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Abstract—Multi-modal retrieval has received widespread con-
sideration since it can commendably provide massive related data
support for the development of Computational Social Systems
(CSS). However, the existing works still face the following
challenges: (1) Rely on the tedious manual marking process
when extended to CSS, which not only introduces subjective
errors but also consumes abundant time and labor costs; (2)
Only using strongly aligned data for training, lacks concern for
the adjacency information, which makes the poor robustness
and semantic heterogeneity gap difficult to be effectively fit; (3)
Mapping features into real-valued forms, which leads to the char-
acteristics of high storage and low retrieval efficiency. To address
these issues in turn, we have designed a multi-modal retrieval
framework based on web knowledge-driven, called Unsupervised
and Robust Graph Convolutional Hashing (URGCH). The specific
implementations are as follows: First, a “secondary semantic self-
fusion” approach is proposed, which mainly extracts semantic-
rich features through pre-trained neural networks, constructs the
joint semantic matrix through semantic fusion, and eliminates
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the process of manual marking; Second, a “adaptive computing”
approach is designed to construct enhanced semantic graph
features through the knowledge-infused of neighborhoods and
employs Graph Convolutional Networks for knowledge-fusion
coding, which enables URGCH to sufficiently fit the semantic
modality gap while obtaining satisfactory robustness features;
Third, combined with hash learning, the multi-modality data is
mapped into the form of binary code, which reduces storage
requirements and improves retrieval efficiency. Eventually, we
perform plentiful experiments on the web dataset. The results
evidence that URGCH exceeds other baselines about 1%-3.7%
in MAPs, displays superior performance in all aspects, and can
meaningfully provide multi-modal data retrieval services to CSS.

Index Terms—Computational Social Systems (CSS),
Knowledge-infused, Knowledge-fusion, Multi-modal Retrieval,
Graph convolutional networks (GCNs), Unsupervised Hashing

I. INTRODUCTION

IN the era of big data, Computational Social Systems (CSS)
[1] has been pushed to the focus of research due to the rapid

development of various technologies such as network informa-
tion systems and the Internet of Things [2]–[5]. The popularity
of various related applications has brought large-scale data,
which has brought unprecedented challenges to the analysis of
social behaviors with complex correlations [6]. Computational
social science, an academic sub-discipline, is emerged as the
times require [7]. Its main purpose is to use knowledge-driven
computers to model, compute, and analyze social (web) data.
Many researchers are also working to discover the social
phenomena hidden in the increasingly complex large-scale
social data, such as social network analysis [8], COVID-19
analysis [9], public opinion analysis [10], sentiment analysis
[11], social media content analysis [12], similarity analysis
[13], etc. They analyze social behaviors on multiple dimen-
sions and levels to promote the further development of CSS.
The development of these related technologies often requires
the driving support of interrelated multi-modal data. More
importantly, how to retrieve more modality supplementary data
through one modality data to support these technologies is a
key challenge to be solved [14]. Therefore, in this research,
a multi-modal retrieval method is designed based on social
knowledge-driven in CSS.
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Fig. 1. Multi-modal retrieval in social computing system

As shown in Fig. 1, since the modality data in different
feature spaces have separate distribution structures, they fail
to be directly compared. Therefore, we ought to map them to
the same common subspace for similarity comparison while
preserving the original semantic similarity [13]. In the scenario
of enormous social datasets, low storage and real-time retrieval
have brought tremendous challenges [15], [16]. The hash
learning effectively reduces storage requirements and improves
retrieval efficiency by mapping original data as compact binary
codes in common subspace, i.e., Hamming space. It is worth
noting that similar instances in the common subspace should
have the same similarity to the original space, i.e., the principle
of preserving similarity [17].

Traditional multi-modal retrieval methods all utilize ar-
tificially annotated semantic labels for supervised training.
However, for the CSS, this will bring massive time and labor
costs [18], so such supervised learning methods will signifi-
cantly reduce the generalization of the model [19]. Therefore,
we recommend using unsupervised learning to solve this
difficulty. Different from the previous methods to obtain the
semantic matrix in the process of complicated marking, we
utilize the “secondary semantic self-fusion” to automatically
construct it, which considerably saves time and labor costs.

