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Abstract—As one of the most successful industrial realizations
of Internet of Things, a smart grid is a smart IoT system
that deploys widespread smart meters to capture fine-grained
data on residential power usage. Unfortunately, it always suffers
diverse privacy attacks, which seriously increases the risk of
violating the privacy of customers. Although some solutions
have been proposed to address this privacy issue, most of them
mainly rely on a trusted party and focus on the sanitization of
metering masurements. Moreover, these solutions are vulnerable
to advanced attacks. In this paper, we propose a decentralized
mechanism for privacy-preserving computation in smart grid
called DDP, which leaverages the differential privacy and extends
the data sanitization from the value domain to the time domain.
Specifically, we inject Laplace noise to the measurements at the
end of each customer in a distributed manner, and then use a
random permutation algorithm to shuffle the power measurement
sequence, thereby enforcing differential privacy after aggregation
and preventing the sensitive power usage mode informaton of
the customers from being inferred by other parties. Extensive
experiments demonstrate that DDP shows an outstanding perfor-
mance in terms of privacy from the non-intrusive load monitoring
(NILM) attacks and utility by using two different error analysis.

Index Terms—smart gird, privacy-preserving computation,
random permutation, differential privacy, non-intrusive load
monitoring.
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I. INTRODUCTION

SMART grid is one of the most successful industrial
realizations of advanced Internet of Things (IoT), which

is also referred to as Internet of Energy [1]. In this regard,
networked smart meters, which are the key elements of a smart
grid, can be considered as IoT devices that autonomously pro-
vide fine-grained power consumption measurements to utility
providers by their bidirectional power flow and communication
capabilities. These measurements can improve the efficiency
of the power grid by enabling dynamic pricing and demand
response. However, such industrial IoT solution may suffers
diverse cyber attacks, ranging from hardware attacks to soft-
ware attacks, especially the privacy attacks that cause serious
privacy threats. Privacy issues have been primary concerns of
consumers in a smart grid [2]. For example, the fine-grained
measurements can reveal the usage modes, personal routines,
behavioral preferences, occupancy, and household financial
situation of these consumers. Such privacy-related problems
seriously restrict the development of smart grids.

To address these privacy issues, various privacy-preserving
mechanisms for smart grid have been proposed [3]. Data
anonymization and data encryption are two widespread
privacy-preserving mechanisms that are designed from the
company-side, wherein the utility companies and the related
components are supposed to be trusted. Specifically, data
anonymization [4] removes or pseudonymize [5] the private
attributes related to customer identities from the smart meter
data. However, such sensitive information can be still extracted
from these anonymized data by an adversary with specific
auxiliary information. Data encryption [8] [25] leverages the
homomorphic features of cryptographic computation to ag-
gregate the metering measurements obtained by the gateways
and the control center, so as to reduce the potential risk of
privacy disclosure. However, data encryption mechanisms are
limited by their relatively high computation or communication
complexity.

Various privacy-preserving mechanisms have also been pro-
posed from the costumer-side. Typically, device-based load
hiding mechanisms adopt a household rechargeable battery
[10] [11] [12] [13] or other energy storage units [14] to
hide the actual electricity consumption behaviors of customers.
However, rechargeablen batteries are relatively expensive, and
energy storage units foremost have to respond to customer
demands. Moreover, these mechanisms are tightly coupled



IEEE TRANSACTION ON COMPUTERS, VOL. VOL, NO. NO, MONTH YEAR 2

with the capacity and charge-discharge rate of the batteries and
energy storage units, thereby impacting the privacy-preserving
results. Recently, blockchain, as an emerging information net-
working architecture, has been applied for privacy-preserving
data aggregation in smart grids [9]. Given its decentralized
characteristic, a blockchain-based mechanism can preserve the
meter data even if a malicious user is selected as the aggregator
who tampers with these data.

In recent years, differential privacy, as a promising privacy
definition, has been applied on smart grids [6] [7] [15] [16]
[17] given its capability to provide a formal mathematical
description and proof for smart meter privacy. Particularly,
differential privacy is always combined with other privacy-
preserving techniques. For instance, Bao et al. [6] proposed
a secure data aggregation mechanism called DPAFT that can
achieve differential privacy and fault tolerance simultaneously.
Lyu et al. [15] proposed a privacy-preserving aggregation
mechanism called PPFA by utilizing the Fog computing ar-
chitecture and Gaussian mechanism, a basic implementation
mechanism of the approximate differential privacy, thereby
offering provable differential privacy guarantees for the ag-
gregate statistic on both Fog and Cloud levels. With regard
to customer-side mechanisms, researchers have attempted to
enforce the battery-based load hiding (BLH) methods to ensure
differential privacy [16]. Zhang et al. [17] proposed two
cost-friendly differential privacy-preserving mechanisms by
combining differential privacy with the BLH method, thereby
providing rigorous privacy preservation and cost savings si-
multaneously. This paper mainly focuses on customer-side
privacy-preserving solutions, which are facing the following
two critical challenges:

(1) These mechanisms require a trusted party to perform
data sanitization. Nevertheless, not all utility companies and
other third-parties can be trusted by customers. Therefore, a
decentralized or distributional solution is desired. Márk et al.
[18] designed a distributed differentially private mechanism
for sum queries that protects not only individual records
but also the parameters of individual energy consumption
modes. However, this mechanism only preserves the privacy
of distribution parameters for large-scale queries.

(2) The aforementioned mechanisms generally sanitize or
perturb metering measurements, which are vulnerable to filter-
ing. Power usage information can be approximately recovered
after inputting a large number of queries, thereby exposing
consumers to privacy attacks. These mechanisms also have
limitations related to power waveform hiding or perturbing
because of capability boundaries of the energy storage units.

Motivated by the aforementioned challenges, we propose a
decentralized differentially private mechanism for smart meter
data called DDP, which extends the data sanitization from
the value domain to the time domain. Specifically, the main
contributions of this paper are described as follows:

(1) By combining the differential privacy and random per-
mutation, we present an secure and efficient privacy-preserving
mechanism, which injects Laplace noise into the measure-
ments in a distributed manner at the end of each customer and
then apply a random permutation algorithm to permute the
power measurement sequence, thereby enforcing differential

privacy after aggregation and preventing the sensitive power
usage mode information of customers from being inferred by
other parties, such as curious participants in a smart grid and
malicious adversaries.

