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Heard melodies are sweet,
but those unheard, are sweeter.
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LAY SUMMARY

Over the past few decades, the volume of astronomical and cosmological data

has increased substantially. In response to that, a variety of astrophysical

models have been proposed to explain the plethora of observations. As the

information provided by the data is always incomplete and uncertain, infer-

ring the properties of a model, including the values of its parameters, given

the observed data, generally requires us to reason in the face of uncertainty.

In the context of Bayesian inference, uncertainty is represented by the notion
of probability. One usually starts by quantifying their state of knowledge

about the possible values of the model parameters prior to seeing the data, in
the form of a probability distribution called the prior. The next step is to use

the so–called Bayes’ theorem in order to update one’s degree of belief about

the model parameters given the available data. The outcome of this updat-

ing process is the posterior probability distribution of the model parameters

given the data which quantifies the plausibility of different parameter values.

Approximating the posterior generally requires the use of probabilistic

computational methods. Standard practice in astronomy often employs con-

ventional computational tools (e.g. Markov chain Monte Carlo) despite their
specific theoretical limitations or narrow range of validity. The aim of this

thesis is to first introduce the basic principles of Bayesian inference along

with the basic methods used for Bayesian computation and then present two

novel algorithms and their respective software implementations. A common

element of these newly developed tools is their ability to exploit the available

information about the geometry of the posterior in order to approximate it

more quickly. Finally, both methods are able to benefit from the possible

availability of multiple CPUs in order to accelerate their computation.
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ABSTRACT

The goal of this thesis is twofold; introduce the fundamentals of Bayesian
inference and computation focusing on astronomical and cosmological appli-

cations, and present recent advances in probabilistic computational methods

developed by the author that aim to facilitate Bayesian data analysis for the
next generation of astronomical observations and theoretical models.

The first part of this thesis familiarises the reader with the notion of prob-

ability and its relevance for science through the prism of Bayesian reasoning,
by introducing the key constituents of the theory and discussing its best prac-

tices. The second part includes a pedagogical introduction to the principles

of Bayesian computationmotivated by the geometric characteristics of proba-

bility distributions and followed by a detailed exposition of various methods

including Markov chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC)
and Nested Sampling (NS). Finally, the third part presents two novel compu-

tational methods and their respective software implementations.

The first such development is Ensemble Slice Sampling (ESS), a new class

ofMCMC algorithms that extend the applicability of the standard Slice Sam-
pler by adaptively tuning its only hyperparameter and utilising an ensemble

of parallel walkers in order to efficiently handle strong correlations between

parameters. The parallel, black–box and gradient–free nature of the method

renders it ideal for use in combination with computationally expensive and

non–differentiable models often met in astronomy. ESS is implemented in

Python in the well–tested and open-source software package called zeus that
is specifically designed to tackle the computational challenges posed bymod-

ern astronomical and cosmological analyses. In particular, use of the code

requires minimal, if any, hand–tuning of hyperparameters while its perfor-

mance is insensitive to linear correlations and it can scale up to thousands

of CPUs without any extra effort.

The next contribution includes the introduction of Preconditioned Monte
Carlo (PMC), a novel Monte Carlo method for Bayesian inference that facili-
tates effective sampling of probability distributions with non–trivial geome-

try. PMC utilises a Normalising Flow (NF) in order to decorrelate the param-

eters of the distribution and then proceeds by sampling from the precondi-

tioned target distribution using an adaptive SMC scheme. PMC, through its

Python implementation pocoMC, achieves excellent sampling performance,

including accurate estimation of the model evidence, for highly correlated,

non–Gaussian, and multimodal target distributions. Finally, the code is di-

rectly parallelisable, manifesting linear scaling up to thousands of CPUs.
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Figure 6.2 Illustration of the stepping–out and shrinking pro-

cedures used in slice sampling. Given an initial state

𝜃 in the Markov chain, an auxiliary variable 𝜙 is

sampled corresponding to the height thus defining

the extended state (𝜃, 𝜙) shown here as a blue point.
An interval of a certain width is placed uniformly

around the current point (𝜃, 𝜙) and expanded in steps
of size equal to the initial width until both of its

ends, 𝐿 and 𝑅, are outside the graph. A new state,

shown in red, is then proposed uniformly along the

interval (𝐿, 𝑅). Since the proposed state lies above

the graph of 𝑓 (𝜃) (i.e. not in the slice shown as a

continuous line) it is rejected. A new state, shown

in green, is the proposed uniformly between the re-

jected state and 𝑅. Since the proposed state is below
the graph, and thus in the slice, it is accepted and

added to the Markov chain. The whole process is

then repeated. . . . . . . . . . . . . . . . . . . . . . 97

Figure 6.3 Illustration of Hamiltonian trajectories in parameter

space. The black points correspond to the accepted

states. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 7.1 Illustration of theGaussian ensembleMCMCmethod.

A new state 𝜃 ′𝑘 is proposed in the vicinity of the

position 𝜃𝑘 of the walker that is updated using an

rescaled version of the sample covariance matrix of

the rest of the walkers (i.e. excluding 𝜃𝑘) for the nor-
mal proposal distribution. . . . . . . . . . . . . . . . 104

Figure 7.2 Illustration of the affine–invariant stretchmove. The

selected walker 𝜃𝑘 is moved to its new position 𝜃 ′𝑘
along the line defined by 𝜃𝑗 and 𝜃𝑘 . 𝜃𝑗 is a walker

that is uniformly selected from the rest of the en-

semble (i.e. excluding 𝜃𝑘). . . . . . . . . . . . . . . . 106

Figure 7.3 Illustration of the differential evolutionMonte Carlo.

The selected walker 𝜃𝑘 is moved to its new position

𝜃 ′𝑘 parallel to the line defined by 𝜃𝑖 and 𝜃𝑗 . The lat-
ter are two walkers that are uniformly selected from

the rest of the ensemble (i.e. excluding 𝜃𝑘). . . . . . 108

Figure 7.4 Illustration of the gradual tempering performed in

the posterior distribution. The prior distribution cor-

responds to 𝛽 → 0 and the posterior is recovered as
𝛽 → 1. . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 7.5 Illustration of the parallel tempering swaps performed

between adjacent temperature levels. . . . . . . . . 112



Figure 8.1 The Savage–Dickey density ratio expresses the Bayes
factor BF01 as the ratio of marginal posterior to the

prior density at the point 𝜙0 in which model 𝑀1 re-

duces to 𝑀0. . . . . . . . . . . . . . . . . . . . . . . 122

Figure 9.1 Illustration of the Sequential Monte Carlo algorithm
with its three fundamental steps. During the correc-

tion step the particles are reweighted to represent

the next probability distribution. Selection removes

the particles with the smaller important weights and

multiplies those with larger weights. Finally, muta-

tion diversifies the particles by moving them. . . . . 127

Figure 9.2 Illustration comparing two ways which one can use

to approximate themodel evidence integral. The left

panel shows the direct multi–dimensional integra-

tion over the parameters. The right panel shows the

one–dimensional integration over the prior volume

𝑋 enclosed in the iso–likelihood contours. . . . . . 130

Figure 9.3 Illustration of 8 samples drawn uniformly from the

prior with their respective iso–likelihood contours

(left), along with their corresponding contributions

to the evidence integral (right). . . . . . . . . . . . . 131

Figure 9.4 Illustration of the nested sampling procedure. Given

some uniformly distributed points from the prior,

we identify and remove the worst point, that is, the

point with the minimum likelihood value. 𝑚𝑖𝑛, and

replace it a new point sampled from the prior sub-

ject to the likelihood constrain  > 𝑚𝑖𝑛. Finally,

the volume is contracted to account for the removal

of the worst point. . . . . . . . . . . . . . . . . . . . 132

Figure 10.1 The plot shows the univariate slice samplingmethod.

Given an initial value 𝑥0, a value 𝑦0 is uniformly

sampled along the vertical slice (0, 𝑓 (𝑥0)) (green dashed
line) thus defining the initial point (blue star). An

interval (𝐿, 𝑅) is randomly positioned horizontally

around the initial point, and then it is expanded in

steps of size 𝜇 = 𝑅 − 𝐿 until both of its ends 𝐿 ′, 𝑅 ′

are outside the slice. The new point (green star) is

generated by repeatedly sampling uniformly from

the expanded interval (𝐿 ′, 𝑅 ′) until a point is found
inside the slice. Points outside the slice (e.g. the red

star) are used to shrink the interval (𝐿 ′, 𝑅 ′) by mov-

ing 𝐿 ′ or in this case 𝑅 ′
to that point and accelerate

the sampling procedure. . . . . . . . . . . . . . . . . 144
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Figure 10.2 The plot shows the differential direction move. Two

walkers (red) are uniformly sampled from the com-

plementary ensemble (blue). Their positions define

the direction vector (solid black). The selectedwalker

(magenta) then moves by Slice Sampling along the

parallel direction (dashed black). . . . . . . . . . . . 150

Figure 10.3 The plot shows the Gaussian direction move. A di-

rection vector (solid black) is sampled from theGaussian-

approximated distribution of thewalkers of the com-

plementary ensemble (green). The selected walker

(magenta) then moves by Slice Sampling along the

parallel direction (dashed black). . . . . . . . . . . . 151

Figure 10.4 The plot shows the global direction move assuming

that the uniformly selected pair of walkers of the

complementary ensemble belongs to different com-

ponents (blue and green). A position (red) is sam-

pled from each component (using the re-scaled by

𝛾 covariance matrix). Those two points (red) de-

fine the direction vector (black) connecting the two

modes (blue and green). The selected walker (ma-

genta) then moves by slice sampling along the par-

allel direction (dashed). . . . . . . . . . . . . . . . . 154

Figure 10.5 The plots compare the 1-sigma and 2-sigma con-

tours generated by the optimised random-walkMetropo-

lis (left), Standard Slice (centre) and Ensemble Slice

Sampling (right) methods to those obtained by Inde-

pendent Sampling (blue) for the AR(1) distribution.

All samplers used the same number of probability

density evaluations, 3 × 105. Only the first two di-

mensions are shown here. . . . . . . . . . . . . . . . 158

Figure 10.6 The plots compare the 1-sigma and 2-sigma con-

tours generated by the optimised random-walkMetropo-

lis (left), Standard Slice (centre) and Ensemble Slice

Sampling (right) methods to those obtained by In-

dependent Sampling (blue) for the correlated fun-

nel distribution. All samplers used the same number

of probability density evaluations, 3 × 105. Only the

first two dimensions are shown here. . . . . . . . . 160

Figure 10.7 The plot shows a simulated image used in the Bayesian

object detection exercise. There are 8 circular ob-

jects included here. As the objects are hardly vis-

ible due to the background noise their centres are

marked with red stars. . . . . . . . . . . . . . . . . . 164



Figure 10.8 The plot compares the results of 6 samplers, namely

SequentialMonte Carlo (SMC, red), Affine-Invariant

Ensemble Sampling (AIES, yellow), Differential Evo-

lution Markov Chain (DEMC, purple), Kernel Den-

sity EstimateMetropolis (KM, orange), Ensemble Slice

Sampling using the differential move (ESS, green),

and Ensemble Slice Sampling using the global move

(ESS, blue). The target distribution is a 10–dimensional

GaussianMixture. The figure shows the 1Dmarginal

distribution for the first parameter of the 10. . . . . 167

Figure 10.9 The plot compares the results of 6 samplers, namely

SequentialMonte Carlo (SMC, red), Affine-Invariant

Ensemble Sampling (AIES, yellow), Differential Evo-

lution Markov Chain (DEMC, purple), Kernel Den-

sity EstimateMetropolis (KM, orange), Ensemble Slice

Sampling using the differential move (ESS, green),

and Ensemble Slice Sampling using the global move

(ESS, blue). The target distribution is a 50–dimensional

GaussianMixture.The figure shows the 1Dmarginal

distribution for the first parameter of the 50. . . . . 168

Figure 10.10 The plot shows the adaptation of the length scale 𝜇
as a function of the number of iterations and starting

from a wide range of initial values. Each trace is an

independent run and the y-axis shows the value of

𝜇 divided by the final value of 𝜇. The target distribu-
tion in this example is a 20–dimensional correlated

normal distribution. Starting from larger 𝜇 values

leads to significantly faster adaptation. . . . . . . . 169

Figure 10.11 The plot shows the time 𝑡𝑓 required for ESS to com-

plete a pre-specified number of iterations as a func-

tion of the ratio of the number of available CPUs

𝑛CPUs to the total number of walkers 𝑛Walkers. The

results are normalisedwith respect to the single CPU

case 𝑡1. The method scales as (1/𝑛CPUs) as long as

𝑛CPUs ≤ 𝑛
Walkers

/2 (dashed line). The shaded areas

show the 2 − 𝜎 intervals. . . . . . . . . . . . . . . . 170
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Figure 11.1 Illustration of the univariate slice sampling update.

Given the current sample 𝑥0, a value 𝑦0 is uniformly

sampled along the vertical slice (0, 𝑓 (𝑥0)) (dashed line)
thus defining the initial point (blue). An interval

(𝐿, 𝑅) is uniformly positioned horizontally around

(𝑥0, 𝑦0) and it is expanded in steps of size 𝑅 − 𝐿 until
both its ends are outside the slice. The new sam-

ple is generated by repeatedly sampling (uniformly)

from the interval (𝐿 ′, 𝑅 ′) until a sample (green star)

is found inside the slice. Samples outside of the slice

(red star) are rejected and they are instead used to

shrink (𝐿 ′, 𝑅 ′). . . . . . . . . . . . . . . . . . . . . . 178

Figure 11.2 The figure illustrates the differential move in the

context of Ensemble Slice Sampling. The walker 𝑋𝑘
to be updated is shown in red. Two walkers, 𝑋𝑙
and 𝑋𝑚, (blue) are uniformly selected from the com-

plementary ensemble (grey). The approximate slice

(dotted line) is constructed parallel to the two walk-

ers𝑋𝑙 and𝑋𝑚 using the stepping-out procedure. The

new position 𝑌 (green) of 𝑋𝑘 is sampled using the

shrinking procedure along the approximate slice. . . 180

Figure 11.3 The figure shows numerical results (i.e. walker tra-

jectories/chains for the first parameter) demonstrat-

ing the performance of the three ensemble MCMC

methods in the case of a normal (Gaussian) target

distribution in 10, 25 and 50 dimensions respectively.

The last column illustrates the 1-D marginal pos-

terior corresponding to the first parameter 𝑥1 esti-
mated directly from the samples for the 50-dimensional

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Figure 11.4 This figure shows the distribution of step sizes of

walkers for the three different samplers in the case

of a normal (Gaussian) target distribution in 𝐷 =
50. It is important to note here that both emcee
algorithms exhibit a peak at zero separation; zeus
on the other hand does not due to its non-rejection

nature. . . . . . . . . . . . . . . . . . . . . . . . . . 184



Figure 11.5 The figure shows numerical estimates of the inte-

grated autocorrelation time (number of steps along

a chain required to obtain an independent sample;

left panel), the effective sample size (percentage of

effectively independent samples in a chain; middle

panel), and the sampling efficiency (i.e. effective sam-

ple size per model evaluation; right panel) for a nor-

mal target distribution and varying number of di-

mensions. The number of walkers was set to 4 × 𝐷
for zeus and 16 × 𝐷 for emcee, this was the op-

timal choice (i.e. the one maximising the efficiency

for the given dimensionality) for each sampler. zeus
and emcee/DEMC exhibit linear scaling of the au-

tocorrelation time with the number of dimensions

whereas emcee/AIES scales exponentially. . . . 185

Figure 11.6 The figure shows the computational cost until con-

vergence is reached in terms of the number of model

evaluations for the different ensemble samplers for

a highly correlated 25–dimensional normal distribu-

tion. The left panel shows the computational cost

for a single walker. From this we can see that the

cost for a single walker decreases as we increase the

number of walkers until it reaches a plateau. The

high computational cost for low numbers of walk-

ers can be attributed to the low variety or sparsity

of possible proposals; this is significantly higher for

emcee/AIES. The right panel takes into account

the linear scaling of the total computational cost as

we increase the number of walkers and shows the

total computational cost for the whole ensemble un-

til it converges. . . . . . . . . . . . . . . . . . . . . . 187

Figure 11.7 The figure shows the number of possible directions

along which zeus and emcee/AIES can propose

new samples as a function of the number of walkers

in the complementary ensemble. emcee/DEMCex-

hibits the same number of proposals as zeus and it

is not plotted here. zeus has a much higher vari-

ety of possible directions compared toemcee/AIES
for any given number of walkers, assuming that that

number is greater than 2. . . . . . . . . . . . . . . . 189
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Figure 11.8 The figure shows numerical results (i.e. walker tra-

jectories/chains for the first parameter) demonstrat-

ing the performance of the three ensemble MCMC

methods in the case of the ring target distribution

in 2, 10 and 25 dimensions respectively. The last

column illustrates the 1-D marginal posterior cor-

responding to the first parameter 𝑥1 estimated di-

rectly from the samples for the 25-dimensional case.

One can notice here that in 10 and 25 dimensions

both emcee methods mix very slowly. In the 25-

dimensional case almost all of emcee/DEMC’swalk-

ers are unable to move and the autocorrelation time

is effectively infinite. . . . . . . . . . . . . . . . . . 190

Figure 11.9 This figure shows the distribution of step sizes of

walkers for the three different samplers in the case

of a ring target distribution in𝐷 = 25. It is important

to note here that both emcee algorithms exhibit a

peak at zero separation; zeus on the other hand

does not. The existence of the zero-peak in emcee
is due to the high number of rejected proposals (i.e.

low acceptance rate). . . . . . . . . . . . . . . . . . 191

Figure 11.10 The figure shows numerical results (i.e. walker tra-

jectories/chains for the first parameter) demonstrat-

ing the performance of the three ensemble MCMC

methods in the case of a two-component Gaussian

mixture target distribution in 2, 10 and 25 dimen-

sions respectively. The last column illustrates the 1-

D marginal posterior corresponding to the first pa-

rameter 𝑥1 estimated directly from the samples for

the 25-dimensional case. Whereas all three samplers

make valid within-mode proposals, it is only zeus
that manages to perform between-mode jumps and

thus sample correctly from the target distribution

in the 10 and 25-dimensional cases. Between-mode

jumps are paramount in order to distribute the prob-

ability mass correctly between different modes. . . . 192

Figure 11.11 This figure shows the distribution of step sizes of

walkers for the three different samplers in the case

of a two-component Gaussian mixture target distri-

bution in 𝐷 = 25. It is important to note here that

both emcee algorithms exhibit a peak at zero sep-

aration; zeus on the other hand does not due to its

non-rejection basis. . . . . . . . . . . . . . . . . . . 193



Figure 11.12 The figure shows numerical results (i.e. walker tra-

jectories/chains for the first parameter) demonstrat-

ing the performance of the three ensemble MCMC

methods in the case of the Student’s 𝑡-distribution
with 2 degrees of freedom in 2, 10 and 25 dimen-

sions respectively. The last column illustrates the 1-

D marginal posterior corresponding to the first pa-

rameter 𝑥1 estimated directly from the samples for

the 25-dimensional case. . . . . . . . . . . . . . . . 194

Figure 11.13 This figure shows the distribution of step sizes of

walkers for the three different samplers in the case

of the Student’s 𝑡-distributionwith 2 degrees of free-
dom in 𝐷 = 25. zeus and emcee/AIES exhibit

similar distributions whereas emcee/DEMC per-

forms shorter steps. . . . . . . . . . . . . . . . . . . 194

Figure 11.14 The figure shows numerical results (i.e. walker tra-

jectories/chains for the first parameter) demonstrat-

ing the performance of the three ensemble MCMC

methods in the case of the truncated normal distri-

bution in 2, 10 and 25 dimensions respectively. The

last column illustrates the 1-D marginal posterior

corresponding to the first parameter 𝑥1 estimated di-

rectly from the samples for the 25-dimensional case.

zeus exhibits the least amount of bias near the hard

boundary at zero compared toemcee/AIES andemcee
/DEMC. . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure 11.15 This figure shows the distribution of step sizes of

walkers for the three different samplers in the case

of the truncated normal distribution in𝐷 = 25. zeus
andemcee/AIES exhibit similar distributionwhereas

emcee/DEMC performs shorter steps. . . . . . . . 196

Figure 11.16 A corner plot showing the 1-D and 2-Dmarginalised

posteriors for the 22-parameter BaryonAcoustic Os-

cillation model as produced by the three different

ensemble MCMC methods. . . . . . . . . . . . . . . 199

Figure 11.17 A corner plot showing the 1-D and 2-Dmarginalised

posteriors for the 14-parameter radial velocitymodel

as produced by the three different ensemble MCMC

methods. . . . . . . . . . . . . . . . . . . . . . . . . 200

xxix



Figure 12.1 Illustration of the inference scheme of aMasked Au-
toregressive Flow (MAF). The arrows show the con-

ditional dependence of the variables as well as the

action of the Masked Autoregressive Density Estima-
tion (MADE) layer. The input target probability den-

sity (top) is mapped into a multivariate normal dis-

tribution (bottom). A sequence of MADE layers and

permutations is repeated multiple times in order to

increase the flexibility of the flow. . . . . . . . . . . 209

Figure 12.2 The figure illustrates the effect of preconditioning

on theRosenbrock distribution. The right panel shows
samples (blue) from the true correlated distribution

and the left panel shows samples (blue) from the

preconditioned/transformed one. The orange sam-

ples in the left panel are drawn from a symmetric

normal proposal distribution centred around the green

point 𝑢0 and they correspond to the respective or-

ange points in the right panel. In other words, the

transformed samples from the simple proposal in

the left panel correspond to samples that capture the

local geometry of the true target distribution in the

right panel. . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 12.3 Parallelization of PMC compared to nested sampling.

PMC (blue) exhibits linear speedup compared to the

sub–linear one achieved by NS (orange). . . . . . . 214

Figure 12.4 Illustration of the 1–dimensional and 2–dimensional

marginal posteriors for the first three out of 20 pa-
rameters of the Rosenbrock distribution. The figure

shows the 1–𝜎 and 2–𝜎 contours generated by Pre-
conditioned Monte Carlo (PMC) in blue, Nested Sam-
pling (NS) in orange, and SequentialMonte Carlo (SMC)

in green. The legend also shows the computational

cost of each method in terms of the total number

of required model evaluations until convergence is

reached. . . . . . . . . . . . . . . . . . . . . . . . . . 216



Figure 12.5 Illustration of the 1–dimensional and 2–dimensional

marginal posteriors for the first three out of 50 pa-
rameters of the two–component Gaussian mixture

distribution. The figure shows the 1–𝜎 and 2–𝜎 con-

tours generated by PreconditionedMonte Carlo (PMC)

in blue, Nested Sampling (NS) in orange, and Sequen-
tial Monte Carlo (SMC) in green. The legend also

shows the computational cost of eachmethod in terms

of the total number of required model evaluations

until convergence is reached. . . . . . . . . . . . . . 217

Figure 12.6 Illustration of the 1–dimensional and 2–dimensional

marginal posteriors for the 12 parameters of the pri-

mordial features posterior. The figure shows the 1–

𝜎 and 2–𝜎 contours generated by PreconditionedMonte
Carlo (PMC) in blue, Nested Sampling (NS) in orange,
and Sequential Monte Carlo (SMC) in green. The leg-
end also shows the computational cost of eachmethod

in terms of the total number of required model eval-

uations until convergence is reached. . . . . . . . . 218

Figure 12.7 Illustration of the 1–dimensional and 2–dimensional

marginal posteriors for the 13 parameters of the grav-

itational waves posterior. The figure shows the 1–𝜎
and 2–𝜎 contours generated by PreconditionedMonte
Carlo (PMC) in blue, Nested Sampling (NS) in orange,
and Sequential Monte Carlo (SMC) in green. The leg-
end also shows the computational cost of eachmethod

in terms of the total number of required model eval-

uations until convergence is reached. . . . . . . . . 220

Figure 12.8 Comparison of the first two parameters of samples

generated using PMC (blue) and IMH–SMC (orange)
for the 20–D Rosenbrock target distribution. PMC

produces representative samples, whereas IMH–SMC

does not. . . . . . . . . . . . . . . . . . . . . . . . . 222

Figure 12.9 Comparison of the first two parameters of samples

generated using PMC (blue) and IMH–SMC (orange)
for the 50–D two–component Gaussian mixture tar-

get distribution. PMC produces representative sam-

ples, whereas IMH–SMC does not. . . . . . . . . . . 223
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Part I

BAYES I AN INFERENCE





1 PROBAB I L I T Y THEORY

Science is more than a body of knowledge; it is a way of thinking.
The method of science, as stodgy and grumpy as it may seem,

is far more important than the findings of science.

— Carl Sagan

This chapter introduces the basic principles of Bayesian inference and

presents its fundamental ideas and distinctive features.

1.1 the goal of science

The key goal of science is to distil the patterns of nature into mathematical

language and call them physical laws. To this end, science relies on a formal

way of thinking and interrogating nature, asking the right questions, inter-

preting observations, and updating its beliefs and hypotheses in the light of

new evidence. This way of thinking, inherent in all scientific pursuits seems

to be deeply connected to the mathematical notion of probability.

Science proceeds towards this elusive target with careful steps following

the scientific method. The latter is often illustrated as a loop. Hypotheses

are proposed and models quantifying certain aspects of those hypotheses

are developed. The hypotheses give rise to predictions, in a process called

deductive inference, to be tested against experimental data. Unfortunately, as

the information that we extract from nature in the form of data is always

incomplete and uncertain, testing our hypotheses by comparing our model

predictions to the experimental data requires us to reason in the presence of

uncertainty. We thus rely on plausible inference, that is, the process of infer-
ring the truth of our theories about the cosmos on the basis of incomplete

and uncertain information.

Scientific statements about the physical world are uncertain by necessity.

No amount of new information will ever be enough to validate or disprove a

hypothesis. Furthermore, our models, despite our best intentions, are often

simpler than the natural processes which they attempt to capture. Our best

hope is thus to accept the existence of this inherent and unavoidable uncer-

tainty and instead try to quantify the plausibility of our statements about

the cosmos. Assessing the plausibility of scientific theories is the subject of

probability theory.
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1.2 the notion of probability

There are few concepts in science and mathematics as controversial, with

their meaning so contested during the centuries, as the notion of probabil-

ity. Three centuries ago people started seriously thinking about how to best

make decisions and reason in the face of uncertainty. Perhaps, the first to

formally articulate this problem was Jacob Bernoulli in his seminal work Ars
Conjectandi published in 1713.

The answer to Bernoulli’s question was provided by Reverend Thomas
Bayes, in an essay named An Essay towards solving a Problem in the Doctrine
of Chances, published posthumously by his friend Richard Price in 1763. The
paper included theorems on conditional probability which formed the basis

of what we now call Bayes’ theorem. The discovery of the latter is actually

due to Laplace, who not only developed, extended and clarified probability

theory, but also applied it successfully to a plethora of problems in astron-

omy, medicine, and economics.
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Figure 1.1: In the Bayesian interpretation of probability, the degree of belief is dis-

tributed and the variable has a specific (unknown) fixed value.

Despite Laplace’s indisputable empirical success, his theory was rejected

by scholars soon after his death. Their problem with Laplace’s probability

theory was one of interpretation. For pioneers such as Bernoulli, Bayes, and

Laplace, probability represented a degree–of–belief or plausibility of various

hypotheses or statements based on the available evidence and prior knowl-

edge. To 19th century scholars though, this definition, or interpretation of



probability, seemed too subjective and vague. For this reason, they redefined

probability to mean the long–run relative frequency with which an event oc-

curs, given infinite trials. Since frequency can be measured experimentally,

probability was then seen as an objective measure for dealing with random-
ness and chance.
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Figure 1.2: In the frequentist interpretation of probability, the value of the variable

itself is distributed along different experiments.

Although the frequentist interpretation of probability seems more objec-

tive, its range of applicability and validity is substantially more limited. For

example, Laplace used Bayes’ theorem and his probability theory to estimate

the mass of Saturn. He computed the posterior probability density function
(pdf) 𝑝(𝑀 |𝑑), that is, the probability that Saturn has a mass 𝑀 given the

available data 𝑑 and model assumptions (e.g. validity of celestial mechanics).

An illustration of this posterior pdf is shown in Figure 1.3, in which the value

𝑀 as the peak of the density corresponds to the most probable value for the

mass of Saturn which also coincides with the mean value. 𝑀min and 𝑀max
denote the values of the mass that deviate by 1% from the mean value𝑀 , and

the shaded area between them is the probability that the mass of Saturn is

between the values of 𝑀min and 𝑀max. Apart from the most probable value

𝑀 , Laplace estimated that the probability (given by the area) that the real

mass of Saturn is between these limits is 11327/11328 = 0.9999117. In partic-

ular, he wrote “applying to them my formulae of probability I find that it is a

bet of 11,000 against one that the error of this result is not 1/100 of its value”.

Today, almost two centuries after this statement was made, Laplace would
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have won this bet as the current best estimate of Saturn’s mass differs only

by 0.5% from his.
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Figure 1.3: Illustration of posterior probability density function of Saturn’s mass.

𝑀 corresponds to the most probable value for the mass at the peak of

the density. 𝑀min and 𝑀max denote the values of the mass that deviate

by 1% by the mean value 𝑀 . The shaded area signifies the probability

that the mass of Saturn is between the values of 𝑀min and 𝑀max.

However, according to the frequentist interpretation of probability one is

not allowed to use probability theory to tackle this problem, as the mass of

Saturn is a fixed constant and not a random variable that follows a frequency
distribution. If we were to interpret Laplace’s results from a frequentist per-

spective we would have to imagine an infinitely large ensemble of universes
in which everything remains the same but the mass of a single planet. Al-

though one has the liberty to make any kind of syllogisms in order to find

a solution, having to seek a frequency interpretation for every problem can

be cumbersome and at risk of detaching any notion of intuition from the

physical problem.

Faced with the realisation that the frequentist interpretation of probabil-

ity does not allow one to tackle most scientific questions, the new subject of

statisticswas invented. For instance, in the problem of estimation of Saturn’s

mass since the mass is not a random variable, one has to create a function,

called a statistic, that relates the data to the mass. Since the data are subject

to random noise, so does the statistic. One is then free to apply the stan-

dard techniques to the statistic. However, the choice and construction of the



statistic are often neither clear nor principled. There is no unifying prin-

ciple relating the various techniques and practices used in order to choose

which statistic is more appropriate for a given task. Historically, this lack of a

common framework resulted in the creation of a large number of alternative

schools of thought of frequentist statistics. Most notably, great statisticians

such asNeyman, Pearson and Fisher were responsible for promoting different

approaches.

Early in the 20th century something changed though, SirHarold Jeffreys re-
discovered Laplace’s Bayesian probability theory, and in 1930𝑠 he explained
and presented it in greater detail and more clearly than Laplace ever did (Jef-

freys, 1998). Although apparently not enough to convince the most militant

proponents of orthodox frequentist schools of the merits of probability the-

ory, Jeffreys’ work was the triggering event that acted as a catalyst for a

change that lasted until the end of the 20th and beginning of the 21th cen-

tury.

In 1946, Richard Cox attempted to end the debate by approaching the prob-

lem of plausible inference from a different perspective, that of its logical con-

sistency (Cox, 1946). Starting by the assumption that we can order different

statements based on their plausibility, by assigning a real number to each

statement representing how plausible it is, proved that for a calculus of plau-

sible inference to be consistent (i.e. in the sense that if two different methods

are permitted they should give the same results), it has to obey the rules of

probability theory as defined by Laplace and Jeffreys. The work of Cox is of

paramount importance as he effectively showed that any system of plausible

inference that is logically consistent has to reduce to Bayesian inference.

By the last decade of the 20th century, progress in computer technology

and algorithms for probabilistic computation reached and surpassed the level

of maturity required for the widespread application of Bayesian inference in

most fields of physical science. Therefore, it is no surprise that the principles

and methods of Bayesian probability theory have now become an integral

and indispensable part of modern science. In the end, Laplace was right: “It

is remarkable that a science which began with the consideration of games of

chance should have become themost important object of human knowledge”.

1.3 bayes’ theorem

1.3.1 Rules of probability

Any statement in probability theory can be derived by starting from the

Laplace–Jeffreys sum and product rule given below. From these two formu-

las, expressions such as the “or” rule, the marginalisation rule and Bayes’

theorem follow easily.
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The “sum” rule

The “sum” rule expresses the relation between the probabilities of two mu-

tually exclusive statements 𝐴 and �̄�,

𝑝(𝐴|𝐵) + 𝑝(�̄�|𝐵) = 1 , (1.1)

where 𝑝(𝐴|𝐵) represents the plausibility (probability) of 𝐴 being true given

that 𝐵 is true and �̄� simply means the opposite of 𝐴 or that 𝐴 is false.

The “product” rule

The “product” rule provides a way to compute the joint probability

𝑝(𝐴, 𝐵|𝐶) = 𝑝(𝐴|𝐵, 𝐶)𝑝(𝐵|𝐶) = 𝑝(𝐵|𝐴, 𝐶)𝑝(𝐴|𝐶) . (1.2)

of both 𝐴 and 𝐵 being true given that 𝐶 is true.

The “or” rule

For instance, the “or” rule that expresses the probability that either 𝐴 or 𝐵 is

true, given that 𝐶 is true, can be written as

𝑝(𝐴 ∪ 𝐵|𝐶) = 𝑝(𝐴|𝐶) + 𝑝(𝐵|𝐶) − 𝑝(𝐴 ∩ 𝐵|𝐶) , (1.3)

follows easily, where 𝑝(𝐴 ∩𝐵|𝐶) is simply another notation for the joint prob-

ability 𝑝(𝐴, 𝐵|𝐶) for both events 𝐴 and 𝐵 being true given that 𝐶 is also.

The marginalisation rule

Another useful probability rule is the marginalisation rule for discrete prob-
ability distributions,

𝑝(𝐴|𝐶) = ∑
𝑖
𝑝(𝐴, 𝐵𝑖 |𝐶) = ∑

𝑖
𝑝(𝐴|𝐵𝑖 , 𝐶)𝑝(𝐵𝑖 |𝐶) , (1.4)

and for continuous probability distributions,

𝑝(𝐴|𝐶) = ∫ 𝑝(𝐴, 𝐵|𝐶)𝑑𝐵 = ∫ 𝑝(𝐴|𝐵, 𝐶)𝑝(𝐵|𝐶)𝑑𝐵 . (1.5)

Equation 1.4 is straightforward to prove starting from the sum rule of equa-

tion 1.1, extended to multiple mutually–exclusive events

∑
𝑖
𝑝(𝐴𝑖 |𝐵) = 1 . (1.6)

Therefore, starting from equation 1.6 we have

∑
𝑖
𝑝(𝐴, 𝐵𝑖 |𝐶) = ∑

𝑖
𝑝(𝐵𝑖 |𝐴, 𝐶)𝑝(𝐴|𝐶)

= 𝑝(𝐴|𝐶)∑
𝑖
𝑝(𝐵𝑖 |𝐴, 𝐶) = 𝑝(𝐴|𝐶) .

(1.7)



Bayes’ theorem

Arguably the most useful equation that can be derived is the so–called Bayes’
theorem (Bayes, 1763)

𝑝(𝐴|𝐵, 𝐶) =
𝑝(𝐵|𝐴, 𝐶)𝑝(𝐴|𝐶)

𝑝(𝐵|𝐶)
, (1.8)

that follows directly from equation 1.2.

1.3.2 Updating degrees of belief

Although Bayes’ theorem is a simple identity that holds for any statements

𝐴, 𝐵, and 𝐶 , it also has a special role in the context of plausible inference.

In particular, if we set 𝐴 ← 𝜃 the parameters of a physical model, 𝐵 ← 𝑑
the experimental data, and 𝐶 ←  the physical model that also includes all

assumptions made in an analysis, we get

𝑝(𝜃 |𝑑,) =
𝑝(𝑑 |𝜃,)𝑝(𝜃 |)

𝑝(𝑑 |)
. (1.9)

The importance of equation 1.9 for scientific inference is apparent if we

examine each one of the constituent components individually.

Posterior probability distribution – 𝑝(𝜃 |𝑑,)

This is the probability distribution of the parameters 𝜃 , given the data 𝑑 and

the modelling assumptions . The posterior is often what we are aspiring

to approximate in a parameter estimation analysis.

Prior probability distribution – 𝑝(𝜃 |)

This probability distribution quantifies any knowledge about the possible val-

ues of the parameters 𝜃 prior to seeing the data 𝑑 . We have a whole chapter

dedicated to the choice of the prior distribution.

Likelihood function and sampling distribution – 𝑝(𝑑 |𝜃,)

The likelihood function is a key component of Bayes’ theorem that plays a

very important role, that of being the conduit that explains how the transi-

tion from prior to posterior takes place. Before we understand the role and

properties of the likelihood function we first need to look into the so–called

sampling distribution.
The sampling distribution 𝑝(𝑑 |𝜃) expresses the probability distribution of

the data 𝑑 given the values of the model parameters 𝜃 . In this picture, the

parameters 𝜃 are known and fixed and 𝑝(𝑑 |𝜃) is a distribution over the data.

If instead, we know the data 𝑑 and fix them to a specific value of set of values,
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and we let 𝜃 vary as a free parameter of a set of free parameters, then 𝑝(𝑑 |𝜃)
is called the likelihood function.

The likelihood function is often symbolised as (𝜃) = 𝑝(𝑑 |𝜃) to denote

that it is a function of parameters 𝜃 and not a probability distribution over

the data 𝑑 . This is very important as statements such as “the likelihood of

the data” are meaningless and completely miss the point of the likelihood.

The likelihood function shows how well the different sampling distributions

𝑝(𝑑 |𝜃), parameterised by 𝜃 , predict the observed data.
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Figure 1.4: Left: Likelihood function (𝜇) for the family of sampling distributions

as shown on the right. The marked letters indicate the points in which

the observed data intersect the sampling distributions. Right: The dif-

ferent groups of contours illustrate the sampling distribution 𝑝(𝑑1, 𝑑2|𝜇)
for different values of 𝜇, ranging from −2 to 2. The vertical line cor-

responds to the observed data (𝑑1, 𝑑2) = (0, 0) and the marked letters

indicate the points in which the observed data intersect the sampling

distributions.

To make this more apparent, let us consider a simple example. Let us as-

sume that we have a family of sampling distributions 𝑝(𝑑1, 𝑑2|𝜇) for the two
dimensional data 𝑑 = (𝑑1, 𝑑2), parameterised by a single parameter 𝜇. An

example of such a family of sampling distributions for 𝜇 ∈ [−2, 2] is shown
in Figure 1.4 on the right. One can see that different values of 𝜇 correspond
to different sampling distributions. In order to get a likelihood function (𝜇)
from this family of sampling distributions, we need to specify some observed

data for each member of the family. Without loss of generality, we choose

the data to be simply (𝑑1, 𝑑2) = (0, 0). The data are indicated by a vertical line
in the plot that intersects all members of the family of sampling distributions.

The points of intersection, marked with letters a to e in the same plot, can

either be in low or high probability regions of the respective sampling distri-

butions. If we now monitor the value of the probability at the intersection

points and plot this as a function of the parameter 𝜇 we get the likelihood

function shown in the same figure on the left.



In other words, although related, the notion of likelihood is really different

from that of probability in the sense that it expresses the relative capacity of

different sampling distributions, belonging however to the same family, to

predict and explain the observed data. Sir Ronald Aylmer Fisher wrote in

1922 about the difference between probability and likelihood, albeit in the

frequentist tradition,

If we need a word to characterise this relative property of different
values of p, I suggest that we may speak without confusion of the
likelihood of one value of p being thrice the likelihood of another,
bearing always in mind that likelihood is not here used loosely as a
synonym of probability, but simply to express the relative frequen-
cies with which such values of the hypothetical quantity p would
in fact yield the observed sample. [...] Likelihood also differs from
probability in that it is a differential element, and is incapable of
being integrated: it is assigned to a particular point of the range of
variation, not to a particular element.

Model evidence – 𝑝(𝑑 |)

Finally, the model evidence is a single real number that expresses the proba-

bility of observing the data 𝑑 given the model and acts as a normalisation

constant for the posterior

𝑝(𝑑 |) = ∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝑑𝜃 , (1.10)

such that ∫ 𝑝(𝜃 |𝑑,)𝑑𝜃 = 1. The model evidence is often referred to as the

marginal likelihood due to the way it is represented as an integral. Its role in

the task of model comparison is great and it will be discussed in great length

in the following chapters.

Schematically, we can summarise the above description of Bayes’ theorem

as

posterior =
likelihood × prior

evidence

. (1.11)

In essence, Bayes’ theorem in the form of equations 1.9 and 1.11 is a recipe

for updating our degree of belief when new information, in the form of data,

becomes available. The factor that upweights or downweights the prior

𝑝(𝜃 |) is the likelihood–to–evidence ratio 𝑝(𝑑 |𝜃,)/𝑝(𝑑 |), also known

as the predictive updating factor. Keynes called this ratio the coefficient of
influence as it is this that determines how the prior is transformed into the

posterior (Keynes, 1921). To better understand this, remember that themodel

evidence in the denominator is simply the expectation value of the likelihood

over the prior probability distribution, so intuitively it expresses some sort

of mean value of the likelihood. From this perspective, the predictive updat-

ing factor is simply the ratio of the likelihood to its mean value. This means
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Figure 1.5: Illustration of Bayes’ theorem. The posterior probability is proportional

to the product of the likelihood function and prior probability.

that the prior will be upweighted for those values of 𝜃 that the likelihood is

greater than its mean value and downweighted otherwise.

1.4 representing probability distributions

Before we move on to any examples, it is important to explain how we rep-

resent probability distributions in practice. In general, there are two ways

that we can do this, each one with different advantages and disadvantages.

1.4.1 Function representation

Probability mass function

When the parameter space Θ is discrete, then a probability distribution can

be represented as a probability mass function (pmf) 𝑝(𝜃) that assigns a prob-
ability value to each element of space, 𝑝 ∶ Θ → [0, 1]. Any pmf has to obey

the rule of total probability, that is

∑
𝜃∈Θ

𝑝(𝜃) = 1 . (1.12)



The probability of any composite event Θ ′ ⊂ Θ can be computed as

𝑝(Θ ′) = ∑
𝜃∈Θ ′

𝑝(𝜃) . (1.13)

Finally, we can compute any expectation value

E𝑝[𝑓 ] = ∑
𝜃⊂Θ

𝑓 (𝜃)𝑝(𝜃) (1.14)

for any function 𝑓 (𝜃). Common examples of expectation values include the

mean 𝜇 = E𝑝[𝜃] and the variance 𝜎2 = E𝑝[(𝜃 − 𝜇)2].

Probability density function

When the parameter space Θ ⊆ R𝐷
is continuous, then a probability dis-

tribution can be represented as a probability density function (pdf) 𝑝(𝜃) that
assigns a probability density value to each element of space, 𝑝 ∶ Θ → R.

Any pdf has to obey the rule of total probability, that is

∫
𝜃∈Θ

𝑝(𝜃)𝑑𝜃 = 1 . (1.15)

Unlike a pmf, a pdf expresses probability density and thus it has to be inte-

grated first to give probabilities. The probability of Θ ′ ⊆ Θ is then

𝑝(Θ ′) = ∫
Θ ′⊆Θ

𝑝(𝜃)𝑑𝜃 . (1.16)

For instance, in 1–D we can compute the probability that 𝐴 ≤ 𝜃 ≤ 𝐵 as

𝑝(𝐴 ≤ 𝜃 ≤ 𝐵) = ∫
𝐵

𝐴
𝑝(𝜃)𝑑𝜃 , (1.17)

as the area below the graph of 𝑝(𝜃) and between 𝐴 and 𝐵. Similarly, an

expectation value can be computed as

E𝑝[𝑓 ] = ∫
Θ
𝑓 (𝜃)𝑝(𝜃)𝑑𝜃 . (1.18)

A crucial difference between probability mass functions and probability

densities is that the latter do not transform quite as trivially under parameter

transformations 𝑔 ∶ Θ → Φ. The origin of this complication is that the

differential volume 𝑑𝜃 over which we integrate will generally change under

such a transformation, and density functions have to change in the opposite

way to compensate and ensure that probability is conserved. This change in

volume is quantified by the absolute value of the determinant of the Jacobian

matrix

𝐽𝑖𝑗 =
𝜕𝑔𝑖
𝜕𝜃𝑗

, (1.19)

where 𝜙 = 𝑔(𝜃) is the parameter transformation. Thus, the probability den-

sity 𝑝(𝜃) generally transforms as

𝑝(𝜃) = 𝑝(𝜙)| det 𝐽 | . (1.20)
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1.4.2 Sample representation

One of the inherent difficulties in the density function representation of prob-

ability distributions is that the computation of expectation values is often

intractable as no closed–form solution exists for most applications. An al-

ternative way of representing probability distributions is using a collection

of points 𝑆 = {𝜃1, 𝜃1,… , 𝜃𝑛} in the parameter space Θ, called samples. The

generation of samples for a given probability distribution will be the sub-

ject of discussion for most of this thesis. For now, it suffices to say that any

probability distribution admits a sample representation

𝜃𝑖 ∼ 𝑝(𝜃) , (1.21)

such that the empirical estimate

𝑓𝑝 =
1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝜃𝑖) , (1.22)

asymptotically approaches the expectation value E𝑝[𝑓 ] as 𝑛 → ∞.

1.5 asymptotic behaviour

Let us now turn our attention to the question of the form of the posterior

distribution in the limit of infinite data. Understanding the asymptotic be-

haviour of the posterior when the sample size is large is important for a num-

ber of reasons. First, there is practical utility as asymptotic results are often

good first–order approximations. Second, as we will discuss in the following

chapter, the asymptotic form of the posterior distribution can be utilised to

automate the construction of prior distributions. Finally, the Bernstein–von
Mises theorem, which describes the asymptotic behaviour of the posterior in

many cases, allows us to link Bayesian inference to frequentist results.

1.5.1 Bernstein–von Mises theorem

When the number 𝑛 of observations tends to infinity, the posterior distribu-

tion of a smooth finite–dimensional model approaches a normal distribution.

In particular, if we denote 𝑑 (𝑛) = {𝑑1,… , 𝑑𝑛} the set of 𝑛 observations or data,
then the posterior 𝑝(𝜃 |𝑑 (𝑛)) concentrates around the maximum likelihood es-
timate (MLE):

𝜃𝑛 = argmax
𝜃

𝑝(𝑑 (𝑛)|𝜃) . (1.23)

Moreover, MLE is a consistent estimator which means that in the limit of

infinite sample size (i.e. 𝑛 → ∞), 𝜃𝑛 converges to 𝜃𝑡 , that is, the true value
of the parameter vector. In other words, the asymptotic posterior is centred



on the true parameter value 𝜃𝑡 . The precision matrix (i.e. inverse covariance

matrix) is equal to 𝑛(𝜃𝑛), where the Fisher information matrix is defined as

(𝜃) = E𝑑∼𝑝(𝑑 |𝜃) [−
𝜕2 log 𝑝(𝑑 |𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗 ]

= − ∫ 𝑝(𝑑 |𝜃)
𝜕2 log 𝑝(𝑑 |𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
𝑑𝑑 .

(1.24)

In more mathematical terms, we can write down that

𝑝(𝜃 |𝑑 (𝑛)) →  (𝜃 |𝜃𝑛, 𝑛−1−1(𝜃𝑛)) , (1.25)

as 𝑛 → ∞, where we use the notation  (𝜃 |𝜇,Σ) to denote the Gaussian

probability density function

 (𝜃 |𝜇,Σ) = (2𝜋 )−𝐷/2|Σ|−1/2 exp
{
−
1
2
(𝜃 − 𝜇)𝑇Σ−1(𝜃 − 𝜇)

}
, (1.26)

with mean 𝜇 and covariance matrix Σ, where 𝐷 is the number of components

in the 𝜃 vector (i.e. dimensionality of parameter space). Although this result

dates back to Laplace (1810), today it is known as the Bernstein-von Mises
theorem (Van der Vaart, 2000).

One consequence of the above theorem, combined with the fact that the

MLE asymptotically follows a normal distribution, allows us to interpret

Bayesian credible intervals as frequentist confidence intervals in the limit of

infinite data.

1.5.2 Heuristic argument

We will now offer an intuitive heuristic argument, rather than a rigorous

proof, of the Bernstein-von Mises theorem. Let us begin by rewriting Bayes’

theorem as

𝑝(𝜃 |𝑑 (𝑛)) =
exp

{
log 𝑝(𝜃) + log 𝑝(𝑑 (𝑛)|𝜃)

}

𝑃 (𝑑 (𝑛))
, (1.27)

where log 𝑝(𝜃) is the log–prior and

log 𝑝(𝑑 (𝑛)|𝜃) =
𝑛
∑
𝑖=1

log 𝑝(𝑑𝑖 |𝜃) , (1.28)

is the log–likelihood function of identically independently distributed (iid)
data, which readily follows from the fact that their sampling distributions

are conditionally independent, meaning that

𝑝(𝑑 (𝑛)|𝜃) =
𝑛

∏
𝑖=1

𝑝(𝑑𝑖 |𝜃) . (1.29)
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The next step is to Taylor–expand both the log–prior and the log–likelihood

around their respective maxima. Starting with the log–prior, we can write

log 𝑝(𝜃) = log 𝑝(𝜃0) −
1
2
(𝜃 − 𝜃0)𝑇Λ0(𝜃0)(𝜃 − 𝜃0) + 𝑅0 , (1.30)

where

Λ0(𝜃0) = (−
𝜕2 log 𝑝(𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗 )

||||𝜃=𝜃0
(1.31)

and 𝑅0 denotes any higher–order terms. Notice that since the expansion

takes place around the priormaximum 𝜃0, there is no first–order term (i.e. the

first derivative is equal to zero). Similarly, we can expand the log–likelihood

around the MLE as follows:

log 𝑝(𝑑 (𝑛)|𝜃) = log 𝑝(𝑑 (𝑛)|𝜃𝑛) −
1
2
(𝜃 − 𝜃𝑛)𝑇Λ𝑛(𝜃𝑛)(𝜃 − 𝜃𝑛) + 𝑅𝑛 , (1.32)

where

Λ𝑛(𝜃𝑛) = (−
𝜕2 log 𝑝(𝑑 (𝑛)|𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗 )
||||𝜃=𝜃𝑛

=
(
−

𝑛
∑
𝓁=1

𝜕2 log 𝑝(𝑑𝓁 |𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗 )

||||𝜃=𝜃𝑛
(1.33)

and 𝑅𝑛 denotes any terms beyond the second order.

Assuming that the prior and likelihood are sufficiently smooth such that

𝑅0 and 𝑅𝑛 can be safely ignored we can write equation 1.27 as

𝑝(𝜃 |𝑑 (𝑛)) ∝ exp
{
−
1
2
(𝜃 − 𝜃0)𝑇Λ0(𝜃0)(𝜃 − 𝜃0)

−
1
2
(𝜃 − 𝜃𝑛)𝑇Λ𝑛(𝜃𝑛)(𝜃 − 𝜃𝑛)

}

∝ exp
{
−
1
2
(𝜃 − 𝜃𝑛)𝑇 Λ̃𝑛(𝜃𝑛)(𝜃 − 𝜃𝑛)

}
,

(1.34)

where Λ̃𝑛 = Λ𝑛 +Λ0 and 𝜃𝑛 = Λ̃−1
𝑛 (Λ𝑛𝜃𝑛 +Λ0𝜃0). Comparing the above expres-

sion to equation 1.26, we find that the posterior has a Gaussian probability

density function

𝑝(𝜃 |𝑑 (𝑛)) =  (𝜃 |𝜃𝑛, Λ̃−1
𝑛 ) . (1.35)

In the limit that 𝑛 → ∞, the sum in equation 1.33 completely dominates

the calculation leading to Λ̃𝑛 → Λ𝑛 and 𝜃𝑛 → 𝜃𝑛. This means that asymp-

totically

𝑝(𝜃 |𝑑 (𝑛)) →  (𝜃 |𝜃𝑛,Λ−1
𝑛 ) . (1.36)

Furthermore, according to the law of large numbers, which states that “the

average of a large number of trials approaches the expectation value“, Λ𝑛 as
given by the sum in equation 1.33 is asymptotically equal to 𝑛(𝜃𝑛). There-
fore, we can write down that

𝑝(𝜃 |𝑑 (𝑛)) →  (𝜃 |𝜃𝑛, 𝑛−1−1(𝜃𝑛)) , (1.37)

which concludes our heuristic derivation.



1.6 estimating parameters

1.6.1 Coin–tossing experiment

Let us now consider a simple example of Bayesian parameter estimation. Sup-

pose that we have a coin and we want to determine whether the coin is fair

or not. A simple way to quantify the fairness of a coin is to introduce a

bias parameter 𝐹 such that 𝐹 = 1/2 means that the coin is fair, whereas any

other value in the range 0 ≤ 𝐹 ≤ 1 denotes that the coin is biased. 𝐹 = 0
corresponds to a coin which always lands on tails and 𝐹 = 1 to a one that

always lands on heads. We can then divide the continuous range of 𝐹 into

a discrete number of propositions (e.g. 0 ≤ 𝐹 ≤ 0.01, 0.01 ≤ 𝐹 ≤ 0.02, etc.).
Our state of knowledge about the fairness of the coin is summarised by our

degree of belief, quantified as a probability, of each one of those intervals

(e.g. 𝑝(0 ≤ 𝐹 ≤ 0.01), 𝑝(0.01 ≤ 𝐹 ≤ 0.02), etc.).
In order to collect some data we just have to toss the coin a few times

and monitor the number of times 𝐻 the coin lands on heads as well as the

total number of trials 𝑁 . The number of times that the coin lands on tails

is simply 𝑁 − 𝐻 . Furthermore, to better understand the iterative nature of

Bayes’ theorem for updating our degree of belief, we will keep not only the

final outcome of the experiment (i.e. the total number 𝐻 that the coin landed

on heads in 𝑁 trials) but also all the intermediate values.

Since our aim is to estimate the posterior distribution 𝑝(𝐹 |𝐻, 𝑁 ), that is, the
probability distribution of 𝐹 given the observed data in terms of the number

of heads 𝐻 and the number of trials 𝑁 , we need to define all the components

that enter Bayes’s theorem. Starting with the prior probability distribution

𝑝(𝐹 )wewill use two choices in order to demonstrate their effect on the poste-

rior. The first choice of prior is to be agnostic, before seeing the data, about

the fairness of the coin and thus assume that intervals of the same size in

the range 0 ≤ 𝐹 ≤ 1 are equally probable. This is quantified by the uniform

probability density function

𝑝(𝐹 ) =

{
1, if 0 ≤ 𝐹 ≤ 1
0, otherwise .

(1.38)

The other prior that we will test is more informative than the first and as-

sumes that it is more probable that the coin is fair, or at least close to it. To

this end, we will use a normal prior with a Gaussian probability density

𝑝(𝐹 |𝜇, 𝜎 ) =
1√
2𝜋𝜎

exp(−
(𝐹 − 𝜇)2

2𝜎2 ) , (1.39)

centred around the mean value 𝜇 = 1/2with standard deviation 𝜎 = 0.1. This
kind of prior assigns most prior probability to values of 𝐹 close to that of 1/2
that correspond to a fair coin. Both priors can be seen in the top–left panel
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of Figure 1.6 where the uniform prior corresponds to the continuous line and

the normal prior to the dashed line.

To get the likelihood function, we start by choosing the sampling distribu-

tion 𝑝(𝐻, 𝑁 |𝐹 ), that is, the probability distribution of the data 𝐻 and 𝑁 given

the value of 𝐹 . For this task, we choose the binomial probability distribution
with probability density given by

𝑝(𝐻, 𝑁 |𝐹 ) = (
𝑁
𝐻)𝐹

𝐻 (1 − 𝐹 )𝑁−𝐻 . (1.40)

The above formula can be understood as follows: 𝑅 heads occur with prob-

ability 𝐹𝐻 and 𝑁 − 𝐻 tails with probability (1 − 𝐹 )𝑁−𝐻
. The combinatorial

factor that 𝐻 heads can occur anywhere among the 𝑁 trials, and there are

(𝐹𝐻) of distributing 𝐻 heads between 𝑁 trials. If we fix 𝐻 and 𝑁 to their

observed values then (𝐹 ) = 𝑝(𝐻, 𝑁 |𝐹 ) is simply the likelihood function 𝐹 .
According to Bayes’ theorem then, the posterior distribution can be writ-

ten as

𝑝(𝐹 |𝐻, 𝑁 ) =
𝑝(𝐻, 𝑁 |𝐹 )𝑝(𝐹 )

𝑝(𝐻, 𝑁 )
, (1.41)

where the model evidence is simply the normalisation factor

𝑝(𝐻, 𝑁 ) = ∫
1

0
𝑝(𝐻, 𝑁 |𝐹 )𝑝(𝐹 )𝑑𝐹 . (1.42)

In the case of the uniform prior of equation 1.38 the above integral can be

computed analytically. This is not however true for the case of the normal

prior of equation 1.39, for which numerical integration is necessary.

Figure 1.6 shows the evolution of the posterior distribution of equation

1.41, starting from the prior distribution in the top–left panel, as we grad-

ually increase the number of data points that are included in the analysis.

The posteriors with both prior choices are illustrated, also highlighting the

effect of the prior choice on the posterior. As we can see from the same fig-

ure, while the number of trials 𝑁 remains small (e.g. 𝑁 ≤ 5), the posterior
corresponding to the informative normal prior remains unaffected. On the

other hand, the posterior corresponding to the more agnostic uniform prior

responds rapidly to the new data and concentrates close to the lower half

of the 𝐹 range. The reason for this difference is the fact that the few ini-

tial data points do not carry sufficient information compared to the normal

prior, but they do so compared to the less informative uniform prior. For a

higher number of trials𝑁 the behaviour is changing though. Both posteriors

rapidly concentrate around the same value of 𝐹 . This indicates that the prior,
while important in the low–data regime, does not affect the posterior when

the amount of data is substantial. This behaviour is a direct consequence

of the Bernstein–von Mises theorem (Van der Vaart, 2000) which, under quite

general conditions, states that “for sufficiently nice prior probabilities, in the
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Figure 1.6: The evolution of the posterior probability distribution of a coin–tossing

experiment for increasing number of trials. 𝐹 is the bias parameter that

we want to estimate. 𝐻 is the number of times the coin landed on heads
and 𝑁 is the total number of trials. The continuous line corresponds to

the case of using a uniform prior whereas the dashed line to a normal

prior. The dotted line shows the true (unknown) value of 𝐹 .

limit of infinite data the posterior converges to a Gaussian distribution in-

dependently of the initial prior”. This also explains the symmetric form of

the posterior in Figure 1.6 when the number of trials is large, as well as its

reduced width.

