

This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

• This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

• The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Language Integrated Relational Lenses

Rudi Horn
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

2022

Abstract
Relational databases are ubiquitous. Such monolithic databases accumulate large
amounts of data, yet applications typically only work on small portions of the data
at a time. A subset of the database defined as a computation on the underlying
tables is called a view. Querying views is helpful, but it is also desirable to update
them and have these changes be applied to the underlying database. This view
update problem has been the subject of much previous work before, but support
by database servers is limited and only rarely available.

Lenses are a popular approach to bidirectional transformations, a generalization
of the view update problem in databases to arbitrary data. However, perhaps sur-
prisingly, lenses have seldom actually been used to implement updatable views in
databases. Bohannon, Pierce and Vaughan [12] propose an approach to updat-
able views called relational lenses. However, to the best of our knowledge this
proposal has not been implemented or evaluated prior to the work reported in
this thesis.

This thesis proposes programming language support for relational lenses. Lan-
guage integrated relational lenses support expressive and efficient view updates,
without relying on updatable view support from the database server. By inte-
grating relational lenses into the programming language, application development
becomes easier and less error-prone, avoiding the impedance mismatch of having
two programming languages. Integrating relational lenses into the language poses
additional challenges. As defined by Bohannon et al. relational lenses completely
recompute the database, making them inefficient as the database scales. The
other challenge is that some parts of the well-formedness conditions are too gen-
eral for implementation. Bohannon et al. specify predicates using possibly infinite
abstract sets and define the type checking rules using relational algebra.

Incremental relational lenses equip relational lenses with change-propagating se-
mantics that map small changes to the view into (potentially) small changes
to the source tables. We prove that our incremental semantics are functionally
equivalent to the non-incremental semantics, and our experimental results show
orders of magnitude improvement over the non-incremental approach. This the-
sis introduces a concrete predicate syntax and shows how the required checks
are performed on these predicates and show that they satisfy the abstract predi-

i

cate specifications. We discuss trade-offs between static predicates that are fully
known at compile time vs dynamic predicates that are only known during exe-
cution and introduce hybrid predicates taking inspiration from both approaches.
This thesis adapts the typing rules for relational lenses from sequential compo-
sition to a functional style of sub-expressions. We prove that any well-typed
functional relational lens expression can derive a well-typed sequential lens.

We use these additions to relational lenses as the foundation for two practical im-
plementations: an extension of the Links functional language and a library written
in Haskell. The second implementation demonstrates how type-level computa-
tion can be used to implement relational lenses without changes to the compiler.
These two implementations attest to the possibility of turning relational lenses
into a practical language feature.

ii

Lay Summary
Many computer programs are required to persistently store data to function as in-
tended. Applications can store arbitrary data in files, but storing large amounts of
data so that they can be accessed efficiently is challenging. Rather than reinvent-
ing the wheel, applications can use existing software, called relational database
management systems, to efficiently store data in tabular form. Data is fetched
by the application by issuing queries, expressions that specify which data should
be returned to the application.

The resulting subset of the database computed by a query is called a view. A
desirable task is to not only compute such a view, but to also make changes to
it and apply those changes to the database. The view update problem has been
the subject of work before, but support for updatable views is only limited and
rarely available.

In programming languages, the view-update problem is generalized to arbitrary
data in the form of lenses. A lens is a combination of two functions. The first
function computes the view from the data source, while the other function uses
a changed view to update the source. A lens is well-behaved if it satisfies round-
tripping guarantees. Lenses can be combined with other lenses to produce more
complicated lenses. Bohannon, Pierce and Vaughan [12] propose the use of rela-
tional lenses for querying and updating data stored in relational tables. Relational
lenses are well-behaved, making their behaviour predictable. However, prior to
the work on this thesis, relational lenses were missing an implementation and
have only been considered in isolated contexts.

We propose the integration of relational lenses into the programming language
the application is written in. This makes it easy for the programmer to define
and use relational lenses within the application. We show how the performance of
updates to relational lens views can be improved as the database size increases, by
only computing the changes to the database rather than recomputing the entire
database. We present a formulation that is more suitable for the integration
into programming languages, and show how to check if it is safe to construct a
lens in this context. We demonstrate our work on implementations of relational
lenses in two different programming languages. The implementations interact
with existing relational database management systems.

iii

Acknowledgements
First and foremost, I would like to thank my supervisor James Cheney for the
continuous guidance throughout both my second MSc as well as my PhD studies.
I am grateful to James for his inspirational knowledge of so many topics within the
field of informatics, and for providing me invaluable intuition during my research.
I always felt confident of being in good hands throughout my supervision, and
am thankful for the time and effort James has put into making me the researcher
I am today, as well as for the valuable feedback provided for this thesis.

Next I would like to thank both of my secondory supervisors. It was through
Christoph Dubach, who was initially my personal tutor and then my first MSc
project supervisor, that I decided to pursue a PhD at the University of Edinburgh
in the first place. On Christoph’s departure from the university, the role of
secondary supervision was passed on to Simon Fowler. One rarely meets a person
as positive and optimistic as Simon, and encounters with him always left me
feeling joyous and motivated. In addition, Simon has provided useful feedback
that has helped improve my work substantially. Simon helped co-author my
second paper and provided valuable input by implementing the case study on
relational lenses.

In addition to my supervisors, I would like to show gratitude towards my co-
author Roly Perera, who provided help developing ideas in my head into an
actual paper.

Furthermore, to all of my fellow PhD colleagues, especially Stefan Fehrenbach,
Frank Emrich, Catriona Wedderburn, Thomas Wright, Wen Kokke, Craig McLaugh-
lin, Jakub Zalewski, Nicole Meng, Markus Schneider and Daniel Hillestrom: My
time at the University of Edinburgh was made much more enjoyable by all the
great conversations and support from all of you.

The Centre for Doctoral Training in Pervasive Parallelism provided great oppor-
tunities for meeting other people, and was an important learning resource for
related research. I appreciate the effort made by the organizers of the CDT,
especially Murray Cole.

I would also like to thank Jeremy Gibbons and Amir Shaikhha for agreeing to be
my examiners as well as taking the time to read my thesis and providing valuable

iv

feedback. In addition, I am grateful for all comments on my published papers
provided by anonymous reviewers.

Most importantly I would like to show appreciation to my family for supporting
me throughout my lengthy studies, as well as for proof reading this thesis. I am
especially thankful to Casey Beall, who has been by my side, supporting me and
keeping me motivated throughout my PhD.

Finally, I would like to acknowledge the European Research Council for the
funding provided by the ERC Consolidator Grant Skye (grant number 682315),
as well as the EPSRC Centre for Doctoral Training in Pervasive Parallelism
(EP/L01503X/1).

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

Chapter 3 is an extended version of the following publication:

1. R. Horn, R. Perera, and J. Cheney. Incremental relational lenses. Proceed-
ings of the ACM on Programming Languages, 2(ICFP):1–30, 2018.

Chapters 4 and 5 extend on the following publication:

1. R. Horn, S. Fowler, and J. Cheney. Language-integrated updatable views.
In 31st Symposium on Implementation and Application of Functional Lan-
guages, 2020.

Appendix E was also part of this publication, but was authored by Simon Fowler.

The remaining chapters contain some content from the mentioned publications.
I declare that I was the primary author of both publications.

(author)

vi

Table of Contents

1 Introduction 1
1.1 Relational lenses by example . 4
1.2 Research Challenges . 10
1.3 Outline and contributions . 14

2 Background 16
2.1 Database Preliminaries . 16

2.1.1 Relation Types and Database Schemas 16
2.1.2 Relations . 17
2.1.3 Functional Dependencies 23

2.2 Lenses . 26
2.3 Relational Lenses . 28

2.3.1 Relational Revision . 29
2.3.2 Table Sorts . 30
2.3.3 Relational Lens Primitives 31

2.4 Qualified Types . 38

3 Incremental Relational Lenses 40
3.1 Incremental framework . 47

3.1.1 Change Structures . 47
3.1.2 Delta Relations . 47
3.1.3 Delta-Relational Operations 52
3.1.4 Optimisation Rules for Delta Operations 54

3.2 Incrementalising Relational Lenses 56
3.2.1 Incremental Lenses . 56
3.2.2 Select Lens . 58
3.2.3 Project Lens . 59

vii

3.2.4 Join Lens . 60
3.2.5 Rename Lens . 67

3.3 Evaluation . 68
3.3.1 Microbenchmarks . 68
3.3.2 DBLP Example . 76

3.4 Summary . 80

4 Turning Abstract Sets into Concrete Predicates 82
4.1 Basic Predicates . 84
4.2 Predicate Checks . 87

4.2.1 Set Equivalence . 87
4.2.2 Lossless Join Decomposition 89
4.2.3 Default Value Check . 92
4.2.4 Predicate Ignores Columns 95
4.2.5 Dropping Column References 97

4.3 Normalisation . 101
4.4 Static, Dynamic and Hybrid Predicates 105

4.4.1 Hybrid Predicates . 106
4.4.2 Language extension . 109
4.4.3 Checking Hybrid Predicates 115

4.5 Summary . 118

5 Language Integrated Relational Lenses 120
5.1 Sequential Lenses . 122
5.2 Lens Types . 125

5.2.1 Lens Primitive . 127
5.2.2 Select Lens . 128
5.2.3 Join Lens . 128
5.2.4 Drop Lens . 131
5.2.5 Rename Lens . 132
5.2.6 Lens Functions . 133

5.3 Evaluation Rules . 133
5.4 Translation . 135
5.5 Language is well-behaved . 144
5.6 Integration in Links . 148
5.7 Summary . 150

viii

6 Relational Lenses as a Library 151
6.1 Type-Level Programming . 153

6.1.1 Type level values . 154
6.1.2 Type Families . 155
6.1.3 Type Classes . 155
6.1.4 Constraints . 156
6.1.5 Record Types . 157

6.2 Relational Lens Kinds . 162
6.2.1 Tables . 162
6.2.2 Functional Dependencies 163
6.2.3 Predicates . 165
6.2.4 Lens Sort . 173

6.3 Using Relational Lenses . 173
6.3.1 Syntax . 173
6.3.2 Database Connection . 174
6.3.3 Lens Constructors . 176
6.3.4 Lens Operations . 182

6.4 Summary . 182

7 Related Work 185
7.1 Language-integrated query . 185
7.2 Updatable views and lenses . 186
7.3 Incremental computation . 188
7.4 Incremental lenses . 188
7.5 Row Type Inference . 189
7.6 Dependently Typed Programming 191

8 Future Work 193
8.1 Table Keys . 193
8.2 Incremental Performance . 194
8.3 Concurrent Database Access . 195
8.4 Additional Lenses . 196
8.5 Well behaved Lenses . 196

9 Conclusion 198

ix

Bibliography 201

A Proofs for Chapter 2 212
A.1 Comparison to original Relational Lenses 212
A.2 BPV to Structural Sequential Lenses 215
A.3 Equivalence of project lens definitions 216

B Proofs for Chapter 3 218
B.1 Proofs for Section 3.1 . 218
B.2 Proofs for Section 3.2 . 235

C Proofs for Chapter 4 246
C.1 Normalisation Proofs 4.3 . 246
C.2 Hybrid Predicates (Section 4.4.1) 248

D Proofs for Chapter 5 252
D.1 Language is well-behaved . 252
D.2 Naive Lens Semantics . 263
D.3 Empty Drop Lens . 272

E Case Study: Curated Scientific Databases 275
E.1 Disease Curation Interface . 275
E.2 Links Reimplementation . 277

E.2.1 Architecture . 277
E.2.2 Tables and Lenses. 278
E.2.3 Model . 279

E.3 Discussion . 281

x

Chapter 1

Introduction

Relational databases are considered the de facto standard for storing data per-
sistently, offering a ready-to-use and high-performance method for storing and
retrieving data efficiently in a broad range of contexts.

A typical web application is based on a three-tier architecture with user interac-
tion on the client (web browser), application logic on the server, and data stored
in a (typically relational) database as shown in Figure 1.1. Relational databases
employ SQL query and update expressions, including projections, selections and
joins, which correspond closely to familiar list comprehension operations in func-
tional languages.

Yet programming real life web applications can be a very dry, repetitive and
error-prone procedure. Most tasks the application must perform are quite similar
in nature. One common source for errors is the typical requirement for such
applications to interface with relational databases. Programs interacting with
databases need to juggle various datatypes, while somehow communicating with
the database using the query language it supports.

The impedance mismatch between database queries and conventional program-

Database
Server

Web
Server

ClientInternet

Figure 1.1: A typical web application setup.

1

Chapter 1. Introduction 2

ming makes even simple programming tasks challenging [27]. Languages such
as C# [68], F# [82, 20], Links [26], Java [90], and Ur/Web [24], and libraries
such as Database-Supported Haskell [84], have partly overcome this challenge us-
ing language-integrated query, in which query expressions are integrated into the
host language and type system.

Typed systems allow the compiler to statically check for any issues that may cause
the program to have unintended behaviour during runtime, ensuring that well-
typed programs cannot “go wrong” [69]. In addition to preventing runtime errors,
type systems can also assist the programmer during development by providing
the programmer with interactive suggestions in the form of auto-completion [72].
This helps reduces the cost of application development, and helps the programmer
to navigate larger code-bases. The compiler can also be used to ensure that static
guarantees are provided, such as ensuring that only a fixed number of queries are
generated for a database expression [22].

Language support for database programming is still incomplete. For example,
views are a fundamental concept in databases [74] that are typically not supported
in language-integrated query. A view is a relation defined over the database tables
using a relational query. Views have many applications:

1. A materialised view can precompute query answers, avoiding expensive re-
computation;

2. a security view shows just the information a user needs, while hiding con-
fidential data [37];

3. views can be used to define the external schema of a database, presenting
the data in a form convenient for a particular application, or for integrating
data from different databases.

Most databases allow specifying views using a variant of table creation syntax,
and views can then be queried in much the same way as regular database tables. It
is therefore natural to wish to update a view; for example, making a security view
updatable would make sense if the user is intended to have write access to the view
data but should not have write access to the underlying table. Unfortunately, it
is nontrivial to update views. Some view updates may correspond to multiple
possible updates to the source tables, while others such as views computed with
aggregates may not be translatable at all [29, 8]. Consider a record insertion

Chapter 1. Introduction 3

to a view that is computed by joining two tables. Adding a record to the view
requires inserting records to both the left and right tables. If one of those tables
already contains a record with the same primary key values, it would violate the
primary key constraint. Most relational database systems only allow selection
and projection operations in updatable views, so updating views defined using
joins is not allowed.

Lenses were introduced by Foster et al. [36] as a generalisation of updatable
views to arbitrary data structures. A lens for a source S and view V is a pair of
functions get : S→ V and put : S×V → S, allowing a source data structure to be
projected onto the view, and the source to be updated with a new view. To ensure
a lens has predictable results, a lens should be well-behaved which requires that
it satisfies round-tripping laws. The first rule states that if a lens is updated with
a view using put, then calling get on that lens should return the same view. The
second rule states that calling put on an unchanged view should not change the
database. The round-tripping laws required by well-behavedness are as follows:

get(put(s,v)) = v put(s,get(s)) = s

Lenses can also be very well-behaved if they additionally satisfy the put-put rule.
The put-put rule requires multiple subsequent put operations on a source to yield
the same result as performing a single put operation with the last view on the
same source. This rule is sometimes considered too strict, and hence not always
desirable [36, 80]. Formally, the put-put rule is defined as follows:

put(put(s,v1),v2) = put(s,v2)

Lenses are particularly well-suited to programming tasks where it is necessary
to maintain consistency between ‘the same’ data stored in different places, as
often arises in web programming. A great deal of research on bidirectional pro-
gramming has considered this problem, especially in the functional programming
community [81, 12, 48, 36, 38, 31, 49, 50, 89].

Perhaps surprisingly, relatively little of this work has considered view updates in
databases. An exception is the work of Bohannon et al. [12], who proposed lens
combinators for projections, selections and joins on relational data, and proved
their well-behavedness. These relational lenses are defined using put functions
which map the source database and an updated view to the updated source

Chapter 1. Introduction 4

database. Bohannon et al.’s work showed that it is possible in principle for
databases to support updatable views including joins, provided the type system
tracks integrity constraints on the data, such as functional dependencies.

As defined by Bohannon et al. [12], relational lenses lacked any implementation.
This thesis is a theoretical and practical investigation into how relational lenses
can be embedded into programming languages. We introduce two implementa-
tions of relational lenses. The first implementation extends Links [26], a web
programming language designed to simplify web development. Links allows the
programmer to write server side code, client side code, markup language and
database queries in a single language, which can then either be executed on the
server or translated into either JavaScript, HTML or SQL as required. The second
implements relational lenses as a Haskell library, without requiring any changes
to the compiler.

1.1 Relational lenses by example

In this section we illustrate the use of relational lenses as integrated into Haskell.
We use an example from Bohannon et al. [12] involving a small database of albums
and tracks, and an updatable view that can be defined over it using relational
lenses. We suppress the technical details of relational lenses and incrementalisa-
tion until later chapters.

Figure 1.2 shows the tables used by the example. The albums table has two
columns album and quantity. The album column is a key for the table, meaning
that there can only be a single entry for any album name and that each album
name uniquely identifies the quantity available. The tracks table has the columns
track, date, rating and album, where track, album is a key for the table and album

refers to the column in the albums. Each track also uniquely defines the date and
rating columns.

The first task is to define primitive lenses which reference existing tables in the re-
lational database. This is actually a concept that does not exist in the formulation
of relational lenses by Bohannon et al. [12], because the lenses are transforma-
tions between entire database schemas. We start by defining the two type aliases
τalbum and τtrack for record types representing an entry in each of the two tables.
The record type is a named tuple type, where each column in the table becomes

Chapter 1. Introduction 5

albums

album quantity
‘Disintegration’ 6

‘Show’ 3
‘Galore’ 1
‘Paris’ 4
‘Wish’ 5

tracks

track date rating album
‘Lullaby’ 1989 3 ‘Galore’

‘Lullaby’ 1989 3 ‘Show’

‘Lovesong’ 1989 5 ‘Galore’

‘Lovesong’ 1989 5 ‘Paris’

‘Trust’ 1992 4 ‘Wish’

Figure 1.2: The music database used by the example.

a field in the record type with its corresponding column type.