(2) By using ECO dataset [19], we quantitatively evaluate
the performance of DDP and reveal that DDP demonstrates
an outstanding performance in terms of privacy from non-
intrusive load monitoring (NILM) attacks and utility by using
two different error analysis.

The rest of this paper is organized as follows. Section
II summarizes the related works. Section III briefly revisits
the preliminaries. Section IV formalizes the problem model,
including the system model, adversarial model, and security
features. Section V presents the DDP mechanism and analyzes
its privacy, utility, and feasibility. Section VI evaluates the
performance of this mechanism. Finally, Section VII concludes
the paper and provides suggestions for future work.

II. RELATED WORKS

Extensive works have been done to tackle the privacy issues
in the smart grids, which can be generally classified into two
categories: company-side privacy-preserving mechanisms and
costumer-side privacy-preserving mechanisms.

A. Company-Side Privacy-Preserving Mechanisms

Company-side privacy-preserving mechanisms suppose that
the company is trusted and leaveage data anonymization and
data encryption to preserve the fine-grained smart metering
measurements. Data anonymization intuitively [4] removes
or pseudonymizes [5] the private attributes related to cus-
tomer identities from the smart meter data. However, such
anonymized data can be de-anonymized by linking and infer-
ence attacks from adversaries with specific auxiliary informa-
tion, and the sensitive information can be still extracted from
these anonymized data. Data encryption [8] [25] generally
leverages the homomorphic features of cryptographic compu-
tation to aggregate the metering measurements obtained by the
gateways and the control center, so as to reduce the potential
risk of privacy disclosure. Moreover, some studies combine the
homomorphic encryptions with differential privacy, to achieve
rigorous privacy guarantee and other purposes. Specifically,
Bao et al. [6] proposed a secure data aggregation mechanism
called DPAFT that uses a novel key management technique
and an improved Boneh–Goh–Nissim cryptosystem, thereby
achieving differential privacy and fault tolerance simultane-
ously. Ni et al. [7] presented DiPrism with the desirable fea-
tures of data aggregation and differential privacy by employ-
ing Lifted ElGamal encryption and Laplace noise. However,
those mechanisms are limited by the relatively high compu-
tation or communication complexity of homomorphic encryp-
tions. In addition, some scholars investigate the blockchain-
based privacy-preserving framework [9] and fog computing-
based privacy-preserving framework [26]. Specifically, the
blockchain-based privacy-preserving framework divides users
into different groups, and each group has a private blockchain
to record its members’ data. To preserve the inner privacy
within a group, pseudonyms are used to hide users’ identities,
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and each user may create multiple pseudonyms and associate
his/her data with different pseudonyms. The fog computing-
based privacy-preserving framework, for instance, PPFA[26],
enables the intermediate Fog nodes to periodically collect data
from nearby smart meters and accurately derive aggregate
statistics as the fine-grained Fog level aggregation, and use
Gaussian mechanism to distribute noise generation among
parties, thus offering provable differential privacy guarantees
of the aggregate statistic on both Fog level and Cloud level.
However, these methods require to modify the architecture
of smart grids, thus their complexity and economic cost are
relatively high.

B. Costumer-Side Privacy-Preserving Mechanisms

Costumer-side privacy-preserving mechanisms carry out
data sanitizition at the costumer-side. For instance, device-
based load hiding mechanisms typically employ a household
rechargeable battery (e.g., BLH mechanism [10], [11], [12],
[13]) or energy storage units (e.g., electric vehicles [14]) to flat
or randomize the meter readings by reporting the total electric-
ity consumption from the electrical appliances and the battery,
thereby hiding the actual electricity consumption behaviors of
cusomers. For instance, Sun et al. [14] used a Markov decision
process (MDP) to model the household demand and customer
behavior and a Q-learning algorithm to self-adapt the control
policies for energy storage units, such as electric vehicles
(EVs) and heating, ventilating, and air conditioning (HVAC)
systems. Additionally, BHL mechanisms are combined with
differential privacy[16], [17], attempting to conduct provably
privacy-preserving mechanisms and resist to non-intrusive load
monitoring (NILM) attacks. For instance, Zhang et al. [17]
proposed battery-based differential privacypreserving (BDP)
scheme and two cost-friendly differential privacy-preserving
(CDP) schemes by extending BDP under static and dynamic
pricing policies, thereby providing rigorous privacy preserva-
tion and cost savings simultaneously. However, rechargeable
batteries are relatively expensive, and energy storage units
foremost have to respond to customer demands. Moreover,
these mechanisms are tightly coupled with the capacity and
charge-discharge rate of the batteries and energy storage units.

III. PRELIMINARIES

This section describes the notations and preliminaries, in-
cluding NILM, differential privacy, and random permutation.

A. Non-Intrusive Load Monitoring

NILM [20] is a promising energy disaggregation approach
to estimate appliance-level electricity consumption from ag-
gregated household consumption data by monitoring only one
meter per household and without requiring any intrusion into
the power loads. A general NILM framework has three con-
stituent modules, namely, data acquisition, feature extraction,
and load identification. Specifically, after acquiring aggregated
load measurements at an adequate rate so as to identify
distinctive load modes, feature extraction calculates the power
metrics based on current, voltage, or waveform measurements,

and then detects events of appliance state transition. After-
wards, load identification uses supervised or unsupervised
machine learning techniques to disaggregate the aggregated
load measurements and to identify appliance-specific states.

Formally, given a discrete sequence of the acquired aggre-
gate metering measurements m = [𝑚1, . . . , 𝑚𝑡 ], where 𝑡 repre-
sents the discrete time measurements, NILM tries to determine
the sequence of appliance demands v(𝑛) = [𝑣 (𝑛)1 , . . . , 𝑣

(𝑛)
𝑡 ].

Alternatively, given the mapping relation between states and
demands, this process can be represented as the determination
of appliances states s(𝑛) = [𝑠 (𝑛)1 , . . . , 𝑠

(𝑛)
𝑡 ]. The appliance

states are in one-to-one correspondence with the operations
(for example, ‘on’, ‘off’, or ‘standby’) because an operation
approximately produces a constant power waveform.

Nevertheless, NILM can reveal the private information of
customers, including their behavioral modes, financial situa-
tion, and daily routine information, via appliance-level energy
disaggregation, thereby leading to serious safety problems.
Therefore, we consider NILM as a critical part of the adver-
sarial model.

