a convex

pn`1q-gon. Geometrically, those rooted cluster morphisms correspond to injecting a smaller

n-gon into the bigger pn ` 1q-gon, in the most natural way. We invert this setup and

construct (Definition 4.22) parameter-dependent ring homomorphisms (Proposition 4.24)

from a cluster algebra associated with a convex pn ` 1q-gon to a cluster algebra associated

with a convex n-gon and prove in Section 5 that for a certain choice of parameters and

a suitable choice of the initial triangulation they yield freezing morphisms in the category

fClus. Geometrically, these maps are based on the idea of collapsing triangles. To show

that our construction might be generalized to type D (rooted) cluster algebras we provide

a concrete example of a collapsing triangle based freezing morphism from a suitably rooted
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cluster algebra coming from a 9-gon with a single puncture to a suitably rooted cluster

algebra coming from a once-punctured 8-gon (Example 5.36).

The freezing morphisms corresponding to collapsing triangles are a special case of a more

general construction. An exchangeable variable in a cluster of a seed is said to be freezeable

if it is connected (in the quiver of the seed) to two frozen variables that are not connected

to any other exchangeable variable and are such that one of them sends an arrow to and

the other one receives an arrow from the exchangeable variable which they are connected to.

Below are examples of two quivers with a freezeable variable marked with a blue dot and

the frozen variables marked with squares.

˝ ‚

‚ ‚ ‚ ‚ ‚ ˝

˝ ‚

(A) (B) ˝

A seed which has freezeable variables is called a freezeable seed. We define a parameter-

dependent map (Definition 5.32) from a cluster of a freezeable seed to a cluster of a seed

which is constructed as follows: turn one of the freezeable variables x to a frozen variable,

and remove all pairs of frozen variables that are connected to x in the way described in the

previous paragraph, while keeping the remaining part of the quiver untouched. See below

for an example of this operation performed on the two quivers above.

‚

‚ ‚ ˝ ‚ ‚

(A) (B) ˝

Another key result is that we prove in Theorem 5.33 that such maps yield freezing morphisms

between acyclic cluster algebras. This particular example of a freezing cluster morphism is

especially important since we provide a simple recipe for constructing maps between acyclic

cluster algebras, in particular those of different finite types and different ranks.
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We also propose a reformulation of the maps described in the previous paragraph that

makes use of the correspondence between cluster variables and almost positive roots and

show in Theorem 5.39 that the reformulated maps yield freezing rooted cluster morphisms

between cluster algebras of finite type.

The thesis is organized as follows. Chapters 2, 3 and 4 are dedicated to providing the

necessary background material while Chapters 5, 6 and 7 contain the new results. In Chapter

2 we introduce rooted cluster algebras. Chapter 3 offers a condensed review of classification of

cluster algebras of finite type. Chapter 4 gives the reader a preliminary exposition to category

theory and we define a family of parameter dependent ring homomorphisms between cluster

algebras, of different ranks, from convex polygons.

In Chapter 5 we define the category fClus, study some of its properties and morphisms

within it. Chapter 6 is concerned with pro-cluster algebras and important examples. In

Chapter 7 we briefly discuss possible extensions of our work.
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2 Introduction to cluster algebras

The main objects that this thesis will focus on are certain commutative rings, called cluster

algebras. In a typical setup one is given all of the generators needed to construct an algebra.

This is not the case for cluster algebras. Here we are given only a subset of generators and

a combinatorial recipe to iteratively build the rest of them. The combinatorics encodes a

special notion of positivity which leads to many beautiful results, some of which we will

showcase in this thesis and expand and none of which, subjectively speaking, will appear

obvious from looking at the basic definitions.

In this chapter we give the formal definition of cluster algebras of geometric type and

discuss some of their preliminary properties. The initial exposition we provide will rely upon

the exposition written by Fomin and Zelevinsky [17] and the exposition written by Assem,

Dupont and Schiffler [2].

2.1 Definition of a cluster algebra

Cluster algebras are commutative rings embedded in an ambient field F , the field of ratio-

nal functions in countably many independent variables and with coefficients in Q. Cluster

algebras are generated by a subset of F , which is obtained from certain initial data via the

process of so-called mutation.

2.1.1 Seeds

Assume I is a countable set. A matrix A “ paijqi,jPI is locally finite if for every i P I, the

families paijqjPI and pajiqjPI have finite support. We denote by MIpZq the ring of locally finite

integer matrices with its entries indexed by I ˆ I. We say that a matrix B P MIpZq is skew-

symmetrisable if there exists a family of non-negative integers pdiqiPI such that dibij “ ´djbji

for any i, j P I. We call a skew-symmetrisable matrix B P MIpZq an alternating matrix if

I “ I` Y I´, where I` “ ti P I : bij ą 0 for all i ‰ j P Iu and I´ “ ti P I : bij ă 0 for all i ‰

j P Iu. If B P MIpZq and if J is a subset of I, we denote by BrJs “ pbijqi,jPJ the submatrix

of B formed by the entries labelled by J ˆ J .

The so-called seeds are the source of the initial data we mentioned at the start of this
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section.

Definition 2.1. ([17, Section 1.2]). A seed is a triple Σ “ pX, ex,Bq where:

• X is a countable set of indeterminates over Z, i.e. the field F “ Qpx|x P Xq of rational

functions in X is a purely transcendental field extension of Q. The set X is called the

cluster of Σ.

• ex Ď X is a subset of the cluster whose elements are called the exchangeable variables

of Σ. The elements Xzex are called the coefficients (or the frozen variables) of Σ.

• B “ pbxyqx,yPX P MXpZq is a skew-symmetrisable matrix, called the exchange matrix

of Σ.

If a seed Σ “ pX, ex,Bq is such that Xzex “ H then we call Σ coefficient-free and simply

write Σ “ pX,Bq in such case, for brevity. A seed is called finite if X is a finite set. In

general, we will denote the ambient field F “ Qpx|x P Xq simply by FΣ.

It is often convenient to interpret exchange matrices in terms of special class of directed

graphs, called quivers. Here we describe this connection in detail only for exchange matrices

that are skew-symmetric, since we will deal almost exclusively with cluster algebras arising

from skew-symmetric matrices. For an extension of the discussion to skew-symmetrisable

matrices, see [32, Section 2.4].

Definition 2.2. ([35, Definition 2.1]). A quiver Q is an oriented graph given by a set

of vertices Q0, a set of arrows Q1 between vertices Q0, and two maps s : Q1 Ñ Q0 and

t : Q1 Ñ Q0 taking an arrow to its source and target, respectively.

If a vertex i P Q0 of a quiver Q is such that s´1piq ‰ H and t´1piq “ H the we call i

a source. Similarly, if s´1piq “ H and t´1piq ‰ H then we call i a sink. If there are k ě 1

arrows between vertices i, j P Q0, then we write k ‚ i Ñ j to express that. A quiver Q is

said to be finite if both Q0 and Q1 are finite sets. A loop of a quiver is an arrow i whose

source and target coincide. A 2-cycle of a quiver is a pair of distinct arrows i and k such

that spiq “ tpkq and tpkq “ spiq.

A skew-symmetric matrix B P MIpZq encodes a quiver QB, with the set of vertices Q0 “ I

and with the set of arrows Q1 “ tbij ‚ i Ñ j|bij ą 0u.

9



Example 2.3. Below we can see a skew-symmetric B and its corresponding quiver QB.

B “

¨

˚

˚

˚

˝

0 ´1 1

1 0 ´1

´1 1 0

˛

‹

‹

‹

‚

ú QB “

2

1 3.

Note that QB has no loops (1-cycle) or 2-cycles.

The local finiteness property of B translates into QB having only finitely many arrows

incident with every vertex. Moreover, if B is alternating then every vertex of QB is either

a sink or a source. By abuse of notation we will often write Σ “ pX, ex,QBq for the seed

Σ “ pX, ex,Bq, ifB is skew-symmetric. Given a seed Σ “ pX, ex,QBq we will sometimes refer

to a vertex of QB as exchangeable (respectively, frozen) if it corresponds to an exchangeable

(respectively, frozen) variable.

2.1.2 Triangulations of marked surfaces as seeds

Let us first recall what marked surfaces are.

Definition 2.4. ( [15, Definition 2.1]). A marked surface is a pair pS,Mq where

• S is a connected oriented 2-dimensional Riemann surface with a boundary BS

• M is a finite set of marked points in the closure of S such that each connected com-

ponent of BS contains at least one marked point in M .

If a marked point lies in the interior of S then we call it a puncture.

Defining marked surfaces in the way we did allows us to talk about their so-called trian-

gulations. Informally, we can think of a triangulation drawing paths on the surface between

marked points until cutting along the drawn paths results with a set of disconnected triangles.

Triangulations of marked surfaces serve as an important source of seeds for cluster algebras.

In order to eliminate the surfaces with no triangulations or only a single triangulation we

must also assume that pS,Mq is not one of the following:

• a sphere with one, two or three punctures,

• an unpunctured or a once-punctured monogon,
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• an unpunctured digon or an unpunctured triangle.

Now the task at hand is to describe a way in which we can attach a (skew-symmetric)

matrix, or equivalently a quiver, to a triangulation of a marked surface. Here we intend to

provide the reader with a working understanding of this construction, rather than giving the

full exposition. For the latter, we refer the reader to the source material by Fomin, Shapiro,

and Thurston [15]. But before we do this, we have to first define triangulations of marked

surfaces in a formal way.

In what follows, when we are talking about a curve in S that connects two marked points

in pS,Mq, we are effectively talking about a representative of its isotopy class in S with

respect to the set M . If two curves α, α1 do not belong to the same isotopy class then

they are said to be distinct. On the other hand, if α, α1 are such that there are curves in

their respective isotopy classes that do not intersect in SzM then we say that α and α
1 are

compatible.

Definition 2.5. ([15], Definition 2.2). An arc in pS,Mq is a curve in S with endpoints in

M and which is compatible with itself, except that its endpoints may coincide.

If an arc of pS,Mq is isotopic to a connected component of BSzM then we call it a

boundary arc and an internal arc otherwise. In Definition 2.1 of a seed we made a distinction

between frozen and exchangeable variables and hence why the distinction between boundary

arcs and internal arcs is needed. We will make this more precise shortly.

Definition 2.6. ([15, Definition 2.6]). A triangulation of pS,Mq is a maximal collection

of arcs which are pairwise distinct and compatible. The arcs of the triangulation cut the

surface into triangles.

Before moving forward, we note that in [15] the authors allow for the triangles in a

triangulation to have two distinct sides rather than three. Such triangles are referred to as

self-folded triangles. However, since we will only be concerned with triangulations where no

self-folded triangles will ever appear, every triangulation we will consider from this point

onward is always assumed to have no self-folded triangles.
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We will now explain how we can associate to each triangulation T of pS,Mq a skew-

symmetric matrix BT , following closely Definition 4.1 in [15]. For any triangle ∆ in T , we

define a matrix B∆, indexed by the arcs (both boundary and internal) in T and given by

B∆
γ,γ1 “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if γ and γ 1 are sides of ∆ and γ 1 follows γ in the clockwise order;

´1 if γ and γ 1 are sides of ∆ and γ 1 follows γ in the anticlockwise order;

0 otherwise.

The matrix BT is then given by

BT
“
ÿ

∆

B∆, (1)

where the above sum runs over all triangles in T . We then associate with T the seed

ΣT “ pXT , exT , B
T q where:

• XT “ txγ : γ is an arc in T u;

• exT “ txγ : γ is an internal arc in T u;

• BT is the skew-symmetric matrix as in (1) above.

We can construct the quiver QT corresponding to BT directly from T in the following

way:

• the vertices in QT are the arcs of T ,

• the frozen vertices in QT are the boundary arcs of T ,

• there is an arrow γ Ñ γ1 if and only if γ and γ1 are distinct sides of the same triangle

in T and γ1 follows γ in the clockwise direction,

• a maximal collection of 2-cycles is removed.

Example 2.7. Figure 1 shows an example of quiver obtained from a triangulation of a disk

with 6 marked points on its boundary, regarded here as triangulation of a hexagon. Squares

correspond to frozen variables and points correspond to exchangeable variables.

We sometimes treat the matrix B, the quiver QB, the matrix BT and the quiver QT as being

the same object without further comment.

12



Figure 1: A triangulation of a hexagon and the corresponding quiver.

2.1.3 Mutations

A seed Σ “ pX, ex,Bq contains all the data needed to construct the associated cluster

algebra. We will now define seed mutation. By applying mutation successively, we will obtain

all the generators needed for constructing the cluster algebra. The information required to

perform mutation is encoded in the exchange matrix B.

Definition 2.8. ([17, Definition 1.1]). Given a seed Σ “ pX, ex,Bq and an exchangeable

variable x P ex, the image of the mutation of Σ in the direction of x is the seed

µxpΣq “ pX
1

, ex
1

, B
1

q “ Σ
1

where the data of Σ1 are obtained from Σ as follows:

1) X 1

“ pXztxuq \ tx
1

u where

xx
1

“

m
ź

yPX;
bxyą0

ybxy `

m
ź

yPX;
bxyă0

y´bxy (2)

2) ex1

“ pexztxuq \ tx
1

u;

3) B1

“ pb
1

yzq P MXpZq is given by

b
1

yz “

$

’

&

’

%

´byz, if x “ y or x “ z

byz ` 1
2
p|byx|bxz ` byx|bxz|q, otherwise.

(3)

13



For any y P X we will denote by µx,Σpyq the cluster variable in the cluster X 1 of the seed

µxpΣq corresponding to y. This means that µx,Σpyq “ y if y ‰ x and µx,Σpyq “ x
1 if y “ x,

where x1 is defined as in (2) above. If clear from context, we will use the shortened notation

µxpyq instead of µx,Σpyq.

We highlight here two important well-known facts. Let Σ “ pX, ex,Bq be a seed and let

x P ex. Then

1. µµxpxq ˝ µxpΣq “ Σ, i.e. mutation is involutive,

2. the cluster of the seed Σ
1 is a transcendence basis of the ambient field FΣ.

Example 2.9. Let Σ “ ptx1, x2, x3u, Bq, where

B “

¨

˚

˚

˚

˝

0 ´1 1

1 0 ´1

´1 1 0

˛

‹

‹

‹

‚

.

Mutating Σ in direction 1 gives ptx
1

1, x2, x3u, B
1

q where

x
1

1 “
x2 ` x3
x1

and where

B
1

“

¨

˚

˚

˚

˝

0 1 ´1

´1 0 0

1 0 0

˛

‹

‹

‹

‚

.

Of course a natural thing to do next is to define the equivalent of the rule (3) from Definition

2.8 for quivers, in a way that will make the following diagram commute.

Σ “ pX, ex,Bq Σ “ pX
1

, ex
1

, B
1

q

Σ “ pX, ex,QBq Σ “ pX
1

, ex
1

, QB1 q

µxpΣq

µxpΣq

This is done as follows.

Definition 2.10. ([35, Definition 2.2]). Let B P MIpZq be skew-symmetric. The mutation

of the quiver QB at vertex k P I is defined as follows.
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(a) For all paths of the form i Ñ k Ñ j add an arrow from i to j. The multiplicity is

taken into account, i.e. if there are a arrows from i to k and b arrows from k to j, we

add ab arrows from i to j.

(b) Cancel a maximal set of 2-cycles from those created in (a).

(c) Reverse all arrows incident with k.

Example 2.11. Consider the matrix B and the corresponding quiver QB:

B “

¨

˚

˚

˚

˝

0 ´1 1

1 0 ´1

´1 1 0

˛

‹

‹

‹

‚

ú QB “

2

1 3.

Applying quiver mutation to QB at 1 results in the quiver

3 1 2 ,

with the corresponding matrix
¨

˚

˚

˚

˝

0 1 ´1

´1 0 0

1 0 0

˛

‹

‹

‹

‚

,

which is the same as the matrix we obtained by applying matrix mutation to B at 1 in

Example 2.9.

Now that we have established a way of constructing an exchange skew-symmetric matrix

(and so, a quiver) from a triangulation of a marked surface, the natural question is what

does mutation correspond to geometrically. To answer this question let pS,Mq be a marked

surface, T a triangulation of pS,Mq and ΣT “ pXT , exT , B
T q the corresponding seed. We will

denote an arc of pS,Mq by tx, yu where x, y P M are the end points of that arc and denote

the corresponding cluster variable by tx, yu too, instead of xtx,yu, for simplicity. Moreover,

we will call an exchangeable (respectively, frozen) variable tx, yu simply an internal arc or

a diagonal (respectively, a boundary arc or an edge) if no ambiguity is caused by doing so.

As it turns out, the mutation of ΣT at an exchangeable variable can be represented by a

so-called diagonal flip of T . In simple words, a diagonal flip replaces an arc with the only
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non-isotopic arc which still produces a proper triangulation. Slightly more formally, every

internal arc tx, yu P exT is the diagonal of a unique quadrilateral with vertices x,w, y, z P M ,

whose sides tx,wu, tw, yu, ty, zu and tz, xu are all contained in T . The diagonal flip of T at

tx, yu replaces the arc tx, yu in T with the arc tw, zu and leaves all the other arcs untouched,

resulting in a triangulation pT ztx, yuq Y tw, zu. See Figure 2 for an example of a diagonal

flip in a triangulation of a hexagon.

x

y

w z

x

y

w z
µtx,yu

Figure 2: A diagonal flip of an arc tx, yu of a hexagon.

2.1.4 Rooted cluster algebras

We have now gathered all the tools and materials needed to construct a cluster algebra. The

construction goes as follows. We start with the initial seed. Mutating the initial seed in

direction of an exchangeable variable from the corresponding cluster gives us another seed,

enabling us to apply another mutation to the newly obtained seed. Collecting all distinct

variables from the clusters of all seeds that are reachable from the initial seed by a sequence

of so-called admissible mutations will provide a prescribed set of generators of the cluster

algebra associated to the initial seed. We will now make this rather informal description

formal.

Definition 2.12. ([2, Definition 1.3]). Let Σ “ pX, ex,Bq be a seed. For l ě 1 a sequence

px1, . . . , xlq is called Σ-admissible if x1 P ex and for every 2 ď k ď l, we have xk P µxk´1
˝¨ ¨ ¨˝

µx1pexq. The empty sequence of length l “ 0 is Σ-admissible for every seed Σ and mutation
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of Σ along the empty sequence leaves Σ unchanged.

Consider the set of all seeds. We say that two seeds Σ and Σ
1 are equivalent if and only if

there is a Σ-admissible sequence px1, . . . , xlq such that Σ1

“ µxl ˝¨ ¨ ¨˝µx1pΣq. It is easy to see

that this relation is an equivalence relation on the set of all seeds. We call the equivalence

class of a seed Σ, under this equivalence relation, the mutation class of Σ and denote it by

MutpΣq. That is,

MutpΣq “ tµxl ˝ ¨ ¨ ¨ ˝ µx1pΣq | l ě 0, px1, . . . , xlq is Σ-admissibleu.

If two seeds are in the same mutation class then we say that they are mutation equivalent.

We will denote by XΣ the set

XΣ “ tx P X
1

: pX
1

, ex
1

, B
1

q P MutpΣqu Ď FΣ

of all exchangeable and of all frozen variables arising in the clusters of seeds which are

mutation equivalent to a seed Σ.

We are now ready to define the cluster algebra associated with a given seed Σ. We start

with a classical definition of Fomin and Zelevinsky [17].

Definition 2.13. ([2, Definition 1.4]). Let Σ “ pX, ex,Bq be a seed. The cluster algebra

associated to Σ is the Z-subalgebra of its ambient field FΣ given by:

ApΣq “ Z
“

x
ˇ

ˇx P XΣ

‰

Ď FΣ.

The elements of XΣ are called cluster variables (or the exchangeable variables and frozen

variables, respectively) of the cluster algebra ApΣq. We call the cluster algebra ApΣq skew-

symmetrisable, if the matrix B is skew-symmetrisable. The rank of the cluster algebra ApΣq

is defined as the cardinality of the set of exchangeable variables of Σ.

Next we introduce the pointed version of a cluster algebra ApΣq, so-called rooted cluster

algebra. They were first introduced by Assem, Dupont and Schiffler [2] in order to construct a

category of cluster algebras where the morphisms are mutation preserving maps. Two seeds

in the same mutation class will give rise to the same cluster algebra but to two different

rooted cluster algebras.
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Definition 2.14. The rooted cluster algebra with initial seed Σ is the pair pApΣq,Σq, where

ApΣq is the cluster algebra associated to Σ.

Remark 2.15. The notation introduced in Definition 2.13 extends naturally to Definition

2.14. That is, when we talk about cluster variables and the rank of a rooted cluster algebra

pApΣq,Σq we mean the cluster variables and the rank of ApΣq. Similarly, when we say that

pApΣq,Σq is skew-symmetrisable we mean that ApΣq is.

Example 2.16. If Σ “ pH,H,Hq, then Mut(Σ)“ H and so ApΣq – Z. If Σ “ pX,H, Bq

has no exchangeable variables, then Mut(Σ)=tΣu and so ApΣq – Zrx|x P Xs is isomorphic

to a polynomial ring in countably many variables. For a non-trivial example let us consider

the following. Let Σ “ ptx1, x2u, x1 Ñ x2uq be a seed. We can think of MutpΣq as a graph

whose vertices are seeds and whose edges are mutations of length 1. That is, we draw an

edge between two seeds Σ
1

,Σ
2

P MutpΣq if and only if µx1 pΣ
1

q “ Σ
2 for some x1

P ex
1 . The

mutation class of Σ can be pictured as follows.

Σ

`

tx2`1
x1

, x2u, x2`1
x1

Ð x2
˘ `

tx1,
x1`1
x2

u, x1 Ð x1`1
x2

˘

`

tx2`1
x1

, x1`x2`1
x1x2

u, x2`1
x1

Ñ x1`x2`1
x1x2

˘ `

tx1`x2`1
x1x2

, x1`1
x2

u, x1`x2`1
x1x2

Ñ x1`1
x2

˘

We then have that

XΣ “

"

x1, x2,
x2 ` 1

x1
,
x1 ` 1

x2
,
x1 ` x2 ` 1

x1x2

*

and that ApΣq “ ZrXΣs.

The graph from the Example 2.16 is an example of a more general notion of the so-called

exchange graph. See, for example, [16, §7] or [32, Definition 2.5.1].

Remark 2.17. (a) The definition of cluster algebra given here is not the most general

one. In many situations, the inverses of the coefficients are also chosen as generators.

For more information on definitions of cluster algebras, see, for example, [17, 19].
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(b) Let T be a triangulation of pS,Mq. It is proved in [15] that for every triangulation T 1

of pS,Mq we have that ΣT 1 P MutpΣT q and so, up to a ring isomorphism, the cluster

algebra ApΣT q associated with the triangulation T does not depend on the choice of the

triangulation T . Therefore we will sometimes talk about the cluster algebra ApS,Mq

associated with pS,Mq, without explicitly stating the choice of the initial triangulation

of pS,Mq.

2.1.5 Laurent Phenomenon and positivity

Given countably many indeterminates X1, X2, X3, . . . a Laurent polynomial over a field (or

a ring) F is a polynomial in X1, X2, X3, . . . , X
´1
1 , X´1

2 , X´1
3 , . . . . Now, let us consider the

following examples.

Example 2.18. Consider the seed

Σ “ ptx1, x2u, x1 x2q.

By mutating Σ at x1 we get the seed

Σ
1

“ ptx
1

1, x2u, x
1

1 x2q,

where x1

1 “ µx1,Σpx1q “ x2`1
x1

. Then mutating the seed Σ
1 at x2 we obtain the seed

Σ
2

“ ptx
1

1, x
1

2u, x
1

1 x
1

2q,

where x1

2 “ µx2,Σ1 px2q “
x

1

1`1

x2
“ x1`x2`1

x1x2
. Finally, mutating the seed Σ

2 at x1

1 we obtain the

seed

Σ
3

“ ptx
2

1, x
1

2u, x
2

1 x
1

2q,

where

x
2

1 “ µx1

1,Σ
2 px

1

1q “

x1`x2`1
x1x2

` 1
x2`1
x1

,

which, surprisingly, then reduces to a simple Laurent polynomial in x1 and x2 as follows:

x1`x2`1
x1x2

` 1
x2`1
x1

“
x1 ` x2 ` 1 ` x1x2

x1x2

x1
x2 ` 1

“
px2 ` 1qpx1 ` 1q

x1x2

x1
x2 ` 1

“
x1 ` 1

x2
.
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In fact, the cluster variables x1

1, x
1

2 and x
2

1 are the only cluster variables that we can obtain

from Σ in finitely many mutation steps and so

ApΣq ´ Zrx1, x2, x
1

1, x
1

2, x
2

1s.

Example 2.19. Consider the seed

Σ “ ptx1, x2, x3u, x1 x2 x3 q.

Then

XΣ “

"

x1, x2, x3,
x2 ` 1

x1
,
x1x3 ` 1

x2
,
x2 ` 1

x3
,
x1x3 ` x2 ` 1

x1x2
,
x1x3 ` x2 ` 1

x2x3
,
x1x3 ` px2 ` 1q2

x1x2x3

*

and

ApΣq “ ZrXΣs.

Note that we can regard ApΣq as a cluster algebra associated to a hexagon. This is done

in the following way. Let T be the following triangulation of a hexagon and let ΣT be the

T “

corresponding seed. We can then recover the cluster algebra ApΣq from ApΣT q by adapting

the convention that if x and y are consecutive marked points of a hexagon then xtx,yu “ 1

in ApΣT q.

We notice again that all cluster variables in Examples 2.18 and 2.19 above, a priori

rational functions, are in fact Laurent polynomials in the elements from their respective

initial clusters. This is a special case of the following remarkable result, known as Laurent

phenomenon.

Theorem 2.20. ([16, Theorem 3.1]). Let Σ “ pX, ex,Bq be a seed. Then any element of XΣ

can be written as a Laurent polynomial in ex with coefficients which are integer polynomials

in Xzex.
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Now, if we again look at the cluster variables from the examples above we notice that they

not only are Laurent polynomials in x1, x2 and in x1, x2, x3, respectively, but in fact they are

also minus-free rational functions. The positivity conjecture claims that cluster variables, in

any given cluster algebra, are always minus-free. That conjecture has been proven for many

important cases: for all skew-symmetric cluster algebras of finite rank by Lee and Schiffler

[29], for cluster algebras from surfaces by Musiker, Schiffler and Williams [33], for acyclic

cluster algebras by Kimura and Qin [28] and for skew-symmetric cluster algebras of infinite

rank by Gratz [22].
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3 Classification of finite type cluster algebras

Let us start this section with the following definition.

Definition 3.1. Let Σ be a seed and MutpΣq its corresponding mutation class. We say that

the cluster algebra ApΣq (respectively the rooted cluster algebra pApΣq,Σqq is of finite type

if MutpΣq is finite.

In this section we will be working towards classifying the cluster algebras of finite type.

Remarkably, this is done in terms of finite type Dynkin diagrams. Thus, before we dive into

the classification of (finite type) cluster algebras, we first provide some preliminaries on the

theory of finite (crystallographic) reflection groups and their classfication. This background

section as well as Section 3.2 follow very closely the exposition written by Marsh in [32, §4,

5].

3.1 Finite reflection groups

3.1.1 Definition of a reflection group.

For the reminder of this chapter, n is a natural number and I “ t1, . . . , nu. (In most cases,

I is the set of nodes in the Dynkin diagram, unless stated otherwise).

Throughout this chapter a vector space V is always defined over the real numbers. We

call V a Euclidean space if there is a bilinear map p´,´q : V ˆ V Ñ R which in addition

satisfies the following two conditions:

• symmetry: pα, βq “ pβ, αq for all α, β P V ;

• positive definiteness: pα, αq ą 0 for all nonzero α P V .

The vector space Rn equipped with the usual dot product is an example of a Euclidean space.

Let us assume that from now on V is a Euclidean space. We fix vectors α, β P V and

denote by Rα the span of a vector α, which is a subspace of V . Vectors in V have lengths

and directions. The length |α| of a vector α is given by
a

pα, αq and the angle θ between

vectors α and β is given by pα, βq “ |α||β| cos θ. If an angle θ between vectors α and β

equals π
2
, then we say that α and β are orthogonal. A linear map T : V Ñ V on V is called
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an orthogonal transformation if it preserves p´,´q, that is, if pT pαq, T pβqq “ pα, βq for all

α, β. A set of all orthogonal linear transformations on V together with the operation of

composition of linear transformations forms the group OpV q, called the orthogonal group.

If V 1 is another Euclidean space with bilinear map p´,´q
1 , and if T : V Ñ V

1 is a linear

transformation such that pT pαq, T pβqq
1

“ pα, βq for all α, β, then we call a constant multiple

of such map a similarity (see [32, Section 4.1]).

In this section, we focus on a certain subgroup of OpV q, which is generated by so-called

reflections.

Definition 3.2. ([32, Definition 4.1.1]). A reflection on V is a linear map s : V Ñ V such

that

(a) s fixes a hyperplane pointwise,

(b) s reverses the direction of any normal vector to the hyperplane.

We will only consider hyperplanes of the form:

Hα “ tv P V : pα, vq “ 0u,

for some vector α. One can deduce from the properties of p´,´q that the zero vector is

always in Hα, for every choice of α. Moreover, for any c P Rzt0u, we have that Hα “ Hcα.

As it turns out, there is a nice and simple formula for a reflection.

Lemma 3.3. The formula for a reflection sα in the hyperplane Hα is given by sαpβq “

β ´
2pα,βqα

pα,αq
.

Proof. First, let β P Hα. Then

sαpβq “ β ´
2pα, βqα

pα, αq
“ β ´ 0 “ β.

Next if β “ α then

sαpαq “ α ´
2pα, αqα

pα, αq
“ α ´ 2α “ ´α.

Now the result follows from the fact that V “ Rα ‘ Hα (see [32, Lemma 4.1.1]) and that

both sα and the formula given in the statement of the lemma are linear.

23



We notice that because Hα “ Hcα, for any non-zero real number c, we have that sα “ scα.

One of the main aims of this chapter is to investigate subgroups of orthogonal groups

which are generated by reflections. First, let us show that reflections are indeed orthogonal

transformations.

Lemma 3.4. The reflection sα in the hyperplane Hα is an orthogonal transformation.

Proof. To prove the orthogonality we make use of the formula from Lemma 3.3. Let β, β 1

P V .

We have

psαpβq, sαpβ
1

qq “

ˆ

β ´
2pα, βqα

pα, αq
, β

1

´
2pα, β

1

qα

pα, αq

˙

“ pβ, β
1

q ´
4pα, βq

pα, β 1
q

pα, αq `
4pα, βq

pα, β 1
q

pα, αq

“ pβ, β
1

q,

as required.

We are now in the position to give a formal definition of a reflection group.

Definition 3.5. ([25, Section 1.1]). A reflection group is a subgroup of the orthogonal group

OpV q generated by reflections.

Example 3.6. Let V “ Rn equipped with the usual dot product and with the natural basis

e1, . . . , en. The symmetric group Sn can be thought of as a subgroup of the orthogonal group

OpV q in the following way. A permutation σ P Sn induces a linear map fσ : V Ñ V which

sends
n
ÿ

i“1

λiei to
n
ÿ

i“1

λieσpiq and clearly preserves the dot-product. In other words, fσ P OpV q

for all σ P Sn. Now, let σ “ pi, jq P Sn be a transposition. Then fσpei ´ ejq “ ej ´ ei “

´pei ´ ejq and so fσ sends the vector ei ´ ej to its negative. Moreover, we have

Hei´ej “ t

n
ÿ

i“1

λiei P V | pei ´ ej,
n
ÿ

i“1

λieiq “ 0u

“ t

n
ÿ

i“1

λiei P V | λi “ λju

and so clearly for any v P Hei´ej we have that fσpvq “ v. Thus we have shown that every

orthogonal transformation induced by a transposition pi, jq P Sn is in fact a reflection and
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since Sn is generated by transpositions, it is a reflection group, when seen in this way. In

fact, it is already generated by the transpositions pi, i ` 1q, 1 ď i ă n.

Over the next few sections we will work towards classifying all finite reflection groups.

3.1.2 Root systems

To any given finite reflection group, which we will denote by W from now on, we will attach

a set of vectors, a so-called root system, from the underlying Euclidean space V .

Fix W . Every reflection sα P W has a hyperplane Hα associated to it and a line spanned

by α, perpendicular to Hα. We denote by LW the set of all such lines. That is,

LW “ tRα | sα P W u.

As it turns out, if Rα P LW and w P W then Rwα P LW also.

Lemma 3.7. ([25, Section 1.2]). The set LW is closed under the action of W .

Now let ΦW “ tβ P Rα | sα P W, |β| “ 1u. In words, ΦW is the set of unit vectors in the

lines from LW with every line contributing two unit vectors to ΦW . Immediately, because

W is finite and so there are finitely many reflections in W , we have that ΦW is also finite.

Moreover, if we let α, β P ΦW , then Rsαpβq P LW , by Lemma 3.7. Now sα P W and so it

preserves the lengths of the vectors. Therefore, since β is the unit vector then so is sαpβq

and so sαpβq P ΦW . Yet further, we have, as a direct consequence of the definition of ΦW ,

that Rα X ΦW “ t˘αu. These observations motivate the following definition.

Definition 3.8. ([25, Section 1.2]). A finite subset Φ of nonzero vectors of V is called a root

system if it satisfies the conditions:

1. For all α P Φ, Rα X Φ “ t˘αu.

2. For all α, β P Φ, sαpβq P Φ.

Two root systems Φ Ď V and Φ
1

Ď V
1 , for some Euclidean spaces V and V

1 , are iso-

morphic, if there is a similarity from T : V Ñ V
1 such that T pΦq “ Φ

1 (see [32, Definition

4.2.5]).
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Example 3.9. Let V “ Rn equipped with the usual dot product and with the natural basis

e1, . . . , en. Then the subset Φ of V given by

Φ “ tei ´ ej : 1 ď i, j ď n, i ‰ ju

is a root system in V .

Remark 3.10. We notice a small discrepancy between the root system ΦW we constructed

for an arbitrary reflection group W and the definition of a root system. Namely, the vectors

in ΦW were the unit vectors, whereas the vectors in an arbitrary root system Φ need not to

be unit vectors, as we saw in the Example 3.9 above.

Therefore, to any finite reflection group W we can attach a root system ΦW constructed

in the way explained above. Going in the opposite direction, we can associate to any root

system Φ Ď V a finite reflection group.

Lemma 3.11. ([25, Section 1.2]). Let Φ be a root system. Then

WΦ “ xsα | α P Φy

is a finite reflection group.

We say that a root system is irreducible if it does not arise as the union of two root

systems that are orthogonal subsets of V . We call W “ WΦ an irreducible reflection group

if it arises from an irreducible root system Φ.

We also have that

W “ xsα | Rα P LW y “ xsα | α P ΦW y “ WΦW
.

Therefore, not only does any root system Φ Ď V gives rise to a finite reflection group,

but also any finite reflection group W arises from a root system, namely the root system

ΦW , in the way explained above.

We finish this section with the following definition.

Definition 3.12. ([25, Section 2.9]). We call a root system Φ crystallographic if 2pα,βq

pα,αq
P Z

for all α, β P Φ.
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If a reflection group W arises from a crystallographic root system Φ, that is if W “ WΦ

for Φ a crystallographic root system, then we say that W is a crystallographic reflection

group or, as it is often named in literature, a Weyl group.

3.1.3 Simple systems and Cartan matrices

Let us start this section with an example.