τalbum = (album : string, quantity : int)

τtrack = (track : string,date : int, rating : int)

Relational lens definitions require the specification of functional dependencies for
base tables, which are constraints that indicate which attributes determine the
value of other attributes. In this example, the functional dependency album→
quantity for the albums table says that if two rows have the same album attribute,
they must also have the same quantity value. The primitive lens constructor
lens S of τ with F , takes the relation name S of the table in the database, the
record type τ and the set of functional dependency constraints F applying to the
table.

The tracks table has a functional dependency track→ date rating, which says
that date and rating depend on track. This implies that any track may appear
in different albums, but should have the same date and rating. (These functional
dependencies are as specified by Bohannon et al. [12], but result in a database
with some redundancy; however, we keep the example as is for ease of comparison
with prior work.)

let lalbums = lens albums of τalbum with album→ quantity

let ltracks = lens tracks of τtrack with track→ date,rating

We now look at how the same primitive lenses would be constructed using the
Haskell library. The Haskell library uses type-level programming extensively. The
code snippet below first defines the row type Albums, specifying that there should

Chapter 1. Introduction 6

be a column called album of type String as well as a column quantity of type Int.
The row type is constructed using a type level list of tuples. With extensions
to the Glasgow Haskell Compiler [92], any constructor can be promoted to a
type-level constructor by prepending them with the symbol ’.

type Albums = '['("album", String), '("quantity", Int)]

lalbums = prim @"albums" @Albums @'['["album"] --> '["quantity"]]

type Tracks = '[

'("track", String),

'("date", Int),

'("rating", Int),

'("album", String)]

ltracks = prim @"tracks" @Tracks @'['["track"] --> '["date", "rating"]]

The snippet uses the prim constructor to create both of the primitive lenses. In
each case prim requires the name of the table in the database, the row type and the
corresponding functional dependencies. The primitive lens for the albums table is
defined using the table name albums, the row type Albums and the corresponding
functional dependencies. All of these arguments are type-level arguments, which
are applied using the @ symbol. A functional dependency can be constructed us-
ing the type level --> infix operator applied to two lists of columns. In the Haskell
library, lenses are defined independently of the underlying database connection.
The lens for the tracks table is constructed in a similar manner.

A common workflow within a web application is to extract some view of the
data from the database, associate it with a form, and map form responses to
updated versions of the associated data. If the mapping from the database to
the form data is defined by a lens, then the view can be fetched from the lens
using the get operation. When the user submits the form, the put operation of the
lens should allow us to propagate the changes to the underlying database. The
snippet below adds a row to the albums table. In this snippet the curly braces
construct a singleton set, while parentheses construct a record.

let rs = get lalbums in

Chapter 1. Introduction 7

let rs = rs∪
{

(album = ‘Disintegration’, quantity = 1)
}

in

put lalbums with rs

The corresponding code in Haskell performs the same operations in an IO monad.
This is required because the application must query the server, which is a side-
effecting operation with network communication. Consequently, both the get and
put functions require a database connection value db_connect. We assume that the
db_connect value is defined externally. The recs function constructs typed records
from each unnamed tuple in the list. In the example, the record type is inferred
but must otherwise be provided explicitly.

do conn <- db_connect

-- Fetch the view

rs <- get conn lalbums

-- Add the new record

let rs = rs `union` recs [("Disintegration", 1)]

-- Update the database

put conn lalbums rs

Assuming that the albums table does not already contain an album for Disinte-
gration, it is equivalent to performing the SQL-style insert:

INSERT INTO albums (album, quantity) VALUES ('Disintegration', 1)

In practice, views are more useful for selecting subsets of data or combining tables.
For example, the web application might show a form allowing updates to a single
album at a time, such as ‘Galore’. A select lens selectP from e is a lens that
filters out all records not satisfying the predicate P for the underlying lens e. The
predicate is an expression returning a boolean value, similar to a where clause in
SQL. In our example we require that album = ‘Galore’.

selectalbum=‘Galore’ from lalbums

We adjust the above Haskell snippet to use the above select lens. The predicate is
constructed using #album #= "Galore", where #album is a label referring to the album
column and #= is the predicate equality operator. We then call get on the select
lens, make any desired changes and then update the database using put on the
select lens.

Chapter 1. Introduction 8

do conn <- db_connect

-- Create a select lens which only returns tracks from the 'Galore' album

let lens = select (#album #= "Galore") lalbums

-- Fetch the view

rs <- get conn lens

-- Make some changes

let rs = -- update rs

-- Update the database

put conn lens rs

Suppose tracks contains the entries specified in Figure 1.3 on the left. Calling get
on the lens produces the view on the right, containing only the records having
album = ‘Galore’. If the user changes the rating of the track ‘Lullaby’ to 4,
then submits the form, an updated view is generated as shown on the right in
Figure 1.4. The application can then call put on the view, which will cause the
underlying tracks table to be updated with the changes to the ‘Lullaby’ tracks.
Notice that we must change both tracks because of the functional dependency
track→ date rating. This will produce the updated table as shown on the left
in Figure 1.4.

Another commonly used lens is the join lens, which combines two tables. In the
example database, we may wish to compute the view of all tracks including the
corresponding album quantity. The natural join between the albums and tracks
table returns all the records in the tracks table where a corresponding record
with the same album value in the albums table exists. For each such record, the
quantity value from the albums table is included in the record. The natural join
of the two tables would thus be:

track date rating album quantity
‘Lullaby’ 1989 3 ‘Galore’ 1
‘Lullaby’ 1989 3 ‘Show’ 3
‘Lovesong’ 1989 5 ‘Galore’ 1
‘Lovesong’ 1989 5 ‘Paris’ 5
‘Trust’ 1992 4 ‘Wish’ 4

The join lens does not always have unique solutions when updating the database.
When a record should be removed from the output, there is sometimes a choice

Chapter 1. Introduction 9

track date rating album
‘Lullaby’ 1989 3 ‘Galore’

‘Lullaby’ 1989 3 ‘Show’

‘Lovesong’ 1989 5 ‘Galore’

‘Lovesong’ 1989 5 ‘Paris’

‘Trust’ 1992 4 ‘Wish’

get⇒
track date rating album

‘Lullaby’ 1989 3 ‘Galore’

‘Lovesong’ 1989 5 ‘Galore’

Figure 1.3: Select lens example: computing the view (right) from the source (left)
using get

track date rating album
‘Lullaby’ 1989 4 ‘Galore’

‘Lullaby’ 1989 4 ‘Show’

‘Lovesong’ 1989 5 ‘Galore’

‘Lovesong’ 1989 5 ‘Paris’

‘Trust’ 1992 4 ‘Wish’

put⇐
track date rating album

‘Lullaby’ 1989 4 ‘Galore’

‘Lovesong’ 1989 5 ‘Galore’

Figure 1.4: Select lens example: computing the new source (left) using put on the
new view (right) and old source (from Fig. 1.3, left). The change to the view results
in two changes to the source.

between deleting it from the left or the right table. This ambiguity is solved by
having join lenses with different variants. The variant that always resolves this
choice by deleting from the left table is called the delete left join lens variant. We
define joined as the join between the tracks and albums tables:

let joined = join_dl ltracks with lalbums

In Haskell the delete left variant is the default behaviour. Such a lens is con-
structed as follows:

joined = join ltracks lalbums

Finally, we introduce the drop lens. The drop lens is used to project away columns
from a table. Along with the column to be removed, the lens also requires a
default value that is used when inserting a new record as well as the defining
columns. When updating the database, the lens tries to find a record with the
same defining columns, as the value source for the dropped columns. The lens
dropped is defined as joined with the date column removed. When updating the
dropped lens, the lens first tries to find a record with the same track value to

Chapter 1. Introduction 10

determine the date value. Otherwise the default value 2021 is used.

let dropped = drop date determined by (track,2021) from joined

The Haskell library requires the programmer to specify a static record containing
the default values for the dropped columns. The programmer also provides the
list of defining columns and the underlying lens. The equivalent Haskell library
lens is defined as follows:

dropped = dropl @'['("date", 'P.Int 2021)] @'["track"] joined

Type and Integrity Constraints Both views and base tables can be associated
with integrity constraints, and updated views need to respect these constraints.
There are three kinds of constraints:

1. The updated view should be well-typed in the usual sense. Views that have
rows with extra or missing fields, or field values of the wrong types, are
ruled out statically by the type system.

2. The updated view should satisfy the functional dependencies associated
with the view. Thus, the functional dependency track→ date rating from
our example implies that we cannot change the rating or date of ‘Lullaby’

in one row without changing all the others to match.

3. The updated view may also need to satisfy a predicate on the rows. Views
defined by lenses may have selection conditions, such as album = ‘Galore’.
Inserting rows with other album values, or changing this field in existing
rows, is not allowed.

These constraints all originate in the definition of schemas for relational lenses
introduced by Bohannon et al. [12]. The correctness properties of relational lenses
rely on these integrity constraints, and if the updated view satisfies its constraints
then the updated underlying table will also satisfy its own constraints.

1.2 Research Challenges

To make relational lenses practical, two challenges must be solved. The first
relates to how well relational lenses can scale. The second is the challenge of

Chapter 1. Introduction 11

integrating the required type-checking rules into the target programming lan-
guage, which is complicated by the rich type information required by functional
dependencies and predicates.

Scalability

The proposed definitions of get and put are state-based — they show how to
compute the view from the base table state, and how to compute the entire new
state of the base tables from the updated view and the old table state. These
definitions suggest an obvious, if naive, implementation strategy: computing the
new source table contents and replacing the old contents. This is simply imprac-
tical for any realistic database. It becomes wasteful in the common case when
updates only affect relatively few records. Replacing source tables would also
necessitate locking access to the affected tables for long periods, destroying any
hope of concurrent access.

Luckily, replacing entire source tables with their new contents is seldom necessary.
The reason is that updates to tables (and views) are often small: for example, a
row might be inserted or deleted, or a single field value modified. This thesis pro-
poses incremental relational lenses, an adaptation to the semantics of relational
lenses able to address the challenge of scalability. Instead of recomputing entire
tables during a put operation, only the changes to the underlying table should be
computed.

We show that our incremental semantics are equivalent to the state-based lenses.
As part of the work on this thesis, incremental relational lenses were implemented
in both Links and Haskell. An experimental evaluation compares the incremental
to the state-based semantics. The evaluation shows that the performance of
incremental semantics scale better as the database size increases.

Language Integration

Relational lenses use a refinement type to determine which lenses can be com-
posed. The typing rules are non-trivial, and static verification is useful to prevent
unexpected behaviour during runtime. By performing compile-time verification,
the lens construction is guaranteed always to succeed, preventing the programmer
from having to extensively test their application for runtime errors.

Chapter 1. Introduction 12

Such static lens checks make relational lenses an interesting application of more
advanced type systems. Just as with dynamic programming languages, it would
be possible to forgo any static type checking and to defer these checks to run-
time. However, relational lenses contain many checks that must be performed,
and it would be easy to miss an error which may cause the application to fail.
By checking them statically during compile time, issues can be fixed before the
program is run.

Predicates Predicates calculate a binary outcome on a per-record basis. For
the select lens, predicates determine if a record should be included in the output
or not. More generally, they are used as constraints on tables, specifying which
records could be present in the view. Bohannon et al. [12] define relational lens
predicates using abstract sets. Any record should satisfy the predicate if and only
if the record is also contained in the equivalent abstract set.

This thesis introduces a concrete predicate language as well as the corresponding
checks on predicates required by the relational lens typing rules. We show how
the concrete predicate language relates to abstract sets, and prove that our checks
sufficiently satisfy the abstract specification. Our predicate language is trivially
translatable into an SQL where-clause, allowing it to be used for querying the
database server.

We then show how the predicate syntax can be extended to support function
abstractions and advanced data types like tuples and records. We present a
translation based on existing work by Cooper [25]. The translation normalizes
the more expressive predicate into the basic predicate syntax. This approach
allows us to provide a more convenient language subset to the programmer.

Another obstacle is that the predicate checks inspect the structure to determine
if a predicate satisfies the necessary side-conditions. This leaves the programmer
with two obvious strategies, each with their own drawbacks. The first strategy
requires the predicate to be completely known during compilation, which restricts
the usage scenarios of relational lenses. This option makes it impossible to imple-
ment code where the predicate is constructed based on user input. Alternatively,
the predicate is only constructed during runtime, preventing the predicate checks
from being performed until the lens constructor is called. Deferring the checks to
runtime places the burden of checking the application behaves correctly on the

Chapter 1. Introduction 13

programmer, as the compiler is not able to provide these guarantees.

This thesis also introduces a third option. The checks required on predicates
allow some portions of the predicate to be replaced by typing information. Hybrid
predicates are predicates which are known statically by default, but allow sub-
expressions of the predicate to be erased so that only the type information is
retained in the static portion. This allows any predicate with the same static
information to be interchanged. We show that if the predicate checks can be
performed on the available static predicate, the underlying dynamic predicate
can safely be used by the relational lens.

Typing rules As defined by Bohannon et al. [12], a relational lens is a mapping
between two database schemas. Each database schema is a mapping from relation
names to tables. This representation is practical in a database setting, where the
goal is to provide a whole schema to the database user. When working with
relational lenses from an application programming view, there are however a few
disadvantages:

• The application does not provide the relational lens with the underlying
database data. Instead, the user expects the lens to interact with the
database and query the data efficiently as required.

• A program typically does not concern itself with an entire database schema
at once. It is more likely for one view to be queried at a time. The program
should also not query views that are not required. Each database schema
may potentially be quite large, and may unnecessarily pollute the lens type
with unneeded information.

• Lenses may combine multiple views. The expressions producing these views
can be interleaved arbitrarily, which may be less intuitive than the expres-
sion tree model used by a functional programming language.

Rather than considering lenses as bidirectional mappings between schemas, this
thesis proposes representing lenses as handles to a single view. In this representa-
tion, we refer to other views using lens sub-expressions instead of relation names.
In the simplest case, the sub-expression is a primitive lens referring to an existing
table in the database, but it could also be any other more complicated lens as
long as it is compatible.

Chapter 1. Introduction 14

This thesis provides a collection of typing rules for these lenses, and shows that
any well-typed lens in our language can be translated into a well-typed lens as
presented by Bohannon et al. [12]. The changes to relational lenses presented
here help to integrate relational lenses into a functional programming language
such as Links or Haskell in a more idiomatic way.

Lenses as a Library This thesis is motivated by the task of bringing relational
lenses to real world applications. The first implementation extended the Links
compiler to support relational lenses. The flexibility offered by extending the
compiler allows the typing rules to be implemented, but increases the complexity
of the compiler by adding changes specific to a single language feature.

A more ideal approach to implementing relational lenses is to implement them as
a library for a language. Relational lenses require a more extensible type system
to perform static checking of the typing rules. This thesis demonstrates how the
Haskell type system along with extensions for type-level programming such as
data kinds, constraint kinds, type operators and type applications can be used to
implement statically checked relational lenses. This approach also makes it easier
to abstract over expressions defining relational lenses, by deferring lens checks to
the call-site when components such as the functional dependencies are unknown.

In the past, database related features have been used to justify the introduction of
more advanced language features. The language C# was extended with lambda
functions and quasi-quotation to support language integrated query (LINQ) in
version 3.0 [14]. Relational lenses could be a good motivation for programming
languages to either support qualified types and type families or even fully depen-
dent types.

Rename Lens Throughout this thesis we also introduce the lens for renaming
columns in the view. While theoretically straightforward, this lens is important
and useful for practical applications. A rename lens was not provided by Bohan-
non et al. [12].

1.3 Outline and contributions

The contributions of this thesis are outlined as follows:

Chapter 1. Introduction 15

• Chapter 2 presents background information required for this thesis, includ-
ing fundamental concepts of relational algebra, lenses in general and an
overview of relational lenses from Bohannon et al. [12].

• Chapter 3 introduces incremental relational lens semantics, including an
experimental evaluation of their performance.

• Chapter 4 provides a concrete predicate syntax, and shows how the predi-
cate checks can be performed on them. Section 4.4 presents hybrid predi-
cates.

• Chapter 5 adapts relational lenses to the setting of functional programming
languages. Lenses are presented as handles to views rather than transfor-
mations between database schemas. This section also integrates the checks
on predicates defined in Section 4.2, showing that the concrete predicate
syntax is well-typed.

• Chapter 6 introduces the Haskell relational lenses library. The chapter
shows how type-level programming features of Haskell can be used to im-
plement the relational lens typing rules.

• Chapter 7 discusses related work relevant to language-integrated query, up-
datable views and incremental computation.

• Chapter 8 discusses future work related to relational lenses.

• Chapter 9 concludes this thesis.

Chapter 2

Background

In this chapter we recapitulate background concepts from database theory [2] and
then review the definitions of relational lenses [12]. The chapter also includes an
introduction to qualified types. We use different notation from that paper in
some cases, and explain the differences as necessary.

2.1 Database Preliminaries

2.1.1 Relation Types and Database Schemas

Attribute names, or simply attributes, are ranged over by A, B, C and attribute
values by a, b, c. Records m, n are partial functions from attributes to attribute
values. For simplicity, we assume a single (unwritten) type for attribute values;
of course, in our implementation we support the usual integers, strings, booleans,
etc. Records are written (A = a,B = b, . . .). Identifiers U , V range over sets of
attributes considered as record domains; we use X,Y,Z for arbitrary sets and
sometimes write XY to mean X ∪Y . We write m : U to indicate that dom(m) =
U . Basic operations on records include:

- record projection m[V]: record m domain-restricted to dom(m)∩V ;

- domain antirestriction m\V : m domain-restricted to dom(m)−V ;

- record update m←+n : U ∪ V : given m : U,n : V defines (m←+n)(A) as
n(A) if A ∈ V and m(A) otherwise;

- record concatenation m⊗n: a special case of record update for m : U,n : V ,

16

Chapter 2. Background 17

where U and V are disjoint.