B. Differential Privacy

Differential privacy is motivated by the intuition that the
sanitized output generated by the input of a database is
approximately indistinguishable from that generated by the
input of its neighbor database. A pair of datasets, D and D ′,
is called neighbor datasets iff D ′ can be produced by adding,
removing, or modifying exactly one tuple from D.

Definition 1 (𝜖-differential privacy). A sanitization mechanism
M satisfies 𝜖-differential privacy if it holds for any pair of
neighbor datasets D and D ′ that

Pr (M(D) ∈ S) ≤ 𝑒𝜖 Pr (M (D ′) ∈ S) ,

where S denotes all possible outputs of M, and 𝜖 is the
privacy budget that is mainly restricted by M.

The inequality indicates that an adversary can possess a
narrow confidence for inferring the either/or input dataset from
D and D ′ (i.e., the presence or absence of exactly one tuple
in the input dataset) only by observing S regardless of the
background knowledge of the adversary.

Differential privacy guarantees the privacy of any individual
with sensitive attributes in the dataset. In practical applications,
𝜖-differential privacy is generally enforced by a fundamental
mechanism (i.e., Laplace mechanism) that relies on the im-
portant parameter of L1-sensitivity.

Definition 2 (L1-sensitivity). Given a query function Q, its
L1-sensitivity ΔQ is the maximum L1 distance between the
results of Q over any pair of neighbor datasets D and D ′

and can be expressed as follows:

ΔQ = max
D,D′

Q (D) − Q(D ′)1.

where ΔQ is characterized by the query function Q and its
output domain rather than the input dataset D.

L1-sensitivity underlies the Laplace mechanism, which is
formally provided by Definition 3.
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Definition 3 (Laplace mechanism). Given dataset D and
query function Q, the Laplace mechanism obtains sanitized
outputs S by injecting the i.i.d. Laplace noise L into the
exact query result with a mean of 0 and scale _ = ΔQ/𝜖 .
This mechanism is defined as ML (D) = Q(D) + L.

Obviously, a larger sensitivity leads to a higher volume of
noise. Dfferential privacy has two fundamental properties that
also serve as core guidelines for designing differentially private
mechanisms.

Property 1 (Transformation Invariance). Given a mechanism
M that satisfies 𝜖-differential privacy and a mechanism K
whose domain contains the range of M and whose random
bits are statistically independent from the random bits of M,
a mechanism A(•) = K (M(•)) also satisfies 𝜖-differential
privacy.

Obviously, the output of M is the only input of K, which
simulates a statistical analysis by using the output of M.
Therefore, the property of transformation invariance gurantees
that the output of M and the results of the statistical analysis
on this output are both secure.

Property 2 (Convexity). Given two mechanisms M1 and M2
that satisfy 𝜖-differential privacy and a parameter 𝑝 ∈ [0, 1],
the mechanism M 𝑝 that runs M1 with probability p and M2
with probability 1−𝑝 should also satisfy 𝜖-differential privacy.

In other words, the convexity supports a random selection of
the privacy-preserving mechanism M that satisfies differential
privacy to inject further uncertainty into the data sanitization.

To protect the privacy of customers from adversaries,
Laplace noise can be generated by each household in a
distributed manner. In such case, the infinite divisibility of
Laplace distribution provides a decentralized solution for en-
forcing 𝜖-differential privacy [7], and the Laplace distribution
can be fabricated from the sum of the i.i.d. Gamma distribu-
tion.

Definition 4 (Infinite divisibility of Laplace distribution).
Given a parameter _, a random variable 𝐿𝑎𝑝(_) is sampled
from a Laplace distribution with probability density function
𝑓 (𝑥, _) = 1

2_ 𝑒
𝑥/_. Then, the distribution 𝐿𝑎𝑝(_) is infinitely

divisible, and it holds 𝐿𝑎𝑝(_) = ∑𝑛
𝑖=1 (G(𝑛, _) − G′(𝑛, _)) for

every integer 𝑛 ≥ 1, where G(𝑛, _) and G′(𝑛, _) are i.i.d. with
PDF 𝛾(𝑥, 𝑛, _), and

𝛾(𝑥, 𝑛, _) = 1/_1/𝑛

Γ(1/𝑛) 𝑥
(1−𝑛)/𝑛𝑒−𝑥/_

for 𝑥 ≥ 0, where Γ(1/𝑛) denotes the value of the Gamma
density function at 1/𝑛.

If the number of smart meters is 𝑁 , then a sanitization
mechanism injects G(𝑁, _) − G′(𝑁, _) into the measurement
𝑚𝑖 of the 𝑖-th smart meter before reporting. Thus, the reported
electricity consumption aggregation is

M(D) =
∑︁𝑁

𝑖=1
𝑚𝑖 +

∑︁𝑛

𝑖=1
(G(𝑁, _) − G′(𝑁, _))

=
∑︁𝑁

𝑖=1
𝑚𝑖 + 𝐿𝑎𝑝(_),

thereby achieving 𝜖-differential privacy.

C. Random Permutation

Random permutation is a random ordering of a set of objects
and a fundamental operation in some fields, such as coding
theory and cryptography [21]. A classic algorithm of random
permutation is the Fisher–Yates shuffle algorithm [22], which
generates a random permutation of a finite sequence by firstly
placing all elements in a hat and then continually determining
the next element by randomly picking an element from the
hat until no elements are left. This algorithm is unbiased
and efficient, uniformly outputs the permutation results, has
a time complexity that is proportional to the number of items
being shuffled, and does not require any additional storage
cost. Thus, the FisherYates shuffle algorithm can effectively
enhance nonlinearity and uncertainty.

In our case of smart meter, the measurement sequence
of customer 𝑖 is denoted as mi = [𝑚𝑖

1, . . . , 𝑚
𝑖
𝑡 ], where

𝑇𝑖 = [1, 2, . . . , 𝑡] represents the true time points of recording
the power measurements. We set a time window 𝑇𝑤 , and then
randomly shuffle the measurement sequence in the window
𝑇𝑤 to obtain a permutation m̂i = [�̂�𝑖

1, . . . , �̂�
𝑖
𝑡′], where 𝑡 ′ is

the time point of releasing the permutation. Then, the shuffle
function can be mathematically expressed as follows:

�̂�𝑖
𝑡′ = SF(𝑡, 𝑡 ′) · 𝑚𝑖

𝑡

where SF represents the shuffle operation of the original
measurement sequence.