Example 3.13. Let V “ R3 equipped with the usual dot product and with the natural

basis e1, e2, e3. Then by Example 3.9 the subset

Φ :“ tp1,´1, 0q, p0, 1,´1q, p1, 0,´1q, p´1, 1, 0q, p´1, 0, 1q, p0,´1, 1qu Ă V

is a root system. Now let α1 “ p1,´1, 0q and α2 “ p0, 1,´1q. Then p´1, 1, 0q “ ´α1 and

p0,´1, 1q “ ´α2. Moreover, p1, 0,´1q “ α1 ` α2 and p´1, 0, 1q “ ´α1 ´ α2. Thus, we can

see that every vector from Φ can be written as either a nonnegative or a nonpositive linear

combination of α1 and α2.

Definition 3.14. ([25, Section 1.3]). The subset ∆ Ď Φ of a root system is called a simple

system if it is a basis of span(Φ) and satisfies the following property:

• Each α P Φ is a linear combination of elements of ∆ with integer coefficients that are

either all nonnegative or nonpositive.

A simple system for a given root system is not unique. In Example 3.13 above, ∆ “

tα1, α2u is a simple system. But we can also take ∆
1

“ tβ1 :“ p1, 0,´1q, β2 :“ p´1, 1, 0qu.

Then ∆
1 is also a simple system:

p´1, 0, 1q “ ´β1, p1,´1, 0q “ ´β2, p0, 1,´1q “ β1 ` β2, p0,´1, 1q “ ´β1 ´ β2.

Given a simple system ∆ Ď Φ of a root system we refer to its elements as simple roots, and

to the corresponding reflections as simple reflections. The rank of a root system Φ is defined

to be the cardinality of a subset ∆ Ď Φ of simple roots (this is well-defined as every root

system has a simple system, see Theorem 3.15 for more details). A vector α P Φ is called

a positive root (respectively, a negative root) if it can be written as a linear combination of
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elements of ∆ with nonnegative (respectively, nonpositive) integer coefficients. We denote

by Φ` (respectively, by Φ´) the subset of Φ consisting of all positive roots (respectively, all

negative roots) with respect to ∆.

In Example 3.13 we considered a root system

Φ “ tα1, α2, α1 ` α2,´α1,´α2,´α1 ´ α2u Ă R3.

The corresponding reflection group is

WΦ “ xsα | α P Φy.

We notice that by acting with certain elements of WΦ on a simple root α1 we can reach

every vector in Φ. We have of course that sα1pα1q “ ´α1 and that sα1sα1pα1q “ α1.

Moreover, sα1`α2pα1q “ ´α2 and sα1sα1`α2pα1q “ ´α1 ´ α2 and finally sα2pα1q “ α1 ` α2

and s´α1sα2pα1q “ α2. This is a special case of statement in part (d) in the following theorem.

Theorem 3.15. ([32, Theorem 4.3.1], [25, Sections 1.3-1.8]). Let Φ be a root system. Then

(a) Φ has a simple system, ∆.

(b) If Φ` and Φ´ are the corresponding subsets of positive and negative roots, then Φ´ “

´Φ`.

(c) The group WΦ acts simply transitively on the simple systems in Φ.

(d) Every root in Φ lies in the WΦ-orbit of a simple root.

For sα, sβ P W we denote by mpα, βq P N the order of the product sαsβ in W . In

particular, if W “ WΦ for a root system Φ with a simple system ∆, we denote by mpi, jq P N

the order of the product sαi
sαj

in W , where αi, αj P ∆. If W “ WΦ is crystallographic, then

mpi, jq P t1, 2, 3, 4, 6u (see e.g. [25, Section 2.8]).

Recall that I “ t1, . . . , nu, n P N.

Definition 3.16. ([25, Section 2.9]). Let Φ be a crystallographic root system with a simple

system tαi | i P Iu. The Cartan matrix of Φ is the integer matrix A “ paijq, where

aij “
2pαi,αjq

pαi,αiq
for all i, j P I.
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The integers aij in the above definition are often called Cartan integers.

Now let ∆ “ tαi | i P Iu, ∆1

“ tα
1

i | i P Iu be simple systems of a (crystallographic) root

system Φ. Then by Theorem 3.15(c) there exists w P W “ WΦ such that wp∆q “ ∆
1 and we

can assume that wpαiq “ α
1

i for all i P I. Since w P OpV q we have that

2pαi, αjq

pαi, αiq
“

2pα
1

i, α
1

jq

pα
1

i, α
1

iq

and so the Cartan matrices corresponding to ∆ and ∆
1 are the same, up to a simultaneous

reordering of rows and columns. Now going in the other direction, we have that the Cartan

matrix determines the root system up to isomorphism:

Proposition 3.17. ([32, Proposition 4.5.2]). Let Φ Ď V “ spanpΦq and Φ
1

Ď V
1

“ spanpΦ
1

q

be irreducible crystallographic root systems with the same Cartan matrix up to simultaneous

permutation of rows and columns. Then Φ – Φ
1.

We can yet say more about Cartan matrices.

Proposition 3.18. Let Φ be a crystallographic root system with a simple system ∆ “

tα1, . . . , αnu and A the Cartan matrix of Φ. Then

(a) For all i P I, aii “ 2;

(b) For all i ‰ j in I, aij P t0,´1,´2,´3u;

(c) For all i ‰ j in I, aij “ 0 if and only if aji “ 0;

(d) For all i ‰ j in I, if aij “ ´2 or ´3 then aji “ ´1;

(e) All the principal minors of A have positive determinant;

(f) A is symmetrizable.

Proof. Properties (a) and (c) are clear. For (b) and (d) we argue as follows. Let αi, αj P ∆

and let θ be the angle between αi and αj. We have

pαi, αjq “ |αi||αj| cos θ,
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where αi “
a

pαi, αiq for all i P I. Hence

4 cos2 θ “
2pαi, αjq

pαi, αiq

2pαj, αiq

pαj, αjq
“ aijaji.

Now the possible values for θ are π
2
,2π
3

,3π
4

and 5π
6

and so the possible values for cospθq are

0,´1
2
,´

?
2
2

and ´
?
3
2

, respectively (see ([11, Section 6.1]). Thus aij ď 0 for all i, j P I such

that i ‰ j. If θ “ π
2

then aij “ aji “ 0; if θ “ 2π
3

then 1 “ aijaji and so aij “ aji “ ´1; if

θ “ 3π
4

then 2 “ aijaji and either aij “ ´1 and aji “ ´2 or aij “ ´2 and aji “ ´1; finally,

if θ “ 5π
6

then 3 “ aijaji and either aij “ ´1 and aji “ ´3 or aij “ ´3 and aji “ ´1 and we

are done.

For (e) and (f) see Lemma 4.6 and Proposition 4.7 in [26], respectively.

In fact, the conditions paq ´ pfq from Proposition 3.18 characterize Cartan matrices of

crystallographic root systems (see [26, Proposition 4.7]). Matrices that satisfy the conditions

paq ´ pfq are often referred to as Cartan matrices of finite type.

3.1.4 Coxeter groups

In Example 3.6 we explained how the symmetric group Sn can be seen as a reflection group.

The symmetric group Sn is generated by the transpositions σi :“ pi, i ` 1q, 1 ď i ă n, that

satisfy the following relations:

• σ2
i “ e and pσiσi`1q

3 “ e for all i P I;

• σiσj “ σjσi, for all i, j P I such that |i ´ j| ą 1.

. In other words, the group Sn admits the presentation

xσi : i P I | σ2
i “ e, pσiσi`1q

3
“ e, pσiσjq

2
“ e, for all i, j P I such that |i ´ j| ą 1y.

This implies that the symmetric group Sn is an example of a so-called Coxeter group.

Definition 3.19. ([32, Section 4.4]). Let Φ be a root system and ∆ “ tαi | i P Iu Ď Φ its

simple system. A group W is said to be a Coxeter group if it has a presentation of the form

W “ xsαi
: i P I | psαi

sαj
q
mij “ e, for all i, j P Iy,

where mii “ 1 for all i P I and for all i ‰ j in I, mij “ mji is either an integer which is at

least 2 or mij “ 8, meaning the absence of a relation.
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Theorem 3.20. ([32, Sections 1.9, 6.4]). Let Φ be a root system and ∆ “ tα1, . . . , αnu Ď Φ

a simple system of Φ. Then WΦ is a Coxeter group with presentation

WΦ “ xsα1 , . . . , sαn | psαi
sαj

q
mpi,jq

“ e, for all i, j P Iy.

Moreover, all finite Coxeter groups are precisely the finite reflection groups.

3.1.5 Dynkin diagram and classification of finite crystallographic reflection groups

We introduce a way of recording a Cartan matrix as a graph.

Definition 3.21. ([32, Section 4.6]). Let Φ be a crystallographic root system, ∆ “ tα1, . . . , αnu Ď

Φ a simple system and A “ paijq1ďi,jďn the corresponding Cartan matrix. The Dynkin dia-

gram Γ of Φ is a graph with vertices 1, . . . , n with aijaji edges between them. Moreover, if

pαi, αiq ą pαj, αjq then we draw an arrow from vertex i to vertex j.

We note that aijaji P t0, 1, 2, 3u for all i ‰ j, which follows from Proposition 3.18.

Moreover, if pαi, αiq ą pαj, αjq then aij “
2pαi,αjq

pαi,αiq
ą

2pαj ,αiq

pαj ,αjq
“ aji and so aij “ ´1 and

aji “ ´2 or ´3, again, by Proposition 3.18. Thus informally, if αi is larger than αj, then

there are multiple edges between i and j in Γ.

With Proposition 3.18 at hand, one can easily recover the Cartan matrix from the Dynkin

diagram. Let us consider an example.

Example 3.22. Let us suppose that we are given the Cartan matrix A “ paijqi,jPt1,2,3,4u that

gives rise to the following Dynkin diagram

Γ :“
1 2 3 4

.

From Γ we want to recover the entires aij of A for all i, j P t1, 2, 3, 4u. First, there is a

single edge between the vertices 1 and 2 and so a12a21 “ 1. We have by Proposition 3.18

that aij P t0,´1,´2,´3u for all i ‰ j in t1, 2, 3, 4u and so a12 “ a21 “ ´1. Via the same

argument, we have that a34 “ a43 “ ´1. Now there are two edges between the vertices 3 and

4 and so a23a32 “ 2. Again since aij P t0,´1,´2,´3u for all i ‰ j in t1, 2, 3, 4u, there are

two possibilities. Either a23 “ ´2 and a32 “ ´1 or a23 “ ´1 and a32 “ ´2. Now because

an arrow goes from vertex 2 to vertex 3, we have that a23 is strictly greater than a32 and
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so a23 “ ´1 and a32 “ ´2. Next, because there are no edges between vertices 1 and 3, 1

and 4 and 2 and 4 and because aij “ 0 if and only if aji “ 0 for all i ‰ j in t1, 2, 3, 4u (this

is, again, Proposition 3.18), we have that a13 “ a31 “ a14 “ a41 “ a24 “ a42 “ 0. Finally,

aii “ 2 for all i P t1, 2, 3, 4u. Putting everything together, we get that the Cartan matrix A

is
¨

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 0

´1 2 ´1 0

0 ´2 2 ´1

0 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‚

.

It is easy to see that the Dynkin diagram of a crystallographic root system with Cartan

matrix A is indeed given by Γ. More generally, the same procedure can be extended and

used for any given Dynkin diagram.

Before we state the main theorem of this section, let us tidy things up a little. So far, to

every crystallographic root system we attached a Cartan matrix (unique up to a simultaneous

reordering rows and columns) from which we then constructed the Dynkin diagram (unique

up to relabelling vertices). Going in the opposite direction, we saw that the Dynkin diagram

determines the Cartan matrix and that the Cartan matrix determines the crystallographic

root system, up to isomorphism (Proposition 3.17). We have by [32, Lemma 4.2.6] that if

root systems Φ and Φ
1 are isomorphic then so are their associated reflection groups. The

following theorem then completes the picture.

Theorem 3.23. ([24, §11]). The Dynkin diagram of the irreducible crystallographic root

systems are those in the following list.

An, n ě 1

Bn, n ě 2

Cn, n ě 3

Dn, n ě 4

E6
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E7

E8

F4

G2 .

In Table 1 we give the explicit construction of the irreducible crystallographic root systems

of types An,Bn,Cn and Dn and the structure of their corresponding Weyl groups. The vector

space Rn is given the structure of a Euclidean space via the usual dot product. Every

subspace of Rn together with the dot product is also a Euclidean space. To make Table 1.

easier to read, we introduce the following notation. Let e1, . . . , en be the natural basis of Rn.

Then let

∆n “ tei ´ ei`1, 1 ď i ď nu

and

eną “ t˘ei ˘ ej : 1 ď i ă j ď nu,

where whenever we write ˘ei ˘ ej, it means that the sign may be chosen arbitrarily. For

more details on the construction of the root systems of types An, Bn, Cn and Dn and their

corresponding Weyl groups we refer the reader to [25, §2], [24, §11-12] and references therein.

Details about the root systems of types E6,7,9, F4 and G2 (and their reflection groups) can

also be found there.

Type Euclidean space
Crystallographic

root system
Simple system Weyl group

An, n ě 1 t

n`1
ÿ

i“1

λiei :
n`1
ÿ

i“1

λi “ 0u tei ´ ej : 1 ď i ‰ j ď n ` 1u ∆n Sn`1

Bn, n ě 2 Rn t˘ei, 1 ď i ď nu Y eną ∆n´1 Y tenu pZ{2Zqn ¸ Sn

Cn, n ě 3 Rn t˘2ei, 1 ď i ď nu Y eną ∆n´1 Y t2enu pZ{2Zqn ¸ Sn

Dn, n ě 4 Rn eną ∆n´1 Y ten´1 ` enu pZ{2Zqn´1 ¸ Sn

Table 1: Concrete examples of root systems of types An, Bn, Cn, Dn and their corresponding

Weyl groups.
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3.2 Classification of finite type cluster algebras

We are now almost ready for the classification theorem. The last two pieces of notation

that we are going to need are the following. If B P MIpZq is an integer matrix, its Cartan

counterpart A is the integer matrix A “ ApBq “ paijqi,jPI P MIpZq where

aij “

$

’

&

’

%

2 if i “ j;

´|bij| if i ‰ j.

Definition 3.24. ([32, Definition 2.2.1]). Let Σ “ pX, ex,Bq be a seed. We call the matrix

B̃ “ Brexs P MexpZq the principal part of B.

Finally, we have:

Theorem 3.25. ([17, Theorem 1.4]). Let Σ “ pX, ex,Bq be a seed. A cluster algebra ApΣq

(respectively a rooted cluster algebra pApΣq,Σq) is of finite type if and only if there exists a

seed Σ
1

“ pX
1

, ex
1

, B
1

q P MutpΣq such that ApB̃
1

q is a Cartan matrix of finite type (cf. page

30).

For a skew-symmetric matrix B we may restate the above theorem in the language of

quivers. Recall that the underlying graph of the quiver QB is a graph which is obtained from

QB after forgetting the orientation of arrows.

Theorem 3.26. ([17, Theorem 1.4]). Let Σ “ pX, ex,QBq be a seed. A cluster algebra

ApΣq (respectively a rooted cluster algebra pApΣq,Σq) is of finite type if and only if there

exists a seed Σ
1

“ pX
1

, ex
1

, QB1 q P MutpΣq such that the underlying graph of QB̃1 is a Dynkin

diagram.

Remark 3.27. We note that in Theorem 3.25, B is assumed to be skew-symmetrisable,

whereas in Theorem 3.26 B is ’only’ skew-symmetric. As mentioned earlier, it is possible to

view skew-symmetrisable matrices as diagrams, so-called valued quivers. On the other hand,

a Cartan matrix defines, in a natural way, a so-called valued graph, allowing us to identify

a Dynkin diagram with the valued graph associated to the corresponding Cartan matrix.

With these notions at hand, one can restate Theorem 3.26 in the language of valued quivers

(and valued graphs), providing the complete diagram version of Theorem 3.25.
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Example 3.28. Consider the seed Σ “ ptx1, x2, x3u, Bq with the exchange matrix B, its

Cartan counterpart ApBq and the quiver QB given below:

B “

¨

˚

˚

˚

˝

0 1 0

´1 0 ´1

0 1 0

˛

‹

‹

‹

‚

, ApBq “

¨

˚

˚

˚

˝

2 ´1 0

´1 2 ´1

0 ´1 2

˛

‹

‹

‹

‚

, QB “ 1 2 3 .

We observe that the matrix ApBq and the underlying graph of QB are the Cartan matrix

and the Dynkin diagram of type A3, respectively.

More generally, if Σ
1

“ pX
1

, ex
1

, B
1

q P MutpΣq is such that ApB̃
1

q is a Cartan matrix

of finite type (e.g. An, Bn, . . . ) we say that a cluster algebra ApΣq (respectively a rooted

cluster pApΣq,Σq has that particular type. As an example, a cluster algebra ApΣq, with Σ

as in the Example 3.28 above, has type A3, whereas a cluster algebra with the initial seed

from Example 2.16 has type A2.

3.2.1 Denominators and root clusters

In this subsection we will discuss some of the basic properties of cluster algebras of finite

type, mainly following [32, 17, 18]. We start with a description of the set of cluster variables

in terms of the root system associated with a Cartan matrix.

Given a nˆn Cartan matrix of finite type we denote by Φ the corresponding root system,

with a simple system ∆ “ tα1, . . . , αnu and with a set of positive roots Φ` Ă Φ with respect

to ∆. Moreover, we denote by Φě´1 the union of the simple negative roots ´∆ and the

positive roots Φ` and call the elements of Φě´1 almost positive roots. We will also employ

the notation xα “ xd11 ¨ ¨ ¨ xdnn for any vector α “ d1α1 ` ¨ ¨ ¨ ` dnαn P Φ in the root lattice.

The following Theorem 3.29 describes the relationship between cluster variables and root

systems in detail. For the reminder of this section we will denote by Σ‚ “ pX‚, ex‚ :“

tx1, . . . , xnu, B‚q a seed where B̃‚ is an alternating matrix (cf. §2.1.1) and call it an alter-

nating seed.

Theorem 3.29. ([17, Theorem 1.9]). Let Σ‚ “ pX‚, ex‚, B‚q be an alternating seed such

that ApB̃‚q is a Cartan matrix of finite type and let Φ be the root system associated with

ApB̃‚q. Then there is a unique bijection α ÞÑ xrαs between Φě´1 and the cluster variables
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in ApΣ‚q (respectively, the cluster variables of the rooted cluster algebra pApΣ‚q,Σ‚q), such

that for any α P Φě´1, the cluster variable xrαs is expressed in terms of the initial cluster

X‚ as

xrαs “
PαpX‚q

xα

where Pα is a polynomial in the cluster variables from X‚ with integer coefficients, and non-

zero constant term. In particular xr´αis “ xi P ex‚ for i “ 1, . . . , n.

Remark 3.30. If we drop the assumption that the initial seed has to be alternating then

Theorem 3.29 only holds for cluster algebras with no-coefficients (this was proved, for ex-

ample, in [14]). However, in the light of the work carried out in Section 5.6.2 in particular

but also the previous sections, we wanted to avoid this restriction and hence the additional

assumption imposed on the initial seed. Moreover, if we also drop the assumption that the

Cartan counterpart of the principal part of the matrix from the initial seed has to be a

Cartan matrix, then it becomes easy to produce counterexamples to (the modified version

of) Theorem 3.29 above. To see this, consider for example the following initial seed Σ.

Σ “

ˆ

tx1, x2, x3u,

x1 x2

x3

˙

.

Then

XΣ “

"

x1, x2, x3,
x2 ` x3
x1

,
x1 ` x3
x2

,
x1 ` x2
x3

,
x1 ` x2 ` x3

x1x2
,
x1 ` x2 ` x3

x2x3
,
x1 ` x2 ` x3

x1x3

*

.

Now, the root system A3 can be given as Φ “ Φ` YΦ´, where Φ` “ tα1, α2, α3, α1 `α2, α2 `

α3, α1 ` α2 ` α3u and ∆ “ tα1, α2, α3u is a simple system. The bijection from Theorem

3.29 is supposed to send the root α1 `α2 `α3 to the cluster variable which has the product

x1x2x3 in the denominator (when seen as a Laurent polynomial in cluster variables x1, x2,

x3 from the initial seed) but such cluster variable does not exist in ApΣq.

Let us consider an example.

Example 3.31. As mentionded above, the root system of type A3 can be given as Φ “

Φ` Y Φ´, where Φ` “ tα1, α2, α3, α1 ` α2, α2 ` α3, α1 ` α2 ` α3u and ∆ “ tα1, α2, α3u is a
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simple system. The Cartan matrix is
¨

˚

˚

˚

˝

2 ´1 0

´1 2 ´1

0 ´1 2

˛

‹

‹

‹

‚

,

so by Theorem 3.29, we can take the seed Σ from Example 3.28. That is, Σ “ ptx1, x2, x3u, Bq

with

B “

¨

˚

˚

˚

˝

0 1 0

´1 0 ´1

0 1 0

˛

‹

‹

‹

‚

.

The correspondence from Theorem 3.29 between Φě´1 and cluster variables of ApΣq is as

follows. We have that xr´αis “ xi for i “ 1, 2, 3 and that

xrα1s “
x2 ` 1

x1
; xrα1 ` α2s “

x1x3 ` x2 ` 1

x1x2
;

xrα2s “
x1x3 ` 1

x2
; xrα2 ` α3s “

x1x3 ` x2 ` 1

x2x3
;

xrα3s “
x2 ` 1

x3
; xrα1 ` α2 ` α3s “

x1x3 ` px2 ` 1q2

x1x2x3
.

Naturally, we would like to know which collections of almost positive roots give rise to

clusters. Let us start with the following definition.

Definition 3.32. (see [32, Section 5.4]). Let Σ‚ “ pX‚, ex‚, B‚q be an alternating seed such

that ApB̃‚q is a Cartan matrix of finite type and let and let Φ be the root system associated

with ApB̃‚q. A B‚-root cluster C is the set of roots corresponding to a cluster of ApΣ‚q

under the bijection from Theorem 3.29.

Let A be a Cartan matrix and let Φ be the corresponding root system with a simple

system ∆ “ tα1, . . . , αnu and set rα : αis to be the coefficient of αi in the expansion of a

root α in terms of the simple roots. Now, if β P Φ and αi P ∆ then sαi
pβq P Φ for all

1 ď i ď n. However the set Φě´1 is not, in general, closed under reflections in hyperplanes

orthogonal to simple roots. For example, if we consider the root system Φ of type A3, as

given in Example 3.31, then Φě´1 “ t˘α1,˘α2,˘α3, α1 ` α2, α2 ` α3, α1 ` α2 ` α3u and,
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for instance, sα1p´α2q “ ´α1 ´ α2 R Φě´1. We fix this as follows. For 1 ď i ď n, we define

a piecewise linear function σi : Φě´1 Ñ Φě´1 (see [18, §2] for more details) by setting

σipαq “

$

’

&

’

%

sipαq, if sipαq P Φě´1;

α, else.

Now, if B P MIpZq is a skew-symmetrisable alternating matrix (cf. §2.1.1) and such that

ApBq is a Cartan matrix of finite type then according to [18, §3.1] there exists a unique

function p´||´qB : Φě´1 ˆ Φě´1 Ñ N Y t0u, called compatibility degree, such that

p´αi||αqB “ maxprα : αis, 0q

for any i P I and α P Φě´1 and

pα||βqB “ pσ`pαq||σ`pβqqB

and

pα||βqB “ pσ´pαq||σ´pβqqB

for all α, β P Φě´1, where

σ` “
ź

iPI`

σi and σ´ “
ź

iPI´

σi. (4)

A subset C of Φě´1 satisfying pα||βqB “ 0 for all α, β P C is said to be B-compatible. Finally,

we have:

Theorem 3.33. ([17], §3). Let Σ‚ “ pX‚, ex‚, B‚q be an alternating seed such that ApB̃‚q

is a Cartan matrix of finite type and let Φ be the root system associated with ApB̃‚q. Then

the B‚-root clusters are exactly the maximal B̃‚-compatible subsets of Φě´1.

We end this introductory chapter with an example.

Example 3.34. Let

Σ “

˜

tx1, x2u, tx1, x2u, B “

¨

˝

0 1

´1 0

˛

‚

¸

be a seed. The cluster algebra associated to Σ is

ApΣq “ Zrx1, x2,
x1 ` 1

x2
,
x2 ` 1

x1
,
x1 ` x2 ` 1

x1x2
s.
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We have that Σ is an alternating seed and that B “ B̃. The Cartan counterpart is

ApBq “

¨

˝

2 ´1

´1 2

˛

‚,

which is the Cartan matrix of type A2. The root system of type A2 is t˘α1,˘α2,˘pα1`α2qu

and so

Φě´1 “ t˘α1,˘α2, α1 ` α2u.

We have in this case that I “ t1, 2u and that I` “ t1u and I´ “ t2u and so σ` “ σ1

and σ´ “ σ2. Immediately, we have that p´α1|| ´ α2qB “ p´α2||α1qB “ p´α1||α2qB “ 0.

Moreover,

pα1||α1 ` α2qB “ pσ`pα1q||σ`pα1 ` α2qqB “ p´α1||α2qB “ 0

and similarly

pα2||α1 ` α2qB “ pσ´pα2q||σ´pα1 ` α2qqB “ p´α2||α1qB “ 0.

For any other pair α, β P Φě´1 we have that pα||βq “ 1 and so the set of all B-compatible

subsets of Φě´1 is

tt´α1,´α2u, t´α1, α2u, t´α2, α1u, tα1, α1 ` α2u, tα2, α1 ` α2uu.

On the other hand, the set of all clusters in ApΣq is
""

x1, x2

*

,

"

x1,
x1 ` 1

x2

*

,

"

x2,
x2 ` 1

x1

*

,

"

x2 ` 1

x1
,
x1 ` x2 ` 1

x1x2

*

,

"

x1 ` 1

x2
,
x1 ` x2 ` 1

x1x2

**

.

Now, the bijection from Theorem 3.29 sends xi to ´αi for i “ 1, 2, x2`1
x1

to α1, x1`1
x2

to α2

and x1`x2`1
x1x2

to α1 ` α2. Thus, we can see that the set of all B-compatible subsets of Φě´1

coincides with the set of all B-root clusters, as predicted by Theorem 3.33.
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4 Preliminaries on category theory

In order to make this thesis as self-contained as possible, we will include here a very brief

introduction to categories, closely following books [30] and [34] by Tom Leinster and Emily

Riehl, respectively. Two main chapters of this thesis, namely Chapter 5 and Chapter 6, rely

heavily on categorical concepts. In Chapter 5 we construct a new category of rooted cluster

algebras. Moreover, the notion of a categorical limit, inverse limit in particular, will be the

key component in constructing a special family of algebras, called pro-cluster algebras, later

in Chapter 6. We highlight the fact that the exposition of the categorical notions we provide

here is minimal in the sense that we only include the definitions and examples that are most

relevant to our work and best suit our needs. There is, of course, much more to say about

the (categorical) concepts we present here, let alone category theory as a whole, and the

reader should keep this in mind. A much more comprehensive presentation can be found in

the referenced materials.

We also introduce in this chapter a parameter-dependent family of ring homomorphisms

between cluster algebras coming from convex polygons (that is, from disks with finitely many

marked points and no punctures) and the corresponding inverse systems in the category of

rings. For a certain choice of parameters, as we will see later in Chapter 5, we get maps

with an interesting geometric interpretation. Moreover, they turn out to be examples of

morphisms in our new category of rooted cluster algebras (more on this in Chapter 5) and

will be equally important for our discussions in Chapter 6.

4.1 Category theory

In Section 4.1.1 we define categories and in 4.1.2 we define functors, discussing, in both

cases, some of their basic properties and examples. In Section 4.1.3 we define categorical

limits, focusing mainly on inverse limits. Finally, in Section 4.2 we introduce a family of

ring homomorphisms between cluster algebras associated with convex polygons and define

the corresponding inverse systems in the category of rings.
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4.1.1 Categories

Broadly speaking, a category consists of objects. We can also travel between objects from a

given category: this is done via the notion of morhpisms.

Definition 4.1. ([30, Definition 1.1.1]). A category C consists of:

• a collection obpC q of objects ;

• for each A,B P obpC q, a collection C pA,Bq of maps or arrows or morphisms from A

to B;

• for each A,B,C P obpC q, a function

C pB,Cq ˆ C pA,Bq Ñ C pA,Cq

pg, fq ÞÑ g ˝ f,

called composition;

• for each A P obpC q, an element 1A of C pA,Aq, called the identity on A,

satisfying the following axioms:

• associativity : for each f P C pA,Bq, g P C pB,Cq and h P C pC,Dq, we have ph˝gq˝f “

h ˝ pg ˝ fq;

• identity laws : for each f P C pA,Bq, we have f ˝ 1A “ f “ 1B ˝ f .

Remark 4.2. The choice of the most suitable set-theoretical framework for working with

categories is not an obvious one. For example, due to the Russel’s paradox, we know that

the set of all sets does not exist. Based on this, the word "collection" is used in the definition

of a category. For a further discussion on the set-theoretical foundations of category theory

we refer the reader to [34, Remark 1.1.5] and references therein.

Therefore, to construct a category is to specify the collections of objects and arrows be-

tween them, together with the composition rule, which satisfy the axioms from the definition

of a category. It is a common practice to name a category after its objects, albeit in some
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cases the naming of a category can be more transparent than in others, depending, mostly,

on the nature of the objects (or morphisms) at hand, as can be seen in the Table 2 below. We

also note that the composition rule, in a given category, is often the most natural one. That

is, given the objects of a category, there is often a very natural candidate for the composition.

For instance, if the objects are groups and morphisms are group homomorphisms, then the

composition rule is simply given by the composition of group homomorphisms. Thus, we

will only state the composition rule explicitly if its choice is ambiguous.

Category Objects Morphisms

Set Sets Functions

Group Groups Group homomorphisms

Ring Rings Ring homomorphisms

Htpy Spaces
Homotopy classes of continuous

maps

Clus

(see [2, Definition 2.6])
Rooted Cluster Algebras

Rooted cluster morphisms

(see [2, Definition 2.2])

fClus

(Chapter 5, Definition 5.9)
Rooted Cluster Algebras

Freezing rooted cluster morphisms

(Chapter 5, Definition 5.2)

Table 2: Examples of categories.

A category C is called small if it has a set’s worth of objects and set’s worth of arrows,

and large otherwise. In each of the categories listed above, the collection of objects is not a

set and so all of those categories are large categories.

If a category has no morphisms at all apart from the identities (which, due to the definition

of a category, they are committed to have), then we are in the case of a discrete category.

Thus informally, we can think of a discrete category as a collection of isolated directed loops,

indexed by its objects. If the objects of a category C are sets (which are often endowed

with additional structure) and the morphisms are functions (often structure-preserving, if

structure is present), then we call C a concrete category. Every category, apart from the

category Htpy, listed in the table above is concrete in this sense.
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Let us consider yet another, potentially more enlightening, example of a category that is

not a concrete category. Consider a group G. It defines a category BG with a single object.

The morphisms of BG are represented by the group elements of G, with composition given

by the group operation. The identity morphism for the unique object in BG is represented

by the identity element of G. Thus we can see that categories can, and often do, have a

much more abstract flavour to them.

Before we move onto discussing functors, we first define when two objects from a category

are considered to be the same and discuss a simple way of constructing a new category from

an old one.

Definition 4.3. ([34, Definition 1.1.9]). A map f : A Ñ B in a category C is an isomorphism

if there exists a map g : B Ñ A in C such that g ˝ f “ 1A and f ˝ g “ 1B. We call g the

inverse of f and write g “ f´1. If there exists an isomorphism from A to B, we say that A

and B are isomorphic and write A – B.

In Table 3 below we list the isomorphisms in the categories listed in Table 2.

Category Isomorphisms

Set bijections

Group bijective group homomorphisms

Ring bijective ring homomorphisms

Htpy homotopy equivalences

Clus
bijective rooted cluster morphisms

(see [[2], Corollary 3.10])

fClus
bijective freezing rooted cluster morphisms

(see Corollary 5.19)

Table 3: Isomorphisms in the categories listed in Table 2.

We also note that every morphism in the category BG is an isomorphism in the sense of

Definition 4.3, since every group element has an inverse.

As we said earlier, to construct a category is to specify its objects, morphisms between
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them and its composition law. With that in mind, we construct a new category C op from a

category C , called the opposite category ([30, Construction 1.1.9]), as follows:

• the objects of C op are the objects of C ,

• if A,B P obpC q, then C oppA,Bq “ C pB,Aq; if f P C pB,Aq then we denote with

f op P C oppA,Bq the corresponding morphisms in C op,

• 1op
A :“ 1A for all A P obpC q,

• Let f op P C oppA,Bq and gop P C oppB,Cq. Then f P C pB,Aq and g P C pC,Bq and so

we can compose g with f in C using its composition law. We then define gop ˝ f op to

be pf ˝ gqop.

Indeed, with this notion of composition, C op is a category. Informally, we can think of C op

as being the same as C , since the objects and the morphisms of C op are the same as those

of C , with a subtlety that to say f is a morphism from B to A in C is the same as saying f

is a morphism from A to B in C op.

Suppose now S is a statement in a category C . By reversing all the arrows, and the

orders of composing them, in S, we obtain a dual statement Sop in the category C op. The

duality principle (see [31, §II] for more details) then states that S is true if and only if Sop

is true. Consider, for example, the following definition.

Definition 4.4. ([34, Definition 1.2.7]). Let C be a category.

(i) a morphismB
f
ÝÑ C in C is a monomorphism if for all objectsA and maps A B

g

h
,

f ˝ g “ f ˝ h ùñ g “ h.

(ii) a morphismA
f
ÝÑ B in C is an epimorphism if for all objects C and maps B C

g

h
,

g ˝ f “ h ˝ f ùñ g “ h.

Consider now the statement: f is a monomorphism in a category C . That is,

f ˝ g “ f ˝ h ùñ g “ h.
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By reversing the arrows and order of the composition in the above statement we get the dual

statement:

gop
˝ f op

“ hop
˝ f op

ùñ gop
“ hop,

in the opposite category C op. But this is the same as saying that f op is an epimorphism

in C op. Therefore, a morphism f in C is a monomorphism if and only if the morphism

f op in C op is an epimorphism, by the duality principle. Similarly, a morphism f in C is

an epimorphism if and only if the morphism f op in C op is a monomorphism. For a more

in-depth exposition of the concept of duality we refer the reader to [34, §1.2] and references

therein.

4.1.2 Functors

Categories can themselves be treated as mathematical objects. Doing so raises a natural

question of what morphisms between categories should look like. Intuitively, we would want

such morphisms to carry objects to objects and morphisms to morphisms in a way that

preserves the structure (determined by the definition of a category) of the corresponding

categories. All of these requirements, expressed in a formal language, are met by so-called

functors.

In this subsection we provide a minimal amount of background information on functors:

their definition and some basic examples. For a more thorough exposition we refer the reader

to [30, §1.2] or [34, §1.3]. In this thesis, we will not work explicitly with functors, but we

will need them to define limits in the next subsection.

Definition 4.5. ([30, Definition 1.2.1]). Let C and D be categories. A functor F : C Ñ D

consists of:

• a function

obpC q Ñ obpDq,

written as A ÞÑ FpAq;

• for each A,B P obpC q, a function

C pA,Bq Ñ DpFpAq,FpBqq,
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written as f ÞÑ Fpfq,

satisfying the following axioms:

• Fpg ˝ fq “ Fpgq ˝ Fpfq whenever A f
ÝÑ B

g
ÝÑ C in C ;

• Fp1Aq “ 1FpAq whenever A P C .

With this notion of a functor we obtain a category CAT whose objects are categories

and morphisms are functors and with the composition defined in a natural way.

Example 4.6. (i) There is a functor from Group to Set which sends a group to its un-

derlying set and sends a group homomorphism to its underlying function. Thus, we can

say that it forgets the group structure of groups and forgets that group homomorphisms

are homomorphisms.

