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Securing Critical Infrastructures: Deep
Learning-based Threat Detection in the IIoT

Keping Yu, Liang Tan, Shahid Mumtaz, Saba Al-Rubaye, Anwer Al-Dulaimi, Ali Kashif Bashir, Farrukh Aslam
Khan

Abstract—The Industrial Internet of Things (IIoT) is a physical
information system developed based on traditional industrial
control networks. As one of the most critical infrastructure
systems, the IIoT is also a preferred target for adversaries
engaged in advanced persistent threats (APTs). To address this
issue, we explore a deep learning-based proactive APT detection
scheme in the IIoT. In this scheme, considering the character-
istics of long attack sequences and long-term continuous APT
attacks, our solution adopts a well-known deep learning model,
bidirectional encoder representations from transformers (BERT),
to detect APT attack sequences. The APT attack sequence is also
optimized to ensure the model’s long-term sequence judgment
effectiveness. The experimental results not only show that the
proposed deep learning method has feasibility and effectiveness
for APT detection but also certify that the BERT model has
better accuracy and a lower false alarm rate when detecting
APT attack sequences than other time series models.

Index Terms—Cybersecurity, critical infrastructure systems,
deep learning, APT, proactive detection, IIoT.

I. INTRODUCTION

THE Industrial Internet of Things (IIoT) relies on large
amounts of collected industrial data for troubleshooting,

identifying performance bottlenecks, and detecting malicious
behavior to achieve efficient control of the physical world [1]
[2]. Over time, the IIoT has been gradually applied to na-
tional critical infrastructure systems such as those supporting
the petrochemical industry, power grids, water conservancy,
nuclear energy, and transportation [3]. The rapid development
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of the IIoT has been accompanied by the emergence of cyber-
attacks against critical infrastructure. In addition to traditional
network attacks, advanced persistent threat (APT) attacks
are also increasing. An APT is a prolonged and targeted
cyberattack in which an intruder gains access to critical
infrastructure systems and remains undetected until the target
system is destroyed [4]. APTs pose a serious threat to critical
infrastructure systems and have caused many serious accidents.

APT attacks are a major threat to critical infrastructure
systems. Current APT detection methods are mainly based on
distributed computing, big data, cloud computing, and data
mining technologies [5], such as host malicious code anomaly
detection, sandbox malicious code anomaly detection, corre-
lation analysis, traffic anomaly detection, and comprehensive
network capture. Traditional methods have not been directly
applied to the IIoT. In [6], the authors propose an APT
detection method that analyzes social network security events.
By combining cloud computing with network traffic analysis,
a flow reverse detection model based on traffic changes is
developed [7]. The main idea is to establish an application
container that runs a program to detect APT attacks by
monitoring the behavior of network endpoints. In addition,
a defense architecture, including APT gateway detection and
an APT management console, is developed to monitor and
analyze the host system environment, application environ-
ment, communication environment, data environment, traffic
characteristics, and network protocol characteristics. The APT
detection methods mentioned above have some validity, but
they are mainly used for APT attacks with short attack
durations and fixed attack patterns, while APT attacks in the
IIoT are usually characterized by large scale and long duration.
Thus, existing detection methods are not able to provide high
detection accuracy when used with the IIoT [8].

The integration of artificial intelligence (AI) and IoT is
currently a hot research topic [9][10]. The combination of
AI and IoT leads to a very powerful technology, the AIoT,
that can enable devices to collect data and analyze it to make
human-like decisions. With the popularity of the AIoT, APTs
and zero-day vulnerabilities have appeared in some important
IIoTs. AI, especially deep learning, has advantages over tradi-
tional methods in detecting and defending against such attacks.
To propose an APT detection method suitable for the IIoT in
critical infrastructure systems, this paper investigates a deep
learning-based proactive APT detection scheme in the IIoT
based on the characteristics of APT attacks in the IIoT, such
as long attack sequences and a long-term attack duration. The
main contributions of this paper are as follows.