Through the random shuffle, we seperate the time points of
measuring meter data from the time points of releasing them,
thereby destroying the related attribute information about the
running states of the appliances hidden in the original meter
data. Accordingly, the random shuffle algorithm can mask
the power usage modes of customers at the appliance-level,
thereby preventing their privacy from being leaked.

IV. PROBLEM FORMALIZATION

In this section, we state the problem by formalizing the
system model and adversarial model and by identifying the
security features.

A. System Model

This paper only focuses on the privacy issue being faced by
customers when their power consumption data are recorded
and reported periodically or in real-time to the meter data
management unit (MDMU) of the electric power company
for different purposes, such as billing, operations, and value-
added services. Therefore, the system model roughly consists
of various customers equipped with smart meters, local aggre-
gators, data and power communication networks, and MDMU,
as illustrated in Fig.1.

A smart meter, equipped at each customer 𝑈𝑖 ∈ U, where
U = {𝑈1,𝑈2, ...,𝑈𝑛}, periodically records the real-time power
consumption of a customer and reports the data to the local
aggregator within a certain period, such as every 15 minutes.
Formally, for a single customer 𝑈𝑖 , the measurement sequence
is

m𝑖 = [𝑚𝑖
1, . . . , 𝑚

𝑖
𝑡 ] .
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Accordingly, for a smart metering network that comprise 𝑁

customers, the measurement sequence is

M𝑡 = [m1
𝑡 , . . . ,m𝑁

𝑡 ] .

Household Customer Group Industrial Customer Group Commercial Customer Group

Smart Meters

Aggregators

Data Communication Network Power Communication Network

Fig. 1. Basic system model of a smart gird.

The MDMU is responsible for controlling the supply of
electricity from the power plant, the distribution of electric-
ity to users through power transmission networks, and the
processing and analysis of the electricity consumption data
aggregated by the aggregators, all of which ensure that the
smart grid operates normally and provides various services. On
the one hand, the MDMU is required to compute the specific
electricity consumption and the corresponding charge under a
static pricing policy or the Time-of-Use (TOU) pricing policy
[23]. Given the unit electricity price at time 𝑡, denoted as 𝑃𝑡 ,
the electricity charge of customer 𝑈𝑖 in a certain period 𝑇𝑐 is

𝐶𝑖 =
∑︁

𝑡 ∈𝑇𝑐
𝑃𝑡 × 𝑚𝑖

𝑡

On the other hand, the MDMU schedules the electric power
production and distribution and controls the price based on the
aggregation result 𝐻, which is obtained by aggregating the
smart meter data according to a certain rule 𝑅, that is,

𝐻 =
∑︁𝑁

𝑖=1
𝑅 × 𝑚𝑖

𝑡

B. Adversarial Model

Adversaries are dishonest but non-intrusive. They may
break the system rules, attempting to acquire smart meter
data by eavesdroping, and infering private information of the
customers by analyzing meter data. They may also launch
collusion attacks with some malicious smart grid participants
to obtain some system parameters and launch differential
attacks to identify sensitive information. Nevertheless, adver-
saries have no permission to insert, delete, or modify smart
meter data.

Suppose that an adversary uses an attack algorithm A (that
is a NILM algorithm) to analyze the measurements m𝑖 of the

customer 𝑈𝑖 and to subsequently learn the states of appliances
in a certain period 𝑇𝑞 . The adversarial model can then be
formulated as follows:

y = A (m𝑖)

y consisit of many state labels 𝑦 𝑗 of various appliances, 𝑦 𝑗 =

(𝑡 𝑗 , 𝑜 𝑗 , 𝑠 𝑗 ), where 𝑡 𝑗 is the state transition time of appliance
𝑗 , 𝑜 𝑗 is the recognized appliance, and 𝑠 𝑗 is the running state
of appliance 𝑗 . Therefore, adversaries launch NILM attacks to
infer the private information of customers by disaggregating
the state labels.

C. Security Features

The goal of this paper is to design a privacy-ensured mech-
anism that achieves the following desirable security features:

1) Rigorous Privacy Preservation: Neither the measurement
readings of a customer nor the aggregated data would disclose
any private information of customers. An adversary who
is dishonest but non-intrusive cannot obtain any additional
information by analyzing vari-size-grained smart meter data.

2) Decentralization: Customers do not fully trust the
MCMU and prefer to proactively sanitize their personal meter
data before the aggregation. The privacy preservation does not
completely depend upon the utility company and is highly un-
likely to be achieved by implementing a centralized solution.

3) High Efficiency: Efficiency involves computational effi-
ciency, communication efficiency, and cost-efficiency. Large-
scale smart meters have limited computing capacity, and
the networks connecting meters have limited bandwidth.
Therefore, the privacy-preserving mechanism must have low
computational and communication complexity. Moreover, the
deployment and modification for utility companies and the
adoption for customers must be cost-effective to ensure a
smooth implementation of the mechanism.

V. ALGORITHM DESCRIPTION

In this section, we propose a decentralized differentially
private mechanism called DDP to protect customer privacy
in a decentralized and efficient manner. Specifically, DDP
generates Laplace noise in a distributed manner, injects them
independently into the measurements of each customer, and
shuffles the noisy measurement sequence to mask the infor-
mation related to the power usage modes of these customers.
Consequently, the adversary cannot infer the private informa-
tion of customers, and differential privacy is enforced.

A. DDP Mechanism

In our case, three requirements must be fulfilled in designing
the DDP mechanism.

• The measurement intervals of a smart meter must be
successive and equal, and the time difference between
the true time point of the measurement recording and the
shuffled time point of the measurement releasing should
be the integral multiple of the minimum clock-unit.

• The shuffle operations may impact the enforcement of
the differential privacy. Therefore, a noise obey Gamma
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distribution must be maintained at any time point of
measurement to make sure that the sum of noise after
aggregation follows a Laplace distribution and that the
differential privacy is enforced.

• The measurement periods of a smart meter are always
pre-set and constant, and the time window in the shuffle
operations should be restrictive and within a limited
range, to obtain accurate stastical results within a certain
period.