1.6.2 Fitting a model to data

A general problem that scientists are often called to solve is that of fitting

a mathematical model 𝑚(𝑡 |𝜃) to the data 𝑑 , where the pairs (𝑡, 𝑑) constitute
the measured data points. A simple example of a model is the straight line

𝑚(𝑡 |𝛼, 𝛽) = 𝛼 + 𝛽𝑡 . 𝑡 = {𝑡𝑖} could be a sequence of time instances, posi-

tions or any other physical quantity in which the measurements 𝑑 = {𝑑𝑖}
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are collected. The task of model fitting lies within the context of Bayesian

parameter estimation as the main goal is to approximate the posterior prob-

ability distribution 𝑝(𝜃 |𝑑,), that is, the probability distribution of the pa-

rameters 𝜃 , given the data 𝑑 and the model . The latter consists of the

actual mathematical model 𝑚(𝜃) plus all the assumptions made during the

analysis. Usually, the data 𝑑 are assumed to be a noise–corrupted realisation

0.0 0.2 0.4 0.6 0.8 1.0
t

0.8
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1.2

1.4
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Figure 1.7: Example of data 𝑑 and the straight line model 𝑚(𝑡 |, 𝛼, 𝛽) = 𝛼 + 𝛽𝑡 that
was used to generate them assuming true values 𝜃 ∗ = (𝛼 ∗, 𝛽∗) = (1, 1)
and 𝜖 = 0.1.

of the model, meaning

𝑑 = 𝑚(𝑡 |𝜃 ∗) + 𝜖 , (1.43)

where 𝜃 ∗ are the true values of the parameters that we, as scientists, are as-

piring to approximate, and 𝜖 is the noise or uncertainty added to the model

realisation 𝑚(𝑡 |𝜃 ∗) in order to generate the data 𝑑 . In the absence of any

noise (i.e. 𝜖 = 0), the data are no longer corrupted and the value of 𝜃 ∗ can be

estimated with certainty. As we have discussed already, this is an idealised

scenario and in real life, our incomplete knowledge about the physical mech-

anism which produced the data introduces a non–zero noise contribution 𝜖.
As the assumed physical model 𝑚(𝜃) is often deterministic, it follows that

the sampling probability of the noise 𝜖 is identical to that of the data 𝑑 , or in
other words that

𝑝(𝑑 |𝜃,) = 𝑝(𝜖 |𝜃,) . (1.44)



Furthermore, as the underlying physical mechanisms that give rise to the

noise, often consist of a plethora of contributing factors one usually employs

the central limit theorem (CLT) in order to justify the use of a zero–mean

normal sampling distribution

𝜖 ∼  (0,Σ) , (1.45)

where Σ is the 𝐷 × 𝐷 positive–definite symmetric covariance matrix of the

noise. The likelihood function is thus assumed to be Gaussian

𝑝(𝑑 |𝜃,) = det(2𝜋Σ)−
1
2 exp

{
−
1
2
[𝑑 −𝑚(𝑡 |𝜃)]𝑇 Σ−1 [𝑑 −𝑚(𝑡 |𝜃)]

}
. (1.46)

Contrary to popular opinion, and as we will discover in the next chapter

where the principle of maximum entropy is discussed, a Gaussian function,

or equivalently a normal sampling distribution, is quite often a very good

choice. There are of course applications in which other sampling distribu-

tions will be more appropriate (e.g. Poisson for number counts). However,

when only the (co–)variance of the noise is known, the normal distribution

is the most conservative choice one can make (Gregory, 2005; Hogg et al.,

2010; Sivia & Skilling, 2006). Of course, the accurate estimation of the covari-

ance is on its own a difficult problem. Furthermore, if the covariance matrix

Σ is estimated using simulated data 𝑑𝑖 ∼ 𝑝(𝑑), for instance

Σ̂ =
1

𝑛 − 1

𝑛
∑
𝑖=1

(𝑑𝑖 − 𝑑)(𝑑𝑖 − 𝑑)𝑇 , (1.47)

where 𝑑 = 𝑛−1∑𝑛
𝑖=1 𝑑𝑖 , the Gaussian likelihood function must to be modi-

fied to account for the uncertainty of the covariance estimate (Sellentin &

Heavens, 2015).

Given the model, the data, and the likelihood, the final requirement in or-

der to conduct Bayesian inference is the prior distribution 𝑝(𝜃 |). This will
of course depend on the specific application and we will discuss the choice

of prior in more detail in the next chapter. The task of approximating the

posterior 𝑝(𝜃 |𝑑,), that we have discussed so far, is in general analytically

intractable for all but the simplest models and prior choices. In the rest of this

thesis, we will present various methods and computational tools that will al-

low us to tackle problems such as this one. As an illustration, we offer Figure

1.8 which shows the 1–D and 2–D marginal posteriors of fitting the straight

line model𝑚(𝑡 |, 𝛼, 𝛽) = 𝛼 + 𝛽𝑡 to the data of Figure 1.7 assuming flat/uniform

priors 𝛼, 𝛽 ∼  (−5, 5). Although this is a relatively simple model, the same

principles and techniques that were used to estimate its posterior also extend

to more complicated applications.
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Figure 1.8: 1–D and 2–D marginal posterior contours of fitting the straight line

model 𝑚(𝑡 |, 𝛼, 𝛽) = 𝛼 + 𝛽𝑡 to the data of Figure 1.7 assuming flat/uni-

form priors 𝛼, 𝛽 ∼  (−5, 5). The black lines show the true values of the

parameters 𝜃 ∗ = (𝛼 ∗, 𝛽∗) = (1, 1) which were used to generate the data.



2 QUAN T I F Y ING PR IOR

KNOWLEDGE

Only entropy comes easy.

— Anton Chekhov

The discussion about Bayes’ theorem so far explains how one can update

one’s prior knowledge in the light of new data. The question that naturally

arises is how does one quantify their prior knowledge in the form of a prob-

ability distribution in the first place? In this chapter, we will attempt to pro-

vide a series of methods and practices that aim to do exactly that.

Ever since its initial development, many have criticised Bayesian inference

for its dependence on prior knowledge (Efron, 1986; Gelman, 2008). Argu-

ments against it mostly focus on the alleged subjectivity of its derived results.

Wemaintain however that those claims are unfounded as all statistical analy-

ses, Bayesian or not, employ prior information in some form or another. The

difference with Bayesian inference is that this is explicitly done and taken

into account. Indeed, anytime one has to perform a statistical analysis they

have to assume a specific model (or a collection of them), often a specific set

of parameters, a procedure of collecting data and a set of assumptions about

the process that generated the data. In terms of the objectivity of its results,

Bayesian inference is objective in the sense that any researcher possessing

the same model assumptions, data, and prior knowledge will naturally reach

exactly the same conclusions. Finally, the use of prior information can be

understood as a great strength of Bayesian inference as it allows for the nu-

merous scientific analyses which employ posterior distributions from old ex-

periments as the priors for new ones, thus updating our knowledge of the

world in a sequential and accumulative manner without discarding previous

results. In this chapter, we will present both methods which employ this

philosophy and those which attempt to provide a systematic procedure for

generating prior distributions.

2.1 conjugate priors

A prior distribution is said to be conjugate to the likelihood function if it

belongs to the same family of distributions as the posterior (Gelman, Carlin,

et al., 2013). For instance, if the prior is a Gamma distribution and the likeli-
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hood is described by a Poisson probability mass function then the posterior

is also Gamma.

From a mathematical point of view, conjugate priors are the most conve-

nient choice as they allow us to compute the posterior analytically without

the requirement of any computational method. From a scientific point of

view however, conjugate priors are not well justified as they exist solely for

the merit of algebraic convenience and they are not designed in order to en-

code the actual prior information. They are however a useful pedagogical

and illustrative example of a method for choosing prior distributions.

2.1.1 Binomial likelihood function with Beta prior

Let us now consider the case of a binomial distribution

𝑝(𝑠, 𝑛|𝜃) = (
𝑛
𝑠)

𝜃 𝑠(1 − 𝜃)𝑛−𝑠 , (2.1)

which is the sampling distribution for the number of successes 𝑠 in 𝑛 Bernoulli
trials with probability of success equal to 𝜃 . Fixing the number of successes

𝑠 and trials 𝑛 and letting 𝜃 vary as a free parameter, the above probability

mass function will be the likelihood function for this example. It is also more

convenient to express it in terms of the number of failures 𝑓 = 𝑛 − 𝑠 instead
of the number of trials 𝑛 as

𝑝(𝑠, 𝑓 |𝜃) = (
𝑠 + 𝑓
𝑠 )𝜃

𝑠(1 − 𝜃)𝑓 . (2.2)

The prior distribution that is conjugate to this likelihood function turns out

to be the Beta distribution

𝑝(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)
(2.3)

where 𝐵(𝛼, 𝛽) is the Beta function

𝐵(𝛼, 𝛽) = ∫
1

0
𝜃𝛼−1(1 − 𝜃)𝛽−1𝑑𝜃 , (2.4)

that acts as a normalisation factor for the distribution and 𝛼 and 𝛽 are hyper-
parameters of the distribution. In the Bayesian context, a hyperparameter is

a parameter of a prior distribution; the term is used to distinguish them from

parameters of the model. For 𝛼 = 1 and 𝛽 = 1 the Beta distribution reduces

to the uniform distribution. We can now apply Bayes’ theorem to produce

the posterior distribution

𝑝(𝜃 |𝑠, 𝑓 ) =
𝑝(𝑠, 𝑓 |𝜃)𝑝(𝜃)

𝑝(𝑠, 𝑓 )
, (2.5)



where

𝑝(𝑠, 𝑓 ) = ∫
1

0
𝑝(𝑠, 𝑓 |𝜃)𝑝(𝜃)𝑑𝜃 , (2.6)

is the evidence. Substituting equations 2.2 and 2.3 into 2.5 and 2.6 we have

𝑝(𝜃 |𝑠, 𝑓 ) = (𝑠+𝑓𝑠 )𝜃
𝑠(1 − 𝜃)𝑓 𝜃𝛼−1(1 − 𝜃)𝛽−1/𝐵(𝛼, 𝛽)

∫ 1
0 (𝑠+𝑓𝑠 )𝜃 𝑠(1 − 𝜃)𝑓 𝜃𝛼−1(1 − 𝜃)𝛽−1/𝐵(𝛼, 𝛽)𝑑𝜃

=
𝜃 𝑠+𝛼−1(1 − 𝜃)𝑓 +𝛽−1

𝐵(𝑠 + 𝛼, 𝑓 + 𝛽)
,

(2.7)

which is another Beta distribution with hyperparameters 𝛼 ′ = 𝑠 + 𝛼 and

𝛽 ′ = 𝑓 + 𝛽 .

2.2 jeffreys priors

There is often the need for priors that are invariant under reparameterisation,

meaning that two different parameterisations 𝜃 and 𝜙 of the same model
yield consistent results. This type of prior was named after Sir Harold Jef-

freys and it has the key feature that it is invariant under reparameterisations

(C. Robert et al., 2007). One natural consequence of this approach is that a

Jeffreys prior is fully determined by the choice of parameters, model and like-

lihood function. In that sense, it is often categorised as an objective prior as

the preferences of the researcher affect it only indirectly through the choice

of model and likelihood function. Although it is often characterised as an

uninformative prior, this is actually far from true as all priors encode prior

information. Perhaps a more appropriate name would be the reparametersa-
tion invariant prior.

2.2.1 One–dimensional case

Let us assume that 𝜃 and 𝜙 are two possible parameterisations of the same

model , and 𝜃 is a continuously differentiable function of 𝜙, then we say

that the prior density 𝑝𝜃 (𝜃) is invariant under the reparameterisation 𝜃 =
𝜃(𝜙) if it is related to the prior density 𝑝𝜙(𝜙) by the usual change–of–variables
theorem

𝑝𝜙(𝜙) = 𝑝𝜃 (𝜃)
||||
𝑑𝜃
𝑑𝜙

||||
. (2.8)

Furthermore, the expected Fisher information is defined as

𝜃 (𝜃) = −E𝑑 [
𝑑2

𝑑𝜃2
log 𝑝(𝑑 |𝜃)] , (2.9)
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and similarly for the 𝜙 parameterisation, where log 𝑝(𝑑 |𝜃) is the logarithm

of likelihood function, is transformed as

𝜙(𝜙) = 𝜃 (𝜃)(
𝑑𝜃
𝑑𝜙)

2
, (2.10)

under the reparametrisation 𝜃 = 𝜃(𝜙).
Comparing the equations 2.8 and 2.10 one can see that defining the priors

as

𝑝𝜃 (𝜃) ∝
√
𝜃 (𝜃) , (2.11)

and

𝑝𝜙(𝜙) ∝
√
𝜙(𝜙) , (2.12)

yields the desired invariance under reparameterisation.

2.2.2 Multi–dimensional case

The generalisation to multiple dimensions is straightforward. The change–

of–variables formula has the general form

𝑝𝜙(𝜙) = 𝑝𝜃 (𝜃)| det 𝐽 | , (2.13)

where 𝜃 and 𝜙 are now sets of parameters (i.e. vectors), and 𝐽 is the Jacobian
matrix of the transformation with components given by

𝐽𝑖𝑗 =
𝜕𝜃𝑖
𝜕𝜙𝑖

, (2.14)

where the indices 𝑖 and 𝑗 point to the 𝑖–th and 𝑗–th component of the param-

eter vectors 𝜃 and 𝜙 respectively. Similarly, the expected Fisher information

matrix, defined as

𝜃 (𝜃)𝑖𝑗 = −E𝑑 [
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
log 𝑝(𝑑 |𝜃)] , (2.15)

is transformed as

𝜙(𝜙) = 𝐽 𝑇𝜃 (𝜃)𝐽 . (2.16)

Computing the determinant of both parts of equation 2.16 leads to

det𝜙(𝜙) = det𝜃 (𝜃)(det 𝐽 )2 . (2.17)

Comparing equations 2.13 and 2.17 one can see that defining the priors as

𝑝𝜃 (𝜃) ∝
√
det𝜃 (𝜃) , (2.18)

and

𝑝𝜙(𝜙) ∝
√
det𝜙(𝜙) , (2.19)

once again yields the desired invariance under reparameterisation.



2.2.3 Gaussian distribution with mean parameter

Assuming that the data 𝑑 are Gaussian–distributed with unknown mean 𝜇
and known standard deviation 𝜎 , the probability density function of 𝑑 given

𝜇 can be written as

𝑝(𝑑 |𝜇) =
1√
2𝜋𝜎

𝑒−
(𝑑−𝜇)2

2𝜎2 , (2.20)

where 𝜎 is fixed. Applying equation 2.11 using equation 2.9 in this case, the

Jeffreys prior for parameter 𝜃 ≡ 𝜇 is simply

𝑝(𝜇) ∝
√
𝐼 (𝜇) =

√

−E𝑑 [
𝑑2

𝑑𝜇2
log 𝑝(𝑑 |𝜇)] =

√

E𝑑 [(
𝑑 − 𝜇
𝜎 )

2

]

=

√

∫
∞

−∞
𝑝(𝑑 |𝜇)(

𝑑 − 𝜇
𝜎 )

2
𝑑𝑑 =

1
𝜎
∝ 1 .

(2.21)

The prior of 𝜇 in this case is independent of 𝜇 which means that is an im-

proper (i.e. unnormalised) uniform prior.

2.2.4 Gaussian distribution with scale parameter

Assuming now that we know the mean parameter 𝜇 (i.e. 𝜇 is fixed) and the

standard deviation 𝜎 is unknown, the Gaussian probability density function

of 𝑑 given 𝜎 is simply

𝑝(𝑑 |𝜎 ) =
1√
2𝜋𝜎

𝑒−
(𝑑−𝜇)2

2𝜎2 . (2.22)

Applying equation 2.11 using equation 2.9 in this case, the Jeffreys prior for

parameter 𝜃 ≡ 𝜎 is

𝑝(𝜎 ) ∝
√
𝐼 (𝜎 ) =

√

−E𝑑 [
𝑑2

𝑑𝜎2 log 𝑝(𝑑 |𝜎 )] =

√

E𝑑 [(
(𝑑 − 𝜇)2 − 𝜎2

𝜎3 )

2

]

=

√

∫
∞

−∞
𝑝(𝑑 |𝜎 )(

(𝑑 − 𝜇)2 − 𝜎2

𝜎3 )

2
𝑑𝑑 =

√
2
𝜎

∝
1
𝜎
.

(2.23)

2.3 maximum entropy priors

In the absence of any information, one should distribute their degree of be-

lief equally between all possible outcomes. This simple rule for assigning

probabilities to discrete outcomes was considered so apparent to the fathers

of probability theory, Jacob Bernoulli and Pierre Simon Laplace, that they did
not even bother to give it a name. However, its importance in the context of

probability theory was clear to both of them. In particular, Laplace wrote:
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The theory of chance consists in reducing all the events of the same
kind to a certain number of cases equally possible, that is to say,
to such as we may be equally undecided about in regard to their
existence, and in determining the number of cases favourable to
the event whose probability is sought. The ratio of this number
to that of all the cases possible is the measure of this probability,
which is thus simply a fraction whose numerator is the number of
favourable cases and whose denominator is the number of all the
cases possible.

This rulewas later named the principle of insufficient reason, possibly as a play
on Leibniz’s principle of sufficient reason (Brading & Castellani, 2003). Finally,

it was renamed to the principle of indifference by economist John Maynard
Keynes that noted that it can only be applied when one has no additional

information (Keynes, 1921).

But what if we have some additional information, perhaps in the form of

expectation values? Can we somehow incorporate that information andmin-

imally extend the principle of indifference? The answer to this question was

provided by Jaynes in the form of the principle of maximum entropy (Max-
Ent) (E. Jaynes, 1982).

Using the notion of Shannon’s “entropy” that quantifies the uncertainty

of a probability distribution, MaxEnt is a mathematical procedure for the

derivation of the maximally agnostic (i.e. least informative) probability dis-

tribution subject to a collection of known constraints. The MaxEnt principle

can be applied in the assignment of prior probabilities in cases where we

know some constraints about the parameters a priori in the form of expecta-

tion values (e.g. mean, variance, lower or upper bounds, etc.) and we seek

to find the least informative distribution that respects those constraints and

still complies as much as possible to the principle of indifference.
The MaxEnt principle turns the problem of defining a prior distribution

into a task of optimisation. In particular, one seeks the probability distribu-

tion with the maximum entropy, that is, the least informative, subject to a

collection of algebraic constraints in the form of expectation values. Before

we move on to discuss some explicit examples that demonstrate the applica-

tion of the MaxEnt principle, let us first present a couple of definitions for

the “entropy”.

2.3.1 Shannon’s entropy

In 1948, Claude Shannon’s pioneering work on information theory (Shannon,

1948) introduced a measure of the uncertainty of a discrete probability dis-

tribution which he termed “entropy” and defined as

𝑆(𝑝) = −
𝑛
∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 . (2.24)



The entropy of a probability distribution quantifies the amount of missing

information, uncertainty or “surprisal” inherent in the distribution (MacKay,

2003). In other words, entropy is the expectation value E𝑝[𝐼 ] of the informa-

tion

𝐼𝑖 = − log 𝑝𝑖 , (2.25)

which quantifies the information content of an event 𝑖 with probability 𝑝𝑖 .
For example, a fair coin landing “heads–tails–heads“ with probability 1/23

provides information of − log(1/23) = 3 log 2 or 3 bits. Information is mea-

sured in “bits” if the logarithm has base 2 or in “nats” if it has base 𝑒. Infor-
mation has a series of desired properties, namely

1. An event 𝑖 with probability 𝑝𝑖 = 1 is certain and offers no information

(i.e. 𝐼𝑖 = 0),

2. The lower the probability of an event, the more surprising it is and

thus the higher its information contribution,

3. Information is additive, meaning that the total amount of information

is the sum of the information of the individual events.

It turns out the form of equation 2.25 for information is the only option if

we want less probable events to have more information, and information to

add for independent events.

Let us consider a simple example in order to make the notions of informa-

tion and entropy better understood. Suppose that according to the weather

forecast there is a 𝑝 = 1/2 chance that it rains 1 𝑐𝑚, 𝑝 = 1/4 chance that

it rains 2 𝑐𝑚 and 𝑝 = 1/4 chance that it does not rain at all. The expected

amount of rain is simply 1/2 × 1 𝑐𝑚 + 1/4 × 2 𝑐𝑚 + 1/4 × 0 = 1 𝑐𝑚. The ex-

pected amount of information that you gain when you find out how much it

rains is −1/2 log(1/2) − 1/4 log(1/4) − 1/4 log(1/4) = 3/2 log 2 or 3/2 bits, this is
the Shannon entropy of the weather report.

Shannon’s entropy naturally assumes that the uniform distribution 𝑝𝑖 =
1/𝑛 where 𝑛 is the number of discrete events holds a very special role. In the

absence of any other constraints, assigning equal probability to all outcomes

(i.e. 𝑝𝑖 is constant) corresponds to the state of complete ignorance. In other

words, the distribution that maximises Shannon’s entropy is the uniform

distribution in accordance with the principle of indifference.

2.3.2 Relative entropy

Another useful, entropy–like quantity is the following

𝐷𝐾𝐿(𝑝|𝑞) =
𝑛
∑
𝑖=1

𝑝𝑖 log(
𝑝𝑖
𝑞𝑖)

, (2.26)
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that has been given many names, including relative entropy, cross–entropy,
and Kullback–Leibler (KL) divergence as (Kullback & Leibler, 1951) were the

first ones to demonstrate its potential for statistical applications.

The latter is a measure of information gained when one updates their be-

liefs, initially quantified by a distribution 𝑞 to an updated distribution 𝑝. In
that sense, relative entropy is a measure of statistical distance between the

two distributions and it is defined as

𝐷𝐾𝐿(𝑝|𝑞) =
𝑛
∑
𝑖=1

𝑝𝑖 log(
𝑝𝑖
𝑞𝑖)

, (2.27)

for the discrete case, and

𝐷𝐾𝐿(𝑝|𝑞) = ∫ 𝑝(𝜃) log(
𝑝(𝜃)
𝑞(𝜃))

𝑑𝜃 , (2.28)

for the continuous case.

Relative entropy has a collection of desired properties too, including

1. It is always non–negative,

𝐷𝐾𝐿(𝑝|𝑞) ≥ 0 , (2.29)

a result commonly known asGibbs’ inequality. Relative entropy is zero
if and only if 𝑝 = 𝑞 almost everywhere.

2. Relative entropy, unlike Shannon’s entropy, is well defined for contin-

uous distributions.

3. Given a transformation 𝜃 = 𝜃(𝜙) such that 𝑝(𝜃)𝑑𝜃 = 𝑝(𝜙)𝑑𝜙 and

𝑞(𝜃)𝑑𝜃 = 𝑞(𝜙)𝑑𝜙 the relative entropy is parameterisation invariant,

meaning

𝐷𝐾𝐿(𝑝|𝑞) = ∫ 𝑝(𝜃) log(
𝑝(𝜃)
𝑞(𝜃))

𝑑𝜃

= ∫ 𝑝(𝜙) log
(
𝑝(𝜙)𝑑𝜙𝑑𝜃
𝑞(𝜙)𝑑𝜙𝑑𝜃 )

𝑑𝜙

= ∫ 𝑝(𝜙) log(
𝑝(𝜙)
𝑞(𝜙))

𝑑𝜙 .

(2.30)

4. Relative entropy reduces to the well known Shannon’s entropy, up to

a sign, for the case of a uniform distribution 𝑞 in the discrete case.

As we mentioned in the previous sub–section, using Shannon’s definition
of entropy places the uniform distribution into a very special place, that of

the maximum entropy distribution in the absence of any other constraints

that provide additional information. Although this is in accordance with the

principle of indifference, there are cases in practice in which one requires a



different prior distribution 𝑞, before taking into account any constraints. For
instance, one may seek to find a distribution that minimally deviates from a

Jeffreys prior subject to some constraints. In those cases, instead of maximis-

ing Shannon’s entropy, one can minimise the relative entropy. For simplicity,

we will refer to the principle of minimum relative entropy as MaxEnt too

Shore & Johnson (1980) proved that minimising the relative entropy is the

uniquely correct way of updating probability distributions in the face of new

information in the form of expectation values for both discrete and contin-

uous cases. Furthermore, the relative entropy, unlike Shannon’s entropy, is
easily generalisable to the continuous case too.

2.3.3 Lagrange multipliers

The method of Lagrange multipliers (Riley et al., 1999) offers a powerful way

of finding the local extrema (i.e. maxima and minima) of a function 𝑓 (𝑝)
subject to a constraint 𝑔(𝑝) = 0. If no constraint is available then the extrema

of 𝑓 can be found by solving

𝑑𝑓 =
𝜕𝑓
𝜕𝑝1

𝑑𝑝1 +⋯ +
𝜕𝑓
𝜕𝑝𝑛

𝑑𝑝𝑛 = 0 . (2.31)

Here the 𝑑𝑝𝑖 are independent so one concludes that the extrema are simply

given by 𝜕𝑓 /𝜕𝑝𝑖 = 0. However, the existence of the constraint means that 𝑑𝑝𝑖
are not actually independent since

𝑑𝑔 =
𝜕𝑔
𝜕𝑝1

𝑑𝑝1 +⋯ +
𝜕𝑔
𝜕𝑝𝑛

𝑑𝑝𝑛 = 0 , (2.32)

because 𝑔(𝑝) is constant. We can combine equations 2.31 and 2.32 by first

multiplying the second by an unknown factor 𝜆 called Lagrange multiplier,
thus yielding

𝑑(𝑓 − 𝜆𝑔) = (
𝜕𝑓
𝜕𝑝1

− 𝜆
𝜕𝑔
𝜕𝑝1)

𝑑𝑝1 +⋯ +(
𝜕𝑓
𝜕𝑝𝑛

− 𝜆
𝜕𝑔
𝜕𝑝𝑛)

𝑑𝑝𝑛 = 0 . (2.33)

We can now choose 𝜆 such that

𝜕𝑓
𝜕𝑝𝑖

− 𝜆
𝜕𝑔
𝜕𝑝𝑖

= 0 , (2.34)

for all 𝑖 ∈ {1,… , 𝑛}. Equations 2.34 along with the constraint equation 𝑔(𝑝)
are sufficient to determine the value of 𝜆 and coordinates 𝑝𝑖 of the stationary
point.

2.3.4 Uniform distribution

Assuming that the only constraint or form of information is that the sum of

all probabilities is equal to one, meaning

𝑛
∑
𝑖=1

𝑝𝑖 = 1 , (2.35)
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then in order to find the maximum entropy distribution, we have to solve

𝑑
[
−

𝑛
∑
𝑖=1

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

− 𝜆
(

𝑛
∑
𝑖=1

𝑝𝑖 − 1)]
= 0 , (2.36)

where the first term is the relative entropy and the second term is the con-

straint multiplied with the unknown Lagrange multiplier 𝜆. Doing some

simple calculus on the expression of 2.36 we get

𝑑
[
−

𝑛
∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 +
𝑛
∑
𝑖=1

𝑝𝑖 log 𝑞𝑖 − 𝜆(

𝑛
∑
𝑖=1

𝑝𝑖 − 1)]
= 0 ⇒

−
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑝𝑖 −
𝑛
∑
𝑖=1

𝑝𝑖 𝑑(log 𝑝𝑖)

+
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑞𝑖 − 𝜆
𝑛
∑
𝑖=1

𝑑𝑝𝑖 = 0 ⇒

−
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑝𝑖 −
𝑛
∑
𝑖=1

𝑝𝑖 (

𝑛
∑
𝑗=1

𝜕 log 𝑝𝑖
𝜕𝑝𝑗

𝑑𝑝𝑗)

+
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑞𝑖 − 𝜆
𝑛
∑
𝑖=1

𝑑𝑝𝑖 = 0 ⇒

−
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑝𝑖 −
𝑛
∑
𝑖=1

𝑝𝑖 (

𝑛
∑
𝑗=1

𝛿𝑖𝑗
1
𝑝𝑗
𝑑𝑝𝑗)

+
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑞𝑖 − 𝜆
𝑛
∑
𝑖=1

𝑑𝑝𝑖 = 0 ⇒

−
𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑝𝑖 −
𝑛
∑
𝑖=1

𝑝𝑖
1
𝑝𝑖
𝑑𝑝𝑖 +

𝑛
∑
𝑖=1

𝑑𝑝𝑖 log 𝑞𝑖 − 𝜆
𝑛
∑
𝑖=1

𝑑𝑝𝑖 = 0 ⇒

𝑛
∑
𝑖=1 (

− log
𝑝𝑖
𝑞𝑖

− 1 − 𝜆) 𝑑𝑝𝑖 = 0

(2.37)

According to our previous discussion on Lagrange multipliers, for equation

2.37 to hold, the terms in the parentheses need to vanish for every 𝑖 = 1,… , 𝑛,
therefore we get

𝑝𝑖 = 𝑞𝑖𝑒−(1+𝜆) . (2.38)

We can determine the value of 𝜆 using the constraint equation 2.35

𝑛
∑
𝑖=1

𝑞𝑖𝑒−(1+𝜆) = 1 , (2.39)

∑𝑛
𝑖=1 𝑞𝑖 = 1 so 𝜆 = −1. Therefore, the distribution in the discrete case is

𝑝𝑖 = 𝑞𝑖 , (2.40)

and in the continuous case is

𝑝(𝜃) = 𝑞(𝜃) , (2.41)



Furthermore, assuming that 𝑞 is a uniform (i.e. 𝑞𝑖 = 1/𝑛) in accordance with

the principle of indifference, then 𝑝 is also uniform. This means that the dis-

tribution of maximum entropy under the minimal constraint that the total

probability needs to sum up to one is the uniform distribution. Let us now

move on to a few more intriguing examples.

2.3.5 Exponential distribution

Suppose now that we have an additional constraint apart from equation 2.35

for the sum of probabilities,

𝑛
∑
𝑖=1

𝑝𝑖𝜃𝑖 = 𝜇 , (2.42)

indicating that the mean value of 𝜃 is known and equal to 𝜇. Having two

constraints requires us to introduce two Lagrange multipliers, 𝜆 and �̃�, and
solve

𝑑
[
−

𝑛
∑
𝑖=1

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

− 𝜆
(

𝑛
∑
𝑖=1

𝑝𝑖 − 1)
− �̃�

(

𝑛
∑
𝑖=1

𝑝𝑖𝜃𝑖 − 𝜇)]
= 0 , (2.43)

in order to find the appropriate maximum entropy distribution. Similarly to

before, after some calculus, we get

𝑛
∑
𝑖=1 (

− log
𝑝𝑖
𝑞𝑖

− 1 − 𝜆 − 𝜃𝑖�̃�) 𝑑𝑝𝑖 = 0 . (2.44)

Again, the term in the parentheses needs to vanish for any value of 𝑖, thus

𝑝𝑖 = 𝑞𝑖𝑒−(1+𝜆)𝑒−�̃�𝜃𝑖 . (2.45)

We can now apply the two constraints to determine the values of the La-

grange multipliers. From equation 2.35 for the first constraint, we have

𝑒−(1+𝜆) =
1

∑𝑛
𝑖=1 𝑞𝑖𝑒−�̃�𝜃𝑖

. (2.46)

Similarly, from equation 2.42 for the second constraint, we have

𝑛
∑
𝑖=1

𝑞𝑖𝜃𝑖𝑒−�̃�𝜃𝑖 − 𝜇
𝑛
∑
𝑖=1

𝑞𝑖𝑒−�̃�𝜃𝑖 = 0 , (2.47)

which can only be solved numerically. Equation 2.45 can also be written for

the continuous case as

𝑝(𝜃) = 𝑞(𝜃)𝑒−(1+𝜆)𝑒−�̃�𝜃 . (2.48)

Equation 2.48 is the general MaxEnt prior for an arbitrary pseudo–prior

𝑞(𝜃). However, the expression can be simplified more if we assume that our
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state of knowledge about 𝜃 prior to the information provided by the con-

straints 2.35 and 2.42, is that it is positive (i.e. 𝜃 > 0). This means, that 𝑞(𝜃)
is a uniform distribution, in agreement with the principle of indifference.

Furthermore, to avoid issues with “infinities” and render 𝑞 a proper pseudo–
prior, we can set an upper limit 𝐿 on the possible values of 𝜃 , therefore

𝑞(𝜃) =  (𝜃 |0, 𝐿) =

{
1/𝐿 if 0 < 𝜃 ≤ 𝐿
0 otherwise

. (2.49)

Once we have derived the form of the MaxEnt prior 𝑝(𝜃) we can then take

the limit of 𝐿 → ∞ to allow 𝜃 to be any positive real number. Including this

particular choice of 𝑞(𝜃), equation 2.48 takes the form

𝑝(𝜃) =
1
𝐿
𝑒−(1+𝜆)𝑒−�̃�𝜃 , 𝜃 > 0 . (2.50)

Using the pseudo-prior of equation 2.49, the first constraint, for the total

probability, given by equation 2.35, can be expressed as

∫
∞

−∞
𝑝(𝜃)𝑑𝜃 = 1 ⇒

1
𝐿
𝑒−(1+𝜆) ∫

𝐿

0
𝑒−�̃�𝜃𝑑𝜃 = 1 ⇒

1
𝐿
𝑒−(1+𝜆)

[
−
𝑒−�̃�𝜃

�̃� ]

𝜃=𝐿

𝜃=0

= 1 ⇒

1
𝐿
𝑒−(1+𝜆) =

�̃�
1 − 𝑒−�̃�𝐿

.

(2.51)

Similarly, the second constraint, for the expected or mean value of 𝜃 , given
by equation 2.42, can be expressed as

∫
∞

−∞
𝜃𝑝(𝜃)𝑑𝜃 = 𝜇 ⇒

1
𝐿
𝑒−(1+𝜆) ∫

𝐿

0
𝜃𝑒−�̃�𝜃𝑑𝜃 = 𝜇 ⇒

1
𝐿
𝑒−(1+𝜆)

[
−
𝑒−�̃�𝜃 (�̃�𝜃 + 1)

�̃�2 ]

𝜃=𝐿

𝜃=0

= 𝜇 ⇒

1
𝐿
𝑒−(1+𝜆)

1 − 𝑒−�̃�𝐿(�̃�𝐿 + 1)
�̃�2

= 𝜇 ⇒

�̃�
1 − 𝑒−�̃�𝐿

×
1 − 𝑒−�̃�𝐿(�̃�𝐿 + 1)

�̃�2
= 𝜇 ⇒

𝜇 =
1
�̃�
−

𝐿𝑒−�̃�𝐿

1 − 𝑒−�̃�𝐿
,

(2.52)

where we used equation 2.51 to simplify the result.



Taking the limit 𝐿 → +∞ and using equation 2.52, we find that

𝜇 →
1
�̃�
, (2.53)

as the second term vanishes. Similarly, using equation 2.51, we find that

1
𝐿
𝑒−(1+𝜆) → �̃� . (2.54)

Substituting these results into equation 2.50, we are lead to

𝑝(𝜃 |𝜇) =
1
𝜇
𝑒−

𝜃
𝜇 , (2.55)

the well known exponential distribution. What this paragraph taught us is

crucial, if we only know the mean of a non–negative parameter and nothing

else, then the exponential distribution is the one that best represents the

current state of knowledge, by making the fewest assumptions.

2.3.6 Normal distribution

Suppose that we also know the the standard deviation 𝜎 given by

𝑛
∑
𝑖=0

𝑝𝑖(𝜃𝑖 − 𝜇)2 = 𝜎2 , (2.56)

as an additional constraint. We now have to solve

𝑑
[
−

𝑛
∑
𝑖=1

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

− 𝜆
(

𝑛
∑
𝑖=1

𝑝𝑖 − 1)
− �̃�

(

𝑛
∑
𝑖=1

𝑝𝑖(𝜃𝑖 − 𝜇)2 − 𝜎2
)]

= 0 , (2.57)

where the first term corresponds to the entropy, the second to the constraint

that the sum of all probabilities needs to add up to one, and the last term to

the standard deviation constraint that also includes that about the mean 𝜇.
Thus we have two Lagrange multipliers and we follow the same procedure

as before, solving equation 2.57 we have

𝑛
∑
𝑖=1 (

− log
𝑝𝑖
𝑞𝑖

− 1 − 𝜆 − �̃�(𝜃𝑖 − 𝜇)2) 𝑑𝑝𝑖 = 0 . (2.58)

The terms in the parentheses need to vanish for all values of 𝑖, thus

𝑝𝑖 = 𝑞𝑖𝑒−(1+𝜆)𝑒−�̃�(𝜃𝑖−𝜇)
2
. (2.59)

The corresponding continuous probability density function is simply

𝑝(𝜃) = 𝑞(𝜃)𝑒−(1+𝜆)𝑒−�̃�(𝜃−𝜇)
2
. (2.60)
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Furthermore, assuming a uniform prior 𝑞(𝜃) ∝ 1 in accordance with the

principle of indifference, equation 2.48 reduces to

𝑝(𝜃) = 𝑒−(1+𝜆)𝑒−�̃�(𝜃−𝜇)
2
. (2.61)

We can now apply the constraint equations 2.35 and 2.56 in order to uniquely

determine the values of the two Lagrangemultipliers. In the continuous limit,

the first constraint given by equation 2.35, is written as

∫
∞

−∞
𝑝(𝜃)𝑑𝜃 = 1 . (2.62)

Substituting equation 2.61 into equation 2.62 yields

𝑒−(1+𝜆) ∫
∞

−∞
𝑒−�̃�(𝜃−𝜇)

2
𝑑𝜃 = 1 . (2.63)

Doing the change of variables 𝑧 =
√
�̃�(𝜃 − 𝜇) brings equation 2.63 into the

simpler form

𝑒−(1+𝜆)√
�̃�

∫
∞

−∞
𝑒−𝑧

2
𝑑𝑧 = 1 , (2.64)

where the integral is the so called Gaussian integral with value equal to

√
𝜋 .

Therefore,

𝑒−(1+𝜆) =

√
�̃�
𝜋
, (2.65)

and equation 2.61 reduces to

𝑝(𝜃) =

√
�̃�
𝜋
𝑒−�̃�(𝜃−𝜇)

2
. (2.66)

We can now move on to determine the second Lagrange multiplier �̃� by sub-

stituting equation 2.66 into 2.56, thus

√
�̃�
𝜋 ∫

∞

−∞
𝑒−�̃�(𝜃−𝜇)

2
(𝜃 − 𝜇)2𝑑𝜃 = 𝜎2 . (2.67)

Applying the same change of variables as before, 𝑧 =
√
�̃�(𝜃 − 𝜇), we have

1
�̃�
√
𝜋 ∫

∞

−∞
𝑒−𝑧

2
𝑧2𝑑𝑧 = 𝜎2 . (2.68)

The integral can be computed using integration by parts

1
�̃�
√
𝜋

{

[𝑧 (−
1
2
𝑒−𝑧

2

)]
∞

−∞
− ∫

∞

−∞
−
1
2
𝑒−𝑧

2
𝑑𝑧

}
= 𝜎2 , (2.69)

in which the first term in the braces vanishes and the second is equal to

√
𝜋/2,

thus

�̃� =
1

2𝜎2 . (2.70)



Finally, substituting equation 2.70 into 2.66 leads to the usual Gaussian func-

tion

𝑝(𝜃) =
1√
2𝜋𝜎

𝑒−
(𝜃−𝜇)2

2𝜎2 , (2.71)

as the maximum entropy probability density function. In other words, the

maximumentropy probability distribution subject to the constraints of known

mean and standard deviation is the normal distribution.

2.4 reference priors

Themethod of reference priors, originally proposed by JoseMBernardo (1979)

and later expanded by others (Berger et al., 2009; José M Bernardo, 2005; José

M Bernardo & Smith, 2009; Kass & Wasserman, 1996), is another approach

that utilises information–theoretic ideas. The main idea behind reference

priors is to choose the prior 𝑝(𝜃) to maximise some notion of discrepancy

between the prior 𝑝(𝜃) and the posterior 𝑝(𝜃 |𝑑). One reason to do this is that

such a prior would allow the data 𝑑 to be maximally informative and have

the greatest effect on the posterior distribution. In one–dimensional cases it

turns out that reference priors and Jeffreys priors are equivalent. In higher

dimensional cases, however, they are generally different. The research field

of reference priors has expanded substantially during the past decades. For

this reason, we will cover the fundamentals in this section and direct the

reader to the aforementioned references for more information.

As we discussed in the previous section regarding maximum entropy pri-

ors, a common measure of the discrepancy between two distributions is the

relative entropy or KL divergence, given by equation 2.28. In the case of the

prior and posterior distribution, this can be written as

𝐷𝐾𝐿 [𝑝(𝜃 |𝑑)|𝑝(𝜃)] = ∫ 𝑝(𝜃 |𝑑) log
𝑝(𝜃 |𝑑)
𝑝(𝜃)

𝑑𝜃 . (2.72)

One might then wonder how can we maximise the above discrepancy mea-

sure, in order to find the prior 𝑝(𝜃), without knowing the posterior distribu-

tion 𝑝(𝜃 |𝑑). Reference priors address this point bymaximising the expectation
value of the relative entropy of equation 2.72 over the distribution of the data
𝑝(𝑑 (𝑛)), where 𝑑 (𝑛) = {𝑑1,… , 𝑑𝑛} are 𝑛 conditionally independent instances

of the data. At first, this appears to be a frequentist procedure as one will

base the choice of the prior on unseen fictional data, such as infinite repeti-

tions of the same experiment (e.g. in the limit that 𝑛 → ∞). However, unlike

frequentist approaches, once the prior is determined, the analysis proceeds

in the usual Bayesian manner. Furthermore, Bernardo argued that taking the
limit of 𝑛 to infinity does not just lead to a convenient mathematical proce-

dure but it is also, philosophically, the right thing to do. His argument is that

when choosing a prior we should consider many future experiments than
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just a single one. In this sense, the reference prior procedure aims to max-

imise themissing information about the parameters 𝜃 which can be obtained

by repeated experiments.

2.4.1 Mutual information

The expected relative entropy between the prior and posterior, also known

as the mutual information, quantifies the missing information and can be

derived as follows:

𝐼 (𝜃, 𝑑 (𝑛)) = E𝑑 (𝑛) [𝐷𝐾𝐿 [𝑝(𝜃 |𝑑
(𝑛))|𝑝(𝜃)]] = ∫ 𝑝(𝑑 (𝑛))𝐷𝐾𝐿 [𝑝(𝜃 |𝑑

(𝑛))|𝑝(𝜃)] 𝑑𝑑
(𝑛)

= ∫ 𝑝(𝑑 (𝑛)) ∫ 𝑝(𝜃 |𝑑 (𝑛)) log
𝑝(𝜃 |𝑑 (𝑛))
𝑝(𝜃)

𝑑𝜃𝑑𝑑 (𝑛)

= ∫ ∫ 𝑝(𝜃 |𝑑 (𝑛))𝑝(𝑑 (𝑛)) log
𝑝(𝜃 |𝑑 (𝑛))
𝑝(𝜃)

𝑑𝜃𝑑𝑑 (𝑛)

= ∫ ∫ 𝑝(𝜃, 𝑑 (𝑛)) log
𝑝(𝜃, 𝑑 (𝑛))
𝑝(𝜃)𝑝(𝑑 (𝑛))

𝑑𝜃𝑑𝑑 (𝑛) ,

(2.73)

where we used Bayes’ theorem to introduce the joint probability 𝑝(𝜃, 𝑑 (𝑛)). In
order to understand the meaning and significance of the above expression,

let us consider the simple case in which the parameters 𝜃 and the data 𝑑 (𝑛)

are independent. In this case the joint probability of the two is separable, or

𝑝(𝜃, 𝑑 (𝑛)) = 𝑝(𝜃)𝑝(𝑑 (𝑛)), and the mutual information 𝐼 (𝜃, 𝑑 (𝑛)) is zero. In other

words, the data 𝑑 (𝑛) have no effect on the parameters 𝜃 . However, those

two quantities are not generally independent, and the mutual information

quantifies the influence or effect of the data 𝑑 (𝑛) on the parameters 𝜃 . Finally,
defining the reference priors in terms of the mutual information, has the

advantage of sharing its reparameterisation invariance.

2.4.2 Maximising the mutual information

The reference prior 𝑝∗(𝜃) is simply the prior which maximises the mutual

information in the limit that 𝑛 → ∞, or:

𝑝∗(𝜃) = lim
𝑛→∞

𝑝∗𝑛(𝜃) , where 𝑝∗𝑛(𝜃) = argmax
𝑝(𝜃)

𝐼 (𝜃, 𝑑 (𝑛)) . (2.74)

The mutual information of equation 2.73 can be written as:

𝐼 (𝜃, 𝑑 (𝑛)) = ∫ 𝑝(𝜃) log
𝑓 (𝜃)
𝑝(𝜃)

𝑑𝜃 , (2.75)

where we have introduced the function

𝑓𝑛(𝜃) = exp
{

∫ 𝑝(𝑑 (𝑛)|𝜃) log 𝑝(𝑑 (𝑛)|𝜃)𝑑𝑑 (𝑛)
}
, (2.76)



where the product sampling distribution is defined as

𝑝(𝑑 (𝑛)|𝜃) =
𝑛

∏
𝑖=1

𝑝(𝑑𝑖 |𝜃) . (2.77)

Finding the prior distribution 𝑝𝑛(𝜃), which maximises the mutual informa-

tion 𝐼 (𝜃, 𝑑 (𝑛)) subject to the constraint ∫ 𝑝(𝜃)𝑑𝜃 = 1, is essentially a problem

that can be solved via the methods of calculus of variations. It may be sim-

pler to derive the result by working in the discrete case. This means that we

have to solve

𝑑
[
∑
𝑖
𝑝𝑖 log(

𝑓𝑖
𝑝𝑖)

+ 𝜆
(
∑
𝑖
𝑝𝑖 − 1)]

= 0 (2.78)

where 𝜆 is a Lagrange multiplier, in order to find the prior 𝑝𝑖 . The derivation
is as follows:

∑
𝑖
𝑑𝑝𝑖 log(

𝑓𝑖
𝑝𝑖)

+∑
𝑖
𝑝𝑖 [

∑
𝑗

𝜕 log(𝑓𝑖/𝑝𝑖)
𝜕𝑝𝑗

𝑑𝑝𝑗]
+ 𝜆∑

𝑖
𝑑𝑝𝑖 = 0 ⇒

∑
𝑖
𝑑𝑝𝑖 log(

𝑓𝑖
𝑝𝑖)

+∑
𝑖
𝑝𝑖 [

∑
𝑗
𝛿𝑖𝑗 (−

1
𝑝𝑗)

𝑑𝑝𝑗]
+ 𝜆∑

𝑖
𝑑𝑝𝑖 = 0 ⇒

∑
𝑖 [log(

𝑓𝑖
𝑝𝑖)

− 1 + 𝜆] 𝑑𝑝𝑖 = 0

(2.79)

For the above equation to be true, all terms in the sum must be zero, in other

words we get that 𝑝𝑖 = 𝑓𝑖 exp(𝜆 − 1) or simply 𝑝𝑖 ∝ 𝑓𝑖 . Rewriting this in the

continuous case, in the limit that 𝑛 → ∞ we have:

𝑝(𝜃) = lim
𝑛→∞

𝑓𝑛(𝜃)
𝑓𝑛(𝜃0)

, (2.80)

where 𝜃0 is an internal point in parameter space and 𝑓𝑛(𝜃) is given by equa-

tion 2.76. Alternatively, 𝑓𝑛(𝜃) can be defined as

𝑓𝑛(𝜃) = exp
{

∫ 𝑝(𝑑 (𝑛)|𝜃) log [
𝑝(𝑑 (𝑛)|𝜃)ℎ(𝜃)

∫ 𝑝(𝑑 (𝑛)|𝜃)ℎ(𝜃)𝑑𝜃 ]
𝑑𝑑 (𝑛)

}
, (2.81)

where we have included an arbitrary pseudo–prior ℎ(𝜃). Carefully selecting

the functional form of ℎ(𝜃) (e.g. conjugate prior) can significantly simplify

the calculations.

Intuitively, equations 2.80 and 2.81 state that the reference prior 𝑝(𝜃) de-
pends only on the asymptotic behaviour of the posterior, and schematically

can be written in the form

𝑝(𝜃) ∝ exp
{

∫ 𝑝(𝑑 (𝑛)|𝜃) log 𝑝∗(𝜃 |𝑑 (𝑛))𝑑𝑑 (𝑛)
}

∝ exp
{

E𝑝(𝑑 (𝑛)|𝜃) [log 𝑝
∗(𝜃 |𝑑 (𝑛))]

}
,

(2.82)

where 𝑝∗(𝜃 |𝑑 (𝑛)) is the asymptotic form of the posterior.
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2.4.3 Asymptotic solution

Finding the reference prior is now reduced to computing 𝑓𝑛(𝜃) using equation
2.76 or 2.81. However, this can be quite challenging in practice. The problem

can be simplified by using the Bernstein–von Mises theorem, which, as we

discussed in Chapter 1, states that under certain conditions, as the sample

size approaches infinity (i.e. 𝑛 → ∞), the posterior distribution converges to

a normal distribution centred on the maximum likelihood estimate (MLE) 𝜃𝑛
with variance equal to 𝑛−1𝐼 −1(𝜃𝑛), where 𝐼 (𝜃) is the Fisher information given

by

(𝜃) = −E𝑝(𝑑 |𝜃) [
𝜕2 log 𝑝(𝑑 |𝜃)

𝜕𝜃2 ] . (2.83)

We can use the fact that MLE is a consistent and asymptotically sufficient

estimator, meaning that

lim
𝑛→∞

𝜃𝑛 = 𝜃 , (2.84)

and

lim
𝑛→∞ ∫ 𝑝(𝑑 (𝑛)|𝜃) log

𝑝∗(𝜃 |𝑑 (𝑛))
𝑝∗(𝜃 |𝜃𝑛)

𝑑𝑑 (𝑛) = 0 , (2.85)

respectively, in order to simplify the form of the reference prior. Starting

with equation 2.81, we can write

𝑓 ∗𝑛(𝜃) = exp
{

∫ 𝑝(𝑑 (𝑛)|𝜃) log 𝑝∗(𝜃 |𝑑 (𝑛))𝑑𝑑 (𝑛)
}

= exp
{

∫ 𝑝(𝑑 (𝑛)|𝜃) log 𝑝∗(𝜃 |𝜃𝑛)𝑑𝑑 (𝑛)
}

= exp
{

∫ 𝑝(𝜃𝑛|𝜃) log 𝑝∗(𝜃 |𝜃𝑛)𝑑𝜃𝑛
}

= exp
{
log 𝑝∗(𝜃 |𝜃𝑛)

|||𝜃𝑛=𝜃

}

= 𝑝∗(𝜃 |𝜃𝑛)
|||𝜃𝑛=𝜃

.

(2.86)

Therefore, the asymptotically normal form of the posterior with mean 𝜃𝑛 and
variance 𝑛−1−1(𝜃𝑛) can be written as

𝑝∗𝑛(𝜃 |𝜃𝑛) = (2𝜋 )−1/2𝑛1/2𝐼 1/2(𝜃𝑛) exp [−
1
2
𝑛(𝜃𝑛)(𝜃 − 𝜃𝑛)2]

||||𝜃𝑛=𝜃
(2.87)

Substituting this into equation 2.86 we find that

𝑓 ∗𝑛(𝜃) = (2𝜋 )−1/2𝑛1/21/2(𝜃) , (2.88)

and using equation 2.80 we get

𝑝(𝜃) ∝ 1/2(𝜃) . (2.89)

This means that the reference prior, in asymptotically normal models de-

scribed by one parameter, is equivalent to the Jeffreys prior. As we will dis-

cuss shortly, this is not the case for models with many parameters where the

two approaches generally produce different results.



2.4.4 Numerical solution

In many cases, equation 2.81 cannot be computed analytically and a numer-

ical solution is required to derive the reference prior. This approach can be

applied to one–parameter models and results in a numerical representation

of the reference prior in the form of pairs {𝜃, 𝑝(𝜃)} of values which can be

interpolated and used to define the prior’s pdf. The numerical procedure, de-

scribed below, generally requires that it is computationally possible to simu-

late data from the sampling distribution (i.e. 𝑑 ∼ 𝑝(𝑑 |𝜃)) in order to approxi-

mate the outer integral of equation 2.81, and use numerical integration (e.g.

quadrature) in order to compute the inner integral in the normalisation of

the asymptotic posterior.

Algorithm 1 Numerical reference prior

Input: Values of 𝜃𝑡 ∈ {𝜃1,… , 𝜃𝑇} for which to compute the reference prior,

a moderate value of 𝑛 to simulate the asymptotic posterior, number of

samples 𝑚, an arbitrary pseudo–prior (e.g. ℎ(𝜃) = 1)
Output: Pairs {𝜃𝑡 , 𝑝(𝜃𝑡 )}
1: for 𝑡 = 1 to 𝑇 do
2: for 𝑗 = 1 to 𝑚 do
3: Simulate a data set {𝑑1𝑗 … , 𝑑𝑛𝑗} ∼ 𝑝(𝑑 |𝜃𝑡 ),
4: Compute the integral 𝑐𝑗 = ∫ ∏𝑛

𝑖=1 𝑝(𝑑𝑖𝑗 |𝜃)ℎ(𝜃)𝑑𝜃 numerically,

where the integration takes place in the prior domain of 𝜃 ,
5: Evaluate 𝑟𝑗 = log [𝑐−1𝑗 ∏𝑛

𝑖=1 𝑝(𝑑𝑖𝑗 |𝜃𝑡 )ℎ(𝜃𝑡 )],
6: end for
7: Compute and store 𝑝(𝜃𝑡 ) = 𝑚−1∑𝑚

𝑗=1 𝑟𝑗(𝜃𝑡 ).
8: end for

2.4.5 Many parameters

So far, we have only discussed cases where the model has a single parameter

𝜃 , in which case the reference prior is identical to the Jeffreys prior under the
assumption of asymptotic normality. However, the reference prior procedure

can be extended to models with more than one parameter where it generally

differs from the Jeffreys prior.

In the multivariate case, the reference prior can be decomposed as

𝑝(𝜃1,… , 𝜃𝐷) = 𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1)𝑝(𝜃𝐷−1|𝜃1,… , 𝜃𝐷−2) … 𝑝(𝜃2|𝜃1)𝑝(𝜃1) , (2.90)

where 𝐷 is the number of dimensions and we assumed that the parameters

are {𝜃1,… , 𝜃𝐷}, in decreasing degree of “importance” or “relevance”. The spe-

cific ordering of the parameters in terms of their importance matters as dif-

ferent arrangements can result in different reference priors. Given the afore-

mentioned parameter arrangement, the reference prior procedure works by
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sequentially deriving the aforementioned conditional priors in reverse order,

starting with 𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1) and ending with 𝑝(𝜃1). Intuitively, this means

that we are seeking the reference prior that maximises the missing informa-

tion about 𝜃1, then 𝜃2|𝜃1, then 𝜃3|𝜃1, 𝜃2, and so on.

In practice, we first fix all parameters but 𝜃𝐷 andwe estimate 𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1)
by treating the problem as one–dimensional. Assuming that the prior is

proper, then 𝜃𝐷 can be marginalised, and the sampling distribution becomes

𝑝(𝑑 (𝑛)|𝜃1,… , 𝜃𝐷−1) = ∫ 𝑝(𝑑 (𝑛)|𝜃1,… , 𝜃𝐷)𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1)𝑑𝜃 , (2.91)

The process is then repeated for the next conditional prior 𝑝(𝜃𝐷−1|𝜃1,… , 𝜃𝐷−2)
using 𝑝(𝑑 (𝑛)|𝜃1,… , 𝜃𝐷−1) as the sampling distribution. After 𝐷 iterations of

the above procedure, all conditional priors are known and the reference prior

can be computed as their product according to equation 2.90. Although it is

possible to use numerical methods in more than one dimension, it often sim-

pler to derive results by employing the asymptotic normality of the posterior

distribution when this assumption holds.

Multivariate reference prior under asymptotic normality

To derive reference priors, using the asymptotic normality of the posterior

distribution, we first need to understand its conditional structure. In particu-

lar, we want to know how we can express the variance and precision of each

conditional posterior distribution in terms of the components of the covari-

ance and precision matrices of the unconditional posterior distribution.

Let us assume that the asymptotic posterior distribution can be described

as a normal distribution with covariance matrix Σ or precision matrix 𝑃 =
Σ−1. When the conditions of the Bernstein–von Mises theorem are met, the

precision matrix can be written as 𝑃 = 𝑛(𝜃𝑛), where  is the Fisher infor-

mation matrix, 𝑛 is the sample size, and 𝜃𝑛 is the MLE. Following the usual

conventions, we can identify the elements of those matrices using two in-

dices, that is, Σ𝑖𝑗 is the element in the intersection of the 𝑖–th row and 𝑗–th
column.

One way to decompose the asymptotic posterior into its conditionals is

𝑝∗(𝜃1,… , 𝜃𝐷 |𝑑 (𝑛)) =𝑝∗(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1, 𝑑 (𝑛))

× 𝑝∗(𝜃𝐷−1|𝜃1,… , 𝜃𝐷−2, 𝑑 (𝑛))

… 𝑝∗(𝜃2|𝜃1, 𝑑 (𝑛))𝑝∗(𝜃1|𝑑 (𝑛))

(2.92)

The steps that we need to follow to compute the precision of a conditional

𝑝∗(𝜃𝑗 |𝜃1,… , 𝜃𝑗−1, 𝑑 (𝑛)) are the following:

1. Construct the matrix Σ𝑗 from the upper 𝑗 × 𝑗 sub–matrix of Σ,

2. Compute the inverse matrix 𝑃𝑗 = Σ−1𝑗 ,



3. Drop the rows and columns that correspond to the conditional param-

eters 𝜃1,… , 𝜃𝑗−1. For 1–D conditionals of the form 𝑝∗(𝜃𝑗 |𝜃1,… , 𝜃𝑗−1, 𝑑 (𝑛)),
this leaves only the lower right element of 𝑃𝑗 that we denote as 𝑃𝑗∗ and
is equal to the precision of the conditional posterior.