For data co-occurring in the network, due to human sub-
jectivity and other reasons, its relevance is often weak or
irrelevant [20]. Consequently, in the CSS, there are massive
irregular, disordered, and unstructured data [21], [22], mean-
time in what way to enhance the robustness to actual data
and avoiding the prediction errors caused by various factors
is a challenging issue. Traditional works only exploit strong
alignment data to train, which lacks consideration of this
problem and makes it often unable the expected effect to
deal with actual data [15]. How to conduct training in the
face of data that is weak relevant even irrelevant? In this
work, we utilize this kind of enhanced sample to train by
constructing graph features through the knowledge-infused
of the adjacency relationship between semantically related
instances. A feature encoder based on the Graph Convolutional
Network (GCNs) [23] is designed, which combines with hash
learning for knowledge-fusion by employing the semantics
of adjacent points, thereby enhancing the robustness of the

model.
To sum up, in this research, the contributions can be

outlined:

• In the real scene of CSS, to meaningfully provide multi-
modal data retrieval services, an innovative unsuper-
vised multi-modal retrieval method is proposed, called
Unsupervised and Robust Graph Convolutional Hashing
(URGCH), which is an end-to-end framework based on
social knowledge-driven and primarily comprises two
parts: “Knowledge-Infused” and “Knowledge-fusion”.

• To address the issue of the tedious manual marking
process and multitudinous time costs, we proffer a “sec-
ondary semantic self-fusion” method to automatically
construct the joint semantic matrix, which is used to
bridge the modality gap and guide the training process
of URGCH.

• To address issues of poor robustness, fit of the heteroge-
neous gap, and the requirements of low storage and high
retrieval efficiency, a method of “adaptive computing”
is proposed, which constructs enhanced semantic graph
features based on the knowledge-infused of the adjacency
relationship between semantically related instances. At
the same time, we employ GCNs to perform hash map-
ping and update its features with the semantic information
of adjacent points by knowledge-fusion to enhance the
robustness.

• Finally, plentiful experiments have been performed, and
the results manifest that URGCH surpasses other base-
lines to show more satisfactory performance. The spe-
cific conditions of each metric are as follows. Mean
average precision (MAP) has improved by 1%-3.7%,
topK-precision has surpassed other baselines, the actual
retrieval results are also satisfactory, and the frame-
work quickly converges about 6 − 7 iterations during
the training process. Conclusively, URGCH driven by
social knowledge can meaningfully provide multi-modal
retrieval services for CSS.

The remaining of this article is arranged as follows: In
Section II, related works have been analyzed and stated.
Subsequently, the problem definition and proposed URGCH
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are presented in detail in Section III. In Section IV, the corre-
sponding experimental procedures, results, and analysis have
been carefully provided. Finally, the work done is condensed
in Section V.

II. RELATED WORK

The social knowledge-driven multi-modal retrieval methods
can preferably provide data support for various kinds of re-
search on CSS. Therefore, unsupervised multi-modal retrieval
has gradually attracted widespread attention in the academic
community. Under the premise of not using semantic labels, it
mainly preserves the similarity of heterogeneous data through
co-occurrence information between modality data. According
to the different ways of feature extraction, it can be split into
the methods of shallow structure-based and deep structure-
based.

Shallow structure-based: As one of the earliest unsu-
pervised cross-modal hashing methods, Inter-Media Hashing
(IMH) [24] extends spectral hashing [25] to the field of multi-
modal. It explores the similarity between modality data by
calculating the modality similarity in the Hamming space.
Based on this work, Collective Matrix Factorization Hash-
ing (CMFH) [26] is the first to utilize matrix factorization
technology to fit the modality hash functions, and bridge the
modality gap by merging multiple information sources. To
value the intrinsic structural representation of features, with the
aid of the Hadamard matric, Latent Structure Discrete Hashing
Factorization (LSDHF) [27] decomposes similar structures in
an unsupervised manner to further strengthen modality associ-
ations. However, this kind of shallow structure method is diffi-
cult to fully explore the semantic information of modality data
through an independent manual feature encoding process [28],
which reduces the effectiveness of hash encoding [13], [19].

Deep structure-based: Due to its rich nonlinear represen-
tation ability [6], [22], [29], the extracted features of deep
networks contain richer semantic information and are more
discriminative and effective [15] in multi-modal retrieval.
Unsupervised Deep Cross-Modal Hashing (UDCMH) [30]
combines deep learning, matrix factorization technology [31],
and binary latent factor models [32] to jointly optimize feature
learning and hash code learning. In addition, it does not
need to relax and directly generate unified hash codes. To
enable the learned hash codes to maintain the neighborhood
structure of the original modality data, Deep Joint-Semantics
Reconstructing Hashing (DJSRH) [33] constructs a novel joint
semantic matrix to capture latent semantic affinity. And in the
training process, the aforementioned matrix is reconstructed
to the greatest extent, consequently, better performance is
obtained. To fully and effectively capture the correlation be-
tween modality data and enhance the discriminative ability of
hash codes, Joint-modal Distribution-based Similarity Hashing
(JDSH) [28] constructs a joint matrix to preserve semantic
similarity, meanwhile using a method based on sampling and
weighting to generate hash codes of more discriminative. To
provide reliable guidance to further fit cross-modal differences,
Aggregation-based Graph Convolutional Hashing (AGCH)
[34] proposes a more efficient retrieval strategy. Specifically,