The DDP can be divided into four phases, namely, initial-
ization, noise generation, measurement shuffling, and report
aggregation, and its basic algorithmic framework is shown as
Fig. 2.

……

Aggregator

Sanitized Smart Meter Data 

Fig. 2. Algorithmic framework of DDP.

1) Initialization
This step only considers the neccesary parameters used

in our DDP mechanism. Specifically, the whole system is
bootstrapped and initialized by a trusted authority in the
beginning. In the initialization, DDP sets the privacy parameter
𝜖 to 1, the number of smart meters connected to an aggregator
𝑁 to 100, the shuffling time window 𝑇𝑤 to 1 min, and the
interval of data report 𝑇𝑟 to 15 min. The cyclic memory is also
initialized. After initializing the system, the trusted authority
will be offline and stay out of the subsequent data processing.

2) Noise generation
DDP generates two i.i.d. Gamma noises, G(𝑁, _) and

G′(𝑁, _), with probability density 𝛾(𝑥, 𝑁, _), where _ =

ΔQ/𝜖 , and then obtain a Laplace noise Γ𝑖 = G(𝑁, _) −
G′(𝑁, _). In smart meters, Q denotes the total electricity
consumption aggregated by an aggregator, and ΔQ denotes the
maximum power consumption of any customer in a constant

period. Therefore, each smart meter produces a noisy version
of the measurement sequence m̂𝑖

𝑡 = m𝑖
𝑡 + Γ𝑖 .

3) Measurement shuffling
DDP shuffles the noisy measurement sequence of each smart

meter m̂𝑖
𝑡 in a time window 𝑇𝑤 and obtains �̂�𝑖

𝑡′ = SF(𝑡, 𝑡 ′) ·�̂�𝑖
𝑡 .

The shuffled measurement sequence m̂′
𝑖
= [m̂𝑖

1, . . . , m̂
𝑖
𝑡′] is

stored in the cyclic memory of each smart meter. Then, DDP
reports the shuffled data m̂′

𝑖
to at an interval 𝑇𝑟 .

4) Report aggregation
After receiving all measurenents of the smart meters, the

aggregator aggregates all valid measurements and obtains∑𝑁
𝑖=1 �̂�

𝑖
𝑡 =

∑𝑁
𝑖=1

∑𝑇𝑤
𝑡=1 SF(𝑡, 𝑡 ′)

[
𝑚𝑖

𝑡 + Γ𝑖

]
. Then, the aggregator

submits the aggregated smart meter data to the MDMU.

B. Privacy Analysis

Intuitively, DDP is required to protect the working states of
each appliance at any data releasing time 𝑡. If an adversary
launches continuous queries in 𝑘 successive intervals, then
DDP need a higher privacy budget 𝜖𝑘 = 𝑘 × 𝜖 to enforce 𝜖-
differential privacy, which reduces the privacy guarantee. Table
I presents the actual privacy budget under continuous queries
in successive intervals, where the original value is 𝜖=1 and the
unit interval is 10 min.

TABLE I
PRIVACY BUDGET UNDER CONTINUOUS QUERIES IN SUCCESSIVE

INTERVALS

𝑁 𝑘=1
(10min)

𝑘=3
(30min)

𝑘=6
(60min)

𝑘=24
(4h)

𝑘=48
(8h)

𝑘=144
(24h)

100 0.97 2.34 3.66 9.03 14.13 23.31
200 0.91 2.15 3.25 8.27 12.55 19.72
300 0.87 2.02 2.97 7.60 11.89 17.93
400 0.83 1.95 2.83 7.33 11.37 17.12
500 0.77 1.87 2.74 7.00 10.92 16.01
600 0.71 1.84 2.68 6.87 10.55 15.36
700 0.65 1.80 2.63 6.77 10.36 14.86
800 0.58 1.77 2.58 6.60 10.25 14.59
900 0.54 1.72 2.55 6.38 10.04 13.90
1000 0.51 1.66 2.50 6.32 9.80 13.55

Obviously, with the extended observation period (i.e., k), the
actual privacy budget 𝜖𝑘 increases significantly. Specifically,
given that 𝑁 is 100, we have 𝜖𝑘=1 = 0.97, 𝜖𝑘=6 = 3.66,
and 𝜖𝑘=144 = 23.31. A larger privacy budget 𝜖 corresponds
to a weaker privacy guarantee. Therefore, for the sake of
maintaining the security level of 𝜖 = 1, we have to reset
the parameter of the Laplace noise, because the noise pa-
rameter is _′(𝑡) = ∑𝑘

𝑖=1 𝑚𝑎𝑥(m𝑖
𝑡 ), where the initial parameter

_(𝑡) = ΔQ/𝜖 = 𝑚𝑎𝑥(m𝑖
𝑡 ). In our DDP mechanism, instead of

injecting additional noise, we use periodic random shuffling to
perturb the power waveform and to mask the time sequence
characteristics of the smart meter data. We adopt Pearson’s
correlation coefficient 𝜌 to measure the distinguishability
between the original sequence and the shuffled sequence, that
is,

𝜌(m𝑖 , m̂𝑖) =
𝐶𝑜𝑣(m𝑖 , m̂𝑖)

𝑉𝑎𝑟 (m𝑖)𝑉𝑎𝑟 (m̂𝑖)
As shown in Fig. 3(b), after injecting the Laplace noise

distributely, the noisy smart meter data can still partially
reveal the power waveform, where 𝜖 = 1, 𝑁 = 100, and
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𝜌 = 0.8955. After randomly shuffling in two different time
windows, the power waveforms are damaged at different
degrees. Specifically, in Fig. 3(c), where the time window
𝑇𝑤 = 10𝑠, the Pearson’s correlation coefficient 𝜌 = 0.7890. As
the time window 𝑇𝑤 extends, Fig. 3(d) shows that the damage
on the power waveform becomes increasingly evident and
that the correlation coefficient 𝜌 drops to 0.4583, indicating
a significant reduction of the correlation between the original
and the sanitized sequences. In other words, the power usage
modes of a household customer are masked significantly. Fig.
4 illustrates that with the increase of the time window, the
Pearson’s correlation coefficient presents a obvious decreasing
trend and finally tends to flat as the time window 𝑇𝑤 exceed
80 seconds.