(ii) Similarly, there is a functor Ring Ñ Set forgetting the ring structure on rings and

forgetting that ring homomorphims are homomorphisms.

(iii) Let Ab be the category of abelian groups. There is a functor Ring Ñ Ab that

forgets the multiplicative structure, remembering just the underlying additive group

and forgets that the ring homomorphisms preserve multiplication.

(iv) There is a functor Clus Ñ Ring forgetting the fixed initial seed on the rooted cluster

algebras and forgetting that rooted cluster morphisms must not only be ring homomor-

phisms but also satisfy certain additional conditions (see [2, Definition 2.6] for more

information).

(v) Let G,H be groups and let BG and BH be the corresponding categories with their

single objects denoted by ‚ and ˛, respectively. Let F be a functor from BG to BH.

By definition, F sends ‚ to ˛. Moreover, it sends a morphisms of BG, or equivalently,

an element of a group G, to a morphism of H, that is, to an element of a group

H. In other words, F is a function from G to H. In addition, if g, g1

P G, then

Fpg ˚g
1

q “ Fpgq ‹Fpg
1

q, where ˚, ‹ denote the composition in BG and BH, respectively,

i.e. the group operations of G and H, respectively. Finally, if eG, eH denote the identity
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morphisms of BG and of BH, respectively, then we have that FpeGq “ eH . But this

means that F sends the identity element of G to the identity element of H. To sum

up, it turns out that F is precisely a group homomomorphism from G to H.

(vi) There is a functor from Set to Group which sends a set to the corresponding free

group and sends a map between two sets to the group homomorphism between the

corresponding free groups. Such functor is an example of a so-called free functor. Free

functors can be thought of as dual to forgetful functors.

4.1.3 Limits

In this subsection we introduce the abstract notion of a limit and then discuss some partic-

ularly useful types of limits, focusing mainly on so-called inverse limits. We will need these

limits in particular in Chapter 6.

Limits in a category C are defined via so-called diagrams (in C ). Given a category J , a

diagram of shape J in C is a functor F : J Ñ C . It helps to think of a diagram simply as a

collection of objects and morphisms in a target category C , indexed by a fixed category J .

To emphasize this we will often refer to J as an index category.

Before we define limits, we first introduce cones.

Definition 4.7. ([30, Definition 5.1.18(a)]). Let F : J Ñ C be a diagram of shape J in

a category C . A cone to F is an object N of C together with a family ψA : N Ñ FpAq of

morphisms indexed by the objects A of J , such that for every morphism f : A Ñ B in J ,

we have Fpfq ˝ ψA “ ψB.

To simplify notation, we denote a cone to F by a pair pN, pψAqAPobpJ qq, or simply by

pN,ψAq, if doing so does not spark confusion.

Definition 4.8. ([30, Definition 5.1.18(b)]). A limit lim(F) of the diagram F : J Ñ C is a

cone pL, ϕq to F such that for every other cone pN,ψq to F there exists a unique morphism
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u : N Ñ L such that ϕA ˝ u “ ψA for all A in J :

N

L

FpAq FpBq

u
ψA ψB

ϕA ϕB

Fpfq

Roughly speaking, the limit has to be "big" enough so that every cone factors through it.

On the other hand, it has to be "condensed" enough to only allow for one such factorization.

Sometimes, a diagram does not have a limit. If it does, then it is unique up to (unique)

isomorphism (see [30, Corollary 6.1.2]) and thus we can speak of the limit of a diagram F.

Remark 4.9. The dual notions of limits and cones are colimits and cocones [30, Definition

5.2.1]. It is straightforward to obtain the formal definitions of those by reversing all mor-

phisms in the above definitions. By [22, Theorem 5.6] every rooted cluster algebra of infinite

rank can be written as a colimit (in the category Clus) of rooted cluster algebras of finite

rank.

A limit lim(F) is called finite if the index category J in the diagram F : J Ñ C of shape

J is finite (that is, J is a small category with its sets of objects and morphisms being finite).

It is called small if the index category J in the diagram F : J Ñ C of shape J is small.

A category is called complete, respectively cocomplete, if it has all small limits, respectively

colimits.

Example 4.10. A pullback (see [30, §5.1] or [34, §3.1] for more details and examples) is a

limit of a diagram indexed by a category that consists of three objects and two non-identity

morphisms with a common codomain. For example, let X, Y , Z be commutative rings with

identities and f : X Ñ Z, g : Y Ñ Z be identity preserving ring homomorphisms. Consider

now the subring, denoted by X ˆZ Y , of the product ring X ˆ Y given by

X ˆZ Y “ tpx, yq P X ˆ Y | fpxq “ gpxqu.

Then X ˆZ Y equipped with the projections γX : X ˆZ Y Ñ X and γY : X ˆZ Y Ñ Y is
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the pullback of
Y

X Z

g

f

There are other limits that are gifted with distinctive names. Two important examples

are that of a product and of an equalizer as they serve as a kind of litmus test for checking

if a category is complete. Now a product is a limit of a diagram indexed by a discrete

category with only identity morphisms and an equalizer is a limit of a diagram indexed by

(finite) category consisting of two objects and two non-identity morphisms with a common

domain. A category is complete if and only if it has all products and small equalizers [30,

Proposition 5.1.26]. Dually, a category is cocomplete if and only if it has coequalizers and

small coproducts.

Theorem 4.11. ([34, §5.6]). The category Ring is both complete and cocomplete.

Similarly, Set and Group are examples of complete and cocomplete categories (see [34,

§5.6]). On the other hand, by Theorem 5.20, our category fClus is neither complete or

cocomplete. The same is true for the category Clus (see [22, Theorem 4.2]).

Another important example is that of an inverse limit. In order to define inverse limits,

we will need the following piece of notation.

Definition 4.12. A preorder is a reflexive transitive binary relation. A preordered set pJ,ďq

is a set J with a preorder ď on it. An order on a set is a preorder ď with the property that

if i ď j and j ě i then i “ j. We call a preordered set with an order on it a partially ordered

set.

Broadly speaking, an inverse limit is a limit, in a sense of Definition 4.8, of a diagram

coming from a category modelled on a partially ordered set. The diagram is often referred to

as inverse system in this setting. More formally, any given partially ordered set pJ,ďq can be

regarded as a category where the objects are elements of J and where the morphisms consist

of arrows i Ñ j, denoted by ij
ÝÑ, if and only if i ď j. We denote the category constructed in

such way by ωJ and let J be a functor from ωop
J to a category C . Note that J is a functor
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from the opposite category ωop
J ; the objects of ωop

J are the elements of J and the morphisms

consist of arrows j Ñ i, denoted by ji
ÝÑ, if and only if i ď j.

Definition 4.13. ([34, Definition 3.1.21]). Let pJ,ďq be a partially ordered set and C a

category. An inverse system over J in C is a diagram of shape J in C . We call the limit of

an inverse system over J an inverse limit and denote it by lim
Ð

Jpiq.

Let us look at some examples.

Example 4.14. Let J “ pN,ďq. Then we have that

ωop
J “ ¨ ¨ ¨

43
ÝÑ 3

32
ÝÑ 2

21
ÝÑ 1,

together with composites and identities, which are not shown. Suppose now that we have a

set X1 and a chain of subsets

¨ ¨ ¨ Ď X3 Ď X2 Ď X1.

Then a functor

J :

$

’

’

’

’

’

&

’

’

’

’

’

%

ωop
J Ñ Set

i ÞÑ Xi

ji
ÝÑ ÞÑ ιji,

where ιji denotes the inclusion map Xj in Xi, induces an inverse system over J in Set and

its limit is
č

iPN

Xi.

In order to simplify notation, given a partially ordered set pJ,ďq, we denote an inverse

system over J in a category C by a pair ppCiqiPJ , pgjiqiďjPJq, or simply by pCi, gjiq, if clear

from the context, where Ci “ Jpiq for all i P J (or, to be more precise, for all i P obpωop
J qq,

and where Jp
ji
ÝÑq “ gji for all i ď j P J .

Example 4.15. For a prime number p, the p-adic integers are defined to be the inverse

limit of the inverse system pZ{pi, qjiq over N of rings and the canonical quotient maps.

Remark 4.16. Let pJ,ďq be a partially ordered set, C a category and J : ωJ Ñ C a functor.

A colimit of a diagram of shape J is called a direct limit [34, Definition 3.1.23].
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Since every partially ordered set gives rise to a small category and since the category

Ring of rings is complete (see Theorem 4.11) , it follows that every inverse system in Ring

has its unique inverse limit. In order to gain a better understanding of what it may look

like, consider the following.

Lemma 4.17. ([30, p.120-121]). Let pJ,ďq be a partially ordered set, Ri a ring and gji :

Rj Ñ Ri a ring homomorphism, for i ď j P J . For any inverse system ppRiqiPJ , pgjiqiďjPJq

the subring

R “

#

r “ priqiPJ P
ź

iPJ

Ri

ˇ

ˇ

ˇ

ˇ

ˇ

ri “ gjiprjq @i ď j P J

+

, (5)

of the direct product of the Ri’s equipped with natural projections πi : R Ñ Ri gives us the

desired inverse limit.

Assume that a given inverse system is indexed by N, for simplicity. An element of R is a

sequence of elements r1, r2, r3, . . . , ri, . . . (see Lemma 4.17 above and in particular equation

p5q for details regarding the construction of R) such that for all i P N, ri P R and such

that gi`1ipri`1q “ ri for all i ě 1. Things simplify if the maps gji, often called the bonding

maps, are surjective. Then given an arbitrary element ri P Ri, for some i P N, we can always

construct an element of R that has ri as its ith coordinate. For 1 ď k ă i , we have that

rk “ gikpriq and for i` 1, i` 2, . . . we choose ri`1, ri`2, . . . recursively, using the surjectivity

of the maps.

The inverse limit constructed in the way descried above, that is as a subring of the

direct product, is often referred to as the canonical inverse limit. The same construction

may be used if the Ri’s are sets, groups or topological spaces (see [[30, p.120-121] for more

information), etc. and the homomorphisms are morphisms in the corresponding category.

Remark 4.18. Note that if there exists an inverse system in Ring built of cluster alge-

bras, which are themselves (commutative) rings, and so-called freezing rooted cluster mor-

phisms (Definition 5.2), which are themselves ring homomorphisms, between them, then

it is guaranteed to have an inverse limit in Ring (see Lemma 4.17 above). On the other

hand, the inverse limit of an inverse system in the category fClus (Definition 5.9) does not

necessarily exist. Now, let ppApΣiq,Σiq, fijq be an inverse system (define over N, for nota-

tional simplicity) in fClus and assume that the inverse limit, denoted by ppApΣq,Σq, fiq of
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ppApΣiq,Σiq, fijq exists in fClus. Then pApΣq, fiq is the inverse limit of pApΣiq, fijq in Ring.

We have that pApΣq, fiq is a cone of pApΣiq, fijq in Ring since ppApΣq,Σq, fiq is a cone of

ppApΣiq,Σiq, fijq in fClus. Now, the unique ring isomorphism from ApΣq to the canonical

inverse limit R of pApΣiq, fijq in Ring is defined by sending an element r P ApΣq to the

element pf1prq, f2prq, f3prq, . . . q P R.

4.2 Inverse systems of cluster algebras of finite type A

In this section we introduce a family of ring homomorphisms each parametrized by a pair

of integers, between cluster algebras associated with convex polygons and the corresponding

inverse systems in the category of rings.

Let us first set the scene for the remaining part of this chapter. Fix m P Zě3 :“ tk P

Z | k ě 3u. We start with the following definition.

Definition 4.19. A linear order on a set J is a binary relation ă with the following prop-

erties:

• trichotomy: x ă y or y ă x or x “ y;

• transitivity: if x ă y ă z, then x ă z.

A linearly ordered set pJ,ăq is a set J with a linear order ă on J .

Definition 4.20. Let pJ,ăq be a linearly ordered set. We call a pair px, yq of elements of

pJ,ăq such that x ă y an arc of pJ,ă). We say that two arcs px, yq and pk, lq of pJ,ăq cross,

if x ă k ă y ă l or if k ă x ă l ă y.

An arc px, yq of pJ,ăq is an edge if tz P J |x ă z ă yu “ H or if tz P J |x ă z ă yu “

Jztx, yu, otherwise it is a diagonal. Moreover, if pJ,ăq is such that |J | “ m then we denote

by m´ the smallest element of pJ,ăq. That is, m´ ă x for every x P Jztm´u. Analogously,

we denote by m` the largest element of pJ,ăq, i.e. x ă m` for every x P Jztm`u.

Recall now that a triangulation of a Riemann surface pS,Mq is a maximal collection of

boundary and internal arcs which are pairwise distinct and compatible (cf. Definition 2.6).

Similarly, for a linearly ordered set pJ,ăq, we have the following definition.
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Definition 4.21. Let pJ,ăq be a linearly ordered set. A triangulation of pJ,ăq is a maximal

set of pairwise non-crossing arcs.

The above definitions will be of particular relevance to the considerations in Chapter 6.

Now, let pJ,ăq be such that |J | “ m. We denote by Pm a closed disk D with m marked

points on its boundary (and no punctures) that are labelled cyclically from m´ P pJ,ăq

to m` P pJ,ăq. We denote by Tm a triangulation of Pm, by ΣTm the seed associated

with Tm and by ApΣTmq its corresponding cluster algebra (see Section 2.1.2 for details on

constructing seeds from triangulations of marked surfaces and the last paragraph of Section

2.1.3 for geometric interpretation of mutations in a cluster algebra that comes from, in the

sense of Section 2.1.2, a marked surface). We note here that there is a natural one-to-

one correspondence between triangulations of pJ,ăq and Pm with the above setting and we

will sometimes refer to this correspondence for simplicity. Cluster variables in ApΣTmq are

identified with the arcs joining two marked points in Pm and for any arc pi, jq of pJ,ăq,

we denote by xij the variables corresponding to the arc joining a marked point labelled

with i to a marked point labelled with j. The exchangeable variables are thus the variables

corresponding to internal arcs. Under this correspondence, the exchange relations given by

mutations in ApΣTmq are the so-called Plücker (or Ptolemy) relations (see [32, §9] for a

condensed introduction to Grassmannians and Plücker relations):

xijxkl “ xikxjl ` xilxkj for m´
ď i ă k ă j ă l ď m`, (6)

and due to [16, §1] the cluster algebra ApΣTmq is the polynomial ring in the variables xij

factored by those. That is,

ApΣTmq “
Zrxij|m

´ ď i ă j ď m`s

pxikxjl “ xijxkl ` xjkxil for m´ ď i ă j ă k ă l ď m`q
.

In the remaining part of this chapter, J is the set r1,ms of consecutive integers from 1 to m

and ă is the usual less than or equal to binary relation imposed on J . In this setting, m´ “ 1

and m` “ m and for m ě 4, the cluster algebra ApΣTmq is the homogeneous coordinate ring

of the Grassmannian Gp2,mq. That is,
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ApΣTmq “
Zrxij|1 ď i ă j ď ms

pxikxjl “ xijxkl ` xjkxil for 1 ď i ă j ă k ă l ď mq
.

For m “ 3, the cluster algebra ApΣT3q “ Zrx12, x23, x13s is the polynomial ring in frozen

variables corresponding to the boundary arcs of P3.

To establish a valid inverse system, we now pair up a family pApΣTmqqmě3 of cluster

algebras with a family of morphisms between them.

Fix p, q P Z.

Definition 4.22. For any m ą 3 we define a map fp,qm,m´1 : ApΣTmq Ñ ApΣTm´1q by the

algebraic extension of the map which sends

xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, j ă m

qx1m´1, i “ 1, j “ m

px1m´1, i “ m ´ 1, j “ m

px1i ` qxim´1, 1 ă i ă m ´ 1 ă j “ m.

Remark 4.23. Chronologically speaking, only the cases p “ 0, q “ 1 and p “ 1, q “ 0 were

initially considered. The parameter-dependent version, for general p and q, came to life at

later stage. The maps f 0,1
m,m´1 and f 1,0

m,m´1 were motivated by the geometry of triangulations

and were constructed in an attempt of defining an algebraic counterpart of the geometric

process called collapsing a triangle. In Remark 5.42 we give a detailed explanation of what

it means to collapse a triangle in a triangulation of a convex polygon and why we say that

the maps f 0,1
m,m´1 and f 1,0

m,m´1 correspond to collapsing a triangle.

Proposition 4.24. The map fp,qm,m´1 : ApΣTmq Ñ ApΣTm´1q is a well-defined ring homomor-

phism.

Proof. That fp,qm,m´1 is a ring homomorphism follows directly from the definition. To see that

it is well-defined, we consider the following. Let x “ xijxkl ´ xilxkj ´ xikxjl P ApΣTmq for
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some 1 ď i ă k ă j ă l ď m. If l ă m, then

fp,qm,m´1pxq “ xijxkl ´ xilxkj ´ xikxjl

“ 0.

Else, if l “ m, j ă m ´ 1 and i “ 1, then

fp,qm,m´1pxq “ x1jppx1k ` qxkm´1q ´ qx1m´1xkj ´ x1kppx1j ` qxjm´1q

“ ppx1jx1k ´ x1kx1jq ` qpx1jxkm´1 ´ x1m´1xkj ´ x1kxjm´1q

“ p0 ` q0

“ 0.

Now, if l “ m, j ă m ´ 1 and i ą 1, then

fp,qm,m´1pxq “ xijppx1k ` qxkm´1q ´ ppx1i ` qxim´1qxkj ´ xikppx1j ` qxjm´1q

“ ppxijx1k ´ x1ixkj ´ xikx1jq ` qpxijxkm´1 ´ xim´1xkj ´ xikxjm´1q

“ p0 ` q0

“ 0.

If l “ m, j “ m ´ 1 and i “ 1, then

fp,qm,m´1pxq “ x1m´1ppx1k ` qxkm´1q ´ qx1m´1xkm´1 ´ x1kpx1m´1

“ ppx1m´1x1k ´ x1kx1m´1q ` qpx1m´1xkm´1 ´ x1m´1xkm´1q

“ p0 ` q0

“ 0,

and finally, if l “ m, j “ m ´ 1 and i ą 1, then

fp,qm,m´1pxq “ xim´1ppx1k ` qxkm´1q ´ ppx1i ` qxim´1qxkm´1 ´ xikpx1m´1

“ ppxim´1x1k ´ x1ixkm´1 ´ xikx1m´1q ` qpxim´1xkm´1 ´ xim´1xkm´1q

“ p0 ` q0

“ 0.

It follows that fp,qm,m´1 is well-defined and so fp,qm,m´1 is a ring homomorphism.
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Then immediately, we get the following.

Corollary 4.25. Let p, q P Z. A pair ppApΣTmqqmě3, pf
p,q
m,nq3ďnďmq is an inverse system over

Zě3 in the category of rings.

Because every cluster algebra in the family pApΣTmqqmě3 is of finite type A, we refer to a

p, q-dependent family of inverse systems pApΣTmq, fp,qm,nq as a family of finite type A inverse

systems. In Chapter 5 we fix some particular choices of triangulations Tm and then show

that both ppApΣTmq,ΣTmq, f 0,1
m,nq and ppApΣTmq,ΣTmq, f 1,0

m,nq are inverse systems in our new

category of rooted cluster algebras.

In Chapter 6, we abstractly define a new family of algebras (with the cluster combina-

torics), which are certain subrings of inverse limits of inverse systems of cluster algebras. In

certain cases, we are then able to explicitly compute those subrings and show that in fact

they are proper subrings of the inverse limits.
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5 Freezing rooted cluster morphisms and the category of

rooted cluster algebras.

It is a natural requirement for a structure preserving map between cluster algebras to not only

preserve their algebraic structure but to also commute with mutations. Rooting our cluster

algebras enables us to give a precise definition of what it means for ring homomorphisms

between not necessarily isomorphic cluster algebras, to commute with mutations. In this

chapter we will define a new category fClus of rooted cluster algebras. Our category consists

of the same objects as the category Clus (see [2, Definition 2.6]) that was first introduced

by Assem, Dupont and Schiffler in [2], but different morphisms, called freezing rooted cluster

morphisms. After the formal introduction, we discuss some important properties of our new

category and study its morphisms in greater detail.

5.1 Freezing rooted cluster morphisms

Given a ring homomorphism between rooted cluster algebras we will have to specify which

(sequences of) mutations we require our map to commute with. For that we will need the

following definition.

Definition 5.1. ([2, Definition 2.1]). Let Σ and Σ1 be seeds and let f : ApΣq Ñ ApΣ1q be a

map between their associated cluster algebras. A Σ-admissible sequence px1, . . . , xlq whose

image pfpx1q, . . . , fpxlqq is Σ1-admissible is called pf,Σ,Σ1q-biadmissible.

We are now ready to define freezing rooted cluster morphisms. These will be the mor-

phims in our category. We fix seeds Σ “ pX, ex,Bq and Σ
1

“ pX
1

, ex
1

, B
1

q.

Definition 5.2. A freezing rooted cluster morphism (frcm) is a ring homomorphism

f : ApΣq Ñ ApΣ1q such that:

(FCM1) fpXq Ď X 1 Y Z;

(FCM2) fpXzexq Ď X 1zex1 Y Z;
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(FCM3) If y P X such that fpyq P X 1 and px1, . . . , xlq is a pf,Σ,Σ1q-biadmissible sequence,

then

fpµxl ˝ ¨ ¨ ¨ ˝ µx1pyqq “ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpyqq.

Remark 5.3. A freezing rooted cluster morphism may send an exchangeable variable to a

frozen variable (hence the presence of participle adjective freezing) but not the opposite, due

to (FCM2). For comparison, a rooted cluster morphism introduced by Assem, Dupont and

Schiffler in [2], allows for frozen variables to be sent to exchangeable variables but not the

other way around.

Next we want to show that rooted cluster algebras together with freezing rooted cluster

morphisms assemble into a category. We start with showing that the conditions for a map

f : ApΣq Ñ ApΣ1q to be a freezing rooted cluster morphism are preserved under mutation

of the initial seeds along biadmissible sequences.

Proposition 5.4. Let f : ApΣq Ñ ApΣ1q be a freezing rooted cluster morphism. Then

for every pf,Σ,Σ1q-biadmissible sequence px1, . . . , xlq, the map f induces a freezing rooted

cluster morphism f : ApΣ̃q Ñ ApΣ̃1q between the rooted cluster algebras with initial seeds

Σ̃ “ µxl ˝ ¨ ¨ ¨ ˝ µx1pΣq and Σ̃1 “ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpΣ
1q.

Proof. Since Σ and Σ̃, respectively Σ1 and Σ̃1, are mutation equivalent, it follows that ApΣq “

ApΣ̃q and ApΣ1q “ ApΣ̃1q as rings, so f : ApΣ̃q Ñ ApΣ̃1q is a well-defined ring homomorphism.

Let Σ “ pX, ex,Bq and Σ1 “ pX 1, ex1, B1q and let Σ̃ “ pX̃, ẽx, B̃q and Σ̃
1

“ pX̃
1

, ẽx
1

, B̃
1

q.

Let x̃ P X̃. Every such x̃ is of the form x̃ “ µxl ˝ ¨ ¨ ¨ ˝ µx1pxq for an x P X. If fpxq P Z,

then because px1, . . . , xlq is pf,Σ,Σ
1

q-biadmissible we have x ‰ xi, for all 1 ď i ď l. Thus

µxl ˝ ¨ ¨ ¨ ˝ µx1pxq “ x “ x̃ and fpx̃q “ fpxq P Z. On the other hand, if fpxq P X
1 then it

follows from axiom (FCM3) that

fpx̃q “ fpµxl ˝ ¨ ¨ ¨ ˝ µx1pxqq “ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpxqq,

which lies in X̃
1 and we deduce that f : ApΣ̃q Ñ ApΣ̃

1

q satisfies (FCM1). Next, consider

x̃ P X̃zẽx “ Xzex. Since f satisfies axiom (FCM2) and since x̃ P Xzex, we have that

fpx̃q P X
1

zex
1

Y Z “ X̃
1

zẽx
1

Y Z. Therefore, f : ApΣ̃q Ñ ApΣ̃
1

q satisfies (FCM2).
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It is left to show that it also satisfies (FCM3). Now, because ẽx “ µxl ˝ ¨ ¨ ¨ ˝ µx1pexq

and ẽx
1

“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpex
1

q, every pf, Σ̃, Σ̃
1

q-biadmissible sequence py1, . . . , ymq gives

rise to a pf,Σ,Σ
1

q-biadmissible sequence px1, . . . , xl, y1, . . . , ymq. Let now ỹ P X̃ be such that

fpỹq P X̃
1 . We have ỹ “ µxl ˝ ¨ ¨ ¨ ˝ µx1pyq for a y P X. Since f : ApΣq Ñ ApΣ

1

q satisfies

(FCM1), we have fpyq P X
1

Y Z. If fpyq P Z, then also fpỹq P Z, a contradiction. Thus

fpyq P X
1 and by axiom (FCM3) for f : ApΣq Ñ ApΣ

1

q we have

fpµym ˝ ¨ ¨ ¨ ˝ µy1pỹqq “ fpµym ˝ ¨ ¨ ¨ ˝ µy1 ˝ µxl ˝ ¨ ¨ ¨ ˝ µx1pyqq

“ µfpymq ˝ ¨ ¨ ¨ ˝ µfpy1q ˝ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpyqq

“ µfpymq ˝ ¨ ¨ ¨ ˝ µfpy1qpfpỹqq.

Thus axiom (FCM3) is satisfied for f : ApΣ̃q Ñ ApΣ̃
1

q and we are done.

We are now ready to show that freezing rooted cluster morphism are closed under com-

position.

Proposition 5.5. The composition of freezing rooted cluster morphisms is a freezing rooted

cluster morphism.

Proof. We fix three rooted cluster algebras A1,A2 and A3 with respective initial seeds Σ1,Σ2

and Σ3 where Σi “ pXi, exi, Biq for i “ 1, 2, 3 and consider freezing rooted cluster morphisms

f : A1 Ñ A2 and g : A2 Ñ A3. The composition g ˝ f is a ring homomorphism from A1 to

A3. We also have that it satisfies (FCM1) as

pg ˝ fqpX1q “ gpfpX1qq Ď gpX2 Y Zq Ď X3 Y Z

and that it satisfies (FCM2) as

pg ˝ fqpX1zex1q “ gpfppX1zex1qq Ď gpX2zex2 Y Zq Ď X3zex3 Y Z.

It is left to show that it also satisfies (FCM3). Let px1, . . . , xlq be a ppg ˝ fq,Σ1,Σ3q-

biadmissible sequence. First, we claim that px1, . . . , xlq is pf,Σ1,Σ2q-biadmissible. We prove

this by induction on the length l of the sequence. It is trivially satisfied for sequences of

length l “ 0. Assume now that it is satisfied for all ppg ˝fq,Σ1,Σ3q-biadmissible sequences of

length at most l ě 0 and let px1, . . . , xl`1q be ppg˝fq,Σ1,Σ3q-biadmissible sequence of length
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l` 1. Let Σ̃1 “ µxl ˝ ¨ ¨ ¨ ˝µx1pΣ1q and Σ̃2 “ µfpxlq ˝ ¨ ¨ ¨ ˝µfpx1qpΣ2q and let Σ̃1 “ pX̃1, ẽx1, B̃1q

and Σ̃2 “ pX̃2, ẽx2, B̃2q. By induction hypothesis px1, . . . , xlq is pf,Σ1,Σ2q-biadmissible and

so f : ApΣ̃1q Ñ ApΣ̃2q is a freezing rooted cluster morphism, by Proposition 5.4. Now, since

px1, . . . , xl`1q is Σ1-admissible, it follows that xl`1 P ẽx1 and so since f : ApΣ̃1q Ñ ApΣ̃2q

satisfies (FCM1) we have fpxl`1q P X̃2 Y Z. If fpxl`1q P Z, then gpfpxl`1qq P Z and so

pg ˝ fqpxl`1q is not exchangeable, a contradiction. Next, if fpxl`1q P X̃2zẽx2 “ X2zex2, then

gpfpxl`1qq P X3zex3 Y Z, since g satisfies (FCM2), and so pg ˝ fqpxl`1q is not exchangeable,

another contradiction. Thus fpxl`1q P ẽx2 and so px1, . . . , xl`1q is pf,Σ1,Σ2q-biadmissible.

From the above, we have that pfpx1q, . . . , fpxl`1qq is Σ2-admissible and therefore, as

pgpfpx1qq, . . . , gpfpxl`1qqq is Σ3-admissible, the sequence pfpx1q, . . . , fpxl`1qq is pg,Σ2,Σ3q-

biadmissible. Now, let x P X1 be s.t. pg ˝ fqpxq P X3. Since f satisfies axiom (FCM1),

fpxq P X2 Y Z. If fpxq P Z, then gpfpxqq P Z and so pg ˝ fqpxq R X3, a contradiction. Thus

fpxq P X2. Then we get

pg ˝ fqpµxl`1
˝ ¨ ¨ ¨ ˝ µx1pxqq “ gpfpµxl`1

˝ ¨ ¨ ¨ ˝ µx1pxqqq

“ gpµfpxl`1q ˝ ¨ ¨ ¨ ˝ µfpx1qpfpxqqq

“ µgpfpxl`1qq ˝ ¨ ¨ ¨ ˝ µgpfpx1qqpgpfpxqqq

“ µpg˝fqpxl`1q ˝ ¨ ¨ ¨ ˝ µpg˝fqpx1qppg ˝ fqpxqq,

where the second equality follows from px1, . . . , xl`1q being pf,Σ1,Σ2q-biadmissible and the

third equality follows from pfpx1q, . . . , fpxl`1qq being pg,Σ2,Σ3q-biadmissible. Thus, g ˝ f :

A1 Ñ A3 is a freezing rooted cluster morphism.

5.2 Examples of freezing rooted cluster morphisms

In this section we give several examples of freezing rooted cluster morphisms. We may

“delete” cluster variables by specializing them to integers. More importantly, we may send

exchangeable variables to frozen cluster variables - the process that we will refer to as "freez-

ing". To show some of those capabilities in action, we first give here a few examples of

freezing rooted cluster morphisms between cluster algebras of finite type A. In Section 5.7,

we will consider a concrete example of freezing rooted cluster morphism from a cluster al-

gebra of finite type D4 to a cluster algbera of finite type A3, as well as give a recipe for
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constructing freezing rooted cluster morphisms between acyclic (rooted) cluster algebras,

that is cluster algebras that arise from a quiver mutation equivalent to a quiver with no

directed cycles between exchangeable vertices.

Throughout the rest of this thesis, we will mark vertices associated to frozen variables

with squares, when working with quivers.

Example 5.6. Consider the seeds

Σ “ ptx1, x2, x3, x4u, tx1, x2u,

x3

x1 x2

x4

q

and

Σ
1

“ ptz1, z2u, tz1u, z1 z2 q

with associated cluster algebras

ApΣq “ Z
„

x1, x2, x3, x4,
x2 ` 1

x1
,
x1x4 ` x3

x2
,
x1x4 ` x3 ` x2x3

x1x2

ȷ

and

ApΣ
1

q “ Z
„

z1, z2,
z2 ` 1

z1

ȷ

.

Consider the ring homomorphism f : ApΣq Ñ ApΣ
1

q, which is defined by sending xi ÞÑ zi

for i “ 1, 2, x3 ÞÑ z2 and x4 ÞÑ 0 and extending those rules algebraically. Then f satisfies

axioms (FCM1) and (FCM2) by construction. To show that f also satisfies axiom (FCM3)

we notice first that the only exchangeable variable in Σ that is mapped to an exchangeable

variable in Σ
1 by f is x1. We have that

fpµx1px1qq “ f

ˆ

x2 ` 1

x1

˙

“
z2 ` 1

z1
“ µz1pz1q “ µfpx1qpfpx1qq.

Now the only exchangeable variable in µx1pΣq that is sent to an exchangeable variable in

µz1pΣ
1

q by f is x2`1
x1

and since the mutation is involutive we have

f

ˆ

µx2`1
x1

ˆ

x2 ` 1

x1

˙˙

“ fpx1q “ z1 “ µ z2`1
z1

ˆ

z2 ` 1

z1

˙

.
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and µx2`1
x1

˝ µx1pΣq “ Σ and µ z2`1
z1

˝ µz1pΣ
1

q “ Σ
1 . It follows that all pf,Σ,Σ

1

q-biadmissible

sequences have alternating entries x1 and x2`1
x1

. Lastly, we have

fpµx1pxiqq “ fpxiq “ µfpx1qpfpxiqq

and

fpµx2`1
x1

pxiqq “ fpxiq “ µ
f
`

x2`1
x1

˘pfpxiqq

for i “ 2, 3. Thus f commutes with every pf,Σ,Σ
1

q-biadmissible sequence and so it is a

freezing rooted cluster morphism.

Example 5.7. Consider the seeds

Σ “ ptx1, x2u, tx1u, x1 x2 q and Σ
1

“ ptz1u, tz1u, z1q

with associated cluster algebras

ApΣq “ Z
„

x1, x2,
x2 ` 1

x1

ȷ

and ApΣ
1

q “ Z
„

z1,
2

z1

ȷ

.

Consider the ring homomorphism g : ApΣq Ñ ApΣ
1

q, which is defined by sending x1 ÞÑ z1

and sending x2 ÞÑ 1 and extending algebraically. Then g satisfies axioms (FCM1) and

(FCM2) by definition. Analogously to our argument in Example 5.6 one can show that

every pg,Σ,Σ
1

q-biadmissible sequence consists of alternating entries x1 and µx1px1q “ x2`1
x1

only and that g commutes with every such sequence. Thus axiom (FCM3) is satisfied and g

is a freezing rooted cluster morphism.

Example 5.8. Consider the seeds

Σ “ ptx1, x2, x3, x4u, tx1, x2u,

x3

x1 x2

x4

q

and

Σ
1

“ ptz1u, tz1u, z1q
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with associated cluster algebras

ApΣq “ Z
„

x1, x2, x3, x4,
x2 ` 1

x1
,
x1x4 ` x3

x2
,
x1x4 ` x3 ` x2x3

x1x2

ȷ

and

ApΣ
1

q “ Z
„

z1,
2

z1

ȷ

.

Consider the ring homomorphism h : ApΣq Ñ ApΣ
1

q that is defined by sending x1 ÞÑ z1,

xi ÞÑ 1 for i “ 2, 3 and x4 ÞÑ 0. We notice that h “ g ˝ f and so by Proposition 5.5, h is a

freezing rooted cluster morphism.

5.3 The category of rooted cluster algebras

By Proposition 5.5, the composition of freezing rooted cluster morphisms is a freezing rooted

cluster morphism. An identity ring homomorphism trivially satisfies the axioms (FCM1),

(FCM2) and (FCM3) and so is a freezing rooted cluster morphism. The composition of

freezing rooted cluster morphisms is associative since the composition of ring homomorphisms

is. Therefore, the class of all rooted cluster algebras together with freezing rooted cluster

morphisms forms a category.

Definition 5.9. (cf. [2, Definition 2.6]). The category of rooted cluster algebras is the

category fClus defined by:

• The objects in fClus are rooted cluster algebras;

• The morphisms between two rooted cluster algebras are the freezing rooted cluster

morphisms.

One should not undervalue the importance of axiom (FCM2) in the definition of freezing

rooted cluster morphisms. In particular, axiom (FCM2) is necessary to ensure that the

composition of freezing rooted cluster morphisms is again a freezing rooted cluster morphism,

as shown in the example below.
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Example 5.10. ([22, Example 3.15]). Consider the seeds

Σ1 “

˜

tx1, x2, x3u, tx2u,

¨

˚

˚

˚

˝

0 1 0

´1 0 1

0 ´1 0

˛

‹

‹

‹

‚

¸

,

Σ2 “ ptzu,H, r0sq,

Σ3 “

ˆ

ty1, y2u, ty1, y2u,

¨

˝

0 1

´1 0

˛

‚

˙

.