1) We apply the well-known bidirectional encoder represen-
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Fig. 1: IIoT-APT attack structure

tations from transformers (BERT) sequence processing model
in the deep learning area to APT attack sequence detection.

2) We optimize the APT attack sequence data to normalize
it and make it more obvious without destroying any content
of the original data, ensuring the effectiveness of the trained
model in long-term sequence detection.

The rest of this paper is structured as follows. Section II
describes APT attacks in the IIoT. Section III describes the
deep learning method for proactive APT detection in the IIoT.
The experimental analysis is presented in Section IV. Finally,
Section V summarizes the paper.

II. DESCRIPTION OF APT ATTACKS IN THE IIOT

In this section, we briefly describe APT attacks in the IIoT;
an entire life cycle of an APT attack in the IIoT is shown in
Fig. 1. The process of attack can be divided into the following
five stages: data collection, plan formulation, privilege escala-
tion and internal penetration, authority maintenance and anti-
tracing, and goal realization and trace cleanup. We describe
each stage as follows:

(1) The first stage is data collection, in which information is
collected on the IIoT network by scanning and detecting
all networks, including the enterprise network, control
network and field network. Data collection runsthrough
the entire attack. The purpose is to obtain information
such as asset information, user information, supplier
information, mailboxes and account numbers in the
target network. All these actions serve as preparation
for formulating an effective attack plan.

(2) The second stage is plan formulation. After the basic
information and topological structure of the IIoT net-
work are mastered through the collected information,
the hacker obtains access to the IIoT network. An
effective attack plan is formulated using e-mail, instant
messaging, social networks or application weaknesses
to attack devices or servers in the IIoT network as a
preliminary entry to the attack.

(3) The third stage is privilege escalation and internal pen-
etration, which is the core goal of IIoT attacks. Hackers
first use software or management vulnerabilities such
as www, e-mail or business services in the enterprise
network of the IIoT to implant malicious code, such
as recorders, Trojan horses, password cracking and
file collection programs. As long as this operation is
successful, hackers can lurk in the enterprise network
to collect increasingly complete network information. It
later becomes convenient to use horizontal penetration
to find the configuration file and business interface of
Terminal2 in the enterprise network and thereby enter
the control network of the IIoT. Hackers will crack the
domain control server as the focus of the attack. Once
the domain control server’s authority is obtained, the
hacker can smoothly enter the IIoT field network and
further control the production equipment.

(4) The fourth stage is authority maintenance and anti-
tracing. The process of stealing enterprise, control, or
field network data in the IIoT is complicated and cum-
bersome. To maintain the obtained permissions, hackers
develop feasible techniques to prevent traceability and
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remain deeply hidden, such as using a homemade anti-
killing RAT cluster system or Cobalt Strike. When
transmitting data, methods such as byte splitting and
combining can also be used to transmit the collected
information slowly to avoid detection by abnormal traffic
analysis tools. As mentioned earlier, the use of forged
identities and springboards [11] will also prevent the
traceability of the entire APT attack even when the
attack is discovered.

(5) The final stage is goal realization and trace cleanup,
that is, the illegal transmission of sensitive data from
the enterprise, control and field networks to an external
system controlled by the hackers. The hacker leverages
data mining or related algorithms to locate the root user’s
computer from the collected network traffic information
and log files of the target system. After obtaining the
root user’s information and root permissions, the hackers
can access the data center or issue instructions to other
machines. The core data inside the data center are
then transmitted back to the attacker through encrypted
channels. Finally, the access traces, logs, and other
related information are cleaned up.

It should be noted that APT attacks have unique features
compared with traditional network attacks.

Feature 1: APT attacks on the IIoT utilize the power of
a government or even an entire country. Regardless of how
much manpower and resources are involved, such attacks do
not stop until they reach their target. This creates high pressure
to prevent attacks.