Using the above formula, the reference prior which corresponds to the

ordered parameterisation {𝜃1 ,… , 𝜃𝐷 , in terms of importance or relevance, is

𝑝(𝜃1,… , 𝜃𝐷) = 𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1) … 𝑝(𝜃2|𝜃1)𝑝(𝜃1) , (2.93)

where

𝑝(𝜃𝐷 |𝜃1,… , 𝜃𝐷−1) ∝ 𝑃1/2𝐷∗ (𝜃) , (2.94)

following equation 2.89, and for 𝑗 = 1,… , 𝐷 − 1

𝑝(𝜃𝑗 |𝜃1,… , 𝜃𝑗−1) ∝ exp
{

∫
𝐷
∏
𝓁=𝑗+1

𝑝(𝜃𝓁 |𝜃1,… , 𝜃𝓁−1)

× log 𝑃1/2𝑗∗ (𝜃)𝑑𝜃𝑗+1… 𝑑𝜃𝐷
}
,

(2.95)

where we used equations 2.82 and 2.91 to derive the above expression.

In the special case that the functions 𝑃1/2𝑗∗ (𝜃) factorise in the form

𝑃1/2𝑗∗ (𝜃) ∝ 𝑓𝑗(𝜃𝑗)𝑔𝑗(𝜃1,… , 𝜃𝑗−1, 𝜃𝑗+1,… 𝜃𝐷) , (2.96)

the reference prior is simply

𝑝(𝜃1,… , 𝜃𝐷) =
𝐷
∏
𝑗=1

𝑓𝑗(𝜃𝑗) . (2.97)

2–D example

In this example, the joint posterior distribution 𝑝(𝜃1, 𝜃2|𝑑 (𝑛)) is asymptotically

normal with precision matrix 𝑃 = 𝑛(𝜃𝑛) and covariance matrix Σ = 𝑃−1.
Without loss of generality, we can order the parameters in increasing impor-

tance or relevance as {𝜃1, 𝜃2} and seek to find the reference prior 𝑝(𝜃1, 𝜃2) =
𝑝(𝜃2|𝜃1)𝑝(𝜃1). According to equation 2.94, the conditional prior 𝑝(𝜃2|𝜃1) is
given by

𝑝(𝜃2|𝜃1) ∝ 𝑃1/22∗ (𝜃1, 𝜃2) ∝ 1/2
22 (𝜃1, 𝜃2) . (2.98)

The marginal prior 𝑝(𝜃1) can be derived using equation 2.95, and it is given

by

𝑝(𝜃1) ∝ exp
{

∫ 𝑝(𝜃2|𝜃1) log 𝑃1/21∗ (𝜃1, 𝜃2)𝑑𝜃2
}
, (2.99)

where 𝑃1/21∗ (𝜃1, 𝜃2) = 𝑃11 − 𝑃12𝑃−122 𝑃21 ∝ 11 − 12−1
2221.

So farwe have not specified any particularmodel for this example. In other

words, the aforementioned equations hold for any 2–D likelihood function
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𝑝(𝑑 (𝑛)|𝜃1, 𝜃2). To make the example more specific, we choose the sampling

distribution to be normal with the likelihood function parameterised by the

mean 𝜃1 = 𝜇 and standard deviation 𝜃2 = 𝜎 , that is,

𝑝(𝑑 |𝜇, 𝜎 ) =  (𝑑 |𝜇, 𝜎 ) . (2.100)

Substituting the above equation into the definition of the Fisher information

matrix given by

𝑖𝑗(𝜇, 𝜃) = − ∫ 𝑝(𝑑 |𝜇, 𝜎 )
𝜕2 log 𝑝(𝑑 |𝜇, 𝜎 )

𝜕𝜃𝑖𝜕𝜃𝑗
𝑑𝑑 , (2.101)

leads to

𝑖𝑗(𝜇, 𝜃) = (
𝜎−2 0
0 2𝜎−2) . (2.102)

It follows directly that the terms 𝑃1/2𝑗∗ are given by

𝑃1/21∗ (𝜇, 𝜃) = 𝜎
−1 , 𝑃1/22∗ (𝜇, 𝜃) =

√
2𝜎−1 . (2.103)

We notice that the above terms factorise into the form of equation 2.96, thus

the reference prior is simply

𝑝(𝜇, 𝜎 ) = 𝑝(𝜎 |𝜇)𝑝(𝜇) ∝ 𝜎−1 × 1 ∝ 𝜎−1 . (2.104)

It is worth noting that, the alternative ordering of the parameters (i.e.

𝜃1 = 𝜎 and 𝜃2 = 𝜇), which prioritises 𝜎 over 𝜇, results in the same refer-

ence prior in this example. Furthermore, in this case, the bivariate refer-

ence prior 𝑝𝑅(𝜇, 𝜎 ) = 𝜎−1
differs markedly from the corresponding Jeffreys

prior 𝑝𝐽 (𝜇, 𝜎 ) = 𝜎−2
. Indeed, even Jeffreys himself criticised his multivariate

method, which is known to lead to marginalisation paradoxes (Dawid et al.,

1973).

2.5 weakly informative and regularisation

priors

All options that were discussed so far consist of automated methods of gen-

erating prior distributions. There is however another class of priors that is

distinctly different in purpose than the ones presented above. Those are the

weakly informative priors.

In most analyses, we have some limited prior information about the range

and possible values that a parameter can take based on domain expertise

and the model assumptions. For instance, when constraining the mass of an

elementary particle we know that it must be smaller than the mass of macro-

scopic objects and at the same time it has to be greater than or equal to zero.



This sort of weakly informative knowledge, although not as well quantified

as that in the case of Jeffreys and maximum entropy priors, can still be in-

cluded in a Bayesian analysis with the hope of guiding the computation by

providing regularisationwithout significantly affecting the outcome. Weakly

informative and regularisation priors are used very often in practice, mostly

in cases where the data are very informative and the posterior concentrates

to a distribution approaching a multivariate normal in accordance with the

Bernstein–von Mises theorem (Van der Vaart, 2000).

2.6 informative priors

Finally, the last class of priors are the informative priors the purpose of which
is, unlike Jeffreys and maximum entropy priors which attempt to minimise

the amount of prior information, to include and take into account useful in-

formation for an analysis. They are often highly concentrated in parameter

space and might have been the outcome (i.e. in the form of a posterior dis-

tribution) of a previous experiment or analysis of older data. Their aim is

clearly to inform the analysis and often no attempt is made to restrict the

amount of information provided.
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3 MAK ING PRED ICT IONS AND

EVALUAT ING MODELS

Tomorrow belongs to those who can hear it coming.

— David Bowie

3.1 making predictions

Making predictions is a paramount task for most scientific analyses. Often

the parameters of a model are not observable quantities and we have to rely

on simulated data to assess the validity of our models. In this section, we will

discuss how different kinds of predictive checks can help us avoid various

common pitfalls in Bayesian analyses.

3.1.1 Prior predictive checks

A very useful practice, that is always recommended, is to check the predic-

tions of the prior distribution under the specified model (Gelman, Carlin, et

al., 2013). Prior predictive checks constitute an elegant way of finding out

what kind of data are compatible (i.e. can be described or explained) by our

choice of prior and model. The main benefits of this approach are two. First

of all, this can help diagnose priors that are either too restrictive or too wide.

Furthermore, assuming that the choice of prior distribution is justified, prior

predictive checks can help shield against severe cases of model misspecifi-
cation in which no specific set of parameters corresponds to a model that

describes the observed data sufficiently well.

In order to assess whether a particular choice of prior distribution is ap-

propriate we need a way to produce simulated data that are consistent with

the prior. The Bayesian way of doing this is by sampling the simulated data

𝑑𝑠𝑖𝑚 ∼ 𝑝(𝑑) , (3.1)

from the prior predictive distribution

𝑝(𝑑) = ∫ 𝑝(𝑑 |𝜃)𝑝(𝜃)𝑑𝜃 . (3.2)

Generating simulated data using the prior predictive distribution in practice

can be done easily by first simulating parameters from the prior distribution

𝜃𝑠𝑖𝑚 ∼ 𝑝(𝜃) , (3.3)
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and then simulating the data according to the sampling distribution

𝑑𝑠𝑖𝑚 ∼ 𝑝(𝑑 |𝜃𝑠𝑖𝑚) , (3.4)

given the simulated parameters. The simulated pairs (𝑑𝑠𝑖𝑚, 𝜃𝑠𝑖𝑚) constitute
samples from the joint distribution

(𝑑𝑠𝑖𝑚, 𝜃𝑠𝑖𝑚) ∼ 𝑝(𝑑, 𝜃) , (3.5)

and thus

𝑑𝑠𝑖𝑚 ∼ 𝑝(𝑑) , (3.6)

are simulated from the prior predictive distribution.

3.1.2 Posterior predictive checks

Similarly to the prior predictive checks, but this time conditioned on the ob-

served data 𝑑𝑜𝑏𝑠 , one can perform posterior predictive checks (Gelman, Carlin,

et al., 2013). The latter offer a way of measuring whether a model is able to

capture aspects of the data sufficiently well. Just like prior predictive checks

that simulate data consistent with the prior, posterior predictive checks on

the other hand simulate data that are consistent with the posterior distribu-

tion.

In practice, the process of generating simulated data

𝑑𝑠𝑖𝑚 ∼ 𝑝(𝑑 |𝑑𝑜𝑏𝑠) , (3.7)

from the posterior predictive distribution

𝑝(𝑑 |𝑑𝑜𝑏𝑠) = ∫ 𝑝(𝑑 |𝜃)𝑝(𝜃 |𝑑𝑜𝑏𝑠)𝑑𝜃 , (3.8)

starts by simulating parameters from the posterior distribution

𝜃𝑠𝑖𝑚 ∼ 𝑝(𝜃 |𝑑𝑜𝑏𝑠) . (3.9)

It is important to remind the reader that this last step, unless conjugate priors

are used, is highly non–trivial and often requires advanced computational

algorithms that are the subject of the next chapter. For now, it suffices to

understand that the simulation of parameters as described by the relation

3.9 is possible although generally difficult, requiring careful steps. The last

step is to generate the simulated data according to sampling distribution

𝑑𝑠𝑖𝑚 ∼ 𝑝(𝑑 |𝜃𝑠𝑖𝑚) , (3.10)

given the simulated parameters. 𝑑𝑠𝑖𝑚 then constitute samples from the pos-

terior predictive distribution.



3.2 evaluating and comparing models

A key goal of science is to determine which model under consideration bet-

ter accounts for the observed data. As we will discover shortly, this is gen-

erally done by assessing the predictive power of different models. From a

Bayesian perspective, there are two ways one can approach this subject. The

first uses Bayes factors and compares models based on their prior predictive
performance, meaning their capacity to explain the observed data using only

the information encoded in the prior distribution. On the other hand, the sec-

ond approach uses the notion of cross–validation in order to compare models

based on their posterior predictive performance, meaning their ability to make

predictions for out–of–sample data, meaning, future or unseen data, using

what we learned from the observed data.

In the prior predictive approach, the main quantity that goes into the cal-

culation of the Bayes factor is the prior predictive probability 𝑝(𝑑 |𝑖) of the
observed data 𝑑 given a model𝑖 , also known as themarginal likelihood or

the model evidence (Gregory, 2005; E. T. Jaynes, 2003). Naturally, the prior
predictive approach is sensitive to the choice of priors. On the other hand, in

the posterior predictive approach, we compute the posterior predictive proba-
bility of some subset of the observed data given the rest of the data. Typically,

cross–validation means that this process is repeated several times, trying to

predict different subsets of data, until the entire data set is assessed as held–

out data.

3.2.1 Bayes factors

The probability of amodel𝑖 given the data 𝑑 can be computed using Bayes’

theorem

𝑝(𝑖 |𝑑) =
𝑝(𝑑 |𝑖)𝑝(𝑖)

𝑝(𝑑)
, (3.11)

where 𝑝(𝑑 |𝑖) is the probability of the data given the model, 𝑝(𝑖) is the
prior probability of the model, and 𝑝(𝑑) is the prior predictive probability of

the data. We can compare two models,𝑖 and𝑗 , by computing their odds
ratio

𝑝(𝑖 |𝑑)
𝑝(𝑗 |𝑑)

=
𝑝(𝑑 |𝑖)𝑝(𝑖)
𝑝(𝑑 |𝑗)𝑝(𝑗)

(3.12)

The ratio 𝐵𝐹𝑖𝑗 = 𝑝(𝑑 |𝑖)/𝑝(𝑑 |𝑗) in the above expression is called the Bayes
factor. Once the model priors 𝑝(𝑖) and 𝑝(𝑗) are specified, model compar-

ison using Bayes factors amounts to the calculation of the model evidences

𝑝(𝑑 |𝑖) and 𝑝(𝑑 |𝑗).
Despite the apparent simplicity of model comparison using Bayes factors,

caution must be exercised when applying the method in real analyses. There

are three main reasons for this warning, all of which are sometimes over-

looked in practice leading to catastrophic results.
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Figure 3.1: Prior predictive distributions 𝑝(𝑑 |𝑖) and 𝑝(𝑑 |𝑗) for models 𝑀𝑖 and

𝑀𝑗 respectively. The dashed line, that intersects both distributions, cor-

responds to the actual observed data. The Bayes factor is simply the

ration between the values at the two points of intersection, in this case

favouring 𝑀𝑗 over𝑀𝑖 . It is clear that for other realisations of the actual

observed data (e.g. on the right part of the data vector) the other model

would be favoured.

The first reason has to do with the computational difficulty of estimating

the model evidence 𝑝(𝑑 |), particularly in problems with many parameters.

In fact, as we will see in detail in the next part of this thesis, a large col-

lection of methods have been designed with the sole purpose of estimating

the model evidence. Therefore, the practitioner has to be familiar with the

range of applicability of each method as well as their intrinsic limitations

when deciding which technique to use.

The second reason, equally important with the first, is the sensitivity of

the model evidence to the choice of prior distribution. This sensitivity is ap-

parent if we just notice that the model evidence is simply the prior predictive
distribution,

𝑝(𝑑 |) = ∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝑑𝜃 , (3.13)

evaluated at the observed data 𝑑 . However, we argue that this sensitivity is

not a weakness of the method as it is often portrayed, but a strength that

needs to be properly understood.
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Figure 3.2: The characteristic width 𝛿𝜃 of the likelihood function 𝑝(𝑑 |𝜃,1) and
Δ𝜃 of the prior distribution.

In order to understand the effects of the choice of priors on the Bayes fac-

tor, let us consider a simple example. Imagine that we have to compare two

models, 1 with a single scalar parameter 𝜃 and 0 with no free param-

eters. Furthermore, let us assume that 0 is nested in 1, meaning that

the more complex model,1, reduces to the simpler one,0, for a specific

parameter value, 𝜃 = 𝜃0.
Let us now assume that the prior on parameter 𝜃 is flat or uniform, such

that,

𝑝(𝜃 |1) =
1
Δ𝜃

, (3.14)

and that the likelihood function is sharply peaked around a value 𝜃1 such

that,

∫ 𝑝(𝑑 |𝜃,1)𝑑𝜃 = 𝑝(𝑑 |𝜃1,1) × 𝛿𝜃 , (3.15)

where 𝛿𝜃 is its characteristic width. It is easy to show that for the case of

Gaussian likelihood, centred around 𝜃1, the characteristic width is simply

𝛿𝜃 =
√
2𝜋𝜎 , where 𝜎 is the standard deviation.

The model evidence of1 is then simply,

𝑝(𝑑 |1) = ∫ 𝑝(𝑑 |𝜃,1)𝑝(𝜃 |1)𝑑𝜃

= 𝑝(𝑑 |𝜃1,1) ×
𝛿𝜃
Δ𝜃

.
(3.16)
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Since themodel0 has no free parameters, no integration is required and its

model evidence 𝑝(𝑑 |0) is simply the likelihood function of 1 evaluated

at 𝜃 = 𝜃0, or,
𝑝(𝑑 |0) = 𝑝(𝑑 |𝜃0,1) . (3.17)

Therefore, the Bayes factor is,

𝐵10 =
𝑝(𝑑 |1)
𝑝(𝑑 |0)

=
𝑝(𝑑 |𝜃1,1)
𝑝(𝑑 |𝜃0,1)

×
𝛿𝜃
Δ𝜃

. (3.18)

The first term in equation 3.18 is the likelihood ratio that always favours the

most complex model 1 since it contains 0 as a special case. In other

words, the first term is always greater than one as the most complex model

can always fit the data better than the simpler one.

On the other hand, the second term in equation 3.18 that consists of the

ratio of the likelihood width 𝛿𝜃 to the prior widthΔ𝜃 penalises the most com-

plex model1, since 𝛿𝜃 < Δ𝜃 , for any “wasted” regions of parameter space

that are ruled out by the data. This term quantifies the so–called principle
of parsimony or Occam’s razor as it most commonly known. The principle,

often attributed to William of Ockham, states that “entities should not be

multiplied beyond necessity”, meaning that between competing models or

hypotheses the simplest one is often preferred. Therefore, the Bayes factor

will only favour the most complex model (i.e. 1) only if the likelihood ratio

is large enough to overcome the penalty introduced by Occam’s razor. This
intrinsic property of Bayes factors to prefer simpler models, that originates

directly from the reliance to the prior distributions, is what makes them so

useful in practice.

Now that we understand how sensitive the Bayes factor is to the choice

of priors we can discuss some ways that we can shield our analyses against

potential problems. First and foremost, Bayesian model comparison can be

performed only when proper priors are used. By that we mean that improper
priors such as uniform/flat priors ranging from −∞ to +∞ are not acceptable.

Only prior distributions that can be integrated and normalised to unity are

proper in this sense. However, the use of proper priors is not enough, the

choice of priors needs to be well–justified too. Priors that are not defined

using a principled process (e.g. MaxEnt, Jeffreys, etc.), and sometimes even

those that do, can lead to significant deviations in the value of a Bayes factor.

For this reason, we urge caution not to over–emphasise the significance of,

and instead mostly neglect Bayes factors of (1).
The third, and final in our list of reasons, has to do with the open–ended

nature of the task model comparison. In particular, model comparison often

takes place in the context of a finite set of possible models under investiga-

tion with no guarantee whatsoever that one of those models captures per-

fectly, or even sufficiently, the true data generating process. In that sense, in

almost all cases, inference takes place under conditions of model misspecifi-
cation. This brings to mind the saying by Box, that “all models are wrong,



but some are useful”. The fact that the value of a Bayes factor might seem

to favour one model over another does not mean that the first model is “cor-

rect”, only that it is better than the second. Both models might be far from

the true data generating process and the Bayes factor will offer generally no

indication of that.

3.2.2 Cross–validation

For a model to be useful in practice it must be able to make accurate predic-

tions regarding unseen data. The generalisation uncertainty of a model is of-

ten quantified using somemeasure of the out–of–sample predictive accuracy.

A commonly used scoring rule for the out–of–sample predictive accuracy for

𝑛 data points is the expected log–pointwise predictive density,

ELPD =
𝑛
∑
𝑖=1

∫ 𝑝𝑡 (𝑑𝑖) log 𝑝(𝑑𝑖 |𝑑𝑜𝑏𝑠)𝑑𝑑𝑖 , (3.19)

where 𝑝𝑡 (𝑑𝑖) is the probability density of the true data generative process

which is in general unknown and 𝑝(𝑑𝑖 |𝑑𝑜𝑏𝑠) is the posterior predictive density.
Another useful quantity is the log–pointwise predictive density,

LPD =
𝑛
∑
𝑖=1

log 𝑝(𝑑𝑖 |𝑑𝑜𝑏𝑠) =
𝑛
∑
𝑖=1

log ∫ 𝑝(𝑑𝑖 |𝜃)𝑝(𝜃 |𝑑𝑜𝑏𝑠)𝑑𝜃 . (3.20)

LPD of the observed data 𝑑𝑜𝑏𝑠 is an overestimate of ELPD. We can compute

LPD in practice as,

̂LPD =
𝑛
∑
𝑖=1

log
(
1
𝐽

𝐽
∑
𝑗=1

𝑝(𝑑𝑖 |𝜃𝑗))
, (3.21)

where 𝜃𝑗 ∼ 𝑝(𝜃 |𝑑𝑜𝑏𝑠) are samples from the posterior distribution.

Leave–one–out cross–validation

The term cross–validation refers to the practice of estimating the out–of–

sample predictive accuracy of a model. In general, the method requires run-

ning the analysis multiple times, each time excluding a different portion of

the data. The excluded part of the data is then used in order to assess the pre-

dictive accuracy of the model. Once the whole dataset is covered, the total

accuracy is computed as the average accuracy over all runs,

ELPDLOO =
𝑛
∑
𝑖=1

log 𝑝(𝑑𝑖 |𝑑−𝑖) , (3.22)

where,

𝑝(𝑑𝑖 |𝑑−𝑖) = ∫ 𝑝(𝑑𝑖 |𝜃)𝑝(𝜃 |𝑑−𝑖)𝑑𝜃 , (3.23)
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is the leave–one–out predictive density given the data without the 𝑖–th dat-

apoint (José M Bernardo & Smith, 2009; Geisser & Eddy, 1979; Gneiting &

Raftery, 2007).

Assuming that the 𝑛 datapoints are conditionally independent in the data

generative model, then we can approximate equation 3.23 using draws from

the posterior 𝜃𝑗 ∼ 𝑝(𝜃 |𝑑𝑜𝑏𝑠) and importance weights (Gelfand, Dey, et al.,

1992),

𝑤𝑖𝑗 =
1

𝑝(𝑑𝑖 |𝜃𝑗)
∝

𝑝(𝜃𝑗 |𝑑−𝑖)
𝑝(𝜃𝑗 |𝑑𝑜𝑏𝑠)

, (3.24)

leading to the importance sampling leave–one–out predictive density,

𝑝(𝑑𝑖 |𝑑−𝑖) =
∑𝐽
𝑗=1 𝑤𝑖𝑗𝑝(𝑑𝑖 |𝜃𝑗)

∑𝐽
𝑗=1 𝑤𝑖𝑗

=
1

1
𝐽 ∑

𝐽
𝑗=1[𝑝(𝑑𝑖 |𝜃𝑗)]−1

. (3.25)

However the posterior 𝑝(𝜃 |𝑑𝑜𝑏𝑠) is likely to have a smaller variance than

then 𝑝(𝜃 |𝑑−𝑖) distributions leading to insufficient overlap between their typ-

ical sets and high–variance importance weights. Ionides (2008) showed that

truncating the importance weights,

�̃�𝑖𝑗 = min(𝑤𝑖𝑗 ,
√
𝐽 �̄�𝑖) , (3.26)

where

�̄�𝑖 =
1
𝐽

𝐽
∑
𝑗=1

𝑤𝑖𝑗 , (3.27)

leads to provable finite–variance weights at the cost of introducing bias. Ve-

htari et al. (2017) proposed instead to fit a generalised Pareto distribution to

the upper tail of the importance weights, in order to smooth the weights,

leading to improved estimates.

WAIC

TheWatanabe–Akaike orwidely applicable information criterion (WAIC) (Watan-

abe &Opper, 2010) offers a different way to approximate ELPD and is defined

as,

̂ELPDWAIC = ̂LPD − 𝑝WAIC , (3.28)

where,

𝑝WAIC =
𝑛
∑
𝑖=1

Var𝜃∼𝑝(𝜃 |𝑑𝑜𝑏𝑠)[log 𝑝(𝑑𝑖 |𝜃)] , (3.29)

is the estimated effective number of parameters expressed as the posterior

variance of the log predictive density of each datapoint. Equation 3.29 can

be computed using posterior samples.



3.2.3 Model averaging

Standard practice ignores model uncertainty and instead focuses on the most

probable models as deduced by their Bayes factors. This approach leads

to over–confident estimates and ignores the fact that often more than one

model can describe the data sufficiently. There is, however, a different ap-

proach that we can follow in order to deal with the model uncertainty and

properly account for the plethora of plausible models, called Bayesian model
averaging (Madigan, Raftery, et al., 1996).

Let1,2,… ,𝑀 be a set of𝑀 models with posterior model probabili-

ties 𝑝(1|𝑑), 𝑝(2|𝑑), … , 𝑝(𝑀 |𝑑) and posterior distributions 𝑝(𝜃 |𝑑,1),
𝑝(𝜃 |𝑑,2), … , 𝑝(𝜃 |𝑑,𝑀 ) respectively. Then Bayesian model averaging re-

lies on the marginal posterior density,

𝑝(𝜃 |𝑑) =
𝑀
∑
𝑖=1

𝑝(𝜃 |𝑑,𝑖)𝑝(𝑖 |𝑑) , (3.30)

which is no longer conditioned on a model.

Moreover, predictions can bemade by averaging over all models, weighted

proportional to their posterior model probabilities, thereby incorporating

model uncertainty using the marginal posterior predictive density,

𝑝(𝑑 |𝑑obs) =
𝑀
∑
𝑖=1

𝑝(𝑑 |𝑑obs,𝑖)𝑝(𝑖 |𝑑obs) , (3.31)

where 𝑑obs are the available observed data and 𝑑 are the new predicted data.

Madigan & Raftery (1994) note that averaging over all models in this fashion

leads to higher predictive accuracy than using any singlemodel individually.
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Part II

BAYES I AN COMP U TAT ION





4 PR INC I P L E S OF BAYES I AN

COMP U TAT ION

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

— John von Neumann

This chapter introduces the various methods that are used in practice in

order to tackle the computational challenges of Bayesian analyses. We begin

this journey by discussing some fundamental ideas about the geometry of

high–dimensional probability distributions, while gradually introducing the

concepts and algorithms that constitute the modern mathematical machin-

ery of Bayesian computation.

4.1 expectation values

Probability theory teaches us the only well defined way to extract informa-

tion from probability distributions is through expectation values. By this

term, we mean high–dimensional integrals of the form

E𝑝[𝑓 ] = ∫ 𝑓 (𝜃)𝑝(𝜃)𝑑𝜃 , (4.1)

where 𝑝(𝜃) is the probability density function that often corresponds to the

posterior density for problems of scientific inference, 𝜃 signifies the parame-

ters of the distribution, and 𝑓 (𝜃) is the function that we aim to integrate. In

this sense, an expectation value of a function 𝑓 (𝜃) over a probability distri-

bution 𝑝(𝜃) is technically a functional of the product of the function and the

probability density.

To see why expectation values hold such a central role in scientific param-

eter inference, let us discuss a few characteristic and common examples that

a scientist often has to compute.

∙ Mean value – Perhaps the most commonly computed expectation

value is the mean value. This can be calculated by choosing the func-

tion to be 𝑓 (𝜃) = 𝜃 , the expectation value then reduces to

𝜇 ≡ E𝑝[𝜃] = ∫ 𝜃 𝑝(𝜃)𝑑𝜃 . (4.2)

59



∙ Variance – One might also want to compute higher moments of the

probability distribution. The first moment is the variance that corre-

sponds to the following expectation value

𝜎2 ≡ E𝑝 [(𝜃 − 𝜇)2] = ∫ (𝜃 − 𝜇)2 𝑝(𝜃)𝑑𝜃 . (4.3)

∙ Marginal distributions – Even marginal distribution can be thought

of as expectation values. In this case, the function 𝑓 corresponds to a

conditional distribution, for instance

𝑝(𝜙) ≡ E𝑝 [𝑝(𝜙|𝜃)] = ∫ 𝑝(𝜙|𝜃)𝑝(𝜃)𝑑𝜃 . (4.4)

4.2 quadrature and uniform grids

5 4 3 2 1 0 1 2 3 4 5

Figure 4.1: Uniform grid approximation of 1–dimensional probability distribution.

Having discussed a number of examples of commonly used expectation

values, we can now turn our attention to the methods that are used for their

computation. As we mentioned before, these expectation values are defined

as high–dimensional integrals. As those integrals are not generally tractable

analytically, one might attempt to approximate their value by means of a

Riemann sum over a discreet grid of 𝑛 points:

E𝑝[𝑓 ] = ∫ 𝑓 (𝜃)𝑝(𝜃)𝑑𝜃 ≈
𝑛
∑
𝑖=1

𝑓 (𝜃𝑖)𝑝(𝜃𝑖)Δ𝜃𝑖 , (4.5)



where

Δ𝜃𝑖 = 𝜃𝑗+1 − 𝜃𝑗 , (4.6)

is simply the interval between two subsequent points, 𝜃𝑗 and 𝜃𝑗+1 on the

underlying grid, and

𝜃𝑖 =
𝜃𝑗+1 + 𝜃𝑗

2
, (4.7)

is just the mid–point between 𝜃𝑗 and 𝜃𝑗+1.
In principle, this idea can be extended to high dimensions by replacing

the 1–dimensional intervals Δ𝜃𝑖 with D–dimensional hypercubes. Figure 4.2

shows one such example for a 2–dimensional probability distribution. How-

ever, as the number of dimensions increases, one immediately has to face

a significant difficulty, the curse of dimensionality (Bellman, 1966). Already

in 2 dimensions we require 𝑛2 grid points to approximate the distribution.

As it turns out, the number of grid points required for the evaluation of the

Riemann sum increases exponentially with the number of dimensions, ren-

dering this method of computing expectation values unusable for 𝐷 > 3.
Overcoming the difficulties imposed by the curse of dimensionality is one of

the key goals of probabilistic computing.

3 2 1 0 1 2 3
1

6

4

2

0

2

4

6

2

Figure 4.2: Uniform grid approximation of 2–dimensional probability distribution.

In order to reduce the computational cost of estimating expectation values

in high dimensions, we need to find a way to focus our effort and computa-

tion only on those regions of parameter space that are relevant for the inte-

gral that we aim to evaluate. One simple idea would be to remove any points

of the grid that the integrand 𝑓 (𝜃)𝑝(𝜃) is very close to zero. Applying this
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technique would certainly reduce the total computational cost since only a

few grid–cells have a non–negligible value of 𝑓 (𝜃)𝑝(𝜃) as shown in Figure

4.3. The problem that we face however is that by focusing our attention on

𝑓 (𝜃)𝑝(𝜃) we ignore a key factor in the estimation of any expectation value,

the volume.
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Figure 4.3: Uniform grid approximation of 2–dimensional probability distribution

with highlighted the grid–cells that actually contribute to the calcula-

tion of an expectation value.

4.3 geometry of high–dimensional spaces

The concepts of volume and distance in high–dimensional spaces defy our

everyday intuition in ways that matter for the computation of expectation

values. To understand this, we will go through an example that illustrates

these peculiar effects.

Let us assume that we inscribe a circle of radius 𝑅 inside a square of side

2𝑅. We are interested in computing the area of the circle as a fraction of

that of the square. We can get to the result easily using basic geometry, in

particular, the ratio of the two areas is

𝐴
circle

𝐴square

=
𝜋𝑅2

(2𝑅)2
=
𝜋
4
. (4.8)



We can now extend the same problem into three dimensions, in which we

have a sphere of radius 𝑅 inscribed in a cube of side 2𝑅. The ratio of the

volume of the sphere to the volume of the cube is simply

𝑉
sphere

𝑉
cube

=
4
3𝜋𝑅

3

(2𝑅)3
=
𝜋
6
. (4.9)

By comparing equations 4.8 and 4.9 one realises that the volume ratio has

decreased going from 2 dimensions to 3. We will now show that this result

in fact holds for any number of dimensions 𝐷. In 𝐷 dimensions, the volume

of a hyper–sphere is given by

𝑉
sphere

=
𝜋𝐷/2

Γ (𝐷2 + 1)
𝑅𝐷 , (4.10)

where Γ is Euler’s gamma function which extends the factorial operation to

non–integer arguments and satisfies

Γ(𝐷) = (𝐷 − 1)! , (4.11)

for positive integer 𝐷, and

Γ(𝐷 +
1
2)

= (𝐷 −
1
2)

× (𝐷 −
3
2)

×⋯ ×
1
2
× 𝜋1/2 , (4.12)

for non–negative integer 𝐷.
The volume of a hyper–cube in 𝐷 dimensions is simply

𝑉
cube

= (2𝑅)𝐷 . (4.13)

Taking the ratio of the terms of equations 4.10 and 4.13 yields

𝑉
sphere

𝑉
cube

=
𝜋𝐷/2

2𝐷Γ (𝐷2 + 1)
. (4.14)

Figure 4.4 shows the ratio of the volume of a hypersphere to a hypercube

as a function of the number of dimensions 𝐷. As the number of dimensions

𝐷 increases, the volume ratio of equation 4.14 asymptotically approaches 0.
This means that in high dimensions, almost all of the volume of a hypercube

is concentrated in the corners.

4.4 concentration of measure

As we will see shortly, the strange behaviour of volume is of paramount

importance in the calculation of expectation values over probability distri-

butions. To understand this one need to think not about the probability den-

sity but instead about the probability mass. When evaluating an expectation
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Figure 4.4: The ratio of the volume of a hyper–sphere of radius 𝑅 to the volume of

a hyper–cube of edge size 2𝑅 as function of the number of dimensions

𝐷.

value, not all regions of parameter space are contributing equally to the value

of the integral. In fact, the contribution from some regions of parameter

space dominates the calculation. We only need to take a look into the form

of the expectation value integral to notice that is essentially the product of

three terms that contributes. These terms are the function 𝑓 (𝜃), the probabil-
ity density function 𝑝(𝜃), as well as the differential volume element 𝑑𝜃 . In
other words, it is the product of these three terms and their dependence on

𝜃 that determines the value of the integral. Assuming that the function 𝑓 (𝜃)
is well behaved, we can ignore its presence for a while.

For the sake of simplicity let us assume that the probability distribution is

characterised by an D–dimensional Gaussian probability density function

𝑝(𝜃) = det(2𝜋Σ)−
1
2 exp [−

1
2
(𝜃 − 𝜇)𝑇Σ−1(𝜃 − 𝜇)] , (4.15)

where 𝜇 is the mean and Σ is the covariance matrix of the distribution. With-

out loss of generality let us also assume that the density is centred at zero (i.e.

𝜇 = 0) and the covariance matrix diagonal with the elements of its diagonal

equal to 𝜎2
, meaning that equation 4.15 simplifies into

𝑝(𝜃) =
1√

(2𝜋 )𝐷𝜎𝐷
exp(−

|𝜃 |2

2𝜎2) . (4.16)



Assuming further spherical coordinates, the density only depends on the

magnitude 𝑟 of the 𝜃 parameter vector

𝑝(𝑟) =
1

(2𝜋 )
𝐷
2 𝜎𝐷

exp(−
𝑟2

2𝜎2) . (4.17)

Keep in mind that 𝑝(𝑟) is not a probability density function of the magnitude

𝑟 = |𝜃 |, but a D–dimensional density of 𝜃 .
Let us now turn our attention to the differential volume element 𝑑𝑉 . Dif-

ferentiating equation 4.10 that provides the volume of the hyper–sphere we

get

𝑑𝑉 =
𝐷𝜋𝐷/2

Γ (𝐷2 + 1)
𝑟𝐷−1𝑑𝑟 . (4.18)

0 1 2 3 4 5 6 7 8
r ( )

10 2

101

104

107

1010

1013

1016

1019

1022

dV
(r)

D = 1
D = 2
D = 5
D = 10
D = 17
D = 26

Figure 4.5: Scaling of differential volume with the number of dimensions as a func-

tion of distance.

The differential probability mass 𝑑𝑚(𝑟) is then just the product of 𝑝(𝑟) and
𝑑𝑉 given by equations 4.17 and 4.18 respectively

𝑑𝑚(𝑟) =
𝐷𝑟𝐷−1

Γ (𝐷2 + 1) 2
𝐷
2 𝜎𝐷

exp(−
𝑟2

2𝜎2)𝑑𝑟 . (4.19)

The differential mass 𝑑𝑚(𝑟) has a clear physical meaning, that of the proba-

bility mass enclosed in a hyper–spherical shell of radius 𝑟 and width 𝑑𝑟 . The
probability mass differential 𝑑𝑚(𝑟) peaks (i.e. is maximised) at the typical

radius

𝑟
peak

=
√
𝐷 − 1𝜎 . (4.20)
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Equation 4.20 indicates thatwhile in 1–D the probabilitymass peaks at 𝑟
peak

=
0, in higher dimensions this is not the case. As the number of dimensions

increases the radius in which the probability mass peaks moves to greater

distances. Table 1 shows the typical radius of the probability mass for a dif-

ferent number of dimensions for our problem. This is a direct consequence

of the rapid increase of the differential volume for large 𝑟 values.
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Figure 4.6: Scaling of differential probability mass with the number of dimensions

as a function of distance.

Table 1: The typical radius 𝑟peak as function of the number of dimensions 𝐷.

Number of dimensions 𝐷 Typical radius 𝑟
peak

1 0
2 1𝜎
5 2𝜎
10 3𝜎
17 4𝜎
26 5𝜎

In general, we expect the probability mass to form a hyper–shell of mean

radius

𝑟mean ≡ E𝑝[𝑟] = ∫
+∞

0
𝑟𝑑𝑚(𝑟) (4.21)



and width (i.e. standard deviation)

Δ𝑟 ≡
√

E𝑝[(𝑟 − 𝑟mean)2] =
√

∫
+∞

0
(𝑟 − 𝑟mean)2𝑑𝑚(𝑟) (4.22)
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Figure 4.7: Scaling of differential probability mass with the number of dimensions

as a function of distance normalised by the square root of the number

of dimensions.

4.5 typical set

The qualitative conclusions of the previous section are general and hold for

any continuous probability distribution. The probability mass does not con-

centrate close to the mode where the probability density is high as there

is not sufficient volume there. On the other hand, it does not concentrate

on large distances because the density vanishes. Instead, it compromises on

some region of intermediate distance surrounding the mode, as shown in

Figure 4.8. This region is called the typical set, and has the form of a high–

dimensional thin hyper–shell surrounding the mode as shown in Figure 4.9.

In high dimensions, the typical set exhibits the effect of concentration of mea-
sure (Ledoux, 2001) illustrated in Figure 4.7.

The concept of the typical set is not only important for properly under-

standing probability distributions, but also for developing new computational

methods. The notion of the typical set is originally borrowed from the field
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Figure 4.8: Illustration of the typical set as the region in parameter space that the

product of probability density and differential volume is non–negligible.

Figure 4.9: Illustration of the typical set as a thin hyper–shell surrounding themode

of the probability distribution.



of information theory, in which one of the main tasks is to compress and

encode a message with as few words as possible. In probability theory, the

typical set defines the most efficient way to compress a probability distribu-

tion by focusing on a limited region of parameter space. As we will see in the

next sections, the task of developing powerful and effective computational

methods comes down to how efficiently we can locate and approximate the

typical set of a probability distribution.

4.6 laplace approximation

Before we move on to stochastic estimators of expectation values let us first

discuss another simple deterministic method, called Laplace approximation,
that, unlike quadrature in a uniform grid, can extend to higher dimensions (Tier-

ney & Kadane, 1986). The Laplace approximation makes a very strong as-

sumption about the target probability distribution. In particular, it assumes

that it can be sufficiently described by a Gaussian probability density, simi-

lar to equation 4.15. The mean of the Gaussian density is determined at the

point of the mode of the target density

𝜇 = argmax
𝜃

𝑝(𝜃) , (4.23)

and the precision matrix Σ−1 (i.e. inverse of the covariance matrix Σ) is given
by the second-order derivatives of the negative logarithm of the target prob-

ability density function evaluated at the mode,

(Σ−1)𝑖𝑗 = −
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
log 𝑝(𝜃)

||||𝜃=𝜇
. (4.24)

The reasoning behind this approach is quite simple, one effectively per-

forms a Taylor expansion of the logarithm of the density, up to second order,

around the maximum a posteriori point 𝜇,

log 𝑝𝐿(𝜃) = log 𝑝(𝜃 = 𝜇) −
1
2
(𝜃 − 𝜇)𝑇Σ−1(𝜃 − 𝜇) + … , (4.25)

where the first order term simply vanishes because we evaluate the expan-

sion around the maximum. For this reason, this very common method is

often called the saddle–point approximation. Expectation values can then

be determined using the Gaussian density 𝑝𝐿(𝜃) =  (𝜃 |𝜇,Σ) in place of the

target density 𝑝(𝜃) in the formula for the expectation value 4.1,

E𝑝𝐿[𝑓 ] = ∫ 𝑓 (𝜃) (𝜃 |𝜇,Σ)𝑑𝜃 . (4.26)

The quality of the Laplace approximation is determined by the overlap of

the typical set of the target distribution with that of the Gaussian approxi-

mation. The greater the overlap, the more accurate the approximation will

be.
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Figure 4.10: Illustration of the Laplace approximation to a skewed probability den-

sity.

4.7 monte carlo estimators

Another type of estimators is stochastic estimators, and in particular Monte
Carlo estimators (Brooks et al., 2011) that rely on a collection of independent

points or samples,

{𝜃1,… , 𝜃𝑛} ∈ Θ , (4.27)

from the distribution 𝑝(𝜃), such that the ensemble average of a function 𝑓 (𝜃),

𝑓𝑀𝐶
𝑛 =

1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝜃𝑛) , (4.28)

asymptotically converges to the corresponding expectation value

lim
𝑛→∞

𝑓𝑀𝐶
𝑛 = E𝑝[𝑓 (𝜃)] . (4.29)

The asymptotic result of equation 4.29 is not particularly useful as a com-

putational algorithm will never be able to produce infinite samples. Fortu-

nately, the behaviour of Monte Carlo estimators can be quantified even for

finite samples.

For any square–integrable (i.e. both E𝑝[𝑓 ] and E𝑝[𝑓 2] exist and are fi-

nite) real–valued function 𝑓 (𝜃), the Monte Carlo estimator satisfies the cen-
tral limit theorem,

𝑓𝑀𝐶
𝑛 − E𝑝[𝑓 (𝜃)]
MC–SE𝑛[𝑓 ]

∼  (0, 1) , (4.30)



where MC–SE𝑛[𝑓 ] is the Monte Carlo Standard Error defined as,

MC–SE𝑛[𝑓 ] =

√
Var𝑝[𝑓 ]

𝑛
. (4.31)

This means that we can estimate the expected number of samples that is

required to reach a certain level of precision for our estimates.

Figure 4.11: Illustration of the typical set including samples generated using exact

Monte Carlo sampling.

Another interesting property of Monte Carlo estimators is that their preci-

sion, as quantified by the Monte Carlo Standard Error of equation 4.31, does

not depend on the dimensionality of the problem but relies only on the num-

ber 𝑛 of samples instead. This means that Monte Carlo estimators can be

applied even in high–dimensional problems. This insensitivity to the curse
of dimensionality is directly related to the fact that the Monte Carlo samples

are already distributed in the typical set as shown in Figure 4.11. As we will

discover shortly, once we discuss more advanced methods, the difficult part

is to get the samples to the typical set in the first place.

We can also think of the Monte Carlo samples as a stochastic grid where

the computation is mostly focused in the regions of parameter space that

contribute to the computation of the expectation value. Starting from the

Monte Carlo estimator,

𝑓𝑀𝐶
𝑛 =

1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝜃𝑛) , (4.32)
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and manipulate it into the quadrature form

𝑓𝑀𝐶
𝑛 =

𝑛
∑
𝑖=1

𝑓 (𝜃𝑖)𝑝(𝜃𝑖)
1

𝑛𝑝(𝜃𝑖)
, (4.33)

where Δ𝜃𝑖 = 1/𝑛𝑝(𝜃𝑖) is the effective volume of each sample.

Monte Carlo estimators are very powerful methods assuming that one

can generate independent samples from the target distribution. However,

in most interesting and realistic cases, this is not feasible. In that case, one

has to rely to alternative methods.

4.8 importance sampling

One alternative method to exact Monte Carlo sampling, that does not rely

on exact samples from the target distribution but instead requires an aux-
iliary distribution is importance sampling. Importance sampling estimators

use samples from the auxiliary distribution and correct for any deviation

from the typical set of the target distribution using weighting factors. Al-

though Kloek & Van Dijk (1978) is typically credited with introducing impor-

tance sampling to statistics, there are references to it in statistical physics as

early as 1949 (Goertzel, 1949; Kahn & Harris, 1951).

In order to derive the importance weights necessary for the computation of

the expectation values we start with the definition of the expectation value

and do some re–arrangements,

E𝑝[𝑓 (𝜃)] = ∫
Θ
𝑓 (𝜃)𝑝(𝜃)𝑑𝜃

= ∫
Θ
𝑓 (𝜃)

𝑝(𝜃)
𝑞(𝜃)

𝑞(𝜃)𝑑𝜃

= E𝑞 [𝑓 (𝜃) ×
𝑝(𝜃)
𝑞(𝜃)]

.

(4.34)

We can now estimate the expectation value,

𝑓 𝐼 𝑆𝑛 =
1
𝑛

𝑛
∑
𝑖=1

𝑤(𝜃𝑖)𝑓 (𝜃𝑖) , (4.35)

using samples from the auxiliary distribution,

{𝜃1,… , 𝜃𝑛} ∼ 𝑞(𝜃) , (4.36)

and importance weights given by,

𝑤(𝜃) =
𝑝(𝜃)
𝑞(𝜃)

. (4.37)



For any square–integrable real–valued function 𝑓 (𝜃) , the importance sam-

pling estimator satisfies the central limit theorem,

𝑓 𝐼 𝑆𝑛 − E𝑝[𝑓 (𝜃)]
IS–SE𝑛[𝑓 ]

∼  (0, 1) , (4.38)

where MC–SE𝑛[𝑓 ] is the Importance Sampling Standard Error defined as,

IS–SE𝑛[𝑓 ] =

√
Var𝑞[𝑤𝑓 ]

𝑛
. (4.39)

By comparing the expression 4.39 for IS–SE to the respective expression 4.31

for the Monte Carlo Standard Error we can define the Effective Sample Size
(ESS),

ESS𝑛[𝑓 ] =
Var𝑞[𝑤𝑓 ]
Var𝑝[𝑓 ]

𝑛 , (4.40)

as the effective number of exact samples that contain the same amount of

information as the 𝑛 samples and their importance weights.

It is important to mention here that if the target or auxiliary distribution is

known only up to a normalisation factor, for instance if the computation of

the normalisation constant is very costly, then the importance weights have

to be normalised such that,

𝑛
∑
𝑖=1

𝑤(𝜃𝑖) = 1 , (4.41)

for the aforementioned estimators to be valid.

The quality of the importance sampling estimator is determined by the

amount of overlap between the auxiliary and target distribution. Samples

from the auxiliary distribution residing in regions of high overlapwill receive

large importance weights and those residing in regions of little or no overlap

will receive small importance weights.

As we showed in previous sections, in low dimensions the typical set is

broad so we should expect that the construction of importance sampling esti-

mators for low dimensional cases to be a feasible procedure. In higher dimen-

sions however, the typical shell is very thin thus complicating the choice of

auxiliary distributions with significant overlap with the target distribution.

It is common in practice to assume that an auxiliary distribution with

broader density tails than the target distribution would be sufficient to con-

struct an importance sampling estimator. Although the reasoning of this idea

is appealing, it can however be misleading as it does not extend to higher di-

mensions in which the typical set becomes the central object of interest and

not the probability density.

It is useful to define a measure of the quality of an importance sampling

estimator. A straightforward choice would be to define the importance sam-
pling effective sample size,

𝑁
eff

= (∑𝑛
𝑖=1 𝑤(𝜃𝑖))

2

∑𝑛
𝑖=1 𝑤(𝜃𝑖)2

. (4.42)
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Figure 4.12: Illustration of the typical set including samples generated using an un-

suitable importance density. In high dimensions the typical set corre-

sponds to a very thin shell and it is difficult to achieve sufficient overlap

between the typical set of the auxiliary and target distribution. Here,

this is depicted by samples that do not reside in the typical set of the

target and will thus have low importance weights.

Equation 4.42 is just a heuristic diagnostic and it should not be confused with

equation 4.40.

4.9 markov chain monte carlo

Importance sampling estimators trade the ability to produce exact samples

from the target distribution with weighted samples from an auxiliary distri-

bution. On the other hand, Markov chain Monte Carlo (MCMC) estimators

replace the exact samples with correlated samples generated by a Markov
chain (Brooks et al., 2011; Gilks, Richardson, et al., 1995).

Therefore, the key idea in MCMC is to explore the typical set using a se-

quence of local steps. Starting a point 𝜃1 in parameter spaceΘ, the next point
𝜃2 is chosen stochastically in the neighbourhood of 𝜃1. Then the process is

repeated for the next point 𝜃3 in the neighbourhood of 𝜃2 and so on. At the



end, we have generated a chain of 𝑛 samples that is Markov, meaning that

each sample conditionally depends only on the previous one,

𝑃 (𝜃𝑛|𝜃1,… , 𝜃𝑛−1) = 𝑃 (𝜃𝑛|𝜃𝑛−1) . (4.43)

More formally, the Markov chain can be generated by repeatedly sam-

pling from a conditional probability distribution on the product space Θ ×Θ,
known as Markov transition probability 𝑇 (𝜃 ′|𝜃). Given an initial point 𝜃1,
sampling from the Markov transition probability 𝑇 (𝜃 ′|𝜃1) returns sample 𝜃1.
We can thus construct a sequence of transitions,

𝜃2 ∼ 𝑇 (𝜃2|𝜃1)
𝜃3 ∼ 𝑇 (𝜃3|𝜃2)

…
𝜃𝑛 ∼ 𝑇 (𝜃𝑛|𝜃𝑛−1) ,

(4.44)

that constitute the Markov chain {𝜃1, 𝜃2,… , 𝜃𝑛}. The samples of the Markov

chain are not independent, but they are correlated. The reason for this is

their sequential origin i.e. 𝜃𝑛 depends on 𝜃𝑛−1 which depends on 𝜃𝑛−2 so

even samples that are not right next to each other in the Markov chain can

be correlated.

0 200 400 600 800 1000
Iteration

Figure 4.13: Example of trace plot of a Markov chain for parameter 𝜃 . The chain
reaches the stationary state after about 50 iterations.
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4.9.1 Requirements of MCMC

In general, the possible values 𝜃 of the Markov chain are called the states of
the Markov chain (MacKay, 2003; Tierney, 1994). For a Markov chain Monte

Carlo estimator to generate samples from the target distribution, the Markov

chain must satisfy a couple of conditions:

1. First of all, the Markov chain has to leave the target distribution 𝑝
invariant or stationary,

𝑝(𝜃 ′) = ∫ 𝑇 (𝜃 ′|𝜃)𝑝(𝜃)𝑑𝜃 . (4.45)

This means that if we start from a state 𝜃 of 𝑝, the next state 𝜃 ′ is
also a state of 𝑝. In practice, a sufficient but not necessary condition

is detailed balance, which requires that each transition 𝜃 → 𝜃 ′ is re-
versible. More formally, for any pair of states 𝜃 and 𝜃 ′ the following
relation must hold,

𝑇 (𝜃 ′|𝜃)𝑝(𝜃) = 𝑇 (𝜃 |𝜃 ′)𝑝(𝜃 ′) , (4.46)

meaning that the probability of being at state 𝜃 and transitioning to

state 𝜃 ′ is equal to the probability of being at state 𝜃 ′ and transitioning
to state 𝜃 .

2. Furthermore, we need to make sure that the stationary distribution

is unique and that the distribution of states is able to converge to it

regardless the starting point 𝜃1. In other words, we need to make sure

that the stationary distribution is also the limiting distribution. This

requires two properties, irreducibility, that is the ability to visit any

state 𝜃 for which 𝑝(𝜃) > 0 in a finite number of steps, and aperiodicity,
meaning that no states are only accessible at certain regularly spaced

times. These two properties combined, when met, render the Markov

chain ergodic.

4.9.2 Expected behaviour

When all of the aforementioned conditions are obeyed, the Markov chain

samples from the target distribution. The behaviour of the Markov chain,

in terms of the computed expectation values, passes through four stages

that characterise its normal behaviour (Betancourt, 2017b). The first stage,

shown in Figure 4.14 consists of the initialisation of the Markov chain. Often

we do not know where the typical set resides and thus we set the first state

of the Markov chain to some arbitrary point in parameter space. During the

second stage, the Markov chain moves towards the typical set as shown in

Figure 4.15. At the same time the absolute difference of the estimated value
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Figure 4.14: Initial stage of exploration – no exploration has taken place.

Iteration

|
[f]

f|

Figure 4.15: Burn–in stage of exploration – the absolute difference between the

estimate of 𝑓 and its expectation value slowly decreases as the chain

approaches the typical set.
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𝑓 from the expectation value E[𝑓 ] slowly decreases. In the third state shown

in Figure 4.16, the Markov chain starts to explore the typical set. The abso-

lute difference between the estimate of 𝑓 and its expectation value decreases

very rapidly. Finally, in the fourth stage shown in Figure 4.17 the Markov

chain wanders inside the typical set and the standard error of the estimate

asymptotically decreases as prescribed by the central limit theorem.

Iteration

|
[f]

f|

Figure 4.16: Initial convergence phase – the absolute difference between the esti-

mate of 𝑓 and the expectation value decreases rapidly as the chain

approaches explores the typical set for the first time.

4.9.3 Central limit theorem of MCMC

Markov chain Monte Carlo estimators are particularly useful for many anal-

yses since they obey a central limit theorem that allows us to quantify their

precision (Geyer, 1992; Kipnis & Varadhan, 1986; Tierney, 1994). In particu-

lar, given a square–integrable real–valued function 𝑓 (𝜃) and a long enough

Markov chain, the following is true,

𝑓MCMC

𝑛 − E𝑝[𝑓 (𝜃)]
MCMC–SE𝑛[𝑓 ]

∼  (0, 1) , (4.47)

where MCMC–SE𝑛[𝑓 ] is theMarkov chain Monte Carlo Standard Error given
by,

MCMC–SE𝑛[𝑓 ] =

√
Var𝑝[𝑓 ]
ESS𝑛[𝑓 ]

. (4.48)
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Figure 4.17: Stationary or equilibrium phase – the absolute difference between the

estimate of 𝑓 and the expectation value has reached its minimum value

as the chain samples fully populate the typical set.

Comparing MCMC–SE𝑛[𝑓 ] with the standard error MC–SE𝑛[𝑓 ] of the exact
Monte Carlo estimator given by equation 4.31, one immediately notices that

the number of samples 𝑛 has been replaced by the term ESS𝑛[𝑓 ]. This term,

called the Effective Sample Size accounts for the loss of information due to

the correlation between samples due to the Markov property of the chain.

The effective sample size is given by,

ESS𝑛[𝑓 ] =
𝑛
𝜏 [𝑓 ]

, (4.49)

where 𝜏 [𝑓 ] is the relaxation or autocorrelation time of the Markov chain. Less

formally, 𝜏 [𝑓 ] describes the number of steps required for the Markov chain

to “forget” where it started, meaning that only one out of 𝜏 [𝑓 ] is actually
independent. A method for estimating the autocorrelation time of a Markov

chain will be discussed in the next subsection.

4.9.4 Autocorrelation

The autocorrelation of the Markov chains is a necessary evil of MCMCmeth-

ods and must be properly understood before making any inference (Geyer,

1992). Figure 4.18 shows two Markov chains with different levels of auto-

correlation. In the weakly correlated chain, large jumps take place from one
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iteration to the next. On the other hand, the strongly correlated chain is

characterised by very short jumps and more rigid trajectories.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

f(
)

weakly correlated
strongly correlated

Figure 4.18: Markov chains with different degrees of autocorrelation.

In order to quantify andmeasure the degree of autocorrelation of aMarkov

chain we need to compare the states of the chain after fixed number of iter-

ations called lags. Given an arbitrary function 𝑓 (𝜃) of the states,

𝜇𝑓 = E𝑝[𝑓 ] , (4.50)

is the mean value of the function expressed as the expectation value over the

stationary distribution 𝑝(𝜃). The value 𝑓 (𝜃𝑖) − 𝜇𝑓 then quantifies the deviation
of the 𝑖–th state of the chain from the mean value 𝜇𝑓 . The expectation value

of the product of two such deviations defines the autocovariance of the chain,

𝑐𝑖𝑗 = E𝑝 [(𝑓𝑖 − 𝜇𝑓 )(𝑓𝑗 − 𝜇𝑓 )] , (4.51)

where 𝑓𝑖 = 𝑓 (𝜃𝑖) and 𝑓𝑗 = 𝑓 (𝜃𝑗). Once the Markov chain has reached the

stationary phase, the autocovariance will no longer depend on the particular

states, 𝜃𝑖 and 𝜃𝑗 , that we are comparing but on the number of iterations, called

lag 𝓁 = 𝑗 − 𝑖, between them,

𝑐𝑖𝑗 = 𝑐𝑖,𝑖+𝓁 = 𝑐𝓁 . (4.52)

Finally, if we normalise the autocovariance by the variance,

Var𝑝[𝑓 ] = E𝑝 [(𝑓 − 𝜇𝑓 )2] , (4.53)



we get the lag–𝓁 autocorrelation function,

𝜌𝓁 [𝑓 ] =
E𝑝 [(𝑓𝑖+𝓁 − 𝜇𝑓 )(𝑓𝑖 − 𝜇𝑓 )]

Var𝑝[𝑓 ]
. (4.54)

The normalisation ensures that the maximum possible value of 𝜌𝓁 [𝑓 ] is +1 for
fully correlated states and −1 for the completely anti–correlated states. The

value of 0 corresponds to uncorrelated samples. The lag–𝓁 autocorrelation is
always unity as any state is perfectly correlated with itself. Furthermore, the

autocorrelation function depends only on the absolute lag and is invariant

under changes of the sign, that is, 𝜌𝓁 [𝑓 ] = 𝜌−𝓁 [𝑓 ]. For this reason, only the

non–negative part of the autocorrelation function is often plotted.
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Figure 4.19: Autocorrelation as a function of lag 𝓁 for a weakly and a strongly cor-

related chain.