However, unlike privacy analysis in the numerical domain,
the security level of usage mode information in smart meter
data is difficult to measure quantitatively. In the follow-up
experiments in Section V, we consider NILM attacks and
analyze the accuracy of recognizing the states of different
appliances from aggregated smart meter data under various
privacy parameters, to intuitively measure the security of the
DDP mechanism.

C. Utility Analysis

We mainly consider the accumulative error of a single
customer and the aggregation error of multiple customers
at the exact same time to measure the utility of the DDP
mechanism. The former affects the accuracy of power metering
and billing, whereas the latter affects the accuracy of the
aggregated data analysis of all smart meters.

In the DDP mechanism, each smart meter generates two
noise sequences sampled from two Gamma distributions, G
and G′, and then injects G − G′ into its reading mi =

[𝑚𝑖
1, . . . , 𝑚

𝑖
𝑡 ]. The noise affects the accuracy of power meter-

ing and billing within a specific cycle C (e.g., 30 days). The
random shuffling operation does not introduce additional noise
and has a small to minimal effects on the accumulative error
during a long cycle C. Then, we can obtain the accumulative
error 𝑒𝑎𝑐 (𝑖) of customer 𝑖 as follows:

𝑒𝑎𝑐 (𝑖) ≈
1∑𝑇

𝑡=1 𝑚
𝑖
𝑡

𝐸

[∑︁𝑇

𝑡=1
�̂�𝑖

𝑡 −
∑︁𝑇

𝑡=1
𝑚𝑖

𝑡

]
=

1∑𝑇
𝑡=1 𝑚

𝑖
𝑡

𝐸

[∑︁𝑇

𝑡=1
[G(𝑁, _𝑡 ) − G′(𝑁, _𝑡 )]

]
=
𝑇 · 𝐸 [𝐿𝑎𝑝(_𝑡 )]
𝑁 ·∑𝑇

𝑡=1 𝑚
𝑖
𝑡

=
𝑇 · _𝑡

𝑁 ·∑𝑇
𝑡=1 𝑚

𝑖
𝑡

=
𝑇 · ΔQ𝑡

𝑁 · 𝜖 ·∑𝑇
𝑡=1 𝑚

𝑖
𝑡

The accumulative error 𝑒𝑎𝑐 (𝑖) is dependent on the magni-
tude of the injected noise and the billing cycle 𝑇 . In addition,
after aggregation, MDMU can obtain the sum of the total
power consumption

∑𝑁
𝑖=1 �̂�

𝑖
𝑡 at time point 𝑡. After the random

shuffling, the measurement located originally at 𝑡 moves to
another time point for releasing and is denoted as �̂�𝑖

𝑡 ,𝑜𝑢𝑡 ,
whereas the measurement at 𝑡 that moves from another time
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(a) Original measurement sequence
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(b) Noisy sequence only with distributed Laplace noise
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(c) Shuffled noisy sequence under 𝑇𝑤 = 10𝑠
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(d) Shuffled noisy sequence under 𝑇𝑤 = 60𝑠

Fig. 3. Results of different steps in DDP
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Fig. 4. Impact of time window 𝑇𝑤 on correlation coefficient 𝜌.

point is denoted as �̂�𝑖
𝑡 ,𝑖𝑛

. Then, the aggregation error 𝑒𝑎𝑔 (𝑡)
at time point 𝑡 is computed as follows:

𝑒𝑎𝑔 (𝑡) =
1∑𝑁

𝑖=1 𝑚
𝑖
𝑡

𝐸

[∑︁𝑁

𝑖=1
�̂�𝑖

𝑡′ −
∑︁𝑁

𝑖=1
𝑚𝑖

𝑡

]
=

1∑𝑁
𝑖=1 𝑚

𝑖
𝑡

𝐸

[∑︁𝑁

𝑖=1
[G(𝑁, _) − G′(𝑁, _)]

+
∑︁𝑁

𝑖=1
�̂�𝑖

𝑡 ,𝑜𝑢𝑡 −
∑︁𝑁

𝑖=1
𝑚𝑖

𝑡 ,𝑖𝑛

]
=

𝐸

[
𝐿𝑎𝑝(_) +∑𝑁

𝑖=1 �̂�
𝑖
𝑡 ,𝑜𝑢𝑡 −

∑𝑁
𝑖=1 𝑚

𝑖
𝑡 ,𝑖𝑛

]
∑𝑁

𝑖=1 𝑚
𝑖
𝑡

≈
ΔQ𝑡

𝜖 ·∑𝑁
𝑖=1 𝑚

𝑖
𝑡

The aggregation error 𝑒𝑎𝑔 (𝑡) is mainly determined by the
magnitude of the distributed Laplace nosie and the difference
of the measurement between 𝑡𝑖𝑛 and 𝑡𝑜𝑢𝑡 , where the difference
is affected by the time window 𝑇𝑤 . 𝑇𝑤 is always much smaller
than 𝑇𝑟 (e.g., 𝑇𝑤 is generally set to 1 min, whereas 𝑇𝑟 is
set to 15 min), and the random shuffling operations in the
range of 𝑇𝑤 has negligible influence on the aggregated analysis
at the interval of 𝑇𝑟 . In other words, the aggregation error
𝑒𝑎𝑔 (𝑡) is approximately determined by the magnitude of the
distributed Laplace nosie, which is far less than the magnitude
of 𝑁 ·𝐿𝑎𝑝(ΔQ/𝜖) in centralized differentially private solutions.
Consequently, our DDP mechanism can effectively preserve
customer privacy with less errors and a high utility, and
is independent of a trusted MDMU, thereby achieving a
reasonable level of privacy assurance for smart meter data.

D. Feasibility Analysis

The feasibility analysis mainly focuses on three factors,
namely robustness, complexity, and implementation cost.

Smart meters, as low-cost devices running in unprotected
environments, are prone to failures [24]. If 𝑌 individual con-
sumption reports are invalid or 𝑌 malfunctioning smart meters
fails to submit their measurement, in our DDP mechanism,
each one of the 𝑁−𝑌 users injects G(𝑁−𝑌, _) −G′(𝑁−𝑌, _),
and the MDMU obtains the aggregated data as follows:

∑︁𝑁−𝑌
𝑖=1

�̂�𝑖
𝑡′ =

∑︁𝑁−𝑌
𝑖=1

𝑚𝑖
𝑡′ +

∑︁𝑁

𝑖=1
[G(𝑁 − 𝑌, _) − G′(𝑁 − 𝑌, _)]

=
∑︁𝑁−𝑌

𝑖=1
𝑚𝑖

𝑡′ + 𝐿𝑎𝑝(ΔQ/𝜖)

Therefore, DDP still enforces 𝜖-differential privacy even if 𝑌
smart meters do not work correctly or if 𝑌 fault measurements
are eliminated.