Feature 2: During APT attacks on the IIoT, the hackers are
silent and latent for a long time at every stage. This means that
existing intrusion detection and antivirus software are unable
to identify APT attacks by means of data association analysis
and anomaly detection.

III. DEEP LEARNING FOR PROACTIVE APT DETECTION IN
THE IIOT

A deep learning method for proactive APT detection in
the IIoT is explored in this section. Anomaly detection based
on unsupervised learning is very popular for the following
reasons. First, in the IIoT, some normal and abnormal data
have no clear boundaries. Second, the collected IIoT data also
contain noise, which is difficult to distinguish from anomalies.
Third, as time passes, normal behavior may change. Finally,
labeled data are difficult to obtain. Popular unsupervised
learning methods include statistical-based anomaly detection,
density-based anomaly detection, cluster-based anomaly de-
tection, anomaly detection using OneClassSVM, and anomaly
detection using the isolation forest integrated learning method.
In actual projects, if there is relatively little prelabeled data,
unsupervised methods can be used. However, since the labeled
data in this article come from a private power grid, this article
uses a supervised learning method.

A. APT attack sequence analysis

As indicated by the above analysis, APT attacks in the
IIoT are characterized by long-term sustainability and can

range from a few minutes to several years. Therefore, the
APT attack sequence is an unknown sequence with variable
length. To complete the attack, the IIoT APT attacker must
combine traditional network attacks with various advanced
attack methods. The related activities underlying APT attacks
are targeted and continuous, but they may be indirect, such as
information collection, plan formulation, privilege escalation,
etc. Based on an analysis of existing APT events for the IIoT,
the behavioral data of the IIoT can be classified into five
categories: normal data, monitoring and detection activities,
privilege escalation, command operation, and attack and steal.

(1) Normal data: In the enterprise, control and field net-
works, the industrial control site and machine status,
etc., are in the APT attack state or have entered the
APT attack state. In the intermittent or incubation attack
period, the network can carry out normal real-time
network communication and obtain requests through
the browser. For example, it can fetch HTTP request
messages with safe and reliable data.

(2) Monitoring and detection activities: The attacker needs
to collect a large amount of information about the target
system (including the port communication status of the
host in the enterprise, control, and field networks and
the host’s network status, data flow, network information
transmission status, etc.). Port scanning, code analysis,
SQL statement detection and other methods are used
to obtain useful data. At this stage, we identify these
activities through audit system log analysis and identify
and record such data through network traffic analysis,
defense system alarms, etc.

(3) Privilege escalation: Privilege escalation includes hori-
zontal and vertical privilege escalation. Horizontal priv-
ilege escalation means that the attacker has obtained the
access permission of a certain user, but the information
obtained is not sufficient. At this time, the attacker will
try to exploit various analyzed vulnerabilities and obtain
other users’ information through precise phishing. With
vertical privilege escalation, the attacker expands the
single user’s privileges to administrator privileges to
fully control the system.

(4) Command operation: Whether it is the field network, the
control network or the enterprise network, the attacker
performs related operations on files. Since the server
system may be based on Linux, the directories and
programs in the host, data, services, devices, drivers, and
I/O files have the read, write, and execute permissions of
the corresponding owner. Execution of these commands
by the attacker involves illegal access and illegal oper-
ations on remote machines, and this kind of command
operation data can be recorded.

(5) Attack and steal: Attackers use multiple attack meth-
ods, such as spear attacks, watering hole attacks, DoS
attacks, flood attacks, WinNuke attacks, Land attacks,
Script/ActiveX attacks, Smurf attacks, and routing proto-
col attacks. Attackers can perform corresponding attacks
on the target host or machine in the IIoT, and those data
can also be recorded.
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Fig. 2: BERT model structure