The quivers Q1, Q2, Q3 corresponding to (the exchange matrices of) the seeds Σ1, Σ2 and

Σ3, respectively, are given by

Q1 “ x1 x2 x3 , Q2 “ z , Q3 “ y1 y2.

The cluster algebras associated with the seeds Σ1, Σ2 and Σ3 are

ApΣ1q “ Zrx1, x2, x3,
x1 ` x3
x2

s, ApΣ2q “ Zrzs

and

ApΣ3q “ Zry1, y2,
1 ` y2
y1

,
1 ` y1
y2

,
1 ` y1 ` y2

y1y2
s.

Consider the ring homomorphism f : ApΣ1q Ñ ApΣ2q which is defined by sending xi ÞÑ z for

all i “ 1, 2, 3, and g : ApΣ2q Ñ ApΣ3q defined by sending z ÞÑ y1. Both f : ApΣ1q Ñ ApΣ2q

and g : ApΣ2q Ñ ApΣ3q satisfy axiom (FCM1), but g does not satisfy axiom (FCM2). Since

there are no pf,Σ1,Σ2q-biadmissible sequences and no pg,Σ2,Σ3q-biadmissible sequences we

have that f and g satisfy axiom (FCM3) trivially. Yet, the composition g ˝f does not satisfy

axiom (FCM3). Let us consider the pg ˝ f,Σ1,Σ3q-biadmissible sequence px2q. We have

g ˝ fpµx2px2qq “ g ˝ f

ˆ

x1 ` x3
x2

˙

“ gp2q “ 2

but

µg˝fpx2qpg ˝ fpx2qq “ µy1py1q “
1 ` y2
y1

.

5.4 Isomorphims in the category fClus.

In this section we characterize isomorphisms in the category fClus. In [2] the authors

prove that isomorphisms in the category Clus (see Definition 5.12 beloew) coincide with the
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bijective rooted cluster morphisms. We will implement a strategy similar to that used by

the authors in [2, §3] to prove that isomorphisms in fClus coincide with bijective freezing

rooted cluster morphisms. Throughout this section we refer to the notion of rooted cluster

morphisms and the category Clus frequently and so we include here their definitions and

one particularly useful result (namely, Lemma 5.14), for the reader’s convenience.

We fix two seeds Σ “ pX, ex,Bq and Σ
1

“ pX
1

, ex
1

, B
1

q.

Definition 5.11. ([2, Definition 2.2]). A rooted cluster morphism is a ring homomorphism

f : ApΣq Ñ ApΣ1q such that:

(FCM1) fpXq Ď X 1 Y Z;

(CM2) fpexq Ď ex1 Y Z;

(FCM3) If y P X s.t. fpyq P X 1 and px1, . . . , xlq is a pf,Σ,Σ1q-biadmissible sequence, then

fpµxl ˝ ¨ ¨ ¨ ˝ µx1pyqq “ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpyqq.

Definition 5.12. ([2, Definition 2.6]). The category of rooted cluster algebras is the category

Clus defined by:

• The objects in Clus are the rooted cluster algebras ;

• The morphisms between two rooted cluster algebras are the rooted cluster morphisms.

Remark 5.13. Consider the situation where the objects are all rooted cluster algebras

and where we allow the morphisms between them to be either rooted cluster morphisms

or freezing rooted cluster morphisms. Such pair does not form a category. As we saw in

Example 5.10, the composition of freezing rooted cluster morphism (map f) with rooted

cluster morphism (map g) does not commute with biadmissible mutations, i.e. it does not

satisfy the axiom (FCM3).

Lemma 5.14. ( [2, Corollary 3.2]). Let f : ApΣq Ñ ApΣ
1

q be a bijective ring homomorphism

satisfying (FCM1). Then f induces a bijection from X to X 1. Moreover, if f satisfies (CM2),

then f induces a bijection from ex to ex1.
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Now we start working towards the main result of this section. We begin with the following

corollary.

Corollary 5.15. (cf. [2, Lemma 3.1]). Let f : ApΣq Ñ ApΣ
1

q be a surjective ring homo-

morphism satisfying (FCM1). Then X
1

Ă fpXq and ex1

Ă fpexq.

Proof. The statement is the same as the statement of Lemma 3.1 in [2] and so it follows

from the proof of [2, Lemma 3.1].

Lemma 5.16. Let f : ApΣq Ñ ApΣ
1

q be a bijective ring homomorphism satisfying (FCM1).

Then f induces a bijection from X to X 1. Moreover, if f satisfies (FCM2), then f induces

a bijection from ex to ex1.

Proof. That f induces a bijection from X to X 1 follows directly from Lemma 5.14. Further-

more, if f satisfies (FCM2), then f induces an injection from Xzex to X
1

zex
1 . We claim

that X 1

zex
1

Ă fpXzexq. Suppose not, that is, let y P X
1

zex
1 and suppose there exists x P ex

such that fpxq “ y. We have that

fpµxpxqq “ f

˜

1

x

˜

ź

zPX
bxzą0

zbxz `
ź

zPX
bxză0

z´bxz

¸¸

(7)

“
1

y

˜

M1 ` M2

¸

, (8)

where

M1 “
ź

zPX
bxzą0

fpzq
bxz and M2 “

ź

zPX
bxză0

fpzq
´bxz .

But then there must exist at least one z P X (if both products in (8) are non-empty there

are at least two such distinct variables) such that z ‰ x and such that fpzq “ y. If not,

then the partial degree of either M1 or M2 with respect to y is ´1 and so fpµxpxqq R

ZrX
1

zexsrex
1

s. Due to the Laurent Phenomenon (cf. Section 2.1.5) we have fpApΣqq Ę

ApΣ
1

q, a contradiction. Therefore we must have that fpzq “ y. But this means that f

is not bijective, another contradiction. Therefore X 1

zex
1

Ă fpXzexq and so f induces a

bijection from Xzex to X 1

zex
1 . It then follows that f induces a bijection from ex to ex1 , as

required.
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Next we show that bijective rooted cluster morphisms coincide with bijective freezing

rooted cluster morphisms and later that isomorphisms in Clus coincide with isomorphisms

in fClus.

Proposition 5.17. Let f : ApΣq Ñ ApΣ
1

q be a bijective ring homomorphism. Then f is a

rooted cluster morphism if and only if f is a freezing rooted cluster morphism.

Proof. Assume first that f is a rooted cluster morphism. Then by Lemma 5.14 it induces a

bijection between Xzex and X 1

zex
1 and between ex and ex1 . Therefore, it satisfies (FCM1)

and (FCM2). Similarly, if we assume that f is a freezing rooted cluster morphism then by

Lemma 5.16 it induces a bijection between Xzex and X 1

zex
1 and between ex and ex1 and so

it satisfies (FCM1) and (CM2). The result follows.

Lemma 5.18. Let f : ApΣq Ñ ApΣ
1

q be a ring homomorphism. Then f is an isomorphism

in Clus if and only if f is an isomorphism in fClus.

Proof. If f is an isomorphism in Clus (respectively, fClus), then f is an invertible rooted

cluster morphism (respectively, freezing rooted cluster morphism) and we denote by g :

ApΣ
1

q Ñ ApΣq its inverse in Clus (respectively, fClus). Then g is also an isomorphism in

Clus (respectively, fClus) with f being its inverse. Now because Clus (respectively, fClus)

is a concrete category, it follows that both f and g are bijective and so by Proposition 5.17

we have that both f and g are freezing rooted cluster morphisms (respectively, rooted cluster

morphisms) and so f is an isomorphism in fClus (respectively, in Clus).

Finally, we can deduce the following.

Corollary 5.19. The isomorphisms in fClus coincide with the bijective freezing rooted clus-

ter morphisms.

Proof. If f : ApΣq Ñ ApΣ
1

q is an isomorphism in fClus then by Lemma 5.18 it is an

isomorphism in Clus. Then by [2, Corollary 3.10] it is a bijective rooted cluster morphism.

It then follows from Proposition 5.17 that it is a bijective freezing rooted cluster morphism.

Conversely, if f is a bijective freezing rooted cluster morphism, then it is a bijective rooted

cluster morphism by Proposition 5.17 and so an isomorphism in Clus, by [2, Corollary 3.10].

Then from Lemma 5.18 we get that it is an isomorphism in fClus and we are done.
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5.5 Limits and colimits in fClus

In Section 4.1.3 we defined limits and colimits in an arbitrary category and briefly discussed

certain special kinds of such: products and equalizers and, dually, coproducts and coequal-

izers. An arbitrary category is complete, i.e. has all small limits, if and only if it has all

small products and equalizers. Dually, a category is cocomplete, i.e. it has all small colim-

its, if and only if it has all small coproducts and coequalizers. In Theorem 5.20 we show

that our category fClus does not, in general, have products and does not, in general, have

coequalizers and so it is neither complete nor cocomplete. We note here that the proof of

Theorem 5.20 below uses forward reference to Theorem 5.33. This is allowed since the proof

of Theorem 5.33 does not use Theorem 5.20.

Theorem 5.20. The category fClus is neither complete nor cocomplete.

Proof. If the category fClus was cocomplete then coequalizers would exist. However, let us

consider the seeds

Σ0 “

´

tx1, x2, x3u, tx1u,

x2

x1

x3

¯

and Σ1 “
`

tyu,H, y
˘

and the parallel freezing rooted cluster morphisms defined by the algebraic extension of:

f :

$

’

&

’

%

ApΣ0q Ñ ApΣ1q

xi ÞÑ y for i “ 1, 2, 3

and g :

$

’

’

’

’

’

&

’

’

’

’

’

%

ApΣ0q Ñ ApΣ1q

xi ÞÑ y for i “ 1, 2,

x3 ÞÑ 0.

The maps f and g are freezing rooted cluster morphisms by Theorem 5.33. Assume for

contradiction that there exists a coequalizer for f and g. That is, there exists a rooted cluster

algebra ApΣ :“ pX, ex,Bqq with a freezing rooted cluster morphism π : ApΣ1q Ñ ApΣq

such that π ˝ f “ π ˝ g and it is universal with this property. First, we observe that

ApΣ0q “ Zrx1, x2, x3,
x2`x3
x1

s. But then fpx2`x3
x1

q “ 2 and gpx2`x3
x1

q “ 1 and we have that
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πpfpx2`x3
x1

qq “ πpgpx2`x3
x1

qq. But this means that πp2q “ πp1q, a contradiction. Thus, there

is no coequalizer for f and g in fClus and so fClus is not cocomplete.

Let us now show that, again by the means of a counter example, the category fClus is

not complete. If it was, then products would exist in fClus. We show that the same pair of

rooted cluster algebras has no product in fClus by using the strategy from the proof of [2,

Proposition 5.4].

Let us consider the rooted cluster algebras associated with the seeds Σ0 “ ptz0u,H, z0 q

and Σ1 “ ptz1u,H, z1 q, so that ApΣiq “ Zrzis for i “ 0, 1. We will assume for contradiction

that there exists a product of ApΣ0q and ApΣ1q in fClus. That is, that there exists a

rooted cluster algebra ApΣ :“ pX, ex,Bqq equipped with a pair of freezing rooted cluster

morphisms p0 : ApΣq Ñ ApΣ0q and p1 : ApΣq Ñ ApΣ1q and it is universal with this property.

Let us consider a rooted cluster algebra associated with the seed Σ
1

“ ptxu,H, x q, that is,

ApΣ
1

q “ Zrxs, and let fi : ApΣ
1

q Ñ ApΣiq be the ring homomorphism defined by sending x

to zi for i “ 0, 1. Then fi satisfies (FCM1) and (FCM2) and in the absence of biadmissible

sequences it also satisfies (FCM3) trivially and so is a freezing rooted cluster morphism for

i “ 0, 1. Since ApΣq is the product of ApΣ0q and ApΣ1q in fClus, there exists a unique

freezing rooted cluster morphism h : ApΣ
1

q Ñ ApΣq that makes the following diagram,

which we will refer to as D0 throughout the rest of this proof, commute.

ApΣ
1

q

ApΣq

Zrz0s Zrz1s

f0

h

f1

p0 p1

In particular, for any i P t0, 1u, there exists xi P Xzex such that pipxiq “ zi.

On the other hand, let us consider the seed Σ
2

“ pty0, y1u,H, y0 y1 q, so that ApΣ
2

q “

Zry0, y1s, and let gi : ApΣ
2

q Ñ ApΣiq be a ring homomorphism defined by gipyjq “ δijzj,

where δij is the Kronecker symbol, for i “ 0, 1. Then for any i P t0, 1u, gi satisfies (FCM1),

(FCM2) and (FCM3) and so it is a freezing rooted cluster morphism. Again, since ApΣq

is the product of ApΣ0q and ApΣ1q in fClus there exists a unique freezing rooted cluster

morphism h
1

: ApΣ
2

q Ñ ApΣq that makes the following diagram, denoted by D1, commute.

69



ApΣ
2

q

ApΣq

Zrz0s Zrz1s

g0

h
1

g1

p0 p1

Now for any i P t0, 1u, because h
1 satisfies (FCM2), we have that h1

pyiq “ xi for some

xi P Xzex such that pipxiq “ zi. Suppose that there are two xi, x
1

i P Xzex such that

pipxiq “ pipx
1

iq “ zi. Then the ring homomorphism h
2

: ApΣ
2

q Ñ ApΣq that sends yi to x1

i is

a freezing rooted cluster morphism that makes D1 commute and by uniqueness h1

“ h
2 and

so xi “ x
1

i for i “ 0, 1. Moreover, since we have that pp0 ˝h
1

qpy0q “ z0 and pp0 ˝h
1

qpy1q “ 0, it

follows that h1

py0q ‰ h
1

py1q. To sum up, there are exactly two distinct elements h1

py0q “ x0

and h1

py1q “ x1 in Xzex such that p0px0q “ z0, p1px0q “ 0, p1px0q “ 0 and p1px1q “ z1.

Now let us go back to the rooted cluster algebra ApΣ
1

q where Σ
1

“ ptxu,H, x q and let

us again consider the freezing rooted cluster morphism fi : ApΣ
1

q Ñ ApΣiq that sends x to zi

for i “ 0, 1 and the unique freezing rooted cluster morphism h : ApΣ
1

q Ñ ApΣq that makes

D0 commute. Due to what we have established so far, we must have that hpxq “ x0 by the

commutativity of the left triangle in D0 and also that hpxq “ x1 by the commutativity of

the right triangle in D0, which gives us a contradiction. Finally, we deduce that the rooted

cluster algebras ApΣ0q and ApΣ1q have no product in the category fClus.

5.6 Freezing morphisms

In this section we study freezing rooted cluster morphisms that send exchangeable variables

to frozen variables. Defining such maps, which we will often refer to simply as freezing

morphisms, in the most naive way leads to some obvious errors. Let us look at the following

example.

Example 5.21. Consider the seeds

Σ “ ptx1, x2u, tx1, x2u, x1 x2 q

and

Σ
1

“ pty1, y2u, ty1u, y1 y2 q
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with associated cluster algebras

ApΣq “ Z
„

x1, x2,
x1 ` 1

x2
,
x2 ` 1

x1
,
x1 ` x2 ` 1

x1x2

ȷ

and

ApΣ
1

q “ Z
„

y1, y2,
y2 ` 1

y1

ȷ

.

A map sending x1 to y1 and x2 to y2 does not extend to a ring homomorphism from ApΣq

to ApΣ
1

q since we would need to map x1`1
x2

to y1`1
y2

, which does not lie in ApΣ
1

q.

We can see that in order to "freeze" exchangeable variables some additional structure is

needed. To deal with this issue we will, informally speaking, have to connect an exchangeable

variable that we are willing to "freeze" with some frozen variables. Doing so will allow us to

define a class of freezing rooted cluster morphisms between non-isomorphic cluster algebras

of different finite types. Where desirable, we will also describe a geometric interpretation of

freezing morphisms and discuss their possible root-theoretic reformulations.

A natural problem to consider is to characterize all freezing rooted cluster morphism

that send exchangeable variables to frozen variables. Below we give an initial result in this

direction.

Proposition 5.22. Let Σ “ pX, ex,Bq, Σ1

“ pX
1

, ex
1

, B
1

q be seeds and let f : ApΣq Ñ ApΣ
1

q

be a freezing rooted cluster morphism such that fpxq P X
1

zex
1 and fpexztxuq Ď ex

1 for some

x P ex. Then there exists y P Xzex such that bxy ‰ 0.

Proof. We assume for contradiction that bxz “ 0 for all z P Xzex. We then have that

µxpxq “

ź

zPX;
bxzą0

zbxz `
ź

zPX;
bxză0

z´bxz

x
“

ź

zPex;
bxzą0

zbxz `
ź

zPex;
bxză0

z´bxz

x
.

Therefore,

fpµxpxqq “

ź

zPex;
bxzą0

fpzq
bxz `

ź

zPex;
bxză0

fpzq
´bxz

fpxq
. (9)

Now as fpxq is a frozen variable and fpzq is an exchangeable variable for every z P exztxu

we have that fpzq ‰ fpxq and so fpxq divides neither of the summands in the numerator on
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the right hand side of the equation (9) above. Moreover, by the Laurent Phenomenon (see

Section 2.1.5), every cluster variable of ApΣ
1

q and thus every element of the cluster algebra

ApΣ
1

q is a Laurent polynomial in ex
1 with coefficients integer polynomials in the X 1

zex
1 .

Thus fpµxpxqq R ApΣ
1

q, a desired contradiction.

5.6.1 Freezing morphisms between acyclic cluster algebras

Throughout the rest of this section we will restrict ourselves to working with so-called acyclic

cluster algebras, which were first defined and studied by A. Berenstein, S. Fomin and A.

Zelevinsky in [8]. In the skew-symmetric setting, these are the cluster algebras that arise

from a quiver with no directed cycles between exchangeable vertices. They form a large

class of cluster algebras that contains, for example, all cluster algebras of finite type. More

importantly, the structure of acyclic cluster algebras is well-understood (see [8] for more

details). Here we only provide sufficient, from the perspective of this thesis, amount of

information on acyclic cluster algebras and refer the reader to [8], for a thorough exposition

of this topic.

A quiver Q is called acyclic if it has no oriented cycles. For example, the quiver

‚

‚ ‚

is not acyclic but the following one is.

‚

‚ ‚

‚

We recall that if Σ “ pX, ex,Bq is a seed then the principal part of B (cf. Definition 3.24)

is denoted by B̃.

Definition 5.23. Let Σ “ pX, ex,Bq be a seed. We say that Σ is acyclic if the quiver QB̃

is acyclic.
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In other words, for a seed to be acyclic, it is only required that the full subquiver on the

exchangeable vertices is acyclic. For instance, the seed

Σ “

˜

tx1, x2, x3, x4u, tx1, x2u,

x3

x1 x2

x4

¸

is acyclic, because the full subquiver x1 x2 on the exchangeable vertices x1 and x2

is acyclic.

A cluster algebra is acyclic if one of its seeds is. More formally:

Definition 5.24. ([8, §1]). Let Σ “ pX, ex,Bq be a seed. We call a cluster algebra ApΣq

(respectively, rooted cluster algebra pApΣq,Σq acyclic if there exists a seed Σ
1

P MutpΣq that

is acyclic.

Because every cluster algebra of finite type has a seed such that the quiver corresponding

to the principle part of its exchange matrix is an orientation of a finite type Dynkin diagram,

and since every such Dynkin diagram is a tree, it follows that every cluster algebra of finite

type is acyclic.

We will need the following result for the proof of Theorem 5.33.

Lemma 5.25. ([8, Corollary 1.21]). Let Σ “ pX, tx1, . . . , xnu, Bq be a seed such that the

cluster algebra ApΣq associated with Σ is acyclic. Then

ApΣq “ ZrX Y tx
1

1, . . . , x
1

nus

where x1

1, . . . , xn
1 are given by p2q from Section 2.1.3.

Thus, an acyclic cluster algebra is generated by the cluster variables from the initial

cluster together with the cluster variables obtained by a single mutation of the initial cluster

in all possible directions.

We will now move onto constructing a family of freezing morphisms between acyclic

rooted cluster algebras. As we saw at the beginning of this section, defining such maps in
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the most trivial way causes problems and so we must make certain amendments. Let us

start with the following definition.

Definition 5.26. Let Σ “ pX, ex,Bq be a seed and let x P X. We call a cluster variable

y P X a neighbour of x (an exchangeable neighbour or a frozen neighbour, respectively) in

Σ, if bxy ‰ 0. Moreover, if x P ex and y P Xzex is such that bxy ‰ 0 and bx1y “ 0 for all

x
1

P exztxu, we call y an isolated frozen neighbour of x in Σ.

Example 5.27. Let Σ “
`

txi : 1 ď i ď 6u, txi : 1 ď i ď 4u, BQ “ pbxyqx,yPtxi:1ďiď6u

˘

be a

seed where
x4 x5

Q “ x1 x2 x6

x3

The exchangeable variables x1 and x2 have no frozen neighbours and so no isolated frozen

neighbours. The exchangeable variable x3 has a frozen neighbour x6, but x6 is not an isolated

frozen neighbour of x3 since it is also connected to x4 in Q and x4 is another exchangeable

variable of Σ. The exchangeable variable x4 is connected to two distinct frozen variables: x5

and x6. Now, x6 is connected to x3 in Q and so x6 is not an isolated frozen neighbour of x4

in Σ since x3 is an exchangeable variable. Finally, x5 is an isolated frozen neighbour of x4

in Q since x5 is connected to x4 (and to a frozen variable x6, which is allowed) but not to

any other exchangeable variable of Σ.

For all x P ex we set

∆Σ
x :“ ty P Xzex | y is an isolated frozen neighbour of x P ex in Σu.

If the seed Σ is clear from context, we will write ∆x instead of ∆Σ
x .

Definition 5.28. Let Σ “ pX, ex,Bq and let x P ex. If there exist y, z P ∆x, y ‰ z with

bxy ą 0 and bxz ă 0, we call x a freezeable variable (or respectively, a freezeable vertex).

We call a seed which has freezeable variables a freezeable seed.
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Example 5.29. Let Σ “
`

txi : 1 ď i ď 6u, txi : 1 ď i ď 4u, BQ “ pbxyqx,yPtxi:1ďiď6u

˘

be a

seed where
x5

x4

Q “ x1 x2 x6

x3

We notice that ∆xi “ H for i “ 1, 2, 3 and that ∆x4 “ tx5, x6u. Moreover, as bx4,x5 “ 1

and bx4,x6 “ ´1, we have that x4 is a freezeable variable and so Σ is a freezeable seed. We

can make any of the exchangeable variables xi for i “ 1, 2, 3 freezeable by attaching to it a

family ∆xi of isolated frozen variables with at least one pair y, z P ∆xi such that bxi,y ą 0

and bxi,z ă 0. We also notice that Σ is an acyclic seed since the full subquiver of Q on

the exchangeable vertices is acyclic. Moreover, the full subquiver of Q on the exchangeable

vertices is an (alternating) orientation of a Dynkin diagram of type D4 and so the cluster

algebra ApΣq associated with Σ is an acyclic cluster algebra of finite type D4.

Remark 5.30. An important source of freezeable seeds are the triangulations of convex

polygons. To discuss this, let m ě 4 be an integer and let Tm be a triangulation of Pm. We

call a marked point v of Pm an ear of Tm if the internal arc that connects the marked points

neighbouring v is in Tm. We note that every triangulation of Pm has at least two ears, for

all m ě 4.

Now let ΣTm “ pXTm , exTm , B
Tmq be the seed corresponding to Tm and v an ear of Tm.

Let v1 and v2 be the marked points directly preceding and succeeding v in an anticlockwise

and a clockwise direction, respectively. For simplicity, we will denote by γ P Tm the arc of

Pm that connects v1 to v2 and by γ1 and γ2 the boundary arcs of Pm that connect v to v1

and v to v2, respectively. The frozen variables xγ1 , xγ2 P XTm are the only isolated frozen

neighbours of xγ P exTm and so |∆xγ | “ 2. Moreover, since bTmxγ ,xγ1 “ 1 and bTmxγ ,xγ2 “ ´1 it

follows that xγ is a freezeable variable. Thus, an arbitrary triangulation of Pm gives rise to

a freezeable seed in this way. Similar construction can be used for other marked surfaces (cf.

Example 5.36 and Example 5.37).
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Now, let Σ˚ “ pX, ex,Bq be a freezeable seed and let x P ex be freezeable. We will

denote by Σ˚
x the seed

Σ˚
x “ pX˚, ex˚, B˚

q,

where X˚ “ Xz∆x, ex˚ “ exztxu and B˚ “ pb˚
yzqy,zPXz∆x with b˚

yz “ byz. We note that if Σ˚

is acyclic then so is Σ˚
x.

Example 5.31. Let Σ˚ “ Σ, where Σ is the seed we considered in Example 5.29. Then

Σ˚
x4

“
`

tx1, x2, x3, x4u, tx1, x2, x3u, BQ1

˘

, where

x4

Q
1

“ x1 x2 x3

and the cluster algebra ApΣ˚
x4

q is of finite Dynkin type A3.

We are now ready to introduce a family of morphisms that are based on the idea of

sending an exchangeable variable to a frozen variable and the idea of specializing certain

isolated frozen neighbours to integers. In Section 5.6.3 we show that the maps fp,qm,m´1 (see

Definition 4.22), for p, q P t0, 1u, coincide with suitably defined algebraic extensions of the

maps from the Definition 5.32 below, thus we can view the (algebraic extensions of) maps

from Definition 5.32 as a generalization of the morphisms fp,qm,m´1 that were defined between

cluster algebras associated with convex polygons.

Fix p, q P t0, 1u.

Definition 5.32. Let Σ˚ “ pX, ex,Bq be a freezeable seed, let x P ex be freezeable and let

Σ˚
x “ pX˚, ex˚, B˚q. We define Frp,qx to be the following map.

Frp,qx “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

X Ñ X˚ Y t0u

y ÞÑ y if y R ∆x,

y ÞÑ px if y P ∆x and bxy ą 0,

y ÞÑ qx if y P ∆x and bxy ă 0.

(10)

Our next results shows that the above map induces a freezing rooted cluster morphism

between acyclic rooted cluster algebras.
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Theorem 5.33. Let Σ˚ “ pX, ex,Bq be a freezeable seed such that there exists an acyclic

seed Σ
1

P MutpΣ˚q. Let x P ex be a freezeable variable and let Σ˚
x “ pX˚, ex˚, B˚q. Then the

ring homomorphism f : ApΣ˚q Ñ FΣ˚
x

defined as the algebraic extension of the map Frp,qx

induces a freezing rooted cluster morphism from ApΣ˚q to ApΣ˚
xq.

Proof. To prove the statement we must show that Impfq Ď ApΣ˚
xq and that f satisfies

axioms (FCM1), (FCM2) and (FCM3). That f satisfies (FCM1) and (FCM2) is true by

construction. Next, let us show that Impfq Ď ApΣ˚
xq. By Lemma 5.25 we only need to show

that fpX Y tµypyq : y P exuq Ă ApΣ˚
xq. This is automatically true for all cluster variables

from X. Now, let y P exztxu. Then

fpµypyqq “

f

ˆ

ź

zPXz∆x,
byzą0

ybyz `
ź

zPXz∆x,
byză0

y´byz

˙

fpyq

“

ź

zPX˚,
b˚
yzą0

yb
˚
yz `

ź

zPX˚,
b˚
yză0

y´b˚
yz

y

“ µy,Σ˚
x
pyq P ApΣ˚

xq.

Moreover, we have

µxpxq “

ź

yPX;
bxyą0

ybxy `
ź

yPX;
bxyă0

y´bxy

x

“

ź

yP∆x;
bxyą0

ybxy
ź

yPXz∆x;
bxyą0

ybxy `
ź

yP∆x;
bxyă0

y´bxy
ź

yPXz∆x;
bxyă0

y´bxy

x
.

We note here that both products

ź

yP∆x;
bxyą0

ybxy and
ź

yP∆x;
bxyă0

y´bxy
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are non-empty. But then we have that

fpµxpxqq “

f

ˆ

ź

yP∆x;
bxyą0

ybxy
ź

yPXz∆x;
bxyą0

ybxy
˙

` f

ˆ

ź

yP∆x;
bxyă0

y´bxy
ź

yPXz∆x;
bxyă0

y´bxy

˙

fpxq

“ pxk´1
ź

yPXz∆x;
bxyą0

fpyq
bxy ` qxk

1
´1

ź

yPXz∆x;
bxyă0

fpyq
´bxy ,

where

k “
ÿ

yP∆x;
bxyą0

bxy ě 1 and where k
1

“ ´
ÿ

yP∆x;
bxyă0

bxy ě 1.

Since fpyq “ y P X˚ for all y P Xz∆x, it follows that fpµxpxqq P ApΣ˚
xq, as required.

It is now left to show that f satisfies (FCM3). We will break down this problem into a list

of a few smaller statements that together will give us the desired result. We fix px1, . . . , xlq

to be a Σ˚-admissible sequence such that xi ‰ x for all 1 ď i ď l. Moreover, we set

Σ̃˚ :“ µxl ˝ ¨ ¨ ¨ ˝ µx1pΣ˚q and if in addition pfpx1q, . . . , fpxlqq happens to be Σ˚
x-admissible

then we set Σ̃˚
x :“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpΣ

˚
xq. Let Σ̃˚ “ pX̃, ẽx, B̃q, Σ̃˚

x “ pX̃x, ẽxx, B̃xq and let

x̃ P ẽxztxu.

(i) First we show that b̃x̃y “ 0 for every y P ∆x. We do this by induction on the length l of

the Σ˚-admissible sequence. For l “ 0 the claim is true by definition. Now assume it

is true for all Σ˚-admissible sequences of length at most l ě 0. Let B̃1 be the exchange

matrix of the seed µx̃pΣ̃˚q and let y P ∆x Ď X̃. Then

b̃
1

x̃y “ ´b̃x̃y “ 0,

by the induction hypothesis. Moreover, for z̃ P ẽxztxu such that z̃ ‰ x̃ we have that

b̃
1

z̃y “ b̃z̃y `
1

2
p|b̃z̃x̃|b̃x̃y ` b̃z̃x̃|b̃x̃y|q “ 0,

which is, again, true by the induction hypothesis and we are done.

(ii) Now, due to the Laurent Phenomenon (cf. Section 2.1.5) we have that x̃ is a Laurent

Polynomial over Z in the variables from X. We claim that x̃ is in fact a Laurent

polynomial in Xz∆x. Again, we prove this by induction on l. For l “ 0 the claim is
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trivially true. Assume it is true for all Σ˚-admissible sequences of length at most l ě 0.

We have that

µx̃px̃q “
ź

yPX̃;
bx̃yą0

yb̃x̃y `
ź

yPX̃;
bx̃yă0

y´b̃x̃y

“
ź

yPX̃z∆x;
bx̃yą0

yb̃x̃y `
ź

yPX̃z∆x;
bx̃yă0

y´b̃x̃y,

where the second equality is true by (i). The result follows from the induction hypoth-

esis.

Because f acts as the identity on the variables from Xz∆x, it follows that fpx̃q “ x̃ for all

x̃ P ẽxztxu.

(iii) Next we want to show that fpx̃q is in fact an exchangeable variable in Σ̃˚
x . We do

this by induction on the length l of the Σ˚-admissible sequence px1, . . . , xlq. It is true

for l “ 0 as every x
1

P exztxu is sent by f to an exchangeable variable in Xz∆x.

Assume now that the claim is true for all Σ˚-admissible sequences of length at most

l ě 0. We want to show that fpx̃q P ẽxx. First, we have that x̃ “ µxl ˝ ¨ ¨ ¨ ˝ µx1pzq, for

some z P exztxu. It follows from the induction hypothesis that fpxiq are exchangeable

variables, in their respective seeds, for all 1 ď i ď l. Moreover, by (ii) we have that

fpxiq “ xi for all 1 ď i ď l and that fpzq “ z and so ỹ :“ µxl ˝ ¨ ¨ ¨ ˝ µx1pzq P ẽxx.

Thus we have that px1, . . . , xlq is a pf,Σ˚,Σ˚
xq-admissible sequence. From (i) and the

definition of matrix mutation (cf. equation (3)) we have that B̃rX̃z∆xs “ B̃x and so

ỹ “ x̃ “ fpx̃q, proving the claim.

Next, we want to characterize pf,Σ˚,Σ˚
xq-biadmissible sequences.

(iv) We show that pfpx1q, . . . , fpxlqq is Σ˚
x-admissible if and only if xi ‰ x for all 1 ď i ď l.

The direction (ð) is true by (iii) above. For the opposite direction, assume for a

contradiction that xi “ x for some 1 ď i ď l. But then fpxiq “ x is a frozen variable

and so pfpx1q, . . . , fpxlqq cannot be Σ˚
x-admissible, giving us the desired contradiction.

Finally, we show below that f satisfies (FCM3).
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(v) Let px1, . . . , xlq be a pf,Σ˚,Σ˚
xq-biadmissible sequence and let y P X be such that

fpyq P Xz∆x. We will show that this implies that

fpµxl ˝ ¨ ¨ ¨ ˝ µx1pyqq “ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpyqq.

First, if y “ x then

fpµxl ˝ ¨ ¨ ¨ ˝ µx1pyqq “ fpxq “ x

“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpxq

“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpxqq,

where the first and the third equality follow from (iv) and the fact that x is a frozen

variable in ApΣ˚
xq, respectively.

Now, if y P Xztexu with fpyq P Xx then

fpµxl ˝ ¨ ¨ ¨ ˝ µx1pyqq “ fpyq “ y

“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpyq

“ µfpxlq ˝ ¨ ¨ ¨ ˝ µfpx1qpfpyqq,

where the first and the third equality are true because y is a frozen variable in both

ApΣ˚q and ApΣ˚
xq.

Finally, let y P exztxu. Then fpyq “ y P exztxu. Let x̃ “ µxl ˝ ¨ ¨ ¨ ˝ µx1pyq. Then we

have that fpx̃q “ x̃. Moreover, we have by (iii) that fpx̃q P ẽxx. We also have that fpxiq

are exchangeable variables, in their respective seeds, for all 1 ď i ď l, since px1, . . . , xlq

is pf,Σ˚,Σ˚
xq-biadmissible. Then from (iv) we have that xi ‰ x for all 1 ď i ď l and

we also know that fpxiq “ xi for all 1 ď i ď l. Moreover, fpyq “ y P exztxu and so

µfpxlq ˝ ¨ ¨ ¨ ˝ µfpxlqpfpyqq “ µxl ˝ ¨ ¨ ¨ ˝ µx1pyq P ẽxx.