As for the computational overhead, the operations of dis-
tributed Laplace noise generation and injection and Fisher-
Yates random shuffling have a low computational complexity
of 𝑂 (𝑛) that is much lower than that of centralized and
homomorphic encryption-based solutions. Moreover, these op-
erations do not require additional data communications.

In addition, implementation cost is critical to a privacy-
preserving mechanism because the excessive cost of smart
meter modification would threaten the feasibility of DDP. A
microcontroller unit (MCU) is a core component of a smart
meter, which is characterized by its high performance, low ca-
pacity and accounts for the data processing, metering, storing,
and exchanging processes. We take ATMELs SMART SAM4C
microcontroller as an example. This device is constructed
based on two 32-bit ARM Cortex-M4 RISC processors and
can sufficiently to meet the demands of implementing DDP.
Therefore, we can embed our DDP mechanism into the MCU
to realize a privacy-aware sanitizition of smart meter data.
Compared with encryption-based mechanisms and device-
based load hiding mechanisms, the DDP mechanism is more
cost-friendly and easier to implement.

VI. EXPERIMENTS

A. Experimental Configurations and Datasets

We perform all experiments on a desktop PC with an Intel
Quad-core i7-8700 @ 3.2 GHz CPU and 16 GB RAM. Every
algorithm in each experiment is executed 100 times, and the
average indicators are reported.

We use the public ECO dataset in the experiments to
demonstrate the performance of DDP. This real-world dataset
contains data on 6 households in Switzerland that are collected
over 8 months (June 2012 to January 2013) and more than
100 million measurements reported at 1 Hz frequency during
the period of deployment. Each measurement contains detailed
information on voltage, current, phase shift between voltage
and current, and occupancy. ECO also contains more than
650 million measurements from 45 smart plugs in total that
are sampled for each appliance at 1 Hz frequency. ECO con-
tributes to our evaluation and illustration of the effectiveness
of our proposed mechanism in real-life applications.

B. Experimental Evaluation on Privacy

We initially test the actual privacy-preserving intensity (i.e.,
the actual privacy budget 𝜖) of the DDP mechanim under
different scales of smart meters. We vary the initial value of 𝜖
from 0.1 to 0.9 at 0.2 intervals and the scale size 𝑁 from 100
to 1000. We also adopt the billing queries (that are essentially
sum operations) in the ECO dataset. Table II shows the actual
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TABLE II
THE ACTUAL PRIVACY INTENSITY 𝜖 ′ OF DDP

𝑁

𝜖 0.1 0.3 0.5 0.7 0.9

100 0.093 0.291 0.494 0.699 0.874
300 0.089 0.287 0.487 0.690 0.859
500 0.086 0.281 0.483 0.686 0.849
700 0.085 0.278 0.479 0.682 0.836
900 0.080 0.277 0.475 0.674 0.804

privacy intensity 𝜖 ′ of DDP under different privacy budgets
and scale sizes.

Specifically, when 𝑁 = 100, the actual privacy budget 𝜖 ′ of
DDP is 0.093 given that the initial value of 𝜖 is 0.1, whereas
𝜖 ′ is 0.874 when 𝜖 = 0.9, which indicates a greater privacy
guarantee. In addition, as the scale size 𝑁 of smart meters
increases, the actual privacy budget 𝜖 ′ decreases. For instance,
given that the initial value of 𝜖 is 0.1, the actual privacy budget
is 𝜖 ′ = 0.093 when 𝑁 = 100, and 𝜖 ′ declines constantly from
0.089 to 0.077 when 𝑁 increases from 300 to 900. Similarly,
as the initial value of 𝜖 is 0.5, 𝜖 ′ declines constantly from
0.494 to 0.475 when 𝑁 increases from 100 to 900. Therefore,
our DDP mechanism can provide a reliable privacy guarantee
and is applicable to large scale smart meters.

We also consider NILM attacks that use the Weiss algorithm
to decompose appliance-level power load. Specifically, we
select four appliances that can be optimally recognized by
the Weiss algorithm, namely, dishwasher, kettle, fridge, and
freezer, to evaluate the performance of the DDP mechanism
in resisting NILM attacks. The dishwasher and kettle are high-
power electrical appliances, whereas the fridge and freezer are
low-power electrical appliances. The performance of the DDP
mechanism is measured in terms of the precision, recall rate,
and 𝐹-measure.

Firstly, we evaluate the recognition results of NILM attacks
when only distributed Laplace noise is injected into the mea-
surements without random shuffling operations, as illustrated
in Fig. 5.

Fig. 5(a) shows that when 𝜖 = 1, the recognition precisions
of the NILM attacks under the proposed DDP mechanism to
the dishwasher, kettle, fridge, and freezer are 0.99, 0.98. 0.95,
and 0.98, respectively. However, as 𝜖 decreases, the recog-
nition precision decreases significantly. For instance, when
𝜖 = 0.4, the precision values obtained for these appliances
decline to 0.95, 0.76, 0.83, and 0.86, respectively, and declines
further to 0.07, 0.12, 0.55, and 0.62, respectively, as 𝜖 = 0.1,
indicating that the suppressing effects of distributed Laplace
noise on recognizing the high- and low-power electrical appli-
ances surpass 90% and approach 40%. The similar suppressing
effects can be observed for recall rate as shown in Fig. 5(b).
Specifically, as 𝜖 = 0.1, the recall rates of the proposed
DPP mechanism for recognizing the dishwasher and kettle
drop by 63.04% and 70.37%, respectively, compared with
the recall rates obtained as 𝜖 = 1. Although a distributed
Laplace noise injection has a slight effect on low-power
electrical appliances due to their special operational control,
the recall rates also decrease to some degree. Meanwhile, as
shown in Fig. 5(c), the 𝐹-measures of recognizing the four
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Fig. 5. Recognition results of NILM attack under only distributed Laplace
noise.

appliances decrease from 0.54, 0.78, 0.85, and 0.80 to 0.08,
0.15, 0.62, and 0.59, respectively, as 𝜖 decreases from 1 to 0.1.
The suppressing effects on recognizing high-power electrical
appliances reach 80%, whereas the effects on recognizing low-
power electrical appliances are near 25%. In general, given
that 𝜖 < 0.5, injecting distributed Laplace noise can protect
the power usage modes and suppress the recognition of high-
power electrical appliances. However, a small 𝜖 implies a large
noise magnitude, which may introduce additional errors to the
smart meter data and dramatically reduce the utility.