Given attribute A ∈ U and B /∈ U , we write U [A/B] for (U −{A})∪{B}, and
similarly if m : U then m[A/B] : U [A/B] is the tuple resulting from renaming
attribute A in M to B. Renaming is definable as (m\{A})←+(B = m(A)).

2.1.2 Relations

Relations M , N , O are (finite) sets of records with the same domain. M has
domain U , or equivalently M is a relation of type U , written M : U , if m : U for all
m ∈M . Relations are closed under the standard operations of relational algebra;
Figure 2.2 defines the syntax of relational expressions q. This includes relation
constants M , relation names R, and a let construct we include for convenience.
The operations −, ∪ and ∩ have their usual set-theoretic interpretation, subject
to the constraint that the arguments q,q′ have the same type U , i.e. q,q′ : U .
Figure 2.1 lists properties on sets we rely on.

The following properties of sets in this section are also used throughout this thesis.

Lemma 1. M ⊆N ∪O iff M −O ⊆N .

Proof.

First show that M −O ⊆N implies M ⊆N ∪O.

M −O ⊆N

⇒ (M −O)∪ (M ∩O)⊆N ∪ (M ∩O) ∪ monotone

⇔M ⊆N ∪ (M ∩O) −/∩ complementary

⇒M ⊆N ∪O M ∩· decreasing; ∪ monotone

Now show that M ⊆N ∪O implies M −O ⊆N .

M ⊆N ∪O

⇒M −O ⊆ (N ∪O)−O ·−O monotone

⇔M −O ⊆ (N −O)∪ (O−O) −/∪ distr.

⇔M −O ⊆N −O simpl.

⇒M −O ⊆N ·−O decreasing; trans.

Chapter 2. Background 18

additive inverse M −M = ∅
− associative (M −N)−O = (M −O)−N

·−N decreasing M −N ⊆M

·−N monotone if M ⊆M ′ then M −N ⊆M ′−N

M −· antitone if N ⊆N ′ then M −N ⊇M −N ′

∅ unit for ∪ M ∪∅ = M

M ∪· increasing M ⊆M ∪N

∪ commutative M ∪N = N ∪M

∪ monotone if M ⊆M ′ and N ⊆N ′ then M ∪N ⊆M ′∪N ′

∪ least upper bound M ∪N ⊆O iff M ⊆O and N ⊆O

M ∩· decreasing M ∩N ⊆N

∩ commutative M ∩N = N ∩M

∩ monotone if M ⊆M ′ and N ⊆N ′ then M ∩N ⊆M ′∩N ′

∩ greatest lower bound M ∩N ⊇ P iff M ⊇ P and N ⊇ P

∩ in terms of − M − (M −N) = M ∩N

− and ∩ complementary M = (M −N)∪ (M ∩N) = (M ∪N)− (N −M)
∅ least ∅⊆M

∅ annihilator for ∩ M ∩∅ = ∅
∩ and ∪ induce ⊆ M ⊆N iff M ∩N = M iff M ∪N = N

∪ distributes over ∩ (M ∪N)∩P = (M ∩P)∪ (N ∩P)
∩ distributes over ∪ (M ∩N)∪P = (M ∪P)∩ (N ∪P)
− distributes over ∪ (M ∪N)−O = (M −O)∪ (N −O)
− distributes over ∩ (M ∩N)−O = (M −O)∩ (N −O)

Figure 2.1: Well-known facts about sets.

Chapter 2. Background 19

Lemma 2. (M −N)−O = M − (N ∪O).

Proof. Given any set X, we show M − (N ∪O)⊆X iff. (M −N)−O ⊆X:

M − (N ∪O)⊆X

⇔M ⊆X ∪N ∪O Lemma 1

⇔M −N ⊆X ∪O Lemma 1

⇔ (M −N)−O ⊆X Lemma 1

By instantiating X with (M −N)−O and M − (N ∪O) it follows that the two
terms are equivalent.

Lemma 3. (M −M ′)− (M −N ′) = (M ∩N ′)−M ′

Proof.

(M −M ′)− (M −N ′)

= (M − (M −N ′))−M ′ − associative

= (M ∩N ′)−M ′ ∩ in terms of −

Lemma 4. M −N = M − (M ∩N).

Proof. We first show that for any X, M −N ⊆X

M −N ⊆X

⇔M ⊆X ∪N Lemma 1

⇔M ⊆ (X ∪N)∩M M ⊆X ⇔M ⊆X ∩M

⇔M ⊆ (X ∩M)∪ (N ∩M) ∩/∪ distr.

⇔M − (N ∩M)⊆X ∩M Lemma 1

⇔M − (N ∩M)⊆X ∩ decreasing,M upper bound

Lemma 5. If M ∩N = M ∩O, then M −N = M −O.

Chapter 2. Background 20

Proof.

M −N

= M − (M ∩N) Lemma 4

= M − (M ∩O) assumption

= M −O Lemma 4

Lemma 6. (N −M)∩M = ∅.

Proof.

(N −M)∩M

= M − (M − (N −M)) ∩ in terms of −

= M −M = ∅ (N −M) disjoint from M

Lemma 7. If N ∩O = ∅ and M ⊆N ∪O then M −O = N ∩M .

Proof.

M = M ∩ (N ∪O) M ⊆N ∪O

= (M ∩N)∪ (M ∩O) ∩/∪ distr.

⇒M −O = (M ∩N)∪ (M ∩O)−O −O

= ((M ∩N)−O)∪ ((M ∩O)−O) −/∩ distr.

= ((M ∩N)−O) M ∩O ⊆O

= M ∩N M ∩N ⊆N,N ∩O = ∅

Lemma 8. If M ⊆M ′ then (M ∪N)−M ′ = N −M ′.

Proof.

(M ∪N)−M ′ = (M −M ′)∪ (N −M ′) −/∪ distr.

= ∅∪ (N −M ′) M ⊆M ′

= N −M ′

Chapter 2. Background 21

Constant Relations M

Queries q,q′ ::= M |R | let R = q in q′ Relations, names and let binding
| q− q′ | q∪ q′ | q∩ q′ Set operations
| σP (q) | πU (q) | q ⋊⋉ q′ | ρA/B(q) Relational algebra

Predicates P,Q ::= ⊤ | ¬P | P ∧Q | P ∨Q Logical connectives
| A = B |A = a |X ∈ q Tuple predicates
| πU (P) | P ⋊⋉ Q | ρA/B(q) Relational algebra

Figure 2.2: Syntax of relational expressions and predicates

Lemma 9. If M ∩N = ∅ then M − (M ′∪N) = M −M ′.

Proof.

M − (M ′∪N) = M − (N ∪M ′) ∪ comm.

= (M −N)−M lem. 2

= M −M ′ M ∩N = ∅

Relational Algebra operators

We explain the remaining relational algebra operators in this section.

Relational projection is record projection extended to relations:

πU (M) def= {m[U] |m ∈M}

Given M : U and N : V , their natural join is defined by

M ⋊⋉ N = {m : U ∪V |m[U] ∈M and m[V] ∈N}

P ranges over predicates, which we can interpret as (possibly infinite) sets of
records, or equivalently as functions from records to Booleans. Predicates are
required for specifying selection filters in relational selection, as well as for the
specification of filter conditions in lens definitions. We write P : U to indicate a
predicate over records with domain U . The predicate A = B holds for records
m satisfying m(A) = m(B), while A = a holds when m(A) = a, and U ∈ q holds
when m[U] is in the result of query q. The predicates ⊤ (truth), ¬P (negation),

Chapter 2. Background 22

and P ∧Q (conjunction) are interpreted as usual. For convenience we include
predicates πU (P), P ⋊⋉Q, and ρA/B(P) which behave analogously to the relational
operations, if we view predicates as sets of records. For example, πU (P) holds for
records u such that t[U] = u for some t satisfying P .

Given a predicate P and relation M , the selection σP (M) is defined as follows:

σP (M) def= {m ∈M | P (m)}= M ∩P

We will be interested in cases where predicates are insensitive to the values of
certain attributes; we write “P ignores U” when P (m) can be determined without
considering any of the values that m assigns to attributes in U — i.e. when for
all m and n, if m\U = n\U then P (m) ⇐⇒ P (n).

We define the relational renaming operation ρA/B(M) as

ρA/B(M) def= {m[A/B] |m ∈M}

which makes it possible to join tables with differing column names. As mentioned
above, we also write ρA/B(P) for the result of renaming attribute A in predicate
P to B.

We rely on the following well-known facts about relational operators.

⋊⋉ monotone if M ⊆M ′ and N ⊆N ′ then M ⋊⋉ N ⊆M ′ ⋊⋉ N ′

πU (·) monotone if M ⊆M ′ then πU (M)⊆ πU (M ′)
σP (M) decreasing σP (M)⊆M

Other basic properties of relational operators

We also require the following properties of relational operators.

Lemma 10 (⋊⋉ after πU × πV increasing). Suppose M : U ∪ V . Then M ⊆
πU (M) ⋊⋉ πV (M).

Proof.
m ∈M suppose (m) (1)

m[U] ∈ πU (M) (1) def. πU (·) (2)

m[V] ∈ πV (M) (1) def. πV (·) (3)

m ∈ πU (M) ⋊⋉ πV (M) (2; 3) def. ⋊⋉

Chapter 2. Background 23

Lemma 11 (πU after ⋊⋉ decreasing). Suppose M : U . Then πU (M ⋊⋉ N)⊆M .

Proof.
m ∈ πU (M ⋊⋉ N) suppose (m) (1)

m′ ∈M ⋊⋉ N ∧m′[U] = m (1) def. πU (·); exists (m′) (2)

m = m′[U] ∈M (2) def. ⋊⋉

Lemma 12 (π unit). Suppose M : U . Then πU (M) = M .

Proof. πU (M) = {m[U] |m ∈M}= {m |m ∈M}= M.

Lemma 13 (π distributes over ∪).
πU (M)∪πU (N) = πU (M ∪N)

Proof.
πU (M)∪πU (N)

= {m[U] |m ∈M}∪{n[U] | n ∈N} def. πU (·)

= {m[U] |m ∈ (M ∪N)}

= πU (M ∪N) def. πU (·)

2.1.3 Functional Dependencies

Functional dependencies are constraints restricting combinations of records. A
functional dependency U → V requires that any two records with the same val-
ues for U should have the same values for V . We say U → V is a functional
dependency over U , written U → V : W , iff U ∪V ⊆W . If U → V is a functional
dependency over W and M : W , then M satisfies U → V , written M ⊨ U → V ,
iff m[U] = n[U] implies m[V] = n[V] for all m,n ∈M . We write m,M ⊨ U → V

as a shorthand for {m}∪M ⊨ U → V . It is conventional in database theory to
write sets of attributes such as {A,B,C} as A B C, and A→ B C to mean the
functional dependency {A}→ {B,C}.

Chapter 2. Background 24

T-Transitivity
M ⊨ U → V M ⊨ V →W

M ⊨ U →W

T-Reflexivity
M : U V ⊆ U

M ⊨ V → V

T-Projectivity
M : U V ⊆ U W ⊆ V

M ⊨ V →W

T-Additivity
M ⊨ U → V M ⊨ U →W

M ⊨ U → V W

T-Pseudotransitivity
M ⊨ U → V M ⊨ V W → U ′

M ⊨ UW → U ′

T-Augmentation
M : U ′ V ⊆ U ′

M ⊨W → U

M ⊨WV → U

T-Split
M ⊨ U → V W

M ⊨ U → V

Figure 2.3: Armstrong’s Axioms for functional dependencies.

Typically we work with sets F,G of functional dependencies over a fixed U and
write F : U iff V →W : U for every V →W ∈ F . The notation M ⊨ F means
that M ⊨ V →W for all V →W ∈ F . Likewise, F ⊨G means that M ⊨ F implies
M ⊨ G for any M , and F ≡ G means that F ⊨ G and G ⊨ F . We write F [A/B]
for the result of renaming attribute A to B in all functional dependencies in F ,
i.e. F [A/B] def= {U [A/B]→ V [A/B] | U → V ∈ F}.

Given a set of functional dependencies F such that M ⊨ F , it is possible to
derive further valid functional dependencies using the inference rules by Delobel
and Casey [30] and Armstrong [6] shown in Figure 2.3. Some of these rules are
redundant, as it is possible to derive the full set of rules from either the rule
collection:

• T-Transitivity, T-Projectivity and T-Additivity, or

• T-Reflexivity, T-Pseudotransitivity and T-Augmentation.

Functions on Functional Dependencies

Figure 2.4 defines various functions on sets of functional dependencies. Given a
set of functional dependencies F , the sets left(F) and right(F) compute the union
of the left or right side of all functional dependencies X→ Y ∈ F . The set of all
columns referred to by a set of functional dependencies F is given by names(F).
The set outputs(F) consists of all attributes that are actually constrained in F by
other attributes. Finally, roots(F) is the set of all nodes of TF that have in-degree

Chapter 2. Background 25

left(F) = ⋃
{U | U → V ∈ F}

right(F) = ⋃
{V | U → V ∈ F}

names(F) = left(F)∪ right(F)

outputs(F) = ⋃
{V | ∃U.F ⊨ U → V and U ∩V = ∅}

roots(F) = {U | ∃V.U → V ∈ F and U ∩ right(F) = ∅}

F = {U → V } ·F ′ ⇐⇒ F = {U → V }⊎F ′ and U ∈ roots(F)

Figure 2.4: Operations on functional dependencies

zero.

Functional Dependencies in Tree Form

Some operations on relational data may not have correct definitions if there are
cycles among functional dependencies. Bohannon et al. [12] avoid this problem
by requiring that sets of functional dependencies be in a special form called tree
form. We briefly restate the definition for concreteness.

Definition 1. Given functional dependencies F , define

VF = {U | U → V ∈ F}∪{V | U → V ∈ F} EF = {(U,V) | U → V ∈ F}

Then we say F is in tree form if the graph TF = (VF ,EF) is a forest and VF

partitions ⋃
VF .

If F is in tree form, then each attribute set of F corresponds to a node in a tree
(or forest) where the edges correspond to elements of F . Moreover, no distinct
nodes of TF have common atttibutes. For example, {A→ B C,B → D} is not
in tree form, but is equivalent to {A→B,A→ C,B→D} which is in tree form.
However, {A→B C,C→ A D} has no equivalent tree form representation.

It is straightforward to check whether a set of functional dependencies is in tree
form using a standard graph reachability algorithm. Section 6.2 shows how this
can be implemented at the type level.

Chapter 2. Background 26

2.2 Lenses

Lenses are the most typical form of bidirectional transformations. A lens [36]
ℓ : S ⇔ V is a transformation between two sets S and V , where S is a set of
source values and V is a set of possible views. The lens ℓ is determined by two
functions, getℓ and putℓ, with the following signatures:

getℓ : S→ V putℓ : S×V → S

Consider the example where the source data structure is a tuple of type W ×V .
A program may be required to do some processing on the second component of
the tuple. We could perform the required task by using a lens of type proj2 :
W × V ⇔ V . The forward direction of this lens could be defined by the snd

function, while putproj2 function should reconstruct the tuple while replacing the
second component with the updated view.

getproj2 = λ(w,v). v

putproj2 = λ(w,v). λv′. (w,v′)

A lens is well-behaved if it satisfies two round-tripping properties relating getℓ

and putℓ. The correctness property PutGet ensures that whatever data we put
into a lens is returned unchanged if we get it again. The hippocraticness property
GetPut ensures that if we put the view value back into the lens unchanged, the
underlying source value is also unchanged [80].

getℓ(putℓ(s,v)) = v (PutGet)

putℓ(s,getℓ(s)) = s (GetPut)

In addition to the two round-tripping laws, we also would like the two functions
to be total, ensuring that for any well-typed input the function yields a well-typed
output. From now on the notation ℓ : S⇔ V means that ℓ is a well-behaved lens
from S to V .

A consequence of requiring well-behavedness is that the codomain of getℓ must
exactly equal the domain of the updated view Y for putℓ(Y,X). To see why this
is, we consider a simple example of lens for which we define the get function as:

get(X) = X mod 10

Chapter 2. Background 27

Regardless of the exact semantics of put(Y,X) for this example, the lens cannot
be considered well-behaved if we try to call put(15,X). We know that regardless
of how put(Y,X) is implemented, GetPut will be violated because:

get(put(15,X)) ̸= 15

A solution to this problem is to restrict the domain for Y of the put function
to 0 ≤ Y < 10. In essence we need something like a refinement type [40] to
ensure that only valid outputs can be used as inputs. For relational lenses this
means that any restrictions filtering rows in the output needs to be reflected as
a requirement on the domain of the view.

Lenses form the arrows of a category, whose objects are the sources and views.
The identity lens idX : X ⇔X is given by the functions get and put defined as:

getid(x) = x putid(x,x′) = x′

We omit the subscript on id when clear from context. The identity lens is trivially
well-behaved. Diagram-order composition ℓ1;ℓ2 : X⇔ Z of the lenses ℓ1 : X⇔ Y

and ℓ2 : Y ⇔ Z is given by the functions get and put defined as:

getℓ1;ℓ2(x) = getℓ2(getℓ1(x)) putℓ1;ℓ2(x,z) = putℓ1(x,putℓ2(getℓ1(x), z))

Product Lenses

As discussed in previous work [49, 50], the category of lenses also has symmetric
monoidal products; that is, there is a construction ⊗ on its objects such that
X⊗Y is the set of pairs {(x,y) | x∈X,y ∈ Y }, and which satisfies symmetry and
associativity laws:

X⊗Y ∼= Y ⊗X (Sym)

X⊗ (Y ⊗Z)∼= (X⊗Y)⊗Z (Assoc)

These laws are witnessed by (invertible) lenses symX,Y and assocX,Y,Z , defined
as follows:

getsym(x,y) = (y,x) getassoc(x,(y,z)) = ((x,y), z)

putsym(_,(y,x)) = (x,y) putassoc(_,((x,y), z)) = (x,(y,z))

Chapter 2. Background 28

In addition, we have the following combinator for combining two lenses ‘side-by-
side’:

getℓ1⊗ℓ2(x1,x2) = (getℓ1(x1),getℓ2(x2))

putℓ1⊗ℓ2((x1,x2),(y1,y2)) = (putℓ1(x1,y1),putℓ2(x2,y2))

so that if ℓ1 : X1⇔ Y1 and ℓ2 : X2⇔ Y2 then ℓ1⊗ ℓ2 : X1⊗X2⇔ Y1⊗Y2.