Figure 4.19 shows the autocorrelation function for theweakly and strongly

correlated chains of Figure 4.18. We notice that although both functions be-

gin at the value of 1 for lag 𝓁 = 0, they approach the value of 0 at different
rates. In particular, the autocorrelation function of the weakly correlated

chain goes to 0 after only a few lags, whereas the one corresponding to the

strongly correlated chain takes much longer.

The asymptotic variance of an infinitely long chain is defined as,

lim
𝑛→∞

𝑛 × Var𝑝 [𝑓
MCMC
𝑛 ] = Var𝑝[𝑓 ] × 𝜏𝐼 [𝑓 ] , (4.55)

where,

𝜏𝐼 [𝑓 ] =
𝓁=+∞
∑
𝓁=−∞

𝜌𝓁 [𝑓 ] = 1 + 2 ×
𝓁=+∞
∑
𝓁=1

𝜌𝓁 [𝑓 ] , (4.56)
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is the integrated autocorrelation time and the last equality hold due to the

lag–sign invariance of the autocorrelation function. Equation 4.55 implies

that the standard error of MCMC is,

MCMC–SE𝑛[𝑓 ] =

√
Var𝑝[𝑓 ]
ESS𝑛[𝑓 ]

, (4.57)

where we have defined the effective sample size as,

ESS𝑛[𝑓 ] =
𝑛

1 + 2 ×∑𝓁=+∞
𝓁=1 𝜌𝓁 [𝑓 ]

. (4.58)

Estimating the integrated autocorrelation time, and thus the effective sam-

ple size, in not trivial in practice. The autocorrelation function can be very

noisy in large lags, as shown in Figure 4.19. This means that the sum in

equation 4.56 needs to be truncated in practice in order avoid adding noise.



5 S IMPLE MCMC METHODS

Not all those who wander are lost.

— J.R.R. Tolkien

During the first half of the twentieth century, research efforts were fo-

cused on the task of understanding the equilibrium behaviour of thermo-

dynamic systems. Furthermore, it was well understood that this behaviour

was described by specific probability distributions (e.g. canonical distribution
for a system in constant temperature). The physicists of that time showed

great interest in methods that produced exact samples from such probabil-

ity distributions. Enrico Fermi, for instance, would exploit such methods

to make amazingly–quick predictions of experimental outcomes as early as

1930s (Metropolis, 1987). During the next two decades, Stan Ulam and John
von Neumann developed various such algorithms which, collectively, were

anointed with the name “Monte Carlo” after the infamous casino.

After the war, Nicholas Metropolis lead the group in Los Alamos in ap-

plying Monte Carlo methods to increasingly complex thermodynamic sys-

tems. As exact sampling was possible only for a limited number of distribu-

tions, Metropolis, along with Arianna Rosenbluth, Marshall Rosenbluth, Ed-
ward Teller, andAugusta Teller introduced the so–calledMetropolis algorithm
that produced correlated samples from a wider range of probability distribu-

tions (Metropolis et al., 1953). Arianna implemented the algorithm on the

MANIAC computer (Gubernatis, 2005) and thus she is considered the first

person in history to implement a MCMC method.

After decades of empirical success in physics and chemistry, the statisti-

cian Hastings (Hastings, 1970) generalised the method by realising that by

introducing a small modification he could allow for any proposal distribution,
not just a limited family of symmetric ones. The method is known today as

Metropolis–Hastings. DespiteHasting’s seminal contribution, it was not until

1984 that S. Geman & D. Geman (1984) introduced the Gibbs sampler for the
task of image reconstruction, for the broader statistical community to realise

the potential of MCMC methods for parameter inference (Gelfand & Smith,

1990).
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5.1 metropolis–hastings

The key idea of theMetropolis–Hastings algorithm is to separate theMarkov
transition probability into two steps, a proposal and an acceptance step. Dur-
ing the proposal step, a new state 𝜃 ′ is generated conditional on the current

state 𝜃 ,

𝜃 ′ ∼ 𝑞(𝜃 ′|𝜃) , (5.1)

by sampling from a proposal distribution 𝑞(𝜃 ′|𝜃). The aim of this step is to

produce a new state that is likely, but not necessary, to reside in the typical set

of the target distribution. The form of the conditional proposal distribution

can be chosen based on the particular target distribution. As we will see

shortly, many of the developments in the field of MCMC focus explicitly on

the choice of the proposal distribution.

Once the new state 𝜃 ′ is generated, its validity (i.e. whether or not it

belongs to the typical set) is assessed in the acceptance step. In particular,

the new state 𝜃 ′ is accepted with probability,

𝛼(𝜃 ′, 𝜃) = min(1,
𝑝(𝜃 ′)𝑞(𝜃 |𝜃 ′)
𝑝(𝜃)𝑞(𝜃 ′|𝜃) )

. (5.2)

Equation 5.2 is often called theMetropolis acceptance probability. If accepted,
the new state 𝜃 ′ is added to the Markov chain and the process is repeated

with that as the current state (i.e. 𝜃 ← 𝜃 ′). On the other hand, if the state

𝜃 ′ is rejected, the current state 𝜃 is added (i.e. repeated) on the chain. This

acceptance/rejection procedure based on equation 5.2 is often referred to as

the Metropolis acceptance criterion.

It is important to mention here that theMetropolis acceptance criterion can
be evaluated even if we are only able to compute 𝑝(𝜃) up to a normalisation

constant, as any such factor would cancel out in the ratio 𝑝(𝜃 ′)/𝑝(𝜃) that
appears in equation 5.2. This is a very important feature of the algorithm and

one of the reasons for its widespread success. In practice, it is very difficult

to know the exact value for the model evidence  = 𝑝(𝑑) that acts as the
normalisation factor for the posterior distribution 𝑝(𝜃 |𝑑) that might be the

target distribution.

It is straightforward to show that theMetropolis–Hastings algorithm leaves

the target distribution 𝑝(𝜃) stationary by first proving that it preserves de-
tailed balance. The Markov transition probability is simply,

𝑇 (𝜃 ′|𝜃) = 𝑞(𝜃 ′|𝜃)𝛼(𝜃 ′, 𝜃) , (5.3)



that is, the probability of proposing the new state 𝜃 ′ given the old state, times

the probability of accepting it. Therefore, the Markov transition probability
for the Metropolis–Hastings algorithm preserves detailed balance,

𝑇 (𝜃 ′|𝜃)𝑝(𝜃) = 𝑞(𝜃 ′|𝜃)𝛼(𝜃 ′, 𝜃)𝑝(𝜃)

= 𝑞(𝜃 ′|𝜃) min(1,
𝑝(𝜃 ′)𝑞(𝜃 |𝜃 ′)
𝑝(𝜃)𝑞(𝜃 ′|𝜃) )

𝑝(𝜃)

= min (𝑝(𝜃)𝑞(𝜃 ′|𝜃), 𝑝(𝜃 ′)𝑞(𝜃 |𝜃 ′))
= 𝑞(𝜃 |𝜃 ′)𝛼(𝜃, 𝜃 ′)𝑝(𝜃 ′)
= 𝑇 (𝜃 |𝜃 ′)𝑝(𝜃 ′) ,

(5.4)

Algorithm 2 Metropolis–Hastings

Input: initial state 𝜃1, (unnormalised) target density 𝑓 (𝜃) ∝ 𝑝(𝜃), proposal
density 𝑞(𝜃 ′|𝜃), and number of iterations 𝑁

Output: Markov chain 𝜃1, 𝜃2,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribu-

tion

1: for 𝑡 = 1 to 𝑁 do
2: Draw new state from proposal distribution 𝜃 ′ ∼ 𝑞(𝜃 ′|𝜃𝑡 )
3: Compute acceptance probability 𝛼 = min(1,

𝑓 (𝜃 ′)𝑞(𝜃𝑡 |𝜃 ′)
𝑓 (𝜃𝑡 )𝑞(𝜃 ′|𝜃𝑡 ))

4: Draw uniform random number 𝑢 ∼  (0, 1)
5: if 𝑢 < 𝛼 then
6: Accept proposed state and set 𝜃𝑡+1 ← 𝜃 ′

7: else
8: Reject proposed state and set current state as the next 𝜃𝑡+1 ← 𝜃𝑡
9: end if
10: end for

5.1.1 Random–walk Metropolis

A very common, and simplifying in practice, choice for the proposal distri-

bution is the conditional normal distribution 𝑞(𝜃 ′|𝜃) =  (𝜃 ′|𝜃,Σ) centred
around the current state 𝜃 with covariance matrix Σ (Metropolis et al., 1953;

Tierney, 1994). The probability density has the usual Gaussian functional

form,

𝑞(𝜃 ′|𝜃) = det(2𝜋Σ)−
1
2 exp [−

1
2
(𝜃 ′ − 𝜃)𝑇Σ−1(𝜃 ′ − 𝜃)] . (5.5)

The symmetry of this proposal distribution,

𝑞(𝜃 ′|𝜃) = 𝑞(𝜃 |𝜃 ′) , (5.6)

means that theMetropolis acceptance probability of equation 5.2 is simplified

and the 𝑞 terms drop out,

𝛼(𝜃 ′, 𝜃) = min(1,
𝑝(𝜃 ′)
𝑝(𝜃) )

. (5.7)
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5.1.2 Independence Metropolis

Another simple choice of proposal distribution is to make it independent

of the current state 𝜃 . For instance, one can choose a normal distribution

𝑞(𝜃) =  (𝜃 |𝜇,Σ) with mean 𝜇 and covariance matrix Σ, both of which must

be known a priori and can not depend on the current state. In this case, the

Metropolis acceptance probability reduces to,

𝛼(𝜃 ′, 𝜃) = min(1,
𝑝(𝜃 ′)𝑞(𝜃)
𝑝(𝜃)𝑞(𝜃 ′))

. (5.8)

One of the benefits of IndependenceMetropolis (Hastings, 1970; Tierney, 1994),
as this approach is called, is that any states produced are independent sam-

ples from the target distribution 𝑝(𝜃). However, it suffers from similar prob-

lems to Importance sampling. Instead of vanishingly small importanceweights,

in Independence Metropolis we might experience vanishingly small accep-
tance probability when the overlap of the typical set of the proposal distri-

bution 𝑞 with the target 𝑝 is small. For this reason, the use of Independence
Metropolis is wise only when we have good reasons to believe that the pro-

posal distribution is sufficiently close to the target distribution or the dimen-

sionality is low.

5.1.3 Metropolis–adjusted Langevin algorithm

As we have seen, the normal proposal distribution of Random–walk Metropo-
lis can utilise only global information about the target distribution (i.e. the

covariance matrix) in order to achieve efficient sampling. Although suffi-

cient in low to moderate dimensional problems, this strategy can become

inefficient as the number of parameters of the target distribution increases.

In practice, Random–walk Metropolis proposes new states indiscriminately

along directions of great covariance without taking into account the local

structure of the typical set. This results in either low acceptance probabili-

ties or small proposed steps being accepted as the typical set become thinner

in high dimensions.

One way to circumvent this effect and achieve better sampling perfor-

mance is to capitalise on the knowledge of the gradient of the target distribu-

tion in order to “bias” the proposed states towards directions that are more

likely to lead to higher acceptance probability. Metropolis–adjusted Langevin
algorithm (MALA) (Roberts & Stramer, 2002) achieves this by using a condi-

tional normal distribution,

𝑞(𝜃 ′|𝜃) =  (𝜃 + 𝜏Σ∇ log 𝑝(𝜃), 2𝜏Σ) , (5.9)

where its mean 𝜃 + 𝜏Σ∇ log 𝑝(𝜃) is shifted from the current state 𝜃 along the

direction of the gradient of the logarithm of the target distribution ∇ log 𝑝(𝜃).



If known, Σ can be an approximate covariance matrix that characterises the

target distribution, otherwise, a unit–diagonal matrix can be used. 𝜏 is the

step size of the method and determines the amount of shift of the proposal

distribution. In the limit that 𝜏 → 0, MALA reduces to RWM. The step size

𝜏 can be modified in order to achieve the theoretically optimal acceptance

probability of 0.574. Despite the fact that the aforementioned acceptance

rate has only been proven to be optimal for certain types of target distribu-

tions (Roberts & Rosenthal, 1998), we expect that values in the range between

0.4 and 0.8 would result in a high performance for most applications.

In terms of the typical set, we can think of the gradient of the log probabil-

ity as a guide that allows for better–informed proposals that are more likely

to belong to the typical shell.

5.1.4 Adaptive Metropolis

Hyperparameters of the proposal distribution, such as the covariance matrix

Σ of RWM or the step size 𝜏 of MALA, do not have to be chosen a priori or
based on preliminary MCMC runs but they can instead be adaptively tuned

during the run. Haario et al. (2001) presented a prototype adaptive version of

RWM in which the proposal distribution is continuously adapted during the

run using all of the collected samples in order to estimate its covariance ma-

trix. The estimation of the covariance matrix is efficient as only incremental

updates are required using simple recursive formulas.

In order to achieve this kind of proposal adaptation in practice we need to

abandon the Markov property of the chain. In general, this is not a problem

as there is nothing special about the Markov property apart from its simplic-

ity. However, continuous tuning of the proposal distribution during the run

requires the adaptation to be diminishing, with very specific characteristics,

in order to preserve the ergodicity of the method (Brooks et al., 2011).

One of the most commonly used algorithms for diminishing adaptation
is the stochastic approximation algorithm of Robbins & Monro (1951). Sup-

pose that we have a function 𝑓 (𝜆𝑖) = 𝑓𝑖 , which encodes some aspect of the

behaviour of the 𝑖–th state of chain (e.g. the acceptance probability) as a func-
tion of some tunable property 𝜆 (e.g. the proposal scale), that has expectation
value,

E[𝑓 (𝜆)] =
1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝜆𝑖) . (5.10)

The solution to the equation E[𝑓 (𝜆)] = 𝑓 ∗ can be found iteratively, using the

recursive formula,

𝜆𝑖+1 = 𝜆𝑖 − 𝛾𝑖 (𝑓𝑖 − 𝑓 ∗) , (5.11)
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assuming that 𝑓 is a non–decreasing function of 𝜆 that is uniformly bounded

(Andrieu & Thoms, 2008). The parameter 𝛾𝑖 determines the learning rate or
the rate of convergence of the approximation and has to obey two conditions,

𝑛
∑
𝑖=1

𝛾𝑖 = ∞ ,
𝑛
∑
𝑖=1

𝛾 2𝑖 < ∞ . (5.12)

The former condition ensures that any point 𝜃 can eventually be reached,

and the latter condition ensures that the fluctuations introduced by new it-

erations is contained and does not prevent convergence. A commonly used

schedule for the learning rate that satisfies the above conditions has the form

𝛾𝑖 = 𝑖−𝜅 for 𝜅 ∈ (0.5, 1].

Algorithm 3 Adaptive Metropolis

Input: initial state 𝜃1, (unnormalised) target density 𝑓 (𝜃) ∝ 𝑝(𝜃), the target
acceptance rate 𝛼 ∗, learning rate schedule (e.g. 𝑔𝑡 = 1/𝑡), and number of

iterations 𝑁
Output: Markov chain 𝜃1, 𝜃2,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribu-

tion

1: Initialise 𝜇1 = 0, Σ1 = 1, log 𝜆1 = 0
2: for 𝑡 = 1 to 𝑁 do
3: Draw new state from proposal distribution 𝜃 ′ ∼  (𝜃 ′|𝜃𝑡 , 𝜆𝑡Σ𝑡 )
4: Compute acceptance probability 𝛼𝑡 = min (1, 𝑓 (𝜃 ′)/𝑓 (𝜃𝑡 ))
5: Draw uniform random number 𝑢 ∼  (0, 1)
6: if 𝑢 < 𝛼𝑡 then
7: Accept proposed state and set 𝜃𝑡+1 ← 𝜃 ′

8: else
9: Reject proposed state and set current state as the next 𝜃𝑡+1 ← 𝜃𝑡
10: end if
11: Update mean estimate 𝜇𝑡+1 ← 𝜇𝑡 − 𝛾𝑡 (𝜇𝑡 − 𝜃𝑡+1)
12: Update covariance estimate

Σ𝑡+1 ← Σ𝑡 − 𝛾𝑡 [Σ𝑡 − (𝜇𝑡 − 𝜃𝑡+1)(𝜇𝑡 − 𝜃𝑡+1)𝑇 ]

13: Update proposal scale estimate log 𝜆𝑡+1 ← log 𝜆𝑡 − 𝛾𝑡 (𝛼𝑡 − 𝛼 ∗)
14: end for

Let us now go through an example of developing an adaptive version of

the commonly used RWM, in which we tune the covariance matrix Σ of the

Gaussian proposal distribution, 𝜃 ′ ∼  (𝜃 ′|𝜃, 𝜆Σ), using the following dimin-
ishing adaptation scheme,

𝜇𝑖+1 = 𝜇𝑖 − 𝛾𝑖 (𝜇𝑖 − 𝜃𝑖+1) ,
Σ𝑖+1 = Σ𝑖 − 𝛾𝑖 [Σ𝑖 − (𝜇𝑖 − 𝜃𝑖+1)(𝜇𝑖 − 𝜃𝑖+1)𝑇 ] ,

(5.13)



where the 𝜇 is the mean value used for the estimation of the covariance Σ,
and 𝛾𝑖 = 1/𝑖 is the learning rate. At the same time we can also tune the

magnitude of the proposal scale, 𝜆𝑖 , by attempting to match the acceptance

probability 𝛼 to the theoretically optimal value of 𝛼 ∗ = 0.234,

log 𝜆𝑖+1 = log 𝜆𝑖 − 𝛾𝑖 (𝛼𝑖 − 𝛼 ∗) . (5.14)

Understanding equation 5.14 is straightforward, if the observed acceptance

rate is greater than the target (i.e. 𝛼𝑖 < 𝛼 ∗) then the logarithm of the mag-

nitude of the proposal scale log 𝜆 is reduced and vice versa. The Adaptive
Metropolis method presented in this paragraph constitutes a generalisation

of the method presented by Haario et al. (2001). With the inclusion of the

adaptation of the proposal scale using equation 5.14 the algorithm resembles

that of Andrieu & Thoms (2008).

5.2 gibbs sampling

Another very popularMarkov chainMonte Carlomethod, towhichwe partly

owe the widespread use of Bayesian inference today, is Gibbs sampling. Ini-
tially known as the heat bath algorithm in the statistical physics literature,
the Gibbs sampler enjoyed great success in the statistical community follow-

ing the seminal paper by S. Geman & D. Geman (1984) that demonstrated its

benefits for analysing Gibbs distributions on lattices in the context of image

processing.

5.2.1 Gibbs sampler

Gibbs sampler attempts to overcome the curse of dimensionality using condi-
tioning (Casella & George, 1992). In particular, assuming that exact sam-

pling from the conditional distributions of the target distribution 𝑝(𝜃) is
possible, we can generate samples from the target distribution by sequen-

tially sampling from its full set of conditionals instead. Given an initial state

𝜃 = (𝜃1,… , 𝜃𝐷), the next state in the Markov chain can be generated as,

𝜃 ′1 ∼ 𝑝(𝜃1|𝜃2,… , 𝜃𝐷)
⋮

𝜃 ′𝑘 ∼ 𝑝(𝜃 ′𝑘 |𝜃1,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… 𝜃𝐷)
⋮

𝜃 ′𝐷 ∼ 𝑝(𝜃 ′𝐷 |𝜃1,… ,… 𝜃 ′𝐷−1) .

(5.15)

The current state 𝜃 is then replaced by the new state 𝜃 ′ = (𝜃 ′1 ,… , 𝜃 ′𝐷) and
the process is repeated until enough states are collected in the Markov chain.

The order of the state updates of equation 5.15 can be either fixed (with a

89



possible reversal after every iteration), as shown above, or randomised to

ensure detailed balance.

Algorithm 4 Gibbs sampler

Input: initial state 𝜃 (1) = (𝜃 (0)1 , 𝜃 (0)2 ,… , 𝜃 (0)𝐷 ), all the conditional distributions
𝑝(𝜃𝑘 |𝜃1,… , 𝜃𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷) of target 𝑝(𝜃), and number of iterations 𝑁

Output: Markov chain 𝜃 (1), 𝜃 (2),… , 𝜃 (𝑁 )
that has 𝑝(𝜃) as its equilibrium dis-

tribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐷 do
3: Draw from conditional 𝜃 ′𝑘 ∼ 𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

4: end for
5: Set 𝜃 (𝑡+1) ← 𝜃 ′ = (𝜃 ′1 ,… , 𝜃 ′𝐷)
6: end for

5.2.2 Metropolis–within–Gibbs sampler

The Gibbs sampler relies on our ability to produce samples from each one of

the conditional distributions. This however is not always feasible as some

of the components of the full conditional set might not admit an exact sam-

pling solution. Instead of abandoningGibbs sampler altogether, Müller (1991,

1992) suggested the use of a compromise between the Gibbs sampler and the
Metropolis–Hastings algorithm.

The key idea behind the Metropolis–within–Gibbs sampler is to use Gibbs
sampling for as many of the conditional distributions as possible in order

to produce exact samples, and rely on correlated samples generated using

Metropolis–Hastings for any conditional distributions that exact sampling is

not possible.

Suppose that we have a partial state (𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘 ,… , 𝜃𝐷) and we have

difficulty generating exact samples from the conditional distribution 𝜃 ′𝑘 ∼
𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷). We can then treat 𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷)
as the target distribution for a Metropolis–Hastings estimator as follows, in

order to proceed with the computation,

1. First, we have to propose a new sample 𝜃 ∗𝑘 ∼ 𝑞(𝜃𝑘 |𝜃
′
1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷)

from an arbitrary proposal distribution,

2. Then, compute the Metropolis acceptance probability

𝛼(𝜃 ∗𝑘 , 𝜃𝑘) = min(1,
𝑝(𝜃 ∗𝑘 |𝜃

′
1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷)

𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷)

×
𝑞(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷)
𝑞(𝜃 ∗𝑘 |𝜃

′
1 ,… , 𝜃 ′𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷))

,
(5.16)



3. Finally, accept the new state 𝜃 ′𝑘 ← 𝜃 ∗𝑘 with probability 𝛼(𝜃 ∗𝑘 , 𝜃𝑘), other-
wise reject and keep the previous state 𝜃 ′𝑘 ← 𝜃𝑘 .

Using the algorithm presented above we can replace exact sampling from

conditional distributions where it is not feasible with Metropolis–Hastings
estimates.

Algorithm 5 Metropolis–within–Gibbs sampler

Input: initial state 𝜃 (1) = (𝜃 (0)1 , 𝜃 (0)2 ,… , 𝜃 (0)𝐷 ), proposal distributions

𝑞(𝜃𝑘 |𝜃1,… , 𝜃𝑘−1, 𝜃𝑘+1,… , 𝜃𝐷), (unnormalised) target distribution 𝑓 (𝜃) ∝
𝑝(𝜃), the conditional distributions 𝑝(𝜃𝓁 |𝜃1,… , 𝜃𝓁−1, 𝜃𝓁+1,… , 𝜃𝐷) of target
𝑝(𝜃)where 𝓁 ∈ 𝐿 and 𝐿 the set of indices for which exact sampling of the

conditional is possible, and number of iterations 𝑁
Output: Markov chain 𝜃 (1), 𝜃 (2),… , 𝜃 (𝑁 )

that has 𝑝(𝜃) as its equilibrium dis-

tribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐷 do
3: if 𝑘 ∈ 𝐿 then
4: Draw from conditional 𝜃 ′𝑘 ∼ 𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

5: else
6: Draw from proposal 𝜃 ∗𝑘 ∼ 𝑞(𝜃𝑘 |𝜃

′
1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

7: Compute acceptance probability

𝛼 = min(1,
𝑝(𝜃 ∗𝑘 |𝜃

′
1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

𝑝(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃
(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

×
𝑞(𝜃𝑘 |𝜃 ′1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 )

𝑞(𝜃 ∗𝑘 |𝜃
′
1 ,… , 𝜃 ′𝑘−1, 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐷 ))

8: Draw uniform number 𝑢 ∼  (0, 1)
9: if 𝑢 < 𝛼 then
10: accept new partial state and set 𝜃 ′𝑘 ← 𝜃 ∗𝑘
11: else
12: reject new partial state and set 𝜃 ′𝑘 ← 𝜃 (𝑡)𝑘
13: end if
14: end if
15: end for
16: Set 𝜃 (𝑡+1) ← 𝜃 ′ = (𝜃 ′1 ,… , 𝜃 ′𝐷)
17: end for
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6 AUX I L I ARY VAR IABLE MCMC

METHODS

Natura non facit saltus.

— Gottfried Leibniz

Auxiliary variableMCMCmethods rely on the introduction of one ormore

additional variables in order to make sampling from the target distribution

more efficient.

6.1 simulated annealing

In metallurgy, annealing refers to the thermal process used to harden steel.

Initially, the metal is heated to a high temperature and then it is cooled down

slowly enough for the atoms to self–arrange in an ordered pattern that cor-

responds to the minimum energy (Cahn & Haasen, 1996). The slow rate of

cooling ensures that the energy of the system will reach its global minimum

instead of getting trapped in local minima.

Realising that theMetropolis–Hastingsmethod can be used to simulate the

process of gradually cooling a solid towards a low–temperature equilibrium

state, Kirkpatrick et al. (1983) suggested that we should construct a sequence

of Boltzmann distributions,

𝑝𝑖(𝜃) ∝ 𝑒−
𝐻 (𝜃)
𝑇𝑖 , (6.1)

for a series of temperatures 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑚 and simulate from each one

in succession by performing a number of MCMC steps in each temperature

before moving on to the next. The result is a non–homogeneous Markov

chain, that is, a Markov chain with time–varying target density. Assuming

that 𝑇1 is high enough and 𝑇𝑚 ≈ 0 we can find the global minimum of the

energy 𝐸(𝜃) by simulating the cooling process of a solid.

Simulated annealing can be used for sampling too, not just for optimisa-

tion. By stopping the cooling process earlier at 𝑇𝑚 = 1 we can sample from

any target distribution 𝑝(𝜃), not just Boltzmann distributions, simply setting

𝐻 (𝜃) = − log 𝑝(𝜃). Furthermore, for applications in which the target distribu-

tion is the posterior distribution we can construct the following sequence of

densities,

𝑝𝑖(𝜃) ∝ 𝑝(𝜃)𝑒
log 𝑝(𝑑 |𝜃)

𝑇𝑖 , (6.2)
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Figure 6.1: Illustration of the gradual annealing performed in the posterior distribu-

tion. The prior distribution corresponds to 1/𝑇 → 0 and the posterior

is recovered as 1/𝑇 → 1.

where 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑚 = 1. In this case, for 𝑇1 >> 1 we effectively sample

from the prior distribution,

𝑝𝑖(𝜃) ∝ 𝑝(𝜃) , (6.3)

whereas in the limit that 𝑇𝑚 = 1 we acquire samples from the posterior,

𝑝𝑖(𝜃) ∝ 𝑝(𝜃)𝑝(𝑑 |𝜃) . (6.4)

The number of MCMC steps to perform in each temperature, before moving

on to the next one, is arbitrary and different mixing criteria can be utilised

(e.g. Gelman–Rubin, autocorrelation thresholds, etc.). The benefit of us-

ing simulated annealing for sampling is that by simulating multiple Markov

chains, possibly in parallel, through this sequence of densities, the risk of

the chains getting trapped in isolated modes of the posterior distribution is

minimised. This means that this approach can be used when the probability

distribution is strongly multimodal. Furthermore, if the number of tempera-

ture levels is large enough and the spacing between them small enough, then

the Markov chain is approximately always in equilibrium, meaning that no,

or minor, burn–in is required to be discarded.



Algorithm 6 Simulated annealing

Input: initial state 𝜃 (1)1 , temperature schedule 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑚 = 1, prior
density 𝜋 (𝜃) ≡ 𝑝(𝜃 |), likelihood function (𝜃) ≡ 𝑝(𝑑 |𝜃,), and num-

ber of MCMC iterations 𝑁 per temperature

Output: Multiple Markov chains 𝜃 (1), 𝜃 (2),… , 𝜃 (𝑚)
with the last one having

𝑝(𝜃) as its equilibrium distribution

1: for 𝑖 = 1 to 𝑚 do
2: Set annealed density 𝑝𝑖(𝜃) ∝ 𝜋 (𝜃)(𝜃)1/𝑇𝑖
3: Generate Markov chain 𝜃 (𝑖)1 ,… , 𝜃 (𝑖)𝑁 targeting 𝑝𝑖(𝜃) (e.g. using

Metropolis–Hastings)

4: Set last state as the first state for the next annealed density 𝜃 (𝑖+1)1 ←
𝜃 (𝑖)𝑁

5: end for

6.2 slice sampling

Slice sampling is another MCMC method that relies on an auxiliary variable

in order to make sampling easier (Besag & Green, 1993; Neal, 1997, 2003).

The method is based on the realisation that sampling from the target distri-

bution with density 𝑝(𝜃) is equivalent to uniform sampling from the area

or volume below the curve or surface of 𝑓 (𝜃) ∝ 𝑝(𝜃). This is equivalent to
the introduction of an auxiliary variable 𝜙, called height, such that the joint

distribution 𝑝(𝜃, 𝜙) is uniform over the region,

𝑈 = {(𝜃, 𝜙) ∶ 0 < 𝜙 < 𝑓 (𝜃)} . (6.5)

In other words, the joint distribution can be written as,

𝑝(𝜃, 𝜙) =

{
1/ if 0 < 𝜙 < 𝑓 (𝜃) ,
0 otherwise ,

(6.6)

where

 = ∫ 𝑓 (𝜃)𝑑𝜃 . (6.7)

To sample from the target distribution 𝑝(𝜃) we first sample uniformly from

𝑝(𝜃, 𝜙) and then marginalise over 𝜙 by dropping the 𝜙–value of each sample

and keeping the 𝜃–value. The proof that this results in the marginal density

for 𝜃 is straightforward,

𝑝(𝜃) = ∫ 𝑝(𝜃, 𝜙)𝑑𝜙 = ∫
𝑓 (𝜃)

0

1

𝑑𝜙 =

𝑓 (𝜃)


. (6.8)

Generating independent samples from the uniform joint density 𝑝(𝜃, 𝜙) is
rarely possible in practice. Instead, one might prefer to construct a Markov

chain that leaves the distribution 𝑝(𝜃, 𝜙) invariant. One such option is to use
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Gibbs sampling, that is, to sample alternately from the conditional distribu-

tion 𝑝(𝜙|𝜃), which is uniform over the interval (0, 𝑓 (𝜃)), and then from the

conditional distribution 𝑝(𝜃 |𝜙), which is uniform over the region,

𝑆 = {𝜃 ∶ 𝜙 < 𝑓 (𝜃)} , (6.9)

called the slice. Applying this procedure repeatedly will produce a Markov

chain that has the joint distribution 𝑝(𝜃, 𝜙) as its stationary distribution.

Sampling uniformly from the aforementioned slice is not trivial either.

However, the fact that the conditional density 𝑝(𝜃 |𝜙) is uniform allows us

to construct procedures to sample from it which would otherwise would not

have worked. Neal (2003) proposed the following sequence of steps for uni-

variate probability distributions,

1. Uniformly sample a real value 𝜙 in the interval (0, 𝑓 (𝜃0)), therefore
defining the horizontal slice 𝑆 = {𝜃 ∶ 𝜙 < 𝑓 (𝜃0)} that always includes
𝜃0,

2. Find an interval 𝐼 = (𝐿, 𝑅) around 𝜃0 along the slice that contains all,

or much of, the slice,

3. Sample a new value 𝜃1 from the part of the slice within the interval,

that is, from 𝐼 ∩ 𝑆.

It is important to mention that as we often work with 𝑔(𝜃) = log 𝑓 (𝜃), to
avoid numerical issues, one can use the variable 𝜓 = log(𝜙) = 𝑔(𝜃0) − 𝑒,
where 𝑒 is exponentially distributed with mean one, to define the slice as

𝑆 = {𝜃 ∶ 𝜓 < 𝑔(𝜃0)}.
The first step in the above procedure is trivial, yet steps two and three re-

quire more serious consideration. Neal (2003) suggested to use the so–called

stepping–out and shrinking procedures for those steps respectively. Stepping–
out works by uniformly positioning an interval of width 𝑤 around 𝜃0 such
that it includes 𝜃0, and then expanding the interval in steps of size 𝑤 until

both its ends (𝐿, 𝑅) are outside the slice 𝑆. This effectively constructs the in-

terval 𝐼 = (𝐿, 𝑅). It is worth noting that the algorithm is valid even if only

a pre–specified number of expansions take place and the interval ends up

not covering the entirety of the slice 𝑆. The shrinking procedure that follows
functions by uniformly sampling points in the interval 𝐼 = (𝐿, 𝑅) until one
of them lies in the slice 𝑆. Every time a point is rejected, being outside of

the slice, the interval 𝐼 shrinks such that the rejected point now defines one

of its two boundaries, determined by whether the rejected point lies left or

right of 𝜃0.
The fact that the three–step procedure presented so far describes a slice

sampling update from a univariate probability distribution 𝑝(𝜃) does not pro-
hibit its use in multivariate cases. In particular, there are many ways the

aforementioned recipe can be generalised and used in target distribution
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Figure 6.2: Illustration of the stepping–out and shrinking procedures used in slice

sampling. Given an initial state 𝜃 in the Markov chain, an auxiliary

variable 𝜙 is sampled corresponding to the height thus defining the ex-

tended state (𝜃, 𝜙) shown here as a blue point. An interval of a certain

width is placed uniformly around the current point (𝜃, 𝜙) and expanded
in steps of size equal to the initial width until both of its ends, 𝐿 and

𝑅, are outside the graph. A new state, shown in red, is then proposed

uniformly along the interval (𝐿, 𝑅). Since the proposed state lies above

the graph of 𝑓 (𝜃) (i.e. not in the slice shown as a continuous line) it is re-
jected. A new state, shown in green, is the proposed uniformly between

the rejected state and 𝑅. Since the proposed state is below the graph,

and thus in the slice, it is accepted and added to the Markov chain. The

whole process is then repeated.

with more than one parameter. Perhaps the simplest one is to apply this uni-

variate scheme along each coordinate axis in turn, updating one parameter

at a time. This corresponds to a Metropolis–within–Gibbs scheme. Another

option is to apply 1–D updates in random directions. This is more general

than the previous one, and there is freedom to choose the distribution of the

random directions. The directions can be drawn from a multivariate zero–

mean normal distribution with unit–diagonal covariance matrix or a more

appropriate non–diagonal covariance matrix that encodes some of the cor-

relations of the parameters of the target distribution. Such a covariance can

be configured a priori, estimated during a short preliminary run from sam-

ples from the target, or adaptively tuned using an appropriate algorithm for

diminishing adaptation.
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One of the great benefits of slice sampling is the fact that it has a sin-

gle hyper–parameter, the initial width 𝑤 of the interval 𝐼 . Furthermore, the

value of 𝑤 is adapted continuously by the stepping–out and shrinking pro-

cedures. This sort of local adaptation is absent from many MCMC that as-

sume a global proposal scale. Another characteristic of slice sampling is the

lack of rejected samples in the Markov chain. Unlike methods that include a

Metropolis acceptance criterion, slice sampling always moves to a new state

in every iteration.

Algorithm 7 Slice sampling

Input: initial state 𝜃1, (unnormalised) target density 𝑓 (𝜃) ∝ 𝑝(𝜃), number of

maximum expansions 𝑚, and number of iterations 𝑁
Output: Markov chain 𝜃1,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribution

1: Draw “height” auxiliary variable 𝜙 ∼  (0, 𝑓 (𝜃1))
2: for 𝑡 = 1 to 𝑁 do
3: Draw left bound of the 𝐼 interval 𝐿 ∼  (𝜃𝑡 −𝑤, 𝜃𝑡 )
4: Set right bound 𝑅 ← 𝐿 +𝑤
5: Draw uniform variable 𝑢 ∼  (0, 1)
6: Setmaximumnumber of interval expansions to the left 𝐽 ← Floor(𝑚 ×

𝑢)
7: Set maximum number of interval expansions to the right 𝐾 ← (𝑚 −

1) − 𝐽
8: while 𝐽 > 0 and 𝜙 < 𝑓 (𝐿) do
9: Expand left boundary 𝐿 ← 𝐿 −𝑤 in steps of 𝑤
10: Reduce count 𝐽 ← 𝐽 − 1 by one

11: end while
12: while 𝐾 > 0 and 𝜙 < 𝑓 (𝑅) do
13: Expand right boundary 𝐿 ← 𝑅 +𝑤 in steps of 𝑤
14: Reduce count 𝐾 ← 𝐾 − 1 by one

15: end while
16: repeat
17: Draw state within interval 𝜃 ′ ∼  (𝐿, 𝑅)
18: if 𝜃 ′ < 𝜃𝑡 then
19: Contract interval 𝐿 ← 𝜃 ′

20: else
21: Contract interval 𝑅 ← 𝜃 ′

22: end if
23: until 𝜙 < 𝑓 (𝜃 ′)
24: Accept new state 𝜃𝑡+1 ← 𝜃 ′

25: end for



6.3 hamiltonian monte carlo

Hamiltonian Monte Carlo (HMC) introduces a momentum auxiliary variable

and uses the gradient of the target probability density to efficiently explore

the typical set. HMC turns the problem of sampling from the target dis-

tribution into the approximate simulation of Hamiltonian dynamics with a

subsequent Metropolis correction step (Neal et al., 2011). In the statistical

physics literature HMC was suggested as a method of efficiently simulating

states from a physical system (Duane et al., 1987), which was then employed

to statistical inference problems (Liu & Liu, 2001; Neal, 1992, 1993, 1996).

1

2

Figure 6.3: Illustration of Hamiltonian trajectories in parameter space. The black
points correspond to the accepted states.

6.3.1 Auxiliary momentum variable

HMC introduces an auxiliary variable 𝜌 and samples from the joint probabil-

ity density,

𝑝(𝜌, 𝜃) = 𝑝(𝜌|𝜃)𝑝(𝜃) . (6.10)

Inmost applications ofHMC, themomentumvariable 𝜌 chosen to beGaussian–
distributed,

𝜌 ∼  (0, 𝑀) , (6.11)

and its probability density function to be independent of the state variable

𝜃 (i.e. 𝑝(𝜌|𝜃) = 𝑝(𝜃)). 𝑀 is the symmetric, positive definite mass matrix that
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has the role of the Euclidean metric, that is to define the relative length scales
between parameters. In practice, 𝑀 can be chosen to be Σ−1, meaning the

inverse of the sample covariance matrix that characterises the target distri-

bution assuming that it is known or easy to estimate.

6.3.2 The Hamiltonian

HMC treats sampling from the joint distribution 𝑝(𝜌, 𝜃) as a problem of solv-

ing the Hamiltonian dynamics given the Hamiltonian,

(𝜌, 𝜃) = − log 𝑝(𝜌, 𝜃)
= − log 𝑝(𝜌|𝜃) − log 𝑝(𝜃)
= 𝑇 (𝜌|𝜃) + 𝑉 (𝜃) ,

(6.12)

where

𝑇 (𝜌|𝜃) = − log 𝑝(𝜌|𝜃) , (6.13)

is the kinetic energy, and,

𝑉 (𝜃) = − log 𝑝(𝜃) , (6.14)

is the potential energy.

6.3.3 Hamilton’s equations

The dynamics of a system (i.e. its evolution in time) that is characterised by

the Hamiltonian of equation 6.12 are given by solving Hamilton’s equations,

𝑑𝜃
𝑑𝑡

=
𝜕
𝜕𝜌

=
𝜕𝑇
𝜕𝜌

,

𝑑𝜌
𝑑𝑡

= −
𝜕
𝜕𝜃

= −
𝜕𝑇
𝜕𝜃

−
𝜕𝑉
𝜕𝜃

,
(6.15)

or, in the case that the momentum variable 𝜌 is independent of the state

variable 𝜃 , that is 𝑝(𝜌|𝜃) = 𝑝(𝜌),

𝑑𝜃
𝑑𝑡

=
𝜕
𝜕𝜌

=
𝜕𝑇
𝜕𝜌

,

𝑑𝜌
𝑑𝑡

= −
𝜕
𝜕𝜃

= −
𝜕𝑉
𝜕𝜃

.
(6.16)

Therefore, given an initial state (𝜌, 𝜃), the system’s evolution in time is com-

pletely determined by equations 6.16.

6.3.4 Leapfrog integration

Solving Hamilton’s equations analytically is only feasible for very simple sys-

tems that correspond to simple target probability distributions. In practice,



however, we aim to solve equations 6.16 for systems of arbitrary complex-

ity. To this end, we turn to numerical methods for integrating this system of

differential equations.

The most commonly used numerical method is the leapfrog integration
algorithm (Leimkuhler & Reich, 2004) that begins by sampling a value for

the momentum variable 𝜌 according to equation 6.11 and then proceeds by

applying 𝐿 times the following steps,

𝜌 ← 𝜌 −
𝜖
2
𝜕𝑉
𝜕𝜃

,

𝜃 ← 𝜃 + 𝜖𝑀−1𝜌 ,

𝜌 ← 𝜌 −
𝜖
2
𝜕𝑉
𝜕𝜃

,

(6.17)

where 𝜖 is the integration step size that determines the smallest time interval.

The length of the trajectory will then be 𝜖𝐿 and the new state of the system

is denoted as (𝜌 ′, 𝜃 ′). The numerical error introduced into the calculation by

the leapfrog algorithm is of the order of 𝜖3 per step and 𝜖2 globally (Leimkuh-

ler & Reich, 2004).

6.3.5 Metropolis acceptance criterion

If the leapfrog algorithm were perfect and did not introduce any numerical

error, wewould not have to do anythingmore than re–sample themomentum
variable every 𝐿 integration steps. However, the leapfrog integrator is far

from this which means that we need to account for the numerical error that

it introduces before it accumulates. To this end, we only accept and add the

new state (𝜌 ′, 𝜃 ′) into the Markov chain with probability

𝛼(𝜃 ′, 𝜃) = min(1,
𝑝(𝜌 ′, 𝜃 ′)
𝑝(𝜌, 𝜃) ) , (6.18)

and reject it otherwise by adding (𝜌, 𝜃) into the chain. Equation 6.18 is sim-

ply the Metropolis acceptance probability for HMC. Therefore, we see that

HMC is essentially a case of Metropolis–Hastings with symmetric proposal

distribution in the augmented state space of (𝜌, 𝜃).

6.3.6 Performance and tuning

The sampling performance of HMC is very sensitive to its tuning (M. D. Hoff-

man, Gelman, et al., 2014; Neal et al., 2011) and many efforts have been

made to develop heuristics and automated tuning procedures for the two

hyperparameters, 𝜖 and 𝐿, that the method relies upon. The step size 𝜖 can
be adaptively tuned by trying to match the observed acceptance rate to the

theoretically optimal value of 0.65. Tuning the number of steps 𝐿 is more
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Algorithm 8 Hamiltonian Monte Carlo

Input: initial state 𝜃1, potential energy 𝑉 (𝜃) = − log 𝑝(𝜃) up to an additive

constant, kinetic energy definition 𝑇 (𝜌) = 𝜌𝑇𝑀−1𝜌/2, number of leapfrog

steps 𝐿, integration step size 𝜖, and number of iterations 𝑁
Output: Markov chain 𝜃1,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribution

1: Draw momentum variable 𝜌𝑡 ∼  (0, 𝑀)
2: Set proposed state 𝜃 ′ ← 𝜃𝑡
3: Set proposed momentum 𝜌 ′ ← 𝜌
4: for = 1 to 𝐿 do
5: Update momentum 𝜌 ′ ← 𝜌 ′ − 𝜖

2
𝜕𝑉
𝜕𝜃

6: Update position 𝜃 ′ ← 𝜃 ′ + 𝜖𝑀−1𝜌 ′

7: Update momentum 𝜌 ′ ← 𝜌 ′ − 𝜖
2
𝜕𝑉
𝜕𝜃

8: end for
9: Reverse momentum 𝜌 ′ ← −𝜌 ′

10: Compute acceptance probability

𝛼 = min (1, exp [𝑉 (𝜃) − 𝑉 (𝜃 ′) + 𝑇 (𝜃) − 𝑇 (𝜃 ′)])

11: Draw uniform number 𝑢 ∼  (0, 1)
12: if 𝑢 < 𝛼 then
13: Accept proposed state and set 𝜃𝑡+1 ← 𝜃 ′

14: else
15: Reject proposed state and set 𝜃𝑡+1 ← 𝜃
16: end if

cumbersome in practice. In principle, 𝐿 can be tuned by minimising the au-

tocorrelation time of the Markov chain. In practice this requires running

multiple preliminary runs with different values of 𝐿 in order to determine

the most efficient one. For this reason, other approaches, such as Empirical
HMC (Wu et al., 2018) and the No U-Turn Sampler (NUTS) (M. D. Hoffman,

Gelman, et al., 2014), have been proposed that automate the use of HMC for

many applications.



7 ENSEMBLE MCMC METHODS

As for me, I am tormented with an everlasting itch for things remote.
I love to sail forbidden seas, and land on barbarous coasts.

— Herman Melville, Moby–Dick or, the Whale

In order to avoid issues caused by multimodality or the need for tuning

the proposal distribution, ensemble MCMC methods rely on an ensemble of

parallel samplers, often called walkers, that sample from an extended proba-

bility distribution. A commonway to construct such an extended probability

distribution is using the product density,

𝜋 ({𝜃𝑘}𝐾𝑘=1) =
𝐾
∏
𝑘=1

𝑝𝑘(𝜃𝑘) , (7.1)

where 𝑝𝑘(𝜃𝑘) are the individual densities, one of which can correspond to

the target distribution of interest (e.g. the posterior), and 𝐾 is the number of

walkers. It is important to note here that 𝜃𝑘 is not the 𝑘–th component of a

vector, but a 𝐷–dimensional vector itself.

The simplest product density that we can construct based on equation 7.1

is to assume that 𝑝𝑘(𝜃𝑘) = 𝑝(𝜃𝑘) for all 𝑘, meaning that the product density

is just the product of 𝐾 identical copies of the target distribution 𝑝(𝜃𝑘). A
natural question to ask is then why would anyone want to do this? Why

sample 𝐾 copies of the same distribution instead of just one? The answer is

that the walkers sampling each copy do not have to be independent of each

other and instead are allowed to exchange information about their current

state. For instance, the proposal distribution for a single walker can depend

on the current positions of the rest of the walkers in the ensemble. This al-

lows for effective proposals that take into account the relative length–scales

and positions of the modes of the target distribution.

Of course, other product densities, that do not rely on the simplifying as-

sumption that 𝑝𝑘(𝜃𝑘) = 𝑝(𝜃𝑘) for all 𝑘, can also be defined as we will see in

the case of the parallel tempering algorithm in Section 7.4. In those cases, the

goal is not usually to construct effective proposal distribution but rather to

deal with the challenge of multimodality.

103



7.1 gaussian ensemble

Perhaps the simplest way to construct an ensemble MCMC method that lim-

its the requirement for tuning, to some extent, its proposal distribution is

the Gaussian ensemble (GE) algorithm. GE uses an ensemble of 𝐾 walkers

that target a product density of the form of equation 7.1, where all copies

𝑝𝑘(𝜃𝑘) are identical and correspond to the target distribution of interest (e.g.

posterior), and the proposal distribution of each walker is simply a normal

distribution informed by the positions of the rest of the walkers in the en-

semble (Speagle, 2019).
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Figure 7.1: Illustration of the Gaussian ensemble MCMCmethod. A new state 𝜃 ′
𝑘 is

proposed in the vicinity of the position 𝜃𝑘 of the walker that is updated
using an rescaled version of the sample covariance matrix of the rest of

the walkers (i.e. excluding 𝜃𝑘) for the normal proposal distribution.

In particular, in a given iteration 𝑡 of the method, the algorithm performs

a loop over the 𝐾 walkers updating each walker in turn. A new position 𝜃𝑘
is proposed from a normal distribution,

𝜃 ′𝑘 ∼  (𝜃 |𝜃
(𝑡−1)
𝑘 , 𝛾Σ−𝑘) , (7.2)

centred on the current state 𝜃 (𝑡−1)𝑘 of the 𝑘–th walker and 𝛾 is a multiplying

factor used to scale the covariance matrix in order to achieve the optimal

acceptance rate (e.g. 𝛾 = 2.382/𝐷). The covariance matrix Σ−𝑘 of the proposal
distribution is simply the sample covariance estimated using the positions of



the ensemble {𝜃 (𝑡)1 ,… , 𝜃 (𝑡)𝑘−1, 𝜃
(𝑡−1)
𝑘+1 ,… , 𝜃 (𝑡−1)𝐾 } which excludes the 𝑘–th walker.

It is important to notice also that all the walkers up to and excluding the 𝑘–
th have already been updated and it is their updated positions that are used

to compute the proposal covariance. This is essentially aMetropolis–within–
Gibbs scheme in disguise. The new point 𝜃𝑘 is then accepted or rejected based
on the usual Metropolis criterion and the process continuous with the next

walker until all of them have been updated.

Algorithm 9 Gaussian ensemble

Input: initial state for the ensemble 𝜃 (1) = (𝜃 (1)1 ,… , 𝜃 (1)𝐾 ), (unnormalised) tar-

get density 𝑓 (𝜃) ∝ 𝑝(𝜃), covariance scaling factor (e.g. 𝛾 = 2.382/𝐷), and
number of iterations 𝑁

Output: Markov chain 𝜃1,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐾 do
3: Compute ensemblemean 𝜇(𝑡)−𝑘 =

1
𝐾−1 ∑𝑖≠𝑘 𝜃

(𝑡)
𝑖 excluding the 𝑘th state

4: Compute ensemble covariance matrix Σ(𝑡)−𝑘 = 1
𝐾−1 ∑𝑖≠𝑘(𝜃

(𝑡)
𝑖 −

𝜇(𝑡)−𝑘)(𝜃
(𝑡)
𝑖 − 𝜇(𝑡)−𝑘)

𝑇
excluding the 𝑘th state

5: Draw proposal 𝜃 ′𝑘 ∼  (𝜃 (𝑡)𝑘 , 𝛾Σ(𝑡)−𝑘)
6: Compute acceptance probability 𝛼𝑘 = min(1, 𝑓 (𝜃

′
𝑘 )/𝑓 (𝜃

(𝑡)
𝑘 ))

7: Draw uniform number 𝑢 ∼  (0, 1)
8: if 𝑢 < 𝛼𝑘 then
9: Accept proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 ′𝑘
10: else
11: Reject proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 (𝑡)𝑘
12: end if
13: end for
14: end for

GE solves the problem of tuning the proposal, up to the scaling factor 𝛾
of the covariance matrix, but still assumes a Gaussian proposal. This means

that we do not expect that GE will perform better than 𝐾 parallel well–tuned

Random–walk Metropolis samplers. As we will discuss in the next couple of

sections, there are ways to relax this limitation and allow for more flexible

proposals. Last but not least, the estimation of the proposal covariance ma-

trix requires that the absolute minimum size of the ensemble to be 𝐷 + 1 for
the covariance to be non–singular.
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7.2 affine–invariant stretch move

The affine–invariant ensemble sampler and in particular the stretch move in-
troduced by Goodman &Weare (2010) is perhaps the most popular ensemble

MCMC method in the astronomical literature, made available in the Python
implementation emcee (Foreman-Mackey, Hogg, et al., 2013). The stretch
move algorithm relaxes the limitation of the Gaussian proposal and instead

updates each walker in turn along the direction of a different uniformly se-

lected walker sampled from the rest of the ensemble. As we will discuss this

change introduces both benefits and challenges.
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Figure 7.2: Illustration of the affine–invariant stretch move. The selected walker 𝜃𝑘
is moved to its new position 𝜃 ′

𝑘 along the line defined by 𝜃𝑗 and 𝜃𝑘 . 𝜃𝑗
is a walker that is uniformly selected from the rest of the ensemble (i.e.

excluding 𝜃𝑘).

In particular, in a given iteration 𝑡 of the method, the algorithm performs

a loop over the 𝐾 walkers updating each one in turn. In the so–called stretch
move, we move a walker 𝜃𝑘 using a uniformly selected walker 𝜃𝑗 from the

complementary ensemble 𝑆−𝑘 = {𝜃 (𝑡)1 ,… , 𝜃 (𝑡)𝑘−1, 𝜃
(𝑡−1)
𝑘+1 ,… , 𝜃 (𝑡−1)𝐾 } that excludes

𝜃𝑘 . The 𝜃𝑗 walker acts as an anchor point for the move that consists of a

proposal of the form

𝜃 ′𝑘 = 𝜁 𝜃𝑘 + (1 − 𝜁 )𝜃𝑗 , (7.3)



where 𝜁 is a scaling variable with a probability density 𝑔 that satisfies the

symmetry condition,

𝑔 (
1
𝜁 )

= 𝜁 𝑔(𝜁 ) , (7.4)

such that the move expressed by equation 7.3 is symmetric in theMetropolis
sense. A particular density that obeys this condition is

𝑔(𝜁 ) ∝
⎧⎪⎪
⎨⎪⎪⎩

1√
𝜁

if 𝜁 ∈ [ 1
𝛼 , 𝛼] ,

0 otherwise ,
(7.5)

where 𝛼 > 1 is a parameter that can be tuned to enhance the performance.

The default value is usually set to 𝛼 = 2. The new state 𝜃 ′𝑘 is then accepted

with Metropolis probability,

𝛼(𝜃 ′𝑘 , 𝜃𝑘) = min(1, 𝜁𝐷−1
𝑝(𝜃 ′𝑘 )
𝑝(𝜃𝑘))

, (7.6)

where the 𝜁𝐷−1 comes from the fact that the update takes place along a

straight line. The process is then repeated for the next walker, until all the

walkers are updated for the current iteration 𝑡 before the algorithm moves

to its next iteration.

Algorithm 10 Affine–invariant stretch move

Input: initial state for the ensemble 𝜃 (1) = (𝜃 (1)1 ,… , 𝜃 (1)𝐾 ), (unnormalised) tar-

get density 𝑓 (𝜃) ∝ 𝑝(𝜃), and number of iterations 𝑁
Output: Markov chain 𝜃1,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐾 do
3: Draw a walker 𝜃𝑗 from the complementary ensemble 𝑆−𝑘 ={

𝜃 (𝑡+1)1 ,… , 𝜃 (𝑡+1)𝑘−1 , 𝜃
(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐾

}

4: Draw random number 𝜁 ∼ 𝑔(𝜁 )
5: Compute proposed state 𝜃 ′𝑘 ← 𝜁 𝜃𝑘 + (1 − 𝜁 )𝜃𝑗
6: Compute acceptance probability 𝛼𝑘 = min(1, 𝜁

𝐷−1𝑓 (𝜃 ′𝑘 )/𝑓 (𝜃
(𝑡)
𝑘 ))

7: Draw uniform number 𝑢 ∼  (0, 1)
8: if 𝑢 < 𝛼𝑘 then
9: Accept proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 ′𝑘
10: else
11: Reject proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 (𝑡)𝑘
12: end if
13: end for
14: end for

One of the strict requirements of this method is the minimum number of

walkers to be 𝐷 + 1 for it to be ergodic and avoid the risk of walkers getting
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trapped in some hyper–plane of lower than𝐷 dimensions. Practically, the ac-

tual number of walkers required is much larger as it determines the plethora

of possible new directions along which updates take place in each iteration.

In this sense, the initial positions of the walkers and the number of them

are the only free hyperparameters of this method. A great benefit of this

method is that it is affine–invariant, that is, its performance is insensitive to

any linear correlations between the parameters of the target distribution. As

the astronomical community has witnessed during the past few years, this

offers a great advantage over other methods.

7.3 differential evolution

Another ensemble method in the spirit of the stretch move is the differential
evolution MCMC (Ter Braak, 2006; Ter Braak & Vrugt, 2008). Unlike the

stretch move that requires another single walker to act as an anchor point for
a proposal, differential evolution involves two. We will discuss shortly how

this difference can affect the performance and alter the characteristics of the

method.
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Figure 7.3: Illustration of the differential evolution Monte Carlo. The selected

walker 𝜃𝑘 is moved to its new position 𝜃 ′
𝑘 parallel to the line defined

by 𝜃𝑖 and 𝜃𝑗 . The latter are two walkers that are uniformly selected

from the rest of the ensemble (i.e. excluding 𝜃𝑘).



An update of the ensemble works as follows: the algorithm performs a

loop over the 𝐾 walkers updating each one in turn. Assuming that the cur-

rent walker to be updated is 𝜃𝑘 , the algorithm uniformly selects two walkers

(without replacement), 𝜃𝑖 and 𝜃𝑗 , from the complementary ensemble 𝑆−𝑘 =
{𝜃 (𝑡)1 ,… , 𝜃 (𝑡)𝑘−1, 𝜃

(𝑡−1)
𝑘+1 ,… , 𝜃 (𝑡−1)𝐾 } that excludes 𝜃𝑘 . The vector 𝜃𝑖 − 𝜃𝑗 connecting

the two auxiliary walkers defines the direction along which a move is pro-

posed. The move consists of a proposal of the form

𝜃 ′𝑘 = 𝜃𝑘 + 𝛾 × (𝜃𝑖 − 𝜃𝑗) + 𝜖 , (7.7)

where 𝛾 is a non–zero scaling factor and 𝜖 ∼  (0, 𝜎2) is some optional Gaus-

sian noise. The value of 𝛾 determines the scale of the proposal. Its default

value is often set to 𝛾 = 2.38/
√
2𝐷 which results in the optimal acceptance

rate (i.e. 23.4%) for normal target distributions. In practice, one can adapt

𝛾 using some diminishing adaptation scheme during the run. The proposed

update of equation 7.7 is then accepted with Metropolis acceptance probabil-

ity

𝛼(𝜃 ′, 𝜃) = min(1,
𝑝(𝜃 ′)
𝑝(𝜃) )

. (7.8)

Algorithm 11 Differential evolution

Input: initial state for the ensemble 𝜃 (1) = (𝜃 (1)1 ,… , 𝜃 (1)𝐾 ), (unnormalised) tar-

get density 𝑓 (𝜃) ∝ 𝑝(𝜃), proposal scale parameter (e.g. 𝛾 = 2.38/
√
2𝐷),

optional Gaussian noise standard deviation (e.g. 𝜎 = 10−3), and number

of iterations 𝑁
Output: Markov chain 𝜃1,… , 𝜃𝑁 that has 𝑝(𝜃) as its equilibrium distribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐾 do
3: Draw walkers 𝜃𝑖 and 𝜃𝑗 without replacement from the complemen-

tary ensemble 𝑆−𝑘 =
{
𝜃 (𝑡+1)1 ,… , 𝜃 (𝑡+1)𝑘−1 , 𝜃

(𝑡)
𝑘+1,… , 𝜃 (𝑡)𝐾

}

4: Draw random noise 𝜖 ∼  (0, 𝜎2)
5: Compute proposed state 𝜃 ′𝑘 ← 𝜃𝑘 + 𝛾 (𝜃𝑖 − 𝜃𝑗) + 𝜖
6: Compute acceptance probability 𝛼𝑘 = min(1, 𝑓 (𝜃

′
𝑘 )/𝑓 (𝜃

(𝑡)
𝑘 ))

7: Draw uniform number 𝑢 ∼  (0, 1)
8: if 𝑢 < 𝛼𝑘 then
9: Accept proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 ′𝑘
10: else
11: Reject proposed state and set 𝜃 (𝑡+1)𝑘 ← 𝜃 (𝑡)𝑘
12: end if
13: end for
14: end for
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The advantage of differential evolution over the stretch moves comes down

to the flexibility of their proposals. The direction along which a walker

moves in the context of the stretch moves is determined by a single walker.