Then, we evaluate the recognition result of NILM attacks
under our DDP mechanism, as shown in Fig. 6, where the
time window 𝑇𝑤 varies from 0 second to 100 seconds at a 5
seconds interval, 𝜖 = 1, and the scale size is 𝑁 = 100.
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Fig. 6. Recognition results of NILM attack under DDP.

Evidently, a small shuffling time window can effectively
suppress recognizing the power usage modes. When 𝑇𝑤 = 0,
the evaluation results are equivalent to those shown in Fig. 5,
where the recognition precisions to dishwasher, kettle, fridge,
and freezer are 0.99, 0.98. 0.95, and 0.98, respectively. When
𝑇𝑤 = 10𝑠, which means that the measurement sequence is
randomly shuffled in a small time window, the precisions of
recognizing these four appliances fall sharply to 0.28, 0.38,
0.78, and 0.87, respectively. As 𝑇𝑤 increases to 60 s, the
precisions further drop to 0.03, 0.04, 0.59, and 0.49, respec-
tively, and the suppressing effects reach their optimum before
becoming steady. The suppressing effects on recognizing high-
and low-power electrical appliances approach 95% and 45%,

respectively. Fig. 6(b) illustrates that the random shuffling
significantly lowers the recall rate. When 𝑇𝑤 = 60𝑠, the
recall rates for recognizing the four appliances are 0.006, 0.02,
0.05, and 0.07, respectively, which approach 0 for the high-
power electrical appliances and 0.05 for the low-power ones.
Similarly, the 𝐹-measures of recognizing the four appliances
at 𝑇𝑤 = 60𝑠 are 0.006, 0.03, 0.08, and 0.11, respectively,
which showe evident declines compared with the results
obtained at 𝑇𝑤 = 0. Consequently, the suppressing effects
of the proposed DDP mechanism on recognizing high- and
low-power electrical appliances surpass 95% and reach 85%,
respectively, because DDP damages the sequence correlations
and hides the load characteristics of the original smart meter
data, thereby preserving the privacy of customers.

C. Experimental Evaluation on Utility

In this subsection, we measure the utility of the DDP
mechanism in terms of the accumulative error 𝑒𝑎𝑐 and the
aggregation error 𝑒𝑎𝑔.
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Fig. 7. Average accumulative error 𝑒𝑎𝑐 .

In Fig. 7, we use the 8-month (247 days) power consump-
tion data of houses 1 to 6, set the period of error statistics
to 1 day, and calculate the average accumulative error of
the multiple customers in a single day. Fig. 8(a) illustrates
the changes of average accumulative error along with privacy
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parameter 𝜖 and scale size 𝑁 . As 𝑁 remains constant, a
smaller 𝜖 yields a higher average accumulative error, which
can be inferred by the formula 𝑒𝑎𝑐 (𝑖) in subsection IV. 𝐶.
When 𝑁 is fixed to 100, the average accumulative error is
0.13%, 0.21%, and 0.94%, respectively, as 𝜖 is set to 1,
0.5, and 0.1, respectively, which always remain below 1%.
In addition, with the increase of 𝑁 , the magnitude of noise
injected by a single customer decreases. Specifically, as 𝜖

is fixed to 0.1, the average accumulative error reduces from
0.94% to 0.44% when 𝑁 changes from 100 to 1000. Similarly,
as 𝜖 = 0.9, the average accumulative error reduces from 0.13%
to 0.04% and approaches 0. Therefore, increasing the scale
size 𝑁 is beneficial in reducing the accumulative error, thereby
achieving an accurate power metering and billing.

Afterwards, we fix the scale size to 𝑁 = 100, and Fig. 7(b)
shows that the average accumulative error is mainly correlated
to the privacy parameter 𝜖 and scale size 𝑁 , and uncorrelated
to the time window 𝑇𝑤 , because the average accumulative error
𝑒𝑎𝑐 is caused by the noise injection, and the random shuffling
realizes sequence permutation without adding any noise.

The results of the average aggregation error 𝑒𝑎𝑔 are similar
to the average accumulative error, as shown in Fig. 8. As
𝑁 remains constant, a smaller 𝜖 leads to a higher average
aggregation error. For example, when 𝑁 is fixed to 100,
the average aggregation error is 0.22%, 0.24%, 0.44%, and
2.1%, respectively, given that 𝜖 is set to 1, 0.9, 0.5, and
0.1, respectively. The variation trend of 𝑒𝑎𝑔 is consistent with
𝑒𝑎𝑐 . Moreover, given that 𝜖 = 0.1, the average aggregation
error is 2.1% and 0.47%, respectively, thereby indicating that
increasing the scale size of smart meters can reduce the
aggregation error brought by noise injection. We can conclude
that the decentralized mechanism can effectively ensure the
utility while preserving the privacy of smart meter data. Fig.
8(b) also shows that the random shuffling does not cause any
aggregation error. In sum, our proposed DDP mechanism can
preserve the privacy of smart meter data while maintaining a
high utility that can be improved by increasing scale size.

VII. CONCLUSIONS

This study proposes DDP, a decentralized privacy-assured
mechanism for smart meter data, to preserve the power mea-
surements and hide the power usage modes. Specifically, DDP
mechanism injects Laplace noise in a decentralized manner
into the measurement at the end of each customer and applies
a random permutation algorithm to shuffle the measurement
sequence and to mask the power usage modes while enforcing
𝜖-differential privacy. Our extensive experiments demonstrate
that the DDP mechanism can effectively resist NILM attacks
and achieve outstanding utility in terms of accumulative and
aggregation errors. This mechanism has also been proven to
be appliable to large-scale smart meters.

In our future work, we will consider additional uses of
smart meter data, including demand response, operations, and
value-added services, and design the corresponding privacy-
preserving mechanisms in a smart grid.
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Fig. 8. Average aggregation error 𝑒𝑎𝑔 .
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