These lens constructs preserve well-behavedness as characterised by the following
inference rules:

idX : X ⇔X
T-id

ℓ1 : X ⇔ Y ℓ2 : Y ⇔ Z

ℓ1;ℓ2 : X ⇔ Z
T-Compose

symX,Y : X⊗Y ⇔ Y ⊗X
T-sym

assocX,Y,Z : X⊗ (Y ⊗Z)⇔ (X⊗Y)⊗Z
T-assoc

ℓ1 : X1⇔ Y1 ℓ2 : X2⇔ Y2
ℓ1⊗ ℓ2 : X1⊗X2⇔ Y1⊗Y2

T-Product

2.3 Relational Lenses

Relational lenses are bidirectional transformations on relational data. Bohan-
non et al. [12] define relational lenses as transformations between two database
schemas, where each database schema is a mapping from relation names to table
types. Relational lenses are constructed by composing multiple individual lens
primitives, which can perform operations such as relational joins, projections and
selections.

Our presentation differs from that of Bohannon et al. [12] in that we consider
relational lenses to be transformations between structural schemas. A structural
schema is a tensor product of relation types. We use generic lens combinators
arising from the symmetric monoidal product structure to deal with linearity.
This makes it possible for each primitive to mention only the affected source and
target data and not the rest of the database instance. We discuss the Bohannon

Chapter 2. Background 29

et al. [12] presentation in more detail in Chapter 5, compare the two notations in
Appendix A.1, and show how such lenses can be converted into our presentation
in Appendix A.2.

In this section we first introduce the additional relational operations required
by the relational lens semantics in Section 2.3.1. Section 2.3.2 introduces the
refinement type for relations, also known as the lens sort. We then introduce the
individual relational lens primitives as well as their typing rules in Section 2.3.3.

2.3.1 Relational Revision

A key relational lens concept introduced by Bohannon et al. [12] is relational
revision. Given a set of functional dependencies F : U and relations M,N : U such
that N |= F , relational revision modifies M to M ′ so that M ′∪N |= F so that all
information in M is preserved unless overridden by a functional dependency in
N . For example, given F = {A→ B} and M = {(A = 1,B = 2) ,(A = 2,B = 3)}
and N = {(A = 1,B = 42)}, the result of revising M to be consistent with N and
F is {(A = 1,B = 42) ,(A = 2,B = 3)}.

Revision and Merge Operations

Relational revision is expressed in terms of a record revision operation recreviseF (m,N)
which takes a set of functional dependencies F : U in tree form, a record m : U ,
and a set of records N : U such that N |= F , and is defined by recursion over the
tree structure of F . If F is empty, record revision simply returns m. Otherwise,
there must be at least one functional dependency X → Y in F such that X is a
root. If m and some n ∈ N have the same values for X, we return m←+n[Y],
that is, a copy of m whose Y attributes have been updated with those from n[Y];
otherwise we return m unchanged. We then recursively process the remaining
functional dependencies.

The tree of F is not unique, but provided F is in tree form, the end result of
record revision is uniquely defined, because each attribute in right(F) is modified
at most once and no attribute can be modified until all other attributes it depends
on have been modified.

Definition 2 (Relational revision). Figure 2.5 defines the relational revision op-
eration reviseF (M,N) that takes two sets of records M : U and N : U where N ⊨F ,

Chapter 2. Background 30

recrevise∅(m,N) = m

recrevise{X→Y }·F (m,N) =

recreviseF (m←+n[Y],N) if ∃n ∈N.m[X] = n[X]

recreviseF (m,N) otherwise

reviseF (M,N) = {recreviseF (m,N) |m ∈M}

mergeF (M,N) = reviseF (M,N)∪N

Figure 2.5: Relational revision and relational merge

and applies record revision to every record m ∈M using the given functional de-
pendencies F .

Definition 3 (Relational merge). Figure 2.5 also defines the relational merge
operation mergeF (M,N), where N ⊨ F , which revises M according to F and N

and then unions the result with N .

2.3.2 Table Sorts

A consequence of the roundtripping guarantees of lenses is that the output do-
main for a view must exactly equal the input domain of the put operation. For
relational lenses, this means that the sort of a lens view must describe the re-
strictions that the lens may introduce.

We previously considered tables M : U , where the table M has the domain U .
In practice we require a more precise refinement type to describe exactly which
records may appear in a table. Given a table M such that M : Rel(U,P,F), where
Rel(U,P,F) is the refinement type, we require that:

• The record type U describes the columns and column types used by records
in the relation. We require M : U .

• The Predicate P is an arbitrary row-level integrity constraint requiring that
each record in the table should satisfy some restriction. Bohannon et al. [12]
use abstract sets to describe the predicate, requiring M ⊨ P . In Chapter 4
we introduce a concrete predicate syntax, and require P (m) to hold for any
m ∈M .

• The Functional dependencies F are table-level integrity constraints, which

Chapter 2. Background 31

Relational lenses
ℓ,ℓ′ ::= selectP | drop A determined by (X,a) | join_dl | joinPd,Qd

| renameA/B

| id | ℓ1;ℓ2 | sym | assoc | ℓ1⊗ ℓ2

Figure 2.6: Syntax of relational lens expressions

can specify that all rows with the same values in some columns should have
identical values in other columns. We require M ⊨ F .

Consider the following example where lens composition is not allowed. We would
like to construct a lens that drops the column age, and inserts a default value 0
if the age is otherwise unknown. If this lens is composed on top of a lens that
requires age > 20, any row with age = 0 would not be permitted. It is necessary
for the application to reject the composition of these lenses.

Bohannon et al. [12] indirectly attach lens refinement types to relation names by
using a sort relation. By specifying that sort(S) = (U,P,F) we require that if the
relation name S maps to the relation M then M : Rel(U,P,F).

2.3.3 Relational Lens Primitives

In this section we recapitulate the primitive relational lenses introduced by Bo-
hannon et al. [12]: a selection lens that corresponds to selection, a drop lens that
corresponds to projection, and a join lens that corresponds to relational join.
(“Corresponds” means that the get direction coincides with the relational oper-
ation.) We also introduce a trivial rename lens corresponding to the relational
renaming operator. The syntax of the relational lenses, including the generic
operations from Section 2.2, is given in Figure 2.6.

Relational lens expressions are subject to a typing judgement given in Figure 2.7;
well-typed lenses are guaranteed to be well-behaved. The preconditions in these
rules are those given by Bohannon et al. [12], to which we refer the reader for
further explanation.

Select Lens

The lens ℓ = selectP : Rel(U,Q,F)⇔Rel(U,P ∧Q,F) is defined in Figure 2.8 by
the functions get and put.

Chapter 2. Background 32

F is in tree form Q ignores outputs(F)

selectP : Rel(U,Q,F)⇔ Rel(U,P ∩Q,F)
T-Select

P = πU−A(P) ⋊⋉ πA(P) (A = a) ∈ πA(P)

drop A determined by (X,a) : Rel(U,P,F ⊎{X → A})⇔ Rel(U −A,πU−A(P),F)
T-Drop

G ⊨ U ∩V → V

F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G)

join_dl : Rel(U,P,F)⊗Rel(V,Q,G)⇔ Rel(U ∪V,P ⋊⋉ Q,F ∪G)
T-JoinDL

G ⊨ U ∩V → V Pd : U ∪V Qd : U ∪V

F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G)

joinPd,Qd,:Rel(U,P,F)⊗Rel(V,Q,G)⇔ Rel(U ∪V,P ⋊⋉ Q,F ∪G)
T-Join

A ∈ U B /∈ U

renameA/B : Rel(U,P,F)⇔ Rel(U [A/B],ρA/B(P),F [A/B])
T-Rename

Figure 2.7: Typing rules for relational lens primitives

Chapter 2. Background 33

getℓ(M) = σP (M)
putℓ(M,N) = let M0 = mergeF (σ¬P (M),N) in

let N# = σP (M0)−N in
M0−N#

Figure 2.8: The select lens definition.

The put operation first calculates M0, the set of records σ¬P (M) excluded from
the original view, revised to be consistent with the functional dependencies wit-
nessed by the updated view N together with N itself. The set N# collects records
matching P but not in N , which are removed from M0 in order to satisfy PutGet.

Project Lens

The lens ℓ = drop A determined by (X,a) : Rel(U,P,F ⊎ {X → A}) ⇔ Rel(U −
A,πU−A(P),F) is defined in Figure 2.9 1 by the functions get and put.

getℓ(M) = πU−A(M)
putℓ(M,N) = let M ′ = N ⋊⋉ {(A = a)} in

reviseX→A(M ′,M)

Figure 2.9: The project lens definition.

For put, each row in N is initially given the default value a for A. M is then
used to override the default value in M ′ using relational revision, so that if there
is an entry m ∈M ′ with the same value for the determining column X the cor-
responding A value from M is used instead.

Join Lens

Bohannon et al. [12] described several variants of lenses for join operations. All
three perform the natural join of their two input relations in the get direction,
but differ in how deletions are handled in the put direction. A view tuple deletion
could be translated to a deletion in the left, right, or both source relations, and
so there are three combinators join_dl, join_dr, and join_both expressing these

1This is slightly simpler than, but equivalent to, the definition given by Bohannon et al. [12].
Proof that the two definitions are equivalent is shown in Appendix A.3.

Chapter 2. Background 34

three alternatives. The typing rules for join_dr and join_both are left out, as they
are identical to join_dl. In their extended report, Bohannon et al. [12] showed
how to define all three combinators as a special case of a generic template. We
first present the semantics for the delete left lens, and then show how this can be
derived from the template.

The ‘join/delete left’ lens ℓ = join_dl : Rel(U,P,F)⊗Rel(V,Q,G) ⇔ Rel(U ∪
V,P ⋊⋉ Q,F ∪G) is given by the functions get and put defined in Figure 2.10.

getℓ(M,N) = M ⋊⋉ N

putℓ((M,N),O) = let M0 = mergeF (M,πU (O)) in
let N ′ = mergeG(N,πV (O)) in
let L = (M0 ⋊⋉ N ′)−O in
let M ′ = M0−πU (L) in
(M ′,N ′)

Figure 2.10: The join lens definition.

The intuition for the put direction is as follows. We first compute M0 by merging
the projection πU (O) into source table M , and likewise N ′, merging the projection
πV (O) into the source table N . We next identify those tuples L which are in the
join of M0 and N ′ but which are not present in the updated view O. To satisfy
PutGet, we must make sure these tuples do not appear in the join after updating
the source relations. It is sufficient to delete each of those records from one of
the two source tables; since this lens deletes uniformly from the left table, we
compute M ′ by subtracting the projection πU (L) from M0. Finally, M ′ and N ′

are the new values for the source tables.

The ‘join/template’ lens joinPd,Qd
: Rel(U,P,F)⊗Rel(V,Q,G)⇔ Rel(U ∪V,P ⋊⋉

Q,F ∪G) is given by the functions get and put defined as follows:

Chapter 2. Background 35

get(M,N) = M ⋊⋉ N

put((M,N),O) = let M0 = mergeF (M,πU (O)) in
let N0 = mergeG(N,πV (O)) in
let L = (M0 ⋊⋉ N0)−O in
let La = L ⋊⋉ πU∩V (O) in
let Ll = L−La in
let M ′ = M0−πU (Ll∪σPd

(La)) in
let N ′ = N0−πV (σQd

(La)) in
(M ′,N ′)

Unlike the ‘join/delete left’ lens, the ‘join/template’ lens partitions the set L of
records that should be deleted into two sets; La contains all records that can
be deleted form either the left, the right or both tables. Ll contains all records
that must be deleted from the left table, because deleting them from the right
table would remove other records in the resulting view. M ′ is then calculated by
removing all records in the projection of Ll as well as all records in the projection
of La that satisfy the Pd predicate. The set called N ′ in the delete lens is called
N0 in this lens. Instead, N ′ is calculated by removing the projection of all records
in La that satisfy Qd from N0.

The definition for M ′ is slightly different from the well-behaved definition pre-
sented by Bohannon et al. [12]. We show that our lens definition is equivalent to
the original definition and therefore also well-behaved.

Lemma 14.
M ′ =

(
M0−πU (σLa(Pd))

)
−πU (Ll) = M0−πU (Ll∪σPd

(La))

Proof.
M ′ =

(
M0−πU (σLa(Pd))

)
−πU (Ll)

= M0−
(
πU (σLa(Pd))∪πU (Ll)

)
Lemma 2

= M0−πU (Ll∪σPd
(La)) Lemma 13

Note that for the template lens to be well-behaved, it is necessary for all records
m : U ∪V , either m ∈ Pd or m ∈Qd. This ensures that the record is deleted from
at least one of the underlying tables, removing it from the output view.

Chapter 2. Background 36

Lemma 15. The lens join_dl is equivalent to join⊤,⊥.

Proof. For this to hold, we must show that:

1. M ′ = M0−πU (L)

2. N ′ = N0

For our proof we must first show that La∪Ll is L.

We start by showing that Ll is a subset of L:

Ll = L ⋊⋉ πU∩V (O) def. Ll

= πU∪V (L ⋊⋉ πU∩V (O)) πU∩V (·) unit

⊆ L π after ⋊⋉ decreasing

We use this to show that La∩L = Ll:

Ll∩L = Ll Ll ⊆ L;∩ induce ⊆

We can now show that La∪Łl = L:

La∪Ll

= (L−Ll)∪ (Ll) def. La

= (L−Ll)∪ (Ll∩L) Ll = Ll∩L

= L − and ∩ complementary

We can now show the required two equations required:

M ′ = M0−πU (Ll∪σPd
(La))

= M0−πU (Ll∪σ⊤(La)) Pd =⊤

= M0−πU (Ll∪La) def. σ⊤(·)

= M0−πU (L) Ll∪La = L

N ′ = N0−πV (σQd
(La))

= N0−πV (σ⊥(La)) Qd =⊥

= N0−πV (∅) def. σ⊥(·)

= N0 def. πV (·)

Using the join template we can derive the other join variants.

Chapter 2. Background 37

The ‘join/delete right’ lens join_dr : Rel(U,P,F)⊗Rel(V,Q,G)⇔Rel(U ∪V,P ⋊⋉
Q,F ∪G) is derived by defining Pd =⊥ and Qd =⊤ yielding the following func-
tions get and put for the delete right lens:

get(M,N) = M ⋊⋉ N

put((M,N),O) = let M0 = mergeF (M,πU (O)) in
let N0 = mergeG(N,πV (O)) in
let L = (M0 ⋊⋉ N0)−O in
let La = L ⋊⋉ πU∩V (O) in
let Ll = L−La in
let M ′ = M0−πU (Ll) in
let N ′ = N0−πV (La) in
(M ′,N ′)

The ‘join/delete both’ lens join_both : Rel(U,P,F)⊗Rel(V,Q,G)⇔Rel(U∪V,P ⋊⋉
Q,F ∪G) has Pd = Qd =⊤, and is given by the functions get and put:

get(M,N) = M ⋊⋉ N

put((M,N),O) = let M0 = mergeF (M,πU (O)) in
let N0 = mergeG(N,πV (O)) in
let L = (M0 ⋊⋉ N0)−O in
let La = L ⋊⋉ πU∩V (O) in
let Ll = L−La in
let M ′ = M0−πU (L) in
let N ′ = N0−πV (La) in
(M ′,N ′)

Renaming Lens

Renaming is a theoretically trivial but practically important operation in rela-
tional algebra, since otherwise there is no way to join the A field of one table
with the B ̸= A field of another. We introduce a renaming lens renameA/B :
Rel(U,P,F)⇔ Rel(U [A/B],ρA/B(P),F [A/B]), provided A ∈ U and B /∈ U , with
its get and put operations defined as follows:

get(M) = ρA/B(M)
put(_,N) = ρB/A(N)

Chapter 2. Background 38

Bohannon et al. [12] did not define such a lens. The get and put operations are
inverses of each other, meaning that get(put(M,N)) = N and put(M,get(M)) =
M . This makes the rename lens (very) well-behaved.

2.4 Qualified Types

Types provide us with information about the value of a variable during runtime.
The knowledge about the variable allows the compiler to verify that there is no
mismatch between what value is expected and what value is provided to a segment
of code. Such verification is helpful, because it allows errors to be detected and
fixed before the program is even run.

When programming languages are extended with polymorphism, the information
about a variable reduces from knowing everything to only knowing its structure
(e.g. a tuple of two unknown types). The result is that no actual operations on
parametrically polymorphic variables can be performed (with the exception of
supplied polymorphic functions).

A compromise between the all or nothing approach is to specify restrictions that
apply to the type variable. An example would be to specify that the type variable
represents a numeric type, but without knowing if it is actually an integer or a
floating point number. By knowing the type variable is a number, it would still
be permitted to perform addition, which is defined on all numeric types.

Jones [53] introduce qualified types, a generic framework for handling such re-
strictions. The idea is that if we know the exact type, it is easy to determine
if the type satisfies the restriction, also referred to as predicates. When defining
a polymorphic function, the predicate becomes a constraint that must be solved
at the call-site. The call-site can either further defer this restriction or satisfy it
itself.