This means that at any given iteration, the number of equally possible direc-

tions is 𝐾 − 1. On the other hand, differential evolution moves each walker

along a direction defined by two walkers. This implies that the total number

of possible directions is given by the binomial combination (𝐾−12 ). The lat-

ter increases much faster with the number size of the ensemble 𝐾 than the

former, offering a larger variety of possible trajectories for the walkers. In

other words, differential evolution is expected to perform better even with a

lower number of walkers.

7.4 parallel tempering

So far we have only discussed ensemble methods that target a trivial product

density given by the product of 𝐾 copies of the target distribution as shown

in equation 7.1. The main rationale for attempting to do this was to reduce

the tuning requirements of MCMC. If we focus on addressing the challenge

of multimodality, that is, the existence of multiple peaks in the target distri-

bution, then we have to introduce a different product density as the extended

target distribution.

One such choice is,

𝑝∗ ({𝜃𝑘}𝐾𝑘=1) =
𝐾
∏
𝑘=1

𝑝𝑘(𝜃𝑘) , (7.9)

where

𝑝𝑘(𝜃𝑘) ∝ 𝑝𝛽𝑘 (𝑑 |𝜃,)𝑝(𝜃 |) , (7.10)

is the annealed or tempered posterior that offers a simple interpolation be-

tween the prior 𝑝(𝜃 |) and the unnormalised posterior density 𝑝(𝑑 |𝜃,)
𝑝(𝜃 |) for different monotonically–increasing values of 𝛽𝑘 ∈ [0, 1]. In the

limit that 𝛽𝑘 = 1 for all values of 𝑘, equation 7.9 reduces to the usual product

density of equation 7.1.

The method of parallel tempering (PT) (Earl & Deem, 2005), also known as

replica exchange Monte Carlo (REMC) (Hukushima & Nemoto, 1996; Swend-

sen & J.-S. Wang, 1986) or Metropolis–coupled Markov chain Monte Carlo
(MC3) (Geyer, 1991), relies on 𝐾 parallel Markov chains, each one target-

ing a different tempered density. The 𝛽𝑘 values are usually chosen a priori
using a heuristic rule (e.g. 𝛽𝑘 = (𝑘 − 1)3/(𝐾 − 1)3), or are set adaptively during
the run using some diminishing adaptation scheme. The choice of MCMC

method used for each different 𝛽𝑘 is completely arbitrary and it can be any-

thing from simple Random–walk Metropolis to Hamiltonian Monte Carlo or

even an ensemble MCMC method.
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Figure 7.4: Illustration of the gradual tempering performed in the posterior distri-

bution. The prior distribution corresponds to 𝛽 → 0 and the posterior

is recovered as 𝛽 → 1.

So far, PT might look very similar to a parallel version of the sequential

simulated annealing method in which 𝛽𝑘 = 1/𝑇𝑘 has the role of the inverse

temperature. The crucial difference that makes PT so powerful is the fact

that one can also perform between–chain exchange moves. Either periodically
(e.g. once every 10 steps) or randomly (e.g. with probability 10%) a swap can
take place between two states 𝜃𝑖 and 𝜃𝑗 that belong to different tempered

posteriors (i.e. 𝛽𝑖 ≠ 𝛽𝑗). The reason that exchange/swap moves are desirable

is that they enable the transfer of information from states of low 𝛽 to those

of higher 𝛽 .

To understand how to perform a swap in practice let us consider the ex-

tended state,

{𝜃𝑘}𝐾𝑘=1 = {𝜃1,… , 𝜃𝑖 ,… , 𝜃𝑗 ,… , 𝜃𝐾} , (7.11)

prior to the swap, where 𝜃𝑖 and 𝜃𝑗 are the two states that wewant to exchange.
This means that the proposed new state will be,

{𝜃𝑘}𝐾𝑘=1 = {𝜃1,… , 𝜃𝑗 ,… , 𝜃𝑖 ,… , 𝜃𝐾} . (7.12)
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Figure 7.5: Illustration of the parallel tempering swaps performed between adja-

cent temperature levels.

Notice that the rest of the states, with the exception of 𝜃𝑖 and 𝜃𝑗 , are left

unaffected by this exchange proposal. The Metropolis acceptance probability
for this proposal is,

𝛼𝑖𝑗 = min
(
1,
𝑝∗ ({𝜃𝑘}𝐾𝑘=1)
𝑝∗ ({𝜃𝑘}𝐾𝑘=1))

= min(1,
𝑝𝑖(𝜃𝑗)𝑝𝑗(𝜃𝑖)
𝑝𝑖(𝜃𝑖)𝑝𝑗(𝜃𝑗))

= min(1,
𝑝𝛽𝑖 (𝑑 |𝜃𝑗 ,)𝑝(𝜃𝑗 |)𝑝𝛽𝑗 (𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)
𝑝𝛽𝑖 (𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)𝑝𝛽𝑗 (𝑑 |𝜃𝑗 ,)𝑝(𝜃𝑗 |))

= min(1,
𝑝𝛽𝑖 (𝑑 |𝜃𝑗 ,)𝑝𝛽𝑗 (𝑑 |𝜃𝑖 ,)
𝑝𝛽𝑖 (𝑑 |𝜃𝑖 ,)𝑝𝛽𝑗 (𝑑 |𝜃𝑗 ,))

= min
[
1,(

𝑝(𝑑 |𝜃𝑖 ,)
𝑝(𝑑 |𝜃𝑗 ,))

(𝛽𝑗−𝛽𝑖)

]
,

(7.13)

The chains are usually chosen to be in adjacent 𝛽𝑘 levels (i.e. 𝑖 = 𝑗 − 1)
such that the overlap between the typical sets of 𝑝𝑖(𝜃𝑖) and 𝑝𝑗(𝜃𝑗) is large,
leading to high acceptance probabilities. Atchadé et al. (2011) estimated that

the optimal acceptance rate is 23.4%. The exchange updates are typically per-
formed after the local MCMC updates are completed in all 𝛽 levels for a given
iteration. Furthermore, there are different strategies for proposing swaps be-

tween adjacent temperature levels (Lingenheil et al., 2009). One option is to



randomly select a pair of adjacent temperature levels per iteration. Another

strategy involves proposing to swap all adjacent pairs starting from the low-

est or highest 𝛽 level and progressively moving towards the other end of the

ladder. Finally, strategies that involve two steps, for instance, proposing to

swap all even pairs in one iteration and all odd pairs in the next, have also

been suggested in the literature (Lingenheil et al., 2009).

Algorithm 12 Parallel tempering

Input: initial state for the ensemble 𝜃 (1) = (𝜃 (1)1 ,… , 𝜃 (1)𝐾 ), prior probability
density 𝜋 (𝜃) ≡ 𝑝(𝜃 |), likelihood function (𝜃) ≡ 𝑝(𝑑 |𝜃,), temper-

ature ladder (e.g. 𝛽𝑘 = (𝑘 − 1)3/(𝐾 − 1)3), local MCMC kernel 𝜃 ′ ←
(𝜃 ; 𝑓 (𝜃)) (e.g. a single random–walk Metropolis update), and number

of iterations 𝑁
Output: 𝐾 Markov chains that each has 𝑝𝑡 (𝜃) ∝ 𝜋 (𝜃)(𝜃)𝛽𝑘 as its equilib-

rium distribution

1: for 𝑡 = 1 to 𝑁 do
2: for 𝑘 = 1 to 𝐾 do
3: Update state using local MCMC update 𝜃 ′𝑘 ← (𝜃 (𝑡)𝑘 ; 𝜋 (𝜃)(𝜃)𝛽𝑘 )
4: end for
5: Draw random value of 𝑘 uniformly 𝑘 ∼  (1, 𝐾 − 1)

6: Compute acceptance probability 𝛼𝑘 = min
⎛
⎜
⎜
⎝
1,
[
(𝜃

(𝑡+1)
𝑘 )

(𝜃
(𝑡+1)
𝑘+1 )]

𝛽𝑘+1−𝛽𝑘 ⎞
⎟
⎟
⎠

7: Draw uniform number 𝑢 ∼  (0, 1)
8: if 𝑢 < 𝛼𝑘 then
9: Accept proposed swap and set 𝜃 (𝑡+1)𝑘 ← 𝜃 ′𝑘+1 and 𝜃

(𝑡+1)
𝑘+1 ← 𝜃 ′𝑘

10: else
11: Reject proposed swap and set 𝜃 (𝑡+1)𝑘 ← 𝜃 ′𝑘 and 𝜃

(𝑡+1)
𝑘+1 ← 𝜃 ′𝑘+1

12: end if
13: end for
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8 EV IDENCE AND BAYES FACTOR

COMP U TAT ION

There is nothing more deceptive than an obvious fact.

— Arthur Conan Doyle

8.1 naive monte carlo estimator

The simplest estimator for the evidence we can construct is just the expec-

tation value of the likelihood function with respect to the prior distribu-

tion (Hammersley & Handscomb, 1964; Raftery et al., 1991). The, so–called,

Naive Monte Carlo (NMC) estimator can be computed as the sum

𝑝NMC(𝑑 |) =
1
𝑛

𝑛
∑
𝑖=1

𝑝(𝑑 |𝜃𝑖 ,) , with 𝜃𝑖 ∼ 𝑝(𝜃 |) . (8.1)

Although simple and unbiased, this approach can become extremely ineffi-

cient and result in a high variance in higher dimensions as the probability

mass concentrates in the typical set that occupies a negligible fraction of the

prior volume (Newton & Raftery, 1994). For this reason, this technique is

only recommended for low–dimensional problems (i.e. 𝐷 ≤ 3).

8.2 importance sampling estimator

Amore general strategy for the unbiased estimation of the evidence is impor-

tance sampling using samples from an auxiliary distribution 𝑞(𝜃). A simple

estimator can then be constructed as,

𝑝IS(𝑑 |) =
1
𝑛

𝑛
∑
𝑖=1

𝑝(𝜃𝑖 |𝑑,)
𝑞(𝜃𝑖)

, with 𝜃𝑖 ∼ 𝑞(𝜃) . (8.2)

These estimators share the same difficulty as most methods based upon im-

portance sampling, that is, a large overlap between the typical set of the

proposal and posterior distribution must be achieved for the method to be

effective. Constructing effective proposal distributions becomes increasingly

unmanageable as the number of dimensions increases and thus the applica-

tion of this method on its own is limited to low dimensions. Finally, the

importance sampling estimator reduces to the NMC one when the proposal

distribution is chosen to be the prior.
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8.3 harmonic mean estimator

The harmonic mean (HM) estimator is another variation of the importance

sampling estimator in which the posterior is used as the proposal and the

prior as the target distribution (Newton & Raftery, 1994). This suggests the

following estimator,

𝑝HM(𝑑 |) =
1

1
𝑛 ∑

𝑛
𝑖=1

1
𝑝(𝑑 |𝜃𝑖)

, with 𝜃𝑖 ∼ 𝑝(𝜃 |𝑑,) . (8.3)

The possible occurrence of samples with small likelihood value renders the

variance of this estimator infinite (Neal, 2008). This pathology can be ad-

dressed by using a mixture 𝑞(𝜃) = 𝛿𝑝(𝜃 |) + (1 − 𝛿)𝑝(𝜃 |𝑑,) between the

prior and the posterior as the proposal distribution, where 𝛿 is very small

(e.g. 𝛿 = 0.05). The resulting method is then called the stabilised harmonic
mean (SHM) estimator (Newton & Raftery, 1994).

8.4 laplace estimator

As discussed in detail in Section 4.6, for a sufficiently Gaussian target dis-

tribution 𝑝(𝜃) we can use the Laplace approximation, that is, a second or-

der expansion around the mode, to estimate expectation values (Tierney &

Kadane, 1986). Assuming that the target distribution is the unnormalised

posterior 𝑝(𝑑 |𝜃)𝑝(𝜃 |), the Gaussian approximation’s mean is given by,

𝜇 = argmax
𝜃

[𝑝(𝑑 |𝜃,)𝑝(𝜃 |)] , (8.4)

following equation 4.23, and the inverse covariance is given by,

(Σ−1)𝑖𝑗 = −
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
[log 𝑝(𝑑 |𝜃,) + log 𝑝(𝜃 |)] , (8.5)

following equation 4.24. Then, the model evidence is approximated by the

normalising constant of the Gaussian, or in other words,

𝑝𝐿(𝑑 |) = ∫ 𝑒−
1
2 (𝜃−𝜇)

𝑇Σ−1(𝜃−𝜇)𝑑𝜃

= (2𝜋 )𝐷/2 det(Σ)1/2𝑝(𝑑 |𝜃 = 𝜇,)𝑝(𝜃 = 𝜇|) .
(8.6)

As with any method, this result is only as good as the assumptions entering

its calculation. The closer the posterior resembles a normal distribution, the

better the outcome of the Laplace estimator will be.

8.5 bridge sampling

Originally, Meng &Wong (1996) introduced bridge sampling (BS) as a way to
directly estimate the Bayes factor of two models, 1 and 2. However, in



this section we present a version of BS that targets the model evidence of a

single model . BS follows from the basic identity,

1 =
∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝛼(𝜃)𝑞(𝜃)
∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝛼(𝜃)𝑞(𝜃)

, (8.7)

where 𝑞(𝜃) is the proposal distribution and 𝛼(𝜃) is the so–called bridge func-
tion the support of which encompasses that of both the target posterior and

of the proposal distribution.

Multiplying both sides of equation 8.7 with the model evidence 𝑝(𝑑 |)
results in

𝑝(𝑑 |) =
∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝛼(𝜃)𝑞(𝜃)
∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)

𝑝(𝑑 |) 𝛼(𝜃)𝑞(𝜃)

=
∫ 𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝛼(𝜃)𝑞(𝜃)

∫ 𝑝(𝜃 |𝑑,)𝛼(𝜃)𝑞(𝜃)
,

(8.8)

which can be written as,

𝑝(𝑑 |) =
E𝑞(𝜃) [𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝛼(𝜃)]

E𝑝(𝜃 |𝑑,) [𝛼(𝜃)𝑞(𝜃)]
, (8.9)

in terms of expectation values. The model evidence can then be approxi-

mated as,

𝑝(𝑑 |) =
1
𝑛2 ∑

𝑛2
𝑖=1 𝑝(𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)𝛼(𝜃𝑖)

1
𝑛1 ∑

𝑛1
𝑗=1 𝛼(𝜃 ∗𝑗 )𝑞(𝜃 ∗𝑗 )

, (8.10)

where 𝜃𝑖 are samples from the proposal distribution,

𝜃𝑖 ∼ 𝑞(𝜃) , (8.11)

and 𝜃 ∗𝑗 are samples from the posterior distribution,

𝜃 ∗𝑗 ∼ 𝑝(𝜃 |𝑑,) . (8.12)

It is clear from the above discussion that BS relies on samples from both

the proposal distribution 𝑞(𝜃), which plays the role of an importance density,
and the posterior distribution 𝑝(𝜃 |𝑑,). Often, the proposal distribution is

some distribution that is easy to sample from and its typical set has a large
overlap with the one of the posterior distribution. A common proposal used

in practice is a normal distributionwith its first twomomentsmatching those

of the posterior distribution.

Although highly arbitrary, the choice of the bridge function 𝛼(𝜃) can have a
significant impact on the precision of the method for a given proposal distri-

bution. For instance, setting 𝛼(𝜃) = [𝑞(𝜃)]−1 the BS estimator reduces to the

naiveMonte Carlo estimator, whereas setting 𝛼(𝜃) = [𝑝(𝑑 |𝜃,)𝑝(𝜃 |)𝑞(𝜃)]−1

leads to the harmonic mean estimator. Meng &Wong (1996) showed that the
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optimal bridge function, that is, the one that minimises the mean–square–

error, is,

𝛼(𝜃) =
𝐶

𝑠1𝑝(𝑑 |𝜃,)𝑝(𝜃 |) + 𝑠2𝑝(𝑑 |)𝑞(𝜃)
, (8.13)

where 𝑠1 = 𝑛1/(𝑛1 + 𝑛2) and 𝑠2 = 𝑛2/(𝑛1 + 𝑛2) and 𝐶 is a constant that cancels

out and its value does not affect the outcome in any way. The bridge function
of equation 8.13 depends on the model evidence 𝑝(𝑑 |), the same quantity

that we are trying to approximate. We can resolve this issue by employing

an iterative scheme,

𝑝(𝑡+1)BS (𝑑 |) =

1
𝑛2 ∑

𝑛2
𝑖=1

𝑝(𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)
𝑠1𝑝(𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)+𝑠2𝑝

(𝑡)
BS(𝑑 |)𝑞(𝜃𝑖)

1
𝑛1 ∑

𝑛1
𝑗=1

𝑞(𝜃 ∗𝑗 )

𝑠1𝑝(𝑑 |𝜃 ∗𝑗 ,)𝑝(𝜃 ∗𝑗 |)+𝑠2𝑝
(𝑡)
BS(𝑑 |)𝑞(𝜃 ∗𝑗 )

, (8.14)

starting from some initial guess of the value of the model evidence 𝑝(0)BS(𝑑 |)
and keep updating it until the estimate has converged for some arbitrary tol-

erance level. Rearranging the terms on the right hand side, the aforemen-

tioned estimator can be written in the simpler form

𝑝(𝑡+1)BS (𝑑 |) =

1
𝑛2 ∑

𝑛2
𝑖=1

𝓁2,𝑖
𝑠1𝓁2,𝑖+𝑠2𝑝

(𝑡)
BS(𝑑 |)

1
𝑛1 ∑

𝑛1
𝑗=1

1
𝑠1𝓁1,𝑗+𝑠2𝑝

(𝑡)
BS(𝑑 |)

, (8.15)

where we have defined

𝓁1,𝑗 =
𝑝(𝑑 |𝜃 ∗𝑗 ,)𝑝(𝜃 ∗𝑗 |)

𝑞(𝜃 ∗𝑗 )
, (8.16)

and

𝓁2,𝑖 =
𝑝(𝑑 |𝜃𝑖 ,)𝑝(𝜃𝑖 |)

𝑞(𝜃𝑖)
. (8.17)

Furthermore, the numerical stability of equation 8.15 can be improved and

overflow issues avoided if we define

𝑝(𝑡)BS(𝑑 |) = 𝑟 (𝑡) exp(𝓁 ∗) , (8.18)

and use the iterative formula

𝑟 (𝑡+1) =
1
𝑛2 ∑

𝑛2
𝑖=1

exp[log(𝓁2,𝑖)−𝓁 ∗]
𝑠1 exp[log(𝓁2,𝑖)−𝓁 ∗]+𝑠2𝑟 (𝑡)

1
𝑛1 ∑

𝑛1
𝑗=1

1
𝑠1 exp[log(𝓁1,𝑗 )−𝓁 ∗]+𝑠2𝑟 (𝑡)

, (8.19)

where 𝓁 ∗ is a constant that we can choose in order to make the sums numer-

ically tractable, for instance 𝓁 ∗ = median[log(𝓁1,𝑗)].
Compared to other methods such as importance sampling or the harmonic

mean estimator, BS estimates are more robust in cases in which the overlap

between the typical sets of the proposal and posterior distribution is far from

perfect.



8.6 thermodynamic integration

A large body of work in statistical physics is concerned with methods for

the estimation of normalising constants and partition functions in particular.

The method of thermodynamic integration (TI)was developed for exactly this
purpose (Gelman & Meng, 1998). Friel & Pettitt (2008) studied the particular

case inwhich the normalising constant that is estimated using TI is themodel

evidence. To this end, they introduced the notion of the power posterior,

𝑝(𝜃 |𝑑, 𝛽,) ∝ 𝑝𝛽 (𝑑 |𝜃,)𝑝(𝜃 |) , (8.20)

in which 𝛽 is an auxiliary variable in the interval [0, 1]. By construction, the

normalising constant of the power posterior is simply,

𝑝(𝑑 |𝛽,) = ∫ 𝑝𝛽 (𝑑 |𝜃,)𝑝(𝜃 |)𝑑𝜃 , (8.21)

where 𝑝(𝑑 |𝛽 = 1,) is the model evidence and 𝑝(𝑑 |𝛽 = 0,) is the integral
over the prior which is simply equal to 1. Furthermore, the logarithm of the

model evidence is,

log 𝑝(𝑑 |) = log [
𝑝(𝑑 |𝛽 = 1,)
𝑝(𝑑 |𝛽 = 0,)]

= ∫
1

0
E𝑝(𝜃 |𝑑,𝛽,)[log 𝑝(𝑑 |𝜃, 𝛽,)]𝑑𝛽 ,

(8.22)

that is, the integral over 𝛽 of the expectation value of the likelihood with

respect to the posterior for each value of 𝛽 . To prove the above identity we

first need to notice that,

𝑑 log 𝑝(𝑑 |𝛽,)
𝑑𝛽

=
1

𝑝(𝑑 |𝛽,)
×
𝑑𝑝(𝑑 |𝛽,)

𝑑𝛽

=
1

𝑝(𝑑 |𝛽,) ∫
𝑑
𝑑𝛽

𝑝𝛽 (𝑑 |𝜃,)𝑝(𝜃 |)𝑑𝜃

= ∫ log 𝑝(𝑑 |𝜃,)
𝑝𝛽 (𝑑 |𝜃,)𝑝(𝜃 |)

𝑝(𝑑 |𝛽,)
𝑑𝜃

= ∫ log 𝑝(𝑑 |𝜃,)𝑝(𝜃 |𝑑, 𝛽,)𝑑𝜃

= E𝑝(𝜃 |𝑑,𝛽,) [log 𝑝(𝑑 |𝜃,)] ,

(8.23)

Integrating both sides with respect to 𝛽 leads to equation 8.22 and completes

the proof.

Using equation 8.22 to estimate the model evidence often requires the dis-

cretisation of the integral. A sequence 0 = 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚 = 1 must

be chosen a priori or based on diminishing adaptation scheme. The model

evidence can then be approximated using the trapezoidal rule,

𝑝TI(𝑑 |) =
𝑚
∑
𝑖=1

(𝛽𝑖+1 − 𝛽𝑖)
𝐸𝑖 + 𝐸𝑖+1

2
, (8.24)
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where,

𝐸𝑖 = E𝑝(𝜃 |𝑑,𝛽𝑖 ,) [log 𝑝(𝑑 |𝜃,)] , (8.25)

is the expected likelihood at 𝛽𝑖 .
There are two sources of error in the above approximation. The first one

is the Monte Carlo error that originates from the estimation of equation 8.25

using a finite number of samples. The second type has to do with the choice

of the discretisation of 𝛽 . Calderhead & Girolami (2009) showed that the

discretisation error depends on theKullback–Leibler (KL) divergence between
subsequent densities 𝑝(𝜃 |𝑑, 𝛽𝑖 ,) and 𝑝(𝜃 |𝑑, 𝛽𝑖+1,). This means that the

optimal discretisation sequence of 𝛽 values is the one minimising the KL

divergence between subsequent power posteriors. Of course, knowing the

optimal scheme is a priori hardly ever possible and thus we must rely on ad
hoc choices (e.g. 𝛽𝑖 = (𝑖 − 1)3/(𝑚 − 1)3) or diminishing adaptation strategies.

Thermodynamic integration can be combined with many different MCMC

methods in order to estimate the model evidence. Perhaps the simplest one is

to run𝑚 independent chains, either in parallel or serially, and then estimate

the evidence using equation 8.24 where the expected likelihood of each dis-

crete 𝛽 value is computedwith equation 8.25 for each chain. Furthermore, the

chains do not even have to be independent for this method to work. Lastly,

a parallel tempering approach can be followed as it is often done in practice.

8.7 annealed importance sampling

Annealed importance sampling (AIS) is another method that relies on a se-

quence of annealed or tempered distributions in order to construct an im-

portance sampling estimator for the model evidence (Neal, 2001), similarly

to simulated annealing and parallel tempering.
The basic idea is to use MCMC transitions in order to push a collection of

𝑛 particles through a series of 𝑚 intermediate distributions

𝑝(𝜃 |𝑑, 𝛽,) ∝ 𝑝𝛽 (𝑑 |𝜃,)𝑝(𝜃 |) , (8.26)

where 0 = 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚 = 1, connecting the prior for 𝛽1 = 0 to the

posterior for 𝛽𝑚 = 1. The particles are initialised by drawing samples from

the prior

𝜃 (1)𝑖 ∼ 𝑝(𝜃 |) , (8.27)

and assigned (unnormalised) importance weights

𝑤(1)
𝑖 = 1 , (8.28)

for 𝑖 ∈ {1,… , 𝑛} the particle index.
A number of 𝑁 MCMC steps is then performed for each particle before

the value of 𝛽 is updated to the next value in the predefined sequence. The



number 𝑁 of MCMC steps is chosen such that the Markov chains defined by

the particle trajectories have enough time to reach the stationary distribu-

tion. The critical difference between AIS and simulated annealing is that the

associated importance weights 𝑤𝑖 are updated during the run every time we

move from one intermediate distribution to the next,

𝑤(𝑡+1)
𝑖 = 𝑤(𝑡)

𝑖 ×
𝑝(𝜃𝑖 |𝑑, 𝛽𝑡+1,)
𝑝(𝜃𝑖 |𝑑, 𝛽𝑡 ,)

= 𝑤(𝑡)
𝑖 ×

𝑝𝛽𝑡+1(𝑑 |𝜃𝑖 ,)
𝑝𝛽𝑡 (𝑑 |𝜃𝑖 ,)

. (8.29)

In practice, the logarithm of the weights is used in order to avoid numerical

issues. Once the final distribution (i.e. the posterior) is reached and the par-

ticle weights are updated accordingly, the model evidence can be estimated

as

𝑝AIS(𝑑 |) =
1
𝑛

𝑛
∑
𝑖=1

𝑤(𝑚)
𝑖 . (8.30)

Furthermore, the samples 𝜃 (𝑚)
𝑖 combined with their respective weights 𝑤(𝑚)

𝑖
can be used to compute arbitrary expectation values

E𝑝(𝜃 |𝑑,) [𝑓 (𝜃)] =
∑𝑛
𝑖=1 𝑤

(𝑚)
𝑖 𝑓 (𝜃

(𝑚)
𝑖 )

∑𝑛
𝑖=1 𝑤

(𝑚)
𝑖

. (8.31)

Assuming that the annealing process is slow enough (i.e. large number 𝑚
of 𝛽 levels and number 𝑁 of MCMC steps) and a large enough collection of

particles is used, then AIS yields unbiased estimates of the model evidence

and weighted posterior samples, even in high dimensions. In the limit that

the number of MCMC steps 𝑁 goes to zero, the AIS estimator reduces to the

usual importance sampling estimator.

8.8 savage–dickey density ratio

Suppose now that we have two models or hypotheses and their respective

parameters, 0 ∶ 𝜃 and 1 ∶ 𝜃, 𝜙, such that 0 is nested inside 1.

This means that the more complex model, 1, is reduced to the simpler

one, 0, for some specific choice of one or more of its parameters, 𝜙 = 𝜙0.
This specific parameter choice is often called a point–null hypothesis as it is
associated with zero probability mass in the context of the1 model.

Evaluating the plausibility of this hypothesis can be done by computing

the Bayes factor between the two models. The Savage–Dickey density ratio
(SDDR) is a method that aims to do exactly this that was introduced by J. M.

Dickey & Lientz (1970), J. M. Dickey (1971), Gunel & J. Dickey (1974), and

J. M. Dickey (1976) who in turn attributed the origin of themethod to Leonard
Jimmie Savage.

Although the SDDR can be only applied to nested models, it has the ad-

vantage that it is simple to compute, given some posterior samples, without
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making any assumptions about the Gaussianity of the posterior distribution.

In particular, the Bayes factor of 0 over1 is simply,

BF01 =
𝑝(𝑑 |0)
𝑝(𝑑 |1)

=
𝑝(𝜙 = 𝜙0|𝑑,1)
𝑝(𝜙 = 𝜙0|1)

, (8.32)

where the numerator of the right–hand–side ratio is just the marginal pos-
terior of 𝜙 for 1 evaluated at 𝜙 = 𝜙0, and the denominator is the prior of

𝜙 for 1 evaluated at 𝜙 = 𝜙0. In other words, the Bayes factor is simply the

marginal posterior to prior ratio for1 evaluated at 𝜙 = 𝜙0. This means that

only the parameters 𝜙 determine the value of the Bayes factor, and the nui-

sance parameters 𝜃 , that are common among the two models, are irrelevant.

A schematic representation of SDDR is depicted in Figure 8.1.
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Figure 8.1: The Savage–Dickey density ratio expresses the Bayes factor BF01 as the
ratio of marginal posterior to the prior density at the point 𝜙0 in which

model 𝑀1 reduces to 𝑀0.

The validity of this method relies on two conditions. First, that the likeli-

hood function of1 has to reduce to that of0

𝑝(𝑑 |𝜃, 𝜙 = 𝜙0,1) = 𝑝(𝑑 |𝜃,0) , (8.33)

and the same must be true for the prior

𝑝(𝜃 |𝜙 = 𝜙0,1) = 𝑝(𝜃 |0) . (8.34)

The condition of equation 8.34 is satisfied by separable priors,

𝑝(𝜃, 𝜙|1) = 𝑝(𝜃 |1)𝑝(𝜙|1) . (8.35)



The proof of equation 8.32 is straightforward, starting with,

𝑝(𝑑 |0) = ∫ 𝑝(𝑑 |𝜃,0)𝑝(𝜃 |0)𝑑𝜃

= ∫ 𝑝(𝑑 |𝜃, 𝜙 = 𝜙0,1)𝑝(𝜃 |𝜙 = 𝜙01)𝑑𝜃

= 𝑝(𝑑 |𝜙 = 𝜙01) ,

(8.36)

in which we used the fact that0 is nested in1 for 𝜙 = 𝜙0. The next step
is simply to employ Bayes’ theorem

𝑝(𝜙 = 𝜙0|𝑑,1) =
𝑝(𝑑 |𝜙 = 𝜙01)𝑝(𝜙 = 𝜙0|1)

𝑝(𝑑 |1)
, (8.37)

and solve for the ratio of model evidences by first substituting equation 8.36

into it to compete the proof.

Practical use of equation 8.32 requires the evaluation the marginal pos-

terior of 1 at 𝜙 = 𝜙0. As the closed–form expression for the marginal

posterior is rarely available, one can use samples from posterior (e.g. gener-

ated using MCMC) to create a density histogram for 𝜙. Even better, Kernel
Density Estimation (KDE) (Silverman, 2018) can be used to approximate the

marginal posterior from samples as,

𝑝KDE(𝜙|𝑑,1) =
1
𝑛

𝑛
∑
𝑖=1

𝐾ℎ (𝜙 − 𝜙𝑖) , (8.38)

where 𝐾ℎ is the kernel and ℎ is the bandwidth, a parameter that controls

the smoothing. The kernel is generally a non–negative function, and most

commonly it is chosen to be a simple Gaussian,

𝐾ℎ(𝜙) =
1

(2𝜋 )𝐷/2ℎ𝐷
𝑒−

𝜙2

2ℎ2 , (8.39)

where 𝐷 is the dimensionality of 𝜙 (i.e. the number of elements of the 𝜙
vector). Finally, the value of ℎ can either be determined on the basis of trial–

and–error, or heuristics such as,

ℎ = 1.06�̂�𝑛−1/5 , (8.40)

for the 1–D case where �̂� is the standard deviation of the samples (Silverman,

2018).
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9 AD VANCED METHODS

Look on my works, ye Mighty, and despair!

— Percy Shelley, Ozymandias

This chapter introduces two advanced Monte Carlo methods, Sequential
Monte Carlo and Nested sampling, which combine different previously intro-

duced methods, such as MCMC and importance sampling, in order to pro-

vide samples from posterior distributions and estimate the model evidence.

What distinguishes those twomethods from all the previous ones introduced

in this thesis, is their level of complexity and their reliance on multiple indi-

vidual algorithms as their constituent parts.

9.1 sequential monte carlo

Sequential Monte Carlo (SMC) is, from a physics point of view, conceptually

related to the notion of thermodynamic reversibility. For a physical process
starting from a state 𝐴 and ending in a state 𝐵, to be thermodynamically

reversible, the transition has to be slow enough such that each intermediate

state of the system is approximately in equilibrium.

9.1.1 Background

The basic idea of SMC is to slowly guide a population of 𝑛 particles {𝜃 (𝑡)𝑖 }𝑛𝑖=1,
drawn from a known probability distribution 𝜌(𝜃), through a series of inter-

mediate distributions which create a path from 𝜌(𝜃) to the target distribu-

tion of interest 𝑝(𝜃) (Liu & R. Chen, 1998). In the context of SMC, the rate

of this transition is governed by the number of intermediate distributions

bridging 𝜌(𝜃) to 𝑝(𝜃). Just like in annealed importance sampling (AIS), SMC

relies on a number of MCMC steps performed in each intermediate step by

every particle. This aims to equilibrate the particles by letting them reach the

equilibrium distribution of each step. Furthermore, when transitioning from

an intermediate distribution to the next, the particle distribution is adjusted

using importance sampling. This guarantees that the particle distribution at

any stage is the correct equilibrium distribution.

The main difference between SMC and AIS is the use of resampling in

the case of SMC. During the run, the particle distribution might experience
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weight degeneracy, that is, only a few of the particles have non–negligible im-

portance weights with the rest of them being vanishingly small. This high

weight–variance can substantially affect any expectation values. In order to

address this issue, SMC performs regular resampling steps, in which the par-

ticle distribution is resampled according to their weights, and the importance

weights are re-initialised to be equal.

SMC methods are particularly suited for challenging target distributions

which exhibit multiple modes. Furthermore, modifications of the main algo-

rithm that we will present here can also be used for tasks of online learning
in which the data arrive sequentially. These algorithms are most often called

by the name of particle filters (Naesseth et al., 2019).

9.1.2 Bridging the prior and the posterior

A common way to construct such a sequence of intermediate distributions

that bridge a known density 𝜌(𝜃) to the target density 𝑝(𝜃) is to interpolate

between the two densities

𝑝𝑡 (𝜃) ∝ 𝜌1−𝛽𝑡 (𝜃)𝑝𝛽𝑡 (𝜃) , 𝑡 = 1,… , 𝑚 , (9.1)

where 𝛽𝑡 is a temperature annealing ladder, such that

0 = 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑚 = 1 . (9.2)

In the Bayesian context, a natural choice is to set the prior as the auxil-

iary density 𝜌(𝜃) = 𝑝(𝜃 |) and the posterior as the target density 𝑝(𝜃) =
𝑝(𝜃 |𝑑,). Equation 9.1 then reduces to the usual annealed or tempered in-

terpolation

𝑝𝑡 (𝜃) ∝ 𝑝𝛽𝑡 (𝑑 |𝜃)𝑝(𝜃 |) . (9.3)

Although we will focus on this case, the algorithm is valid for any pair of

distributions as long as the support of the auxiliary density encompasses

that of the target.

9.1.3 Correction – Selection – Mutation

Given the initial positions of the particles {𝜃 (1)𝑖 }𝑛𝑖=1 drawn from the prior

distribution, as well as the initial weights {𝑊 (1)
𝑖 }𝑛𝑖=1 = 1/𝑛, SMC proceeds by

the sequential application of the following three steps, selection, mutation,

and correction, until the posterior density is reached. The procedure that

takes place in a single iteration 𝑡 is illustrated in Figure 9.1 and involves the

steps:



correction / reweighting

selection / resampling

mutation / propagation

correction / reweighting

Figure 9.1: Illustration of the Sequential Monte Carlo algorithmwith its three funda-

mental steps. During the correction step the particles are reweighted to

represent the next probability distribution. Selection removes the parti-

cles with the smaller important weights andmultiplies those with larger

weights. Finally, mutation diversifies the particles by moving them.

1. Correction / reweighting – During this stage, the weights of the par-

ticles are updated according to

𝑤(𝑡)
𝑖 = 𝑊 (𝑡−1)

𝑖 ×
𝑝𝑡 (𝜃 (𝑡−1)𝑖 )
𝑝𝑡−1(𝜃 (𝑡−1)𝑖 )

= 𝑊 (𝑡−1)
𝑖 × [𝑝(𝑑 |𝜃

(𝑡−1)
𝑖 ,)]

𝛽𝑡−𝛽𝑡−1
, (9.4)

where with 𝑤𝑖 we denote the unnormalised weights and with 𝑊𝑖 =
𝑤𝑖/∑𝑛

𝑖=1 𝑤𝑖 the normalised ones.

The reweighing step accounts and corrects for any deviations of the

particle distribution from the typical set of the target 𝑝𝑡 . The ratio of

the normalisation constants is estimated as

𝑡
𝑡−1

=
𝑛
∑
𝑖=1

𝑤(𝑡)
𝑖 . (9.5)

Assuming the density for 𝑡 = 1 corresponds to the prior for which

1 = 1, equation 9.5 will eventually lead to the estimation of the model

evidence 𝑚 = 𝑝(𝑑 |).

2. Selection / resampling – The particle positions {𝜃 (𝑡−1)𝑖 }𝑛𝑖=1 are resam-

pled according to their weights {𝑊 (𝑡−1)
𝑖 }𝑛𝑖=1. The weights are then set

again to be equal, 𝑊 (𝑡−1)
𝑖 = 1/𝑛. Their new, resampled, positions are

denoted as {𝜃 (𝑡−1)𝑖 }𝑛𝑖=1. Particles with small weight values are removed

and those with large importance weights are multiplied.

Resampling can be done using simplemultinomial resampling, inwhich
we draw 𝑛 new particles, with replacement, with probabilities given by

their weights, or using more advanced schemes characterised by lower
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variance (Li et al., 2015). This process can be performed in each itera-

tion, or only when some criterion is triggered (e.g. when the effective

sample size of the weights drops below a threshold).

Finally, cautionmust be takenwhen applying resampling too frequently.

This could lead to the phenomenon ofweight impoverishment in which
there is no diversity between the particle positions. Fortunately, weight

impoverishment is also reduced by the next step.

3. Mutation / propagation – Finally, the population of particles {𝜃 (𝑡−1)𝑖 }𝑛𝑖=1
is updated and the particles move to their new positions {𝜃 (𝑡)𝑖 }𝑛𝑖=1 by
performing a number of MCMC steps targeting the density 𝑝𝑡 (𝜃).

The purpose of this step is to diversify the particles and allow their

distribution to approach the stationary distribution. An advantage of

SMC is that the particle distribution from the previous iteration can

be used to construct efficient proposal distributions for MCMC for the

current density. Furthermore, as 𝑛 particles are updated at once, this

step can be done in parallel. Any MCMC method can be used in this

step and there is no requirement for the final/new positions to be un-

correlated from the initial ones, although in practice this helps reduce

the variance of the estimates.

A common approach is to use the particle covariance Σ(𝑡−1) to construct
a normal proposal distribution 𝑞(𝜃 ′|𝜃) =  (𝜃 ′|𝜃,Σ(𝑡−1)).

Once all three steps are completed, the value of 𝛽 is updated and the pro-

cess is repeated again until 𝛽 reaches the value of one. The names of those

three steps are inspired by natural selection and evolutionary programming.

The reason is the apparent analogywith genetic algorithms (Koza et al., 1994).

More specifically, reweighting, resampling and propagation have the roles of

correction, selection and mutation in genetic algorithms, in which the parti-

cle positions are the genes and the importance weights play the role of the

so–called fitness. A critical difference with most genetic algorithms is the

fact that SMC solves a sampling task, not an optimisation one, and thus the

solution is represented by the distribution of the particles and not by any

particle individually.

9.1.4 Effective sample size

A common measure of the quality of the importance weights of the particles,

at any iteration of the SMC run, is the effective sample size (ESS)

ESS𝑡 =
E𝑝𝑡 [𝑤(𝑡)]

2

E𝑝𝑡 [(𝑤
(𝑡))

2
]
. (9.6)



Algorithm 13 Sequential Monte Carlo

Input: initial state for the ensemble 𝜃 (1) = (𝜃 (1)1 ,… , 𝜃 (1)𝐾 ), prior probability
density 𝜋 (𝜃) ≡ 𝑝(𝜃 |), likelihood function(𝜃) ≡ 𝑝(𝑑 |𝜃,), and a local
MCMCkernel 𝜃 ′ ← (𝜃 ; 𝑓 (𝜃)) (e.g. 𝑁 steps of random–walkMetropolis

update)

Output: Posterior samples and estimate of the model evidence 
1: Initialise temperature parameter 𝛽1 = 1
2: Initialise estimate of evidence  = 1
3: for 𝑖 = 1 to 𝑛 do
4: Draw particle positions from the prior 𝜃 (1)𝑖 ∼ 𝜋 (𝜃)
5: Initialise particle weights𝑊 (1)

𝑖 = 1/𝑛
6: end for
7: while 𝛽𝑡 ≠ 1 do
8: Update iteration index 𝑡 ← 𝑡 + 1

9: Set temperature 𝛽𝑡 solving (∑
𝑛
𝑖=1 𝑤

(𝑡)
𝑖 (𝛽𝑡 ))

2
/∑𝑛

𝑖=1 (𝑤
(𝑡)
𝑖 (𝛽𝑡 ))

2
=

𝛼 × 𝑛 where the importance weights are computed as 𝑤(𝑡)
𝑖 ←

𝑊 (𝑡−1)
𝑖 (𝜃 (𝑡−1)𝑖 )𝛽𝑡−𝛽𝑡−1

10: Update evidence estimate  ←  × 𝑛−1∑𝑛
𝑖=1 𝑤

(𝑡)
𝑖

11:

{
𝜃 (𝑡−1)𝑖

}𝑛

𝑖=1
← resample

{
𝜃 (𝑡−1)𝑖

}𝑛

𝑖=1
according to

{
𝑤(𝑡)
𝑖

}𝑛

𝑖=1
12: for 𝑖 = 1 to 𝑛 do
13: Reset weights𝑊 (𝑡)

𝑖 ← 1/𝑛
14: end for
15: Update particles using MCMC

{
𝜃 (𝑡)𝑖

}𝑛

𝑖=1
← (

{
𝜃 (𝑡−1)𝑖

}𝑛

𝑖=1
; 𝜋 (𝜃)(𝜃)𝛽𝑡)

16: end while

which can be estimated as:

̂ESS𝑡 =
(∑

𝑛
𝑖=1 𝑤

(𝑡)
𝑖 )

2

∑𝑛
𝑖=1(𝑤

(𝑡)
𝑖 )2

=
1

∑𝑛
𝑖=1(𝑊

(𝑡)
𝑖 )2

. (9.7)

9.1.5 Setting the temperature ladder

A 𝛽 ladder can be specified a priori or determined adaptively during the

run (Gelman & Meng, 1998). In the first case, the resampling step is usually

triggered whenever the ESS drops below a prespecified threshold value (e.g.

50% − 95%). In the latter case, the next value of 𝛽 is chosen adaptively such

that the ESS has an approximately constant fraction 𝛼 (e.g. 50% − 95%) of the
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number of particles 𝑛 throughout the duration of the SMC run. Numerically,

this can be done by solving

[∑
𝑛
𝑖=1 𝑤

(𝑡)
𝑖 (𝛽𝑡 )]

2

∑𝑛
𝑖=1 [𝑤

(𝑡)
𝑖 (𝛽𝑡 )]

2 = 𝛼 × 𝑛 , (9.8)

for the next 𝛽𝑡 such that 𝛽𝑡−1 < 𝛽𝑡 ≤ 1 using, for instance, the bisection
method (Burden et al., 2015).

9.2 nested sampling

Nested sampling (NS), originally developed by Skilling (2004, 2006), is amethod

for estimating the model evidence  = 𝑝(𝑑 |). The basic idea is to approx-

imate the evidence by integrating the prior in nested shells of constant like-

lihood. Despite its original purpose to estimate the model evidence, NS can

also provide weighted samples from the posterior distribution as an optional

byproduct. Therefore, the method is suitable for both tasks of parameter es-

timation and model comparison (Greg Ashton et al., 2022). Over the years,

many variants of NS have emerged, with each one aiming to improve a dif-

ferent aspect of the original version (Brewer et al., 2011; Feroz, Michael P

Hobson, et al., 2013; Higson et al., 2019).

9.2.1 Multi–dimensional integration

1

2

= ( 1, 2) 1 2

1

2

= (X) X

11
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Figure 9.2: Illustration comparing two ways which one can use to approximate

the model evidence integral. The left panel shows the direct multi–

dimensional integration over the parameters. The right panel shows

the one–dimensional integration over the prior volume 𝑋 enclosed in

the iso–likelihood contours.



NS attempts to compute the evidence integral,

 = ∫ (𝜃)𝜋 (𝜃)𝑑𝜃 , (9.9)

where (𝜃) = 𝑝(𝑑 |𝜃,) is the likelihood function and 𝜋 (𝜃) = 𝑝(𝜃 |) is
the prior, by transforming it into a one–dimensional integral over the prior

volume

𝑋 (𝜆) = ∫
(𝜃)>𝜆

𝜋 (𝜃)𝑑𝜃, (9.10)

enclosed in the iso–likelihood contour defined by (𝜃) = 𝜆. Equation 9.9 can

then be written as

 = ∫
+∞

0
𝑋 (𝜆)𝑑𝜆 = ∫

1

0
(𝑋 )𝑑𝑋 , (9.11)

assuming that (𝑋 (𝜆)) = 𝜆 exists. Figure 9.2 illustrates the equivalency be-

tween the integrals of equations 9.9 and 9.11. Unlike equation 9.9, the above

integral is now 1–dimensional and can be approximated using standard nu-

merical integration techniques (e.g. quadrature),

 =
𝑚
∑
𝑖=1

𝑖𝑤𝑖 , (9.12)

where,

𝑤𝑖 =
𝑋𝑖−1 − 𝑋𝑖+1

2
. (9.13)

This of course assumes that we are able to evaluate the iso–likelihood con-

tours 𝑖 = (𝑋𝑖) associated with an ordered collection of samples with prior

volume 1 > 𝑋1 > 𝑋2 > ⋯ > 𝑋𝑚 > 0. This is illustrated in Figure 9.3 for a

collection of 8 samples that are uniformly distributed in the prior volume.
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Figure 9.3: Illustration of 8 samples drawn uniformly from the prior with their re-

spective iso–likelihood contours (left), along with their corresponding

contributions to the evidence integral (right).
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Using the simpler weights 𝑤𝑖 = 𝑋𝑖 − 𝑋𝑖+1 in equation 9.12 a lower bound

on the evidence can be estimated as

 ≥
𝑚
∑
𝑖=1

𝑖 (𝑋𝑖 − 𝑋𝑖+1) . (9.14)

Similarly, an upper bound also exists, using 𝑤𝑖 = 𝑋𝑖−1 − 𝑋𝑖 , which can be

written as

 ≤
𝑚
∑
𝑖=1

𝑖 (𝑋𝑖−1 − 𝑋𝑖) + 𝑋𝑚max , (9.15)

where max is the maximum likelihood value to be found as 𝑋 → 0.
Soon after its original inception, it was realised that a NS run can also

be used for the task of parameter estimation without any additional compu-

tation. In particular, the collected samples combined with their normalised

weights

𝑝𝑖 =
𝑖𝑤𝑖


, (9.16)

correspond to weighted samples from the posterior distribution and thus can

be used to compute expectation values

E𝑝 [𝑓 (𝜃)] =
𝑛
∑
𝑖
𝑝𝑖𝑓 (𝜃𝑖) . (9.17)

9.2.2 Sampling procedure

Uniformly distributed live points

0 1X

Remove worst point

Sample replacement point

Shrink volume

Figure 9.4: Illustration of the nested sampling procedure. Given some uniformly

distributed points from the prior, we identify and remove the worst

point, that is, the point with the minimum likelihood value. 𝑚𝑖𝑛, and

replace it a new point sampled from the prior subject to the likelihood

constrain  > 𝑚𝑖𝑛. Finally, the volume is contracted to account for the

removal of the worst point.



The NS algorithm begins by drawing a collection of points {𝜃𝑖}𝑛𝑖=1 uniformly

from the prior, often called live points. We can associate each live point 𝜃𝑖
with a prior volume 𝑋–value, namely the volume that would be enclosed by

the iso–likelihood contour 𝑖 = (𝜃𝑖). On average, we expect roughly half

of the live points to fall inside the iso–likelihood contour corresponding to

half prior volume 𝑋 = 1/2, one quarter to 𝑋 = 1/4, one eighth to 𝑋 = 1/8 and
so on. In other words, since the live points are uniformly distributed under

the prior, the corresponding 𝑋–values are uniformly distributed between 0
and 1. This is illustrated in Figure 9.3 and the top panel of Figure 9.4.

What we described so far is only the first step of the algorithm, and one

still needs a way to propagate the live points into regions of smaller prior

volume (i.e. lower 𝑋 ) in order to probe iso–likelihood contours correspond-

ing to higher likelihood values. NS achieves this by first identifying the live

point with the lowest likelihood value ∗ = 1, corresponding to volume

𝑋1 and removing it. The remaining live points are now distributed over a

compressed volume 𝑋1. On average, the volume compression factor is

𝑡 = 𝑒−1/𝑛 , (9.18)

such that the compressed volume is 𝑋1 = 𝑡 × 𝑋0, where 𝑋0 = 1 is the initial
total volume. Finally, we sample a new live point to replace the one that we

removed. The new point is sampled uniformly from the prior subject to the

constrain  > ∗
, that is, from the likelihood–constrained prior

𝜋 ∗(𝜃) ∝

{
𝜋 (𝜃) if(𝜃) > ∗ ,
0 otherwise .

(9.19)

This whole process, that is shown in Figure 9.4, is repeated multiple times

until a criterion for termination is met. In each iteration, the volume shrinks

on average by the compression factor of equation 9.18.

9.2.3 Termination criterion

During an NS run, the remaining prior volume 𝑋 asymptotically approaches

0. The fact that we can only perform a finite number of steps means that

it is unavoidable to introduce a truncation error into the evidence estimate

of equation 9.11. A common way of determining when to stop is to approx-

imately estimate the amount of remaining evidence and terminate the run

when this can be considered negligible for the purpose of the analysis.

Perhaps the simplest way to roughly estimate the remaining evidence is

by utilising the upper bound of equation 9.15. In this case, the remaining

evidence is approximated as Δ = max𝑋𝑚, where max is the maximum

likelihood value, estimated from the current population of live points, and

𝑋𝑚 is simply the estimate of the remaining prior volume. An alternative
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would be to use the mean likelihood of the live points and get Δ = ̄𝑋𝑚.
The run then terminates when Δ/ drops below a prespecified threshold.

Of course, neither of these approaches guarantees that the run will termi-

nate early and that beyond lies a “spike” of huge likelihood. Upon deciding to

stop, however, the current estimate of the model evidence is approximately

corrected by either adding Δ or removing the live points one–by–one in

accordance with the NS procedure and adding their respective evidence con-

tributions 𝑖𝑋𝑖 , but without replacing them with new ones.

9.2.4 Uncertainty

So far we have assumed that the compression factor is given by equation

9.18, however, this is simply themean compression factor associatedwith the

removal of the outermost or lowest–likelihood live point. In truth, the prior

volume bounded by the iso–likelihood contour of that point can be slightly

different from what the mean compression factor predicts. The compression

in volume 𝑡 associated with the removal of the outermost of 𝑛 live points

follows a Beta(𝑛, 1) probability distribution with density,

𝑝(𝑡) = 𝑛𝑡𝑛−1 , (9.20)

where the first 𝑛 factor comes from the fact that any live point could be the

outermost, and the second factor from the fact that the remaining 𝑛 − 1 live
points lie uniformly distributed above the outermost at 𝑡 .

The compression factors can therefore be sampled from the probability

distribution of equation 9.20 instead of just assuming their expected value

of equation 9.18. Furthermore, we can use equation 9.20 to compute the

expectation values

E[log 𝑡] = −
1
𝑛
, Var[log 𝑡] =

1
𝑛2

. (9.21)

Since the individual log 𝑡 are independent, we expect that after 𝑖 steps, the
prior volume to have shrunk to

log𝑋𝑖 = −
𝑖 ±

√
𝑖

𝑛
. (9.22)

What the above expressionmeans is that there is uncertainty in the estimates

of the compression factor which enter into the prior volume estimates too.

In other words, there is uncertainty in the number of steps 𝑖 required for the
prior volume to shrink to a certain value 𝑋𝑖 .

The uncertainty originating from the noisy estimates of the compression

factor 𝑡 also propagates into the estimate of the model evidence. To quantify

this we need to consider the information gained when transitioning from



the prior 𝜋 (𝜃) to the posterior 𝑝(𝜃), given by the Kullback–Leibler (KL) diver-
gence,

𝐻 = ∫ 𝑝(𝜃) log(
𝑝(𝜃)
𝜋 (𝜃))

𝑑𝜃 . (9.23)

We can rewrite the above equation in terms of the prior volume 𝑋 , as

𝐻 = ∫ 𝑝(𝑋 ) log 𝑝(𝑋 )𝑑𝑋

= − ∫ 𝑝(𝑋 ) log𝑋𝑑𝑋 + ∫ 𝑝(log𝑋 ) log 𝑝(log𝑋 )𝑑 log𝑋 ,
(9.24)

where 𝑝(𝑋 ) = (𝑋 )/ is the volume posterior density. Ignoring the second

term on the right hand size, which is subdominant, we thus get that the KL

divergence provides a measure of the compression we require to reach the

bulk of the posterior mass,

𝐻 = − log𝑋 . (9.25)

Comparing equation 9.22 and 9.25 we roughly expect 𝑛𝐻 ±
√
𝑛𝐻 steps to

reach the bulk of the posterior mass. Equivalently, the uncertainty intro-

duced into the estimate of the model evidence is

Δ log =
√
𝐻
𝑛
. (9.26)

Of course, the above expression does not include any sources of numerical

error such as truncation error.

9.2.5 Likelihood–constrained prior sampling

The efficient application of the NS algorithm requires sampling from the

prior distribution 𝜋 (𝜃) subject to the likelihood constrain  > ∗
. Unfor-

tunately, drawing points from the prior until the likelihood criterion is met

is not feasible in practice, as the volume contained in the constrained prior

shrinks exponentially with each iteration. For this reason, two different ap-

proaches, region and step samplers are often employed in order to produce

samples from the likelihood–constrained prior.

For the sake of simplicity, both samplers usually operate in the latent pa-
rameter space that the prior is uniform over the unit hypercube. In this case,

the practitioner specifies their prior preference, not by providing a (log–)

probability density function, but by defining the inverse–cumulative density
functionΦ−1

that transforms points 𝜙 in the hypercube to points 𝜃 in the orig-
inal parameter space. For instance, let us assume that we require a normal

prior on a parameter 𝜃 ∼  (𝜇, 𝜎2). We can transform a unit hypercube

parameter 𝜙 ∼  (0, 1), using the standard normal distribution’s inverse–
cumulative density function Φ−1

, such that,

𝜃 = 𝜇 + Φ−1(𝜙)𝜎 . (9.27)
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Region samplers

The basic idea behind region samplers is to construct a hypersurface that

bounds a given iso–likelihood contour. In practice, this is done using simple

geometric shapes (e.g. spheres, ellipses, etc.). The hypersurface must encom-

pass the current distribution of live points and at least contain the currently

estimated volume. One can then sample uniformly from within the volume

enclosed by the hypersurface until the likelihood–constraint is satisfied. In

order to reduce the risk of missing parts of the currently estimated volume,

the bounding region is usually expanded by a prespecified factor or using

cross–validation of the live points.

Most region samplers attempt to construct such a bounding region by

wrapping the current generation of live pointswith one ormultiple ellipsoids.

Using multiple ellipsoids offers some flexibility in the case of multimodal

posterior distributions. The most popular such sampler is the MultiNest al-
gorithm that determines the shape and location of the ellipsoids based on the

mean and covariance of the live points, by first estimating the number of dis-

tinct modes, and thus required ellipsoids, using a clustering algorithm (Feroz,

M. Hobson, et al., 2009).

Region samplers have to face serious challenges when the complexity of

the posterior or the dimensionality of the parameter space increases. In the

first case, the ability to accurately bound the current volume depends on the

number of live points, with a higher number often resulting in better bound-

ing regions. The second limitation arises from the curse of dimensionality.

As the number of dimensions increases, most of the volume of the bound-

ing shape concentrates near its edges, and given that the bounding region is

often chosen to be significantly broader than the encompassing likelihood–

constrained volume to guarantee that no parts are encroached, the total num-

ber of samples until one is found to lie within the iso–likelihood contour in-

creases exponentially. As a consequence, region samplers are more efficient

and appropriate for low–dimensional problems, that is, 𝐷 ≲ 10 − 20.