TABLE I
NOTATIONS

Description Notation

scalar x
vector x
matrix X
the i-th row of matrix X i∗
the j-th column of matrix X∗j
the element in i-th row and

j-th column of matrix X ij

the transpose of matrix XT

the Frobenius norm of matrix ∥X∥F
the trace of matrix tr(X)

element sign function sign(x) =
{

1, x ≥ 0,
−1, x < 0.

TABLE II
DEFINED NOTATION OF THE DATA

Notation Description

n the number of the data
k the length of hash codes
dv the dimension of image instance
dt the dimension of text instance

V ∈ Rn×dv the original data of image
T ∈ Rn×dt the original data of text
S ∈ Rn×n the similarity matrix

D = {V i∗,T i∗}ni=1 the training data

without semantic supervision, it uses a variety of similarity
measures to measure the structural information of modalities
from multiple perspectives, and finally obtains a similarity
matrix through the aggregation strategy. Reconstruction Reg-
ularized Low-rank Subspace Learning (RRLSL) [35] recovers
modality information through the latent representation of opti-
mal conditions, which can effectively deal with scenarios with
missing semantic labels. JOint-teachingG (JOG) [36] provides
a lightweight and high-performance unsupervised cross-modal
retrieval framework, which mainly uses pre-trained models to
guide the learning of the trained models. And a refinement
strategy is designed to remove random noise, which further
improves the model performance through joint learning.

Although these methods exhibit respectable performance,
they are difficult to meet expectations when dealing with real
data in CSS. In addition, strong alignment data are utilized to
explore modality co-occurrence information, which makes the
modality semantic information underutilized and the modality
gap difficult to fit.

III. THE PROPOSED APPROACH URGCH

In this section, we have introduced the problem definition,
configuration information, coding and learning process of the
URGCH in detail.

A. Problem Definition

In this research, we concentrate on bimodal multi-modal
retrieval, i.e., image and text. Without loss of generality, more
modalities can be effortlessly expanded. The relevant notations
employed are recorded in Table I. Accordingly, the defined
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Fig. 2. The framework of URGCH, which includes Image Encoder and Text Encoder. The encoding process consists of two parts: (a). “Knowledge-Infused”
and (b). “Knowledge-fusion”. (a). The original modality data V and T based on the knowledge-infused of the adjacency relationship undergo the “Construct
graph” process to obtain the graph features V (g) and T (g), respectively, and the “Construct semantic matrix” process to obtain the joint semantic matrix
S. (b). It includes two independent coding parts, which are mainly used to map the semantically rich graph features into the Hamming embedding subspace
through the knowledge-fusion.

notations of the data employed in this work are recorded in
Table II.

B. Model

The flow chart of URGCH is graphically displayed in
Fig. 2, mainly including two parts: “Knowledge-Infused” and
“Knowledge-Fusion”, which will be described as follows.

1) Knowledge-Infused: In this subsection, the main purpose
is to obtain graph features and joint a semantic matrix for the
subsequent “Knowledge-Fusion”. Therefore, we propose the
approach of “secondary semantic self-fusion” to construct the
joint semantic matrix, and “adaptive computing” to construct
graph features.

a) Secondary semantic self-fusion to construct semantic
matrix: In the supervised multi-modal retrieval methods [15],
[37], the semantic matrix is constructed using artificially
annotated labels for supervising the training process. However,
the marking process in CSS requires massive time and labor
costs. In the unsupervised scene, the multi-label annotations
are unable to be used, so there is no way to construct the
traditional pairwise multi-label semantic matrix. At the same
time, the rich semantic similarity implied in the data is essen-
tial to bridging the modality gap. The features derived by the
deep neural network contain the rich semantics in the original
data. Therefore, without using multi-label labels, the semantic
features derived by the feature extractor are employed to build
the similarity matrix. In this work, the proposed approach of
construction is called “secondary semantic self-fusion”, which
is based on the cosine distance, and illustrated in Fig. 3.