A type schema σ such as ∀ α β. (α,β)→ α allows us to quantify types over a
set of type variables. In this example we describe a function which takes a tuple
and returns the first component, independent of the underlying component types.
Qualified types extend type schemas by allowing types to require a predicate π to
be satisfied, written π⇒ σ such that we may only use the type schema if evidence
for π can be provided [53]. We write θP for the substitution θ applied to the

Chapter 2. Background 39

Q-Inst
P | Γ ⊢M : π⇒ σ P ⊢⊢ π

P | Γ ⊢M : σ

Q-Abstr
P,π | Γ ⊢M : σ

P | Γ ⊢M : π⇒ σ

Figure 2.11: Qualified types inference rules.

predicate P . Predicates satisfy an entailment relation P ⊢⊢Q with the following
properties:

Q⊆ P =⇒ P ⊢⊢Q Monotonicity

P ⊢⊢Q∧Q ⊢⊢R =⇒ P ⊢⊢R Transitivity

P ⊢⊢Q =⇒ θP ⊢⊢ θQ Closure Property

Typing judgements with qualified types, written P | Γ ⊢ M : σ, specify that
an expression M types to σ under the type environment Γ and the predicate
assumptions P . Qualified types make use of two additional typing rules shown
in Figure 2.11. The first, Q-Inst, allows the instantiation of the qualified type
π⇒ σ if it is possible to derive the predicate π from predicate assumptions P .
The second allows the abstraction over qualified types, allowing a term that can
be typed to σ under the assumption π to have the qualified type π⇒ σ without
the assumption π.

Qualified types can be used as a general framework to implement various features
such as type classes [87]. In the case of relational lenses we would like the side-
conditions required by relational lenses to be satisfied by predicates, which can
then used in polymorphic settings.

Chapter 3

Incremental Relational Lenses

This chapter augments the semantics of relational lenses to support an efficient
evaluation strategy. Bohannon et al. [12] define the get and put directions of
relational lenses as set-theoretic functions showing how to compute the new source
given the old source and the updated view. The get function for each lens is always
the corresponding relational algebra option, e.g. the join operator, a projection
or a selection. The forward direction can easily be translated into an SQL query,
allowing it to be efficiently executed on the database server.

The put direction on the other hand provides a relational algebra expression to
reconstruct the underlying source. The most obvious approach to implementing
the put behavior of a relational lens is to use these definitions to calculate the
new source table ‘from scratch’ and replace the old one with the new one. Hav-
ing relational lens semantics that produce fresh copies of the database tables is
undesirable for two reasons.

The first reason is that the performance of recomputing the entire database does
not scale well. Changes to views are small in the common case and only affect
a few rows in the database. The cost of reconstructing a table will be at least
linear compared to its size, making recomputation from scratch wasteful when
only small parts of the database are affected. Databases often accumulate data
over their lifetime, meaning that an update operation with linear complexity will
eventually become very expensive.

The other issue is a violation of separation of concerns. In the naive implementa-
tion setting the client reconstructs the database, even though it is the database

40

Chapter 3. Incremental Relational Lenses 41

server’s responsibility to store and manage the database. The advantage of using
a relational database server is that it can be considered a black box that takes
care of answering queries and applying updates. If the update semantics relied
on recomputing the entire database tables, it would be necessary to transfer the
entire database to the program, which would then send the updated copy back
to the database server. In addition, concurrent access would not be possible
while the database is being replaced, and more computation would be required
to update indexes and to recheck constraints on the unchanged sections of the
database. While it may be possible to express the put direction in SQL and exe-
cute it on the database server, this would not be helpful as the expression would
still recompute the tables rather than updating the existing ones.

There is a large amount of literature on the problem of incremental view main-
tenance [28, 44, 59, 60] addressing the problem of how to modify a materialised
view to keep it consistent with changes to the source tables. The benefits of
incremental evaluation are not confined to databases either: witness the growing
literature on adaptive and incremental functional programming [3, 46, 18]. In-
deed, the foundations of change-oriented bidirectional transformations have even
been investigated previously by Hofmann et al. [50] on edit lenses, Diskin et al.
[31, 32] on delta lenses, Wang et al. [89] and others. It is natural to ask whether
incrementalisation can be used to make relational lenses practical.

This chapter applies incremental computation techniques to relational lenses.
The goal of incremental relational lenses is to avoid the expensive recomputation
of tables required by naive lenses on each view update. Instead of working on
full tables, only the changes to views are translated down into changes on the
underlying tables.

Figure 3.1 illustrates this approach. Given a lens ℓ (defined by composing several
primitive lenses ℓi), a source S, and the initial view value V = getℓ(S), suppose
V is updated to V ′. We begin by calculating a view delta (i.e. a change set)
∆V = V ′⊖V . Here ⊖ is the operation that calculates a delta, mapping one value
to another. Then, for each step ℓi of the definition of ℓ, we translate the view
delta ∆Vi of Vi to a source delta ∆Vi−1. We do this by defining an incremental
version of the put operation, δput, which takes S and ∆V as arguments, and

Chapter 3. Incremental Relational Lenses 42

S l1 l2 · · · ln

get

put

get

put

get

put

get

put

V

V ′

∆S ∆V1 ∆Vn−1 ∆Vn

user change

difference

. . .

Figure 3.1: Propagating changes through lenses from view to source.

which satisfies the following law:

put(S,get(S)⊕∆V) = S⊕ δput(S,∆V)

where ⊕ denotes the application of a delta to a value. Finally, once we have
calculated the source delta ∆S = ∆V0, we translate it to a sequence of SQL
INSERT, UPDATE and DELETE commands.

As with delta lenses [31], this approach avoids recomputing and replacing entire
tables. Moreover, it can often translate small view deltas to small source deltas.
Working with small deltas reduces the amount of computation and data move-
ment incurred. On the other hand, incremental relational lenses still may need
to access the source tables to compute correct deltas. We show that this can be
done efficiently by issuing auxiliary queries during delta propagation.

We have implemented incremental relational lenses in Links [26], a web pro-
gramming language with comprehensive support for language-integrated queries
[25, 22, 35]. Our experiments show that incremental evaluation offers dramatic
performance benefits over the naive state-based approach, just as one would hope
or even expect. Perhaps more importantly, we prove the correctness of our ap-
proach. The state-based relational lens definitions have a number of subtleties,
and proving the correctness of their incremental versions is a nontrivial chal-
lenge. Since relational lenses use set-based rather than multiset-based semantics,
recent work by Koch [59] and Cai et al. [18] on incrementalising multiset oper-
ations does not apply; instead, we build on classical work on incremental view

Chapter 3. Incremental Relational Lenses 43

track date rating album
− ‘Lullaby’ 1989 3 ‘Galore’

+ ‘Lullaby’ 1989 4 ‘Galore’

− ‘Lullaby’ 1989 3 ‘Show’

+ ‘Lullaby’ 1989 4 ‘Show’

δput⇐
track date rating album

− ‘Lullaby’ 1989 3 ‘Galore’

+ ‘Lullaby’ 1989 4 ‘Galore’

Figure 3.2: Select lens example: using δput, we compute the source delta (left-hand
side) from the view delta (right-hand side) and the original source (Fig. 1.3, left).

updates [73, 42]. Incremental relational lenses are also related to edit lenses [50]
and some other frameworks; we discuss the relationship in detail in Section 7.3.

Incremental Update Example Recall the introduction example in Figure 1.4.
There the update semantics would delete all five tuples of the old tracks table,
and then reinsert the three unchanged tuples and the new versions of the two
modified ones. The desired effect in Figure 1.4 could be accomplished using SQL
UPDATE operations to change just the ratings of the ‘Lullaby’ tracks to 4. This
would typically be more efficient (especially if there were many more unaffected
rows).

Therefore, we adopt an incremental approach, as outlined before. Instead of
working with the entire tables, we first compute a delta for the modified view.
View deltas are represented by sets of rows that should be inserted and deleted
from the view. We illustrate deltas as tables with rows annotated with ‘+’ (for
insertion) or ‘-’ (for deletion). An example delta for the update shown in Fig-
ure 1.4 is shown on the left of Figure 3.2. This delta is then used to calculate a
delta for the source table, as shown on the right side of Figure 3.2.

Once we have computed the change set for the underlying tables from Figure 3.2,
we can use the delta and other available information (such as table keys) to pro-
duce SQL update commands that perform the desired update. A table key is a
set of columns that uniquely identify a row in a table. The table key can be de-
termined from the functional dependencies by finding a set of columns for which
the transitive closure includes all columns of the table. In the Links implementa-
tion, the programmer specifies the table key when defining a handle to the table.
For our example, the columns track and album are a key, and are used in the
where clause of the update commands where possible. In addition, deletions and

Chapter 3. Incremental Relational Lenses 44

1. let joined = join_dl albums with tracks in
2. let dropped = drop date determined by (track,2018) from joined in
3. let filtered = selectquantity>2 from dropped in
4. get filtered

Figure 3.3: A view selectLens defined by composing join, drop and select operators.

insertions with the same table key are combined into a single update command.
We can perform the needed updates using two SQL update operations, as follows:
UPDATE tracks SET date = 1989 rating = 4 WHERE track = 'Lullaby' AND album = 'Galore';
UPDATE tracks SET date = 1989 rating = 4 WHERE track = 'Lullaby' AND album = 'Show';

Composition Updatable views can be defined using relational lens primitives for
dropping attributes (projection), combining data from several tables (joining) and
filtering rows from tables (selection). We can combine these primitive relational
lenses using the general definition of composition for lenses [36].

We extend our track example as shown in Figure 3.3 by first joining the two tables
in line 1. This gives us a view joined containing all tracks and their corresponding
albums and album quantities. We may then decide to discard the date attribute
using a projection lens in line 2, yielding view dropped. (The drop combinator
includes a default value giving a value to use when new data is inserted into
the view.) Finally, in line 3 we use selection to define a view filtered retaining
rows with quantity greater than 2. Figure 3.4 shows each of the lenses in blue,
and along the left shows how the composite lens’s get produces the table in the
bottom left with the three tracks ’Lullaby’, ’Lovesong’ and ’Trust’. We show the
intermediate views in the get direction for completeness, but it is not necessary to
compute them explicitly; we can compose the get directions and extract a single
SQL query to produce the final output. The query for the example in Figure 3.3
would be:
SELECT t1.track, t1.rating, t1.album, t2.quantity
FROM tracks as t1
JOIN albums as t2 ON t1.album = t2.album
WHERE t2.quantity > 2;

Suppose a user then makes the changes shown in red at the bottom of Figure
3.4. Performing the update with composed lenses works similarly to the case
for single lenses: for a composite lens ℓ1;ℓ2 we first propagate the view delta
backwards through ℓ2 to obtain a source delta, then treat that as a view delta for

Chapter 3. Incremental Relational Lenses 45

album quantity
’Disintegration’ 6

’Show’ 3
’Galore’ 1
’Paris’ 4
’Wish’ 5

{album→ quantity}

track date rating album
’Lullaby’ 1989 3 ’Galore’

’Lullaby’ 1989 3 ’Show’

’Lovesong’ 1989 5 ’Galore’

’Lovesong’ 1989 5 ’Paris’

’Trust’ 1992 4 ’Wish’

{track→ date, rating}

album quantity
- ’Disintegration’ 6
+ ’Disintegration’ 7

track date rating album
- ’Lullaby’ 1989 3 ’Galore’

+ ’Lullaby’ 1989 4 ’Galore’

- ’Lullaby’ 1989 3 ’Show’

+ ’Lullaby’ 1989 4 ’Show’

- ’Lovesong’ 1989 5 ’Paris’

+ ’Lovesong’ 1989 5 ’Disintegration’

- ’Trust’ 1992 4 ’Wish’

joined⇓ get put ⇑
track date rating album quantity

- ’Lullaby’ 1989 3 ’Galore’ 1
+ ’Lullaby’ 1989 4 ’Galore’ 1
- ’Lullaby’ 1989 3 ’Show’ 3
+ ’Lullaby’ 1989 4 ’Show’ 3
- ’Lovesong’ 1989 5 ’Paris’ 4
+ ’Lovesong’ 1989 5 ’Disintegration’ 7
- ’Trust’ 1992 4 ’Wish’ 5

track date rating album quantity
’Lullaby’ 1989 3 ’Galore’ 1
’Lullaby’ 1989 3 ’Show’ 3
’Lovesong’ 1989 5 ’Galore’ 1
’Lovesong’ 1989 5 ’Paris’ 4
’Trust’ 1992 4 ’Wish’ 5

dropped⇓ get put ⇑
track rating album quantity

- ’Lullaby’ 3 ’Galore’ 1
+ ’Lullaby’ 4 ’Galore’ 1
- ’Lullaby’ 3 ’Show’ 3
+ ’Lullaby’ 4 ’Show’ 3
- ’Lovesong’ 5 ’Paris’ 4
+ ’Lovesong’ 5 ’Disintegration’ 7
- ’Trust’ 4 ’Wish’ 5

track rating album quantity
’Lullaby’ 3 ’Galore’ 1
’Lullaby’ 3 ’Show’ 3
’Lovesong’ 5 ’Galore’ 1
’Lovesong’ 5 ’Paris’ 4
’Trust’ 4 ’Wish’ 5

filtered⇓ get put ⇑
track rating album quantity

- ’Lullaby’ 3 ’Show’ 3
+ ’Lullaby’ 4 ’Show’ 3
- ’Lovesong’ 5 ’Paris’ 4
+ ’Lovesong’ 5 ’Disintegration’ 7
- ’Trust’ 4 ’Wish’ 5

track rating album quantity
’Lullaby’ 3 ’Show’ 3
’Lovesong’ 5 ’Paris’ 4
’Trust’ 4 ’Wish’ 5

⊕
⊖

track rating album quantity
’Lullaby’ 3 4 ’Show’ 3
’Lovesong’ 5 ’Disintegration’ 4 7
’Trust’ 4 ’Wish’ 5

Figure 3.4: An example of how an update propagates through selectLens. Changes
to the view are shown at the bottom in red.

Chapter 3. Incremental Relational Lenses 46

ℓ1. We calculate an initial delta by comparing the updated view with the original
view for the last lens. This is shown at the bottom of Figure 3.4: comparing the
original view with the updated table yields the change set shown at the bottom
right.

All intermediate change sets are calculated using the previous change set and
by querying the database. Since the (non-incremental) put function is defined in
terms of the previous source and updated view, sometimes we need to know parts
of the values of the old source or old view to calculate the incremental behaviour.
Therefore, for some relational lens steps we need to run one or more queries
against the database during change propagation. The select lens is an example:
in order to ensure that the source update preserves the functional dependency
track → date rating, we need to query the database to find out what other
album/track rows might need to have their ratings updated. The drop lens step
also illustrates the need for auxiliary querying, in this case to find out the dropped
dates of rows that are being updated. Finally, the join lens splits the changes
of the joined view into changes for the individual tables; this too may require
querying the underlying data. This produces the deltas shown in the top right
corner of Figure 3.4.

Finally, we convert the source deltas into SQL update commands to update the
underlying tables. Again we use table key information to generate concise up-
dates, as follows:
UPDATE albums SET quantity = 7 WHERE album = 'Disintegration';

UPDATE tracks SET date = 1989 rating = 4 WHERE track = 'Lullaby' AND album = 'Galore';
UPDATE tracks SET date = 1989 rating = 4 WHERE track = 'Lullaby' AND album = 'Show';
INSERT INTO tracks (track, date, rating, album)
VALUES ('Lovesong', 1989, 5, 'Disintegration');

DELETE FROM tracks WHERE track = 'Lovesong' AND album = 'Paris';
DELETE FROM tracks WHERE track = 'Trust' AND album = 'Wish';

Outline and contributions In the rest of this chapter, we present necessary
background on incrementalisation, define and prove the correctness of incremen-
tal relational lenses, and empirically validate our implementation to establish
practicality.

• Section 3.1 introduces the framework for incremental relational queries.

• Section 3.2 presents incremental relational lenses, along with proofs of cor-
rectness of optimised forms of their δput operations.

Chapter 3. Incremental Relational Lenses 47

• Section 3.3 contains an experimental evaluation of the implementation.

• Section 3.4 summarizes the results of this chapter.

3.1 Incremental framework

To describe the incremental behaviour of relational lenses, we need to represent
changes to query results in a simple, compositional way. We adopt an approach
similar to Griffin et al. [42], who model “delta relations” as disjoint pairs of
relations specifying tuples to be added and removed from a relation of the same
type.

3.1.1 Change Structures

There are many formalisms to describe changes on structures. We use a notation
similar to Cai et al. [18] and our relations and delta relations form a change
structure in their sense. A change structure V̂ is a tuple (V,∆,⊕,⊖), where V is
the base set and for any v ∈ V , ∆v is a change set. Cai et al. require the following
properties for any change set.

• For any v ∈ V and dv ∈∆v, v⊕dv ∈ V .

• For any u,v ∈ V , u⊖v ∈∆v.

• For any u,v ∈ V , v⊕ (u⊖v) equals u.

In the following section we derive a change set for relations.

3.1.2 Delta Relations

Definition 4 (Delta relation). A delta relation over U is a pair ∆M = (∆M+,∆M−)
of disjoint relations ∆M+ : U and ∆M− : U . The empty delta relation (∅,∅) is
written ∅. We write ∆M : ∆U to indicate that ∆M is a delta relation over U .

A delta specifies a modification to a relation: for example, if M = {2,3,4} and
∆M = ({3,5},{4,9}) then ∆M+ specifies that {3,5} are to be added to, and {4,9}
are to be removed from M , resulting in the set {2,3,5}. Note that the redundant
insertion of 3 specified by ∆M+ and the redundant deletion of 9 specified by
∆M− are both permitted. However, Griffin et al. [42] define a delta ∆M : ∆U to
be minimal for M : U if it contains no redundant insertions or deletions of that

Chapter 3. Incremental Relational Lenses 48

sort; for example, ({5},{4}) is the minimal delta relative to M equivalent to ∆M

above.

Definition 5 (Minimal delta). ∆M : ∆U is minimal for M : U iff ∆M+∩M =∅
and ∆M− ⊆M .

Definition 6 (Implicit coercion to delta-relation). Any relation M : U can be
implicitly coerced to a delta-relation M : ∆U

def= (M,∅) which is minimal for ∅ : U .

Deltas of the same type can be combined by a composition operation ⊕. If the
input deltas ∆M,∆N are minimal for M : U , then ∆M⊕∆N is also minimal for
M .