Step samplers

On the other hand, step samplers do not rely on a bounding region and thus

bypass some of the pathologies of region samplers. Instead, they evolve a

randomly chosen live point through a sequence of local steps to an approx-

imately independent position. This is usually achieved using some MCMC

method targeting the likelihood–constrained prior of equation 9.19 as the

target distribution. The advantage of using MCMC methods in the context

of NS is that, in each iteration, one can use the distribution of the live points

to construct effective proposal distributions for the MCMC sampler.

Although step samplers enjoy a better scaling with the number of dimen-

sions than region samplers, there are still challenges in their use. First of all,



determining the minimum number of steps to perform for the new point to

be independent of its starting position (i.e. the randomly chosen live point)

is not trivial. Although small correlations can be effectively ignored, larger

violations can have catastrophic results and lead to substantial bias in the

final estimates of NS. Furthermore, the step sampler must be tuned appro-

priately to achieve good sampling performance. Adaptation during a given

iteration has to be diminishing in order to avoid spurious effects and biases.

Although any MCMC method (e.g. random walk Metropolis, slice sam-

pling, etc.) can in principle be used as a step sampler, there are also meth-

ods that are naturally suited and have been developed for use in the con-

text of sampling from the likelihood–constrained prior. One such example is

Galilean Monte Carlo (GMC) (Feroz & Skilling, 2013; Skilling, 2012, 2019) that

samples bymoving consistently along a direction until a proposed point is re-

jected, by being outside the iso–likelihood contour. In this case, the sampler

reflects off the current iso–likelihood boundary.

9.2.6 Parallelisation

Parallelising NS is not as straightforward as with other Monte Carlo algo-

rithms (e.g. Sequential Monte Carlo), as the method relies on updating a

single (worst) point at a time. In general, we would like to generate as many

candidate points per step as the number of available CPUs (i.e. 𝑛CPU) and
evaluate their likelihoods in parallel. In this case, there are three strategies

that one can follow:

1. Replace a single live point and discard as many as 𝑛CPU − 1 accept-

able live points. This scheme is quite wasteful, particularly in cases

in which it is likely that more than one candidate point satisfies the

likelihood constraint.

2. Replace the worst (i.e. lowest likelihood) 𝑛CPU live points in a single

step. This results in linear speed–up with respect to the number of

CPUs but increases the variance of the evidence estimate by a factor

of

√𝑛CPU.

3. Replace a single live point and consider the other 𝑛CPU − 1 candidates
for subsequent iterations. This results in a speed–up of 𝑛 log(1+𝑛CPU/𝑛)
which is approximately linear for 𝑛CPU << 𝑛. The “diminishing re-

turns” represented by the logarithmic factor in this expression origi-

nate from the fact that the likelihood threshold increases as the run

progresses, and thus the points might not be valid for a subsequent

iteration. This strategy is the most widely employed in practice.

Finally, it is important to note that apart from parallelising a single NS

run, it is also possible to combine different, possibly parallel, independent
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NS runs into a joint one, thus achieving linear scaling. In order to combine

two or more runs together, we collect the points from all runs as live points

and begin by removing the worst point, which with no loss of generality we

assume that it belongs to run A. Then, as a replacement that satisfies the

likelihood constraint, we simply take the replacement that was originally

used in run A. We then proceed with the next worst point until all points are

accounted for.

Algorithm 14 Nested sampling

Input: termination criterion (e.g. Δ log ≤ 𝜖), number of live points 𝑛, an
estimate of the compression factor e.g. 𝑡 = exp(−1/𝑛), prior distribution
𝜋 (𝜃), likelihood function 𝑝𝑖 = (𝜃))

Output: Estimate of model evidence , posterior samples 𝜃𝑖 with weights

𝑖𝑤𝑖/
1: Initialise volume 𝑋 = 1 and evidence  = 0
2: Draw 𝑛 live points from the prior 𝜃1, 𝜃2,… , 𝜃𝑛 ∼ 𝜋 (𝜃)
3: repeat
4: Find the minimum likelihood value of the live points ∗ ←

min ((𝜃1),… ,(𝜃𝑛))
5: Replace live point 𝜃 ∗ corresponding to ∗

with a new point from the

prior satisfying  > ∗

6: Set 𝑤∗ ← Δ𝑋 where Δ𝑋 = (1 − 𝑡)𝑋
7: Update estimate of the evidence  ←  +∗𝑤∗

8: Store values of 𝑤𝑖 ← 𝑤∗
, 𝑖 ← ∗

, and 𝜃𝑖 ← 𝜃 ∗

9: Contract volume 𝑋 ← 𝑡𝑋
10: until termination criteria satisfied

11: Update evidence  ←  + 1
𝑛 ∑

𝑛
𝑗=1 (𝜃𝑗)𝑋
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10 ENSEMBLE S L ICE SAMPL ING

This chapter presents Ensemble Slice Sampling which is the main contribu-

tion introduced in the paper titled Ensemble Slice Sampling: Parallel, black–
box, and gradient–free inference that was published in the journal Statistics
and Computing in 2021 (Karamanis & Beutler, 2021). The content of the chap-

ter is almost identical to that included in the aforementioned publication

with the exception of minor text and figure formatting differences.

Slice Sampling has emerged as a powerful Markov Chain Monte Carlo al-

gorithm that adapts to the characteristics of the target distribution with min-

imal hand-tuning. However, Slice Sampling’s performance is highly sensi-

tive to the user-specified initial length scale hyperparameter and the method

generally struggles with poorly scaled or strongly correlated distributions.

This paper introduces Ensemble Slice Sampling (ESS), a new class of algo-

rithms that bypasses such difficulties by adaptively tuning the initial length

scale and utilising an ensemble of parallel walkers in order to efficiently

handle strong correlations between parameters. These affine–invariant al-

gorithms are trivial to construct, require no hand-tuning, and can easily be

implemented in parallel computing environments. Empirical tests show that

Ensemble Slice Sampling can improve efficiency by more than an order of

magnitude compared to conventional MCMC methods on a broad range of

highly correlated target distributions. In cases of strongly multimodal target

distributions, Ensemble Slice Sampling can sample efficiently even in high

dimensions. We argue that the parallel, black-box and gradient-free nature

of the method renders it ideal for use in scientific fields such as physics, as-

trophysics and cosmology which are dominated by a wide variety of compu-

tationally expensive and non-differentiable models.

10.1 introduction

Bayesian inference and data analysis has become an integral part of mod-

ern science. This is partly due to the ability of Markov Chain Monte Carlo

(MCMC) algorithms to generate samples from intractable probability distri-

butions. MCMC methods produce a sequence of samples, called a Markov
chain, that has the target distribution as its equilibrium distribution. The

141



more samples are included, the more closely the distribution of the samples

approaches the target distribution. The Markov chain can then be used to

numerically approximate expectation values (e.g. parameter uncertainties,

marginalised distributions).

Common MCMC methods entail a significant amount of time spent hand-

tuning the hyperparameters of the algorithm to optimize its efficiency with

respect to a target distribution. The emerging and routine use of such math-

ematical tools in science calls for the development of black-box MCMC algo-

rithms that require no hand-tuning at all. This need led to the development

of adaptive MCMC methods like the Adaptive Metropolis algorithm (Haario

et al., 2001) which tunes its proposal scale based on the sample covariance

matrix. Unfortunately, most of those algorithms still include a significant

number of hyperparameters (e.g. components of the covariance matrix) ren-

dering the adaptation noisy. Furthermore, the tuning is usually performed

on the basis of prior knowledge, such as one or more long preliminary runs

which further slow down the sampling. Last but not least, there is no reason

to believe that a single Metropolis proposal scale is optimal for the whole

distribution (i.e. the appropriate scale could vary from one part of the dis-

tribution to another). Another approach to deal with those issues would be

to develop methods that by construction require no or minimal hand-tuning.

An archetypal such method is the Slice Sampler (Neal, 2003), which has only

one hyperparameter, the initial length scale.

It should be noted that powerful adaptive methods that require no hand-

tuning (although they do require preliminary runs) already exist. Most no-

table of them is the No U-Turn Sampler (NUTS) (M. D. Hoffman, Gelman, et

al., 2014), an adaptive extension of Hamiltonian Monte Carlo (HMC) (Neal

et al., 2011). However, such methods rely on the gradient of the log prob-

ability density function. This requirement is the reason why these meth-

ods are limited in their application in quantitative fields such as physics, as-

trophysics and cosmology, which are dominated by computationally costly

non–differentiable models. Thus, our objective in this paper is to introduce

a parallel, black-box and gradient–free method that can be used in the afore-

mentioned scientific fields.

This paper presents Ensemble Slice Sampling (ESS), an extension of the

Standard Slice Sampling method. ESS naturally inherits most of the benefits

of Standard Slice Sampling, such as the acceptance rate of 1, and most im-

portantly the ability to adapt to the characteristics of a target distribution

without any hand-tuning at all. Furthermore, we will show that ESS’s per-

formance is insensitive to linear correlations between the parameters, thus

enabling efficient sampling even in highly demanding scenarios. Wewill also

demonstrate ESS’s performance in strongly multimodal target distributions

and show that the method samples efficiently even in high dimensions. Fi-

nally, the method can easily be implemented in parallel taking advantage of



multiple CPUs thus facilitating Bayesian inference in cases of computation-

ally expensive models.

Our implementation of ESS is inspired by Tran & Ninness (2015). How-

ever, our method improves upon that by extending the direction choices (e.g.

Gaussian and global move), adaptively tuning the initial proposal scale, and

parallelising the algorithm. Nishihara et al. (2014) developed a general algo-

rithm based on the elliptical slice sampling method (Murray et al., 2010) and

a Gaussian mixture approximation to the target distribution. ESS utilises an

ensemble of parallel and interacting chains, called walkers. Other methods

that are based on the ensemble paradigm include the Affine Invariant En-

semble Sampler (Goodman & Weare, 2010) and the Differential Evolution

MCMC (Ter Braak, 2006) along with its various extensions (Ter Braak &

Vrugt, 2008; Vrugt et al., 2009), as well as more recent approaches that are

based on langevin diffusion dynamics (Garbuno-Inigo, Hoffmann, et al., 2020;

Garbuno-Inigo, Nüsken, et al., 2020) and the time discretization of stochastic

differential equations (Leimkuhler, Matthews, et al., 2018) in order to achieve

substantial speedups.

In Section 10.2, we will briefly discuss the Standard Slice Sampling al-

gorithm. In Section 10.3, we will introduce the Ensemble Slice Sampling

method. In Section 10.4 we will investigate the empirical evaluation of the

algorithm. We reserve Sections 10.5 and 10.6 for discussion and conclusion,

respectively.

10.2 standard slice sampling

Slice Sampling is based on the idea that sampling from a distribution 𝑝(𝑥)
whose density is proportional to 𝑓 (𝑥) is equivalent to uniformly sampling

from the region underneath the graph of 𝑓 (𝑥). More formally, in the univari-

ate case, we introduce an auxiliary variable, the height 𝑦, thus defining the

joint distribution 𝑝(𝑥, 𝑦), which is uniform over the region 𝑈 = {(𝑥, 𝑦) ∶ 0 <
𝑦 < 𝑓 (𝑥)}. To sample from the marginal density for 𝑥 , 𝑝(𝑥), we sample from

𝑝(𝑥, 𝑦) and then we ignore the 𝑦 values.

Generating samples from 𝑝(𝑥, 𝑦) is not trivial, so we might consider defin-

ing a Markov chain that will converge to that distribution. The simplest, in

principle, way to construct such aMarkov chain is via Gibbs sampling. Given

the current 𝑥 , we sample 𝑦 from the conditional distribution of 𝑦 given 𝑥 ,
which is uniform over the range (0, 𝑓 (𝑥)). Then we sample the new 𝑥 from

the slice 𝑆 = {𝑥 ∶ 𝑦 < 𝑓 (𝑥)}.
Generating a sample from the slice 𝑆 may still be difficult, since we gener-

ally do not know the exact form of 𝑆. In that case, we can update 𝑥 based on

a procedure that leaves the uniform distribution of 𝑆 invariant. Neal (2003)

proposed the following method:
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Figure 10.1: The plot shows the univariate slice sampling method. Given an ini-

tial value 𝑥0, a value 𝑦0 is uniformly sampled along the vertical slice

(0, 𝑓 (𝑥0)) (green dashed line) thus defining the initial point (blue star).

An interval (𝐿, 𝑅) is randomly positioned horizontally around the ini-

tial point, and then it is expanded in steps of size 𝜇 = 𝑅 − 𝐿 until both of
its ends 𝐿 ′, 𝑅 ′

are outside the slice. The new point (green star) is gen-

erated by repeatedly sampling uniformly from the expanded interval

(𝐿 ′, 𝑅 ′) until a point is found inside the slice. Points outside the slice

(e.g. the red star) are used to shrink the interval (𝐿 ′, 𝑅 ′) by moving 𝐿 ′

or in this case 𝑅 ′
to that point and accelerate the sampling procedure.

Given the current state 𝑥0, the next one is generated as:

1. Draw 𝑦0 uniformly from (0, 𝑓 (𝑥0)), thus defining the horizontal

slice 𝑆 = {𝑥 ∶ 𝑦0 < 𝑓 (𝑥)},

2. Find an interval 𝐼 = (𝐿, 𝑅) that contains all, or much, of 𝑆 (e.g.

using the stepping-out procedure defined below),

3. Draw the new point 𝑥1 uniformly from 𝐼 ∩ 𝑆.

In order to find the interval 𝐼 , Neal (2003) proposed to use the stepping-
out procedure that works by randomly positioning an interval of length 𝜇
around the point 𝑥0 and then expanding it in steps of size 𝜇 until both ends

are outside of the slice. The new point 𝑥1 is found using the shrinking proce-
dure, in which points are uniformly sampled from 𝐼 until a point inside 𝑆 is

found. Points outside 𝑆 are used to shrink the interval 𝐼 . The stepping-out
and shrinking procedures are illustrated in Figure 10.1. By construction, the

stepping-out and shrinking procedures can adaptively tune a poor estimate

of the length scale 𝜇 of the initial interval. The length scale 𝜇 is the only free



hyperparameter of the algorithm. For a detailed review of the method we

direct the reader to Neal, 2003 and MacKay, 2003 (also Exercise 30.12 in that

text).

It is important to mention here that for multimodal distributions there is

no guarantee that the slice would cross any of the other modes, especially

if the length scale is underestimated initially. Ideally, in order to provide a

large enough initial value of the scale factor 𝜇, prior knowledge of the dis-

tance between the modes is required. As we will show in the next section,

Ensemble Slice Sampling does not suffer from this complication and can han-

dle strongly multimodal distributions efficiently.

10.3 ensemble slice sampling

The univariate slice sampling scheme can be used to sample from multivari-

ate distributions by sampling repeatedly along each coordinate axis in turn

(one parameter at a time) or by sampling along randomly selected directions

(MacKay, 2003). Using either of those choices, the Standard Slice Sampler

performs acceptably in cases with no strong correlations in parameter space.

The overall performance of the algorithm generally depends on the number

of expansions and contractions during the stepping-out and shrinking pro-

cedures, respectively. Ideally we would like to minimize that number. A rea-

sonable initial estimate of the length scale is still required in order to reduce

the amount of time spent expanding or contracting the initial interval.

However, when strong correlations are present two issues arise. First,

there is no single value of the initial length scale that minimizes the computa-

tional cost of the stepping-out and shrinking procedures along all directions

in parameter space. The second problem concerns the choice of direction.

In particular, neither the component-wise choice (one parameter at a time)

nor the random choice is suitable in strongly correlated cases. Using such

choices results in highly autocorrelated samples.

Our approach would be to target each of those two issues individually.

The resulting algorithm, Ensemble Slice Sampling (ESS), is invariant under

affine transformations of the parameter space, meaning that its performance

is not sensitive to linear correlations. Furthermore, ESS minimizes the com-

putational cost of finding the slice by adaptively tuning the initial length

scale. Last but not least, unlike most MCMC methods, ESS is trivially par-

allelizable, thus enabling the data analyst to take advantage of modern high

performance computing facilities with multiple CPUs.
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10.3.1 Adaptively tuning the length scale

Let us first consider the effect of the initial length scale on the performance of

the univariate slice sampling method. For instance, if the initial length scale

is 𝜆 times smaller than the actual size of the slice, then the stepping-out pro-

cedure would require (𝜆) steps in order to fix this. However, in this case,

since the final interval is an accurate approximation of the slice there would

probably be no contractions during the shrinking phase. On the other hand,

when the initial length scale is larger than the actual slice then the number

of expansions would be either one or zero. In this case though, there would

be a number of contractions.

Stochastic approximation

As the task is to minimize the total number of expansions and contractions

we employ and adapt the Robbins–Monro stochastic approximation algorithm

(Robbins & Monro, 1951) of Tibbits et al. (2014). Ideally, based on the reason-

ing of the previous paragraph, only one expansion and one contraction will

take place. Therefore, the target ratio of number of expansions to total num-

ber of expansions and contractions is 1/2. To achieve this, we update the

length scale 𝜇 based on the following recursive formula:

𝜇(𝑡+1) = 2𝜇(𝑡)
𝑁 (𝑡)
𝑒

𝑁 (𝑡)
𝑒 +𝑁 (𝑡)

𝑐
, (10.1)

where 𝑁 (𝑡)
𝑒 and 𝑁 (𝑡)

𝑐 are the number of expansions and contractions during

iteration 𝑡 . It is easy to see that when the fraction 𝑁 (𝑡)
𝑒 /(𝑁 (𝑡)

𝑒 +𝑁 (𝑡)
𝑐 ) is larger

than 1/2 the length scale 𝜇 will be increased. In the case where the frac-

tion is smaller than 1/2 the length scale 𝜇 will be decreased accordingly. The
optimization can stop either when the fraction is close to 1/2within a thresh-
old or when a maximum number of tuning steps has been completed. The

pseudocode for the first case is shown in Algorithm 15. In order to preserve

detailed balance it is important to be sure that the adaptation stops after

a finite number of iterations. In practice this happens after (10) iterations.
An alternative would be to use diminishing adaptation (Roberts & Rosenthal,

2007) but we found that our method is sufficient in practice (see Section 4.3

for more details).

10.3.2 The choice of direction and parallelisation

In cases where the parameters are correlated we can accelerate mixing by

moving more frequently along certain directions in parameter space. One

way of achieving this is to exploit some prior knowledge about the covari-



Algorithm 15 Function to tune the length scale 𝜇.

1: function TuneLengthScale(𝑡 , 𝜇(𝑡), 𝑁 (𝑡)
𝑒 , 𝑁 (𝑡)

𝑐 , 𝑀adapt
)

2: if 𝑡 ≤ 𝑀adapt then
3: Compute 𝜇(𝑡+1) using Equation 10.1,

4: return 𝜇(𝑡+1)

5: else
6: return 𝜇(𝑡)

7: end if

ance of the target distribution. However, such an approach would either re-

quire significant hand-tuning or noisy estimations of the sample covariance

matrix during an initial run of the sampler. For that reason we employ a dif-

ferent approach to exploit the covariance structure of the target distribution

and preserve the hand-tuning-free nature of the algorithm.

Ensemble of walkers

Following the example of Goodman & Weare (2010) we define an ensemble

of parallel chains, called walkers. In our case though, each walker is an in-

dividual slice sampler. The sampling proceeds by moving one walker at a

time by slice sampling along a direction defined by a subset of the rest of

the walkers of the ensemble. As long as the aforementioned direction does

not depend on the position of the current walker, the resulting algorithm

preserves the detailed balance of the chain. Moreover, assuming that the

distribution of the walkers resembles the correlated target distribution, the

chosen direction will prefer directions of correlated parameters.

We define an ensemble of𝑁 parallel walkers as the collection 𝑆 = {𝐗𝟏,… ,𝐗𝐍}.
The position of each individual walker 𝐗𝐤 is a vector 𝐗𝐤 ∈ R𝐷

and therefore

we can think of the ensemble 𝑆 as being in R𝑁𝐷
. Assuming that each walker

is drawn independently from the target distribution with density 𝑝, then the

target distribution for the ensemble would be the product

𝑃 (𝐗𝟏,… ,𝐗𝐍) =
𝑁
∏
𝑘=1

𝑝(𝐗𝐤) . (10.2)

The Markov chain of the ensemble would preserve the product density of

equation 10.2 without the individual walker trajectories being Markov. In-

deed, the position of𝐗𝐤 at iteration 𝑡 + 1 can depend on𝐗𝐣 at iteration 𝑡 with
𝑗 ≠ 𝑘.

Given the walker𝐗𝐤 that is to be updated there are arbitrarymanyways to

define a direction vector from the complementary ensemble 𝑆[𝑘] = {𝐗𝐣, ∀𝑗 ≠
𝑘}. Here we will discuss a few of them. Following the convention in the en-

semble MCMC literature we call those recipes of defining direction vectors,

moves. Although the use of the ensemble might seem equivalent to that of

147



a sample covariance matrix in the Adaptive Metropolis algorithm (Haario

et al., 2001) the first has a higher information content as it encodes both

linear and non-linear correlations. Indeed, having an ensemble of walkers

allows for arbitrary many policies for choosing the appropriate directions

along which the walkers move in parameter space. As we will shortly see,

one of the choices (i.e. the Gaussian move, introduced later in this Section) is

indeed the slice sampling analogue of a covariance matrix. However, other

choices (i.e. Differential move or Global move) can take advantage of the

non-Gaussian nature of the ensemble distribution and thus propose more in-

formative moves. As will be discussed later in this section, those advanced

moves make no assumption of Gaussianity for the target distribution. Fur-

thermore, as we will show in the last part of this section, the ensemble can

also be easily parallelised.

Algorithm 16 Function to return a differential move direction vector.

1: function DifferentialMove(𝑘, 𝜇, 𝑆)
2: Draw two walkers 𝐗𝐥, and 𝐗𝐦 uniformly and without replacement from

the complementary ensemble 𝑆,
3: Compute direction vector 𝜼𝑘 using Equation 10.6,

4: return 𝜼𝑘

Affine transformations and invariance

Affine invariance is a property of certain MCMC samplers first introduced in

the MCMC literature by Goodman & Weare (2010). An MCMC algorithm is

said to be affine invariant if its performance is invariant under the bijective

mapping 𝑔 ∶ R𝐷 → R𝐷
of the form 𝐘 = 𝐴𝐗 + 𝑏 where 𝐴 ∈ R𝐷×𝐷

is a

matrix and 𝑏 ∈ R𝐷
is a vector. Linear transformations of this form are called

affine transformations and describe rotations, rescaling along specific axes as

well as translations in parameter space. Assuming that 𝐗 has the probability

density 𝑝(𝐗), then 𝐘 = 𝐴𝐗 + 𝑏 has the probability density

𝑝𝐴,𝑏(𝐘) = 𝑝(𝐴𝐗 + 𝑏) ∝ 𝑝(𝐗) . (10.3)

Given a density 𝑝 as well as an MCMC transition operator  such that

𝐗(𝑡 + 1) =  (𝐗(𝑡); 𝑝) for any iteration 𝑡 we call the operator  affine invari-

ant if

 (𝐴𝐗 + 𝑏; 𝑝𝐴,𝑏) = 𝐴  (𝐗; 𝑝) + 𝑏 (10.4)

for ∀𝐴 ∈ R𝐷×𝐷
and ∀𝑏 ∈ R𝐷

. In case of an ensemble of walkers we define an

affine transformation from R𝑁𝐷
to R𝑁𝐷

as

𝑆 = {𝐗𝟏,… ,𝐗𝐍}
𝐴,𝑏
́ → {𝐴𝐗𝟏 + 𝑏,… , 𝐴𝐗𝐍 + 𝑏} . (10.5)



The property of affine invariance is of paramount importance for the devel-

opment of efficient MCMC methods. As we have discussed already, propos-

ing samplesmore frequently along certain directions can accelerate sampling

by moving further away in parameter space. Given that most realistic ap-

plications are highly skewed or anisotropic and are characterised by some

degree of correlation between their parameters, affine invariant methods are

an obvious choice of a tool that can be used in order to achieve high levels

of efficiency.

Differential move

The differential direction choice works by moving the walker 𝐗𝑘 based on

two randomly chosen walkers 𝐗𝑙 and 𝐗𝑚 of the complementary ensemble

𝑆[𝑘] = {𝐗𝐣, ∀𝑗 ≠ 𝑘} (Gilks, Roberts, et al., 1994), see Figure 10.2 for a graphical
explanation. In particular, we move the walker 𝐗𝑘 by slice sampling along

the vector 𝜼𝑘 defined by the difference between the walkers 𝐗𝑙 and 𝐗𝑚. It

is important to notice here that the vector 𝜼𝑘 is not a unit vector and thus

carries information about both the length scale and the optimal direction of

movement. It will also prove to be more intuitive to include the initial length

scale 𝜇 in the definition of the direction vector in the following way:

𝜼𝑘 = 𝜇(𝐗𝑙 −𝐗𝑚) . (10.6)

The pseudocode for a function that, given the value of 𝜇 and the comple-

mentary ensemble 𝑆, returns a differential direction vector 𝜼𝑘 is shown in

Algorithm 16. Furthermore, the Differential move is clearly affine invariant.

Assuming that the distribution of the ensemble of walkers follows the target

distribution and the latter is highly elongated or stretched along a certain

direction then the proposed direction given by equation 10.6 will share the

same directional asymmetry.

Gaussian move

The direction vector 𝜼𝑘 can also be drawn from a normal distribution with

the zero mean and the covariance matrix equal to the sample covariance of

the complementary ensemble 𝑆[𝑘],

𝐂𝑆 =
1
|𝑆|

∑
𝑗∈𝑆

(𝐗𝑗 − �̄�𝑆)(𝐗𝑗 − �̄�𝑆)
𝑡 . (10.7)

We chose to include the initial length scale 𝜇 in this definition as well:

𝜼𝑘
2𝜇

∼  (𝟎,𝐂𝑆) . (10.8)

The factor of 2 is used so that the magnitude of the direction vectors are

consistent with those sampled using the differential direction choice in the

case of Gaussian-distributed walkers.
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Figure 10.2: The plot shows the differential direction move. Two walkers (red) are

uniformly sampled from the complementary ensemble (blue). Their

positions define the direction vector (solid black). The selected walker

(magenta) then moves by Slice Sampling along the parallel direction

(dashed black).

The pseudocode for a function that, given the value of 𝜇 and the com-

plementary ensemble 𝑆, returns a Gaussian direction vector 𝜼𝑘 is shown in

Algorithm 17. See Figure 10.3 for a graphical explanation of the method.

Moreover, just like the Differential move, the Gaussian move is also affine

invariant. In the limit in which the number of walkers is very large and the

target distribution is normal, the first reduces to the second. Alternatively, as-

suming that the distribution of walkers follows the target distribution then

the covariance matrix of the ensemble would be the same as that of inde-

pendently drawn samples from the target density. Therefore any anisotropy

characterising the target density would also be present in the distribution of

proposed directions given by equation 10.8.

Algorithm 17 Function to return a Gaussian Move direction vector.

1: function GaussianMove(𝑘, 𝜇, 𝑆)
2: Estimate sample covariance 𝐂𝑆 of the walkers in the complementary en-

semble 𝑆 using Equation 10.7,

3: Sample 𝜼𝑘/(2𝜇) ∼  (𝟎,𝐂𝑆),
4: return 𝜼𝑘

Global move

ESS and its variations described so far (i.e. differential move, Gaussian move)

have as much difficulty traversing the low probability regions between mod-



Figure 10.3: The plot shows the Gaussian direction move. A direction vector (solid

black) is sampled from the Gaussian-approximated distribution of the

walkers of the complementary ensemble (green). The selected walker

(magenta) then moves by Slice Sampling along the parallel direction

(dashed black).

es/peaks inmultimodal distributions asmost localMCMCmethods (e.g. Metropo-

lis, Hamiltonian Monte Carlo, Slice Sampling, etc.). Indeed, multimodal dis-

tributions are often the most challenging cases to sample from. Fortunately,

Ensemble Slice Sampling’s flexibility allows to construct advanced moves

which are specifically designed to handle multimodal cases even in moderate

to high dimensional parameter spaces. The global move is such an example.

We first fit aGaussianMixture to the distribution of the walkers of the com-

plementary ensemble 𝑆[𝑘] using Variational Inference. To avoid defining the

number of components of the Gaussian Mixture we use a Dirichlet process
as the prior distribution for the Gaussian Mixture weights

1
(Gorur & Ras-

mussen, 2010). The exact details of the construction of the Dirchlet process

Gaussian mixture (DPGM) are beyond the scope of this work and we direct

the reader to Gorur & Rasmussen (2010) and Bishop (2006) for more details.

One of the major benefits of fitting the DPGM using variational inference

compared to the expectation–maximisation (EM) algorithm (Dempster et al.,

1977) that is often used is the improved stability. In particular, the use of

priors in the variational Bayesian treatment guarantees that Gaussian com-

ponents do not collapse into specific data points. This regularisation due to

the priors leads to component covariance matrices that do not diverge even

when the number of data points (i.e. walkers in our case) in a component is

lower than the number of dimensions. In our case, this means that even if

1 To this end we use the Scikit-Learn implementation of the Dirichlet process Gaussian mix-

ture.
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the number of walkers located in a mode of the target distribution is small

DPGMwould still identify that mode correctly. In such cases, the covariance

of the component that corresponds to that mode would be over–estimated.

This however does not affect the performance of the Global move as the latter

does not rely on exact estimates of the component covariance matrices.
2

In practice, we recommend usingmore than theminimumnumber of walk-

ers in cases of multimodal distributions (e.g. at least two times as many in

bimodal cases). We found that the computational overhead introduced by the

variational fitting of the DPGM is negligible compared to the computational

cost of the evaluation of the model and posterior distribution in common

problems in physics, astrophysics and cosmology. Indeed the cost is compa-

rable, and only a few times higher than the Differential or Gaussian move.

The reason for that is the relatively small number of walkers (i.e. (10 − 103))
that simplifies the fitting procedure.

Once fitting is done, we have a list of the means and covariance matrices

of the components of the Gaussian Mixture. As the ensemble of walkers

traces the structure of the target distribution, we can use the knowledge

of the means and covariance matrices of the Gaussian Mixture to construct

efficient direction vectors. Ideally, we prefer direction vectors that connect

different modes. This way, the walkers will be encouraged to move along

those directions that would otherwise be very unlikely to be chosen.

We uniformly select two walkers of the complementary ensemble and

identify the Gaussian components to which they belong, say 𝑖 and 𝑗. There
are two distinct cases and we will treat them as such. In case A, 𝑖 = 𝑗, mean-

ing that the selected walkers originate from the same component. In case B,

𝑖 ≠ 𝑗, meaning that the two walkers belong to different components and thus

probably different peaks of the target distribution.

As we will show next, only in case B, we can define a direction vector that

favors mode-jumping behaviour. In case A, we can sample a direction vector

from the Gaussian component that the two select walkers belong to
3
:

𝜼𝑘
2𝜇

∼  (𝟎,𝑪𝑖=𝑗) , (10.9)

where 𝑪𝑖=𝑗 is the covariance matrix of the ith (or equivalently jth) component.

Just as in the Gaussian move, the mean of the proposal distribution is zero

so that we can interpret 𝜼 as a direction vector.

In case B, where the two selected walkers belong to different components,

𝑖 ≠ 𝑗, we will follow a different procedure to facilitate long jumps in param-

eter space. We will sample two vectors, one from each component:

𝜼𝑘,𝑛 ∼  (𝝁𝑛, 𝛾𝑪𝑛) , (10.10)

2 Indeed the covariance matrix of a component only enters through equation 10.10 but then

it is re–scaled by the factor 𝛾 .
3 In practice we use uniformly sample two walkers from the list of walkers that DPGM iden-

tified in that mode. This step removes any dependency on covariance matrix estimates.



for 𝑛 = 𝑖 or 𝑛 = 𝑗. Here, 𝝁𝑛 is the mean of the nth component and 𝑪𝑛 is its
covariance matrix. In practice, we also re-scale the covariance by a factor

of 𝛾 = 0.001, which results in direction vectors with lower variance in their

orientation. 𝛾 < 1 ensures that the chosen direction vector is close to the

vector connecting the two peaks of the distribution. Finally, the direction

vector will be defined as:

𝜼𝑘 = 2(𝜼𝑘,𝑖 − 𝜼𝑘,𝑗) . (10.11)

The factor of 2 here is chosen to better facilitate mode-jumping. There is also

no factor of 𝜇 in the aforementioned expression since in this case there is no

need for the scale factor to be tuned.

The pseudocode for a function that, given the complementary ensemble

𝑆, returns a Global direction vector 𝜼𝑘 is shown in Algorithm 18. See Figure

10.4 for a graphical explanation of the method. It should be noted that for

the global move to work at least one walker needs to be present on each well

separated mode.

Algorithm 18 Function to return a global move direction vector.

1: function GlobalMove(𝑘, 𝜇, 𝑆)
2: Fit Dirichlet process Gaussian mixture (DPGM) to the complementary

ensemble 𝑆[𝑘],
3: If 𝑁 is the number of components of the DPGM then select two compo-

nents 𝑖, 𝑗 uniformly such that 𝑖 ≠ 𝑗,
4: if 𝑖 = 𝑗 then
5: Sample 𝜼𝑘/(2𝜇) ∼  (𝟎,𝑪𝑖=𝑗),
6: else
7: Sample 𝜼𝑘,𝑛 ∼  (𝝁𝑛, 𝛾𝑪𝑛) for 𝑛 = 𝑖, 𝑗,
8: Compute direction vector 𝜼𝑘 using Equation 10.11,

9: end if
10: return 𝜼𝑘

Here we introduced three general and distinct moves that can be used in

a broad range of cases. In general, the global move requires a higher num-

ber of walkers than the differential or Gaussian move in order to perform

well. We found that the differential and Gaussian moves are good choices

for most target distributions whereas the global move is only necessary in

highly dimensional and multimodal cases. One can use the information in

the complementary ensemble to construct more moves tailor-made for spe-

cific problems. Such additional moves might include Kernel Density Esti-

mation or Clustering methods and as long as the information used comes

from the complementary ensemble (and not from the walker that would be

updated) the detailed balance is preserved.
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Figure 10.4: The plot shows the global direction move assuming that the uniformly

selected pair of walkers of the complementary ensemble belongs to

different components (blue and green). A position (red) is sampled

from each component (using the re-scaled by 𝛾 covariance matrix).

Those two points (red) define the direction vector (black) connecting

the two modes (blue and green). The selected walker (magenta) then

moves by slice sampling along the parallel direction (dashed).

Parallelizing the ensemble

Instead of evolving the ensemble by moving each walker in turn we can do

this in parallel. A naive implementation of this would result in a subtle vio-

lation of detailed balance. We can avoid this by splitting the ensemble into

two sets of walkers (Foreman-Mackey, Hogg, et al., 2013) of 𝑛
Walkers

/2 each.
We can now update the positions of all the walkers in the one set in parallel

along directions defined by the walkers of the other set (the complementary

ensemble). Then we can perform the same procedure for the other set. In ac-

cordance with equation 10.2, the stationary distribution of the split ensemble

would be

𝑃 (𝐗𝟏,… ,𝐗𝐍) =
𝑁 /2
∏
𝑘=1

𝑝(𝐗𝐤)
𝑁
∏

𝑘=1+𝑁 /2
𝑝(𝐗𝐤) . (10.12)

The method generates samples from the target distribution by simulating a

Markov chain which leaves this product distribution invariant. The transi-

tion operator 1 that updates the walkers of the first set (i.e. 𝑘 = 1,… , 𝑁 /2)
uses the walkers of the complementary ensemble (i.e. 𝑘 = 1 +𝑁 /2,… , 𝑁 ) and

vice versa for the transition operator 2 that acts on the second set. In the

context of ESS the aforementioned transition operators correspond to a sin-

gle iteration of Algorithm 19 coupled with one of the moves (e.g. Differential

move).



It follows from the ensemble splitting technique that the maximum num-

ber of CPUs used without any of them being idle is equal to the total number

of walkers updated concurrently, that is 𝑛
Walkers

/2. We will also verify this

empirically in Section 10.4. Of course, this does not mean that if there are

more CPUs available they cannot be used as we can always increase the size

of the ensemble to match the available CPUs.

Combining this technique with the stochastic approximation solution of

Subsection 10.3.1 and the choices (moves) of direction and ensemble-splitting

technique of this subsection leads to the Ensemble Slice Sampling method of

Algorithm 19
4
. Of course, another move (e.g. Gaussian, global) can be used

instead of the differential move in Algorithm 19. Finally, the minimum num-

ber of walkers used should be twice the number of parameters. Using fewer

walkers than that could lead to erroneous sampling from a lower dimensional

parameter space (Ter Braak, 2006).

In general, parallelizing a slice sampler is not trivial (e.g. as it is forMetropo-

lis) because each update requires an unknown number of probability density

evaluations. However, because of the affine invariance (i.e. performance un-

affected by linear correlations) induced by the existence of the ensemble, all

iterations require on average the same number of probability density eval-

uations (i.e. usually 5 if the stochastic approximation for the length scale 𝜇
is used). Therefore, the parallelization of Ensemble Slice Sampling is very

effective in practice. Furthermore, the benefit of having parallel walkers in-

stead of parallel independent chains (e.g. such as in Metropolis sampling) is

clear, the walkers share information about the covariance structure of the

distribution thus accelerating mixing.

10.4 empirical evaluation

To empirically evaluate the sampling performance of the Ensemble Slice Sam-

pling algorithm we perform a series of tests. In particular, we compare its

ability to sample from two demanding target distributions, namely the au-
toregressive process of order 1 and the correlated funnel, against theMetropolis

and Standard Slice Sampling algorithms. The Metropolis’ proposal scale was

tuned to achieve the optimal acceptance rate, whereas the initial length scale

of Standard Slice Sampling was tuned using the stochastic scheme of Algo-

rithm 15. Ensemble Slice Sampling significantly outperforms both of them.

These tests help establish the characteristics and advantages of Ensemble

Slice Sampling. Since our objective was to develop a gradient-free black-box

method we then proceed to compare Ensemble Slice Sampling with a list

of gradient-free ensemble methods such as Affine Invariant Ensemble Sam-

4 Perhaps a small detail, but we have included the length scale in the definition of the direction

vector 𝜂 and therefore it does not appear in the definition of the (𝐿, 𝑅) interval.
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Algorithm 19 Single Iteration 𝑡 of Ensemble Slice Sampling.

1: Given 𝑡 , 𝑓 , 𝜇(𝑡), 𝑆[0], 𝑆[1], 𝑀adapt
:

2: Initialise 𝑁 (𝑡)
𝑒 = 0 and 𝑁 (𝑡)

𝑐 = 0,
3: for 𝑖 = 0, 1 do
4: for 𝑘 = 1, ..., 𝑁 /2 do
5: 𝑘 ← 𝑘 + 𝑖𝑁 /2
6: Compute direction vector 𝜼𝑘 ← DifferentialMove(𝑘, 𝜇(𝑡), 𝑆[𝑖])
7: Sample 𝑌 ∼ Uniform(0, 𝑓 (𝐗𝐤

(𝑡)))
8: Sample 𝑈 ∼ Uniform(0, 1)
9: Set 𝐿 ← −𝑈 , and 𝑅 ← 𝐿 + 1
10: while 𝑌 < 𝑓 (𝐿) do
11: 𝐿 ← 𝐿 − 1
12: 𝑁 (𝑡)

𝑒 ← 𝑁 (𝑡)
𝑒 + 1

13: end while
14: while 𝑌 < 𝑓 (𝑅) do
15: 𝑅 ← 𝑅 + 1
16: 𝑁 (𝑡)

𝑒 ← 𝑁 (𝑡)
𝑒 + 1

17: end while
18: while True do
19: Sample 𝑋 ′ ∼ Uniform(𝐿, 𝑅)
20: Set 𝑌 ′ ← 𝑓 (𝑋 ′𝜼𝑘 +𝐗𝐤

(𝑡))
21: if 𝑌 < 𝑌 ′ then
22: break
23: end if
24: if 𝑋 ′ < 0 then
25: 𝐿 ← 𝑋 ′

26: 𝑁 (𝑡)
𝑐 ← 𝑁 (𝑡)

𝑐 + 1
27: else
28: 𝑅 ← 𝑋 ′

29: 𝑁 (𝑡)
𝑐 ← 𝑁 (𝑡)

𝑐 + 1
30: end if
31: end while
32: Set 𝐗𝐤

(𝑡+1) ← 𝑋 ′𝜼𝑘 +𝐗𝐤
(𝑡)

33: end for
34: end for
35: 𝜇(𝑡+1) ← TuneLengthScale(𝑡 , 𝜇(𝑡), 𝑁 (𝑡)

𝑒 , 𝑁 (𝑡)
𝑐 , 𝑀𝑎𝑑𝑎𝑝𝑡

),

pling (AIES), Differential Evolution Markov Chain (DEMC) and Kernel Den-
sity Estimate Metropolis (KM) on a variety of challenging target distributions.

Moreover, we are also interested in assessing the convergence rate of the

length scale 𝜇 during the first iterations as well as the parallel scaling of the
method in the presence of multiple CPUs. Unless otherwise specified we use



the differential move for the tests. Unlike ESS that has an acceptance rate of

1, AIES’s and DEMC’s acceptance rate is related to the number of walkers.

For that reason, and for the sake of a fair comparison, we made sure the se-

lected number of walkers in all examples would yield the optimal acceptance

rate for AIES and DEMC. As we will discuss further in Section 10.5 it makes

sense to increase the number of walkers in cases of multimodal distributions

or strong non-linear correlations. In general though, we recommend using

theminimum number of walkers (i.e. twice the number of dimensions) as the

default choice and increase it only if it is required by a specific application.

For more rules and heuristics about the initialisation and number of walkers

we direct the interested reader to Section 10.5.

10.4.1 Performance tests

Autoregressive process of order 1

In order to investigate the performance of ESS. in high dimensional and cor-

related scenarios we chose a highly correlated Gaussian as the target distri-

bution. More specifically, the target density is a discrete-time autoregressive
process of order 1, also known as AR(1). This particular target density is ide-

ally suited for benchmarking MCMC algorithms since the posterior density

in many scientific studies often approximates a correlated Gaussian. Apart

from that, the AR(1) is commonly used as a prior for time-series analysis.

The AR(1) distribution of a random vector 𝑿 = (𝑋1, ..., 𝑋𝑁 ) is defined re-

cursively as follows:

𝑋1 ∼  (0, 1) ,
𝑋2|𝑋1 ∼  (𝛼𝑋1, 𝛽2) ,

⋮
𝑋𝑁 |𝑋𝑁−1 ∼  (𝛼𝑋𝑁−1, 𝛽2) ,

(10.13)

where the parameter 𝛼 controls the degree of correlation between parame-

ters and we chose it to be 𝛼 = 0.95. We set 𝛽 =
√
1 − 𝛼2 so that the marginal

distribution of all parameters is  (0, 1). We also set the number of dimen-

sions to 𝑁 = 50.
For each method, we measured the mean integrated autocorrelation time

(IAT), and the number of effective samples per evaluation of the probability

density function, also termed efficiency (see Appendix 10.7 for details). For

this test we ran the samplers for 107 iterations. In this example we used the

minimum number of walkers (i.e. 100 walkers) for ESS and the equivalent

number of probability evaluations for Metropolis and Slice Sampling with

each walker initialised at a position sampled from the distribution  (0, 1).
The results are presented in Table 2. The chain produced by Ensemble Slice

Sampling has a significantly shorter IAT (20 − 40 times) compared to either of

157



2 0 2
x1

2

0

2

x 2

Metropolis
Independent

2 0 2

x1

2

0

2

x 2

Slice
Independent

2 0 2

x1

2

0

2

x 2

ESS
Independent

Figure 10.5: The plots compare the 1-sigma and 2-sigma contours generated by the

optimised random-walk Metropolis (left), Standard Slice (centre) and

Ensemble Slice Sampling (right) methods to those obtained by Inde-

pendent Sampling (blue) for the AR(1) distribution. All samplers used

the same number of probability density evaluations, 3 × 105. Only the

first two dimensions are shown here.

Table 2: The table shows a comparison of the optimally tuned Metropolis, Standard

Slice, and Ensemble Slice Sampling with the differential move (ESS-D) and

the Gaussian move (ESS-G) respectively in terms of the integrated auto-

correlation time (IAT) and the number of effective samples per evaluation

of the probability density (efficiency) multiplied by 104. These metrics are

formally defined in Appendix 10.7. The target distributions are the 50–

dimensional autoregressive process of order 1 and the 25–dimensional cor-

related funnel distribution. The total number of iterations was set to 107.

Metropolis Slice ESS-D ESS-G

Autoregressive process of order 1

IAT 4341 2075 𝟏𝟏𝟏 𝟏𝟎𝟕
efficiency 2.3 1.0 𝟏𝟕.𝟓 𝟏𝟕.𝟖

Correlated funnel distribution

IAT - 3905 𝟏𝟐𝟗 𝟏𝟒𝟏
efficiency - 0.5 𝟏𝟓.𝟑 𝟏𝟒.𝟎

the other two methods. Furthermore, Ensemble Slice Sampling, with either

Differential or Gaussian move, generates an order of magnitude greater num-

ber of independent samples per evaluation of the probability density. In this

example the Differential and Gaussian moves have achieved almost identical

IAT values and efficiencies.

To assess themixing rate of Ensemble Slice Sampling, we set themaximum

number of probability density evaluations to 3 × 105 and show the results in

Figure 10.5. We compare the results of Ensemble Slice Sampling with those

obtained via the optimally tuned Metropolis and Standard Slice Sampling

methods. Ensemble Slice Sampling significantly outperforms both of them,

being the only one with a chain resembling the target distribution in the cho-



sen number of probability evaluations.

Correlated funnel

The second test involves a more challenging distribution, namely the corre-

lated funnel distribution adapted from Neal (2003). The funnel, tornado like,

structure is common in Bayesian hierarchical models and possesses charac-

teristics that render it a particularly difficult case. The main difficulty origi-

nates from the fact that there is a region of the parameter space where the

volume of the region is low but the probability density is high, and another

region where the opposite holds.

Suppose we want to sample an N–dimensional vector 𝑿 = (𝑋1, ..., 𝑋𝑁 )
from the correlated funnel distribution. The marginal distribution of 𝑋1 is

Gaussian with mean zero and unit variance. Conditional on a value of 𝑋1,

the vector 𝑿2−𝑁 = (𝑋2, ..., 𝑋𝑁 ) is drawn from a Gaussian with mean zero and

a covariance matrix in which the diagonal elements are exp(𝑋1), and the non-
diagonal equal to 𝛾 exp(𝑋1). If 𝛾 = 0, the parameters 𝑋2 to 𝑋𝑁 conditional on

𝑋1 are independent and the funnel distribution resembles the one proposed

by Neal (2003). The value of 𝛾 controls the degree of correlation between

those parameters. When 𝛾 = 0 the parameters are uncorrelated. For the

following test we chose this to be 𝛾 = 0.95. We set the number of parameters

𝑁 to 25.
Using 107 iterations, we estimated the IAT and the efficiency of the al-

gorithms for this distribution as shown in Table 2. Just like in the AR(1)

case we used the minimum number (i.e. 50) of walkers for ESS with each

walker initialised at a position sampled from the distribution  (0, 1). Since
the optimally-tuned Metropolis fails to sample from this particular distribu-

tion, we do not quote any results. The Metropolis sampler is unable to suc-

cessfully explore the region of parameter space with negative 𝑋1 values. The

presence of strong correlations renders the Ensemble Slice Sampler 30 times

more efficient than the Standard Slice Sampling algorithm on this particular

example. In this example, the Differential move outperforms the Gaussian

move in terms of efficiency, albeit by a small margin. In general, we expect

the former to be more flexible than the latter since it makes no assumption

about the Gaussianity of the target-distribution and recommend it as the de-

fault configuration of the algorithm.

To assess the mixing rate of the algorithm on this demanding case, we set

the maximum number of evaluations of the probability density function to

3 × 105. As shown in Figure 10.6, the Ensemble Slice Sampling is the only

algorithm out of the three whose outcome closely resembles the target dis-

tribution. The results of Metropolis were incorrect for both, the limited run

with 3 × 105 iterations and the long run with 107 iterations. In particular, the

chain produced using the Metropolis method resemble a converged chain
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Figure 10.6: The plots compare the 1-sigma and 2-sigma contours generated by the

optimised random-walk Metropolis (left), Standard Slice (centre) and

Ensemble Slice Sampling (right)methods to those obtained by Indepen-

dent Sampling (blue) for the correlated funnel distribution. All sam-

plers used the same number of probability density evaluations, 3 × 105.
Only the first two dimensions are shown here.

but in fact it is biased in favour of positive values of 𝑥1. The problem arises

because of the vanishing low probability of accepting a point with highly

negative value of 𝑥1. This indicates the inability of Metropolis to handle this

challenging case. For a more detailed discussion of this problem we direct

the reader to Section 8 of Neal, 2003. In general, the correlated funnel is a

clear example of a distribution in which a single Metropolis proposal scale

is not sufficient for all the sampled regions of parameter space. The locally

adaptive nature of ESS solves this issue.

10.4.2 Comparison to other ensemble methods

So far we have demonstrated Ensemble Slice Sampling’s performance in sim-

ple, yet challenging, target distributions. The tests performed so far demon-

strate ESS’s capacity to sample efficiently from highly correlated distribu-

tions compared with standard methods such as Metropolis and Slice Sam-

pling. Although the use of Metropolis and Slice Sampling is common, these

methods are not considered to be state-of-the-art. For this reason, we will

now compare ESS with state-of-the-art gradient-free ensemble MCMCmeth-

ods.

By far, the two most popular choices
5
of gradient-free ensemble meth-

ods are the Affine-Invariant Ensemble Sampling (AIES) (Goodman & Weare,

2010)method and the Differential EvolutionMonte Carlo (DEMC) (Ter Braak,

2006) algorithm supplemented with a Snooker update (Ter Braak & Vrugt,

2008).

5 For instance, in the fields of Astrophysics and Cosmology where most models are not differ-

entiable and gradient methods (e.g. Hamiltonian Monte Carlo or NUTS) are not applicable

the default choice is the Affine-Invariant Ensemble Sampler (AIES) (Goodman & Weare,

2010) as implemented in emcee.



In cases of strongly multimodal target distributions we will also test our

method against Sequential Monte Carlo
6
(SMC) (Del Moral et al., 2006; Liu

& R. Chen, 1998) and Kernel Density Estimate Metropolis (KM) (B. Farr &

W. M. Farr, 2015) which are particle methods specifically designed to handle

strongly multimodal densities.

Ring distribution

Although, all three of the compared methods (i.e. ESS, AIES, DEMC) are

affine invariant and thus unaffected by linear correlations, they do however

differ significantly in the way they handle non-linear correlations. In partic-

ular, only Ensemble Slice Sampling (ESS) is locally adaptive because of its

stepping-out procedure and therefore able to handle non-linear correlations

efficiently.

To illustrate ESS’s performance in a case of strong non-linear correlations

we will use the 16–dimensional ring distribution defined by:

ln = −
[
(𝑥2𝑛 + 𝑥21 − 𝑎)2

𝑏 ]

2

−
𝑛−1
∑
𝑖=1 [

(𝑥2𝑖 + 𝑥2𝑖+1 − 𝑎)2

𝑏 ]

2

,

(10.14)

where 𝑎 = 2, 𝑏 = 1 and 𝑛 = 16 is the total number of parameters. We also set

the number of walkers to be 64 and run the samplers for 107 steps discard-
ing the first half of the chains. Here we followed the heuristics discussed at

the beginning of this section and increased the number of walkers from the

minimum of 2 × 16 to 4 × 16 due to the presence of strong non-linear corre-

lations in order to achieve the optimal acceptance rate for AIES and DEMC.

The number of iterations is large enough for all samplers to converge and

provide accurate estimates of the autocorrelation time.

The results are shown in Table 3 and verify that ESS’ performance is an

order of magnitude better than that of the other methods.

Gaussian shells distribution

Another example that demonstrates ESS’s performance in cases of non-linear

correlations is the Gaussian Shells distribution defined as:

(𝚯) = circ(𝚯|𝐜1, 𝑟1, 𝑤1) + circ(𝚯|𝐜2, 𝑟2, 𝑤2), (10.15)

where

circ(𝚯|𝐜, 𝑟 , 𝑤) =
1√
2𝜋𝑤

exp
[
−
1
2
(|Θ − 𝐜| − 𝑟)2

𝑤2 ]
. (10.16)

6 As there are many different flavours of SMC, we decided to use the one implemented in

PyMC3which utilises importance sampling, simulated annealing and Metropolis sampling.
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Table 3: The table shows a comparison of the Affine Invariant Ensemble Sampling

(AIES), Differential Evolution Markov Chain (DEMC), and Ensemble Slice

Sampling methods in terms of the integrated autocorrelation time (IAT)

and the number of effective samples per evaluation of the probability den-

sity (efficiency) multiplied by 105. These metrics are formally defined

in Appendix 10.7. The target distributions are the 16–dimensional ring

distribution, the 10–dimensional Gaussian shells distribution and the 13–

dimensional hierarchical Gaussian process regression distribution. In all

cases the total number of iterations was set to 107. It should be noted that

in the case of the Gaussian shells the global move was used instead of the

differential move.

AIES DEMC ESS

Ring distribution

IAT 49470 91128 𝟏𝟔𝟕𝟓
efficiency 2.0 1.1 𝟏𝟐.𝟐

Gaussian shells distribution

IAT 33046 2760 𝟖𝟗
efficiency 3.0 36.0 𝟕𝟑𝟏.𝟎

Hierarchical Gaussian process regression

IAT 55236 30990 𝟓𝟒𝟕
efficiency 1.8 3.2 𝟑𝟖.𝟎

We choose the centres, 𝐜1 and 𝐜2 to be −3.5 and 3.5 in the first dimension

respectively and zero in all others. We take the radius to be 𝑟 = 2.0 and the

width 𝑤 = 0.1. In two dimensions, the aforementioned distribution corre-

sponds to two equal-sized Gaussian Shells. In higher dimensions the geom-

etry of the distribution becomes more complicated and the density becomes

multimodal.

For our test, we set the number of dimensions to 10 and the number of

walkers to 40 due to the existence of two modes. Since this target distribu-

tion exhibits some mild multimodal behaviour we opt for the global move

instead of the default differential move although the latter also performs ac-

ceptably in this case. The total number of iterations was set to 107 and the

first half of the chains was discarded. The results are presented in Table 3.

ESS’s autocorrelation time is 2 − 3 orders of magnitude lower than that of

the other methods and the efficiency is higher by 1 − 2 orders of magnitude

respectively.



Hierarchical Gaussian process regression

To illustrate ESS’s performance in a real-world example we will use a mod-

elling problem concerning the concentration of𝐶𝑂2 in the atmosphere adapted

from Chapter 5 of Rasmussen, 2003. The data consist of monthly measure-

ments of the mean 𝐶𝑂2 concentration in the atmosphere measured at the

Mauna Loa Observatory (Keeling & Whorf, 2004) in Hawaii since 1958. Our
goal is to model the concentration of 𝐶𝑂2 as a function of time. To this

end, we will employ a hierarchical Gaussian process model with a compos-

ite covariance function designed to take care of the properties of the data.

In particular, the covariance function (kernel) is the sum of following four

distinct terms:

𝑘1(𝑟) = 𝜃21 exp(−
𝑟2

2𝜃2)
, (10.17)

where 𝑟 = 𝑥 − 𝑥 ′
that describes the smooth trend of the data,

𝑘2(𝑟) = 𝜃23 exp [−
𝑟2

2𝜃4
− 𝜃5 sin2(

𝜋𝑟
𝜃6 )]

, (10.18)

that describes the seasonal component,

𝑘3(𝑟) = 𝜃27 [1 +
𝑟2

2𝜃8𝜃9 ]

−𝜃8
, (10.19)

which encodes medium-term irregularities, and finally:

𝑘4(𝑟) = 𝜃210 exp(−
𝑟2

2𝜃11)
+ 𝜃212𝛿𝑖𝑗 , (10.20)

that describes the noise. We also fit the mean of the data, having in total 13

parameters to sample.

We sample this target distribution using 36 walkers for 107 iterations and
we discard the first half of the chains. The number of walkers that was used

corresponds to 1.5 times the minimum number. We found that this value

results in the optimal acceptance rate for AIES and DEMC. For this example

we use the differential move of ESS. The results are presented in Table 3.

The integrated autocorrelation time of ESS is 2 orders of magnitude lower

than that of the other methods and its efficiency is more than an order of

magnitude higher. The performance is weakly sensitive to the choice of the

number of walkers.

Bayesian object detection

Another real world example with many applications in the field of astronomy
is Bayesian object detection. The following model adapted from Feroz &Mike

P Hobson, 2008 can be used with a few adjustments to detect astronomical

objects in telescope images often hidden in background noise.
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We assume that the 2D circular objects present in the image are described

by the Gaussian profile:

𝐆(𝑥, 𝑦; 𝜽) = 𝐴 exp [ −
(𝑥 − 𝑋 )2 + (𝑦 − 𝑌 )2

2𝑅2 ] , (10.21)

where 𝜃 = (𝑋, 𝑌 , 𝐴, 𝑅) are parameters that define the coordinate position,

the amplitude and the size of the object, respectively. Then the data can be

described as:

𝐃 = 𝐍 +
𝑛
Obj

∑
𝑖=1

𝐆(𝜽𝒊) , (10.22)

where 𝑛
Obj

is the number of objects in the image and 𝐍 is an additive Gaus-

sian noise term.

Assuming a 200 × 200 pixel-wide image, we can create a simulated dataset

by sampling the coordinate positions (𝑋, 𝑌 ) of the objects from  (0, 200)
and their amplitude 𝐴 and size 𝑅 from  (1, 2) and  (3, 7), respectively. We

sample 𝑛
Obj

= 8 objects in total. Finally, we sample the noise 𝐍 from (0, 4).
In practice we create a dataset of 100 such images and one such example is

shown in Figure 10.7. Notice that the objects are hardly visible as they are

obscured by the background noise, this makes the task of identifying those

objects very challenging.
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Figure 10.7: The plot shows a simulated image used in the Bayesian object detec-

tion exercise. There are 8 circular objects included here. As the objects
are hardly visible due to the background noise their centres aremarked

with red stars.