Now from (i) and the definition of matrix mutation we have that, for any pΣ˚,Σ˚
x, fq-

biadmissible sequence px1, . . . , xlq, B̃rX̃z∆xs “ B̃x and so µfpxlq ˝ ¨ ¨ ¨ ˝µfpxlqpfpyqq “ x̃,

which proves the claim.
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Remark 5.34. We notice that given any Dynkin diagram, we can easily construct a freeze-

able seed from it, in the most intuitive way. The construction goes as follows. We pick a

vertex of a Dynkin diagram and attach to one of its vertices two new distinct vertices using

arrows: one to and one from the previously selected vertex, and then pick an orientation

for each of the remaining edges. This gives us a quiver (or, a valued quiver) from which we

construct a seed, a freezeable seed, with cluster variables corresponding to its vertices with

the exchangeable variables corresponding to vertices from the initial Dynkin diagram. Now,

due to Theorem 5.33, this enables us to construct freezing rooted cluster morphisms from

cluster algebras of finite Dynkin type. Furthermore, if the underlying graph of the quiver of

the seed obtained from the freezeable seed constructed from a Dynkin diagram in the way

explained above by freezing freezeable variables and removing their isolated frozen neigh-

bours is of finite Dynkin type, then Theorem 5.33 provides us with a recipe for constructing

freezing rooted cluster morphisms between cluster algebras of finite Dynkin types. Below

in Example 5.35 we give a couple of concrete examples of constructing a freezeable seed

from a Dynkin diagram of type E6 and of type D6 as well as the seeds obtained by freezing

the freezeable variables in the constructed seeds. A similar procedure of adjoining two (or

more) additional frozen vertices in order to make an exchangeable variable freezeable can

be applied to any quiver Q. Moreover, if this quiver is mutation equivalent to an acyclic

quiver then by Theorem 5.33 there exist p, q-dependent freezing rooted cluster morphisms

from a rooted cluster algebra associated with a seed Σ˚ which has Q with the additional two

vertices and the additional two arrows as its quiver, to a rooted cluster algebra associated

with a seed Σ˚
x, where x is an exchangeable variable corresponding to a freezeable vertex in

the freezeable version of Q.

Example 5.35. The E6 Dynkin diagram

81



gives rise to a freezeable seed Σ˚ “ ptxi : 1 ď i ď 8u, txi : 1 ď 6u, QE6q, where

x7 x8

x6

QE6 “ x1 x2 x3 x4 x5,

with x6 being the freezeable variable. We then have that Σ˚
x6

“ ptxi : 1 ď i ď 6u, txi : 1 ď

i ď 5u, QA5q, where

x6

QA5 “ x1 x2 x3 x4 x5.

Similarly, the D6 Dynkin diagram

gives rise to a freezeable seed Σ˚ “ ptxi : 1 ď i ď 8u, txi : 1 ď 6u, QD6q, where

x8 x6

QD6 “ x1 x2 x3 x4

x7 x5,

with x1 being a freezeable variable in this case. We then have that Σ˚
x1

“ tpxi : 1 ď i ď

6u, txi : 2 ď i ď 6u, QD5q, where

x6

QD5 “ x1 x2 x3 x4

x5.

Then by Theorem 5.33 there exists a p, q-dependent family of freezing rooted cluster mor-

phisms from a rooted cluster algebra of finite type E6 to a rooted cluster algebra of finite

82



type A5 and from a rooted cluster algebra of finite type D6 to a rooted cluster algebra of

finite type D5.

In Remark 5.30 we discussed how any triangulation of a convex polygon gives rise to

a freezeable seed. We consider now different geometric examples. Throughout the rest of

this section we denote by pi, jq the arc of a marked surface that connects the marked point

labelled by i to a marked point labelled by j and by xi,j its corresponding cluster variable.

Example 5.36. Let Π1
9 be a 9-gon with a single puncture in its interior. In other words, Π1

9

is a disk with 10 marked points, 9 of which lie on its boundary. Consider a triangulation T 1
9

of Π1
9 shown in Figure 3. The quiver QT 1

9
corresponding to the triangulation T 1

9 is given by

1

2

3

4

5 6

7

8

9

10

Figure 3: Triangulation T 1
9 of a 9-gon with a single puncture.
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x1,9 x1,2

x2,9

x2,3 x3,9 x8,9

x3,8

x3,4 x4,8 x7,8

x4,7

x4,5 x5,7 x6,7

x5,6

x5,10 x6,10

x5,6 ,

where the vertices xi,j of QT 1
9

correspond to the arcs pi, jq of Π1
9. We consider the seed

Σ “ ptxγ | γ is an arc in T 1
9 u , txγ | γ is an internal arc in T 1

9 u , QT 1
9
q.

We notice that Σ is freezeable with x2,9 its freezeable vertex. We let Σ˚ “ Σ and then we

have

Σ˚
x2,9

“ ptxγ | γ is an arc in T 1
8 u , txγ | γ is an internal arc in T 1

8 u , QT 1
8
q.

where QT 1
8

is the quiver corresponding to the triangulation T 1
8 of Π1

8, shown in Figure 4.
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3

4

5 6

7

8

10

2 9

Figure 4: Triangulation T 1
8 of a 8-gon with a single puncture.

That is, QT 1
8

is given by

x2,9

x2,3 x3,9 x8,9

x3,8

x3,4 x4,8 x7,8

x4,7

x4,5 x5,7 x6,7

x5,6

x5,10 x6,10

x5,6 .
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Now, let X and X˚ denote the clusters in the seeds Σ˚ and Σ˚
x2,9

, respectively, and let

p “ 1 and q “ 0. Then

Fr1,0x2,9 “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

X Ñ X˚ Y t0u

xi,j ÞÑ xi,j if 2 ď i ă j ď 9,

x1,2 ÞÑ x2,9,

x1,9 ÞÑ 0,

and the algebraic extension of Fr1,0x2,9 , which we denote here by f , yields a freezing rooted

cluster morphism f : ApΣ˚q Ñ ApΣ˚
x2,9

q, by Theorem 5.33. We notice that the full subquivers

of QT 1
9

and of QT 1
8

on the exchangeable vertices are orientations of Dynkin diagram D9 and

of Dynkin diagram D8, respectively, and so f is a freezing rooted cluster morphism between

cluster algebras of finite type D in this case. We also observe that, for example, the cluster

variable corresponding to the arc connecting p1, 3q in Π1
9 is given by

x1,2x3,9 ` x2,3x1,9
x2,9

and that

f

ˆ

x1,2x3,9 ` x2,3x1,9
x2,9

˙

“ x3,9.

Let us then consider the triangle in Π1
9 on the marked points labelled by 1, 3 and 9 and the

cluster variables x1,3, x3,9, x1,9 corresponding to its arcs. We notice that f sends x1,3, x3,9

and x1,9 to x3,9, x3,9 and 0, respectively. Thus, f collapses the triangle on the marked points

labelled by 1, 3 and 9 to the arc p3, 9q in Π1
8 by collapsing the edge p1, 9q. Similarly, f acts

on the top triangle of the triangulation T 1
9 by collapsing it to the boundary arc p2, 9q of Π1

8.

On the other hand, let us consider the triangle in Π1
9 on the marked points labelled by 1, 2

and 3 and the cluster variables x1,2, x2,3, x1,3 corresponding to its arcs. We have that f sends

x1,2 to x2,9, x2,3 to x2,3 and x1,3 to x3,9 and that the arcs corresponding to x2,9, x2,3 and x3,9

form a triangle in Π1
8. Thus, informally speaking, f either preserves triangles or collapses

them to arcs. More precisely, if a triangle in Π1
9 has the boundary arc p1, 9q as one of its

edges then it gets collapsed, in a sense of the above examples, to an arc under the action of

f . Else, if a triangle in Π1
9 does not have the boundary arc p1, 9q as one of its edges then it

is preserved, again, in a sense of one of the above examples, under the action of f .
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The notion of an inverse system and its inverse limit will play a key role in our discus-

sions in Chapter 6. Most important for us, will be the inverse systems of freezing maps of

triangulations of convex polygons. Before we move onto discussing those, we first consider

in the Example 5.37 below, how one can construct an inverse system in the category fClus

that has the cluster algebras arising from triangulations of once-punctured regular polygons

as its objects and freezing morphisms as its bonding maps.

0

...
...

´1
´2

´3

´4

´5

´6

´7

m´ ` 1
m´

1
2

3

4

5

6

7

m` ´ 1
m`

Figure 5: Labelling of marked points of a once-punctured pm ´ 1q-gon.

Example 5.37. Let m ě 4 be an integer and let m´ “ ´tm
2

u and m` “ tm´1
2

u, where

t´u is the usual floor fucntion. Given an pm ´ 1q-gon Π1
m´1 with one puncture, we label its

puncture with 0 and the remaining marked points cyclically anticlockwise with the integers

m´,m´ ` 1, . . . ,´1, 1, . . . ,m` ´ 1,m`, as shown in the Figure 5. We obtain a family

tT 1
m´1umě4 of triangulations of Π1

m´1 as follows. We start with a triangulation T 1
3 of Π1

3,

with T 1
3 given by

´2 1

´1

0

T 1
3
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We then obtain a triangulation T 1
4 by adding a new marked point on the boundary arc

connecting ´2 to 1 and then adding an (internal) arc that connects ´2 to 1. We label the

new marked point by 2. Continuing in this way, a triangulation T 1
m`1 of Π1

m`1 is obtained

from a triangulation T 1
m of Π1

m by adding a new marked point on the boundary arc joining

m´ to m`, labelling it with m` ` 1 if m is even and with m´ ´ 1 if m is odd, and adding

an internal arc that joins m´ to m`, as shown in the figure below.

´1 ´1 ´1 ´1

0 0 0 0

´2 ´2 ´2 ´21 1 1 1

´3 ´32 2

2 3

T 1
3 T 1

4 T 1
5 T 1

3

We note that for any integer m ą 4 the seed ΣT 1
m´1

associated with T 1
m´1 is a freezeable seed

where the exchangeable variable xpm´1q´,pm´1q` corresponding to the arc connecting pm´1q´

to pm ´ 1q` is the unique freezeable variable in ΣT 1
m´1

. Moreover, letting Σ˚ “ ΣT 1
m´1

we

get that Σ˚
x

pm´1q´,pm´1q`
“ ΣT 1

m´2
for all m ą 4. Then by Theorem 5.33 there exists a

p, q-dependent freezing rooted cluster morphism fp,qm,m´1 : ApΣT 1
m´1

q Ñ ApΣT 1
m´2

q for every

m ą 4. Thus, we obtain a family of inverse systems pApΣT 1
m´1

q, fp,qm,m´1qmą4, in the category

fClus, that consists of rooted cluster algebras of finite type D (see [15] for more details) and

freezing morphisms between them.

5.6.2 Freezing morphisms, almost positive roots and cluster variables.

Let Σ˚ “ pX, ex,Bq be a freezeable seed with x P ex a freezeable vertex. If Σ˚ and Σ˚
x give

rise to cluster algebras of finite Dynkin type then in some cases we can reformulate freezing

rooted cluster morphism from ApΣ˚q to ApΣ˚
xq using the correspondence between cluster

variables and almost positive roots described in Theorem 3.29. Before we do this formally,

let us first consider an example.

Example 5.38. Let Σ “
`

txi : 1 ď i ď 6u, txi : 1 ď i ď 4u, BQ “ pbxyqx,yPtxi:1ďiď6u

˘

be a
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seed where
x5

x4

Q “ x1 x2 x6

x3

Then Σ is freezeable with x4 its only freezeable variable. Letting Σ˚ “ Σ we then have that

Σ˚
x4

“
`

tx1, x2, x3, x4u, tx1, x2, x3u, BQ1

˘

, where

x4

Q
1

“ x1 x2 x3.

We have by Lemma 5.25 that

ApΣ˚
q “ Z

”

x1, x2, x3, x4, x5, x6,
x2 ` 1

x1
,
x1x3x4 ` 1

x2
,
x2 ` 1

x3
,
x2x6 ` x5

x4

ı

and that

ApΣ˚
x4

q “ Z
”

x1, x2, x3, x4,
x2 ` 1

x1
,
x1x3x4 ` 1

x2
,
x2 ` 1

x3

ı

.

Denote by f 1,0 : ApΣ˚q Ñ ApΣ˚
x4

q the freezing rooted cluster morphism defined to be the

algebraic extension of

Fr1,0x “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

txi : 1 ď i ď 6u Ñ txi : 1 ď i ď 4u Y t0u

xi ÞÑ xi for 1 ď i ď 4,

x5 ÞÑ x4,

x6 ÞÑ 0.

Making use of the bijection from Theorem 3.29, we have that f 1,0 is the algebraic extension

of

xr´αis ÞÑ xr´αis for i “ 1, 2, 3 xr´α4s ÞÑ x4

x5 ÞÑ x4 x6 ÞÑ 0.
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Let us now return to the general theory. Fix m,n P N with m ě n. Let

Σ˚
“ pX :“ tx1, . . . , xn, xn`1, . . . , xmu, tx1, . . . , xnu, Bq

be a freezeable seed such that QB̃ (recall that B̃ is the principal part of the matrix B; see

Definition 3.24) is an alternating orientation of a Dynkin diagram Γ on n vertices and let

Φ be the corresponding root system with simple roots ∆ “ tα1, . . . , αnu. We set ∆e :“

∆ Y tαn`1, . . . , αmu. We assume that xn P ex is freezeable with ∆xn “ txm´1, xmu where

bxn,xm´1 “ 1 and bxn,xm “ ´1. Note that for

Σ˚
xn “ pX˚ :“ tx1, . . . , xn, xn`1, . . . , xm´2u, tx1, . . . , xn´1u, B

˚
q

we have that QB̃˚ is an alternating orientation of a disjoint union of Dynkin diagrams Γ1 with

n ´ 1 vertices. We assume that Γ
1 is connected. Everything that follows in the remaining

part of this section can also be formulated for the case where Γ
1 is not connected, but we will

only consider the connected case here for simplicity. We denote by Φ
1 the corresponding root

system with simple roots ∆1

“ tα1, . . . , αn´1u and we set ∆1e “ ∆
1

Y tαn, αn`1, . . . , αm´2, 0u.

We note here that both seeds Σ˚ and Σ˚
xn are acyclic. By Lemma 5.25 we then have that

ApΣ˚
q “ ZrX Y tx

1

1, . . . , x
1

nus

and that

ApΣ˚
xnq “ ZrX˚

Y tx
1

1, . . . , x
1

n´1us.

We now fix p, q P t0, 1u and consider the map gp,q : ´∆e Ñ ´∆
1e given by

´αi ÞÑ

$

’

’

’

’

’

&

’

’

’

’

’

%

pp´αnq, i “ m ´ 1,

qp´αnq, i “ m,

´αi, else,

In what follows, we will adapt the convention that xr0s “ 0. Remaining in agreement with

the notation from Theorem 3.29, we also set

xr´αis “ xi for every xi P Xztx1, . . . , xnu and for every xi P X˚
ztx1, . . . , xn´1u. (11)

Theorem 5.39. The map gp,q induces a freezing rooted cluster morphism Gp,q : ApΣ˚q Ñ

ApΣ˚
xnq via the bijection from Theorem 3.29 and (11) above.
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Proof. Let xi P X. Assume first that 1 ď i ă m ´ 1. Then

Gp,q
pxiq “ Gp,q

pxr´αisq “ xrgp,qp´αiqs “ xr´αis “ xi “ Frp,qxn pxiq.

Else, if i “ m ´ 1 then

Gp,q
pxm´1q “ Gp,q

pxr´αm´1sq “ xrgp,qp´αm´1qs “ xrpp´αm´1qs “ pxn “ Frp,qxn pxm´1q.

The case where i “ m is dealt with almost identically as the case i “ m ´ 1 and so we skip

the details.

We have shown that Gp,qpxiq “ Frp,qxn pxiq for all xi P X and so Gp,q “ Frp,qxn . The claim

then follows by Theorem 5.33.

5.6.3 Freezing morphisms from triangulations of a convex n-gon

In this section we define inverse systems in the category fClus that are built of rooted cluster

algebras associated with certain triangulations of convex polygons and freezing morphisms

between them. We do this in preparation for Chapter 6, where we define and study certain

subrings of the inverse limits (in the category Ring) of inverse systems in fClus. Of partic-

ular importance will be the inverse systems that we will introduce in the remaining part of

this section.

Fix m,n P Zě3 and let pJ,ďq be a linearly ordered set such that |J | “ m. Without

loss of generality, we can assume that J “ t1, . . . ,mu and that ď is the usual less or

equal to relation on J . We let Pm be a disk with m marked points on its boundary that

we label cyclically anticlockwise with integers 1 to m and denote by Tm a triangulation

of Pm with an ear at m, cf. Remark 5.30. Then ΣTm “ pXTm , exTm , B
Tmq is freezeable

with x1m´1 P exTm a freezeable variable and ApΣTmq is acyclic. Letting Σ˚ “ ΣTm we then

have that Σ˚
x1m´1

“ ΣTm´1 “ pXTm´1 , exTm´1 , B
Tm´1q where Tm´1 is the triangulation of Pm´1

corresponding to the clusterXTmztx1m, xm´1mu. Recall from Section 4.2 that cluster variables

in ApΣTmq are identified with the arcs joining two marked points in Pm and for any arc pi, jq

of pJ,ďq, we denote by xij the variables corresponding to the arc, also denoted by pi, jq,

joining a marked point labelled with i to a marked point labelled with j. The exchangeable

variables are the variables corresponding to internal arcs. Now, fix p, q P t0, 1u and denote
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by f̃p,qm,m´1 : ApΣTmq Ñ ApΣTm´1q the freezing rooted cluster morphism ApTmq Ñ ApTm´1q

which is defined to be the algebraic extension of the map

Frp,qx1m´1
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

XTm Ñ XTm´1 Y t0u

xij ÞÑ xij, if 1 ď i ă j ă m,

xmm´1 ÞÑ px1m´1,

x1m ÞÑ qx1m´1.

Proposition 5.40. Let xij ‰ x1m´1, 1 ď i ă j ă m, be a cluster variable in ApΣTmq

corresponding to an internal arc of Pm. Then f̃p,qm,m´1pxijq “ xij. Moreover, f̃p,qm,m´1pximq “

pxim´1 ` qxim´1.

Proof. Consider first an exchangeable variable xij ‰ x1m´1, such that 1 ď i ă j ă m, in

some seed mutation equivalent to ΣTm . We have that xij “ µxl ˝ ¨ ¨ ¨ ˝ µx1pxklq for some

xkl P exTmztx1m´1u and where px1, . . . , xlq is a ΣTm-admissible sequence with xs ‰ x1m´1 for

all 1 ď s ď l. We prove the claim by induction on l. If l “ 0 then xij P exTmztx1m´1u and the

claim follows directly from the the definition of f̃p,qm,m´1. Assume now that the claim holds

for all ΣTm-admissible sequences px1, . . . , xlq such that xs ‰ x1m´1 for all 1 ď s ď l. Let

xi1j1 ‰ x1m´1 be an exchangeable variable in the seed µxl ˝¨ ¨ ¨˝µx1pΣTmq and let xij P ApΣTmq

be the cluster variable corresponding to the arc pi, jq of Pm obtained via the diagonal flip

(cf. page 16) of the arc pi
1

, j
1

q in the triangulation corresponding to the cluster of the seed

µxl ˝ ¨ ¨ ¨ ˝ µx1pΣTmq. Then 1 ď i ă j ă m and either

xij “
xi1 ixj1j ` xij1xi1j

xi1j1

(12)

or

xij “
xi1 ixjj1 ` xi1jxij1

xi1j1

. (13)

We know from the proof of Theorem 5.33 that for every exchangeable variable x ‰ x1m´1 in

the seed µxl ˝ ¨ ¨ ¨ ˝ µx1pΣTmq we have that f̃p,qm,m´1pxq “ x and that x is exchangeable in the

seed µxl ˝ ¨ ¨ ¨ ˝µx1pΣTm´1q. Using this, together with (12), (13) and the induction hypothesis,

we deduce f̃p,qm,m´1pxijq “ xij, as required.
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Next, for any 1 ă i ă m ´ 1 we have that

xim “
x1ixm´1m ` x1mxim´1

x1m´1

.

Therefore,

f̃p,qm,m´1pximq “ f̃p,qm,m´1

ˆ

x1ixm´1m ` x1mxim´1

x1m´1

˙

“
px1ix1m´1 ` qx1m´1xim´1

x1m´1

“ px1i ` qxim´1,

where the last two equalities follow from the definition of f̃p,qm,m´1 and the first part of this

proof.

Throughout the rest of this section T f
m denotes a fountain triangulation of Pm at the

marked point labelled by 1. That is, all of the internal arcs in T f
m originate from 1. See

Figure 6 for an example of a fountain triangulation at 1 in a 10-gon. For any m ě 3, we

1

2

3

4

5

6

7

8

9

10

Figure 6: Fountain triangulation of a 10-gon at 1.

denote by ApT f
mq the cluster algebra rooted at the seed ΣT f

m
, that is, ApT f

mq “ pApΣT f
m

q,ΣT f
m

q.

At the end of Chapter 4. (cf. page 54) we defined a parameter-dependent family of

ring homomorphisms between cluster algebras associated to convex polygons. We will now

consider certain members of that family in more detail.
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By Proposition 5.40, for any m ą 3, the freezing rooted cluster morhpism f̃p,qm,m´1 :

ApΣT f
m

q Ñ ApΣT f
m´1

q is the algebraic extension of

xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, 1 ď i ă j ă m

qx1m´1, i “ 1, j “ m

px1m´1, i “ m ´ 1, j “ m

px1i ` qxim´1, 1 ă i ă m ´ 1 ă j “ m.

Corollary 5.41. Let p, q P t0, 1u and m ą 3. Then the ring homomorphism f̃p,qm,m´1 :

ApΣT f
m

q Ñ ApΣT f
m´1

q yields a freezing rooted cluster morphism ApT f
mq Ñ ApT f

m´1q.

We notice that the definition of the ring homomorphism fp,qm,m´1 : ApΣT f
m

q Ñ ApΣT f
m´1

q

(cf. Definition 4.22) is the same as that of f̃p,qm,m´1 : ApΣT f
m

q Ñ ApΣT f
m´1

q. For the notational

simplicity, we will use fp,qm,m´1 instead of f̃p,qm,m´1 throughout the rest of this chapter.

Remark 5.42. It is worth considering how the maps f 0,1
m,m´1 and f 1,0

m,m´1 act on an arbitrary

triangulation Tm of Pm. Denote a triangle in Tm by a triple pi, j, kq, 1 ď i ă j ă k ď m, of

the end points of the edges of that triangle. Let us first consider a concrete example. Let T7

be the following triangulation of P7:

1

2

3

4 5

6

7

The corresponding cluster is the set

XT7 “ tx12, x23, x34, x45, x56, x67, x17, x24, x27, x46, x47u.

Now,

f 0,1
7,6 pXT7q “ tx12, x23, x34, x45, x56, x16, x24, x26, x46, 0u
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1 6

2

3 4

5

and we observe that f 0,1
7,6 pXT7qzt0u is in fact a cluster, with the corresponding triangulation

of P6. Geometrically speaking, the triangulation corresponding to f 0,1
7,6 pXT7qzt0u is obtained

from T7 by collapsing the triangle p4, 6, 7q to the arc connecting p4, 6q, by collapsing the arc

p6, 7q. More generally, the map f 0,1
m,m´1 preserves (modulo relabelling of the marked point m

to m´ 1) a triangle pi, j, kq of Tm if j ‰ m´ 1 and collapses the triangle pi,m´ 1,mq to the

arc pi,m´ 1q, by collapsing the arc pm´ 1,mq. Similarly, the map f 1,0
m,m´1 preserves (again,

modulo relabelling) a triangle pi, j, kq of Tm if i ‰ 1 and k ‰ m and collapses a triangle

p1, j,mq to the arc p1, jq, by collapsing the arc p1,mq. Thus, we often say that the maps

f 0,1
m,m´1 and f 1,0

m,m´1 correspond to collapsing a triangle.

Corollary 5.43. Let m ą n ě 3 and let p, q P t0, 1u be such that pq “ 0. The map

fp,qm,n : ApΣT f
m

q Ñ ApΣT f
n

q defined as the algebraic extension of

xij ÞÑ

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, 1 ď i ă j ď n

px1i ` qxin, 1 ď i ď n ă j ď m

0, n ă i ă j ď m,

where by abuse of notation xii “ 0 for all 1 ď i ď m, yields a freezing rooted cluster morphism

ApT f
mq Ñ ApT f

n q.

Proof. Let xij P ApT f
mq be a cluster variable, for some 1 ď i ă j ď m. We claim that

fp,qm,npxijq “ fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qm,m´1pxijq. The cases where 1 ď i ă j ď n or where n ă i ă j ď m
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are straightforward. Consider now the case where i “ 1 ă n ă j ď m. We have that

fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qm,m´1px1jq “ fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj,j´1px1jq

“ fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj´1,j´2pqx1j´1q

“ . . .

“ fp,qn`1,npqj´pn`1qx1n`1q

“ qj´nx1n “ qx1n “ px11 ` qx1n “ fp,qm,npx1jq.

The only remaining case to consider is where 1 ă i ď n ă j ď m. We have

fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qm,m´1pxijq “ fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj,j´1pxijq

“ fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj´1,j´2ppx1i ` qxij´1q

“ px1i ` fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj´2,j´3pqppx1i ` qxij´2qq

“ px1i ` fp,qn`1,n ˝ ¨ ¨ ¨ ˝ fp,qj´2,j´3pq
2xij´2qq

“ . . .

“ px1i ` fp,qn`1,npqj´pn`1qxin`1q

“

$

’

&

’

%

px1n ` qj´pn`1qpx1n, if i “ n,

px1i ` qj´nxin, if 1 ă i ă n

“ px1i ` qxin “ fp,qm,npxijq.

Now as fp,qm,n is equal to the composition of freezing rooted cluster morphisms, by Corollary

5.41, it is a freezing rooted cluster morphism itself.

An analogous statement for the case where p “ q “ 1 is as follows.

Corollary 5.44. Let m ą n ě 3 and let p “ q “ 1. The map f 1,1
m,n : ApΣT f

m
q Ñ ApΣT f

n
q

defined as the algebraic extension of

xij ÞÑ

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, 1 ď i ă j ď n

pj ´ nqx1i ` xin, 1 ď i ă n ă j ď m

pj ´ iqx1n, n ď i ă j ď m,
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where by abuse of notation xii “ 0 for all 1 ď i ď m, yields a freezing rooted cluster morphism

ApT f
mq Ñ ApT f

n q.

3

´3

´2

´1 0

1

2

´2

´1 0

1

´3 2

Figure 7: Zig-zag triangulations T zz
7 and T zz

6 of P7 and P6, respectively.

Proof. Consider a cluster variable xij of ApT f
mq, for some 1 ď i ă j ď m. We will show

that f 1,1
m,npxijq “ f 1,1

n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1
m,m´1pxijq. The case where 1 ď i ă j ď n is straightforward.

Consider now the case where 1 ď i ă n ă j ď m. We have that

f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

m,m´1pxijq “ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

j,j´1pxijq

“ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

j´1,j´2px1i ` xij´1q

“ x1i ` f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

j´2,j´3px1i ` xij´2q

“ . . .

“ pj ´ pn ` 1qqx1i ` f 1,1
n`1,npxin`1q

“

$

’

&

’

%

x1n, i “ 1,

pj ´ nqx1i ` xin, 1 ă i ă n

“ f 1,1
m,npxijq.
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Finally, if xij is such that n ď i ă j ď m then we have that

f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

m,m´1pxijq “ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

j,j´1pxijq

“ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

j´1,j´2px1i ` xij´1q

“ . . .

“ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

i`1,ippj ´ pi ` 1qqx1i ` xi`1iq

“ f 1,1
n`1,n ˝ ¨ ¨ ¨ ˝ f 1,1

i,i´1ppj ´ iqx1iq “ pj ´ iqx1i.

Now since f 1,1
m,n is equal to the composition of freezing rooted cluster morphisms, it follows

it is too a freezing rooted cluster morphism, as required.

A canonical example of an inverse system in fClus is then given by the pair pApT f
mq, fp,qm,nq,

for a fixed p, q P t0, 1u.

In the remaining part of this chapter t´u and r´s denote the usual floor and ceiling

functions, respectively. We will now let J “ tm´,m´ ` 1, . . . ,m` ´ 1,m`u be the set of m

consecutive integers from m´ :“ tm
2

u to m` :“ tm´1
2

u. By equipping J with the usual less or

equal to relation, denoted by ď, we obtain a linearly ordered set pJ,ďq and for any m ě 3

we label the marked points of Pm cyclically anticlockwise with the integers from pJ,ďq this

time. We also introduce certain relabelling maps. Namely, we define hm : J Ñ t1, . . . ,mu to

be the bijection that maps i to i ` rm`1
2

s and km : J Ñ t1, . . . ,mu to be the bijection given

by

i ÞÑ

$

’

&

’

%

m, i “ m´ and m is even,

i ` tm
2

u, else.

We will denote by h´1
m and by k´1

m the inverse functions of hm and km, respectively. Now,

for any m ě 3 we consider the so-called zig-zag triangulation T zzm of Pm that corresponds to

the following triangulation of pJ,ďq:

tpi,´iq : m´
ă i ď ´1uYtp´pi`1q, iq : 1 ď i ă m`

uYtpi, i`1q : m´
ď i ă m`

uYtpm´,m`
qu.

See Figure 7 for an example of a zig-zag triangulation of P7 and P6. Moreover, if Tm is a

triangulation of Pm (with the above labelling) then we denote by hmpTmq the triangulation
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of Pm, where the marked points of Pm are labelled cyclically anticlockwise with integers 1

to m. That is,

hpTmq “ tphmpiq, hmpjqq | pi, jq P Tmu.

We will use the same notation for the relabelling maps km, h1´
m and k´1

m . See Figure 8 for an

example of h7pT zz
7 q and of h6pT zz

6 q.

7

1

2

3 4

5

6 1

2

3 4

5

6

Figure 8: Zig-zag triangulations h7pT zz
7 q and h6pT zz

6 q of P7 and P6, respectively.

Now we aim to construct an inverse system in fClus, which has the rooted cluster algebras

ApT zz
m q as its objects. We note that if m is odd then T zz

m has an ear at m`, whereas if m is

even then T zz
m has an ear at m´. Let us now consider the maps f̃m,n : ApΣT zz

m
q Ñ ApΣT zz

n
q

and g̃m,n : ApΣT zz
m

q Ñ ApΣT zz
n

q defined by the algebraic extension of

xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, n
´ ď i ă j ď n`,

xin` , n´ ď i ă n` ă j ď m`,

xjn` , m´ ď i ă n´ ď j ă n`,

0, else

and of xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, n
´ ď i ă j ď n`,

xn´i, n
´ ă i ď n` ă j ď m`,

xn´j, m
´ ď i ă n´ ă j ď n`,

0, else,

respectively.

Proposition 5.45. The maps f̃m,n : ApΣT zz
m

q Ñ ApΣT zz
n

q and g̃m,n : ApΣT zz
m

q Ñ ApΣT zz
n

q

yield freezing rooted cluster morphisms ApT zz
m q Ñ ApT zz

n q.

Proof. Let Σ be a seed and let x “ px1, . . . , xlq be a Σ-admissible sequence. We set µxpΣq :“

µxl ˝ ¨ ¨ ¨ ˝ µx1pΣq.
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Assume that m ą 3 is odd. Let l “ rm
2

s and set

xm “

$

’

&

’

%

px13q, m “ 5

px1m´2, x13, . . . , xl`2, xl´2, xl`1, xl´1, xlq, m ą 5,

a pf 0,1
m,m´1,ΣT f

m
,ΣT f

m´1
q-biadmissible sequence for every (odd)m ą 3. We notice that ΣhnpT zz

n q “

µxnpΣT f
n

q when n is odd and that ΣhnpT zz
n q “ µf0,1n`1,npxn`1q

pΣT f
n

q when n is even. More-

over, we have that f 0,1
m,m´1 : ApΣhmpT zz

m qq Ñ ApΣhm´1pT zz
m´1qq yields a freezing rooted cluster

morphism by Proposition 5.4. Now we have that f̃m,m´1 “ H´1
m´1 ˝ f 0,1

m,m´1 ˝ Hm, where

Hm : ApΣT zz
m

q Ñ ApΣhmpT zz
m qq and H´1

m´1 : ApΣhm´1pT zz
m´1qq Ñ ApΣT zz

m´1
q are the canonical

ring isomorphisms induced by the maps hm and h´1
m´1, respectively, both inducing freezing

rooted cluster morphisms. Thus, f̃m,m´1 is equal to the composition of rooted freeezing

cluster morphisms and so it is a freezing rooted cluster morphism itself.

Next we assume that m ą 4 is even. Let l “ m
2

and set

xm “

$

’

&

’

%

px13q, m “ 6

px1m´3, x13, . . . , xl`2, xl´2, xl`1, xl´1, xlq, m ą 6,

a pf 0,1
m,m´1,ΣT f

m
,ΣT f

m´1
q-biadmissible sequence for every (even) m ą 4. If m “ 4 then x4

is assumed to be an empty sequence. Again we notice that ΣknpT zz
n q “ µxnpΣT f

n
q when

n is even and that ΣknpT zz
n q “ µf0,1n`1,npxn`1q

pΣT f
n

q when n is odd. Moreover, we have that

f 0,1
m,m´1 : ApkmpT zz

m qq Ñ Apkm´1pT zz
m´1qq is a freezing rooted cluster morphism by Proposition

5.4. Next we have that f̃m,m´1 “ K´1
m´1 ˝ f 0,1

m,m´1 ˝ Km, where Km : ApΣT zz
m

q Ñ ApΣkmpT zz
m qq

and K´1
m´1 : ApΣkm´1pT zz

m´1qq Ñ ApΣT zz
m´1

q are the canonical ring isomorphisms induced by the

maps km and k´1
m´1, respectively, that themselves induce freezing rooted cluster morphisms.

Thus, f̃m,m´1 is equal to the composition of rooted freeezing cluster morphisms and so it is

a freezing rooted cluster morphism itself.

Next we show that f̃m,n “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃m,m´1. Let xij P ApΣT zz
m

q. Assume first that

n´ ď i ă n` ă j ď m`. Then immediately we have that

f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃m,m´1pxijq “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃j1 ,j1
´1pxijq,
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where j 1 is such that j 1` “ j. But then

f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃j1 ,j1
´1pxijq “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃j1

´1,j1
´2pxipj1

´1q`q “ ¨ ¨ ¨ “ f̃n`1,npxipn`1q`q “ xin`

“ f̃m,npxijq.

Next we assume that m´ ď i ă n´ ď j ă n`. Then

f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃m,m´1pxijq “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃i1 ,i1 ´1pxijq,

where i1 is such that i1´ “ i. But then

f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃i1 ,i1´1pxijq “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃i1 ´1,i1 ´2pxjpi1 ´1q`q “ f̃i1 ´1npxjpi1 ´1q`q “ xjn`

“ f̃m,npxijq,

where the second equality follows from the previous paragraph. The remaining cases are

straightforward and so we skip the details. Finally, since f̃m,n “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃m,m´1 and

f̃m,m´1 is a freezing rooted cluster morphism for every m ą 3, it follows that f̃m,n is a freezing

rooted cluster morphism.

Now to show that g̃m,m´1 is a freezing rooted cluster morphism one uses the same argu-

ment as that used above for f̃m,m´1 with f 0,1
m,m´1 being replaced by f 1,0

m,m´1. The calculations

needed to show that g̃m,n “ g̃n`1,n ˝ ¨ ¨ ¨ ˝ g̃m,m´1 are very similar to those that were carried

out in order to show that f̃m,n “ f̃n`1,n ˝ ¨ ¨ ¨ ˝ f̃m,m´1 and so we leave the details of those out

for brevity. Finally we deduce that g̃m,n induces a freezing rooted cluster morphism and we

are done.

Immediately, we get two obvious choices for inverse systems in fClus, namely, pApT zz
m q, f̃m,nq

and pApT zz
m q, g̃m,nq.

Remark 5.46. The geometric interpretation of f̃m,m´1 and g̃m,m´1 is the same, up to rela-

belling of marked points, as that of maps f 0,1
m,m´1 and f 1,0

m,m´1, respectively, which we discussed

in detail in Remark 5.42.

We will see in Chapter 6 that rooting our cluster algebras at seeds coming from different

triangulations, will give rise to different (i.e. non-isomorphic as rings) so-called pro-cluster

algebras, which we will formally define in Chapter 6.
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Having constructed two distinct freezing morphism between cluster algebras rooted at

the same triangulations, we can now construct (infinitely) many inverse systems in the

category fClus besides the two canonical ones, the already mentioned pApT zz
m q, f̃m,nq and

pApT zz
m q, g̃m,nq. Before we move onto to the last chapter, let us first consider an example of

this.