Definition 7 (Delta merge). For any ∆M,∆N : ∆U , define

(∆M⊕∆N) : ∆U
def= ((∆M+−∆N−)∪(∆N+−∆M−),(∆M−−∆N+)∪(∆N−−∆M+))

Implicit coercion of M to the delta-relation (M,∅), combined with delta merge
⊕, gives rise to a notion of delta application M ⊕∆M . If ∆M is minimal then
the resulting delta has an empty negative component and can be coerced back to
a relation.

Lemma 16. If ∆M is minimal for M then M ⊕∆M = (M −∆M−)∪∆M+ =
(M ∪∆M+)−∆M−.

Proof.

∆M minimal for M suppose (M , ∆M)

∆M− ⊆M

M ⊕∆M = (M,∅)⊕ (∆M+,∆M−) coerce

= ((M −∆M−)∪ (∆M+−∅),(∅−∆M+)∪ (∆M−−M)) def. ⊕

= ((M −∆M−)∪∆M+,∆M−−M) simpl. ∅

= ((M −∆M−)∪∆M+,∅) ∆M− ⊆M

= (M −∆M−)∪∆M+ uncoerce

= (M ∪∆M+)−∆M− ∆M+∩∆M− = ∅

Definition 8 (Delta negate). For any ∆M : ∆U , define neg(∆M) : ∆U
def= (∆M−,∆M+).

Chapter 3. Incremental Relational Lenses 49

Definition 9 (Delta difference). For any ∆M,∆N : ∆U , define (∆M ⊖∆N) :
∆U

def= ∆M ⊕ (neg(∆N)).

The implicit coercion to delta-relations gives rise to a notion of relational differ-
ence (M⊖N) : ∆U , not to be confused with (M−N) : U , which is the set differ-
ence and only removes elements in N from M . M ⊖N can be used, for example,
to calculate the difference between two views, such that N ⊕ (M ⊖N) = M .

Lemma 17. Suppose M : U and N : U . Then (M⊖N) : ∆U = (M−N,N−M).
Moreover M ⊖N is minimal for N .

Proof.

M ⊖N = (M,∅)⊖ (N,∅) coerce

= (M,∅)⊕ (∅,N) def. ⊖

= ((M −N)∪ (∅−∅),(∅−∅)∪ (N −M)) def. ⊕

= (M −N,N −M)

Moreover:

M −N ⊆M ·−N decreasing

(N −M)∩M = ∅ lem. 6

(M −N,N −M) minimal for M def. minimal

We write Rel(U) for the set of all M such that M : U and Rel(∆U) for the set
of all ∆M such that ∆M : ∆U . ∆U is a mapping from Rel(U) to the set of
deltas ∆M in Rel(∆U) which are minimal for M . For any Rel(U), we define
R̂el(U) = (Rel(U),∆U ,⊕,⊖). We would like to show that R̂el(U) is a change
structure as defined by Cai et al. [18]. We first show some required properties:

Lemma 18. Given M : U and ∆M : ∆U minimal for M then M ⊕∆M : U .

Proof. Follows from Lemma 16.

Lemma 19. Given M,N : U , then N ⊖M ∈∆U M .

Proof. ∆U M is the set of minimal deltas for M . Following Lemma 17, N ⊖M is
minimal for M .

Chapter 3. Incremental Relational Lenses 50

Lemma 20. Given M,N : U , then M ⊕ (N ⊖M) = N .

Proof.
M ⊕ (N ⊖M)

= M ⊕ (N −M,M −N) Lemma 17

= (M − (M −N))∪ (N −M) def. ⊕

= (M ∩N)∪ (N −M) ∩ in terms of −

= N − and ∩ complementary

We can now show that R̂el(U) forms a change structure:

Theorem 1. R̂el(U) = (Rel(U),∆U ,⊕,⊖) is a change structure for Rel(U).

Proof. Follows from Lemma 18, Lemma 19 and Lemma 20.

The following are some useful straightforward properties of deltas:

Lemma 21. Suppose ∆M minimal for M . Then (M ⊕∆M)−M = ∆M+.

Proof.

(M ⊕∆M)−M = ((M −∆M−)∪∆M+)−M lem. 16

= ((M −∆M−)−M)∪ (∆M+−M) −/∪ distr.

= ∆M+ simpl.; ∆M+∩M = ∅

Lemma 22. Suppose ∆M minimal for M . Then (M ∩ (M ⊕∆M))⊖M =
⊖∆M−, hence M − (M ⊕∆M) = ∆M−.

Proof.

(M ∩ (M ⊕∆M))⊖M = (M ∩ ((M −∆M−)∪∆M+))⊖M lem. 16

= (M ∩ (M −∆M−))⊖M M ∩∆M+ = ∅

= (M −∆M−)⊖M ∆M− ⊆M

= ((M −∆M−)−M,M − (M −∆M−)) lem. 17

= (∅,∆M−) simpl.; ∆M− ⊆M

Chapter 3. Incremental Relational Lenses 51

=⊖(∆M−,∅) def. ⊖

=⊖∆M− uncoerce

In particular this implies that ∆M− = M − ((M ∩ (M ⊕∆M))) = (M −M)∪
(M − (M ⊕∆M)) = M − (M ⊕∆M).

Corollary 1. If ∆M minimal for M then (M ⊕∆M)⊖M = ∆M .

Proof. By the previous two lemmas, (M ⊕∆M)⊖M = ((M ⊕∆M)−M,M −
(M ⊕∆M)) = (∆M+,∆M−) = ∆M .

Corollary 2. If ∆M and ∆M ′ are minimal for M and M ⊕∆M = M ⊕∆M ′

then ∆M = ∆M ′.

Proof. By Corollary 1, ∆M = (M ⊕∆M)⊖M = (M ⊕∆M ′)⊖M = ∆M ′.

The property (M ⊕∆M)⊖M = ∆M is mentioned in Cai et al. [18] but not re-
quired by their definition of change structures. It is very helpful in our setting
because it implies that query expressions incrementalise in a unique, composi-
tional way, as we show next.

Lemma 23. If ∆M is minimal for M = ∅, then ∆M− = ∅ and M ⊕∆M =
∆M+.

Proof. The minimality condition requires ∆M− ⊆M , requiring ∆M− ⊆ ∅. As
∅ is the lower bound for the ⊆ relation, ∆M− = ∅. Using Lemma 16 we can
show that

M ⊕∆M = (M −∆M−)∪∆M+ = ∅∪∆M+ = ∆M+.

In theory it would also be possible to define the delta merge operation as a
minimality enforcing function using dependent types. In this case it would be a
function of type (M : U)→∆U (M)→U , where ∆U (M) ensures that the provided
delta is minimal for M , we leave this as future work.

Chapter 3. Incremental Relational Lenses 52

3.1.3 Delta-Relational Operations

We now consider how to incrementalise relational operations. For each relational
operator, such as σP (M) or mergeF (M,N), we would like to define an operation
that translates deltas to the arguments to a delta to the result. Incremental op-
erations with symbolic names are written with a dot, for example σ̇P (M,∆M),
while alphabetic names have their incremental counterpart written with a pre-
ceding δ, for example δmergeF ((M,∆M),(N,∆N)).

For each argument M given to a relational operation, the incremental relational
operation takes a tuple of the argument M and a delta ∆M to that argument.
By default the incremental operator also requires M , because the semantics may
depend on it. Ideally, the incremental operator can be optimized to remove the
dependence on M , because M is not immediately available during computation.
M depends on the base tables in the database, and may be a large data set
that is expensive to evaluate. In practice, a dependence on M would require the
application to query the database, which introduces latency to the computation.
We generally differentiate operations over all arguments, but can fix any of the
variables by assuming that ∆M is empty for that variable.

The notion of delta-correctness characterises when a function δop with a suitable
signature which operates on deltas can be considered to be a valid “incremen-
talisation” of a non-incremental operation op. As observed by Griffin et al. [42],
composing incremental relational operations is easier if they are also minimality-
preserving, so we require this as the first property in our definition.

Definition 10 (Delta-correctness). For any operation op : X1×·· ·×Xn→ Y , a
delta operation δop : (X×∆X)×·· ·× (Xn×∆Xn)→∆Y is delta-correct for op
if for any ∆xi minimal for xi for 1≤ i≤ n, we have:

1. δop((x1,∆x1), . . . ,(xn,∆xn)) is minimal for op(x1, . . . ,xn).

2. op(x1⊕∆x1, . . . ,xn⊕∆xn) = op(x1, . . . ,xn)⊕ δop((x1,∆x1), . . . ,(xn,∆xn))

We usually just write δop(x,∆x) for unary operations. We write x for x1, . . . ,xn,
x,∆x for (x1,∆x1), . . . ,(xn,∆xn) and x⊕∆x for x1⊕∆x1, . . . ,xn⊕xn. We say
∆x is minimal for x if ∆xi is minimal for xi for 1≤ i≤ n. Delta-correct operations
are uniquely determined by the minimality condition:

Lemma 24. If δop is delta-correct then δop(x,∆x) = op(x⊕∆x)⊖op(x) provided

Chapter 3. Incremental Relational Lenses 53

∆xi is minimal for xi for i ∈ 1, . . . ,n. In particular, δop(x,∅) = ∅.

Proof. By Lemma 17, op(x⊕∆x)⊖op(x) is minimal for op(x), and by the defi-
nition of delta-correctness and Lemma 17 we have

op(x)⊕ δop(x,∆x) = op(x⊕∆x) = op(x)⊕ (op(x⊕∆x)⊖op(x))

By Corollary 2 we can conclude δop(x,∆x) = op(x⊕∆x)⊖op(x).

For ease of composition, we define op†(x,∆x) as the function that returns both
the updated result and the delta.

Definition 11. For any op : X → Y , define op† : X×∆X → Y ×∆Y as

op†(x,∆x) = (op(x), δop(x,∆x))

We say op† is delta-correct (with respect to op) when δop is.

If δop is delta-correct then whenever ∆x is minimal for x, so is δop(x,∆x) for
op(x). This implies composability in the following sense:

Lemma 25. If δop1 : X×∆X →∆Y,δop2 : Y ×∆Y → Z are delta-correct then
δop2 ◦op1 † and op2 † ◦op1 † are delta-correct (both with respect to op2 ◦op1).

Proof. From our assumptions we know that for any ∆x minimal for x, δop1 (x,∆x)
is minimal for op1 (x) and that op1 (x⊕∆x) = op1 (x)⊕ δop1 (x,∆x), as well as
that for any ∆y minimal for y then δop2 (y,∆y) is minimal for op2 (y) and that
op2 (y⊕∆y) = op2 (y)⊕ δop2 (y,∆y).

For δop2 ◦op1 † to be correct we must show two properties:

• δop2 (op1(x), δop1 (x,∆x)) must be minimal for op2(op1 (x))

• op2 (op1(x⊕∆x)) = op2 (op1(x))⊕ δop2 (op1(x), δop1 (x,∆x))

Both of these properties follow from the fact that δop1 (x,∆x) is minimal for
op1(x) and that δop2 is delta-correct. For the second property we can show that:

op2 (op1 (x⊕∆x))

= op2 (op1 (x)⊕ δop1 (x,∆x))

= op2 (op1 (x))⊕ δop2 (op1(x), δop1 (x,∆x))

It follows that op2 † ◦op1 † is delta-correct.

Chapter 3. Incremental Relational Lenses 54

Furthermore, this implies we may incrementalise any function built up out of in-
crementalisable relational operations, by replacing ordinary operators with their
incremental counterparts, largely as described by Cai et al. [18]. Given a query
q(R1, . . . ,Rn), we can transform it to a delta-correct (but not necessarily effi-
cient) incremental version by taking δ(q) = let (R,∆R) = (q)† in ∆R, where the
transformation (·)† is defined as follows:

M † = (M,∅) op(q1, . . . , qn)† = (op†((q1)†, . . . ,(qn)†))
R† = (R,∆R) let R = q in q′† = let (R,∆R) = (q)† in (q′)†

Essentially (q)† traverses the query, replacing relation variables with pairs of
variables and deltas, replacing constant relations with pairs (M,∅) and dealing
with individual operations and let-bindings compositionally. We abuse notation
slightly by adding syntax for pairs.

The following examples shows how the translation can be used to determine an
incremental version of a simple expression performing a natural join between the
relation T and a constant relation, followed by a projection.

(
let S = T ⋊⋉ {(c = 5)} in π{a,c}(S)

)†

=
(
let (S,∆S) = (T,∆T) ⋊⋉† ({(c = 5)},∅) in π†

{a,c}(S)
)

If we are only interested in the expression computing the delta, we project the
returning expression onto the delta component. In our example π†

{a,c}(S) =
(π{a,c}(S), π̇{a,c}(S)), where the second component of the tuple is the delta com-
ponent. The full expression computing the delta is:

let (S,∆S) = (T,∆T) ⋊⋉† ({(c = 5)},∅) in π̇{a,c}(S)

Theorem 2. If q : Rel(U1)×·· ·×Rel(Un)→Rel(U) then δ(q) and (q)† are delta-
correct with respect to q.

Proof. Shown in Appendix B.1.

3.1.4 Optimisation Rules for Delta Operations

To sum up, we have established that for any query there is a an extension-
ally unique incrementalisation, obtained by computing the difference between

Chapter 3. Incremental Relational Lenses 55

the updated query result and the original result. Of course, this is far from an
efficient implementation strategy. In this section, we present a number of opti-
misation rules for incremental relational operations, as well as relational revision
and merge.

Most of the following characterisations of incremental relational operations are
presented in prior work such as Griffin et al. [42], but without detailed proofs; we
include detailed proofs in the appendix.

Lemma 26. [Valid optimisations] Assume ∆M , ∆N are minimal for M,N re-
spectively. Then:

1. σ̇P (M,∆M) = (σP (∆M+),σP (∆M−))

2. π̇U (M,∆M) = (πU (∆M+)−πU (M),πU (∆M−)−πU (M ⊕∆M))

3. (M,∆M) ⋊̇⋉ (N,∆N) = (((M⊕∆M)⋊⋉∆N+)∪(∆M+ ⋊⋉ (N⊕∆N)),(∆M− ⋊⋉
N)∪ (M ⋊⋉ ∆N−))

4. ρ̇A/B(M,∆M) = (ρA/B(∆M+),ρA/B(∆M−))

5. If N ⊆M and N⊕∆N ⊆M⊕∆M then (M,∆M) −̇ (N,∆N) = ∆M⊖∆N

Proof. Shown in Appendix B.1.

Relational revision is only used directly for drop lenses, where only the first
argument M may change. The following lemma provides an optimisation for this
case:

Lemma 27. Suppose M |= X → A and M ⊕∆M |= X → A. Then

δreviseX→A((M,∆M),(N,∅)) = (reviseX→A(∆M+,N),reviseX→A(∆M−,N)).

Proof. Shown in Appendix B.1.

For relational merge, the join lens makes use of the following special case:

Lemma 28. If mergeF (M,N) = M then

δmergeF ((M,∅),(N,∆N)) = mergeF (M,∆N+)⊖M.

Proof. Shown in Appendix B.1.

Chapter 3. Incremental Relational Lenses 56

In select and join lenses, we avoid explicitly recomputing mergeF (M,N) by show-
ing that it is sufficient to consider only a subset of possibly-affected rows in M . We
define a function called affectedF which returns a predicate selecting a (hopefully
small) superset of the rows that may be changed by relational merge according
to F and a set of view records N . The returned predicate is the necessary con-
dition for any changes implied by F and N . The functional dependencies are
expected to be non-empty, which can always be achieved by adding a functional
dependency from the entire domain to the empty set.

Definition 12. affectedF (N) def= ∨
X→Y ∈F X ∈ πX(N).

It is then possible to replace the target relation M with only those rows in
M which are likely to be updated, allowing fewer rows to be queried from the
database:

Lemma 29. If P = affectedF (∆N+) and either F ̸= ∅ or ∆N+∩M = ∅ then

mergeF (M,∆N+)⊖M = mergeF (σP (M),∆N+)⊖σP (M).

Proof. Shown in Appendix B.1.

We use the notation F ∗U to mean either {U →∅} if F = ∅ or F otherwise.

Corollary 3. If P = affectedF ∗U (∆N+) then

mergeF (M,∆N+)⊖M = mergeF (σP (M),∆N+)⊖σP (M).

3.2 Incrementalising Relational Lenses

The previous Section introduces a framework for incremental relational algebra
expressions. This framework includes the notion of changes to sets as well as
incremental versions of common relational algebra operations. In this Section
we apply the framework to relational lenses, deriving efficient expressions that
compute the delta on the input view given a delta on the output view for each
lens type.

3.2.1 Incremental Lenses

Assume S,V are sets of relations having sets of deltas ∆S,∆V and corresponding
operations ⊕,⊖. A (well-behaved) incremental lens ℓ : S⇔ V is a well-behaved

Chapter 3. Incremental Relational Lenses 57

lens equipped with additional operations δgetℓ : S×∆S → ∆V and δputℓ : S×
∆V →∆S satisfying

getℓ(s⊕∆s) = getℓ(s)⊕ δgetℓ(s,∆s) (∆Get)

putℓ(s,getℓ(s)⊕∆v) = s⊕ δputℓ(s,∆v) (∆PutGet)

and such that if ∆s is minimal for s then δgetℓ(s,∆s) is minimal for getℓ(s), and
likewise if ∆v is minimal for getℓ(s) then δputℓ(s,∆v) is minimal for s.

The δgetℓ direction simply performs incremental view maintenance, which is not
our main concern here; we include it to show how it fits together with δputℓ but
do not discuss it further. The first equation and minimality condition is simply
delta-correctness of δgetℓ relative to getℓ.

We focus here on the δputℓ operation. In this direction, it would be redundant
to supply an argument holding the previous value of the view, since it can be
obtained via getℓ. The ∆PutGet rule and associated minimality condition is a
special case of the delta-correctness rule, where we only consider changes to V ,
not S:

putℓ(s,getℓ(s)⊕∆v) = putℓ(s,getℓ(s))⊕ δputℓ(s,∆v)

and the term putℓ(s,getℓ(s)) has been simplified to s by the GetPut rule.