Following the construction of the simulated dataset, the posterior proba-

bility density function is defined as:

𝑃 (𝜽 |𝐃) ∝ exp
{
[𝐆(𝜽) −𝐃]2

2𝜎2

}
𝑃 (𝜽) , (10.23)

where 𝜎 = 2 is the standard deviation of the 𝐍 noise term. The prior 𝑃 (𝜽)
can be decomposed as the product of prior distributions of 𝑋 , 𝑌 , 𝐴, and
𝑅. We used uniform priors for all of these parameters with limits (0, 200)
for 𝑋 and 𝑌 , (1, 2) for 𝐴, and (2, 9) for 𝑅. It is important to mention here

that the posterior does not include any prior information about the exact or

maximumnumber of objects in the data. In that sense, the sampler is agnostic

about the exact number, positions and characteristics (i.e. amplitude and size)

of the objects that it seeks to detect.

We sampled the posterior distribution using 200 walkers (initialised from

the prior distribution) for each image in our dataset (i.e. 100 images in total)

using Ensemble Slice Sampling (ESS), Affine Invariant Ensemble Sampling

(AIES), and Differential Evolution Markov Chain (DEMC). Although the pos-

terior distribution is multimodal (i.e. 8modes) we used the differential move

since the number of dimensions is low and there is no reason to use more

sophisticated moves like the global move. We used a large enough ensemble

of walkers due to the potential presence of multiple modes so that all three

samplers are able to resolve them.

We ran each sampler for 104 iterations in total and we discarded the first

half of the chains. We found that, on average for the 100 images, ESS iden-

tifies correctly 7 out of 8 objects in the image, whereas AIES and DEMC

identify 4 and 5, respectively.
In cases where the objects are well-separated ESS often identifies correctly

8 out of 8. Its accuracy falls to 7/8 in cases where two of the objects are very

close to each other or overlap. In those cases ESS identifies the merged object

as a single object. In this context, by identification of an object, we mean

that at least one walker has sampled the posterior mode which corresponds

to that object.

Gaussian Mixture

One strengths of ESS is its ability to sample from strongly multimodal distri-

butions in high dimensions. To demonstrate this, we will utilise a Gaussian

Mixture of two components centred at −𝟎.𝟓 and +𝟎.𝟓with standard deviation
of 𝟎.𝟏. We also put 1/3 of the probability mass in one mode and 2/3 in the

other.

We first set this distribution at 10 dimensions and we sample this using

80 walkers for 105 steps. The distance between the two modes in this case

is approximately 32 standard deviations. We then increase the number of

dimensions to 50 and we sample it using 400 walkers for 105 iterations. In
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this case, the actual distance between the two modes is approximately 71
standard deviations. The total number of iterations was set to 107 for all

methods but the SMC.

This problem consists of two, well separated, modes and thus requires us-

ing at least twice the minimum number of walkers (i.e. at least 40 for the

10–dimensional case and 200 for the 50–dimensional one). Although the

aforementioned configuration was sufficient for ESS to provide accurate es-

timates, we opted instead for twice that number (i.e. 80 walkers for the 10–

dimensional cases and 400 for the 50–dimensional one) in order to satisfy

the requirements of the other samplers, mainly the Kernel Density Estimate

Metropolis (KM), but also AIES and DEMC. For the Sequential Monte Carlo

(SMC) sampler we used 2000 and 20000 independent chains for the low and

high dimensional case respectively. The temperature ladder that interpolates

between the prior and posterior distribution was chosen adaptively guaran-

teeing an effective sample size of 90% the physical size of the ensemble. Our

implementation of SMC was based on that of PyMC3 using an independent

Metropolis mutation kernel.

The results for the 10–dimensional and 50–dimensional cases are plotted

in Figures 10.8 and 10.9, respectively. In the 10–dimensional case, both ESS

(differential and global move) and SMC managed to sample from the target

whereas AIES, DEMC and KM failed to do so. In the 50–dimensional case,

only the Ensemble Slice Sampling with the global move manages to sample

correctly from this challenging target distribution. In practice ESS𝐺 is able

to handle similar cases in even higher number of dimensions and with more

than 2 modes.
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Figure 10.10: The plot shows the adaptation of the length scale 𝜇 as a function of

the number of iterations and starting from a wide range of initial

values. Each trace is an independent run and the y-axis shows the

value of 𝜇 divided by the final value of 𝜇. The target distribution

in this example is a 20–dimensional correlated normal distribution.

Starting from larger 𝜇 values leads to significantly faster adaptation.

10.4.3 Convergence of the Length Scale 𝜇

Figure 10.10 plots the convergence of the length scale during the first 20 itera-

tions. The target distribution in this example is a 20–dimensional correlated

normal distribution. The length scale 𝜇 was initialised from a wide range

of possible values. Adaptation is significantly faster when the initial length

scale is larger than the optimal one rather than smaller. Another benefit of

using a larger initial estimate would be the reduced number of probability

evaluations during the first iterations. This is due to the fact that the shrink-

ing procedure is generally faster than the stepping-out procedure.

10.4.4 Parallel Scaling

By construction, Ensemble Slice Sampling can be used in parallel comput-

ing environments by parallelising the ensemble of walkers as discussed in

Section 10.3.2. The maximum number of CPUs used without any of them be-

ing idle is equal to the size of complementary ensemble, 𝑛
Walkers

/2. In order

to verify this empirically and investigate the scaling of the method for any

number of CPUs, we sampled a 10–dimensional Normal distribution for 105

iterations with varying number of walkers. The results are plotted in Figure
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Figure 10.11: The plot shows the time 𝑡𝑓 required for ESS to complete a pre-

specified number of iterations as a function of the ratio of the number

of available CPUs 𝑛CPUs to the total number of walkers 𝑛Walkers. The

results are normalised with respect to the single CPU case 𝑡1. The

method scales as (1/𝑛CPUs) as long as 𝑛CPUs ≤ 𝑛Walkers/2 (dashed

line). The shaded areas show the 2 − 𝜎 intervals.

10.11. We sampled the aforementioned distribution multiple times in order

to get estimates of the confidence integrals shown in Figure 10.11. The re-

quired time to do the pre-specified number of iterations scales as (1/𝑛CPUs)
as long as 𝑛CPUs ≤ 𝑛Walkers

/2. This result does not depend on the specific dis-

tribution. We can always use all the available CPUs by matching the size of

the complementary ensemble (i.e. half the number of walkers) to the number

of CPUs.

10.5 discussion

In Section 10.4 we provided a quantitative comparison of the efficiency of En-

semble Slice Sampling compared to other methods. In this Section we will

provide some qualitative arguments to informally demonstrate the advan-

tages of Ensemble Slice Sampling over other methods. Furthermore, we will

briefly discuss some general aspects of the algorithm and place our work in

the context of other related algorithms.

After the brief adaptation period is over and the length scale 𝜇 is fixed, the
Ensemble Slice Sampling algorithm performs on average 5 evaluations of the
probability density per walker per iteration, assuming that either the differ-



ential or Gaussian move is used. This is in stark contrast with Metropolis-

based MCMC methods that perform 1 evaluation of the probability density

per iteration. However, the non-rejection nature of Ensemble Slice Sampling

more than compensates for the higher number of evaluations as shown in

Section 10.4, thus yielding a very efficient scheme.

One could think of the number of walkers as the only free hyperparame-

ter of Ensemble Slice Sampling. However, choosing the number of walkers

is usually trivial. As we mentioned briefly at the end of Section 10.3, there

is a minimum limit to that number. In particular, in order for the method to

be ergodic, the ensemble should be made of at least 2 ×𝐷 walkers
7
, where 𝐷

is the number of dimensions of the problem. Assuming that the initial rela-

tive displacements of the walkers span the parameter space (i.e. they do not

belong to a lower-than-𝐷-dimensional space) the resulting algorithm would

be ergodic. As shown in Section 10.4, using a value close to the minimum

number of walkers, meaning twice the number of parameters, is generally a

good choice. Furthermore, we suggest to increase the number of walkers by

a multiplicative factor equal to the number of well separated modes (e.g. four

times the number of dimensions in a bimodal density). Other cases in which

increasing the number of walkers can improve the sampling efficiency in-

clude target distributions with strong non-linear correlations between their

parameters.

Regarding the initial positions of the walkers, we found that we can re-

duce the length of the burn-in phase by initialising the walkers from a tight

sphere (i.e. Normal distribution with a very small variance) close to theMax-
imum a Posteriori (MAP) estimate. In high dimensional problems, the MAP

estimate will not reside in the typical set and the burn-in phase might be

longer. We found that the tight sphere initialisation is still an efficient strat-

egy compared to a more dispersed initialisation (Foreman-Mackey, Hogg,

et al., 2013). Other approaches include initialising the walkers by sampling

from the prior distribution or the Laplace approximation of the posterior dis-

tribution. In multimodal cases, a prior initialisation is usually a better choice.

A brief simulated annealing phase can also be very efficient, particularly in

cases with many well separated modes.

Recent work on the No U-Turn Sampler (M. D. Hoffman, Gelman, et al.,

2014) has attempted to reduce the hand-tuning requirements of Hamilto-

nian Monte Carlo (Betancourt, 2017b) using the dual averaging scheme of

Nesterov (2009). In order to achieve a similar result, we employed the much

simpler stochastic approximation method of Robbins &Monro (1951) to tune

the initial length scale 𝜇. The Affine Invariant Ensemble Sampler (Goodman

7 The reason that the minimum limit is 2 × 𝐷 instead of 𝐷 + 1 has to do with the ensemble

splitting procedure that we introduced in order to make the method parallel. Splitting the

ensemble into two equal parts means that each walker is updated based on the relative

displacements of half the ensemble.
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& Weare, 2010) and the Differential Evolution MCMC (Ter Braak, 2006) use

an ensemble of walkers to perform Metropolis updates. Our method differs

by using the information from the ensemble to perform Slice Sampling up-

dates. So why does ESS perform better, as demonstrated, compared to those

other methods? The answer lies in the locally adaptive and non-rejection

nature of the algorithm (i.e. stepping out and shrinking) that enables both

efficient exploration of non-linear correlations and large steps in parameter

space (e.g. using the global move)
8
.

For all numerical benchmarks in this paper we used the publicly available,

open source Python implementation of Ensemble Slice Sampling called

zeus9
(Karamanis, Beutler & Peacock, 2021).

10.6 conclusion

We have presented Ensemble Slice Sampling (ESS), an extension of Standard

Slice Sampling that eliminates the latter’s dependence on the initial value

of the length scale hyperparameter and augments its capacity to sample ef-

ficiently and in parallel from highly correlated and strongly multimodal dis-

tributions.

In this paperwe have compared Ensemble Slice Samplingwith the optimally-

tuned Metropolis and Standard Slice Sampling algorithms. We found that,

due to its affine invariance, Ensemble Slice Sampling generally converges

faster to the target distribution and generates chains of significantly lower

autocorrelation. In particular, we found that in the case of AR(1), Ensemble

Slice Sampling generates an order of magnitude more independent samples

per evaluation of the probability density than Metropolis and Standard Slice

Sampling. Similarly, in the case of the correlated funnel distribution, En-

semble Slice Sampling outperforms Standard Slice Sampling by an order of

magnitude in terms of efficiency. Furthermore, in this case, Metropolis-based

proposals fail to converge at all, demonstrating that a single Metropolis pro-

posal scale is often not sufficient.

When compared to state-of-the-art ensemble methods (i.e. AIES, DEMC)

Ensemble Slice Sampling outperforms them by 1 − 2 orders of magnitude in

terms of efficiency for target distributions with non-linear correlations (e.g.

the Ring and Gaussian shells distributions). In the real world example of

hierarchical Gaussian process regression, ESS’s efficiency is again superior

by 1 − 2 orders of magnitude. Furthermore, in the Bayesian object detection

example ESS achieved higher accuracy compared to AIES and DEMC. Finally,

8 Indeed, large steps like the ones in the 50–dimensional Gaussian Mixture example would

not have been possible without the non-rejection aspect of the method as most attempts to

jump to the other mode would have missed it using Metropolis updates.

9 The code is available at https://github.com/minaskar/zeus.

https://github.com/minaskar/zeus


in the strongly multimodal case of the Gaussian Mixture, ESS outperformed

all other methods (i.e. SMC, AIES, DEMC, KM) and was the only sampler

able to produce reliable results in 50 dimensions.

The consistent high efficiency of the algorithm across a broad range of

different problems along with its parallel, black-box and gradient-free na-

ture, renders Ensemble Slice Sampling ideal for use in scientific fields such as

physics, astrophysics and cosmology, which are dominated by a wide range

of computationally expensive and almost always non-differentiable models.

The method is flexible and can be extended further using for example tem-

pered transitions (Iba, 2001) or subspace sampling (Vrugt et al., 2009).

10.7 appendix: estimating the effective sam-

ple size

Assuming that the computational bottleneck of a MCMC analysis is the eval-

uation of the probability density function, which is usually a valid assump-

tion in scientific applications, the efficiency can be formally defined as the

ratio of the Effective Sample Size 𝑁Eff to the total number of probability eval-

uations for a given chain.

The 𝑁Eff quantifies the number of effectively independent samples of a

chain, and it is defined as

𝑁Eff =
𝑛
IAT

, (10.24)

where 𝑛 is the actual number of samples in the chain, and IAT is the inte-
grated autocorrelation time. The latter describes the number of steps that the

sampler needs to do in order to forget where it started and it is defined as

IAT = 1 + 2
∞
∑
𝑘=1

𝜌(𝑘) , (10.25)

where 𝜌(𝑘) is the normalised autocorrelation function at lag 𝑘. In practice, we

truncate the above summation in order to remove noise from the estimate

(Sokal, 1997).

Given a chain 𝑋 (𝑘)with 𝑘 = 1, 2, ..., 𝑛 the normalised autocorrelation func-

tion 𝜌(𝑘) at lag 𝑘 is estimated as

𝜌(𝑘) =
𝑐(𝑘)
𝑐(0)

, (10.26)

where

𝑐(𝑘) =
1

𝑛 − 𝑘

𝑛−𝑘
∑
𝑚=1

[𝑋 (𝑘 +𝑚) − �̄�][𝑋 (𝑚) − �̄�] , (10.27)

and �̄� is the mean of the samples.
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In the case of ensemble methods, the IAT of an ensemble of chains is com-

puted by first concatenating the chain from each walker into a single long

chain. We found this estimator has lower variance than the Goodman &

Weare (2010) estimator and the Foreman-Mackey (2019) estimator.



11 ZEUS

This chapter presents zeus which is the main contribution introduced in the

paper titled zeus: A Python implementation of Ensemble Slice Sampling for effi-
cient Bayesian parameter inference that was published in the journalMonthly
Notices of the Royal Astronomical Society in 2021 (Karamanis, Beutler & Pea-

cock, 2021). The content of the chapter is almost identical to that included in

the aforementioned publication with the exception of minor text and figure

formatting differences.

We introducezeus, a well-testedPython implementation of the Ensem-

ble Slice Sampling (ESS) method for Bayesian parameter inference. ESS is a

novel Markov chainMonte Carlo (MCMC) algorithm specifically designed to

tackle the computational challenges posed by modern astronomical and cos-

mological analyses. In particular, the method requires only minimal hand–

tuning of 1 − 2 hyper-parameters that are often trivial to set; its performance

is insensitive to linear correlations and it can scale up to 1000s of CPUs with-

out any extra effort. Furthermore, its locally adaptive nature allows to sample

efficiently even when strong non-linear correlations are present. Lastly, the

method achieves a high performance even in strongly multimodal distribu-

tions in high dimensions. Compared to emcee, a popular MCMC sampler,

zeus performs 9 and 29 times better in a cosmological and an exoplanet

application respectively.

11.1 introduction

Over the past few decades the volume of astronomical and cosmological data

has increased substantially. In response to that, a variety of astrophysical

models have been developed to explain the plethora of observations. Markov

chain Monte Carlo (MCMC) has been established as the standard procedure

of inferring the model parameters subject to the available data in a Bayesian

framework. Within the Bayesian context, the object that quantifies the prob-

ability distribution of the model parameters 𝜃 given the data 𝐷 and model

 is the posterior distribution (𝜃) ≡ 𝑃 (𝜃 |𝐷,) which is defined using

Bayes’s theorem:

(𝜃) =
(𝜃)𝜋 (𝜃)


, (11.1)
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where (𝜃) ≡ 𝑃 (𝐷|𝜃,) is the likelihood function, 𝜋 (𝜃) ≡ 𝑃 (𝜃 |) is the
prior distribution of the model parameters 𝜃 , and  ≡ 𝑃 (𝐷|) is the, so
called, Bayesian model evidence or marginal likelihood and in this context

can be treated as a simple normalisation constant.

MCMC does not in general require knowing the value of the model evi-

dence and it only depends on the ability to evaluate the unnormalised pos-

terior distribution for arbitrary values of 𝜃 . MCMC methods can then be

used to generate (Markov) chains of samples from the posterior distribution.

Those samples can be used to calculate integrals (e.g. parameter uncertain-

ties, marginal distributions etc.) that are paramount formodern astronomical

and cosmological analyses.

The most commonly used MCMC methods are variants of the Metropolis-

Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953). MH con-

sists of two steps. First, given the last sample in the chain, a new sample is

proposed and then the Metropolis criterion determines whether or not that

new sample should be accepted and thus added to the chain. The resulting

chain is Markovian in the sense that each sample is proposed based only on

the previous sample. The purpose of theMetropolis acceptance criterion is to

bias the chain so that the time spent in a region of the parameter space would

be proportional to the posterior probability in that region. In other words,

the stationary distribution of the Markov chain is the target distribution i.e.

the posterior distribution. For a detailed introduction to MCMC methods

we direct the reader to MacKay (2003) and for an intuitive introduction to

Bayesian inference to E. T. Jaynes (2003).

Arguably, the most difficult part of the MH algorithm is the proposal step.

There are many ways of choosing a new sample and the efficiency of the

method depends on this choice. By far the simplest one is the use of a normal

(Gaussian) distribution, centred around the previous sample to generate the

new proposed sample. The resulting method is often called Random Walk

Metropolis algorithm and its performance is highly sensitive to the 𝑛(𝑛 + 1)/2
elements that form its covariance matrix. Those elements generally need to

be chosen a priori or be adaptively tuned. More efficient methods utilise

the gradient of the target distribution (Betancourt, 2017a) or an ensemble of

parallel and communicating chains (Gilks, Roberts, et al., 1994; Goodman &

Weare, 2010; Ter Braak, 2006; Ter Braak & Vrugt, 2008).

Out of the methods mentioned in the previous paragraph we will focus

our attention on the last one, the ensemble or population MCMC variety.

The reason is simple: the Random Walk Metropolis algorithm requires a

great amount of tuning (or a priori knowledge) for it to perform efficiently

and even then there is no guarantee that the proposal covariance matrix is

optimal for the whole parameter space. On the other hand, gradient based

methods, although very powerful, are in general unsuitable for astronom-



ical applications in which the models that are used are almost always not

differentiable.

One benefit of ensemble MCMC over its alternatives is that the ensemble

of parallel chains (also known as walkers) collectively sample the posterior,

thus information about their distribution can be shared and used tomake bet-

ter educated proposals. Other advantages include the lack of hand-tuning of

hyper-parameters and their capacity for parallel implementation. For the

aforementioned reasons, ensemble MCMC methods have dominated astro-

nomical analyses. The most common ones are affine–invariant ensemble

sampling (AIES) (Goodman &Weare, 2010) and differential evolutionMCMC

(DEMC) (Ter Braak, 2006; Ter Braak & Vrugt, 2008), both implemented in

the popular Python package emcee (Foreman-Mackey, Will M Farr, et

al., 2019; Foreman-Mackey, Hogg, et al., 2013).

In this paper we introduce zeus, a stable and well-tested Python im-

plementation of Ensemble Slice Sampling (ESS) (Karamanis & Beutler, 2021).

ESS is a method based on the ensemble MCMC paradigm, with the crucial

difference being that its proposals are performed via Slice Sampling updates

(Neal, 2003) instead of Metropolis-Hastings ones. As we will thoroughly

demonstrate in Section 11.3, this subtle difference leads to substantial im-

provements in terms of sampling efficiency and robustness. zeus is a user-

friendly tool that does not require any hand-tuning or preliminary runs and

can scale up to 1000s of CPUs without any extra effort from the user.

zeus has been used in various astronomical and cosmological analyses,

including cosmological tests of gravity (Tamosiunas, 2020), relativistic ef-

fects and primordial non-Gaussianity (M. Wang et al., 2020), 21cm inten-

sity mapping (Umeh et al., 2021), and has been implemented as part of the

CosmoSIS package (J. Zuntz et al., 2015).

zeus is open source software that is publicly available at https://github.

com/minaskar/zeus under the GPL-3 Licence. Detailed documenta-

tion and examples on how to get started are available at https://zeus-mcmc.

readthedocs.io.

11.2 ensemble slice sampling

zeus is a Python implementation of the Ensemble Slice Sampling (ESS)

method presented in Karamanis & Beutler (2021). Here we will provide a

high-level description of the method and will refer to the accompanying pa-

per for more details about the underlying algorithmic structure and mathe-

matics.

ESS combines the ensemble MCMC paradigm with slice sampling. Since

the use of slice sampling in astronomical parameter inference is rare we will

start by explaining its function and how it differs from Metropolis updates.
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Then we will move on to discuss how it can be efficiently combined with

ensemble MCMC.

11.2.1 Slice sampling

Slice sampling is based on the idea that sampling from a distribution with

density 𝑃 (𝑥) is equivalent to uniform sampling from the area under the plot

of 𝑓 (𝑥) ∝ 𝑃 (𝑥). To this end, we introduce an auxiliary variable 𝑦, called
height, such that the joint distribution 𝑃 (𝑥, 𝑦) is uniform over the region

𝑈 = {(𝑥, 𝑦) ∶ 0 < 𝑦 < 𝑓 (𝑥)}. To sample from the marginal distribution

𝑃 (𝑥), we first sample from 𝑃 (𝑥, 𝑦) and then we marginalise by dropping the

𝑦 value of each sample.

In order to generate samples from 𝑃 (𝑥, 𝑦) we utilise the following scheme

(Neal, 2003):

1. Given the current state 𝑥0, draw 𝑦0 uniformly from (0, 𝑓 (𝑥0)).

2. Find an interval 𝐼 = (𝐿, 𝑅) that contains all, or at least part, of the slice
𝑠 = {𝑥 ∶ 𝑦0 < 𝑓 (𝑥)}.

3. Draw the new sample 𝑥1 uniformly from 𝐼 ∩ 𝑆.

L R R'L'

x

y

0

0

Figure 11.1: Illustration of the univariate slice sampling update. Given the current

sample 𝑥0, a value 𝑦0 is uniformly sampled along the vertical slice

(0, 𝑓 (𝑥0)) (dashed line) thus defining the initial point (blue). An inter-

val (𝐿, 𝑅) is uniformly positioned horizontally around (𝑥0, 𝑦0) and it is

expanded in steps of size 𝑅 − 𝐿 until both its ends are outside the slice.

The new sample is generated by repeatedly sampling (uniformly) from

the interval (𝐿 ′, 𝑅 ′) until a sample (green star) is found inside the slice.

Samples outside of the slice (red star) are rejected and they are instead

used to shrink (𝐿 ′, 𝑅 ′).



To construct the interval 𝐼 (step ii), Neal (2003) introduced the stepping-

out procedure that works by randomly positioning an interval of length 𝜇
around the sample 𝑥0 (i.e. blue dot in Figure 11.1) and then expanding it in

steps of size 𝜇 until both its ends (i.e. 𝐿 ′ and 𝑅 ′
) are outside the slice. To

obtain 𝑥1 (i.e. green star in Figure 11.1) we then use the shrinking procedure

in which candidates are sampled uniformly from 𝐼 until a point inside the

slice 𝑆 is found. Samples outside of the slice are used to shrink the interval

𝐼 . The two procedures are shown in Figure 11.1.

The length scale 𝜇 is the only free hyperparameter of slice sampling and

although its choice can reduce or increase the computational cost of the

method it generally does not affect its mixing properties (e.g. convergence

rate, autocorrelation time, etc.). zeus utilises a stochastic optimization al-

gorithm similar to Tibbits et al. (2014) and based on the Robbins & Monro

(1951) optimisation scheme in order to tune 𝜇 to its optimal value (see Section

3.1 of Karamanis & Beutler (2021) for more details).

It is important to note here that for multimodal target distributions there is

no guarantee that the approximate slice would cross any of the other modes.

In particular, if the initial estimate of the length scale 𝜇 is low then the proba-

bility of missing the other peaks, assuming that they are located far away, is

also low. As we will show in Section 11.3, unlike simple slice sampling, ESS

and thus zeus does not suffer from this effect.

11.2.2 Walkers, moves and parallelism

The slice sampling update described in the previous paragraphs is a univari-

ate update scheme. For it to be used to sample from multivariate target dis-

tributions it needs to be generalised accordingly. Perhaps the simplest such

generalisation in a multivariate setting is the use of slice sampling to sample

along each coordinate axis in turn (i.e. component-wise slice sampling) or

to sample along randomly selected directions in parameter space (MacKay,

2003). Although valid, both of these approaches are unsuitable in cases of

correlated parameters in which the proper choice of direction can substan-

tially accelerate mixing.

To address this issue, Tibbits et al. (2014) proposed to orthogonalise the

parameter space using the sample covariance, thus getting rid of linear cor-

relations between parameters. We will instead follow a different, perhaps

more flexible, approach to construct an efficient slice sampler. Our aim is to

utilise an ensemble of parallel chains/walkers that can exchange information

about the covariance structure of the target distribution and thus by-pass the

difficulties posed by correlations.

As hinted in the introduction, the ensemble of walkers collectively sam-

ple the target distribution and thus their positions encode information about

the correlations between the parameters. One way to take advantage of this

179



X

X

Y
k

Xl
m

Figure 11.2: The figure illustrates the differential move in the context of Ensemble

Slice Sampling. The walker 𝑋𝑘 to be updated is shown in red. Two

walkers, 𝑋𝑙 and 𝑋𝑚, (blue) are uniformly selected from the comple-

mentary ensemble (grey). The approximate slice (dotted line) is con-

structed parallel to the two walkers 𝑋𝑙 and 𝑋𝑚 using the stepping-out

procedure. The new position 𝑌 (green) of 𝑋𝑘 is sampled using the

shrinking procedure along the approximate slice.

information is to use it to construct direction vectors along which slice sam-

pling can take place. Many moves that generate direction vectors from the

complementary ensemble are possible. zeus offers a collection of them, in-

cluding some that utilise clustering algorithms and density estimation meth-

ods. As we will show in Section 11.3, such moves can help accelerate sam-

pling in difficult cases such as strongly multimodal distributions. Any dis-

tribution of the complementary ensemble can be used as a valid proposal to

generate such direction vectors and zeus offers a highly flexible interface

for the user to define such a move or choose one (or a mixture) from the

ones that are already implemented and tested. Here is a list of the currently

implemented moves in zeus:

∙ Differentialmove: This is the defaultmove used byzeus and shown

in Figure 11.2. Using the differential move, Ensemble Slice Sampling

updates the position of each walker in the ensemble by slice sampling

along a direction defined by the difference between two uniformly se-

lected walkers from the rest of the ensemble (i.e. the complementary

ensemble).

∙ Gaussian move: The Gaussian move samples the direction vectors

along which slice sampling is performed from a normal distribution

that shares the same covariance structure as the complementary en-



semble. This approach is very efficient in cases in which the target

distribution is close to normal.

∙ Global move: The Global move utilises a Dirichlet Process Gaussian

Mixture to fit the complementary ensemble and proposes directions

along different peaks of the target distribution in cases of strong multi-

modality.

∙ KDEmove: The KDEmove samples the direction vectors from aGaus-

sian Kernel Density Estimate of the complementary ensemble. This

can be useful in cases of highly non-Gaussian target distributions.

∙ Random move: The Random move performs slice sampling along

isotropic directions. This is equivalent of standard multivariate slice

sampling and it is mostly offered for testing purposes as it cannot han-

dle correlations efficiently.

For more information on how those moves work as well as a comparison of

the Differential, Gaussian and Global moves we direct the interested reader

to Karamanis & Beutler (2021). Unless stated otherwise the Differential move

will be used for the following examples.

To parallelise this process and capitalise on the availability of multiple

CPUs we randomly split the ensemble into two sets of walkers (i.e. active

and passive sets) (Foreman-Mackey, Hogg, et al., 2013) and choose to up-

date the positions of the active walkers along direction vectors defined by

passive walkers. Then the passive becomes active and vice versa and the pro-
cess is repeated. The ensemble splitting technique is required in order to

parallelise the algorithm without violating detailed balance. Parallelisation

is achieved in practice using either multiprocessing or MPI using the

implemented ChainManager utility that can distribute both multiple en-

sembles and multiple chains in parallel computing environments at the same

time. Heuristics to determine the number of requiredwalkers per application

are discussed in Section 11.4.

11.3 empirical evaluation

For the empirical evaluation of zeus we use five toy examples that man-

ifest significant aspects of real astronomical applications
1
(i.e. linear and

non-linear correlations, multimodality, heavy tails, hard boundaries) and

two real-world astronomical examples characteristic of modern astronom-

ical analyses.

1 For additional demonstrations on similarly common structures (e.g. the funnel) we direct

the reader to the accompanying paper (Karamanis & Beutler, 2021).
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11.3.1 Toy examples

In order to understand the behaviour of zeus in various sampling scenarios,

it is important to study its performance in different toy examples that demon-

strate different characteristics of common target distributions that arise in

astronomical applications. For that reason, we chose five such toy examples.

The first one is a normal (Gaussian) distributionwhich by definition is charac-

terised only by the linear correlation between its parameters. The second toy

problem is the ring distribution, a characteristic example of strong non-linear

correlations. The third example is a Gaussian mixture with two components.

While the purpose of the first two examples is to study the behaviour of the

algorithm in the presence of linear and non-linear correlations respectively,

the goal of the third example is to demonstrate the ability of zeus to sam-

ple efficiently from multimodal target distributions. The fourth toy example

investigates the effect that heavy tails have on the sampling efficiency and

the fifth shows the effects that hard boundaries have on sampling.

We comparezeuswith two popular alternatives offered byemcee, namely

affine–invariant ensemble sampling with the stretch move (emcee/AIES)
and the differential evolution move (emcee/DEMC). The main goal of this

analysis is to justify our choice of slice sampling as the basis of zeus in-

stead of Metropolis updates through the use of simple yet instructive toy

examples.

For all three toy examples discussed below we adopt the same analysis

procedure, where we initialise the walkers by sampling from a normal dis-

tribution (𝟎, 𝐈) where 𝐈 is the identity covariance matrix and we discarded

104 iterations as burn–in.
The main metric that we use to investigate the behaviour of the samplers

in those toy examples and to compare their performance is the distribution

of steps performed by the walkers. As a step, we define the distance spanned

in parameter space by a single walker in a single iteration. This is a fun-

damental measure of the efficiency of an MCMC method and it is directly

related to the expected squared jump distance (ESJD) (Pasarica & Gelman,

2010) given by:

ESJD = 𝐄 [|𝜃𝑡+1 − 𝜃𝑡 |2] = 2 (1 − 𝜌1) ⋅Var(𝜋 )(𝜃𝑡 ) , (11.2)

where 𝜃𝑡 are the chain samples, 𝜌1 is the first-order autocorrelation, and

Var(𝜋 )(𝜃𝑡 ) is a function of the stationary distribution only. Assuming that the

higher-order autocorrelations 𝜌2, 𝜌3,… are monotonically decreasing with

respect to 𝜌1, then maximising the ESJD leads to minimisation of the auto-

correlation between chain elements and thus maximisation of the sampling

efficiency. In other words, the further away (i.e. the greater the ESJD) the

walkers jump per iteration, the higher the sampling efficiency of the method.

A benefit of using ESJD instead of the autocorrelation time as a metric is that



the former, as an expectation value, is more accurate when computed using

short chains.

In order to account for the different computational costs (i.e. different

number of model evaluations per iteration) between zeus and emcee we

thinned the chains of the latter method according to the average number of

model evaluations of zeus. This allowed us to compare the distribution of

steps of the three samplers as shown in Figures 11.4, 11.9, 11.11, 11.13, and

11.15 for the five toy examples respectively.

The correlated normal distribution
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Figure 11.3: The figure shows numerical results (i.e. walker trajectories/chains for

the first parameter) demonstrating the performance of the three en-

semble MCMC methods in the case of a normal (Gaussian) target dis-

tribution in 10, 25 and 50 dimensions respectively. The last column

illustrates the 1-D marginal posterior corresponding to the first pa-

rameter 𝑥1 estimated directly from the samples for the 50-dimensional

case.

Starting with the normal target distribution it is important to note here

that all three of the methods used in the comparison are affine–invariant
2
,

meaning that their performance is immune to any linear correlations be-

tween the parameters. Since the normal distribution incorporates, by con-

struction, only linear correlations (i.e. the 2D marginal distribution contours

look like ellipses), it is the perfect testing ground to assess the effect that

high dimensionality has on the three methods independently of other com-

plications. For our example, we used a zero-mean normal distribution with

a covariance matrix in which the diagonal elements are set to 1 and the off-

diagonal ones are equal to 0.95. We then proceed by sampling the aforemen-

tioned distribution in 10, 25 and 50 dimensions. Based on Figure 11.3 one

2 Differential evolution Metropolis is only approximately affine–invariant due to the jitter

that it is often added to its proposal. This however has a negligible effect.
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can see that the walkers of emcee/AIES dissolve into an inefficient random

walk characterised by low step size and high autocorrelation time as the num-

ber of parameters increases. zeus and emcee/DEMC are not so severely

affected by the high number of parameters exhibiting a substantially lower

autocorrelation.
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Figure 11.4: This figure shows the distribution of step sizes of walkers for the three

different samplers in the case of a normal (Gaussian) target distribution

in 𝐷 = 50. It is important to note here that both emcee algorithms

exhibit a peak at zero separation; zeus on the other hand does not

due to its non-rejection nature.

Let us now try to explain this difference in behaviour by looking into the

distribution of the steps of the walkers in Figure 11.4. One thing to notice

here is that the distribution of the steps of zeus’s walkers extends signif-
icantly further away than those of emcee/AIES and emcee/DEMC. This

should come as no surprise since the construction of the approximate slice

allows for larger steps than Metropolis updates as shown in Table 4. This is

because when a proposal is rejected in slice sampling the approximate slice

shrinks and another sample is proposed instead. In this way, zeus’s walk-
ers always move and the chance of staying fixed is zero – unlike MH-based

updates in which frequent rejection of samples is a necessity. This aforemen-

tioned procedure leads to greater steps in parameter space. The difference be-

tween emcee/AIES and emcee/DEMC is attributed to the fact that DEMC

uses a proposal scale
3 𝛾 = 2.38/

√
𝐷 that guarantees a constant acceptance

rate accounting for the number of dimensions 𝐷. This proposal scale is how-

3 The proposal scale 𝛾 is similar to 𝜇 used in ESS in the sense that its value determines the

length scale of the proposed jumps in parameter space. A high value would lead to large



ever optimal only in the case of a normal target distribution such as the one

that we are studying here and there is no guarantee that it would return ac-

ceptable results in non-Gaussian distributions. For the case of emcee/AIES,
the relevant proposal scale 𝛾 is allowed to vary in the range between 1/𝛼 and

𝛼 where 𝛼 = 2 is often taken as the typical value. It is clear that in the latter

case 𝛾 does not possess the desired scaling 𝛾 ∝ 1/
√
𝐷 and thus, although the

method generates proposals in the right overall direction, most of the sam-

ples do not reside in the typical set (Speagle, 2019). In other words, the lack

of proper scaling of the proposal scale with the number of dimensions leads

to emcee/AIES “overshooting” the typical set where most of the posterior

mass is located.
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Figure 11.5: The figure shows numerical estimates of the integrated autocorrela-

tion time (number of steps along a chain required to obtain an inde-

pendent sample; left panel), the effective sample size (percentage of

effectively independent samples in a chain; middle panel), and the sam-

pling efficiency (i.e. effective sample size per model evaluation; right

panel) for a normal target distribution and varying number of dimen-

sions. The number of walkers was set to 4 × 𝐷 for zeus and 16 × 𝐷
for emcee, this was the optimal choice (i.e. the one maximising the

efficiency for the given dimensionality) for each sampler. zeus and

emcee/DEMC exhibit linear scaling of the autocorrelation time with

the number of dimensions whereas emcee/AIES scales exponen-

tially.

We can also draw some useful insights about the sampling efficiency of

those samplers and their scaling with the number of dimensions by estimat-

ing the integrated autocorrelation time of the chains. Given the autocorre-

lation time, we can also estimate the effective sample size as the percentage

of effectively independent samples in a chain. By dividing the effective sam-

ple size by the computational cost of each method we can then estimate the

sampling efficiency. The results of such a comparison are shown in Figure

11.5. We immediately notice here that the autocorrelation times of zeus
and emcee/DEMC scale linearly with the number of dimensions, whereas

steps that are often rejected and a low value would lead to small steps that are often accepted

but do not carry the walkers far. For such methods, a balance must be found.
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the autocorrelation time of emcee/AIES scales exponentially. The compu-

tational cost of zeus per iteration per walker, although somewhat higher

than that of emcee, does not vary with the number of dimensions. This

means that in high dimensions,zeus dominates overemcee/AIES in terms

of sampling efficiency.

Table 4: The table shows a comparison of emcee/AIES,emcee/DEMC and zeus
in terms of the expected squared jump distance (ESJD; higher is better) for

the five toy examples i.e. 50-𝐷 normal distribution, 25-𝐷 ring distribution,

25-𝐷 Gaussian mixture, 25-𝐷 Student’s 𝑡-distribution, and 25-𝐷 truncated

normal distribution.

emcee/AIES emcee/DEMC zeus

Normal 0.5288 1.1162 𝟐.𝟏𝟑𝟓𝟒
Ring 0.0043 0.0006 𝟎.𝟏𝟐𝟓𝟕
Mixture 0.0037 0.0056 𝟎.𝟏𝟎𝟏𝟓
Student 12.9124 2.4137 𝟐𝟑.𝟓𝟕𝟐𝟎
Truncated 0.0940 0.3501 𝟎.𝟓𝟖𝟖𝟐

The above discussion allows us to clearly state a crucial distinction be-

tween the three methods, which is their response to the curse of dimension-

ality. As the number of dimensions increases, the probability mass of a distri-

bution is concentrated into a thin shell within the tails of the distribution (i.e.

the typical set). To account for this and maintain its efficiency, a sampling

method has to adjust its proposal scale – otherwise, the proposals will not be

located in the typical set and thus they will not be accepted. The three meth-

ods that wementioned so far deal with this in different ways. emcee/AIES’s
proposal scale is not adjusted and thus its proposals become increasingly

inefficient in high dimensions. emcee/DEMC’s proposal scale is adjusted

based on the theoretical expectation for the case of the normal target distri-

bution. Although both emcee methods perform well in this example, their

sub-optimal scaling will degrade their performance in non-Gaussian target

distributions aswewill demonstrate in the next toy example. Finally,zeus’s
proposal scale is continuously adapted, as the slice expands and contracts in

every iteration, thus guaranteeing optimal scaling. Huijser et al. (2017) found

that the suboptimal scaling of emcee/AIES with the number of dimensions

can introduce biases into the expectation values derived from the chains in

high dimensions that are hard to diagnose. The locally adaptive nature of

zeus allows it to avoid this problem by adjusting its proposals accordingly.

Another kind of analysis we can perform is to use the highly correlated

25–dimensional normal distribution as the target distribution and estimate

the convergence rate of the three samplers. Although simple, the normal

distribution is a valid approximation of many realistic astronomical posterior

distributions and as such we expect the results presented in this paragraph to
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Figure 11.6: The figure shows the computational cost until convergence is reached

in terms of the number of model evaluations for the different ensem-

ble samplers for a highly correlated 25–dimensional normal distribu-

tion. The left panel shows the computational cost for a single walker.

From this we can see that the cost for a single walker decreases as we

increase the number of walkers until it reaches a plateau. The high

computational cost for low numbers of walkers can be attributed to

the low variety or sparsity of possible proposals; this is significantly

higher for emcee/AIES. The right panel takes into account the linear
scaling of the total computational cost as we increase the number of

walkers and shows the total computational cost for the whole ensem-

ble until it converges.

be applicable to a wide range of other distributions that resemble the normal

distribution to some extent. We acknowledge however that the no free lunch
theorem also applies to this case, and there are bound to be cases inwhich the

results would be qualitatively different. That being said, we initialised the

walkers from a compact normal distribution (i.e. standard deviation equal

to 10−4 times that of the target distribution) centred around a point along

the first axis of the parameter space at a distance of 100 standard deviations

from themode. We thenmeasured the number of model evaluations required

until the samplers have converged to the target distribution. The results for

varying number of walkers are presented in Figure 11.6.

In general, walkers move along directions defined by the walkers of the

complementary ensemble. Thus, increasing the number of walkers offers

a wider variety of available directions along which the walkers of zeus
or emcee can move via slice sampling or Metropolis updates respectively.

This is demonstrated in the left panel of Figure 11.6 in which the computa-

tional cost until convergence (i.e. number of model evaluations) for a single

walker diminishes and then reaches a plateau as the number of walkers is

increased. We notice however that, at the level of a single walker, the com-

putational cost of emcee/AIES is significantly higher compared to that of
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eitherzeus oremcee/DEMC. This is due to theway that different samplers

choose the directions along which walkers move. In particular, both zeus
and emcee/DEMC define a direction vector as the difference between two

walkers from the complementary ensemble, thus two walkers are required

to define a direction. On the other hand, emcee/AIES requires only a sin-

gle walker from the complementary ensemble as the direction is defined by

the difference between the updated walker and the complementary one. This

stark contrast between theway those samplers choose their direction vectors

lies at the heart of the difference in the computational cost of emcee/AIES
as compared to zeus and emcee/DEMC in the limit of low number of

walkers. In order to dive a little deeper into this, we can compute the exact

number of possible directions for all three methods. Since emcee/AIES re-

quires only a single walker from the complementary ensemble the number of

available directions is equal to the size of the complementary ensemble. On

the other hand, zeus’s and emcee/DEMC’s requirement for a pair of walk-

ers means that the number of available directions is equal to (𝑛2), meaning

the 2–combination from a set of 𝑛 walkers that comprise the complemen-

tary ensemble. Clearly, as shown in Figure 11.7, the latter increases faster

with the size of the complementary ensemble, thus explaining the larger va-

riety of possible directions available in the case of zeus andemcee/DEMC

compared to emcee/AIES.

The discussion so far was about the computational cost of convergence

in terms of the number of model evaluations for a single walker. Of course,

the ensemble of walkers consists by definition of more than a single walker.

Therefore, in order to compute the total number of model evaluations re-

quired until the ensemble converges we need to multiply the results of the

single walker with the total number of walkers. Those results are presented

in the right panel of Figure 11.6. From this plot we can see that both zeus
and emcee/DEMC converge faster when the number of walkers is close to

its minimum value i.e. 2 ×𝐷. emcee/AIES on the other hand prefers a higher
number of walkers (i.e. 32 ×𝐷) in order to overcome the sparsity of available

directions in the limit of low number of walkers. This, however, means that

even if we choose the optimal number of walkers for emcee/AIES it would
still converge slower than either zeus or emcee/DEMC. Furthermore, we

cannot know a priori the optimal number of walkers for emcee/AIES un-

like for zeus and emcee/DEMC in which the optimal size of the ensem-

ble is close to 2 × 𝐷. Finally, the faster convergence of zeus compared to

emcee/DEMC can be attributed to the local adaptation that the former per-

forms by extending the length of the slice and thus allowing larger steps in

parameter space.
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Figure 11.7: The figure shows the number of possible directions alongwhichzeus
and emcee/AIES can propose new samples as a function of the num-

ber of walkers in the complementary ensemble. emcee/DEMC ex-

hibits the same number of proposals aszeus and it is not plotted here.

zeus has a much higher variety of possible directions compared to

emcee/AIES for any given number of walkers, assuming that that

number is greater than 2.

The ring distribution

The ring distribution defined as

ln 𝑃 (𝑥) = −
[
(𝑥2𝑛 + 𝑥21 − 𝑎)2

𝑏 ]

2

−
𝑛−1
∑
𝑖=1 [

(𝑥2𝑖 + 𝑥2𝑖+1 − 𝑎)2

𝑏 ]

2

, (11.3)

where 𝑎 = 2, 𝑏 = 1 and 𝑛 is the total number of parameters; this is an artificial

target distribution that exhibits strong non-linear correlations between its

parameters. This aspect of the ring distribution allows us to demonstrate the

locally adaptive nature of zeus. Whereasemcee/AIES andemcee/DEMC

use a single global proposal scale for all regions of the parameter space,

zeus has the ability to adjust its proposal scale locally by expanding the

slice appropriately. As expected, this will allow zeus to sample efficiently

even in cases in which strong non-linear correlations are present. Looking

at Figure 11.8 one can see that zeus manages to generate multiple samples

efficiently even in high dimensions. On the other hand, emcee/AIES and

emcee/DEMC do not efficiently produce valid proposals: for emcee/AIES
this leads to an inefficient random walk, characterised by small steps; for

emcee/DEMC the acceptance rate almost vanishes beyond 𝐷 = 2. The ex-
pected squared jump distance of each method for the case of𝐷 = 25 is shown
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in Table 4. It is important to note here that out of the three samplers only

zeusmanages to converge in all three cases (i.e. in 2, 10 and 25 dimensions).

emcee/AIES and emcee/DEMC on the other hand converge successfully

only in 2 dimensions.
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Figure 11.8: The figure shows numerical results (i.e. walker trajectories/chains for

the first parameter) demonstrating the performance of the three en-

semble MCMC methods in the case of the ring target distribution in

2, 10 and 25 dimensions respectively. The last column illustrates the

1-D marginal posterior corresponding to the first parameter 𝑥1 esti-

mated directly from the samples for the 25-dimensional case. One can

notice here that in 10 and 25 dimensions both emcee methods mix

very slowly. In the 25-dimensional case almost all of emcee/DEMC’s

walkers are unable to move and the autocorrelation time is effectively

infinite.

To explain this result one only has to look at the distribution of walker

steps of the different methods at Figure 11.9. zeus’s steps extend to large

distances in parameter spacewhereasmost of emcee/AIES’s andemcee/DEMC’s

steps are rejected (i.e. shown as zero in the histogram). We can see that

emcee/DEMC manages to perform some long distance steps but those are

few and there is almost nothing in between. It is clear from this and the pre-

vious toy examples that the 𝛾 = 2.38/
√
𝐷 scaling of emcee/DEMC’s scale

factor does not generalise well beyond the Gaussian case.

The two-component Gaussian mixture distribution

One other important aspect of astronomical posterior distributions is the

fact that many of them exhibit multiple peaks. Multimodality can arise ei-

ther from non-linear models or sparse and uninformative data. In either

case, multimodal target distributions present a formidable challenge for most

MCMC methods. Perhaps the simplest example of such a distribution is the

two-component Gaussian mixture. In this example we will position the two,
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Figure 11.9: This figure shows the distribution of step sizes of walkers for the three

different samplers in the case of a ring target distribution in 𝐷 = 25. It
is important to note here that both emcee algorithms exhibit a peak

at zero separation; zeus on the other hand does not. The existence

of the zero-peak in emcee is due to the high number of rejected pro-

posals (i.e. low acceptance rate).

equal-mass, components at −𝟎.𝟓 and +𝟎.𝟓 respectively with standard devi-

ation of 0.1. Sampling from multimodal distributions requires two types

of proposals, local proposals that sample different modes individually and

global proposals that transfer walkers from one mode to the other. For this

reason wewill make use of zeus’sGlobalMove that uses a Dirichlet Pro-

cess Gaussian Mixture model of the ensemble to efficiently propose between-

mode and within-mode steps.

As seen in Figure 11.10, zeus’s walkers manage to move from one mode

to the other frequently enough for mixing to be efficient even in the 𝐷 = 25
case. Out of emcee/AIES andemcee/DEMC, only the latter proposes valid

steps from one mode to the other in the 𝐷 = 2 case. As for the 𝐷 = 25 case,
one can see in Figure 11.11 that zeus’s walkers perform numerous jumps

whereas emcee’s walkers are unable to do so. The ability of the walkers to

jump from mode to mode is of paramount importance if we want to sample

correctly from the target distribution. Lack of such proposals will lead to

an improper probability mass ratio between the two modes and thus biased

inference. The expected squared jump distance of each method for the case

of 𝐷 = 25 is shown in Table 4.

Clustering-based proposals have also been applied to MH-type ensemble

MCMC methods but as shown in Karamanis & Beutler (2021), they fail to
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Figure 11.10: The figure shows numerical results (i.e. walker trajectories/chains

for the first parameter) demonstrating the performance of the three

ensemble MCMC methods in the case of a two-component Gaussian

mixture target distribution in 2, 10 and 25 dimensions respectively.

The last column illustrates the 1-D marginal posterior correspond-

ing to the first parameter 𝑥1 estimated directly from the samples

for the 25-dimensional case. Whereas all three samplers make valid

within-mode proposals, it is only zeus that manages to perform

between-mode jumps and thus sample correctly from the target dis-

tribution in the 10 and 25-dimensional cases. Between-mode jumps

are paramount in order to distribute the probability mass correctly

between different modes.

generate valid proposals in problems with moderate number of dimensions.

The reason is, as discussed in Section 11.3, that MH has to propose a valid

point in the other mode. In other words, whereas Ensemble Slice Sampling

only needs to determine the direction of the othermode relative to the chosen

walker correctly, MH needs to guess both the direction and the distance, a

task that rapidly becomes very hard as the number of dimensions rises.

The Student’s 𝑡-distribution

The fourth toy example tests the case in which the target distribution is char-

acterised by heavy-tails. In order to demonstrate zeus’s ability to sam-

ple efficiency is such cases we chose to use the multivariate Student’s 𝑡-
distribution with 2 degrees of freedom. The aforementioned density exhibits

heavier tails than a normal distribution which means that it is more likely to

produce samples that are far away from the mean. The 𝑡-distribution arises

when estimating the mean of a normally distributed sample with unknown
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Figure 11.11: This figure shows the distribution of step sizes of walkers for the

three different samplers in the case of a two-component Gaussian

mixture target distribution in𝐷 = 25. It is important to note here that

both emcee algorithms exhibit a peak at zero separation; zeus on

the other hand does not due to its non-rejection basis.

standard deviation and small size. The probability density function of a 𝑝–
dimensional Student’s 𝑡-distribution with 𝜈 degrees of freedom is given by:

𝑃 (𝑥) =
Γ[(𝜈 + 𝑝)/2]

Γ(𝜈/2)𝜈𝑝/2𝜋𝑝/2|𝚺|1/2
exp [1 +

1
𝜈
(𝐱 − 𝝁)𝑇𝚺−1(𝐱 − 𝝁)]

− (𝜈+𝑝)
2
, (11.4)

where 𝚺 is the 𝑝 × 𝑝 positive semi-definite shape matrix and 𝝁 is the mean

vector.

We sampled the above distribution using the three samplers in 2, 10 and

25 dimensions respectively as shown in Figure 11.12. The diagonal elements

of shape matrix 𝚺 were set to 1 and the off-diagonal elements to 0.95. The
mean vector 𝝁 was set to 𝟎. All three samplers managed to sample efficiently

in 2, 10 and 25 dimensions as shown in Figure 11.12 and Table 4. Over-

all, zeus was the most efficient method with emcee/AIES being second

and emcee/DEMC last. One can see from Figure 11.13 that the distribu-

tions of steps of zeus and emcee/AIES are very similar whereas that of

emcee/DEMC is substantially shorter. Unlike the previous toy examples in

which the proposal strategy of emcee/AIES was causing it to overshoot the
bulk of posteriormass, in the case of the heavy-tailed 𝑡-distributionmore pro-

posals are accepted. On the other hand, emcee/DEMC’s proposals which

are optimised for Gaussian targets are more conservative in the case of the

𝑡-distribution and they do not extend far away. As also demonstrated in the
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Figure 11.12: The figure shows numerical results (i.e. walker trajectories/chains

for the first parameter) demonstrating the performance of the three

ensemble MCMC methods in the case of the Student’s 𝑡-distribution
with 2 degrees of freedom in 2, 10 and 25 dimensions respectively.

The last column illustrates the 1-D marginal posterior corresponding

to the first parameter 𝑥1 estimated directly from the samples for the

25-dimensional case.

previous toy examples, the locally adaptive nature of zeus allows it to per-

form efficient proposals that span large distances in parameter space.
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Figure 11.13: This figure shows the distribution of step sizes of walkers for the

three different samplers in the case of the Student’s 𝑡-distribution
with 2 degrees of freedom in𝐷 = 25. zeus andemcee/AIES exhibit
similar distributions whereas emcee/DEMC performs shorter steps.



The truncated normal distribution

The fifth and final toy example tests the case in which the target distribution

is bounded from below or above. We chose to employ a truncated normal dis-

tribution similar to the one used in the first toy example, with the additional

constraint being that 𝑥 > 0. This effectively introduces a hard boundary

along all dimensions. One of the reasons that we study this distribution is to

assess the bias introduced by the presence of the hard boundary.
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Figure 11.14: The figure shows numerical results (i.e. walker trajectories/chains

for the first parameter) demonstrating the performance of the three

ensemble MCMC methods in the case of the truncated normal distri-

bution in 2, 10 and 25 dimensions respectively. The last column illus-

trates the 1-D marginal posterior corresponding to the first param-

eter 𝑥1 estimated directly from the samples for the 25-dimensional

case. zeus exhibits the least amount of bias near the hard boundary

at zero compared to emcee/AIES and emcee/DEMC.

We sampled the above distribution using the three samplers in 2, 10 and

25 dimensions respectively as shown in Figure 11.14. The diagonal elements

of the covariance matrix were set to 1 and the off-diagonal to 0.95. The

mean vector 𝝁 was set to 𝟎. All three samplers managed to sample effi-

ciently in 2, 10 and 25 dimensions as shown in Figure 11.14 and Table 4.

Overall, zeus was the most efficient method with emcee/DEMC being

second and emcee/AIES last. One can see from Figure 11.15 that the distri-

butions of steps of zeus and emcee/AIES are very similar whereas that

of emcee/AIES is slightly shorter. As shown in the right panels of Figure

11.14 zeus exhibits the least amount of bias compared to emcee/AIES and
emcee/DEMC. In practical astronomical examples however, only one or

two parameters would usually be bounded (e.g. the neutrino mass in galaxy

clustering analyses) and thus unbiased sampling would be easier to perform

by either of the three samplers.
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Figure 11.15: This figure shows the distribution of step sizes of walkers for the

three different samplers in the case of the truncated normal distribu-

tion in 𝐷 = 25. zeus and emcee/AIES exhibit similar distribution

whereas emcee/DEMC performs shorter steps.

11.3.2 Real astronomical analyses

The previous section employs toy examples in order to exhibit various sce-

narios that might emerge during sampling, and shows how zeus is better

equipped to handle them. To demonstrate the efficiency of zeus compared

to other samplers in realistic target distributions, we chose two common as-

tronomical inference problems as the testing ground. Those are the cases of

baryon acoustic oscillation (BAO) parameter inference and exoplanet param-

eter estimation.

We used the same three samplers in our comparison, namely emceewith

AIES and DEMC, and of course zeus. We performed three distinct tests:

∙ The first test was to estimate the efficiency for each sampler, defined as

the number of independent samples produced per log-likelihood eval-

uation. To this end, we ran the MCMC procedure 5 times for each

sampler and computed the mean efficiency using the estimated auto-

correlation time of the chains. The autocorrelation time was estimated

using the method presented in Karamanis & Beutler (2021).

∙ The second test relates to the convergence rate of the three algorithms.

As a measure of convergence rate, we adopt the inverse of the number

of iterations required until all the convergence criteria specified below

are met. In order to estimate the mean convergence rate we ran the



sampling procedure 40 times for each sampler initialising the walkers

close to the Maximum a Posteriori (MAP) estimate.

∙ Finally, we tested the sensitivity of the samplers to the initial condi-

tions by running 40 realisations with the walkers initialised from a

small sphere (of radius 10−4) around a randomly chosen point in the

prior volume, counting how many of those attempts led to converged

chains before a predetermined number of likelihood evaluations.

To determine whether a chain has converged we used four different met-

rics: the Gelman-Rubin split-𝑅 statistic (Gelman, Carlin, et al., 2013; Gelman,

Rubin, et al., 1992) using four independent ensembles of walkers; the Geweke

test (Geweke, 1992); a minimum length of the chain as a multiple of the inte-

grated autocorrelation time (IAT); as well as an upper bound on the rate of

change of the IAT. Only the second half of the chains was used to evaluate the

aforementioned criteria. The number of walkers used in both examples was

close to the minimum value of 2 × 𝐷 as specified below. As we will discuss

in Section 11.4 this often leads to faster convergence.

Cosmological inference

The particular inference problem thatwe consider here is that of the anisotropic

BAO parameter inference using estimates of the galaxy power spectrum. The

data we used comes from the 12th data release (DR12) of the high-redshift

North Galactic Cap (NGC) sample as observed by the Sloan Digital Sky Sur-

vey (SDSS) (Daniel J. Eisenstein et al., 2011) Baryon Oscillation Spectroscopic

Survey (BOSS) (Dawson et al., 2013). Our analysis follows closely that of

Beutler, Seo, et al. (2017) with the difference that we chose not to fix any pa-

rameters and fit the hexadecapole multipole of the power spectrum as well

as the monopole and quadrupole. Those choices were made solely to ren-

der the problem more challenging. Indeed the inclusion of the hexadecapole

does not contribute any additional constraining power for the data that we

used. However, such extended models will prove useful when analysing data

from larger galaxy surveys such as DESI (DESI Collaboration et al., 2016). In

terms of Bayesian inference, the problem has 22 free parameters. The results

of our analysis are consistent with those of Beutler, Seo, et al. (2017). We

used weakly informative flat (uniform) priors for all parameters except for

the two scaling parameters, 𝛼∥ and 𝛼⊥ for which we used normal (Gaussian)

priors. We used 50 walkers in total.