For the image modality, let the semantic feature obtained
after the feature extractor f be V (p) =

{
v
(p)
i∗

}n

i=1
, and the

image semantic matrix S(v) is defined as:

S(v) =
{
s
(v)
ij

}n×n

=


v
(p)
i∗

(
v
(p)
j∗

)T∥∥∥v(p)i∗

∥∥∥
2

∥∥∥v(p)j∗

∥∥∥
2


n×n

,

s.t. s
(v)
ij ∈ [−1,+1].

(1)

For the text modality, let the semantic feature obtained by
the feature extractor g be T (p) =

{
t
(p)
i∗

}n

i=1
. It is worth noting

that each t
(p)
i∗ after feature extraction is still related to v

(p)
i∗ . The

text semantic matrix is formulized as:

S(t) =
{
s
(t)
ij

}n×n

=


t
(p)
i∗

(
t
(p)
j∗

)T∥∥∥t(p)i∗

∥∥∥
2

∥∥∥t(p)j∗

∥∥∥
2


n×n

,

s.t. s
(t)
ij ∈ [−1,+1].

(2)

To preserve the uniformity of semantic distribution between
modalities, we merge the image and text semantic matrix into
a unified similarity matrix S, which is called “semantic sec-
ondary fusion”. The specific integration method is as follows:

S = {sij}n×n
= λS(v) + ζS(t) + ξcos(S(v),S(t)),

s.t. sij ∈ [−1,+1], λ+ ζ + ξ = 1, (3)

where λ, ζ and ξ are hyperparameters. We use the validation
set to adjust adaptively to obtain the best weight distribution,
which will be explained in detail in Section IV-G. To maintain
the semantic distribution between the modalities, i.e., as shown
in Fig. 3 that the instances corresponding to the semantically
similar instances in one of the modalities in another modality
should also be similar, so we introduce the cosine similarity of
the third term. S records the pairwise similarity of the image-
text in the dataset, and fully integrates the semantic distribution
information between the modalities into a unified joint matrix.
Therefore, in the unsupervised scenario of the CSS, we utilize
the joint semantic similarity matrix S to guide the semantic
preserving similarity of the model training process.

b) Adaptive computing to construct graph feature: The
original image data V and the text data T pass the feature
extractors f and g to obtain feature representation matrices
V (p) and T (p) that contain rich semantics, respectively. To
input them into the GCN layers, we need to construct graph
features. The existing supervised graph construction [17]
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constructs the adjacency matrix through the artificial multi-
label annotation relationship between the data, nevertheless,
the multi-label annotation cannot be used in the unsupervised
environment. Therefore, we put forward a novel approach
to unsupervised graph feature construction, called “adaptive
computing”, which is illustrated in Fig. 4.

Taking image modalities as an example, given the query
image x, the purpose of constructing graph features is to
find out the data related to it in the mini-batch as much as
possible. Then, the graph features are input into the GCN layer
to fuse and strengthen the semantic knowledge of samples
and improve the robustness of URGCH. As we all know,
the greater the similarity between two instances with a larger
inner product [15]. Therefore, we calculate the inner product
by calculating x and all samples in the mini-batch V (p), and
obtain the adjacent set xadj of sample similarity sorted from
large to small as follows:

xadj = rsort
({

⟨x, v(p)i∗ ⟩
}n

i=1

)
, (4)

where rsort() is the descending operation, and ⟨⟩ is the inner
product. At the same time, to eliminate random errors and

ensure robustness, we set the top c adjacent points of most
similar to construct the graph features x(g), as follows:

x(g) =
{
(xadj)i

}c

i=1
, (5)

where we set c = 10. Through the above steps, the graph
feature x(g) of the image x can be obtained.

Similarly, we can obtain the graph feature set V (g) ={
v
(g)
i∗

}n

i=1
of the image data set V (p) and the graph feature

set T (g) =
{
t
(g)
i∗

}n

i=1
of the text data set T (t), respectively.

2) Knowledge-Fusion: In this subsection, the main purpose
is to use the joint semantic matrix to guide the hash coding
process for knowledge-fusion. As shown in Fig. 2, it mainly
contains two encoders based on GCNs, i.e., the Image Encoder
and Text Encoder, which are used to map the constructed
graph features to unified hash codes in the Hamming space.
The composition of the two encoders and the corresponding
configuration are presented as follows.

a) Image Encoder: The image feature extractor f is
derived from CNN-F [38] pre-trained on the ImageNet
dataset [39], and the first seven layers of parameters are frozen
and used to initialize f. At the same time, the input size of f
is adjusted to 3× 224× 224.