We can equip the generic lens combinators from 2.2 with suitable delta-correct
δput operations as follows:

δputid(_,∆x) = ∆x

δputsym(_,(∆y,∆x)) = (∆x,∆y)

δputassoc(_,((∆x,∆y),∆z)) = (∆x,(∆y,∆z))

δputℓ1;ℓ2(x,∆z) = δputℓ1(x,δputℓ2(getℓ1(x),∆z))

δputℓ1⊗ℓ2((x1,x2),(∆y1,∆y2)) = (δputℓ1(x1,∆y1), δputℓ2(x2,∆y2))

It is straightforward to show that the resulting incremental lenses are well-behaved.

For each relational lens primitive ℓ described in 2.3, selectP , dropA determined by (X,a),
join_dl and renameA/B, we will define an incremental δputℓ operation as fol-
lows. First, we incrementalise the corresponding putℓ definition from 2.3, ob-
taining a function δPutℓ : (S×∆S)× (V ×∆V)→∆S that is delta-correct with

Chapter 3. Incremental Relational Lenses 58

respect to putℓ. Since we are only interested in the case where S does not
change and v = getℓ(s), we then specialize this operation to obtain δputℓ(s,∆v) =
δPutℓ((s,∅),(getℓ(s),∆v)), which yields a well-behaved lens. We then apply fur-
ther optimisations to simplify this expression to a form that can be evaluated
efficiently.

The well-behavedness of the generic lens combinators and the relational lens
primitives imply the well-behavedness of any well-typed lens expression.

3.2.2 Select Lens

The incremental lens ℓ = δselectP : Rel(U,Q,F)⇔ Rel(U,P ∧Q,F) is the lens
selectP defined in Figure 2.8 of the same type, equipped with δputℓ. The lens is
defined as follows:

δputℓ : Rel(U,Q,F)×∆Rel(U,P ∧Q,F)→∆Rel(U,Q,F)
δputℓ(M,∆N) = let N = σP (M) in

let (M0,∆M0) = merge†
F (σ†

¬P (M,∅),(N,∆N)) in
let (N#,∆N#) = σ†

P (M0,∆M0)−† (N,∆N) in
(M0,∆M0) −̇ (N#,∆N#)

We define N as getselectP
(M). The tuple (M0,∆M0) computes the changes to

the records that don’t match the predicate P . We can expect M0 to be the same
as M , because an unchanged view should not make changes to the underlying
source. The tuple (N#,∆N#) determines which records should be deleted from
the source, where N# can be expected to be empty. All the records that should
be deleted will be contained in ∆N#

+. Finally, the put expression returns the
delta difference between the updated records and the records to be removed.

Lemma 30. The incremental select lens δselectP is well-behaved.

Proof. Follows from Theorem 2.

Definition 13. Define an optimised incremental δselectP lens ℓ′ with δputℓ′

defined as follows:

δputℓ′(M,∆N) = let Q = affectedF (∆N+) in
let ∆M0 = (mergeF (σQ∧¬P (M),∆N+)⊖σQ∧¬P (M))⊖∆N− in
let ∆N# = (σP (∆M0

+),σP (∆M0
−))⊖∆N in

∆M0⊖∆N#

Chapter 3. Incremental Relational Lenses 59

The optimised version works as follows. ∆M0 can be calculated by querying the
database for σQ∧¬P (M) and then performing relational merge using ∆N+. The
remaining computations involve only deltas and can be performed in-memory.
∆M0 contains all changes to the underlying table including any removed rows,
but does not account for rows which previously didn’t satisfy P , but do after
the updates. These rows, which would violate lens well-behavedness, are found
in ∆N#. We calculate ∆N# just using the delta difference operator ⊖ because
N#⊕∆N# is always a subset of M0⊕∆M0. The final update consists of the
changes to the table M0 merged with the changes to remove all rows in ∆N#.

Theorem 3. [Correctness of optimised select lens] Suppose N = σP (M) where
M : Rel(U,Q,F). Suppose also that ∆N is minimal with respect to N and that
N ⊕∆N : Rel(U,P ∧Q,F). Then δputℓ(M,∆N) = δputℓ′(M,∆N).

Proof. Shown in Appendix B.2

3.2.3 Project Lens

The incremental lens ℓ = δdrop A determined by (X,a) : Rel(U,P,F)⇔ Rel(U −
A,πU−A(P),F ′), where F ≡ F ′⊎{X→A}, is the lens drop A determined by (X,a)
defined in Figure 2.9 of the same type, equipped with δputℓ defined as follows:

δputℓ : Rel(U,P,F)×∆Rel(U −A,πU−A(P),F ′)→∆Rel(U,P,F)
δputℓ(M,∆N) = let N = πU−A(M) in

let (M ′,∆M ′) = (N,∆N) ⋊⋉† ({{A = a}},∅) in
δreviseX→A((M ′,∆M ′),(M,∅))

N is defined as putdrop A determined by (X,a)(M). Just as in the non-incremental ver-
sion, the tuple (M ′,∆M ′) computes a copy of the view extended by the column A

with the default value a. The resulting delta is computed by using record revision
using the unchanged source (M ′,∆M ′).

Lemma 31. The incremental projection lens δdrop A determined by (X,a) is well-
behaved.

Proof. Follows from Theorem 2.

Chapter 3. Incremental Relational Lenses 60

Definition 14. Define an optimised incremental δdropA determined by (X,a) lens
ℓ′ with δputℓ′ defined as follows:

δputℓ′(M,∆N) = let ∆M ′ = (∆N+ ⋊⋉ {{A = a}},∆N− ⋊⋉ {{A = a}}) in
(reviseX→A(∆M ′+,M),reviseX→A(∆M ′−,M))

∆M ′ extends ∆N ′ with the extra attribute A set to the default value a, to
match the domain of the underlying table. The final step optimises the use of
δreviseX→A(·, ·) in δputℓ using Lemma 27.

Theorem 4. [Correctness of optimised project lens] Suppose M : Rel(U,P,F) and
N = πU−A(M). Suppose also that ∆N is minimal with respect to N and that N⊕
∆N : Rel(U−A,πU−A(P),F ′), where F ≡ F ′⊎{X→A}. Then δputℓ(M,∆N) =
δputℓ′(M,∆N).

Proof. Shown in Appendix B.2

3.2.4 Join Lens

The relational lens for the natural join operation comes with different update
strategies that are all well-behaved. The put semantics for the join lens offers us
some choice in where to delete records which should not appear in the output,
but that can either be deleted from the left table or the right table. The simplest
case is the variant that always tries to delete the record from the left table. The
typing rule for the join lens have a condition on the functional dependencies that
require the join key to completely define the domain of the right table. As a
result, deleting an entry in the left table always only deletes a single record in the
output. This means that deleting from the left table is always correct behaviour
for removing a single record.

The incremental lens ℓ = δjoin_dl : Rel(U,P,F)⊗Rel(V,Q,G)⇔ Rel(U ∪V,P ⋊⋉
Q,F ∪G) is the lens join_dl defined in Figure 2.10 of the same type, equipped

Chapter 3. Incremental Relational Lenses 61

with δputℓ defined as follows:

δputℓ : Rel(U,P,F)×Rel(V,Q,G)×∆Rel(U ∪V,P ⋊⋉ Q,F ∪G)
→∆Rel(U,P,F)×∆Rel(V,Q,G)

δputℓ((M,N),∆O) = let O = M ⋊⋉ N in
let (M0,∆M0) = merge†

F ((M,∅),π†
U (O,∆O)) in

let (N ′,∆N ′) = merge†
G((N,∅),π†

V (O,∆O)) in
let (L,∆L) = ((M0,∆M0) ⋊⋉† (N ′,∆N ′))−† (O,∆O) in
let ∆M ′ = (M0,∆M0) −̇ π†

U (L,∆L) in
(∆M ′,∆N ′)

We define O as putjoin_dl(M,N). The tuples (M0,∆M0) and (N ′,∆N ′) compute
the underlying tables M and N with all functional dependency changes applied.
All records that must be deleted to ensure well-behavedness are computed as the
tuple (L,∆L), where L is always the empty set and all records are contained in
∆L+. The delete left behaviour deletes all records from the left table, which is
always permitted behaviour. The delta ∆M ′ represents the changes necessary to
M and ∆N ′ contains the changes to the right table.

Lemma 32. The incremental join lens δjoin_dl is well-behaved.

Proof. Follows from Theorem 2.

Definition 15. Define an optimised incremental δjoin_dl lens ℓ′ with δputℓ′ de-
fined as follows:

δputℓ′((M,N),∆O) = let PM = affectedF ∗U (πU (∆O+)) in
let PN = affectedG∗V (πV (∆O+)) in
let ∆M0 = mergeF (σPM

(M),πU (∆O+))⊖σPM
(M) in

let ∆N ′ = mergeG(σPN
(N),πV (∆O+))⊖σPN

(N) in
let ∆L = (((M ⊕∆M0) ⋊⋉ ∆N ′+)∪ (∆M0

+ ⋊⋉ (N ⊕∆N ′)),
(∆M0

− ⋊⋉ N)∪ (M ⋊⋉ ∆N ′−))⊖∆O in
let ∆M ′ = ∆M0⊖ (πU (∆L+),∅) in
(∆M ′,∆N ′)

In the optimised join lens, ∆M0 and ∆N ′ can be calculated by first querying
σPM

(M) and σPN
(N), where PM and PN include all rows potentially affected by

merging functional dependencies, and then performing the appropriate relational

Chapter 3. Incremental Relational Lenses 62

merges using πU (∆O+) and πV (∆O+). Since this step may result in additional
rows being generated or deleted rows not being removed, any excess rows ∆L

are determined by calculating which rows would have been changed in the joined
view after updates to the underlying tables ∆M0 and ∆N ′, and then comparing
those to the desired changes ∆O. We can calculate ∆L efficiently by querying the
underlying M and N tables only for records having identical join keys to records
in ∆M0 and ∆N ′.

Finally, the updated left table can be calculated as the changes to the left table
∆M0 minus all records that need to be removed to ensure the lens is well behaved.
The changes ∆N ′ are used for the right table.

Join Template Lens

Rather than showing correctness for all join lens variants, we instead incremen-
talise the join template, which is the more general form of the join lens and can
then be used to derive other join lens variants. The template join function takes
two predicates Pd and Qd, where Pd is a predicate from the record to a boolean
indicating if the record should be deleted in the left table and Qd specifies if it
should be deleted from the right table.

Consider a system which joins a collection of records with another table ref-
erencing the records. Here the system should retain records if they are ei-
ther newer than 2018 or referenced by other rows. The deletion predicates to
Pd = date < 2018 and Qd = ⊤ satisfy the requirements. If the user deletes the
last entry referencing a record and the record is older than 2018, then the record
in the underlying records table is also deleted.

For the lens to be well-behaved, either Pd or Qd must return true for any record.
Section 5.2 shows this check can be performed statically. The join lens variants
can all be derived by instantiating the join template lens with different Pd and
Qd values.

The incremental lens ℓ = δjoinPd,Qd
: Rel(U,P,F)⊗Rel(V,Q,G)⇔Rel(U ∪V,P ⋊⋉

Q,F ∪G) is the lens joinPd,Qd
of the same type, equipped with δputℓ defined as

Chapter 3. Incremental Relational Lenses 63

follows:

δputℓ : Rel(U,P,F)×Rel(V,Q,G)×∆Rel(U ∪V,P ⋊⋉ Q,F ∪G)
→∆Rel(U,P,F)×∆Rel(V,Q,G)

δputℓ((M,N),∆O) = let O = M ⋊⋉ N in
let (M0,∆M0) = merge†

F ((M,∅),π†
U (O,∆O)) in

let (N0,∆N0) = merge†
G((N,∅),π†

V (O,∆O)) in
let (L,∆L) = ((M0,∆M0) ⋊⋉† (N0,∆N0))−† (O,∆O) in
let (Ll,∆Ll) = (L,∆L) ⋊⋉† π†

U∩V (O,∆O) in
let (La,∆La) = (L,∆L)−† (Ll,∆Ll) in
let ∆M ′ = (M0,∆M0) −̇ π†

U ((Ll,∆Ll) ∪† σ†
Pd

(La,∆L+
a)) in

let ∆N ′ = (N0,∆N0) −̇ π†
V (σ†

Qd
(L,∆L)) in

(∆M ′,∆N ′)

The join delete lens works by first restoring functional dependency consistency
on the underlying tables using the relational merge function. The resulting M0

and N0 tables may introduce additional records in the output, which must be
removed. These additional records are computed as L. Some of the records in
L can only be removed from the output by deleting the entry in the left table.
Consider the join of the albums and tracks tables. If the entry for the song
Lullaby with the album Galore should be removed from the output, it would not
be correct to remove the Galore entry from the albums table as other entries in
the joined view depend on it. Instead the corresponding entry in the tracks table
must be removed. We compute Ll as the records that must be deleted from the
left table, and all remaining entries, computed as La, can be deleted from either
tables.

Lemma 33. The incremental join lens δjoinPd,Qd
is well-behaved.

Proof. Follows from Theorem 2.

Definition 16. Define an optimised incremental δjoinPd,Qd
lens ℓ′ with δputℓ′

Chapter 3. Incremental Relational Lenses 64

defined as follows:

δputℓ′((M,N),∆O) = let PM = affectedF ∗U (πU (∆O+)) in
let PN = affectedG∗U (πV (∆O+)) in
let ∆M0 = mergeF (σPM

(M),πU (∆O+))⊖σPM
(M) in

let ∆N0 = mergeG(σPN
(N),πV (∆O+))⊖σPN

(N) in
let ∆L = (((M ⊕∆M0) ⋊⋉ ∆N0

+)∪ (∆M0
+ ⋊⋉ (N ⊕∆N0)),

(∆M0
− ⋊⋉ N)∪ (M ⋊⋉ ∆N0

−))⊖∆O in
let ∆L+

l = ∆L+ ⋊⋉ πU∩V (O⊕∆O) in
let ∆L+

a = ∆L+−∆L+
l in

let ∆M ′ = ∆M0⊖
(
πU (∆L+

l ∪σPd
(∆L+

a)),∅
)

in
let ∆N ′ = ∆N0⊖

(
πV (σQd

(∆L+
a)),∅

)
in

(∆M ′,∆N ′)

The template lens definitions for ∆M0, ∆N0 and ∆L are identical to those in
the delete left lens. To calculate ∆L+

l , the program can query only those values
in O which have the same join value as those values in ∆L+. Calculating the
remaining variables then becomes straightforward.

Theorem 5. [Correctness of optimised join lens] Suppose M : Rel(U,P,F) and
N : Rel(V,Q,G) and O = M ⋊⋉ N . Suppose also that ∆O is minimal with re-
spect to O, and O⊕∆O : Rel(U ∪V,P ⋊⋉ Q,F ∪G). Then δputℓ((M,N),∆O) =
δputℓ′((M,N),∆O).

Proof. Shown in Appendix B.2.

Using the template we can show that the semantics for the δjoin_dl lens are
equivalent to the semantics of a δjoin⊤,⊥ lens.

Lemma 34. Suppose ℓ = δjoin⊤,⊥ and ℓ′ = δjoin_dl. Then δputℓ = δputℓ′.

Proof.
Pd =⊤ suppose Pd

Qd =⊥ suppose Qd

O : U ∪V,∆O : ∆(U ∪V) suppose O,∆O

∆M0 : U suppose ∆M0

∆N0 : V suppose ∆N0

Chapter 3. Incremental Relational Lenses 65

∆L+ : U ∪V suppose ∆L+

∆L+
l = ∆L+ ⋊⋉ πU∩V (O⊕∆O) suppose ∆L+

l

∆L+
a = ∆L+−∆L+

l suppose ∆L+
a

∆M ′ = ∆M0⊖ (πU (∆L+
l ∪σPd

(∆L+
a)),∅) suppose ∆M ′

∆N ′ = ∆N0⊖ (πU (σQd
(∆L+

a)) suppose ∆N ′

We first show that ∆L+
l is a subset of ∆L+:

∆L+
l

= ∆L+ ⋊⋉ πU∩V (O⊕∆O) suppose ∆L+
l

= πU∪V (∆L+ ⋊⋉ πU∩V (O⊕∆O)) πU∪V (·) unit

⇒∆L+
L ⊆∆L+ πU∩V (·) after ⋊⋉ decreasing

This is used to show that ∆L+
l ∩∆L+ is equal to ∆L+

l :

∆L+
l ∩∆L+ = ∆L+

l ∆L+
l ⊆∆L+; ∩ induce ⊆

The records deleted from the left and right table are equal to ∆L+:

∆L+
l ∪∆L+

a

= ∆L+
l ∪ (∆L+−∆L+

l) def. ∆L+
l

= (∆L+
l ∩∆L+)∪ (∆L+−∆L+

l) ∆L+
l = ∆L+

l ∩∆L+

= ∆L+ − and ∩ complementary (1)

We now show that the ∆M ′ and ∆N ′ expressions match:

∆M ′

= ∆M0⊖ (πU (∆L+
l ∪σPd

(∆L+
a)),∅) def. ∆M ′

= ∆M0⊖ (πU (∆L+
l ∪σ⊤(∆L+

a)),∅) def. Pd

= ∆M0⊖ (πU (∆L+
l ∪∆L+

a),∅) def. σ⊤(·)

= ∆M0⊖ (πU (∆L+),∅) (1)

∆N ′

= ∆N0⊖ (πU (σQd
(∆L+

a)),∅) def. ∆N ′

= ∆N0⊖ (πU (σ⊥(∆L+
a)),∅) def. Qd

= ∆N0⊖ (πU (∅),∅) σ⊥(·) = ∅

= ∆N0⊖ (∅,∅) πU (∅) = ∅

Chapter 3. Incremental Relational Lenses 66

= ∆N0 simplify

Join Delete Right

The template lens allows other lens variants to be easily derived. The optimised
join lens with delete right semantics is derived from the template lens with Pd =⊥
and Qd =⊤:

Definition 17. Define an optimised incremental δjoin_dr lens ℓ with δputℓ de-
fined as follows:

δputℓ((M,N),∆O) = let PM = affectedF ∗U (πU (∆O+)) in

let PN = affectedG∗V (πV (∆O+)) in

let ∆M0 = mergeF (σPM
(M),πU (∆O+))⊖σPM

(M) in

let ∆N0 = mergeG(σPN
(N),πV (∆O+))⊖σPN

(N) in

let ∆L = (((M ⊕∆M0) ⋊⋉ ∆N0
+)∪ (∆M0

+ ⋊⋉ (N ⊕∆N0)),

(∆M0
− ⋊⋉ N)∪ (M ⋊⋉ ∆N0

−))⊖∆O in

let ∆L+
l = ∆L+ ⋊⋉ πU∩V (O⊕∆O) in

let ∆L+
a = ∆L+−∆L+

l in

let ∆M ′ = ∆M0⊖
(
πU (∆L+

l),∅
)

in

let ∆N ′ = ∆N0⊖
(
πV (∆L+

a),∅
)

in

(∆M ′,∆N ′)

Join Delete Both

The join lens which deletes records from both tables can be derived by setting
Pd = Qd =⊤.