Example 5.47. Consider the inverse system pApT zz
m q, zm,nq, where zm,n “ zn`1,n˝¨ ¨ ¨˝zm,m´1

and where

zk,k´1 “

$

’

&

’

%

g̃k,k´1, if k is even,

f̃k,k´1, if k is odd,

for all 3 ď n ă k ď m. Explicitly, the map zm,n : ApT zz
m q Ñ ApT zz

n q is given by the algebraic

extension of

xij ÞÑ

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xij, n´ ď i ă j ď n`

xin` , n´ ď i ă n` ď j ď m`

xn´j, m´ ď i ď n´ ă j ď n`

xn´n` , m´ ď i ď n´ ă n` ď j ď m`

0, m´ ď i ă j ď n´ or n` ď i ă j ď m`.

To convince ourselves that this is indeed the case, we first observe that if k is even then

pk ´ 1q´ “ k´ ` 1 and pk ´ 1q` “ k` and that

zk,k´1pxijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, k´ ` 1 ď i ă j ď k`

xk´`1j, k´ “ i ă k´ ` 1 ă j ď k`

0, i “ k´, j “ k´ ` 1.

“ g̃k,k´1pxijq.

Similarly, if k is odd then we have that pk ´ 1q´ “ k´ and pk ´ 1q` “ k` ´ 1 and then that

zk,k´1pxijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, k´ ď i ă j ď k` ´ 1

xik`´1, k´ ď i ă k` ´ 1 ă j “ k`

0, i “ k` ´ 1, j “ k`.

“ f̃k,k´1pxijq,
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as required.
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6 Pro-clusters and pro-cluster algebras

This chapter will introduce a way of constructing a special family of algebras (with cluster-

like combinatorics) from inverse systems in fClus. Informally speaking, given an inverse

system in fClus and its corresponding limit in the category of rings, we lift clusters from

the cluster algebras in a given inverse system back to the inverse limit and use the resulting

subset of elements to generate our algebra, the so-called pro-cluster algebra.

As it turns out, in some cases the pro-cluster algebras are equal as rings to cluster algebras

and they can be seen as a cluster algebraic counterpart of certain categories, something we

will explain in more detail in the relevant Sections 6.4 and 6.5.

As far as the concrete examples go, we will consider here the pro-cluster algebras arising

from inverse systems coming from convex polygons and freezing morphisms, building upon

the results established in Section 5.6.3.

6.1 Definition of a pro-cluster and a pro-cluster algebra

Fix m,n, i, j P Z. Let tΣm “ pXm, exm, Bmq | m ě 0u be a family of seeds and let S “

pApΣmq, φm,n : ApΣmq Ñ ApΣnqqměně0 be an inverse system in fClus with pR, pφmqmě0q its

limit in the category Ring of rings.

Remark 6.1. More generally, the family tΣmu of seeds can be indexed by any directed set

and the following definitions can be adjusted naturally to account for that. Thus, we will

often use a different indexing set in place of Zě0 without further comment. For example, in

the following sections we work with the inverse systems of cluster algebras associated with

convex m-gons and the corresponding family of seeds is defined over the set Zě3 rather than

Zě0.

Definition 6.2. A sequence X “ pXiqiě0 of subsets of ApΣiq is said to be S-admissible if

there exists lX ě 0 such that for all m ě n ě lX :

• Xm is a cluster in ApΣmq,

• φm,npXmq Ď Xn Y Z.
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We call an S-admissible sequence X S-complete (or simply complete, if clear from context)

if lX “ 0. The pro-cluster associated to pXmqmělX is the set

XpXq :“
č

mělX

pφ´1
m pXm Y ZqqzZ Ă R.

We give many examples of admissible sequences and their corresponding pro-clusters

later in this chapter: see Examples 6.14, 6.22, 6.28, 6.29, 6.37, 6.41 and 6.50. Before we

move forward, let us first justify that the notation introduced in the above definition does

not depend on the choice of lX and so every S-admissible sequence gives rise to precisely one

pro-cluster. This is the direct consequence of the following lemma.

Lemma 6.3. Let X “ pXiqiě0 be S-admissible and let k P Zą0 be such that k ą lX . Then

XpXq “
č

měk

pφ´1
m pXm Y ZqqzZ.

Proof. Set X 1

:“
č

měk

pφ´1
m pXm Y ZqqzZ. First, let x P XpXq. Then φmpxq P Xm Y Z for all

m ě lX and since k ą lX we have that φmpxq P Xm Y Z for all m ě k and so x P X
1 .

Now, let x1 P X 1. Let n ě lX be such that n ă k. We must show that φnpx1q P Xn Y Z.

Let m P Zą0 be such that m ě k ą n ě lX . Then φnpx1q “ φm,npφmpx1qq, since x1 P R.

Now, if φmpx1q P Z then φnpx1q “ φm,npφmpx1qq P Z. Else, if φmpx
1

q P Xm then since

φm,npXmq Ď Xn Y Z, it follows that φnpx1q “ φm,npφmpx1qq Ď Xn Y Z, as required.

Corollary 6.4. Let X be S-admissible. Then there is precisely one pro-cluster arising from

X, in the way described in Definition 6.2.

Remark 6.5. Given a S-admissible sequence X “ pXiqiě0, we can easily construct from

it, in a trivial way, another S-admissible sequence that yields the same pro-cluster. Let

Y “ pYiqiě0 be such that Yi “ Xi for all i ą lX and such that Yi is an arbitrary subset of

ApΣiq, allowing Yi ‰ Xi for all 0 ď i ď lX . Then Y is S-admissible and XpXq “ XpY q.

Consider now the set XS :“ tX | X is S-admissibleu of all S-admissible sequences and

denote by X pXSq the set of all pro-clusters coming from XS. That is,

X pXSq :“ tXpXq | X P XSu.

Finally, we have:
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Definition 6.6. The pro-cluster algebra associated with S, denoted ApSq, is the subring of

R generated by all the elements of all the pro-clusters in X pXSq.

We end this section by showing, that if the map φm,n : ApΣmq Ñ ApΣnq in the inverse

system S always maps clusters to clusters, then it is enough to only consider S-complete

admissible sequences.

Proposition 6.7. Let S “ pApΣmq, φm,n : ApΣmq Ñ ApΣnqqměně0 be an inverse system in

fClus. Let Xm be a cluster of ApΣmq and assume that φm,npXmqzZ is a cluster in ApΣnq

for all m ě n ě 0. Then

X pXSq “ tXpXq | X P XS is S-completeu.

Proof. Let X be S-complete. By definition, X is S-admissible and so X P XS. Thus

XpXq P X pXSq and so tXpXq | X P XS is S-completeu Ď X pXSq.

Let X “ pXiqiě0 be a S-admissible sequence such that lX ą 0. Let Y “ pYiqiě0 be

such that Yi “ Xi for all i ě lX and such that Yi “ φlX,i
pXiqzZ for all 0 ď i ă lX . By

assumption we have that Yi is a cluster in ApΣiq for all 0 ď i ă lX . First, we want to show

that φm,npYmq Ď Yn Y Z for all m ě n ě 0, i.e. that Y is S-complete.

Let 0 ď n ă m ă lX . Then

φm,npYmq Ď φm,npφlX ,mpXlX qq “ φlX ,npXlX q Ď Yn Y Z.

If m ě n ě lX then it follows from construction of Y that φm,npYmq Ď Yn Y Z.

Now, let 0 ď n ă lX ď m. Then

φm,npYmq Ď φlXn ˝ φlX ,mpXmq Ď φlX ,npXlX Y Zq Ď Yn Y Z.

To sum up, we have that φm,npYmq Ď Yn Y Z for all m ě n ě 0 and so Y is S-complete. It

then follows from the construction of X and Y and Lemma 6.3 that XpXq “ XpY q and so

X pXSq Ď tXpXq | X P XS is S-completeu and we are done.

6.2 Triangulations of linearly ordered sets

Throughout the rest of this chapter m,n P Zě3 with m ě n, unless stated otherwise. Before

we look at some concrete examples of pro-clusters and pro-cluster algebras let us first prove
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several technical results regarding certain linearly ordered sets and their triangulations. We

will use those results repeatedly throughout the rest of this chapter.

Recall (cf. Definition 4.20) that if pJ,ăq is a linearly ordered set then we call a pair px, yq

of elements of pJ,ăq such that x ă y an arc of pJ,ăq. Two arcs px, yq and pk, lq of pJ,ăq

cross if x ă k ă y ă l or k ă x ă l ă y. A triangulation (cf. Definition 4.21) of pJ,ăq is a

maximal set of its pairwise non-crossing arcs.

Throughout this chapter, when we say that a set of arcs of a linearly ordered set is

maximal, respectively not maximal, we always mean that it is maximal, respectively not

maximal, as a set of pairwise non-crossing arcs of that set.

Now let us consider a linearly ordered set pJ,ăq. We adapt the convention that if J is

infinite then it satisfies at least one of the following:

(1) there exists the element, denoted by 8´, in the set J such that 8´ ă j for all

j P Jzt8´u,

(2) there exists the element, denoted by 8`, in the set J such that j ă 8` for all

j P Jzt8`u,

(3) there exist unique elements, denoted by 8´,8`, in the set J such that 8´ ă j ă 8`

for all j P Jzt8´,8`u.

We will denote the set pJ,ăq that satisfies p1q only by J8´ and p2q only by J8` . If pJ,ăq

satisfies p3q then it automatically satisfies p1q and p2q and we will denote it by J8˘ .

Lemma 6.8. Let T and T
1 be a triangulation of J8´ and of J8`, respectively, and let

i P J8´zt8´u and i1

P J8`zt8`u. If

a) a family tj P J8´ | pj, iq P T u is infinite or a family tj P J8´ | pi, jq P T u is infinite,

then p8´, iq P T

and if

b) a family tj P J8` | pj, i
1

q P T
1

u is infinite or a family tj P J8` | pi
1

, jq P T
1

u is infinite,

then pi
1

,8`q P T
1.
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Proof. First we prove a). The only arcs of J8´ that cross p8´, iq are of the form pk, lq with

k ă i ă l. Let k ă i and i ă l. Since either tj P J8´ | pj, iq P T u or tj P J8´ | pi, jq P T u is

infinite, there exists p ă k such that pp, iq P T or q ą l such that pi, qq P T . But then pp, iq

and pi, qq intersect any arc of the form pk, lq with k ă i ă l. Thus, T only contains arcs that

do not cross p8´, iq and so p8´, iq P T , by maximality of T .

The proof of part b) is very similar to the proof of part a) and so for brevity we skip the

details.

Similarly, in the case of J8˘ we have the following result.

Lemma 6.9. Let T be a triangulation of J8˘ and let i P J8˘zt8´,8`u. If a family

tj P J8˘ | pj, iq P T u is infinite then p8´, iq P T . Similarly, if a family tj P J8˘ | pi, jq P T u

is infinite then pi,8`q P T .

Proof. Assume first that tj P J8˘ | pj, iq P T u is infinite. The only arcs of J8˘ that cross

p8´, iq are of the form pk, lq with 8´ ă k ă i ă l ď 8`. Let k ă i. There exists p ă k such

that pp, iq P T . Therefore pp, iq crosses any arc of the form pk, lq with 8´ ă k ă i ă l ď 8`.

Thus, T only contains arcs that do not cross p8´, iq and so p8´, iq P T , by maximality of

T .

The case where tj P J8˘ | pi, jq P T u is infinite is dealt with in an almost identical way

as the one above and so we omit the details.

Now, recall (cf. page 52) that if |J | “ m then we denote the smallest element of J by m´

and the largest element of J by m`. Moreover, for i P J we will denote by i´, if it exists,

an element of J such that tx P J : i´ ă x ă iu “ H and by i`, again if it exists, an element

of J such that tx P J : i ă x ă i`u “ H. We will denote by pJn,ăq a linearly ordered set

where Jn “ tx1, . . . , xnu Ă J is such that tx P J : xi ă x ă xi`1u “ H for all 1 ď i ă n

and where ă is inherited from J and whenever we write pJn,ăq Ă pJ,ăq we always mean

a linearly ordered set that is constructed in this way from a prescribed (finite or infinite)

linearly ordered set pJ,ăq.
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Fix pJ,ăq and pJn,ăq Ă pJ,ăq. For T a triangulation of (J,ă) we denote by AJnpT q a

subset of arcs of Jn given by

AJnpT q “ tpi, jq P T | xi ď i ă j ď xnu Y tpx1, xnqu.

If an arc pj, iq of pJ,ăq is such that j ă x1 ă i ă xn we say that pj, iq is left-rooted in

pJn,ăq. Similarly, if pi, jq is such that x1 ă i ă xn ă j we say that pi, jq is right-rooted in

pJn,ăq. See below for an example of an arc of pJ,ăq that is left-rooted (picture on the left) in

pJn,ăq and of an arc of pJ,ăq that is right rooted (picture on the right) in pJn,ăq, where we

regard pJ,ăq (respectively pJn,ăq) as a disk with (possibly infinitely many) marked points

labelled cyclically anticlockwise with the elements of pJ,ăq (respectively of pJn,ăq). We will

j

x1 xn

j

x1 xn

i i

sometimes write that an arc is left-rooted or right-rooted, without explicitly stating the set

pJn,ăq in which it is rooted, if no ambiguity is caused by such simplification. To make the

notation even simpler we will refer to a linearly ordered set pJ,ăq simply as J and similarly,

we will write Jn instead of (Jn,ă).

Proposition 6.10. Let T , T 1 and T 2 be triangulations of J8˘, J8` and of J8´, respectively.

Let Tn, T
1

n and T
2

n be sets of arcs of Jn Ă J8˘, J 1

n Ă J8` and of J2

n Ă J8´, respectively,

given by

Tn “ AJnpT q Y tpi, xnq | pi, jq P T is right-rootedu

Y tpx1, iq | pj, iq P T is left-rootedu,

T
1

n “ AJ 1
npT 1

q Y tpi, xnq | pj, iq P T
1

is left-rooted or pi, jq P T
1

is right-rootedu,

T
2

n “ AJ2
npT 2

q Y tpx1, iq | pj, iq P T
2

is left-rooted or pi, jq P T
2

is right-rootedu.

Then Tn, T
1

n and T 2

n are triangulations of Jn, J
1

n and of J2

n, respectively.
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Proof. We will start with showing that Tn is a triangulation of Jn. First we show that the

set Tn consists of pairwise non-crossing arcs of Jn. Let pi, jq, pk, lq P Tn. Assume first that

pi, jq, pk, lq P AJnpT q. That is, pi, jq, pk, lq P T and as pi, jq does not cross pk, lq in T , it follows

that they do not cross in Tn.

Now, assume that pi, jq R AJnpT q and that pk, lq R AJnpT q. Thus, pi, jq R T and pk, lq R T .

Then precisely one of the following cases holds:

Case (1) pi, j
1

q P T and pk, l
1

q P T for some j 1

, l
1

P J8˘ such that xn ă j
1

, l
1

ď 8`;

Case (2) pi
1

, jq P T and pk
1

, lq P T for some i1

, k
1

P J8˘ such that 8´ ď xn ă i
1

, k
1

ă x1;

Case (3) pi
1

, jq P T and pk, l
1

q P T for some i1

, k
1

P J8˘ such that 8´ ď i
1

ă x1 ă j ď

k ă xn ă l
1

ď 8`.

Assume that Case (1) holds. Then j “ l “ xn and pi, xnq does not cross pk, xnq. Similarly,

if Case (2) is true, then i “ k “ x1 and px1, jq does not cross px1, lq. Finally, if Case (3) is

true then i “ x1 and l “ xn and since j ď k we then have that px1, jq does not cross pk, xnq.

Next, assume that pi, jq P AJnpT q but pk, lq R AJnpT q. That is, pi, jq P T but pk, lq R T .

Then either pk, l
1

q P T for some xn ă l
1

ď 8` or pk
1

, lq P T for some 8´ ď k
1

ă x1. If

pk, l
1

q P T then since pi, jq P T we must have that either x1 ă k ď i ă j ď xn ă l
1

ď 8` or

x1 ď i ă j ď k ă xn ă l
1

ď 8`. But then we have in both cases that pi, jq does not cross

pk, lq “ pk, xnq. The case where pk
1

, lq P T is true by symmetry.

Now, to show that Tn is triangulation of Jn it is left to show that Jn is maximal. Suppose,

for contradiction, that there exists an arc pi, jq of Jn such that it does not cross any of

the arcs from Tn. Assume first that x1 ă i ă j ă xn. But then pi, jq R AJnpT q and so

pi, jq R T . Suppose pk, lq P T crosses pi, jq. Then either 8´ ď k ă i ă l ă j ă xn or

i ă k ă j ă xn ď l ď 8`. Thus, either pk, lq P Tn or px1, lq P Tn if 8´ ď k ă i ă l ă j ă xn

and pk, lq P Tn or pk, xnq P Tn if i ă k ă j ă xn ď l ď 8`. Either of those cases results

in a contradiction as each of the pk, lq,px1, pq, pk, xnq crosses pi, jq in a given case. Therefore

every arc in T does not cross pi, jq and so T is not maximal, i.e. not a triangulation, which

is a contradiction.

Next, we assume that j “ xn. We have that pi, kq R T for all xn ď k ď 8`. Now,

either pk, iq P T for some 8´ ď k ă i´ or pi, pq P T for some i` ă p ă xn. If not, then
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pi´, i`q P T by maximality of T and so pi´, i`q P Tn. But then as pi, xnq crosses pi´, i`q we

get a contradiction. In fact, pk, iq P T if and only if pi, pq P T . To show this, assume first

that pk, iq P T . Moreover, let k be such that for every k1

‰ k with pk
1

, iq P T we have that

k ă k
1 . Such k always exists due to Lemma 6.9. Assume for contradiction that pi, pq R T .

Then pk, i`q P T by maximality of T . But then either pk, i`q P Tn if x1 ď k or px1, i`q P Tn

if k ă x1. Both pk, i`q and px1, i`q cross pi, xnq and so we get a contradiction in both cases.

On the other hand, assume that pi, pq P T and suppose that pk, iq R T . Let p be such

that for every p1

P Jn such that i´ ă p
1

ă i` with pi, p
1

q P T we have that p1

ă p. Because

we assumed that pk, iq R T for all 8´ ď k ă i´ we have that pi´, pq P T and so pi´, pq P Tn.

But again, as pi, xnq crosses pi´, pq we get yet another contradiction.

We established so far that if Tn is not maximal with pi, xnq an arc of Jn that crosses no

arc in Tn then we must have that pk, iq P T and pi, pq P T for some 8´ ď k ă i´ and for some

i` ă p ă xn. Consider the smallest such k (smallest in the same sense as in the previous

paragraph) and the largest such p (largest in the same sense as in the previous paragraph).

We claim that pk, pq P T . We have for such pk, pq that every arc of J8˘ that crosses pk, pq

in T crosses either pk, iq or pi, pq. Thus no arc in T crosses pk, pq and so pk, pq P T , by

maximality of T . But then pk, pq P Tn if x1 ă k or px1, pq P Tn if 8´ ď k ď x1. If pk, pq P Tn

then as pk, pq crosses pi, xnq we get a contradiction. Similarly, if px1, pq P Tn then as px1, pq

crosses pi, xnq we get another contradiction.

The case where i “ x1 ă j ă xn follows symmetrically and we can then deduce that Tn

is maximal and as it consists of pairwise non-crossing arcs of Jn it is a triangulation of Jn,

as required.

Next, we will show that T 1

n is a triangulation of J 1

n. That T 2

n is a triangulation of J2

n will

follow symmetrically. The proof of the claim that T 1

n consists of pairwise non-crossing arcs is

very similar to that of the fact that Tn consists of pairwise non-crossing arcs that was given

above and so we skip the details of the calculations for brevity.

It is then left to show that T 1

n is maximal. Assume, for contradiction, that there exists an

arc pi, jq of J 1

n that does not cross any of the arcs from T
1

n. Assume first that x1 ď i ă j ă xn.

Then pi, jq R AJ 1
npT 1

q and so pi, jq R T 1. Suppose pk, lq P T
1 crosses pi, jq. Then either

k ă i ă l ă j or i ă k ă j ă l. It follows that either pk, lq P T
1

n or pl, xnq P T
1

n if
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k ă i ă l ă j and pk, lq P T
1

n or pk, xnq P T
1

n if i ă k ă j ă l. Either of those cases leads to

a contradiction as each of the arcs pk, lq, pl, xnq, pk, xnq crosses the arc pi, jq in a given case.

Therefore no arc in T 1 crosses pi, jq and so T 1 is not maximal, i.e. not a triangulation, which

is a contradiction.

Next, assume that x1 ă i ă j “ xn. Then pk, iq R T
1 for all k ă x1 and pi, pq R T

1 for all

xn ď p ď 8`, by definition of T 1

n. Now either pk, iq P T
1 for some x1 ď k ă i´ or pi, pq P T

1

for some i` ă p ă xn. If not, then pi´, i`q P T
1 and so pi´, i`q P T

1

n. Now since pi, xnq crosses

pi´, i`q we get a contradiction.

We have in fact that pk, iq P T
1 if and only if pi, pq P T

1 . Let k be such that for every

k
1

‰ k with pk
1

, iq P T
1we have that k ă k

1 . Such k always exists as pk
2

, iq R T
1 for all

k
2

ă x1. Assume for contradiction that pi, pq R T
1 . Then pk, i`q P T

1 by maximality of T 1 .

But then pk, i`q P T
1

n and as pk, i`q crosses pi, xnq we get a contradiction. That if pi, pq P T
1

then pk, iq P T
1 follows symmetrically.

So far we established that if T 1
n is not maximal with pi, xnq an arc of J 1

n that crosses

no arc in T
1

n then we must have that pk, iq P T
1 and pi, pq P T

1 for some x1 ď k ă i´ and

for some i` ă p ă xn. Consider the smallest such k and the largest such p. We claim that

pk, pq P T
1 . We notice that every arc of J`8 that crosses pk, pq in T

1 crosses either pk, iq or

pi, pq. Thus no arc in T
1 crosses pk, pq and so pk, pq P T

1 , by maximality of T 1 . But then

pk, pq P T
1

n and so pk, pq crosses pi, xnq and we get yet another contradiction.

Now as T 1

n is a maximal set of pairwise non-crossing arcs of J 1

n it follows that T 1

n is a

triangulation of J 1

n, as required.

Let us assume that |J | “ m. We will use a similar idea to that from Proposition 6.10

to construct from triangulations of J triangulations of Jn. The Corollary 6.11 given below

will be used to show that certain freezing morphisms between cluster algebras from polygons

map clusters to clusters.

Given any triangulation T of J we want to construct from it a triangulation of Jn. We
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set

tpJ,T qÑJn :“ AJnpT q Y tpi, xnq | pi, jq P T is right-rootedu

Y tpx1, iq | pj, iq P T is left-rootedu

t0,1
pJ,T qÑJn

:“ AJnpT q Y tpi, xnq | pj, iq P T is left-rooted or pi, jq P T is right-rootedu,

t1,0
pJ,T qÑJn

:“ AJnpT q Y tpx1, iq | pj, iq P T is left-rooted or pi, jq P T is right-rootedu,

and claim, using the above notation, the following:

Corollary 6.11. The sets t0,1
pJ,T qÑJn

, t1,0
pJ,T qÑJn

and tpJ,T qÑJn of arcs of Jn are triangulations

of Jn.

Proof. Consider an infinite linearly ordered set J8˘ and let Jm Ă J8˘ . We have that

J “ Jm up to isomorphism of linearly ordered sets and that Jn Ă J8˘ since Jn Ă Jm. Let

T
1 be a triangulation of J8˘ with its internal arcs given by a set T Y tp8´, iq | 8´ ă i ă

x1u Y tp8´, xmqu Y tpi,8`q | xm ď i ă 8`u. We have by Proposition 6.10 that the set

AJnpT 1
q Y tpi, xnq | pi, jq P T

1

is right-rootedu Y tpx1, iq | pj, iq P T
1

is left-rootedu

is a triangulation of Jn. But by construction of T 1 we have that the above set is equal to

tpJ,T qÑJn and so tpJ,T qÑJn is a triangulation of Jn, as required.

Similarly, consider an infinite linearly ordered set J8` and let Jm Ă J8` . Again, we

have that J “ Jm up to order-preserving bijection and that Jn Ă J8` . Now, let T 2 be a

triangulation of J8` with its internal arcs given by a set T Y tpi,8`q | i ď x1 or i ě xmu.

Then we have by Proposition 6.10 that the set

AJnpT 2
q Y tpi, xnq | pj, iq P T

2

is left-rooted or pi, jq P T
2

is right-rootedu

is a triangulation of Jn. But then by construction of T 2 we have that the above set is equal

to t0,1
pJ,T qÑJn

and so t0,1
pJ,T qÑJn

is a triangulation of Jn. That t1,0
pJ,T qÑJn

is a triangulation of Jn

follows symmetrically and we are done.

6.3 Fountain pro-cluster algebras

In this section we will see that the pro-clusters arising from the inverse system pApT f
mq, f 0,1

m,nq

are identified with triangulations of a linearly ordered set pZą0 Y t8u,ďq, where ď is the
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usual less or equal to relation and with the convention that j ă 8 for all j P Zą0, and we

will compute the pro-cluster algebra AppApT f
mq, f 0,1

m,nqq.

Remark 6.12. We note here that (Zą0Yt8u,ď) can be seen as the unit disk with countably

many marked points on its boundary, which converge to the limit marked point 8 in an

anticlockwise direction and where there are no marked points between (the marked points

labelled by) 1 and 8 in a clockwise direction. See Figure 9 below for an example of a

two-dimensional disk with its marked points (black dots) labelled cyclically anticlockwise

with the integers from Zą0 and a single marked accumulation point (open circle) labelled

by 8. (Also see [7] and [10] for more details regarding infinitely marked surfaces). This is

an example of an infinite marked surface , [7, Definition 1.1], a generalization of a marked

surface with finitely many marked points, and we will sometimes refer to (Zą0 Y t8u,ď) as

8-gon with one-sided accumulation point, for the reasons explained above.

1
2

3

4

5

6 i

i ` 1

i ` 2

8

. . .

. . .

Figure 9: Unit disk with infinitely many marked points and a single one-sided marked

accumulation point.

Throughout this chapter when we say that a cluster in a finite type A cluster algebra

is maximal respectively not maximal we are referring to its underlying set of arcs of the

suitable convex polygon, or equivalently, of the suitable linearly ordered set. Moreover, if

xij is an exchangeable variable in a cluster algebra associated with a polygon, with pi, jq

a diagonal of that polygon, then we will often call it simply a diagonal, if no ambiguity is

caused by doing so. Similarly, if a cluster variable corresponds to a boundary arc we will

sometimes call such a cluster variable an edge.
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Recall that m,n P Zě3 with m ě n, unless stated otherwise. Let Pm be a disk with m

marked points on its boundary that we now label cyclically anticlockwise with integers 1 to

m. Recall that the fountain triangulation at 1 of Pm, denoted by T f
m , is a triangulation of Pm

such that all of the internal arcs in T f
m originate from 1. Consider the family tΣT f

m
| m ě 3u

of seeds associated with the fountain triangulation at 1 of Pm. Throughout the rest of this

section we denote by:

• C the inverse system pApT f
mq, f 0,1

m,nq in the category fClus

• pRC , pfmqmě3q its limit in Ring.

Recall that the freezing morphism f 0,1
m,n : ApT f

mq Ñ ApT f
n q is given by (see Corollary 5.43)

the algebraic extension of the map

xij ÞÑ

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, 1 ď i ă j ď n

xin, 1 ď i ă n ă j ď m

0, n ď i ă j ď m.

Proposition 6.13. Let T 1

m be a triangulation of Pm and let XT 1
m

be the corresponding cluster

in ApΣT f
m

q. Then f 0,1
m,npXT 1

m
qzt0u is a cluster in ApΣT f

n
q, for all n ă m.

Proof. Let J :“ pt1, . . . ,mu,ďq, Jn :“ pt1, . . . , nu,ďq be linearly ordered sets with ď the

usual less or equal to relation. Regarding T 1

m as a triangulation of J , we have that tpJ,T 1
mqÑJn

is a triangulation of Jn by Corollary 6.11, or equivalently, of Pn. But then we have that

f 0,1
m,npXT 1

m
qzt0u “ txij | pi, jq P tpJ,T 1

mqÑJn
u by Corollary 5.43. Thus f 0,1

m,npXT 1
m

qzt0u corre-

sponds to a triangulation of Pn and so it is a cluster, as required.

In what follows we will only consider complete C-admissible sequences and their associ-

ated pro-clusters. We show in the Corollary 6.15 below that no generality is lost by doing

so. First, let us look at an example of a complete C-admissible sequence.

Example 6.14. Let X “ pXT f
m

qmě3. Then f 0,1
m,npXT f

m
q “ XT f

n
Y t0u for all m ě n ě 3 and

so X is C-complete. In Figure 10 we show the triangulations corresponding to the clusters

115



XT f
m

for m “ 3, 4, 5, 6, where the green diagonals are those to which the triangle is getting

collapsed under the action of f 0,1
m,n. That is f 0,1

6,5 collapses the triangle on the marked points

1, 5, 6 to the edge connecting 1 to 5, then f 0,1
5,4 collapses the triangle on the marked points

1, 4, 5 to the edge connecting 1 to 4 and so on.

2
. . .

3

f 0,1
6,5 f 0,1

5,4 f 0,1
4,3

4 4 4

2

3

1

5 3

2

1 1

2

3

1

5

6

Figure 10: The front tail of the C-complete admissible sequence pXT f
m

qmě3.

Corollary 6.15. Recall that XC is the set of all C-admissible sequences and that X pXCq is

the set of all pro-clusters coming from all of the sequences in XC. Then

X pXCq “ tXpXq | X P XC is C-completeu

.

Proof. The claim follows from Proposition 6.7 and Proposition 6.13.

Now, for 1 ď i ă j ă 8 set x̃ij P RC to be the unique element of RC such that

fmpx̃ijq “ xij P ApΣT f
m

q for all m ą j ą i ě 1 and set x̃i8 P RC to be the unique element of

RC such that fmpx̃i8q “ xim P ApΣT f
m

q for all m ą i ě 1. We will show that every element of

a pro-cluster arising from a C-admissible sequence is of the form x̃ij for some 1 ď i ă j ď 8.

To do that, we will need the following lemma.

Lemma 6.16. Let x̃ij P RC. Then

fmpx̃ijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, j ď m

xim, 1 ď i ă m ă j ď 8

0, m ď i ă j ď 8.
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Proof. Consider first x̃ij P RC such that 1 ď i ă j ă 8. Then fmpx̃ijq “ xij for all

m ą j ą i ě 1. Then since pRC , pfmqmě3q is a cone over C, we have that

fm,npfmpx̃ijqq “ fm,npxijq

“

$

’

&

’

%

xin, 1 ď i ď n ď j

0, n ď i ă j ă m

“ fnpx̃ijq.

Thus we have that

fmpx̃ijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, j ď m

xim, 1 ď i ă m ă j ă 8

0, m ď i ă j ă 8.

Next we consider x̃i8 P RC . Then for all m ą i ě 1 we have that fmpx̃i8q “ xim. Then

again, since pRC , pfmqmě3q is a cone over C, we have that

fm,npfmpx̃i8qq “ fm,npximq

“

$

’

&

’

%

xin, 1 ď i ă n

0, n ď i ă m

“ fnpx̃i8q.

Therefore,

fmpx̃i8q “

$

’

&

’

%

xim, 1 ď i ă m

0, m ď i ă 8.

Merging the two case distinctions together, we get that for any x̃ij P RC ,

fmpx̃ijq “

$

’

’

’

’

’

&

’

’

’

’

’

%

xij, j ď m

xim, 1 ď i ă m ă j ď 8

0, m ď i ă j ď 8,

as required.
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Lemma 6.17. Let X “ pXmqmě3 be a complete C-admissible sequence and let x P XpXq.

Then x “ x̃ij for some 1 ď i ă j ď 8.

Proof. We have that fnpxq P Xn for some n ě 3 or fnpxq P Z for all n ě 3. If fnpxq P Z for

all n ě 3, then x P Z, a contradiction.

Let us assume now that fnpxq P Xn for some n ě 3. If fmpxq P Z for some m ą n,

then fnpxq “ fm,npfmpxqq P Z, a contradiction. Thus fmpxq P Xm for all m ą n. Now

since fnpxq P Xn, it follows that fnpxq “ xij for some 1 ď i ă j ď n. If j “ n then either

fmpxq “ xim for all m ą n or there exists an integer k ą n such that fmpxq “ xik for all

m ě k and if j ă m then fmpxq “ xij for all m ą n. But then x “ x̃i8 or x “ x̃ik, or x “ x̃ij,

respectively, which follows from the uniqueness of the elements x̃i8, x̃ik and x̃ij.

The following result is a direct consequence of the above Lemma 6.17 and Corollary 6.15.

Corollary 6.18. Let X “ pXmqmě3 be a C-admissible sequence and let x P XpXq. Then

x “ x̃ij for some 1 ď i ă j ď 8.

As a consequence of the Corollary 6.18 above we will from now on denote an element

of a pro-cluster XpXq, for any C-admissible sequence X, simply by x̃ij, without further

explanation.

We will now consider a linearly ordered set pZą0 Y t8u,ďq where ď is the usual less or

equal to relation and with the convention that j ă 8 for all j P Zą0. We will show that

pro-clusters arising from (complete) C-admissible sequences coincide with triangulations of

pZą0 Y t8u,ďq. We notice that if T is a triangulation of (Zą0 Y t8u,ďq then p1,8q P T as

no arc of pZą0 Y 8,ďq crosses p1,8q and so by maximality of T we have that p1,8q P T .

Next we show that every triangulation of pZą0,ďq gives rise to a pro-cluster.

Lemma 6.19. Let T be a triangulation of pZą0 Y t8u,ďq. Then XT :“ tx̃ij | pi, jq P T u P

XpXCq.

Proof. Throughout this proof Jn denotes a linearly ordered set pt1, 2, . . . , nu,ďq, for any

n ě 3, with ď being the less or equal to relation, as usual. Moreover, we let

Tn “ tpi, jq P T | 1 ď i ă j ď nu Y tpi, nq | pi, jq P T such that 1 ď i ă n ă j ď 8u.
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We claim that the sequence X :“ pXTnqně3 is C-complete, where we regard Tn as a triangu-

lation of Pn, and that XpXq “ XT .

By Proposition 6.10 we have that Tn is a triangulation of Jn, or equivalently of Pn,

for all n ě 3. Moreover, using Proposition 6.10 in a duet with Lemma 6.16 we have that

XTn “ fnpXT qzZ for all n ě 3. To show that X is C-complete we have to show that

f 0,1
m,npXTmq Ď XTn Y Z for all m ě n ě 3. We have that

f 0,1
m,npXTmq “ f 0,1

m,npfmpXT qzZq Ď f 0,1
m,npfmpXT qq “ f 0,1

n pXT q Ď XTn Y Z

and so X is C-complete, as required.

To conclude the claim it is now left to show that XpXq “ XT . First, let x̃ij P XpXq be

such that j ă 8. Then fnpx̃ijq “ xij P XTn for all n ě j. Using this and the construction of

Tn we conclude that pi, jq P T and so x̃ij P XT . Now, if j “ 8, then fnpx̃i8q “ xin P XTn for

all n ą i. But then this and how Tn is constructed imply that pi,8q P T and so xi8 P XT ,

as required.