In the CSS, there are enormous irregular, disordered and
unstructured data. Therefore, to strengthen the robustness of
URGCH to real data, we explore the encoder network based
on multi-layer GCN layers. As mentioned above, the image
feature V undergoes “knowledge-infused” to obtain the image
feature V (g). At the same time, the set of adjacent points of
each image data point x is:

Nx =
{
j|j ∈ x(g), 1 ≤ j ≤ n

}
, (6)

Correspondingly, we can calculate the adjacency matrix

A(v) =
{
a
(v)
ij

}n×n

i=1,j=1
of the image modality undirected graph

V (g) as follow:

a
(v)
ij =

{
1, j ∈ Ni,
0, j /∈ Ni.

(7)

Based on the above information and inspired by work [23],
the forward inter-layer propagation rules of the multi-layer
GCN adopt the following forms:

H v(l+1) = σ

(
D̃

− 1
2 Ã

(v)
D̃

− 1
2H v(l)W v(l)

)
, (8)

where Ã
(v)

= A(v) + In. In is the n-dimensional identity
matrix, which means that each node is connected to itself
so that the features of the vertex itself are also preserved.
D̃ represents a degree matrix, furthermore, D̃ii =

∑
j Ã

(v)

ij .
H v(l) indicates the input features of the l-th GCN layer.
Moreover, its dimension of output is F l and weight matrix is
denotes as W v(l), which will be continuously learned and
updated during the training process. The dimension of W v(l)

is F l × F (l+1). H v(l+1) indicates the input features of the
(l+1)-th GCN layer and the output features of the l-th GCN
layer. σ(·) represents the nonlinear activation function, where
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TABLE III
DIMENSIONAL CONFIGURATION INFORMATION OF Image Encoder

Number Layer Dimension

1 CNN-F 4096
2 GCN1 1024
3 GCN2 512
4 fc1 512
5 fc2 k

the LeakyReLU activation function is used in the GCN layer.
In multi-layer GCN, we construct graph features from the most
relevant samples of top c and meanwhile integrate its features
and the features of samples with complementary semantics, to
sufficiently strengthen the robustness of URGCH in CSS.

On this basis, fc1 → fc2 (fully-connected layers) have been
added to map features to hash codes in the joint Hamming
space. In conclusion, the dimensional configuration informa-
tion of Image Encoder is recorded in Table III, where the
number in the column of “Dimension” betokens the output
dimension of this layer.

b) Text Encoder: To encode text data, it is first expressed
as bag-of-words vectors, which will be input to the text
feature extractor g. We construct two fully-connected layers
(fc1 → fc2) as text feature extractor, which is mainly used
to extract rich semantic features T (p). It is worth noting that
the parameters of g will also be optimized and updated during
the learning process, which will be thoroughly explained in
Section III-C.

Similarly, the encoding process is similar to the image
encoder f . After obtaining the graph feature T (g), the set of
adjacent points of each text y is:

My =
{
j|j ∈ y(g), 1 ≤ j ≤ n

}
, (9)

The adjacency matrix A(t) =
{
a
(t)
ij

}n×n

i=1,j=1
of the text

modality undirected graph T (g) is as follows:

a
(t)
ij =

{
1, j ∈ Mi,
0, j /∈ Mi.

(10)

Correspondingly, the forward inter-layer propagation rules
of the multi-layer GCN is expressed in Eq. 11:

H t(l+1) = σ

(
D̃

− 1
2 Ã

(t)
D̃

− 1
2H t(l)W t(l)

)
, (11)

In the same way, we add two fully-connected layers (fc3 →
fc4) after the GCN layers for hash mapping. Eventually,
the dimensional configuration information of Text Encoder is
demonstrated in Table IV.

It must be noted that the Image Encoder and the Text
Encoder are independent networks. In this article, although
some parameters are the same in form, their contents are
independent of each other and are not shared.

C. Learning

Let F = Img Encoder
(
V ; θ(v)

)
represent the final output

features of Image Encoder, where θ(v) denotes its parameters.

TABLE IV
DIMENSIONAL CONFIGURATION INFORMATION OF Text Encoder

Number Layer Dimension

1 fc1 4096
2 fc2 4096
3 GCN1 1024
4 GCN2 512
5 fc3 512
6 fc4 k

Similarly, let G = Txt Encoder
(
T ; θ(t)

)
represent the final

output features of the Text Encoder, where θ(t) denotes its
parameters. Our purpose is to continuously optimize and
update parameters of Encoders through the learning process.