B. APT attack word vector generation

A "word vector" is a representation of words as vectors,
usually in terms of multidimensional continuous floating-point
numbers, where similar words are mapped to similar locations
in geometric space. Representing words as vectors allows them
to be applied to mathematical operations. An APT is an attack
that remains undetected over a long period. The collected
APT attack data in the IIoT need to be vectorized to be used
as input for the classification model in order to distinguish
the attack type. Across the various stages of the entire APT
network attack process, all network data packets constitute a
time series. Since there may be a certain correlation or logical
relationship among the five attack intents, the five attack intent
labels are converted into corresponding word vectors. A tradi-
tional discrete representation cannot show this relationship, so
a distributed representation is used to transform words into a
distributed word vector representation. This distributed repre-
sentation can depict the interrelationships between APT attack
intentions in the IIoT. In traditional text information, the most
representative semantic feature words are usually selected for
word vector representation. This is generally done using the
word2vec model [12], which can transform each feature word
into the same shape. However, when the word2vec model is
used for word vector representation, the APT attack feature
words cannot be distinguished through contextual semantic
information, and different attack intentions may represent the
same vector, which causes subsequent classifier misjudgments.
For these reasons, this paper uses the BERT model [13] to
represent the APT attack intention word vector. We choose
BERT because of the long persistence of APT attacks. If
the attack time span is very long, it is difficult to detect
the complete attack chain based on real-time point-in-time
detection technology. The BERT used in this article contains
a transformer structure that relies on the attention mechanism
to model the global dependency of inputs and outputs. It can
capture the key features of APT attacks in an unknown time
series. Moreover, this method can combine the context and
semantic information from the APT attack sequence and can
be more reasonably expressed as a word vector for judgment.

C. BERT pretraining language model

In recent years, researchers have achieved good results in
pretraining language models [14], e.g., the embeddings from

Fig. 3: Transformer encoder structure

language model (ELMo) and generative pretraining (GPT). In
2018, Google Research Institute Devlin and others proposed
the BERT pretraining language model.

As shown in Fig. 2, the BERT pretraining model uses
a bidirectional transformer as the encoder; this transformer
is based on the attention mechanism to model text, which
has good parallel computing capabilities. Originally, it was
proposed that the masked language model and sentence conti-
nuity prediction be used for joint training. The aforementioned
BERT model can capture the key characteristics in an unknown
time series of varying length for the APT attack on the
IIoT. We use the embedding output of the processed APT
attack sequences as the input word representation of the
BERT internal transformer coding network, combined with a
series of transformer encoders. In the BERT model, following
application of the multilayer bidirectional transformer encoder,
the vectorized representation tasks of the APT attack word
are finally obtained. The transformer is a Seq2Seq model [15]
based on self-attention that has an encoder-decoder structure.
The encoder adds a variable length sequence to a fixed length
sequence, and the decoder decodes this fixed length vector
into an output sequence of variable length. The BERT model
mainly uses the encoder part of the transformer, which can
encode the variable length time series in the APT attack. The
structure of the encoder is shown in Fig. 3.

The input of the encoder is a word embedding represen-
tation, where the position information is added. The input
then passes through the self-attention layer, which helps the
encoder view the information of the words before and after as
it encodes each character. Its output passes through an add &
norm layer. The add layer adds the input and output of the self-
attention layer, followed by normalization by the norm layer.
The normalized vector list will be passed into a feed forward
layer, which is a fully connected neural layer. The feed forward
layer follows a corresponding add & norm layer, which outputs
a new list of normalized word vectors. The core idea behind
determining the most important input using self-attention in
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an encoder is to calculate the relationship between a text
message and other text messages in a sequence and then use
this relationship to adjust the weight of each text to obtain a
new expression. This new expression contains not only its own
semantics but also the relationship between them. Therefore,
compared with the traditional word vector, it provides a more
global expression, and the APT attack sequence of the IIoT
can better reasonably express the semantic information of the
context in the temporal feature.