On the other hand, let x̃ij P XT . Then pi, jq P T and so if j ă 8 we have that pi, jq P Tn

for all n ě j and so fnpx̃ijq P XTn for all n ě j. Else, if j “ 8 then as pi,8q P T we have

that pi, nq P Tn for all n ą i and so fnpx̃i8q “ xin P XTn for all n ą i. But then we have in

both cases that since X is a complete C-admissible sequence and since x̃ij P RC it follows

that f 0,1
m,npfmpx̃ijqq “ fnpx̃ijq P XTn Y t0u for all m ě n ě 3.

We will now show that pro-clusters arising from C yield triangulations of Zą0 Y t8u.

Lemma 6.20. Let X “ pXnqně3 be a complete C-admissible sequence. Let T “ tpi, jq | x̃ij P

XpXqu. Then T is a triangulation of (Zą0 Y t8u,ď).

Proof. Suppose there exists x̃ij P XpXq and x̃kl P XpXq such that pi, jq crosses pk, lq.

Without loss of generality we will assume that i ă k. Then 1 ď i ă k ă j ă l ď 8. If

l ă 8 then flpx̃ijq “ xij P Xl and flpx̃klq “ xkl P Xl and since pi, jq crosses pk, lq we have

that Xl is not a cluster, a contradiction. Else, if l “ 8 then fj`1px̃ijq “ xij P Xj`1 and

f̃j`1px̃k8q “ xkj`1 P Xj`1 and since pi, jq crosses pk, j`1q we have that Xj`1 is not a cluster,

another contradiction. Therefore T consists of pairwise non-crossing arcs of (Zą0 Y t8u,ď).
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To prove the claim we must now show that T is maximal. Let us suppose that there exists

an arc pk, lq in (Zą0 Y t8u,ď) such that x̃kl R XpXq and such that pk, lq does not cross any

of the arcs from T . Since x̃kl R XpXq, there must exist m ě 3 for which x̃kl R f´1
m pXm Y Zq.

Consider a x̃ij P XpXq such that x̃ij P f´1
m pXmq. We note that fmpx̃klq is a cluster variable

which follows from the fact that fmpx̃klq R Z and Lemma 6.16. That is, fmpx̃klq “ xkl1 for

some 1 ă l
1

ď m. Because x̃ij P f´1
m pXmq we have that fmpx̃ijq “ xij1 P Xm for some

1 ă j
1

ď m. Suppose that pk, l
1

q crosses pi, j
1

q in Pm. Then either 1 ď i ă k ă j
1

ă l
1

ď m

or 1 ď k ă i ă l
1

ă j
1

ď m. We will only consider the former case as the latter case is dealt

with analogously. We have that if l1 ă m then l “ l
1 and j “ j

1 and so pk, lq crosses pi, jq

which is a contradiction. Else, if l1 “ m then l ě m and pi, jq “ pi, j
1

q. This implies that

1 ď i ă k ă j ă m ď l ď 8 and so pk, lq crosses pi, jq, another contradiction. Thus we

have that fmpx̃klq and fmpx̃ijq do not cross in Pm. But then since x̃kl R f´1
m pXmq, we have

that the triangulation corresponding to Xm is not maximal and so Xm is not a cluster, a

contradiction.

We conclude that T is a triangulation of (Zą0 Y t8u,ď), as required.

Recall (cf. page 105) that we denote by X pXCq the set of all pro-cluster arising from C.

Theorem 6.21. The set X pXCq is the set
"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of Zą0 Y t8u

*

,

where XT “
␣

x̃ij P R
ˇ

ˇ pi, jq P T
(

for any triangulation T of Zą0 Y t8u.

Proof. We have by Corollary 6.15 that X pXCq “ tXpXq | X is C-completeu. Then by

Lemma 6.20 we have that

X pXCq Ď

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of Zą0 Y t8u

*

.

Moreover,
"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of Zą0 Y t8u

*

Ď X pXCq,

by Lemma 6.19, and so

X pXCq “

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of Zą0 Y t8u

*

,

as required.
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Example 6.22. It is easy to see that from the C-admissible sequence X “ pXT f
m

qmě3 (see

Example 6.14) we get the pro-clusterXpXq “ tx̃ii`1 | i P Zą0uYtx̃1i | 2 ă i ď 8u. Moreover,

the set T of arcs of pZą0 Y t8u,ďq given by T “ tpi, jq | x̃ij P XpXqu is a triangulation of

pZą0 Y t8u,ďq. See Figure 11 , where we regard pZą0 Y t8u,ďq as a two-dimensional disk

with infinitely many marked points and a single marked accumulation point 8, which we

denote by an open circle.

2

3

f 0,1
6,5 f 0,1

5,4 f 0,1
4,3

4 4 4

2

3

1

5 3

2

1 1

2

3

1

5

6

1
2

3

4

5

6 i

i ` 1

i ` 2

8

f̃6 f̃5 f̃4 f̃3

. . .

. . .

. . .

Figure 11: The front tail of the C-complete admissible sequence X “ pXT f
m

qmě3 and the

triangulation of pZą0 Y t8u,ďq corresponding to the pro-cluster XpXq

It is the direct consequence of the above proposition (and the definition of a pro-cluster

algebra) that the pro-cluster algebra associated with C is generated by all of the arcs of

(Zą0 Y t8u,ă).

Corollary 6.23. The pro-cluster algebra ApCq is a subring of RC generated by the set

tx̃ij|1 ď i ă j ď 8u.

It turns out that the generators of ApCq are subject to what can be thought of as a

generalization of Plücker relations (see page 53), as the following Theorem 6.24 will show.
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Theorem 6.24. The pro-cluster algebra ApCq is the ring

Zrxij|1 ď i ă j ď 8s

pxikxjl ´ xijxkl ´ xjkxil for 1 ď i ă j ă k ă l ď 8q
.

Proof. Let S “ Zrxij|1 ď i ă j ď 8s. We denote by α an element of the set NN0ˆN0Yt8u

0

with finite support and such that αpi, jq “ 0 whenever i ě j and by xα the corresponding

monomial in S. We let ||α|| :“ maxtj : αpi, jq ą 0 or αpj,8q ą 0u.

By universal property of polynomial rings there exists a unique ring homomorphism

ϕ : S Ñ ApCq such that ϕpxijq “ x̃ij for all 1 ď i ă j ď 8. Since the elements x̃ij generate

ApCq it follows that ϕ is surjective. Thus ApCq “ S{J for some ideal J of S. We claim that

J “ P where P :“ pxikxjl ´ xijxkl ´ xjkxil for 1 ď i ă j ă k ă l ď 8q Ď S. First, let x P P .

That is,

x “
ÿ

1ďiăjăkălď8

fijklpxikxjl ´ xijxkl ´ xjkxilq

where fijkl P S and with fijkl “ 0 for all but finitely many pi, j, k, lq P pN Y t8uq4 such that

1 ď i ă j ă k ă l ď 8. Let m P Zě3 be such that m ą k if fijkl ‰ 0 and l “ 8 and such

that m ą l if fijkl ‰ 0 and l ă 8. Then fnpϕpxqq “ 0 for all n ě m due to Lemma 6.16 and

the fact that

ApΣT f
m

q “
Zrxij|1 ď i ă j ď ms

pxikxjl “ xijxkl ` xjkxil for 1 ď i ă j ă k ă l ď mq
.

In fact, since pRC , fmq is a cone of pApT f
mq, f 0,1

m,nq, it follows that fnpϕpxqq “ 0 for all n ě 3

and so ϕpxq “ 0. Thus x P J .

On the other hand we have

S S{J “ ApCq RC ApTnq,

where the first map is the projection, the second map is the embedding and the last map is the

map fn. We denote by f̃n the composite of these three maps. We have that f̃npxijq “ fnpx̃ijq

for all 1 ď i ă j ď 8 and for all n ě 3. Let r P J Ď S. Now r “
ÿ

aαx
α is a linear

combination of monomials xα with all but finitely many integral coefficients aα equal to

zero. Let m P Zě3 be such that for every monomial xα with non-zero coefficient (in r) we

have that m ą ||α||. Such m always exists since all but finitely many coefficients are equal
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to zero. Assume that r R P . But then because f̃mpxijq “ fmpx̃ijq for all 1 ď i ă j ď 8 and

Lemma 6.16 we have that

ApΣT f
m

q ‰
Zrxij|1 ď i ă j ď ms

pxikxjl “ xijxkl ` xjkxil for 1 ď i ă j ă k ă l ď mq
,

giving us a contradiction. Thus we have that r P P and so J “ P , as required.

Remark 6.25. It is easy to see that ApCq ‰ RC . For example
ÿ

iě2

x̃ii`1 P RC but
ÿ

iě2

x̃ii`1 R

ApCq.

6.4 Leapfrog pro-cluster algebras

6.4.1 Two one-sided limit points leapfrog pro-cluster algebra

In this section we will consider the inverse system pApT zz
m q, zm,nq where zm,n : ApT zz

m q Ñ

ApT zz
n q is the freezing rooted cluster morphism from Example 5.47 and where T zz

m is a zig-zag

triangulation of a (suitably labelled) convexm-gon. We will show that the pro-clusters arising

from pApT zz
m q, zm,nq coincide with triangulations of the linearly ordered set pZ Y t˘8u,ďq,

where ď is the usual less or equal to relation together with the convention that ´8 and `8

are such that ´8 ă i ă `8 for every i P Z. We will also compute the pro-cluster algebra

AppApT zz
m q, zm,nqq. We keep in mind that it might often be useful to see (Zą0 Y t˘8u,ď)

as the unit disk with countably many marked points on its boundary, which converge to

the limit marked points ˘8 in both clockwise and anticlockwise direction and where there

are no marked points between the marked points ´8 and `8 in a clockwise direction. See

[7] for more details and see Figure 12 for an example of a certain zig-zag triangulation of

(Z Y t˘8u,ď) pictured as the two-dimensional disk. This gives us another example of an

infinite marked surface, and we will sometimes refer to (Zą0 Y t˘8u,ď) as 8-gon with two

one-sided accumulation points, for the reasons that we set out above. Without further ado,

let us dive into the matters.

In this section m´ :“ ´tm
2

u and m` :“ tm´1
2

u. Let Pm be a disk with m marked points

on its boundary that this time we label cyclically anticlockwise with integers m´ to m`.

Consider the family tΣT zz
m

| m ě 3u of seeds associated with the zig-zag triangulation of Pm
(see page 98 for explicit description of T zz

m and some concrete examples in Figure 7). Recall
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(see Example 5.47) that the map zm,n : ApT zz
m q Ñ ApT zz

n q is given by the algebraic extension

of

xij ÞÑ

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xij, n´ ď i ă j ď n`

xin` , n´ ď i ă n` ď j ď m`

xn´j, m´ ď i ď n´ ă j ď n`

xn´n` , m´ ď i ď n´ ă n` ď j ď m`

0, m´ ď i ă j ď n´ or n` ď i ă j ď m`.

Recall that zm,m´1 “ f̃m,m´1 if m is odd and that zm,m´1 “ g̃m,m´1 if m is even. In Figure

12 below we show how the map zm,n acts on certain triangulations (of a convex polygon).

Throughout the rest of this section we denote by:

• C the inverse system pApT zz
m q, zm,nq in the category fClus

• pRC , zmq its limit in Ring.

0

´1

´2

´3

1

2

3

0

´1

´2

´3

1

2

0

´1

´2

1

2z7,6 “ f̃7,6 z6,5 “ g̃6,5

Figure 12: The action of the freezing morphism zm,n on the fountain triangulation at 0 of a

7-gon and of a 6-gon.

Remark 6.26. This section and the next section will follow essentially the same logical path

as the previous one, with almost every statement in 6.4 having its counterpart in 6.3 and

with their proofs being similar in nature to those seen in section 6.3. Where unambiguous,

we will refer to the relevant proofs from 6.3 for brevity.

Proposition 6.27. Let T 1

m be a triangulation of Pm and let XT 1
m

be the corresponding cluster

in ApΣT zz
m

q. Then zm,npXT 1
m

qzt0u is a cluster in ApΣT zz
n

q, for all n ă m.
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Proof. Let J :“ ptm´, . . . ,m`u,ďq, Jn :“ ptn´, . . . , n`u,ďq be linearly ordered sets with

ď the usual less or equal to relation. Regarding T 1

m as a triangulation of J , we have that

tpJ,T 1
mqÑJn

(making use of the notation introduced in Section 6.2) is a triangulation of Jn

by Corollary 6.11, or equivalently, of Pn. But then using the definition of zm,n we have

that zm,npXT 1
m

qzt0u “ txij | pi, jq P tpJ,T 1
mqÑJn

u. Thus zm,npXT 1
m

qzt0u corresponds to a

triangulation of Pn and so it is a cluster, as required.

The same as in the previous section, we will only consider complete C-admissible sequences

and their associated pro-clusters.

Example 6.28. Let X “ pXT zz
m

qmě3. Then zm,npXT zz
m

q “ XT zz
n

Y t0u for all m ě n ě 3 and

so X is C-complete.

´i ´ 2

´i ´ 1

´i i

i ` 1

i ` 2

`8´8

...

...

Figure 13: The zig-zag triangulation corresponding to the pro-cluster XppXT zz
m

qmě3q, where

we regard pZ Y t˘8u,ďq as an 8´gon with two one-sided accumulation points `8 and

´8, which we represent with open circles.

Example 6.29. For every m ě 3 denote by Tm the triangulation of Pm with its diagonals

given by the set tpm´, iq | m´`1 ă i ď 0uYtpi,m`q | 0 ď i ă m`´1u and letX “ pXTmqmě3.
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Then zm,npXTmq “ XTn Y t0u for all m ě n ě 3 and so X is C-complete. In Figure 14 we

show the triangulations corresponding to the clusters XTm for m “ 3, 4, 5, 6.

´2
. . .

´1

z6,5 z5,4 z4,3

0 0 0

´2

´1

2

1 ´1

´2

1 ´1

0

1

´3

1

2

Figure 14: The tail of the C-complete admissible sequence pXTmqmě3, where Tm is the

triangulation described in Example 6.29.

Corollary 6.30. Recall that XC is the set of all C-admissible sequences and that X pXCq is

the set of all pro-clusters coming from all of the sequences in XC. Then

X pXCq “ tXpXq | X P XC is C-completeu

.

Proof. The claim follows directly from Proposition 6.7 and Proposition 6.27.

For ´8 ă i ă j ă `8 set x̃ij P RC to be the unique element of RC such that zmpx̃ijq “

xij for all m such that m´ ă i ă j ă m`. Also, set x̃i`8 P RC to be the unique element of

RC such that zmpx̃i`8q “ xim` for all m such that m` ą |i| and set x̃´8i P RC to be the

unique element of RC such that zmpx̃´8iq “ xm´i for all m such that ´m´ ą |i|. Finally, set

x̃´8`8 P RC to be the unique element of RC such that zmpx̃´8`8q “ xm´m` for all m ě 3.

Lemma 6.31. Let x̃ij P RC. Then

zmpx̃ijq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xij, m´ ď i ă j ď m`

xim` , m´ ď i ă m` ď j ď 8

xm´j, ´8 ď i ď m´ ă j ď m`

xm´m` , ´8 ď i ď m´ ă m` ď j ď 8

0, ´8 ď i ă j ď m´ or m` ď i ă j ď 8.
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Proof. The procedure here is essentially the same as the one used in the proof of Lemma

6.16 and involves a simple case-by-case verification based on the subscripts i and j, making

use of the corresponding description of an element x̃ij P RC , and the fact that pRC , zmq is a

cone.

Lemma 6.32. Let X “ pXmqmě3 be a complete C-admissible sequence and let x P XpXq.

Then x “ x̃ij for some ´8 ď i ă j ď `8.

Proof. We have that znpxq P Xn for some n ě 3 or znpxq P Z for all n ě 3. If znpxq P Z for

all n ě 3 then x P Z, a contradiction.

Let us assume now that znpxq P Xn for some n ě 3. If zmpxq P Z for some m ą n,

then znpxq “ zm,npzmpxqq P Z, a contradiction. Thus zmpxq P Xm for all m ą n. Now since

znpxq P Xn, it follows that znpxq “ xij P Xn for some n´ ď i ă j ď n`.

Suppose first that n´ ă i ă j ă n`. Then zmpxq “ xij for all m ą n. If l ă n is such

that l´ ă i ă j ă l` then zn,lpznpxqq “ zn,lpxijq “ xij “ zlpxq. Thus zmpxq “ xij for all m

such that m´ ă i ă j ă m` and we have by uniqueness of x̃ij that x “ x̃ij.

Next, suppose that znpxq “ xin` for some n´ ă i. For m ą n we have that zmpxq P Xm

and that zm,npzmpxqq “ znpxq “ xin` . Thus either zmpxq “ xim` for all m ě n or there exists

l ě n such that zmpxq “ xil` for all m ą l. If the former is true and if there exists k ă n

such that k` ą |i| then zn,kpznpxqq “ zn,kpxin`q “ xik` by definition of zm,n and the fact that

´k´ ě k`. Thus zmpxq “ xim` for all m such that m` ą |i| and by uniqueness of x̃i8, we

have that x “ x̃i8. Else, if the latter is true, then x “ x̃il` by uniqueness of x̃il` . The case

where znpxq “ xn´i is dealt with analogously.

For the last case, suppose that znpxq “ xn´n` . Then without loss of generality we can

assume that zmpxq “ xm´m` for all m ą n. It is enough to consider here only this particular

case since all other possible cases would boil down to one of the cases already considered in

this proof. Now since for l ă n we have that zn,lpznpxqq “ zn,lpxn´n`q “ xl´l` “ zlpxq, it

follows that zmpxq “ xm´m` for all m ě 3 and so x “ x̃´8`8, by the uniqueness of x̃´8`8.

By using Corollary 6.30 and Lemma 6.32 we deduce that every pro-cluster arising from

a C-admissible sequence consists of the elements of the form x̃ij P RC , for some ´8 ď i ă
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j ď `8.

Corollary 6.33. Let X “ pXmqmě3 be a C-admissible sequence and let x P XpXq. Then

x “ x̃ij for some ´8 ď i ă j ď `8.

In view of the Corollary 6.33 above we will from now on denote an element of a pro-cluster

XpXq, for any C-admissible sequence X, simply by x̃ij, without further explanation.

We will now consider a linearly ordered set pZ Y t˘8u,ďq where ď is the usual less or

equal to relation and with the convention that ´8 ă i ă `8 for all i P Z. The reason for

this is that the pro-clusters arising from complete C-admissible sequences will coincide with

triangulations of pZ Y t˘8, u,ďq. We note that for any triangulation T of pZ Y t˘8, u,ďq

we have that the arc p´8,`8q is in T as no arc of pZ Y t˘8, u,ďq crosses p´8,`8q.

Our next result shows that every triangulation of pZ Y t˘8, u,ďq gives rise to a pro-

cluster.

Lemma 6.34. Let T be a triangulation of pZ Y t˘8, u,ďq. Then XT :“ tx̃ij | pi, jq P T u P

X pXCq.

Proof. Throughout this proof Jn denotes a linearly ordered set ptn´, . . . , n`u,ďq for any

n ě 3, with ď being the less or equal to relation. Moreover, we let

Tn “ tpi, jq P T | n´
ď i ă j ď n`

u Y tpj, n´
q | pi, jq P T such that ´ 8 ď i ă n´

ă j ă n`
u

Y tpi, n`
q | pi, jq P T such that n´

ă i ă n`
ă j ď `8u Y tpn´, n`

qu.

We will show that the sequence X :“ pXTnqně3 is C-complete, where we regard Tn as a

triangulation of Pn, and that XpXq “ XT .

First, we have by Proposition 6.10 that Tn is a triangulation of Jn, or equivalently of

Pn for all n ě 3. Moreover, using Proposition 6.10 together with Lemma 6.31 gives that

XTn “ znpXT qzZ for all n ě 3. To show that X is C-complete we have to show that

zm,npXTmq Ď XTn Y Z for all m ě n ě 3. We have that for all m ě n ě 3

zm,npXTmq “ zm,npzmpXT qzZq Ď zm,npzmpXT qq “ znpXT q Ď XTn Y Z

and so X is C-complete, as required.
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To conclude the claim it is now left to show that XpXq “ XT . First, let x̃ij P XpXq

be such that ´8 ă i ă j ă `8. Then znpx̃ijq “ xij P XTn for all n ě 3 such that

n´ ă i ă j ă n` and so pi, jq P Tn for all such n. But then, by construction of Tn, we

have that pi, jq P T and so x̃ij P XT . Now, suppose that ´8 ă i ă j “ `8. Then

znpx̃i`8q “ xin` P XTn for all n such that n` ą |i| and so pi, n`q P Tn for all such n.

Then, by construction of Tn and Lemma 6.9 we deduce that pi,`8q P T and so x̃i`8 P XT .

By symmetry, if i “ ´8 ă j ă `8 then x̃´8j P XT . Finally, the case where i “ ´8

and j “ `8 follows from the fact that the arc (´8,`8) is in every triangulation of

pZ Y t˘8u,ďq.

On the other hand, let x̃ij P XT . Then pi, jq P T and so if ´8 ă i ă j ă `8 we

have that pi, jq P Tn for all n ě 3 such that n´ ă i ă j ă n` and so znpx̃ijq P XTn for

all such n. Else, if ´8 ă i ă j “ `8 then as pi,`8q P T we have that pi, n`q P Tn

for all n ě 3 such that n` ą |i| and so znpx̃i`8q “ xin` P XTn for all such n. Similarly,

if ´8 “ i ă j ă `8 then as p´8, jq P T we have that pn´, jq P Tn for all n ě 3 such

that ´n´ ą j and so znpx̃´8jq “ xn´j P XTn for all such n. But then we have in all three

cases that since X is a complete C-admissible sequence and since x̃ij P RC it follows that

zm,npzmpx̃ijqq “ znpx̃ijq P XTn Yt0u for all m ě n ě 3. Therefore, if x̃ij P XT then x̃ij P XpXq

and so XT Ď XpXq.

We deduce that XpXq “ XT , as required.

Lemma 6.35. Let X “ pXnqně3 be a complete C-admissible sequence. Let T “ tpi, jq | x̃ij P

XpXqu. Then T is a triangulation of pZ Y t˘8, u,ďq.

Proof. Suppose there exists x̃ij P XpXq and x̃kl P XpXq such that pi, jq crosses pk, lq.

Without loss of generality we will assume that i ă k. Then ´8 ď i ă k ă j ă l ď `8.

Assume first that ´8 “ i ă k ă j ă l “ `8. Let n be such that n´ ă k ă j ă n`.

Then znpx̃´8jq “ xn´j P Xn and znpx̃k`8q “ xkn` P Xn. But then pn´, jq crosses pk, n`q

and we have that Xn is not a cluster, a contradiction.

Next, consider the case where ´8 ă i ă k ă j ă l ă `8. Let n be such that

n´ ă i ă k ă j ă l ă n`. Then znpx̃ijq “ xij P Xn and znpx̃klq “ xkl P Xn and since pi, jq

crosses pk, lq it follows that Xn is not a cluster, a contradiction.
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Now, consider the case where ´8 ă i ă k ă j ă l “ `8. Let n be such that

n´ ă i ă j ă n`. Then znpx̃ijq “ xij P Xn and znpx̃k`8q “ xkn` P Xn. But then

i ă k ă j ă n` and so pi, jq crosses pk, n`q which implies that Xn is not a cluster, giving

us yet another contradiction. The case where ´8 “ i ă k ă j ă l ă `8 is dealt with

analogously. Therefore T consists of pairwise non-crossing arcs of pZ Y t˘8u,ďq.

To prove the claim we must now show that T is maximal. Suppose that there exists an

arc pk, lq in pZ Y t˘8, u,ďq such that x̃kl R XpXq and such that pk, lq does not cross any

of the arcs from T . Since x̃kl R XpXq, there exists m ě 3 for which x̃kl R z´1
m pXm Y Zq.

Consider a x̃ij P XpXq such that x̃ij P z´1
m pXmq. We note that zmpx̃klq is a cluster variable

which follows from the fact that zmpx̃klq R Z and Lemma 6.31. That is, zmpx̃klq “ xk1 l1

for some m´ ď k
1

ă l
1

ď m`. Because x̃ij P z´1
m pXmq we have that zmpx̃ijq “ xi1j1 P Xm

for some m´ ď i
1

ă j
1

ď m`. Suppose that pk
1

, l
1

q crosses pi
1

, j
1

q in Pm. Then either

m´ ď i1 ă k
1

ă j
1

ă l
1

ď m` or m´ ď k1 ă i
1

ă l
1

ă j
1

ď m`. We will only consider the

former case as the latter case is dealt with analogously. If m´ ă i
1

ă k
1

ă j
1

ă l
1

ă m`

then pk, lq “ pk
1

, l
1

q and pi, jq “ pi
1

, j
1

q, by Lemma 6.31, and so pk, lq crosses pi, jq P T ,

contradicting the assumption that pk, lq crosses no arcs from T .

Else, if m´ “ i
1

ă k
1

ă j
1

ă l
1

“ m` then pk, lq “ pk
1

, lq and pi, jq “ pi, j
1

q and

as m` ď l ď `8 and ´8 ď j ď m´ which is due to Lemma 6.31, we have that pk, lq

crosses pi, jq P T , another contradiction. Next, if m´ ă i
1

ă k
1

ă j
1

ă l
1

“ m` then

pk, lq “ pk
1

, lq for some m` ď l ď `8 and pi, jq “ pi
1

, j
1

q by Lemma 6.31. This implies that

i ă k ă j ă l and so pk, lq crosses pi, jq P T , giving us yet another contradiction. The case

where m´ “ i
1

ă k
1

ă j
1

ă l
1

ă m` is dealt we analogously and so we skip the details.

Putting everything together we have that zmpx̃klq and zmpx̃ijq do not cross in Pm. But then

since x̃kl R z´1
m pXmq, we have that the triangulation corresponding to Xm is not maximal

and so Xm is not a cluster, a contradiction.

We conclude that T is a triangulation of pZ Y t˘8, u,ďq, as required.

Recall (cf. page 105) that the set of all pro-cluster arising from C is denoted by X pXCq.

Theorem 6.36. The set X pXCq is the set
"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t˘8, u,ďq

*

,
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where XT “
␣

x̃ij P RC

ˇ

ˇ pi, jq P T
(

for any triangulation T of pZ Y t˘8, u,ďq.

Proof. We have by Corollary 6.30 that X pXCq “ tXpXq | X is C-completeu. Then by

Lemma 6.35 we have that

X pXCq Ď

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t˘8, u,ďq

*

.

Moreover,
"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t˘8, u,ďq

*

Ď X pXCq,

by Lemma 6.34, and so

X pXCq “

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of P8

*

,

as required.

Example 6.37. Denote by Tm the triangulation of Pm with its diagonals given by the set

tpm´, iq | m´ ` 1 ă i ď 0u Y tpi,m`q | 0 ď i ă m` ´ 1u. Then the C-admissible sequence

X “ pXTmqmě3 yields the pro-cluster

XpXq “ tx̃ii`1 | i P Zu Y tx̃´8i | i P Zď0u Y tx̃i`8 | i P Zě0u Y tx´8`8u.

Moreover, the set T of arcs of pZ Y t˘8u,ďq given by T “ tpi, jq | x̃ij P XpXqu is a

triangulation of pZ Y t˘8u,ďq. See Figure 15, where we regard pZ Y t`8u,ďq as a two-

dimensional disk with infinitely many marked points and two one-sided marked accumulation

points `8 and ´8, which we represent with open circles.

The definition of a pro-cluster algebra together with Theorem 6.36 above immediately

imply the following.

Corollary 6.38. The pro-cluster algebra ApCq is the subring of RC generated by the set

tx̃ij| ´ 8 ď i ă j ď `8u.

As we will see in Theorem 6.39 below, the generators of ApCq satisfy extended Plücker

relations (see page 53).
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0
´1

´2

´3

1

2

3

0
´1

´2

´3

1

2

0
´1

´2

1

2z7,6 z6,5

0
´1

´2

1
0

´1 1
z5,4 z4,3

. . . . . .

0

i

i ` 1

i ` 2

´i

´i ´ 1

´i ´ 2

´8 `8

z7 z6 z5 z4 z3

Figure 15: The tail of the C-complete admissible sequence X “ pXTmqmě3, with Tm as

described in Example 6.37, and the triangulation of pZ Y t˘8u,ďq corresponding to the

pro-cluster XpXq

.

Theorem 6.39. The pro-cluster algebra ApCq is the ring

Zrxij| ´ 8 ď i ă j ď `8s

pxijxkl ´ xikxjl ´ xkjxil for ´ 8 ď i ă k ă j ă l ď `8q
.

Proof. Let S “ Zrxij| ´ 8 ď i ă j ď `8s. For simplicity, we will denote pZ Y ˘8,ďq by

P˘8 throughout this proof. We denote by α an element of the set NP˘8ˆP˘8

0 with finite

support and such that αpi, jq “ 0 whenever i ě j and by xα the corresponding monomial in

S. For pi, jq P P˘8 ˆ P˘8 we let

|pi, jq| “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

maxt|i|, |j|u,´8 ă i ă j ă `8

|i|,´8 ă i ă j “ `8

|j|,´8 “ i ă j ă `8

0, else

and let ||α|| :“ maxt|pi, jq| : αpi, jq ą 0u.

By universal property of polynomial rings there exists a unique ring homomorphism

ϕ : S Ñ ApCq such that ϕpxijq “ x̃ij for all ´8 ď i ă j ď `8. Since the elements x̃ij
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generate ApCq it follows that ϕ is surjective. Thus ApCq “ S{I for some ideal I of S. We

claim that I “ P , where P :“ pxijxkl ´ xikxjl ´ xkjxil for ´ 8 ď i ă k ă j ă l ď `8q Ď S.

First, let x P P . That is,

x “
ÿ

´8ďiăkăjălď`8

fikjlpxijxkl ´ xikxjl ´ xkjxilq P S

where fikjl P S and with fikjl “ 0 for all but finitely many pi, k, j, lq P P4
˘8 such that

´8 ď i ă k ă j ă l ď `8. Pick m ě 3 such that m´ ă a ă m` for all

a P
ď

fikjl‰0

ti, k, j, lu X Z.

Then znpϕpxqq “ 0 for all n ě m by Lemma 6.31 and the fact that

ApΣT zz
m

q “
Zrxij|m

´1 ď i ă j ď m`s

pxikxjl “ xijxkl ` xjkxil for m´ ď i ă j ă k ă l ď m`q
.

In fact, since pRC , znq is a cone, it follows that znpϕpxqq “ 0 for all n ě 3 and so ϕpxq “ 0.

Thus x P I.

On the other hand we have

S S{I “ ApCq RC ApΣTnq,

where the first map is the projection, the second map is the embedding and the last map is the

map gn. We denote by z̃n the composite of these three maps. We have that z̃npxijq “ znpx̃ijq

for all ´8 ď i ă j ď `8 and for all n ě 3. Now r “
ÿ

aαx
α

P I is a linear combination of

monomials xα with all but finitely many integral coefficients aα equal to zero. Let m P Zě3 be

such that for every monomial xα with non-zero coefficient (in r) we have that m´ ă ´||α||

and m` ą ||α||. Such m is guaranteed to exist as all but finitely many coefficients in r

are equal to zero. Assume that r R P . But then we have that z̃mpxijq “ zmpx̃ijq for all

´8 ď i ă j ď `8 which together with Lemma 6.31 implies that

ApΣTmq ‰
Zrxij|m

´ ď i ă j ď m`s

pxikxjl “ xijxkl ` xjkxil for m´ ď i ă j ă k ă l ď m`q
,

giving us a contradiction. Thus we have that r P P and so I “ P , as required.
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6.4.2 One two-sided limit point pro-cluster algebra

So far in this chapter, we have seen pro-cluster algebras that were, colloquially speaking,

generated by

• the arcs of a disk with infinitely many marked points and a single one-sided marked

accumulation point (Section 6.3);

• the arcs of a disk with infinitely many marked points and two one-sided marked accu-

mulation points (Section 6.4.1).

The aim of this section, which will have a very similar structure to that of sections 6.4.1 and

6.3, will be to construct a pro-cluster algebra that is generated by the arcs of a disk with

infinitely many marked points and one two-sided marked accumulation point.

Throughout this section m´,m`,Pm, T zz
m are defined in the same way as previously in

6.4.1. This time we will consider the inverse system pApT zz
m q, f̃m,nq where f̃m,n : ApT zz

m q Ñ

ApT zz
n q is the freezing rooted cluster morphism defined to be the algebraic extension of

xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, n
´ ď i ă j ď n`,

xin` , n´ ď i ă n` ă j ď m`,

xjn` , m´ ď i ă n´ ď j ă n`,

0, else.

(14)

We will show that the pro-clusters arising from pApT zz
m q, f̃m,nq coincide with triangulations of

the linearly ordered set pZYt`8u,ďq, where ď is the usual less or equal to relation with the

convention that i ă `8 for every i P Z. The set (ZY t`8u,ď) can be regarded as the unit

disk with countably infinitely many marked points on its boundary, which converge to the

limit marked point `8 in both clockwise and anticlockwise direction, giving us yet another

example of infinite marked surface. In Figure 16 we show a certain zig-zag triangulation of

pZ Y t`8u,ďq, picturing pZ Y t`8u,ďq as the two-dimensional disk. We will sometimes

refer to pZ Y t`8u,ďq as 8-gon with one two-sided accumulation point.

Throughout the rest of this section we denote by:
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´i ´ 2

´i ´ 1

´i i

i ` 1

i ` 2

`8

...

...

Figure 16: The zig-zag triangulation corresponding to the pro-cluster XppXT zz
m

qmě3q, where

we regard pZYt`8u,ďq as 8-gon with one two-sided accumulation point `8 that we mark

with an open circle.

• pC the inverse system pApT zz
m q, f̃m,nq in the category fClus

• pR
pC , f̃mq its limit in Ring.

As in the previous sections, we will first show that it is enough to consider pro-clusters

that arise from pC-complete sequences. We start with the following proposition.

Proposition 6.40. Let T 1

m be a triangulation of Pm and let XT 1
m

be the corresponding cluster

in ApΣT zz
m

q. Then f̃m,npXT 1
m

qzt0u is a cluster in ApΣT zz
n

q, for all n ă m.

Proof. Let J :“ ptm´, . . . ,m`u,ďq, Jn :“ ptn´, . . . , n`u,ďq be linearly ordered sets with

ď the usual less or equal to relation. Regarding T 1

m as a triangulation of J , we have that

t0,1
pJ,T 1

mqÑJn
(again making use of the notation from the beginning of section 6.2) is a trian-

gulation of Jn by Corollary 6.11, or equivalently, of Pn. By then using the definition (see

p14q) of f̃m,n we have that f̃m,npXT 1
m

qzt0u “ txij | pi, jq P t0,1
pJ,T 1

mqÑJn
u. Thus f̃m,npXT 1

m
qzt0u

corresponds to a triangulation of Pn and so it is a cluster, as required.
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Example 6.41. For every m ě 3 denote by Tm the fountain triangulation at m` and let

X “ pXTmqmě3. Then f̃m,npXTmq “ XTn Y t0u for all m ě n ě 3 and so X is pC-complete. In

Figure 17 we show the triangulations corresponding to the clusters XTm for m “ 3, 4, 5, 6.

´2
. . .

´1

f̃6,5 f̃5,4 f̃4,3

0 0 0

´2

´1

2

1 ´1

´2

1 ´1

0

1

´3

1

2

Figure 17: The tail of the pC-complete admissible sequence pXTmqmě3, where Tm is the

fountain triangulation at m` for every m ě 3.

Corollary 6.42. Recall that the X
pC is the set of all pC-admissible sequences and that X pX

pCq

is the set of all pro-clusters coming from all sequences in X
pC. Then

X pX
pCq “ tXpXq | X P X

pC is pC-completeu.

Proof. The claim follows from Proposition 6.7 and Proposition 6.40.