Consequently, the objective function of URGCH have been
designed to be:

1) Image Encoder:

min
θ(v)

L(v) = L(v)
1 + αL(v)

2

= −
n∑

i,j=1

(
Sij∆

(v)
ij − log

(
1 + e∆

(v)
ij

))
+ α

∥∥∥F −B(v)
∥∥∥2
F
, (12)

where ∆
(v)
ij = 1

2F i∗G
T
j∗, B(v) = sign (F ) ∈ {−1,+1}n×k

is the predicted hash codes of Image Encoder, α is the
hyperparameter. L(v)

1 is the negative log-likelihood, and opti-
mizing this term is equivalent to the maximum likelihood. By
optimizing this term, the semantic consistency and relevance
between the original data can be well preserved, which can be
derived from the following formula:

p (Sij | Fi∗,Gj∗) =

{
σ (∆ij) , Sij = 1,

1− σ (∆ij) , Sij = 0,
(13)

where σ(∆ij) =
1

1+e−∆ij
. ∆ represents a measure of similar-

ity in the form of inner product. Therefore, the more similar
between F i∗ and Gj∗, the greater the inner product and the
higher the probability. L(v)

2 is the quantization loss, which is
utilized to minimize the mistake of learning the hash codes.

2) Text Encoder:

min
θ(t)

L(t) = L(t)
1 + αL(t)

2

= −
n∑

i,j=1

(
Sij∆

(t)
ij − log

(
1 + e∆

(t)
ij

))
+ α

∥∥∥T −B(t)
∥∥∥2
F
, (14)

where ∆
(v)
ij = 1

2Gi∗F
T
j∗, the predicted hash codes is repre-

sented as B(t) = sign (G) ∈ {−1,+1}n×k. L(t)
1 and L(t)

2 are
similar losses as in Image Encoder.

As a consequence, combining Eq. 12 and Eq. 14, the overall
objective function can be represented as:

min
θ(v),θ(t)

L = L(v) + L(t). (15)
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Algorithm 1: The learning algorithm of URGCH
Input: V ; T ; k.
Output: θ(v); θ(t); B(v) and B(t) (hash codes).

1 Initialization: α, λ, ζ and ξ; θ(v) and θ(t); µ (learning
rate); m = 128 (batch size); t =

⌈
n
m

⌉
(number of

iterations); e = 200 (number of cycle epochs) and
iter (current iteration).

2 repeat
3 for iter = 1, 2, · · · , t do
4 ⋆ Randomly take out m instances from

D = {V ,T } to fabricate a mini-batch;
5 ⋆ Obtain the semantic features V (p) and T (p)

which are extracted by the feature extractor
respectively;

6 ⋆ Calculate the similarity matrix S as reported
by Eq.3;

7 ⋆ Construct the graph feature V (g) and T (g)

according to Eq.5;
8 ⋆ Obtain B(v) and B(t) of through the

forward-propagation;
9 ⋆ Calculate the objective function in Eq.15;

10 ⋆ Use gradient back-propagation to update
parameters θ(v) and θ(t).

11 end
12 until the cycle epoch iterates e times;

In this work, we utilize back-propagation (BP) and mini-
batch stochastic gradient descent (SGD) strategies to optimize
the objective function L. In Algorithm 1, we summarize the
entire workflow of URGCH.

D. Implementation Details

Unified description of the activation function used in
URGCH: Unless otherwise specified, the layers that output the
predicted hash codes all employ the tanh, and the remainder
all employ the ReLU.

IV. EXPERIMENT

In this section, we first introduce the Web social Datasets
used in Section IV-A, MIRFLICKR-25K and NUS-WIDE.
Secondly, the Evaluation metrics Mean average precision
(MAP) and topK-precision are introduced in Section IV-B,
the baselines used in the comparison experiment are shown
in Section IV-C. In addition, it also introduces the related
parameters setting not mentioned above in Section IV-D. In
Section IV-E, the results of MAP and topK-precision are
shown, which can prove the performance of the model, and
then prove the effectiveness of the “secondary semantic self-
fusion” and “adaptive computing” we proposed. In Section
IV-F, the experiment of the retrieval results is supplemented to
further prove the effectiveness of URGCH. Finally, we conduct
hyperparameter analysis experiments to verify the selection of
hyperparameters in Section IV-G, and convergence analysis
experiments to verify the convergence process of the model in
Section IV-H, which proves the effectiveness of the framework
combined with hash learning.