D. Attack sequence optimization in the IIoT

In the APT attack, each attack has steps, each step has key
"word vectors", and the word vectors between the steps are
correlated. We use the word vector association relationship to
optimize the attack sequence data. Some operations of APT
attacks that do not damage the host can be considered as
normal data and are not counted in the APT attack sequence
samples. Only the word vector association relationship of the
before and after operations that satisfy the attack features is
used as the input of the APT detection model. In other words,
the hacker performs some operations in some steps, but as long
as this action does not extract the word vector that can cause
damage, we still regard this operation of the hacker as normal
data that will not be used as a step of the attack. In this way,
we avoid considering all operations as attacks as soon as they
are regarded as hackers and thus optimize the attack sequence
samples.

After optimization, the length of the APT attack sequence
can be greatly reduced, which not only ensures the feature
integrity of the APT attack sequence but also simplifies the
APT attack sequence, significantly mitigating the cost of
training the model.

E. APT attack detection algorithm based on BERT

This paper proposes an APT attack detection algorithm
based on BERT in the IIoT. The detailed algorithm process
is as follows:

Input: APT attack sequence training set in the IIoT where
two variables are included. One is the characteristic informa-
tion of the APT attack. The other is the APT category to which
the attack belongs.

Output: APT attack intention classification model.
• Step 1: First, a clean data set is obtained by cleaning and

preprocessing the collected data. For data cleaning, we
mainly delete the null attribute values in the APT attack
sample. For data preprocessing, we numericalize charac-
ter attributes of APT attacks, perform one-hot encoding
on multiple values of the attribute, and concatenate the
result with the original attribute. After numerical and one-
hot encoding processing, because the numerical range of
each attribute is different, using the original value directly
will affect the shift in the model’s focus, so the features
in the data set are standardized and normalized.

• Step 2: The preprocessed APT attack sequence data are
sent to the BERT model, where the timing feature starts
with [CLASS (CLS)], and the feature and tag category
are separated by [SEPARATING (SEP)] notation.

Fig. 4: Sequence model accuracy rate comparison histogram

• Step 3: In the BERT pretraining model, the data are en-
coded by the encoder of the bidirectional transformer. The
characteristics corresponding to the APT attack sequence
are denoted.

• Step 4: The characteristic representation obtained in step
3 is input into the Softmax regression classifier model for
classification training, where the dimension of the word
vector is set to 5 to obtain the probability that the APT
attack intention belongs to each APT attack sequence.

• Step 5: The data in the training set are trained in batches
and output to the classification model of APT attack
intentions.

• Step 6: The obtained classification model is used on the
test set to test the generalization ability of the model and
obtain various performance indicators of the algorithm.

IV. EXPERIMENTAL ANALYSIS

A. Experimental environment and settings

The experiment in this paper is performed using the Ten-
sorFlow deep learning framework. The experimental hardware
environment is a PC with a Windows 10 operating system and
an NVIDIA GTX 1080TI GPU. We take the data collected
from a certain equipment manufacturer as the experimental
training and test data sets and divide the simulated attacks
into five categories: ‘NORMAL’ (i.e. normal network con-
nections), ‘PROBE’ (i.e. ipsweep, nmap, portsweep, satan),
‘DOS’ (i.e. back, land, neptune, pod, smurf, teardrop), ‘U2R’
(i.e. buffer_overflow, loadmodule, perl, rootkit), ‘R2L’ (i.e.
buffer_overflow, loadmodule, perl, rootkit).

B. Experimental scheme

To evaluate the effectiveness of the scheme proposed in this
paper (BERT), when designing the comparison schemes, we
choose a single-layer perceptron model (hereafter, Perceptron),
a single-layer LSTM network (hereafter, LSTM) and a single-
layer CNN network (hereafter, CNN). The reason for selecting
this network model is that the training set consists of only 5-
word vectors; because the length of the word vectors is small,
fewer parameters are required. The detailed experimental plan
is as follows:

(1) APT attack sequence detection accuracy: The data are
divided into four levels according to the sequence length,
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i.e., 1-1000, 1000-5000, 5000-10000 and more than
10000. The 10-fold cross-validation method is used to
obtain the APT attack sequence detection accuracy rate.