Now, for ´8 ă i ă j ă `8 we set x̃ij P R
pC to be the unique element of R

pC such that

f̃mpx̃ijq “ xij for all m such that m´ ă i ă j ă m`. Also, we set x̃i`8 P R
pC to be the

unique element of R
pC such that f̃mpx̃i`8q “ xim` for all m such that |i| ă ´m´.

Lemma 6.43. Let x̃ij P R
pC. Then

f̃mpx̃ijq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, m´ ď i ă j ď m`

xim` , m´ ď i ă m` ď j ď `8

xjm` , i ă m´ ď j ă m`

0, else.

Proof. Suppose first that i ă j ă `8. Let m be such that m´ ă i ă j ă m`. Assume first

that n ă m is such that n´ ď i ă n` ă j ă m`. Then using the definition of f̃m,n, the fact

that pR
pC , f̃mq is a cone and that x̃ij P R

pC we have that f̃m,npf̃mpx̃ijqq “ f̃m,npxijq “ xin` “

f̃npx̃ijq.
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Now, let n ă m be such that m´ ă i ă n´ ď j ă n`. Then f̃m,npf̃mpx̃ijqq “ f̃m,npxijq “

xjn` “ f̃npx̃ijq. Next assume that n ă m is such that m´ ă i ă j ă n´ or n` ď i ă j ă m`

or m´ ă i ă n´ ă n` ď j ă m`. Then f̃m,npf̃mpx̃ijqq “ f̃m,npxijq “ 0 “ f̃npx̃ijq. Thus we

have that if x̃ij P R
pC is such that i ă j ă 8 then

f̃mpx̃ijq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, m´ ď i ă j ď m`

xim` , m´ ď i ă m` ă j ă `8

xjm` , i ă m´ ď j ă m`

0, else.

The case i ă j “ `8 is dealt with in the same manner as the case i ă j ă `8 above and

so we skip the technical details for brevity.

Lemma 6.44. Let X “ pXmqmě3 be a complete pC-admissible sequence and let x P XpXq.

Then x “ x̃ij for some i, j P pZ Y t`8u,ďq such that i ă j ď `8.

Proof. We have that f̃npxq P Xn for some n ě 3 or f̃npxq P Z for all n ě 3. If f̃npxq P Z for

all n ě 3 then x P Z, a contradiction.

Let us assume now that f̃npxq P Xn for some n ě 3. If f̃mpxq P Z for some m ą n,

then f̃npxq “ f̃m,npf̃mpxqq P Z, a contradiction. Thus f̃mpxq P Xm for all m ą n. Now since

f̃npxq P Xn, it follows that f̃npxq “ xij P Xn for some n´ ď i ă j ď n`.

Suppose first that n´ ă i ă j ă n`. Suppose that f̃mpxq ‰ xij for some m ą n. But

then f̃m,npf̃mpxqq ‰ xij “ f̃npxq, a contradiction. Thus f̃mpxq “ xij for all m ą n. If l ă n

is such that l´ ă i ă j ă l` then f̃n,lpf̃npxqq “ f̃n,lpxijq “ xij “ f̃lpxq. Thus f̃mpxq “ xij for

all m such that m´ ă i ă j ă m` and we have by uniqueness of x̃ij that x “ x̃ij.

Now, suppose that f̃npxq “ xn´j. We know that f̃mpxq P Xm for all m ą n and using the

definition of f̃m,n we have that f̃n`2pxq “ xn´j. But pn ` 2q´ ă n´ ă j ă pn ` 2q` and we

are at the case which we considered in the previous paragraph and we deduce that x “ x̃n´j

in this case.

Next, suppose that f̃npxq “ xin` . For every m ą n we have that f̃mpxq P Xm and that

f̃m,npf̃mpxqq “ f̃npxq “ xin` . There are three different possibilities. Either

1. f̃mpxq “ xim` for all m ą n or
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2. f̃kpxq “ xk´j for some k ą n or

3. there exists k ą n such that f̃mpxq “ xik` for all m ą k.

If 1. is true and if there exists k ă n such that |i| ă ´k´ then f̃n,kpf̃npxqq “ f̃n,kpxin`q “ xik`

and so f̃mpxq “ xim` for all m such that |i| ă ´m´ and by uniqueness of x̃i`8, we have that

x “ x̃i`8.

If 2. is true then we are back to one of the cases that we have already considered and we

deduce x “ xk´j in this case. If 3. is true then x “ x̃ik` by uniqueness of x̃ik` .

For the last case, suppose that f̃npxq “ xn´n` . If n is odd then either f̃n`1pxq “ xpn`1q´n´

or f̃n`1pxq “ xn´n` , in both cases reducing the problem to one of the cases that we already

considered. Else, if n is even, then either f̃n`1pxq “ xn´pn`1q` or f̃n`1pxq “ xn´n` . Again, in

both cases this reduces the problem to one of the previous cases and we are done.

Using Corollary 6.42 and Lemma 6.44 we deduce that every pro-cluster arising from a
pC-admissible sequence consists of the elements of the form x̃ij P R

pC , for some i, j P pZ Y

t`8u,ďq such that i ă j ď `8.

Corollary 6.45. Let X “ pXmqmě3 be a pC-admissible sequence and let x P XpXq. Then

x “ x̃ij for some i, j P pZ Y t`8u,ďq such that i ă j ď `8.

In the light of the Corollary 6.45 above we will from now on denote an element of a pro-

cluster XpXq, for any pC-admissible sequence X, simply by x̃ij, without further explanation.

As it turns out, the pro-clusters arising from complete pC-admissible sequences will coin-

cide with triangulations of pZ Y t`8, u,ďq. First, we show that that every triangulation of

pZ Y t`8, u,ďq gives rise to a pro-cluster.

Lemma 6.46. Let T be a triangulation of pZ Y t`8, u,ďq. Then XT :“ tx̃ij | pi, jq P T u P

X pX
pCq.

Proof. Throughout this proof Jn denotes a linearly ordered set ptn´, . . . , n`u,ďq for any

n ě 3, with ď being the less or equal to relation. Moreover, we let

Tn “ tpi, jq P T | n´
ď i ă j ď n`

u Y tpj, n`
q | pi, jq P T such that i ă n´

ď j ă n`
u

Y tpi, n`
q | pi, jq P T such that n´

ď i ă n`
ă j ď `8u Y tpn´, n`

qu.
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We will show that the sequence X :“ pXTnqně3 is pC-complete, where we regard Tn as a

triangulation of Pn, and that XpXq “ XT .

First, we have by Proposition 6.10 that Tn is a triangulation of Jn, or equivalently of

Pn for all n ě 3. Furthermore, using Proposition 6.10 together with Lemma 6.43 gives

that XTn “ f̃npXT qzZ for all n ě 3. To show that X is pC-complete we have to show that

f̃m,npXTmq Ď XTn Y Z for all m ě n ě 3. We have that for all m ě n ě 3

f̃m,npXTmq “ f̃m,npf̃mpXT qzZq Ď f̃m,npf̃mpXT qq “ f̃npXT q Ď XTn Y Z

and so X is pC-complete, as required.

To conclude the claim it is now left to show that XpXq “ XT . First, let x̃ij P XpXq be

such that i ă j ă `8. Then f̃npx̃ijq “ xij P XTn for all n ě 3 such that n´ ă i ă j ă n`

and so pi, jq P Tn for all such n. But then, by construction of Tn, we have that pi, jq P T and

so x̃ij P XT . Now, suppose that i ă j “ `8. Then f̃npx̃i`8q “ xin` P XTn for all n such

that |i| ă ´n´ and so pi, n`q P Tn for all such n. Then, by construction of Tn and Lemma

6.8 we deduce that pi,`8q P T and so x̃i`8 P XT .

On the other hand, let x̃ij P XT . Then pi, jq P T and so if i ă j ă `8 we have that

pi, jq P Tn for all n ě 3 such that n´ ă i ă j ă n` and so f̃npx̃ijq P XTn for all such

n. Else, if i ă j “ `8 then as pi,`8q P T we have that pi, n`q P Tn for all n ě 3 such

that |i| ă ´n´ and so f̃npx̃i`8q “ xin` P XTn for all such n. But then we have in both of

those cases that since X is a complete pC-admissible sequence and since x̃ij P R
pC it follows

that f̃m,npf̃mpx̃ijqq “ f̃npx̃ijq P XTn Y t0u for all m ě n ě 3. Therefore, if x̃ij P XT then

x̃ij P XpXq and so XT Ď XpXq.

We deduce that XpXq “ XT , as required.

Lemma 6.47. Let X “ pXnqně3 be a complete pC-admissible sequence. Let T “ tpi, jq | x̃ij P

XpXqu. Then T is a triangulation of pZ Y t`8u,ďq.

Proof. Suppose there exists x̃ij P XpXq and x̃kl P XpXq such that pi, jq crosses pk, lq.

Without loss of generality we will assume that i ă k. Then i ă k ă j ă l ď `8.

Assumne first that i ă k ă j ă l “ `8. Let n be such that n´ ă i ă k ă j ă n`. Then

f̃npx̃ijq “ xij P Xn and f̃npx̃k`8q “ xkn` P Xn. But then pi, jq crosses pk, n`q and we have

that Xn is not a cluster, a contradiction.
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Next, consider the case where i ă k ă j ă l ă `8. Let n be such that n´ ă i ă

k ă j ă l ă n`. Then f̃npx̃ijq “ xij P Xn and f̃npx̃klq “ xkl P Xn and since pi, jq crosses

pk, lq it follows that Xn is not a cluster, a contradiction. Therefore T consists of pairwise

non-crossing arcs of pZ Y t`8u,ďq.

To prove the claim we must now show that T is maximal. Suppose that there exists an

arc pk, lq of pZ Y t`8u,ďq such that x̃kl R XpXq and such that pk, lq does not cross any

of the arcs from T . Since x̃kl R XpXq, there exists m ě 3 for which x̃kl R f̃´1
m pXm Y Zq.

Consider a x̃ij P XpXq such that x̃ij P f̃´1
m pXmq. We note that f̃mpx̃klq is a cluster variable

which follows from the fact that f̃mpx̃klq R Z and Lemma 6.43. That is, f̃mpx̃klq “ xk1 l1

for some m´ ď k
1

ă l
1

ď m`. Because x̃ij P f̃´1
m pXmq we have that f̃mpx̃ijq “ xi1j1 P Xm

for some m´ ď i
1

ă j
1

ď m`. Suppose that pk
1

, l
1

q crosses pi
1

, j
1

q in Pm. Then either

m´ ď i1 ă k
1

ă j
1

ă l
1

ď m` or m´ ď k1 ă i
1

ă l
1

ă j
1

ď m`. We will only consider the

former case as the latter case is dealt with analogously. If m´ ď i
1

ă k
1

ă j
1

ă l
1

ă m`

then pk, lq “ pk
1

, l
1

q and pi, jq “ pi
1

, j
1

q, by Lemma 6.43, and so pk, lq crosses pi, jq P T ,

contradicting the assumption that pk, lq crosses no arcs from T .

Next, if m´ ď i
1

ă k
1

ă j
1

ă l
1

“ m` then pk, lq “ pk
1

, lq for some m` ď l ď `8

or pk, lq “ pk, k
1

q for some k ă m´ and pi, jq “ pi
1

, j
1

q by Lemma 6.43. This implies that

i ă k ă j ă l and so pk, lq crosses pi, jq P T , giving us yet another contradiction. Putting

everything together we have that f̃mpx̃klq and f̃mpx̃ijq do not cross in Pm. But then since

x̃kl R f̃´1
m pXmq, we have that the triangulation corresponding to Xm is not maximal and so

Xm is not a cluster, a contradiction.

We conclude that T is a triangulation of pZ Y t`8u,ďq, as required.

We are now ready to characterize the set X pX
pCq of all pro-clusters arising from pC.

Theorem 6.48. The set X pX
pCq is the set

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t`8uq

*

,

where XT “
␣

x̃ij P R
pC

ˇ

ˇ pi, jq P T
(

for any triangulation T of pZ Y t`8uq.

Proof. We have by Corollary 6.42 that X pX
pCq “ tXpXq | X is pC-completeu. Then by
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Lemma 6.47 we have that

X pX
pCq Ď

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t`8uq

*

.

Moreover,
"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t`8uq

*

Ď X pX
pCq,

by Lemma 6.46, and so

X pX
pCq “

"

XT

ˇ

ˇ

ˇ

ˇ

T is a triangulation of pZ Y t`8uq

*

,

as required.

Using the definition of a pro-cluster algebra together with the above proposition we

deduce the following.

Corollary 6.49. The pro-cluster algebra Ap pCq is the subring of R
pC generated by the set

␣

x̃ij | pi, jq is an arc of pZ Y t`8u,ďq
(

.

Example 6.50. Denote by Tm the fountain triangulation at m` for every m ě 3. Then

from the pC-admissible sequence X “ pXTmqmě3 (see Example 6.41) we get the pro-cluster

XpXq “ tx̃ii`1 | i P Zu Y tx̃i`8 | i P Zu. Moreover, the set T of arcs of pZ Y t`8u,ďq given

by T “ tpi, jq | x̃ij P XpXqu is a triangulation of pZ Y t`8u,ďq. See Figure 18 , where we

regard pZ Y t`8u,ďq as a two-dimensional disk with infinitely many marked points and a

single two-sided marked accumulation point `8, which we represent with an open circle.

As in the previous examples of pro-cluster algebras that we have seen so far in this

chapter, the generators of Ap pCq are subject to the now familiar relations.

Theorem 6.51. The pro-cluster algebra Ap pCq is the ring

Zrxij | pi, jq is an arc of pZ Y t`8u,ďqs

pxijxkl ´ xikxjl ´ xkjxil for i ă k ă j ă l ď `8q
.

Proof. Let S “ Zrxij | pi, jq is an arc of pZ Y t`8u,ďqs. We denote by α an element of the

set NZˆZYt`8u

0 with finite support and such that αpi, jq “ 0 whenever i ě j and by xα the
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i

i ` 1
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´i

´i ´ 1
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`8

f̃10 f̃9 f̃8

´3
´4

2

0

´2
1

3
4

´3
´4

2

0
´1

´2
1

3
´3
´4

2

. . . . . .

Figure 18: The section pXTmq8ďmď10 of the pC-complete admissible sequence X “ pXTmqmě3

(see Example 6.50) and the triangulation of pZY t`8u,ďq corresponding to the pro-cluster

XpXq

corresponding monomial in S. For pi, jq P Z ˆ Z Y t`8u we let

|pi, jq| “

$

’

’

’

’

’

&

’

’

’

’

’

%

maxt|i|, |j|u, i ă j ă `8,

|i|, i ă j “ `8,

0, else

and let ||α|| :“ maxt|pi, jq| : αpi, jq ą 0u.

By universal property of polynomial rings there exists a unique ring homomorphism

ϕ : S Ñ Ap pCq such that ϕpxijq “ x̃ij for all i, j P ZY t`8u such that i ă j ď `8. Since the

elements x̃ij generate Ap pCq it follows that ϕ is surjective. Thus Ap pCq “ S{I for some ideal I

of S. We claim that I “ P , where P :“ pxijxkl´xikxjl´xkjxil for i ă k ă j ă l ď `8q Ď S.

First, let x P P . That is,

x “
ÿ

iăkăjălď`8

fikjlpxijxkl ´ xikxjl ´ xkjxilq P S
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where fikjl P S and with fikjl “ 0 for all but finitely many pi, k, j, lq P ZˆZˆZˆZY t`8u

such that i ă k ă j ă l ď `8. Pick m ě 3 such that m´ ă a ă m` for all

a P
ď

fikjl‰0

ti, k, j, lu X Z.

Then f̃npϕpxqq “ 0 for all n ě m due to Lemma 6.43 and the fact that

ApΣT zz
m

q “
Zrxij|m

´ ď i ă j ď m`s

pxikxjl “ xijxkl ` xjkxil for m´ ď i ă j ă k ă l ď m`q
.

In fact, since pR
pC , f̃mq is a cone, it follows that f̃npϕpxqq “ 0 for all n ě 3 and so ϕpxq “ 0.

Thus x P I.

On the other hand we have

S S{I “ Ap pCq R
pC ApΣTnq,

where the first map is the projection, the second map is the embedding and the last map is the

map f̃n. We denote by f̃ 1

n the composite of these three maps. We have that f̃ 1

npxijq “ f̃npx̃ijq

for all i, j P pZ Y t`8u,ďq such that i ă j ď `8 and for all n ě 3. Now r “
ÿ

aαx
α

P I

is a linear combination of monomials xα with all but finitely many integral coefficients aα

equal to zero. Let m P Zě3 be such that for every monomial xα with non-zero coefficient (in

r) we have that m´ ă ´||α|| and m` ą ||α||. The existence of such m is guaranteed since

all but finitely many coefficients in r are equal to zero. Assume that r R P . But then we

have that f̃ 1

mpxijq “ f̃px̃ijq for all i ă j ď `8 which together with Lemma 6.43 implies that

ApΣTmq ‰
Zrxij|m

´ ď i ă j ď m`s

pxikxjl “ xijxkl ` xjkxil for m´ ď i ă j ă k ă l ď m`q
,

giving us a contradiction. Thus we have that r P P and so I “ P , as required.

Remark 6.52. (i) We highlight the fact that if we instead consider the inverse system
pC

1

:“ pApT zz
m q, g̃m,nq, where g̃m,n : ApT zz

m q Ñ ApT zz
n q is defined to be the algebraic

extension of

xij ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xij, n
´ ď i ă j ď n`,

xn´i, n
´ ă i ď n` ă j ď m`,

xn´j, m
´ ď i ă n´ ă j ď n`,

0, else,
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then we have by symmetry that the pro-clusters arising from pC
1-admissible sequences

coincide with triangulations of pZ Y t´8u,ďq, where ď is the usual less or equal to

relation equipped with the additional property which states that for all i P Z we have

that ´8 ă i. The pro-cluster algebra Ap pC
1

q is given by

Ap pC
1

q “
Zrxij | pi, jq is an arc of pZ Y t´8u,ďqs

pxijxkl ´ xikxjl ´ xkjxil for ´ 8 ď i ă k ă j ă lq
.

(ii) In [9] the authors studied the so-called cluster categories from representations of heredi-

tary algebras for the first time. In short, these are triangulated categories which contain

subcategories that are in correspondence with clusters, with their indecomposable ob-

jects being in correspondence with cluster variables and with mutations encoded in

the triangulated structure. For the finite Dynkin type A cluster algebra this can be

rephrased as follows: cluster categories are categories which contain subcategories that

are in correspondence with triangulations of a convex polygon, with their indecom-

posable objects in correspondence with the arcs of that convex polygon. In [23] the

authors extended that picture by studying categories that are modelled by the two-

dimensional disk D with countably infinitely many marked points that are labelled by

all i P Z. On the cluster algebra side of things, this translates to the correspondence

between the clusters and cluster variables of the infinite rank cluster algebra of Gratz

and Grabowski (see [21]) and subcategories and indecomposable objects, respectively.

Finally, in [5] the authors considered the categories that are modelled, in the same

sense as above, by the two-dimensional disk D with countably finitely many marked

points labelled by all i P Z and with the single two-sided accumulation point. From

the cluster algebraic perspective, this establishes the connection between the categories

studied in [5] and the pro-cluster algebra Ap pCq (or, equivalently, Ap pC
1

q): certain sub-

categories are in correspondence with the pro-clusters of Ap pCq and the indecomposable

objects with the arcs of (Z Y t`8u,ď) (or equivalently, the arcs of D), putting our

work into a wider context.
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6.5 Some pro-cluster algebras are cluster algebras

In [21] Grabowski and Gratz studied infinite rank cluster algebras where the difference from

the classical finite setting was in allowing the initial cluster (and so every other cluster

mutation equivalent to the initial cluster) to be a countably infinite set (see [21] and in

particular Definition 3.1 for more details), or equivalently in allowing the initial quiver to

have countably infinitely many vertices. The remaining cluster mechanics were kept the

same in that infinite setting: we obtain cluster variables via admissible sequences of (quiver)

mutations of finite length and use all cluster variables acquired in that way to generate

infinite rank cluster algebra inside the field of rational functions in a countably infinite set

of variables over Q.

In this context, consider now a quiver Q, pictured below, with countably infinitely many

vertices labelled by i P Z and countably infinitely many vertices labelled by a pair pi, i ` 1q

where i P Z:

Q “ . . . i ´ 1 i i ` 1 . . .

pi ´ 1, iq pi, i ` 1q

To Q we attach a seed ΣQ “ pXQ, exQ, Qq, where XQ “ txii`1 | i P Zu Y txi`8 | i P Zu and

where exQ “ txi`8 | i P Zu with xii`1 a frozen variable corresponding to the vertex pi, i` 1q

of Q for every i P Z and with xi`8 an exchangeable variable corresponding to the vertex i

of Q for every i P Z. Now, denote by µZ the set

␣

µxl´1`8
˝ ¨ ¨ ¨ ˝ µxk`1`8

pxk`1`8q | pk, lq is an internal arc of pZ,ďq
(

,

of cluster variables of ApΣQq, where ď is the usual less or equal to relation. Then the set

XQ Y µZ is the set of all cluster variables of ApΣQq. The cluster algebra ApΣQq is the

Z-algebra generated by the all cluster variables.

In similar spirit, Çanakçi and Felikson studied in their joint paper [10] the marked surfaces

with infinitely many marked points, which we will refer to as infinite surface for simplicity,

and introduced a way of constructing a cluster algebras from such surface, using certain

hyperbolic geometry machinery. The definition of infinite rank surface cluster algebra can

be thought of as a generalization of the one we introduced in Chapter 2, that is of the one
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associated to a marked surface with only finitely many marked points. For S an infinite

surface, the cluster variables (exchangeable and frozen variables, respectively) are identified

with the internal and the boundary arcs of S, the clusters with the triangulations of S, and

the mutations are the usual quadrilateral flips. As an example, let D be a two-dimensional

disk that we saw in Figure 18 with countably infinitely many marked points i P Z and the two-

sided accumulation point `8. Moreover, let T be the fountain triangulation at `8 (again,

see Figure 18 for reference). Note that using the same technique as in Chapter 2 (see pages 10-

13) we can attach to T an infinite quiver. The quiver we would obtain in this way is precisely

the quiverQ, which explains the choice of the naming of the initial cluster variables in the seed

ΣQ. Now, the (initial) cluster associated to T is the set XT “ txii`1 | i P Zu Y txi`8 | i P Zu

where xi`8 are the exchangeable cluster variables corresponding to the internal arcs pi,`8q

in T for every i P Z and where xii`1 are the frozen cluster variables corresponding the

boundary arcs pi, i ` 1q for i P Z of D. As it turns out, every internal arc of D that is not

in T , and so is of the form pk, lq for some integers k and l such that k ă l, can be obtained

from T via finitely many quadrilateral flips. For an example of this see Figure 19, where we

omit the labelling of some of the marked points to achieve a better clarity of the picture and

where we obtain from T the arc p´3, 3q via flipping the arcs p´2,`8q, p´1,`8q, p0,`8q,

p1,`8q, p2,`8q of T , in this particular order. More concretely, in the algebraic notation,

we have that

xkl “ µxl´1`8
˝ ¨ ¨ ¨ ˝ µxk`1`8

pxk`1`8q,

for every arc pk, lq of pZ Y t`8u,ďq such that l ‰ `8. The set

`8

0

`8 `8 `8 `8 `8

0 0 0 0 0

Figure 19: An example of a sequence of quadrilateral flips needed for obtaining the arc

p´3, 3q from the fountain triangulation at `8.

XT Y txkl | pk, lq is an arc of pZ,ďqu
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is the set of all cluster variables and the cluster algebra ApDq is the Z-algebra generated by

all cluster variables.

In Example 6.50 we saw that the set tx̃ij | pi, jq P T u is one of the pro-clusters of the

pro-cluster algebra Ap pCq. It turns out that as a ring Ap pCq coincides with ApΣQq and so

Ap pCq is in fact a cluster algebra in the classical sense (of Gratz and Grabowski). It is also

true that ApΣQq “ ApDq and so Ap pCq “ ApDq.

Similarly, if we let D be the two-dimensional disk with countably infinitely many marked

points labelled by positive integers and a single one sided accumulation point 8 and let T

be the fountain triangulation at 8 of D then we have that ApΣQT
q “ ApT q “ ApCq, with

obvious notation. Finally, if D is the two-dimensional disk with countably infinitely many

marked points labelled by the integers and two one-sided accumulation points ˘8 and if we

let

T “ tpi, i ` 1q | Zu Y tp´8, iq | i P Zď0u Y tpi,`8q | i P Zě0u

then we again have that ApΣQT
q “ ApT q “ ApCq.

There is, however, an important difference when viewing those rings as a simple cluster

algebra as opposed to viewing them with the richer structure of a pro-cluster algebra: we

note that not every triangulation of D can be obtained from T using finitely many diagonal

flips only. In fact, there are infinitely many triangulations that cannot be reached from T

in this way. In slightly more detail, a triangulation can be reached from T in finitely many

diagonal flips if and only if a triangulation that we are trying to reach crosses T in finitely

many places (see, for example, Theorem B in [10] for more details). Equivalently, if we

denote by AQ the underlying graph of Q, then this means that not every orientation of Q

can be achieved by finitely many quiver mutations, where we start from the quiver Q. In

the case of our pro-cluster algebras ApCq, ApCq, Ap pCq we have the advantage of seeing all

triangulations of D (or, all orientations of AQ as well as the quivers that are split apart,

e.g. quiver corresponding to the triangulation from Figure 20). What makes our pro-cluster

algbebras even more attractive is the fact that the definition of cluster algebra of Çanakçi

and Felikson is surface-depenedent whereas our pro-cluster algebra has no such limitation as

its construction is purely algebraic and as a consequence much more general.
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0

i

i ` 1

i ` 2

´i

´i ´ 1

´i ´ 2

`8

... . . .

Figure 20: A fountain triangulation at 0 of a 8-gon with a single two-sided accumulation

point.

7 Discussion and outlook

We close this thesis with an informal discussion of some open problems that follow directly

from our work. Here we do not attempt to formally put together rigorous questions but

instead use this space to speculate a little and to draw the attention of the reader to certain

aspects of our work that we think might be worth exploring in the future. The problems we

discuss are based on some of the concrete examples that we have already considered earlier

and we explain how they naturally lead to some more general questions.

7.1 Relationship between pro-cluster algebras and cluster algebras.

As we saw in Sections 6.3 and 6.4 the pro-clusters of certain pro-cluster algebras are in-

terpreted as triangulations of certain infinitely marked surfaces with accumulation points.

Moreover, those pro-cluster algebras coincide with suitably constructed infinite rank cluster

algebras of Gratz and Grabowski [21] and of Çanakçi and Felikson [10]. With that in mind

we go back to the Example 5.37 for some more inspiration. We considered there a family

tT 1
m´1umě4 of triangulations of regular pm ´ 1q-gons with a single puncture. See below the

triangulations T 1
m´1 for m “ 4, 5, 6, 7. The seeds ΣT 1

m´1
are freezable seeds for every m ą 4

and by Theorem 5.33 there exists a parameter dependent family of freezing rooted cluster
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´1 ´1 ´1 ´1

0 0 0 0

´2 ´2 ´2 ´21 1 1 1

´3 ´32 2

2 3

T 1
3 T 1

4 T 1
5 T 1

3

morphisms from the rooted cluster algebra ApT 1
m´1q to the rooted cluster algebra ApT 1

m´2q

for every m ą 4. As a consequence, we can construct a family F of inverse systems in the

category fClus. Suppose we are given an inverse system from F. One might want to consider

the following questions regarding that inverse system:

• Can the pro-clusters of the associated pro-cluster algebra be interpreted as triangu-

lations of a suitable infinitely marked surface (with a single puncture)? If so, do all

triangulations of that infinitely marked surface show up as pro-clusters under such

interpretation?

• Can the associated pro-cluster algebra be viewed as an infinite rank cluster algebra in

the sense of Gratz and Grabowski [21] and of Çanakçi and Felikson [10]?

Of course, the same questions can be formulated in a more general manner for any (infinite)

inverse system in fClus of cluster algebras originating from a marked surface:

• Are pro-clusters of the associated pro-cluster algebra triangulations of the underlying

marked surface? Are all triangulations pro-clusters? Do the associated pro-cluster

algebra and the infinite rank cluster algebra coincide (as rings) and under what condi-

tions?

Let us now consider going the other way round. So far, we have discussed the pro-cluster

algebras which had pro-clusters encoded by the triangulations of a two-dimensional disk

with either one or two accumulation points. In [10] Çanakçi and Felikson consider marked

surfaces that have (countably) infinitely many marked points with finitely many marked

accumulation points allowed and their associated cluster algebras. Given any such surface

we immediately ask:
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• Can we construct a pro-cluster algebra with its pro-clusters encoded by, ideally all of,

the triangulations of that surface? If the answer is yes, then does the cluster algebra

of that infinite surface (in the sense of Çanakçi and Felikson) coincide, as ring, with

the pro-cluster algebra?

All of the these questions can be generalized to the case where a pro-cluster algebra does

not necessarily come from an inverse system of cluster algebras based on marked surfaces

and where an infinite rank cluster algebra does not come from a surface but instead from a

quiver. For example, if we have an inverse system in fClus of cluster algebras not originating

from a marked surface then we can ask the following questions:

• Are pro-clusters of the associated pro-cluster algebra in correspondence with, possibly

infinite, quivers (or equivalently, skew-symmetrizable matrices)? If so, do we see all

possible orientations of those quivers under such correspondence? Do the associated

pro-cluster algebra coincide as rings with the infinite rank cluster algebra of Gratz and

Grabowski [21] and under what conditions?

Being able to characterize pro-cluster algebras, either partially or fully, would give us a

different, deeper look into the structure and properties of infinite rank cluster algebras.

7.2 Pro-cluster mutations versus completed mutations

Let us consider now fountain triangulations T and T
1 at 1 and at 2, respectively, of a disk

with Zą0 many marked points and a single one-sided accumulation point 8, see the pictures

below. We observe that there is no finite sequence of flips that take T to T 1 . Let us therefore

consider an infinite sequence of flips, where we flip the arcs p1, 3q, p1, 4q, p1, 5q and so on. We

note that the set of arcs we obtain from applying that particular sequence of flips to T is

not a triangulation. More precisely, to turn the resulting set of arcs into a triangulation we

must add to it the limit arc p2,8q (this operation is an example of the so-called completed

mutation defined by Gratz and Baur in [7]).

In contrast, recall that we saw in Section 6.3, that both T and T
1 can be regarded

as pro-clusters of a pro-cluster algebra associated with an inverse system of the freezing

morphisms based on collapsing triangles. More formally, XT and XT 1 arise as pro-clusters
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1
2

3

4

5

6 i

i ` 1

i ` 2

8

. . .

. . .
1

2

3

4

5

6 i

i ` 1

i ` 2

8

. . .

. . .

T T
1

from the sequences X :“ pXmqmě3 and Y :“ pYmqmě3 of clusters, respectively, where Xm

is the cluster corresponding to the fountain triangulation at 1 and where Ym is the cluster

corresponding to the fountain triangulation at 2, for every m ě 3; see the picture below for

the triangulations corresponding to Xm and Ym for m “ 3, 4, 5, 6. We notice that Ym can

2

3

4 4 4

2

3

1

5 3

2

1 1

2

3

1

5

6

2

3

4 4 4

2

3

1

5 3

2

1 1

2

3

1

5

6

X6 X5 X4 X3

Y6 Y5 Y4 Y3

be obtained from Xm by mutating (in that particular order) at the variables corresponding

to the arcs p1, 3q, p1, 4q, . . . , p1,m ´ 1q for every m ą 3. Thus, instead of flipping infinitely

many arcs directly in the 8-gon and adding an arc at the end, we flip infinitely many arcs

in the underlying sequence of clusters to obtain the desired triangulation, effectively getting
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rid of the need for adding the additional arc p2,8q, which gets taken care of by the limit

construction of pro-clusters.

The next step is to try and define mutations of pro-clusters that employ a similar idea

to that discussed above. That is, to define mutations of pro-clusters that arise from suitable

mutations of its underlying sequence of finite clusters. The resulting sequence of the mutated

clusters should again be an admissible sequence of clusters (see Definition 6.2) so that we

get another pro-cluster from it. For the pro-cluster algebras with an underlying geometric

structure we would like this definition to coincide with the usual geometric interpretation

of mutations as flips of arcs. We suspect that in order for the pro-cluster mutation to act

transitively on the set of all pro-clusters, infinite sequences of mutations are unavoidable

(see the example above) however we might be able to avoid needing to add arcs, or more

generally, to add pro-cluster variables (again, see the above example for more details) with

a suitably defined notion of pro-cluster mutation.

An interesting question would be to describe which pro-clusters in any given pro-cluster

algebra can be connected via (infinite) sequences of pro-cluster mutations once mutations are

suitably defined. Due to the fact that pro-cluster algebras are defined purely algebraically

this could then be seen as a generalization of the similar work done by Gratz and Baur in [7]

and by Çanakçi and Felikson in [10] for infinitely marked surfaces. This could be especially

useful in the light of (in some cases, already established) connections between pro-cluster

algebras and infinite rank cluster algebras.

We will finish this section with a candidate definition of a pro-cluster mutation. Our def-

inition of mutation is based on the idea of sequentially mutating clusters from the admissible

sequence corresponding to a given pro-cluster, as discussed above. Moreover, mutation of a

pro-cluster, that we propose, yields another pro-cluster, as required. Unfortunately, due to

the time constraints, we were not able to verify if our mutation carries any of the desired

properties discussed in the previous two paragraphs, but we hope that our definition could

be a good starting point for further consideration.

Fix m,n, i, j P Z. Let tΣm “ pXm, exm, Bmq | m ě 0u be a family of seeds, let S “

pApΣmq, φm,n : ApΣmq Ñ ApΣnqqměně0 be an inverse system in fClus with pR, pφmqmě0q its

limit in the category Ring of rings and let X “ pXiqiě0 be a S-admissible sequence. That
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is, there exists a non-negative integer lX such that for all m ě n ě lX

• Xm is a cluster in ApΣmq,

• φm,npXmq Ď Xn Y Z.

Let XpXq be the pro-cluster associated with X (see Definition 6.2).

Definition 1. We call x P XpXq mutable if there exists kx ě lX such that for all m ě n ě kx

• φmpxq P exm,

• φm,npµφmpxqpXmqq Ď µφnpxqpXnq Y Z.

Finally, we have the following definition.

Definition 2. Let x P XpXq be mutable. The image of mutation of X in the direction of x

is the S-admissible sequence pµφmpxqpXmqqměkx and the image of mutation of XpXq in the

direction of x is the pro-cluster associated to pµφmpxqpXmqqměkx , denoted by µxpXpXqq.

7.3 Outlook

There are many more open questions that can be seen as a natural extension of our work. For

example, in [2] Assem, Dupon and Schiffler characterized not only the isomorphisms but also

the monomorphisms in the category Clus. Naturally, it would be interesting to characterize

monomorphisms and epimorphisms in our category fClus as well as to investigate other

categorical properties of fClus, for example to characterize its limits and its colimits.

In Chapter 5 we considered freezing morphisms in the category fClus. That is, the

morphims that send exchangeable variables to frozen ones. In Proposition 5.22 we gave a

partial characterization of such morphisms and their full characterization is an open question

that would help to understand fClus more deeply. Another open problem is to characterize

freezing rooted cluster morphisms that do not send cluster variables to integers, something

that Gratz did in [22] for the category Clus and rooted cluster morphisms with that same

property.
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‹ ‹ ‹

We hope that the work presented in this thesis will add to the discussion of the beautiful

world of cluster algebras and related topics, and that it will prove to be a source of interesting

insights and problems for researchers in this and neighbouring areas.
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