TABLE V
STATISTICS OF DATASET DIVISION

Dataset MIRFLICKR-25K NUS-WIDE

Train 10,000 10,500
Test (Query) 2000 2000

Retrieval (Database) 23,000 184,577
Total 25,000 186,577

TABLE VI
RELATED PARAMETERS SETTING

Parameter Setting

batch size 128
learning rate 0.0001 - 0.1
cycle epochs 200

number of adjacent points 10
length of hash code 16, 32, 64, 128

hyperparameter α = 0.01 and λ = 0.3, ζ = 0.3, ξ = 0.4

A. Dataset

1) MIRFLICKR-25K: The MIRFLICKR-25K dataset [40]
collects 25,000 images and text data obtained from the
FLICKR website. Each text is represented by a bag-of-words
(BOW) vector of 500-dimension.

2) NUS-WIDE: The NUS-WIDE dataset [41] collects
269,648 image-text pairs data obtained from various websites,
each of which contains 1 to 81 labels. We select a total of
186,577 instances of the 10 most frequent labels as training
data. Similarly, each text is represented by a BOW vector of
500-dimension.

It is worth noting that we randomly extract and divide the
dataset, which is counted in Table V in detail.

B. Evaluation Metric

Mean average precision (MAP) and topK-precision curve
are employed to explore the performance of URGCH. The
former derives from averaging of average precision (AP) as
follows:

AP =
1

z

z∑
i=1

ti
i
, (16)

where z symbolizes the quantity of instances in the database
related to the current query, and ti represents the amount of
relevant results within the top i samples. Therefore, the MAP
can be calculated as follows:

MAP =
1

nq

nq∑
j=1

APj , (17)

where nq denotes the amount of samples inside the query set.
The topK-precision indicates the precision of the model

when the number of retrieved samples is different.

C. Baseline

To estimate the effectiveness of URGCH, which has
been compared with four state-of-the-art baselines, including
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TABLE VII
MAPS RESULTS. THE BEST MAPS ARE SHOWN IN BOLDFACE.

Retrieval Task Method MIRFLICKR-25K NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128bits

Image → Text

CMFH [26] 0.621 0.624 0.625 0.627 0.455 0.459 0.465 0.467
UDCMH [30] 0.689 0.698 0.714 0.717 0.511 0.519 0.524 0.558
DJSRH [33] 0.810 0.843 0.862 0.876 0.724 0.773 0.798 0.817
JDSH [28] 0.832 0.853 0.882 0.892 0.736 0.793 0.832 0.835
URGCH 0.859 0.871 0.901 0.914 0.773 0.820 0.842 0.859
improvement ⇑ 0.027 ⇑ 0.018 ⇑ 0.019 ⇑ 0.022 ⇑ 0.037 ⇑ 0.027 ⇑ 0.010 ⇑ 0.024

Text → Image

CMFH [26] 0.642 0.662 0.676 0.685 0.529 0.577 0.614 0.645
UDCMH [30] 0.692 0.704 0.718 0.733 0.637 0.653 0.695 0.716
DJSRH [33] 0.786 0.822 0.835 0.847 0.712 0.744 0.771 0.789
JDSH [28] 0.825 0.864 0.878 0.880 0.721 0.795 0.794 0.804
URGCH 0.853 0.888 0.895 0.907 0.758 0.809 0.822 0.836
improvement ⇑ 0.028 ⇑ 0.024 ⇑ 0.017 ⇑ 0.027 ⇑ 0.037 ⇑ 0.014 ⇑ 0.028 ⇑ 0.032

shallow-structure (CMFH [26]) and deep structure (UDCMH
[30], DJSRH [33], JDSH [28]).

To guarantee fairness, all baselines, including the shallow
structure, employ the pre-trained CNN-F to extract image
features. It is worth noting that the code of UDCMH is not
yet open-source, so we implemented it carefully in accordance
with the original paper. Moreover, the source codes of other
baselines are graciously offered by the original authors, and the
corresponding configuration is strictly implemented following
the original paper. To ensure interference from other factors,
we adopt the unified dataset after the above processing for
comparative experiments.

D. Related Parameters Setting

It should be noted that owing to image extractor f using pre-
trained CNN-F, we freeze its parameters so that they will not
be updated during the learning process. Besides, all param-
eters of URGCH are initialized randomly and continuously
optimized and updated during learning. In the experiment,
we set the batch size to 128 and training iteration to 200
times. Furthermore, the learning rate adaptively adjusts from
0.0001 to 0.1 by using the validation set. At the same time, we
conduct ten experiments and average the results to eliminate
randomness. Finally, we record the relevant parameters and
their setting used in this work in Table VI.