(2) Receiver operating characteristic (ROC) curve: The steps
are the same as those of (1). The four trained models
are predicted on the test set, and the ROC curves are
obtained for model performance comparison.

C. Experimental results and analysis

The APT detection accuracy rates for the four models with
different test set sequence lengths are shown in Table I. From
Table I, we can also obtain the histogram of the APT detection
accuracy for the four models, as shown in Fig. 4.

TABLE I: Accuracy comparison of the sequence models

Sequence length Perceptron CNN LSTM BERT
1-1000 97.00% 96.17% 99.31% 99.62%
1000-5000 96.20% 95.67% 99.26% 99.44%
5000-10000 92.26% 91.52% 98.56% 99.04%
More than 10000 90.58% 89.66% 97.21% 98.85%

Combining TABLE I and Fig. 4 reveals that when the
unknown attack sequence is short, such as within 1 to 5000,
all four models can detect unknown APT attacks with a
correct rate of over 95.67%; this success is due to the shorter
attack. The features of the sequence can be well extracted
by the four models for discrimination. Among them, the
BERT model has the highest accuracy, reaching more than
99.42%, and LSTM is second, indicating that our model can
effectively detect an APT attack when the latency is not long.
As the length of the attack sequence increases, the CNN and
Perceptron models lose their effectiveness in detecting long-
term latency APT attacks. This is because such long unknown
sequences cannot effectively extract the characteristics of the
attack using a single-layer network or CNN network structure.
The LSTM and BERT models can also obtain good results
because they have memory for longer sequence data features;
in particular, the self-attention of the transformer contained
in BERT can properly note the APT attack, allowing it to
achieve the best detection effects. In short, the BERT model
has better performance than other models. We use the four
trained models for the test set and obtain the ROC curves,
which are shown in Fig. 5. The figure clearly shows that the
degree to which the ROC curves deviate from the 45-degree
diagonal is almost the same for all four models. The accuracy
area under the ROC curve is slightly larger for the proposed
method than for the other three models. Hence, we conclude
that our approach delivers better performance.

Taken together, the comparative analysis results of (1) and
(2) demonstrate that the method in this paper can effectively
detect an APT attack sequence with a long attack duration
in the IIoT and show the feasibility and effectiveness of this
method.

V. CONCLUSION

IIoT APT detection has gradually become a research hotspot
in both industry and academia, and many new technologies,
algorithms and systems related to APT detection have recently

Fig. 5: ROC curve comparison chart

emerged. According to the analysis of the 2016 Industrial
Control Systems Cyber Emergency Response Team (ICS-
CERT) Industrial Internet Security Situation Report, more
than 80% of the country’s critical infrastructure relies on
the Industrial Internet to automate the production process.
However, APT detection in the existing Industrial Internet has
many drawbacks, such as a low accuracy rate and a high
false alarm rate. This paper proposes a deep learning-based
proactive APT detection scheme for the IIoT. The experimental
results show that the proposed method not only has feasibility
and effectiveness in detecting APTs but also has an accuracy
rate as high as 99%. Our future work will optimize this model
and promote this technology in the IIoT.
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Fig. 1: IIoT-APT attack structure
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Fig. 2: BERT model structure
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Fig. 3: Transformer encoder structure
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Fig. 4: Sequence model accuracy rate comparison histogram
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Fig. 5: ROC curve comparison chart
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TABLE I: Accuracy comparison of the sequence models

Sequence length Perceptron CNN LSTM BERT
1-1000 97.00% 96.17% 99.31% 99.62%
1000-5000 96.20% 95.67% 99.26% 99.44%
5000-10000 92.26% 91.52% 98.56% 99.04%
More than 10000 90.58% 89.66% 97.21% 98.85%
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