In terms of efficiency, zeus generates at least 5 effectively independent

samples for each one generated by emcee/DEMC and at least 9 for each one

generated by emcee/AIES factoring in the different computational costs of

the methods. As for the convergence rate, zeus converges more than 3

times faster than either emcee variant. Finally, we found that zeus is

less sensitive to the initialisation than either of the other two methods. In
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particular, out of the 40 tests conducted with different initialisation, zeus
converged 36 times, emcee/DEMC 14 times and emcee/AIES 7 times prior

to the predetermined maximum number of likelihood evaluations (i.e. 5 × 106

in this case). The aforementioned results are presented in detail in Table 5.

The 1-D and 2-D marginal posterior distributions are shown in Figure 11.16

demonstrating the agreement between the three methods
4
.

Table 5: The table shows a comparison of emcee/AIES,emcee/DEMC and zeus
in terms of the inverse efficiency (i.e. reciprocal of the number of indepen-

dent samples per model evaluation or the autocorrelation time estimate

times the average number of model evaluations per iteration per walker),

the convergence cost (i.e. number of model evaluations until convergence)

and the convergence fraction (i.e. fraction of converged chains for given

maximum number of model evaluations).

emcee/AIES emcee/DEMC zeus

Cosmological inference

efficiency
−1

12140 6750 𝟏𝟑𝟐𝟎
convergence cost 24 × 105 22 × 105 𝟔.𝟔 × 𝟏𝟎𝟓

convergence fraction 7/40 14/40 𝟑𝟔/𝟒𝟎

Exoplanet inference

efficiency
−1 1386 338 𝟒𝟕

convergence cost 36.0 × 102 17.1 × 102 𝟒.𝟖 × 𝟏𝟎𝟐

convergence fraction 23/40 29/40 𝟑𝟖/𝟒𝟎

Exoplanet inference

Another common application of MCMC methods in astronomy is the prob-

lem of exoplanet parameter inference through modelling of Keplerian orbits

and radial velocity time series data. In this section we demonstrate the per-

formance of zeus using a two-planet model with 14 free parameters and

real data from the K2-24 (EPIC-203771098) extrasolar system (Petigura et al.,

2016) that is known to host two exoplanets. We used the popular Python
package RadVel (Fulton et al., 2018) for the Keplerian modelling of the

planetary orbits. The results of our analysis are consistent with published

constraints for the aforementioned extrasolar system (Petigura et al., 2016).

We used 30 walkers in total for sampling.

We performed the same suite of tests as in the cosmological inference case.

In terms of efficiency, zeus generates more than 7 independent samples

4 No upper limit on the number of likelihood evaluations or iterations was used for this run

and convergence was diagnosed using all the metrics that we introduced.
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Figure 11.16: A corner plot showing the 1-D and 2-D marginalised posteriors for

the 22-parameter Baryon Acoustic Oscillation model as produced by

the three different ensemble MCMC methods.

per each one generated by emcee/DEMC and more than 29 independent

samples per each one generated by emcee/AIES. As for the convergence

rate, zeus converges 7.5 times faster than emcee/AIES and 3.5 faster than
emcee/DEMC on average. Finally, we found again that zeus is less sen-

sitive to the specific initialisation of the walkers. In particular, out of the

40 tests conducted with different initialisation, zeus converged 38 times,

emcee/DEMC 29 times and emcee/AIES 23 times prior to the predeter-

mined maximum number of likelihood evaluations (i.e. 5 × 103 in this case).

Detailed results about the values of the used metrics are shown in Table 5.

The 1-D and 2-D marginal posterior distributions are shown in Figure 11.17,

demonstrating the agreement between the three methods.
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Figure 11.17: A corner plot showing the 1-D and 2-D marginalised posteriors for

the 14-parameter radial velocity model as produced by the three dif-

ferent ensemble MCMC methods.

11.4 discussion

Following the analysis we conducted in Section 11.3 using the normal distri-

bution there are two important questions that need to be answered about the

initialisation of the walkers. First, how many walkers are necessary and, sec-

ond, how to choose the initial positions of the walkers. Although there are

many ways of answering those questions and there is no consistent solution

that works for all target distributions, we will try to provide some general

rules and heuristics to help ease the task of choosing the number and initial

positions of the walkers for most cases.

Let us first discuss the effect of the number of the walkers on the general

performance of zeus. Naively, one might expect that the minimum number

of walkers should be 𝐷 + 1, where 𝐷 is the number of dimensions. However,



the ensemble splitting technique, which was introduced in Section 11.3 to

render the algorithm parallelisable, requires at least 2 × 𝐷 walkers in order

to produce 2 linearly independent samples. If a smaller number is chosen

then the walkers can be trapped in a lower–dimensional hyper–plane of the

parameter space, being unable to sample properly and leading to erroneous

results. Although there is no upper bound on the number of walkers, we

recommend to use between two to four times the number of dimensions.

The reason is that increasing the number of dimensions can increase the cost

of the burn-in period as we explained in detail in Section 11.3. Ideally, one

wants to use theminimumnumber (or close to that) of walkers until the burn-

in period is over and then increase the number of walkers to rapidly produce

a great number of independent samples. It is also worth noting that in cases

in which either non-linear correlations or multiple modes are present it is

recommended to use more walkers (e.g. 4-8 times the number of parameters

for a bimodal target distribution).

As for the initialisation of the walkers, there are many ways to choose

their starting positions ranging from prior sampling to more localised initial

positions. Empirical tests indicate that the latter often outperforms the for-

mer (i.e. leads to shorter burn-in periods). That is not surprising since the

total probability of a prior-sampled initialisation can be very small when the

number of parameters is high. In particular we found that initialising the

walkers from a tight region in parameter space (i.e. normal distribution with

small variance) consistently leads to good performance. For low to moder-

ate dimensional problems initialising thewalkers from a tight ball around the

Maximum A Posteriori (MAP) estimate can substantially reduce the burn-in

period (Foreman-Mackey, Hogg, et al., 2013).

Finally, while emcee/AIES and emcee/DEMC can sample acceptably

from most target distributions with 𝐷 ≲ 20, the efficient scaling of zeus
with the number of parameters allows us to extend this range and efficiently

testmore complicatedmodels (Karamanis &Beutler, 2021). Likemost gradient-

free methods, zeus will fail to sample efficiently in very high dimensional

problems in which 𝐷 = (102). In such cases, more sophisticated algorithms

(e.g. tempering, block updating, Hamiltonian dynamics etc.) need to be used

(C. P. Robert et al., 2018).

11.5 conclusions

The aim of this project was to develop a tool that could facilitate Bayesian

parameter inference in computationally demanding astronomical analyses

and tackle the challenges posed by the complexity of the models and data

that are often used by astronomers. To this end, we introduced zeus, a
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parallel, general-purpose and gradient-free Python implementation of En-

semble Slice Sampling.

After introducing themethod in Section 11.2, we thoroughly demonstrated

its performance compared to two popular alternatives (i.e. emcee with

affine-invariant ensemble sampling and differential evolutionMetropolis) us-

ing a variety of artificial and realistic target distributions in Section 11.3. The

artificial toy examples helped to shed light on the general behaviour of the

samplers in target distributions characterised by linear and non-linear corre-

lations aswell asmultimodal densities. When compared toemcee/AIES and
emcee/DEMC in the problems of Baryon Acoustic Oscillation parameter in-

ference and exoplanet radial velocity fitting, zeus consistently converges

faster (i.e. its burn-in is shorter by a factor of at least 3), it is less sensitive

to the initialisation of the walkers and generates substantially more indepen-

dent samples per likelihood evaluation (i.e. approximately ×9 and ×29 speed-
up compared to emcee/AIES in the cosmological and exoplanet examples,

respectively).

We have shown that zeus performs similarly or better than existing

MCMC methods in a range of problems. We hope that zeus will prove

useful to the astronomical and cosmological community by complement-

ing existing approaches and facilitating the study of novel models and data

over the coming years. zeus is publicly available at https://github.

com/minaskar/zeus with detailed documentation and examples that can

be found at https://zeus-mcmc.readthedocs.io.

https://github.com/minaskar/zeus
https://github.com/minaskar/zeus
https://zeus-mcmc.readthedocs.io


12 PRECOND I T IONED MON TE

CARLO

This chapter presents Preconditioned Monte Carlowhich is the main contribu-

tion introduced in the paper titled Accelerating astronomical and cosmologi-
cal inference with Preconditioned Monte Carlo that was submitted for publica-

tion in the journal Monthly Notices of the Royal Astronomical Society in July

2022 (Karamanis, Beutler, Peacock, et al., 2022). The content of the chapter

is almost identical to that included in the aforementioned publication with

the exception of minor text and figure formatting differences.

We introduce PreconditionedMonte Carlo (PMC), a novelMonte Carlomethod

for Bayesian inference that facilitates efficient sampling of probability distri-

butions with non–trivial geometry. PMC utilises a Normalising Flow (NF) in

order to decorrelate the parameters of the distribution and then proceeds by

sampling from the preconditioned target distribution using an adaptive Se-
quential Monte Carlo (SMC) scheme. The results produced by PMC include

samples from the posterior distribution and an estimate of the model evi-

dence that can be used for parameter inference and model comparison re-

spectively. The aforementioned framework has been thoroughly tested in a

variety of challenging target distributions achieving state–of–the–art sam-

pling performance. In the cases of primordial feature analysis and gravita-
tional wave inference, PMC is approximately 50 and 25 times faster respec-

tively than Nested Sampling (NS). We found that in higher dimensional ap-

plications the acceleration is even greater. Finally, PMC is directly parallelis-

able, manifesting linear scaling up to thousands of CPUs. An open–source

Python implementation of PMC, called pocoMC, is publicly available at

https://github.com/minaskar/pocomc.

12.1 introduction

Modern astronomical and cosmological analyses have largely adopted the

framework ofBayesian probability for tasks of parameter inference andmodel

comparison. In the Bayesian context, the posterior probability distribution
(𝜃) = 𝑃 (𝜃 |,), meaning the probability distribution of the parameters

203

https://github.com/minaskar/pocomc


𝜃 of a model , given some data  and the model  is given by Bayes’

theorem:

(𝜃) =
(𝜃)𝜋 (𝜃)


, (12.1)

where(𝜃) = 𝑃 (|𝜃,) is the likelihood function, 𝜋 (𝜃) = 𝑃 (𝜃 |) is the prior
probability distribution, and  = 𝑃 (|) is the model evidence or marginal
likelihood that acts as a normalisation constant for the posterior probability

distribution. For a detailed introduction to Bayesian probability theory we

refer the reader to Gregory (2005), E. T. Jaynes (2003), and MacKay (2003)

and the reviews Sharma (2017) and Trotta (2017) for its use in astronomy

and cosmology.

In tasks of parameter inference, the goal is to infer the values of physical

and nuisance parameters from the data along with the respective uncertain-

ties. Mathematically, this is formulated as the problem of estimating expec-

tation values (e.g. mean values, standard deviations, 1–D and 2–D marginal

posterior distributions, etc.) that correspond to high–dimensional integrals

over the posterior probability density. During the past two decades, Markov
chain Monte Carlo (MCMC) has been established as the standard computa-

tional tool for the calculation of such integrals (see e.g. (Speagle, 2019) for a

review). MCMC methods generate a sequence of correlated samples, called

a Markov chain, that are distributed according to the posterior probability

distribution. Those samples can then be used in order to numerically esti-

mate expectation values. Examples of MCMC software implementations in

the astronomical and cosmological community are emcee (Foreman-Mackey,

Hogg, et al., 2013) and zeus (Karamanis, Beutler & Peacock, 2021).

Most modern MCMC methods are based upon the Metropolis–Hastings
(MH) paradigm that consists of two steps (Hastings, 1970; Metropolis et al.,

1953). In the first step, known as the proposal step, a new sample is drawn

from a known proposal distribution that depends only on the position of the

current sample/state. The validity of the new sample, and thus the decision

on whether to add it or not to the Markov chain, is determined in the sec-

ond step, known as the acceptance step, which takes into account the new

sample, the old sample (i.e. current state) and the proposal distribution that

was used in order to generate it. Arguably, the most important element of

an efficient MCMC method is the choice of the proposal distribution. The

degree to which the proposal distribution characterises the local geometry

of the target distribution determines the sampling efficiency (i.e. rate of ef-

fectively independent samples) of the method. Unfortunately, choosing or

tuning the optimal proposal distribution for a given target distribution is not

an easy task. However, certain optimal proposal distributions are known for

specific classes of target distributions. For instance, in the case of a normal

or Gaussian target distribution, using a normal proposal distribution of the

form (𝜃, 2.382Σ/𝐷), where Σ is the covariance matrix of the target density,

𝜃 is the current state of the chain, and 𝐷 is the number of dimensions yields



the maximum sampling efficiency scheme with acceptance rate of 23.4% in

the acceptance step of MH (Gelman, Gilks, et al., 1997). Alternatively, one

can use a simpler proposal distribution of the form  (𝑢, 1) where 𝑢 = 𝑓 (𝜃)
and 𝑓 is a suitable transformation. In this case, 𝑓 (𝜃) is proportional to 𝐿−1𝜃
where 𝐿 is the lower triangular matrix of the Cholesky decomposition of the

covariance matrix Σ = 𝐿𝐿𝑇 . In other words, assuming that a suitable transfor-

mation can be found, one can increase the sampling efficiency of an MCMC

method. This notion of preconditioning is central for the discussion that will

follow in the next section.

In recent years, the need for higher sampling efficiency when the correla-

tions between parameters are strong enough or the posterior exhibits multi-

ple modes, as well as the required computation of the model evidence  for

model comparison tasks, motivated the development of more advanced sam-

pling methodologies and algorithms. One very popular approach is the Se-
quential Monte Carlo (SMC) algorithm (Del Moral et al., 2006), which evolves

a set of particles through a series of intermediate steps that bridge the gap be-

tween the prior distribution and the posterior distribution by geometrically

interpolating between them. Another class of algorithms called Nested Sam-
pling (NS) (Skilling, 2004) attempts to approach the problem of Bayesian com-

putation from a slightly different perspective. Instead of evolving a set of par-

ticles though a series of geometrically–interpolated steps between prior and

posterior distribution, NS splits the posterior distribution into many slices

and attempts to sample each slice individually with an appropriate weight-

ing scheme. Many popular versions and implementations of NS exist in the

astronomical literature (Buchner, 2021; Feroz, M. Hobson, et al., 2009; WJ

Handley et al., 2015; Speagle, 2020). Whereas both SMC and NS largely ad-

dressed the problem of multimodality, the performance of both methods is

still very sensitive to the geometry of the target distribution, meaning the

presence of strong non–linear correlations.

In this paper, we introduce Preconditioned Monte Carlo (PMC), a novel

Monte Carlomethod for Bayesian inference that extends the range of applica-

tions of SMC to target distributions with non–trivial geometry, strong non–

linear correlations between parameters, and severemultimodality. PMC achieves

this by first preconditioning, or transforming the geometry of the target dis-

tribution into a more manageable one using a generative model known as

a Normalising Flow (NF) (Papamakarios, Nalisnick, et al., 2021), before sam-

pling using a SMC scheme. M. Hoffman et al. (2019) used a NF to neutralise

the bad geometry in Hamiltonian Monte Carlo (HMC) (Betancourt, 2017b)

achieving great results in terms of sampling speed but unreliable estimates

for unknown target distributions. Moss (2020) used a NF in order to parame-

terise efficient MCMC proposals and used it in the context of NS achieving a

substantial speedup on several challenging distributions. Both of the afore-

mentioned works used NFs as preconditioning transformations, the first in
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the context of HMC and the second in NS. In the context of NS and SMC,

NFs have also been used as a sampling component of the algorithm (Albergo

et al., 2019; Arbel et al., 2021; M. J. Williams et al., 2021), albeit not as a pre-

conditioner but as a density from which new samples can be generated inde-

pendently. The novelty of our work lies in the use of NFs as preconditioning

transformations in the context of SMC, thus achieving both robustness and

high sampling efficiency.

The structure of the rest of the paper is the following: Section 12.2 consists

of a detailed presentation of themethod, Section 12.3 includes awide range of

empirical tests that act as a demonstration of PMC’s sampling performance,

and Section 12.5 is reserved for the conclusions.

We also release aPython implementation of PMC, calledpocoMC, which
is publically available at https://github.com/minaskar/pocomc and de-

tailed documentation with installation instructions and examples at https:

//pocomc.readthedocs.io. The code implementation is described in the

accompanying paper (Karamanis, Nabergoj, et al., 2022).

12.2 method

12.2.1 Sequential Monte Carlo

In this subsection, we will present a brief introduction to SMC algorithms.

For a more detailed exposition, we refer the reader to Naesseth et al. (2019).

We begin by first introducing the concept of importance sampling, which is

crucial for understanding the function of SMC. Assuming that we have a tar-

get probability density 𝑝(𝜃) that we are able to evaluate up to an unknown

multiplicative constant, then if we define another density 𝜌(𝜃), called the im-
portance sampling density, such that 𝜌(𝜃) = 0 ⇒ 𝑝(𝜃) = 0 then the following

relation holds for any expectation value:

E𝑝[𝑓 (𝜃)] = ∫ 𝑓 (𝜃)𝑤(𝜃)𝜌(𝜃)𝑑𝜃/∫ 𝑤(𝜃)𝜌(𝜃)𝑑𝜃

= E𝜌[𝑓 (𝜃)𝑤(𝜃)]/E𝜌[𝑤(𝜃)] ,
(12.2)

for any function 𝑓 (𝜃) where 𝑤(𝜃) = 𝑝(𝜃)/𝜌(𝜃) are called importance weights.

What is important here is that one can use samples from the importance den-

sity 𝜌(𝜃) in order to estimate the aforementioned expectation value without

explicitly sampling from the target density 𝑝(𝜃).
A common measure of the quality of using the importance sampling den-

sity 𝜌(𝜃) to approximate 𝑝(𝜃) is the Effective Sample Size, defined as:

ESS = E𝜌[𝑤(𝜃)]2/E𝜌[𝑤(𝜃)2] . (12.3)

Unfortunately, in high–dimensional scenarios it is difficult to find an appro-

priate importance sampling density that ensures that the ESS is high enough

https://github.com/minaskar/pocomc
https://pocomc.readthedocs.io
https://pocomc.readthedocs.io


for the variance of the expectation value to be low. This is exactly the prob-

lem that SMC methods address.

SMC samplers extend the importance sampling procedure from the setting

of two densities (i.e. importance sampling density and target density) to a

sequence of 𝑇 probability distribution densities {𝑝𝑡}𝑇𝑡=1 in which each indi-

vidual density 𝑝𝑡 acts as the importance density for the next one in the series.

The method proceeds by pushing a collection of 𝑁 particles {𝜃𝑘𝑡 }𝑁𝑘=1 through
this sequence of densities until the last one is reached. Each iteration of a

SMC algorithm consists of three main steps:

1. Mutation – The population of particles is moved from {𝜃𝑘𝑡−1}𝑁𝑘=1 to

{𝜃𝑘𝑡 }𝑁𝑘=1 using aMarkov transition kernel 𝐾𝑡 (𝜃 ′|𝜃) that defines the next
importance sampling density

𝑝𝑡 (𝜃 ′) = ∫ 𝑝𝑡−1(𝜃)𝐾𝑡 (𝜃 ′|𝜃)𝑑𝜃 . (12.4)

In practice, this step consists of running multiple short MCMC chains

(i.e. one for each particle) to get the new states 𝜃 ′ starting from the old

ones 𝜃 .

2. Correction – The particles are reweighted according to the next den-

sity in the sequence. This step consists of multiplying the current

normalised weight𝑊 𝑘
𝑡 of each particle by the appropriate importance

weight:

𝑤𝑡 (𝜃𝑡 ) = 𝑝𝑡 (𝜃𝑡−1)/𝑝𝑡−1(𝜃𝑡−1) . (12.5)

3. Selection – The particles are resampled according to their normalised

weights𝑊 𝑘
𝑡 which are then set to 1/𝑁 . This can be done usingmultino-

mial resampling or more advanced schemes. The purpose of this step

is to eliminate particles with low weight and multiply the ones with

high weights.

An important feature of the SMC method is that it allows for the unbiased

estimation of the ratios of normalising constants

𝑡 /𝑡−1 =
𝑁
∑
𝑘=1

𝑊 𝑘
𝑡−1𝑤𝑡 (𝜃

𝑘
𝑡−1) , (12.6)

between subsequent densities, where 𝑊 𝑘
0 = 1/𝑁 . This is of paramount im-

portance in cases in which the first density in the series corresponds to the

prior distribution (i.e. with  = 1) and the last to the posterior distribution.

Then, SMC methods can be used in order to compute the model evidence 
for tasks of model comparison.

In principle, there are arbitrary many ways to construct the sequence of

densities {𝑝𝑡}𝑇𝑡=1. A very commonway to do so is to geometrically interpolate

between two densities 𝜌(𝜃) and 𝑝(𝜃):

𝑝𝑡 (𝜃) ∝ 𝜌(𝜃)1−𝛽𝑡𝑝(𝜃)𝛽𝑡 , 𝑡 = 1,… , 𝑇 (12.7)
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parameterised by a temperature annealing ladder:

𝛽1 = 0 < 𝛽2 < ⋯ < 𝛽𝑇 = 1 . (12.8)

In the Bayesian context, a natural choice of geometric interpolation is from

the prior 𝜋 (𝜃) to the posterior:

𝑝𝑡 (𝜃) ∝ 𝜋 (𝜃)(𝜃)𝛽𝑡 , 𝑡 = 1,… , 𝑇 (12.9)

where (𝜃) is the likelihood function. In practice, it can still be difficult to

choose a good temperature schedule. However, this can be done adaptively

by selecting the next value of 𝛽𝑡 such that the ESS is a constant 𝛼 fraction of

the number of particles 𝑁 . Numerically, this can be done by solving

(

𝑁
∑
𝑘=1

𝑤𝑘
𝑡+1(𝛽𝑡+1))

2

/
𝑁
∑
𝑘=1

𝑤𝑘
𝑡+1(𝛽𝑡+1)

2 = 𝛼𝑁 , (12.10)

the next 𝛽𝑡+1 such that 𝛽𝑡 < 𝛽𝑡+1 ≤ 1 using, for instance, the bisection method.

12.2.2 Normalising Flows

Normalising flows (NF) are generative models, which can facilitate efficient

and exact density estimation (Papamakarios, Nalisnick, et al., 2021). They are

based on the formula of change–of–variables 𝜃 = 𝑓 (𝑢) where 𝑢 is sampled

from a base distribution 𝑢 𝑝𝑢(𝑢) (i.e. usually a normal distribution). The NF is

a bijective mapping between the base distribution 𝑝𝑢(𝑢) and the often more

complex target distribution 𝑝𝜃 (𝜃) that can be evaluated exactly using

𝑝𝜃 (𝜃) = 𝑝𝑢(𝑓 −1(𝜃))
||||
det(

𝜕𝑓 −1

𝜕𝜃 )
||||
, (12.11)

where the Jacobian determinant is tractable.

NFs are usually parameterised by neural networks. However, neural net-

works are not in general invertible, and the Jacobian is not generally tractable.

Thus special care needs to be taken when choosing the architecture of the

neural network to ensure the invertability of the transformation and the

tractability of the Jacobian. For instance, if the forward transformation is

𝜃𝑖 = 𝑢𝑖 exp(𝛼𝑖) + 𝜇𝑖 and inverse transformation is 𝑢𝑖 = (𝜃𝑖 − 𝜇𝑖) exp(−𝛼𝑖), where
𝜇𝑖 and 𝛼𝑖 are constants, then it is straightforward to show that the Jacobian

satisfies

||||
det(

𝜕𝑓 −1

𝜕𝜃 )
||||
= exp( −∑

𝑖
𝛼𝑖) . (12.12)

To this end, we chose to use theMasked Autoregressive Flow (MAF), which

has been used many times successfully for density estimation tasks due to

its superior performance and high flexibility compared to alternative mod-

els (Papamakarios, Pavlakou, et al., 2017). A MAF consists of many stacked



MADE

Permute

... Repeat

Compare against
Gaussian

Figure 12.1: Illustration of the inference scheme of a Masked Autoregressive Flow
(MAF). The arrows show the conditional dependence of the variables

as well as the action of the Masked Autoregressive Density Estimation
(MADE) layer. The input target probability density (top) is mapped

into amultivariate normal distribution (bottom). A sequence ofMADE

layers and permutations is repeated multiple times in order to increase

the flexibility of the flow.
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Figure 12.2: The figure illustrates the effect of preconditioning on the Rosenbrock
distribution. The right panel shows samples (blue) from the true corre-

lated distribution and the left panel shows samples (blue) from the pre-

conditioned/transformed one. The orange samples in the left panel are

drawn from a symmetric normal proposal distribution centred around

the green point 𝑢0 and they correspond to the respective orange points
in the right panel. In other words, the transformed samples from the

simple proposal in the left panel correspond to samples that capture

the local geometry of the true target distribution in the right panel.

layers of a simpler generative model, called Masked Autoregressive Density
Estimator (MADE) (Germain et al., 2015), with subsequent permutations of

its outputs as shown in Figure 12.1. A MADE model decomposes a joint den-

sity 𝑝(𝜃) as a product of conditionals 𝑝(𝜃) = ∏𝑖 𝑝(𝜃𝑖 |𝜃1∶𝑖−1) that ensures that
any given value 𝜃𝑖 is only a function of the previous values thus maintain-

ing the autoregressive property. When the MADE is based on an autoencoder,
then masking is required in order to remove connections between different

units in different layers, so as to preserve the aforementioned autoregressive

property.

12.2.3 Preconditioning

Most Markov chain Monte Carlo (MCMC) methods struggle to sample effi-

ciently from highly correlated or skewed target distributions. Often, trans-

forming the parameters of the distribution before sampling, a process also

known as preconditioning, using appropriate change–of–variable transfor-

mations, can help ameliorate this effect by disentangling the dependence

between parameters. This is equivalent to choosing an appropriate proposal

distribution in the context of Metropolis–Hastings (MH) methods. However,

finding a valid transformation and selecting an appropriate proposal distribu-

tion is often difficult a priori; and there is no obvious way of making this joint

choice in an optimal way. For instance, a linear transformation 𝜃 ← 𝐿−1𝜃



where 𝐿 is the lower triangular matrix of the Cholesky decomposition of the

sample covariance matrix Σ = 𝐿𝐿𝑇 can remove only linear correlations and is

not effective against non–linear ones. More sophisticated transformations,

such as the use of the chirp mass and mass ratio instead of the individual

black–hole masses in gravitational wave astronomy requires expert knowl-

edge that is problem–specific.

The Metropolis acceptance criterion employed by MH methods in order to

maintain detailed balance is

𝛼 = min(1,
𝑝𝜃 (𝜃 ′)𝑞(𝜃 |𝜃 ′)
𝑝𝜃 (𝜃)𝑞(𝜃 ′|𝜃) )

, (12.13)

where 𝑝𝜃 (𝜃) is the target distribution and 𝑞(𝜃 ′|𝜃) is the proposal distribution.
For a general transformation 𝜃 = 𝑓 (𝑢) and its inverse 𝑢 = 𝑓 −1(𝜃) the modified

Metropolis acceptance criterion takes the following form

𝛼 = min
⎛
⎜
⎜
⎝
1,
𝑝𝜃 (𝑓 −1(𝑢 ′))𝑞(𝑢|𝑢 ′)||| det

𝜕𝑓 −1(𝑢 ′)
𝜕𝑢 ′

|||
𝑝𝜃 (𝑓 −1(𝑢))𝑞(𝑢 ′|𝑢)||| det

𝜕𝑓 −1(𝑢)
𝜕𝑢

|||

⎞
⎟
⎟
⎠
, (12.14)

where the Jacobian determinant also appears. In this formulation of MH, the

sampler samples the distribution in the transformed space and then samples

are pushed through the 𝜃 = 𝑓 (𝑢) transformation to the original space. As-

suming that the transformation 𝜃 = 𝑓 (𝑢) induces a simpler geometry onto

the transformed space, sampling using the above acceptance criterion can be

substantially more efficient.

Figure 12.2 shows one such transformation that transforms the banana–

shaped Rosenbrock distribution into a unit–variance normal distribution and

vice versa. The same figure also demonstrates the effectiveness of simple

proposal distributions 𝑞(𝑢 ′|𝑢) in the transformed/latent space. A symmetric

normal proposal distribution 𝑞(𝑢 ′|𝑢0) centred around a point 𝑢0 corresponds
to a highly effective proposal distribution in the original space, which cap-

tures the local geometry of the target distribution around that point.

12.2.4 Preconditioned Monte Carlo

Preconditioned Monte Carlo (PMC) is the result of the amalgamation of SMC,

NFs and preconditioning as they were introduced in the previous paragraphs.

In particular, we suggest the use of the transformation 𝜃 = 𝑓 (𝑢) of a NF in or-

der to precondition theMutation step of SMC. A pseudocode of the algorithm

is presented at Algorithm 20. The Mutation step in this case consists of 𝑁
Random–Walk Metropolis (RWM) steps, meaningMHwith an isotropic Gaus-

sian proposal distribution centred around the current state of the Markov

chain, in which the algorithm targets the preconditioned density. We fix the

acceptance rate of MH to its optimal value 23.4% between temperature steps
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by adapting the proposal scale (Gelman, Gilks, et al., 1997). As the optimal

proposal scale of MH for a Gaussian target distribution is

𝜎opt =
2.38√
𝐷
, (12.15)

where 𝐷 is the number of dimensions/parameters, we can assess the perfor-

mance of the NF preconditioner by estimating the ratio of the true scale 𝜎
to the optimal one 𝜎opt. Assuming that the NF preconditions perfectly the

target density and maps it into a unit–variance Gaussian distribution, this

ratio should be equal to one. In practice, this ratio can deviate slightly from

the optimal value of unity, and one can utilise this ratio as a metric of the pre-

conditioning quality. The number 𝑁 of the MCMC steps performed in each

iteration is determined adaptively during the run. The process we used is

based on the mean correlation coefficient between the initial positions of the

particles in the beginning of an iteration and their current positions. In par-

ticular, the particles are updated, using MCMC, until their mean correlation

coefficient drops below a prespecified threshold value. The lower the value

of this threshold, the higher the number 𝑁 of MCMC steps. It is important

to note that the correlation coefficient is computed in the preconditioned 𝑢
space.

Algorithm 20 Preconditioned Monte Carlo

1: input Number of particles 𝑁
2: 𝑡 ← 1, 𝛽1 ← 0,  ← 1
3: for 𝑘 = 1 to N do sample 𝜃𝑘1 ∼ 𝜋 (𝜃) and set𝑊 𝑘

1 = 1/𝑁
4: train 𝜃 = 𝑓 (𝑢) using {𝜃𝑘1 }𝑁𝑘=1
5: while 𝛽𝑡 ≠ 1 do
6: 𝑡 ← 𝑡 + 1
7: 𝛽𝑡 ← solution to Eq. 12.10

8: for 𝑘 = 1 to N do 𝑤𝑘
𝑡 ← 𝑊 𝑘

𝑡−1(𝜃)𝛽𝑡−𝛽𝑡−1
9:  ← 𝑁 −1∑𝑁

𝑘=1 𝑤𝑘
𝑡

10: {𝜃𝑘𝑡−1}𝑁𝑘=1 ← resample {𝜃𝑘𝑡−1}𝑁𝑘=1 according to {𝑊 𝑘
𝑡 }𝑁𝑘=1 where 𝑊

𝑘
𝑡 =

𝑤𝑘
𝑡 /∑

𝑁
𝑘 ′=1 𝑤𝑘 ′

𝑡
11: for 𝑘 = 1 to N do𝑊 𝑘

𝑡 ← 1/𝑁
12: {𝜃𝑘𝑡 }𝑁𝑘=1 ← move {𝜃𝑘𝑡−1}𝑁𝑘=1 according to 𝐾𝑡 ({𝜃

𝑘
𝑡 }𝑁𝑘=1 ← {𝜃𝑘𝑡−1}𝑁𝑘=1 ; 𝑓 )

13: train 𝜃 = 𝑓 (𝑢) using {𝜃𝑘𝑡 }𝑁𝑘=1
14: end while
15: return samples {𝜃𝑘𝑡 }𝑁𝑘=1 and estimate of the marginal likelihood 



Table 6: The table shows the default values for the hyperparameters of PMC.

NF hyperparameters SMC hyperparameters

blocks 6 particles 1000 − 4000
neurons 3 ×𝐷 ESS 95%
batch 1000 threshold 75%
epochs 500
tolerance 30
lr 10−2 − 10−5

l1 0.2

12.2.5 Hyperparameters

We can classify the hyperparameters of PMC into two groups, those that

have to do with the normalising flow and those that have to do with the

SMC algorithm. The first group consists of structure and training hyper-

paramaters for the NF. The NF structure parameters include the number

of MADE layers (blocks), as well as the number of neurons per hidden

layer (neurons). The NF training hyperparameters include the learning

rate (lr) of the Adam optimiser (Kingma & Ba, 2014), the maximum num-

ber of epochs (epochs), the training batch size (batch), the tolerance for
early stopping (tolerance), and the scale of 𝐿1 regularisation (l1). On
the other hand, the SMC hyperparameters include the number of particles

(particles), the desired effective sample size (ESS), and the correlation

coefficient threshold (threshold). The default values for those hyperpa-
rameters are shown in Table 6. We found that this configuration was robust

and efficient for a wide range of applications and thus decided to recommend

this as the default choice.

12.2.6 Parallelisation

An important property of PMC, and indeed of any SMC algorithm, is its

ideal scaling with the available number of CPUs. In particular, the mutation

step of PMC is exactly parallelisable, meaning that that the speedup gained

by using more than one CPU scales linearly with the number of CPUs as

long as 𝑛CPUs ≤ 𝑛particles. Similar methods that also use a large collection of

particles scale less favourably. For instance, Nested Sampling (NS) exhibits

sub–linear scaling as shown in Figure 12.3 of WJ Handley et al., 2015. The

aforementioned characteristic of PMC renders it ideal for computationally

costly applications that are often encountered in astronomy and cosmology.
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Figure 12.3: Parallelization of PMC compared to nested sampling. PMC (blue) ex-

hibits linear speedup compared to the sub–linear one achieved by NS

(orange).

12.3 empirical evaluation

In this section we present two toy examples and two realistic parameter in-

ference examples that reproduce common astronomical and cosmological

analyses. In all cases, the hyperparameters of PMC were set to their default

values as shown in Table 6. In both analyses, the performance of PMC is

compared to that of SMC without preconditioning but otherwise using the

same settings (e.g. number of particles, ESS, etc.) as PMC, as well as Nested
Sampling (NS), a popular particle Monte Carlo alternative

1
. The metric that

we use in order to evaluate the performance of each method is the total num-

ber of model evaluations performed until convergence. Convergence in all

methods is well–defined: in PMC and SMC the algorithm converges when

𝛽 = 1, whereas in NS the run stops when less than 1% of the model evidence

is left unaccounted. All other computational costs are negligible, including

the training and evaluation of the normalising flow in the case of PMC that

only required a few seconds for the whole inference procedure. All methods

used 1000 particles.

1 We used the popular Python implementation dynesty (Speagle, 2020) for NS.



Table 7: The table shows a comparison of PMC, NS, and SMC in terms of their com-

putational cost (i.e. total number of model evaluations until convergence).

Model evaluations (×106)

Distribution PMC NS SMC

Rosenbrock 𝟏.𝟓 136.1 118.0
Gaussian Mixture 𝟏.𝟔 222.1 9.6
Primordial Features 𝟎.𝟒 21.3 19.5
Gravitational Waves 𝟎.𝟒 10.2 4.6

12.3.1 Rosenbrock distribution

The first toy example that we used is the Rosenbrock distribution, which ex-

hibits strong non–linear correlation between its parameters. For this reason,

the Rosenbrock distribution has often been used as a benchmark target for

optimization and sampling tasks. Here we use a 20–dimensional generali-

sation of the distribution which is defined through the probability density

function given by:

log 𝑃 (𝜃) = −
𝑁 /2
∑
𝑖=1

[10 (𝜃
2
2𝑖−1 − 𝜃2𝑖)

2 + (𝜃2𝑖−1 − 1)2] . (12.16)

Furthermore, we use flat priors  (−10, 10) for all parameters. Figure 12.4

shows the 2–dimensional marginal posterior for the first two parameters as

generated by the three methods. The total computational cost of PMC, NS,

and SMC is 1.5 × 106, 136.1 × 106, and 118.0 × 106 model evaluations, respec-

tively. PMC requires approximately 1/91 of the number of model evaluations

that NS does, and approximately 1/79 of those that SMC does.

12.3.2 Gaussian Mixture

The second toy example that we used is a 50–dimensional Gaussian Mixture

with two components, one of them being twice as massive as the other. This

is a highlymultimodal problem as the target distribution exhibits two distinct

modes that are well separated. Just as in the Rosenbrock case, we use flat pri-

ors  (−10, 10) for all parameters. Figure 12.4 shows the 1–dimensional and

2–dimensional marginal posteriors for the first three parameters as gener-

ated by the three methods. The total computational cost of PMC, NS, and

SMC is 1.6 × 106, 222.1 × 106, and 9.6 × 106 model evaluations respectively.

PMC requires approximately 1/139 of the number of model evaluations that

NS does, and 1/6 of those that SMC does.
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Figure 12.4: Illustration of the 1–dimensional and 2–dimensional marginal poste-

riors for the first three out of 20 parameters of the Rosenbrock distri-

bution. The figure shows the 1–𝜎 and 2–𝜎 contours generated by Pre-
conditioned Monte Carlo (PMC) in blue, Nested Sampling (NS) in orange,
and Sequential Monte Carlo (SMC) in green. The legend also shows the
computational cost of each method in terms of the total number of re-

quired model evaluations until convergence is reached.
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Figure 12.5: Illustration of the 1–dimensional and 2–dimensional marginal poste-

riors for the first three out of 50 parameters of the two–component

Gaussian mixture distribution. The figure shows the 1–𝜎 and 2–𝜎 con-

tours generated by Preconditioned Monte Carlo (PMC) in blue, Nested
Sampling (NS) in orange, and Sequential Monte Carlo (SMC) in green.
The legend also shows the computational cost of each method in terms

of the total number of required model evaluations until convergence

is reached.
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Figure 12.6: Illustration of the 1–dimensional and 2–dimensional marginal poste-

riors for the 12 parameters of the primordial features posterior. The

figure shows the 1–𝜎 and 2–𝜎 contours generated by Preconditioned
Monte Carlo (PMC) in blue, Nested Sampling (NS) in orange, and Se-
quential Monte Carlo (SMC) in green. The legend also shows the com-

putational cost of eachmethod in terms of the total number of required

model evaluations until convergence is reached.

12.3.3 Primordial Features

The first realistic application that we study is the the search for primordial

features along the Baryon Accoustic Oscillation (BAO) signature in the distri-

bution of galaxies observed by the Sloan Digital Sky Survey (SDSS) (Daniel J.

Eisenstein et al., 2011). In particular, the data that we analysed come from

the 12th data release (DR12) of the high–redshift North Galactic Cap (NGC)

sample of the Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson et

al., 2013). Our analysis follows closely that of Beutler, Biagetti, et al. (2019)

for the linear oscillation model. The inference problem includes 12 free pa-

rameters with either flat/uniform or normal priors. Figure 12.6 shows the 1–

dimensional and 2–dimensional marginal posteriors of the aforementioned

analysis. The posterior distribution exhibits a highly non–Gaussian geome-



try that can hinder the sampling performance of conventional methods. The

total computational cost of PMC, NS, and SMC is 0.4 × 106, 21.3 × 106, and
19.5 × 106 model evaluations respectively. PMC requires approximately 1/53
of the number of model evaluations that NS does, and 1/49 of those that SMC

does.

12.3.4 Gravitational Waves

The second realistic application is the simulated gravitational wave analysis

of an injected signal. For this, we used the standard CBC injected signal con-

figuration provided by BILBY (Gregory Ashton et al., 2019). The inference

problem includes 13 free parameters with a variety of common priors. Fig-

ure 12.7 shows the 1–dimensional and 2–dimensional marginal posteriors

of the aforementioned analysis. The posterior distribution exhibits a highly

non–Gaussian geometry that can hinder the sampling performance of con-

ventional methods. The total computational cost of PMC, NS, and SMC is

0.4 × 106, 10.2 × 106, and 4.6 × 106 model evaluations respectively. PMC re-

quires approximately 1/25 of the number of model evaluations that NS does,

and 1/11 of those that SMC does.

12.4 discussion

While we have demonstrated PMC’s superior sampling performance for a

number of target distributions, including two real–world applications, the

real test is based on researchers applying the method to their analyses. Dif-

ferent applications pose different computational challenges and there is no

one single sampler to rule them all. Sometimes, certain kinds of distributions

will be better handled by other, perhaps simpler, approaches.

In general, we expect PMC to be a useful tool when dealing with computa-

tionally expensive likelihood functions and highly correlated or multimodal

posteriors. There two main reasons for this. First, training of the normalis-

ing flow takes about (1 s) per iteration, whereas the actual vectorised eval-

uation of the bijective mapping takes almost (10ms) per MCMC step for

the whole population of particles. This means that if the cost of evaluating

the likelihood is low enough to be comparable to that of the normalising

flow, as discussed above, the chances are that there are simpler methods (e.g.

MCMC) that can obtain the results more quickly. The second reason has

to do with the geometry of the posterior distribution. If the latter is trivial

enough, for instance, if the target is approximately Gaussian with no non–

linear correlation or multiple modes, then the use of the normalising flow as

a preconditioner would offer no benefit and instead only help delay the run.
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Figure 12.7: Illustration of the 1–dimensional and 2–dimensional marginal poste-

riors for the 13 parameters of the gravitational waves posterior. The

figure shows the 1–𝜎 and 2–𝜎 contours generated by Preconditioned
Monte Carlo (PMC) in blue, Nested Sampling (NS) in orange, and Se-
quential Monte Carlo (SMC) in green. The legend also shows the com-

putational cost of eachmethod in terms of the total number of required

model evaluations until convergence is reached.



On the other hand, if both of these conditions are met, that is, the likeli-

hood function is computationally expensive, as it is often the case in cosmol-

ogy, and the posterior is non–Gaussian, then PMC can be a valuable asset in

the astronomer’s toolkit. Furthermore, when the cost of evaluating the like-

lihood function is large enough to dominate both the normalising flow eval-

uation and any potential MPI communication overhead, one can capitalise

on the availability of multiple CPUs in order to accelerate PMC. In particular,

if the evaluation of the likelihood function takes (1 s), one should be able

to use up to thousands of CPUs, potentially parallelising all or a substantial

fraction of the particles simultaneously.

12.5 conclusions

The goal of this work was to develop a novel sampling method that can ac-

celerate Bayesian parameter inference and model comparison in computa-

tionally challenging astronomical and cosmological analyses. To this end,

we introduced PMC, a preconditioned generalisation of the standard SMC

algorithm.

After introducing the method in Section 12.2, we presented a thorough

demonstration of Preconditioned Monte Carlo’s sampling capabilities by com-

paring its sampling performance to that of Nested Sampling and Sequential
Monte Carlo in a range of target distributions characterised by non–trivial

geometry. The results are presented in Table 7. In general, we found that

Preconditioned Monte Carlo is one to two orders of magnitude faster than ei-

ther Nested Sampling or Sequential Monte Carlo, both of which performed

similarly to each other. Furthermore, in the realistic analyses of primor-

dial features and gravitational waves, Preconditioned Monte Carlo required

approximately 50 and 25 times fewer model evaluations compared to NS

in order to converge. The reduced computational cost, combined with the

superior parallisation scaling, renders Preconditioned Monte Carlo ideal for

astronomical and cosmological Bayesian analyses with computationally ex-

pensive, strongly correlated, multimodal and high–dimensional posteriors.

We hope that Preconditioned Monte Carlo will prove useful to the astro-

nomical community by facilitating challenging Bayesian data analyses and

enabling the investigation of complexmodels and sparse datasets. We also re-

lease aPython implementation of PreconditionedMonte Carlo, calledpocoMC,
which is publically available at https://github.com/minaskar/pocomc

and detailed documentation with installation instructions and examples at

https://pocomc.readthedocs.io.
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12.6 appendix: comparison to independent

metropolis–hastings sequential monte

carlo

Recent practice in the literature (Albergo et al., 2019; Arbel et al., 2021; M. J.

Williams et al., 2021) is to use normalising flows as auxiliary densities for

Importance Sampling (IS) and Independent Metropolis–Hastings (IMH) estima-

tors. The latter approach can also be accommodated in the context of Se-
quential Monte Carlo (SMC) as an alternative to PMC. For this reason, we

will offer an experimental comparison of PMC to IMH–SMC.
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Figure 12.8: Comparison of the first two parameters of samples generated using

PMC (blue) and IMH–SMC (orange) for the 20–D Rosenbrock target

distribution. PMC produces representative samples, whereas IMH–

SMC does not.

The IMH–SMC allgorithm is identical to Algorithm 20 with the exception

that the mutation step of line 12 takes place using the modified Metropolis
acceptance criterion

𝛼 = min
⎛
⎜
⎜
⎝
1,
𝑝𝜃 (𝑓 −1(𝑢 ′))𝑞(𝑢)||| det

𝜕𝑓 −1(𝑢 ′)
𝜕𝑢 ′

|||
𝑝𝜃 (𝑓 −1(𝑢))𝑞(𝑢 ′)||| det

𝜕𝑓 −1(𝑢)
𝜕𝑢

|||

⎞
⎟
⎟
⎠
, (12.17)

instead of that of equation 12.14. The difference between the two criteria is

that the proposal distribution 𝑞(𝑢) =  (𝑢|0, 1) is no longer conditional on

the previous state of the Markov chain.
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Figure 12.9: Comparison of the first two parameters of samples generated using

PMC (blue) and IMH–SMC (orange) for the 50–D two–component

Gaussian mixture target distribution. PMC produces representative

samples, whereas IMH–SMC does not.

The number 𝑀 of IMH steps performed in each iteration of IMH–SMC

is determined adaptively during the run, based on the observed acceptance

rate 𝛼 , as

𝑀 =
log(1 − 𝑝)
log(1 − 𝛼)

, (12.18)

where 𝑝 is the target probability of generating a new independent sample. In

our examples below, the value of 𝑝 is chosen such that the computational cost

of IMH–SMC is similar to that of PMC for the same example. This results in

𝑝 > 0.99 which corresponds to very conservative sampling.

Despite this, as shown in Figures 12.8 and 12.9, for the 20–dimensional

Rosenbrock and the 50–dimensional two–component Gaussianmixture stud-

ied in the main text respectively, IMH–SMC does not manage to produce

typical samples from the posterior distribution. It is important to note here

that the acceptance rate of IMH–SMC was high throughout both runs, and

as such offered no indication on its own that NF is not correct.

The origin of this discrepancy between IMH–SMC and PMC in both cases,

and the ultimate inability of IMH–SMC to compete with PMC, originates in

the substantial mismatch between the importance/NF distribution and tar-

get distribution in high dimensions and the subsequent over–fitting of the

NF to the particle distribution leading to a narrower distribution. The high
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acceptance rate does not imply the high quality of NF solution, and other

tests of the quality of solution are needed, such as comparing expectation

of log 𝑝 between samples from NF and true MCMC samples. On the other

hand, PMC does not suffer from this pathology as the local exploration of-

fered by MCMC helps diversify the particles in order to avoid over–fitting.

Furthermore, local MCMC methods generally scale better with the number

of dimensions compared to IMH and IS.



13 POCOMC

This chapter presents pocoMC which is the main contribution introduced in

the paper titled pocoMC: A Python package for accelerated Bayesian inference
in astronomy and cosmology that was submitted for publication in the Journal
of Open Source Software in July 2022 (Karamanis, Nabergoj, et al., 2022). The

content of the chapter is almost identical to that included in the aforemen-

tioned publication with the exception of minor text and figure formatting

differences.

13.1 summary

pocoMC is a Python package for accelerated Bayesian inference in astron-

omy and cosmology. The code is designed to sample efficiently from poste-

rior distributions with non–trivial geometry, including strong multimodal-

ity and non–linearity. To this end, pocoMC relies on the Preconditioned

Monte Carlo algorithm which utilises a Normalising Flow in order to decor-

relate the parameters of the posterior. It facilitates both tasks of parameter

estimation and model comparison, focusing especially on computationally

expensive applications. It allows fitting arbitrary models defined as a log–

likelihood function and a log–prior probability density function in Python.

Compared to popular alternatives (e.g. nested sampling) pocoMC can speed

up the sampling procedure by orders of magnitude, cutting down the com-

putational cost substantially. Finally, parallelisation to computing clusters

manifests linear scaling.

13.2 statement of need

Over the past few decades the volume of astronomical and cosmological data

has increased substantially. At the same time, theoretical and phenomeno-

logical models in these fields have grown even more complex. As a response

to that, a number of methods aiming at efficient Bayesian computation have

been developed with the sole task of comparing those models to the avail-
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able data (Sharma, 2017; Trotta, 2017). In the Bayesian context, scientific

inference proceeds though the use of Bayes’ theorem:

(𝜃) =
(𝜃)𝜋 (𝜃)


(13.1)

where the posterior (𝜃) ≡ 𝑝(𝜃 |𝑑,) is the probability of the parameters 𝜃
given the data 𝑑 and the model . The other components of this equation

are: the likelihood function (𝜃) ≡ 𝑝(𝑑 |𝜃,), the prior 𝜋 (𝜃) ≡ 𝑝(𝜃 |), and
the model evidence  = 𝑝(𝑑 |). The prior and the likelihood are usually

provided as input in this equation and one seeks to estimate the posterior

and the evidence. Knowledge of the posterior, in the form of samples, is

paramount for the task of parameter estimation whereas the ratio of model

evidences yields the Bayes factor which is the cornerstone of Bayesianmodel

comparison.

Markov chain Monte Carlo (MCMC) has been established as the standard

tool for Bayesian computation in astronomy and cosmology, either as a stan-

dalone algorithm or as part of anothermethod (e.g. nested sampling (Skilling,

2006)). However, as MCMC relies on the local exploration of the posterior,

the presence of non-linear correlation between parameters and multimodal-

ity can at best hinder its performance and at worst violate its theoretical

guarantees of convergence (i.e. ergodicity). Usually those challenges are

partially addressed by reparameterising the model using a common change–

of–variables parameter transformation. However, guessing the right kind of

reparameterisation a priori is not trivial as it often requires a deep knowledge

of the physical model and its symmetries. These problems are usually compli-

cated further by the substantial computational cost of evaluating astronom-

ical and cosmological models. pocoMC is designed to tackle exactly these

kinds of difficulties by automatically reparameterising the model such that

the parameters of the model are approximately uncorrelated and standard

techniques can be applied. As a result, pocoMC produces both samples from

the posterior distribution and an unbiased estimate of the model evidence

thus facilitating both scientific tasks with excellent efficiency and robustness.

Compared to popular alternatives such as nested sampling, pocoMC can re-

duce the computational cost, and thus, the total run time of the analysis by

orders of magnitude, in both artificial and realistic applications (Karamanis,

Beutler, Peacock, et al., 2022). Finally, the code is well-tested and is currently

used for research work in the field of gravitational wave parameter estima-

tion (Vretinaris et al., 2022).



Figure 13.1: Logo of pocoMC.

13.3 method

pocoMC implements the PreconditionedMonte Carlo (PMC) algorithm. PMC

combines the popular Sequential Monte Carlo (SMC) (Del Moral et al., 2006)

method with a Normalising Flow (NF) (Papamakarios, Nalisnick, et al., 2021).

The latter works as a preconditioner for the target distribution of the former.

As SMC evolves a population of particles, starting from the prior distribution

and gradually approaching the posterior distribution, the NF transforms the

parameters of the target distribution such that any correlation between pa-

rameters or presence of multimodality is removed. The effect of this bijective

transformation is the substantial rise in the sampling efficiency of the algo-

rithm as the particles are allowed to sample freely from the target without

being hindered by its locally–curved geometry. The method is explained in

detail in the accompanying publication (Karamanis, Beutler, Peacock, et al.,

2022) and we provide only a short summary here.

13.3.1 Sequential Monte Carlo

The basic idea of basic SMC is to sample from the posterior distribution (𝜃)
by first defining a path of intermediate distributions starting from the prior

𝜋 (𝜃). In the case of pocoMC the path has the form:

𝑝𝑡 (𝜃) = 𝜋 (𝜃)1−𝛽𝑡(𝜃)𝛽𝑡 (13.2)

where 0 = 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 = 1. Starting from the prior, each distribution

with density 𝑝𝑡 (𝜃) is sampled in turn using a collection of particles propa-

gated by a number of MCMC steps. Prior to MCMC sampling, the particles

are re-weighted using importance sampling and then re-sampled to account

for the transition from 𝑝𝑡 (𝜃) to 𝑝𝑡+1(𝜃). pocoMC utilises the importance

weights of this step to define an estimator for the effective sample size (ESS)

of the population of particles. Maintaining a fixed value of ESS during the

run allows pocoMC to adaptively specify the 𝛽𝑡 schedule.
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13.3.2 Preconditioned Monte Carlo

In vanilla SMC, standard MCMC methods (e.g. Metropolis-Hastings) are

used to update the positions of the particles during each iteration. This how-

ever can become highly inefficient if the distribution 𝑝𝑡 (𝜃) is characterised by
a non–trivial geometry. pocoMC, which is based on PMC, utilises a NF to

learn an invertible transformation that simplifies the geometry of the distri-

bution by mapping 𝑝𝑡 (𝜃) into a zero-mean unit-variance normal distribution.

Sampling then proceeds in the latent space in which correlations are sub-

stantially reduced. The positions of the particles are transformed back to

the original parameter space at the end of each iteration. This way, PMC

and pocoMC are able to sample from very challenging posteriors very effi-

ciently using simple Metropolis-Hastings updates in the preconditioned/un-

correlated latent space.

13.4 features

∙ User–friendly black-box API (only the log-likelihood, log-prior and

some prior samples required from the user)

∙ Default configuration sufficient for most applications (no tuning is re-

quired but is possible for experienced users)

∙ Posterior corner, trace, and run plotting tools

∙ Support for both MAF and RealNVP normalising flows with added reg-

ularisation (Dinh et al., 2016; Papamakarios, Pavlakou, et al., 2017)

∙ Straightforward parallelisation using MPI or multiprocessing

∙ Continuous integration, unit tests and wide range of examples avail-

able

∙ Extensive documentation available online http://pocomc.readthedocs.

io

http://pocomc.readthedocs.io
http://pocomc.readthedocs.io


14 CONCLUS IONS

So long, and thanks for all the fish.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Over the past couple of decades, Bayesian inference has been established

as the standard mathematical framework for conducting scientific inference

in the physical sciences. This progress has been largely facilitated by the re-

cent advances in computer technology and probabilistic computationalmeth-

ods. However, the specific characteristics of the mathematical models and

available data used in astronomy and cosmology still pose significant chal-

lenges for existing computational tools.

From the perspective of theoretical modelling, many astrophysical models

involve computationally expensive operationswhich are almost always non–

differentiable. This limits the potential range of application of a plethora of

MCMCmethods, particularly those that rely on the use of the gradient of the

posterior density function or are unable to scale to a large number of parallel

CPUs. On the other hand, the commonly sparse nature of the available data

often induces a level of multimodality in the studied posterior distributions.

The existence of multiple modes in the posterior distribution can hinder the

sampling procedure of most computational tools and in the case of most

MCMCmethods, make the results unreliable. This thesis has introduced two

methods and their software implementations that were specifically designed

with this kind of challenge in mind.

In Chapter 10 we introduced Ensemble Slice Sampling (ESS), a method that

extends the applicability of the univariate slice sampler to multivariate tar-

get distributions, by utilising an ensemble of parallel walkers. The method

requires minimal tuning and no gradient information, demonstrates affine–

invariant sampling performance, and is trivially parallelisable to a large num-

ber of CPUs. Chapter 11 presents zeus, an open–source Python imple-

mentation of ESS. Compared to the popular MCMC sampler emcee, the
sampling efficiency of zeus scales more favourably with the total number

of dimensions. Furthermore, the generated Markov chains exhibit substan-

tially lower autocorrelation levels for a wide range of target distributions

and the method generally requires significantly fewer walkers than emcee.
Finally, in the problems of BAO and exoplanet parameter estimation, zeus
is 9 and 29 times more efficient than the competition, respectively.

Chapter 12 is devoted to Preconditioned Monte Carlo (PMC), a novel Monte

Carlo method for sampling from posteriors with non–trivial geometry (i.e.

229



non–linear correlations, multimodality). PMC utilises a Normalising Flow

(NF) transformation in order to precondition the target distribution by ap-

proximately removing the correlations between its parameters. PMC then

relies on a Sequential Monte Carlo (SMC) in order to produce posterior sam-

ples and an estimate of the model evidence. Empirical tests validate the high

sampling efficiency of PMC. In the cases of primordial feature analysis and

gravitational wave inference, PMC is approximately 50 and 25 times faster re-

spectively than nested sampling. Finally, Chapter 13 offers a short overview

of pocoMC, an open–source Python implementation of PMC. The basic

principles of PMC are presented along with the various options and features

provided in the package. In terms of parallelisation, pocoMC manifests lin-

ear scaling up to thousands of CPUs.

The methods introduced in the aforementioned chapters aim to address

the various computational challenges currently presented by modern astro-

physical models and data. Despite their empirical success, as demonstrated

by the provided tests and their adoption by the astronomical community,

their application in higher dimensions (e.g. 𝐷 > 100) is still hindered by the

curse of dimensionality. In the future, in order to accommodate for subtle

effects present in the data, astrophysical models will necessarily become in-

creasingly complicated. As a response, sampling methods such as the ones

presented in this thesis will have to evolve in order to cope with the addi-

tional computational challenges. A possible avenue of future research could

be the self–supervised construction of surrogate models (e.g. emulators) for

either the likelihood function, posterior density, or model, thus enabling the

use of gradient–based MCMC methods in the context of advanced schemes

such as PMC. We sincerely hope that, in the meantime, methods and pack-

ages such as ESS & PMC, and zeus & pocoMC will prove useful to the as-

tronomical community by facilitating the next generation of Bayesian data

analyses.
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