E. Performance

1) MAP: Table VII records the MAPs value results of
URGCH and all baselines, where “Image → Text” indi-
cates using the image (query) to retrieve text (database), and
“Text → Image” indicates using the text (query) to retrieve
image (database). It can be inferred from the comparison
of MAPs values that USGCH can effectively achieve better
performance than other baselines. By way of illustration, on
NUS-WIDE while “Image → Text” and the length of hash
codes is 16 bits, URGCH improves the MAP value by 0.037
compared to the second-best method (JDRH).

2) topK-precision: It has been presented in Fig. 5, including
URGCH and all baselines, where the length of hash codes
is 128 bits. As is well-known, the higher of the curve, the
stronger of performance. Therefore, it can be found that
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Fig. 5. The topK-precision curves.

URGCH achieves satisfactory performance and outperforms
other baselines.

F. Retrieval Results

To verify the actual action of URGCH, two samples (data
point of 8916-th) are tried on MIRFLICKR with the hash
codes is set to 32 bits. The results are displayed in Fig. 6,
where the left column represents the query, and the right
column represents the retrieved results. In addition, “Text →
Image” means using texts as the query to retrieve the image
database, and “Image → Text” means using images as the
query to retrieve the text database. Finally, the Hamming
distance between the query and the samples in the database
is calculated and sorted. Therefore, URGCH can achieve
satisfactory multi-modal retrieval tasks.
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Fig. 7. The influences of hyperparameters: (a) α in objective function. (b)
λ, ζ and ξ in “Secondary semantic self-fusion”
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G. Hyperparameter Analysis

To research the affect of the hyperparameter α in Eq. 15
and the hyperparameters λ, ζ and ξ in the Section III-B1a,
we randomly extract 2000 points from MIRFLICKR-25K as
the validation set for experimentation, where the hash codes
is set to 128 bits. The influence of the MAP on different
hyperparameters is shown in Fig. 7. Consequently, it can be
inferred that the USGCH can achieve the best performance
when α = 0.01 and λ = 0.3, ζ = 0.3, ξ = 0.4.

H. Convergence Analysis

We conduct an experiment in NUS-WIDE to verify the
convergence of URGCH, where the length of hash codes is 32
bits. Fig. 8 manifests the variation of the value of objective
function and MAP along with the iteration. it has been inferred
that the MAP gradually increases as the objective function
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Fig. 9. Robustness analysis on MIRFLICKR− 25K.

decreases during the training process, and finally converges
quickly about 6-7 iterations.

I. Robustness Analysis

Supervised methods usually construct noisy data by ran-
domly changing semantic labels, etc., and then evaluate the
robustness of the model. However, semantic labels are not
available in unsupervised methods. Therefore, inspired by this,
we randomly permutate some element values in the unsuper-
vised semantic matrix constructed in Section III-B1a according
to different probability values to introduce some noise and use
the trained URGCH for testing. On the MIRFLICKR−25K
dataset, we conduct an experimental evaluation of robustness
and record the average MAP values for two retrieval tasks
“Image → Text” and ”Text → Image”, as shown in
Fig. 9, where the length of the hash code is 128 bits. It can
be found that when the random noise probability is within
0.3, the performance of URGCH is not significantly affected,
and its performance is still excellent. Therefore, URGCH
has outstanding robustness. However, when the random noise
probability is greater than 0.3, the excessive semantic relations
are severely disrupted, so the performance starts to decline
significantly.

V. CONCLUSION AND OUTLOOK

In this work, to provide reliable multi-modal retrieval ser-
vices for CSS, we propose the Unsupervised and Robust
Graph Convolutional Hashing (URGCH). It utilizes “sec-
ondary semantic self-fusion” to construct the joint semantic
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matrix which is employed to guide the training process, saving
abundant time and labor costs in the process of manual
marking. Moreover, through the knowledge-infused of the
neighborhood, the semantic-enhanced graph features are con-
structed through the approach of “adaptive computing”, and
the multi-layer GCNs layers are designed for hash coding,
which combines with hash learning for knowledge-fusion by
employing the semantics of adjacent points and enhances the
robustness of URGCH. Finally, extensive experiments on the
social dataset demonstrate that URGCH has satisfactory su-
perior performance and can provide multi-modal data support
for CSS.

Based on the existing foundation, our future work will be
expected to make efforts and breakthroughs in the following
points, and expect to dedicate our modest efforts to the
development of CSS. (1) Model large-scale noisy datasets in
reality to better deal with various real-world scenarios. (2) We
found that different adjacencies have primary and secondary
importance when constructing graph features. Therefore, it is
desirable to apply attention weight to adjacent points to further
improve the robustness. (3) Finally, we expect to make further
explorations in the extension of modalities, such as audio,
video, etc.
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