Definition 18. Define an optimised incremental δjoin_both lens ℓ with δputℓ

defined as follows:

δputℓ((M,N),∆O) = let PM = affectedF ∗U (πU (∆O+)) in

let PN = affectedG∗U (πV (∆O+)) in

let ∆M0 = mergeF (σPM
(M),πU (∆O+))⊖σPM

(M) in

let ∆N0 = mergeG(σPN
(N),πV (∆O+))⊖σPN

(N) in

Chapter 3. Incremental Relational Lenses 67

let ∆L = (((M ⊕∆M0) ⋊⋉ ∆N0
+)∪ (∆M0

+ ⋊⋉ (N ⊕∆N0)),

(∆M0
− ⋊⋉ N)∪ (M ⋊⋉ ∆N0

−))⊖∆O in

let ∆L+
l = ∆L+ ⋊⋉ πU∩V (O⊕∆O) in

let ∆L+
a = ∆L+−∆L+

l in

let ∆M ′ = ∆M0⊖
(
πU (∆L+),∅

)
in

let ∆N ′ = ∆N0⊖
(
πV (∆L+

a),∅
)

in

(∆M ′,∆N ′)

The definition for this join lens follows from Lemma 34:

Corollary 4. Suppose ℓ = δjoin_both and ℓ′ = δjoin⊤,⊤. Then δputℓ = δputℓ′.

3.2.5 Rename Lens

The incremental lens ℓ = δrenameA/B : Rel(U,P,F)⇔Rel(U [A/B],ρA/B(P),F [A/B]),
where A ∈ U and B /∈ U , is the lens renameA/B with the additional function δputℓ

defined as follows:

δputℓ : Rel(U,P,F)×∆Rel(U [A/B],ρA/B(P),F [A/B])→∆Rel(U,P,F)
δputℓ(M,∆N) = let N = ρB/A(M) in

let (M ′,∆M ′) = ρ†
B/A(N,∆N) in

∆M ′

Definition 19. Define an optimised incremental δrenameA/B lens ℓ′ with ∆putℓ′

defined as follows:

δputℓ′(M,∆N) = (ρB/A(∆N+),ρB/A(∆N−))

The optimised rename lens performs the inverse rename operation on both com-
ponents of the delta relation. No database queries are required.

Theorem 6. [Correctness of rename lens] Suppose M : Rel(U,P,F) and N =
ρA/B(M), and that ∆N is minimal with respect to N and satisfies N ⊕∆N :
Rel(U ∪V,P ⋊⋉ Q,F ∪G). Then δputℓ(M,∆N) = δputℓ′(M,∆N).

Chapter 3. Incremental Relational Lenses 68

3.3 Evaluation

We have implemented both naive and incremental relational lenses in Links.
Given the lack of an existing implementation of relational lenses, for the naive
version we implemented the lenses described by Bohannon et al. [12]. A benefit
is a fairer performance comparison, as the non-incremental relational lenses are
implemented using the same set operation implementation as the incremental
version. We evaluate the performance of the optimised δput operations defined
earlier.

Each performance experiment follows a similar pattern and are all executed on
an AMD 3700X with 32GB of RAM and a solid state drive. The experiments
were run in a virtual machine running Ubuntu 20.04.3 LTS and PostgreSQL 12
was used to host the database. Links was compiled using OCaml 4.12.0. All
generated tables contained a primary key index and no other indices.

3.3.1 Microbenchmarks

Lens Primitives

We first evaluate lens change-propagation performance as a set of microbench-
marks over the lens primitives, using two metrics: total time to compute the
source delta for a single lens given a view delta as input, or in the case of the
naive lenses, to calculate new source tables, referred to as total execution time.
We also measure the amount of the total execution time which can be attributed
to query execution.

The following steps are taken for each benchmark:

1. Generate the required tables with a specified set of columns and fill the
tables with random data. For test purposes, the random data can either
be sequential, a bounded random number or a random number. The mi-
crobenchmarks use the following tables:

• Table t1 with domain A, B and C and functional dependency A→B C.
Populated with n rows, with A calculated as a sequential value, B a
random number up to n/10 and C a random number up to 100.

• Table t2 with domain B and D and functional dependency B → D.

Chapter 3. Incremental Relational Lenses 69

Populated with n/10 rows with B being a sequential value and D a
random number up to n/10.

2. Generate lenses for the underlying tables and compose the required lenses
on top of these. Lenses that use both t1 and t2 always start by joining the
two tables on column B.

3. Fetch the output view of the lens using get and then make changes in a
systematic fashion as described for each setup. The changes are designed
to affect a small portion of the database. Most changes are of the form:
“take all rows with attribute A having some value, and update attribute
B”.

4. Apply put for the first lens using the updated view. For the incremen-
tal lenses this means first calculating the delta from the view (not timed)
and then timing δput which calculates the source delta. For naive lenses
we measure the time required to recompute the source table using non-
incremental put, but not the time needed to update the database. This
process is repeated multiple times (ignoring the first few runs) and then
taking the median value.

We repeat this process for each of the select, projection and join lenses. We
exclude the time required to calculate the view delta or update the database
because these operations only need to be performed once per lens, regardless
of the number of intermediate steps defining the lens. Instead, we measure the
performance of these one-time costs later in this Section, and present a complete
example involving two lens primitives in Section 3.3.2.

We assume the following primitive lenses in the remaining benchmarks:

let t1 = lens t1 of (A : int,B : int,C : int) with A→B C

let t2 = lens t2 of (B : int,D : int) with B→D

Select example The select benchmark uses both t1 and t2. We compose a select
lens on top of the join lens with the predicate C = 3, which produces a view with
an average size of n/100 entries. The view is modified so that all records with
0≤B ≤ 100 have their D value set to 5. This approach produces deltas of length
20 on average, containing one row removal and one row addition. The lens used

Chapter 3. Incremental Relational Lenses 70

0 50000 100000 150000 200000
Number of Input Rows

0

1000

2000

3000

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(a) select lens

0 50000 100000 150000 200000
Number of Input Rows

0

500

1000

1500

2000

2500

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(b) projection lens

0 50000 100000 150000 200000
Number of Input Rows

0

1000

2000

3000

4000

5000

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(c) join lens

Figure 3.5: Total and query execution time required by individual lens primitives vs.
underlying table sizes

Chapter 3. Incremental Relational Lenses 71

by the benchmark is as follows:

let l = join_dl t1 with t2 in

selectC=3 from l

The naive put operation makes use of a single query and requires a total compu-
tation time of between 1ms and 2919ms depending on the row count. While the
performance is acceptable for small tables, it is still too slow for most applica-
tions as the tables become larger. It also shows how an unavoidable bottleneck
is introduced, as the query time reaches up to 615ms.

Depending on the row count, the incremental version only needs between < 1ms

and 36ms total computation time. Of this time, between < 1ms and 35ms are
used to perform the required queries, accounting for the majority of the total
computation time. The execution time and query time scale proportionally to
the data size. The incremental performance reflects the fact that the view is
much smaller than the entire table, which needs to be recomputed for the non-
incremental version. It may be possible to improve performance by configuring
the database to index C, since this may reduce the query execution time. Indexing
would not affect naive performance, since we always fetch the complete source
tables.

Projection performance We define a drop lens over the table t1 removing at-
tribute C, which is determined by the attribute A and a default value of 1. The
view is modified by setting B to 5 for all records where 60 < A≤ 80. This process
modifies 20 of the n records in the view. The lens used by the benchmark is:

drop C determined by (A,1) from t1

The performance of the lens is shown in Figure 3.5b. As in the case of the
join lens, the naive projection lens implementation quickly becomes infeasible,
requiring a total execution time of over 2499ms as it processes 200000 records.
The naive version spends up to 434ms querying the server. The incremental
version is able to perform the δput operation in < 1ms and less for the given row
counts. This time includes the time required to query the database server for
additional information.

Chapter 3. Incremental Relational Lenses 72

0 50000 100000 150000 200000
Number of Input Rows

0

1000

2000

3000

4000

5000

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(a) join delete right

0 50000 100000 150000 200000
Number of Input Rows

0

1000

2000

3000

4000

5000

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(b) join delete both

Figure 3.6: Other join lens variants.

Join example The join benchmark uses the join lens defined over the two tables
t1 and t2. We fetch the resulting view, which will contain n rows. After that we
modify all records containing a value for B between 40 and 50 and set their C

value to 5.

join_dl t1 with t2

We benchmark the described setup with n values ranging from 500 to 200000,
timing the lens put duration for each n as specified. The performance results are
shown in Figure 3.5c. The put operation for the naive join requires two queries
but quickly becomes impractical. Of the computation time, approximately 1ms

to 641ms depending on the table size is required for querying the database. While
the query time taken by the naive approach is relatively low, this is due to the
fact that the tables are relatively small and the time increases to hundreds of
milliseconds as the table size grows to hundreds of thousands of rows.

In comparison, the incremental approach can scale to hundreds of thousands of
rows and requires only 1ms to 3ms of both computation and query time for the
given views. It requires 4 queries which are all simple to compute and return
small views.

Figure 3.5c shows the performance of the join delete left variant. If different
deletion behaviour is required, then at least 5 queries are required. Figure 3.6
shows benchmarks for the other lens variants. These perform similarly to the
delete left variant, requiring up to 5414ms for the naive lens, of which up to
658ms is required to query the database server. The incremental version only
required up to 4ms of which up to 2ms is required to query the server.

Chapter 3. Incremental Relational Lenses 73

Summary The above experiments show that incremental evaluation outper-
forms naive evaluation of relational lenses. We summarise the performance of
incremental tables in Table 3.1, which shows the number of queries, query eval-
uation time and total evaluation time for all three microbenchmarks discussed
above.

select drop join delete left join delete both join delete right
query count 1 1 4 5 5

query n = 200k 30ms < 1ms 1ms 1ms 1ms

total n = 200k 30ms < 1ms 2ms 3ms 2ms

Table 3.1: Query counts and times for large data sizes

Delta Calculation Performance

While microbenchmarks on lens primitives give us some insight into the perfor-
mance of the lenses, they do not account for the time required to calculate the
initial delta, which is only required for incremental lenses. We modify the view
of the join lens defined over t1 and t2 by fetching the view using get, and by then
performing changes as done in the other experiments. Specifically we set B to
5 for all records where 0 < D < 10. Given that this example does not have any
selection lenses, the size of the view will always be n.

We measure the time taken to fetch the original view from the database and then
subtract it from a modified view. As in the previous examples we measure both
the time required to query the database server as well as the total execution time
on the client. We measure the time required for n values ranging between 100
and 200000. The results are shown in Figure 3.7a.

Both the query and execution time are approximately linear with respect to the
number of input rows. We require between < 1ms and 2615ms to compute the
delta, of which 609ms for 200000 rows is spent querying the database.

Delta Application Performance

We also measure the time it takes to apply a delta to a table. This process
requires the generation of insert, update and delete SQL commands which must
then be executed on the server.

Chapter 3. Incremental Relational Lenses 74

0 50000 100000 150000 200000
Number of Change Set Entries

0

500

1000

1500

2000

2500

Ti
m

e
[m

s]

total time
query time

(a) Time needed to compute a delta for any view depending on the row count.

2000 4000 6000 8000 10000
Number of Change Set Entries

30

60

90

120

150

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(b) Time needed to apply a delta to the database depending on the number of changes.

200 400 600 800 1000
Number of Change Set Entries

100

200

300

400

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(c) Delta propagation time as a function of view update size (n=100000)

Figure 3.7: Evaluation of delta calculation, delta application and delta propagation
time as a function of view update size.

Chapter 3. Incremental Relational Lenses 75

We consider delta application for a single table. We use the table t1 from Sec-
tion 3.3.1 and populate it with n = 10000. We generate a delta containing m

entries, where a quarter of the entries produce m/4 insertions, another quarter
produce m/4 deletions and the remaining half produce m/2 updates.

Given such a delta, we time how long it takes to produce the SQL commands from
the already calculated delta with varying size m. The SQL update commands
are concatenated and sent to the database together as a single transaction. As
in the other cases we time both the total and query execution times, which are
shown in Figure 3.7b. For the naive version, we generate an update command
that deletes the current contents of the table and inserts the new contents. For
the incremental version, we generate updates that insert, delete, or replace only
affected records.

The figure shows that the naive version’s performance is independent of the num-
ber of changes, requiring around 156ms, most of which is spent querying the
database. The incremental version, on the other hand, requires only 20ms for
1000 changes, and linearly scales until it requires the same time as the naive
version for 10000 rows.

Varying Delta Size

In addition to varying the size of the underlying database tables we also consider
how the size of the delta may affect the performance of an update. To do this we
use the two tables t1 and t2 with n = 100000 and define a select lens on top of
the join lens with the predicate C = 3. We then determine a b′, starting from 0
in steps of 100, so that modifying all records where 0 < B < b′ by setting D = 5
produces a delta of size greater than m.

As in the other microbenchmarks we measure the total and query execution time
taken to perform the δput of an already calculated view delta or, in the naive case,
the time to recalculate the full source tables using put. We repeat this experiment
for varying m values, ranging from 10 to 1000. The resulting execution times are
plotted in Figure 3.7c.

As would be expected, the naive lens is relatively constant, requiring around
410ms regardless of the number of entries in the delta. The incremental version
starts at 31ms and slows down to 217ms as the delta contains more entries. About

Chapter 3. Incremental Relational Lenses 76

80% of the incremental time is used to query the database. The incremental
method is notably more efficient for a small number of changes.

3.3.2 DBLP Example

In addition to the microbenchmarks we also perform some experiments on a
real-world example involving the DBLP Computer Science Bibliography [63], a
comprehensive collection of bibliographic information about computer science
publications. It is published as a large and freely available XML file with mil-
lions of records containing publications, conference proceedings, journals, authors,
websites and more.

inproceedings title year proceedings
‘conf/pods/BohannonPV06’ ‘Relational lenses: ...’ 2006 ‘conf/pods/2006’

...
with {inproceedings→ title year proceedings}

(a) The inproceedings table.

inproceedings author
‘conf/pods/BohannonPV06’ ‘Aaron Bohannon’

‘conf/pods/BohannonPV06’ ‘Benjamin C. Pierce’

‘conf/pods/BohannonPV06’ ‘Jeffrey A. Vaughan’
...

with {}

(b) The inproceedings_author table.

Figure 3.8: The tables used in our DBLP example.

Our example uses a table containing a collection of conference publications called
inproceedings as well as a table of their respective authors inproceedings_author.
We use a parser to convert the given XML file into a set of PostgreSQL tables.
This first table contains the title of the paper, the year it was published as well
as the proceedings it is in, while the inproceedings_author table contains an entry
for each author on every paper, allowing a single publication to have multiple
authors. The tables are shown in Figure 3.8.

Chapter 3. Incremental Relational Lenses 77

author inproceedings

title year proceedings

Figure 3.9: The functional dependencies in tree form of the DBLP example.

The join of the inproceedings and inproceedings_author tables produces a view
with the columns author, inproceedings, title, year, proceedings. The functional
dependencies of the joined table are shown in Figure 3.9.

In order to determine how the application scales for varying database sizes, we
generate the underlying tables by selecting a set of entries so that the join of
inproceedings and inproceedings_author contains n rows. Given that set of entries,
we select all entries in the complete inproceedings_author table, which have a
corresponding entry in the subset of entries chosen.

Using these tables we join the two tables on the inproceedings attribute and then
select all entries from PODS 2006. The Links code used to generate the lenses is
shown below.
var joinL = lensjoin inproceedings_authorL with inproceedingsL on inproceedings;
var selectL = lensselect from joinL where proceedings == "conf/pods/2006";

Retrieving the view of the lens using get results in table containing the entries as
shown below. We retrieve the view in links and make a change in the title to all
entries with attribute inproceedings = ‘conf/pods/BohannonPV06’. The updated
view is applied to the database using the put operation.

author inproceedings title year proceedings
‘Aaron Bohannon’ ‘conf/pods/BohannonPV06’ ‘Rel...’ 2006 ‘conf/pods/2006’

‘Benjamin C. Pierce’ ‘conf/pods/BohannonPV06’ ‘Rel...’ 2006 ‘conf/pods/2006’

‘Jeffrey A. Vaughan’ ‘conf/pods/BohannonPV06’ ‘Rel...’ 2006 ‘conf/pods/2006’

...

As in the other examples we fetch the output of the select lens using get and then
make the small modification. We then perform the put operation to apply those
changes to the database. During the put we time the entire process of generating
a delta from the view, calculating the delta for the underlying tables and updating
the database for both the naive and incremental lenses. While timing we keep

Chapter 3. Incremental Relational Lenses 78

0 5000 10000 15000 20000
Number of Input Rows

0

500

1000

1500

2000

2500

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(a) Local database server

0 5000 10000 15000 20000
Number of Change Set Entries

0

500

1000

1500

2000

2500

Ti
m

e
[m

s]

naive, total time
naive, query time
incr, total time
incr. query time

(b) Remote database server

0 50000 100000 150000 200000
Number of Input Rows

0

10

20

30

40

Ti
m

e
[m

s]

local, total time
local, query time
remote, total time
remote query time

(c) Local / remote performance of incremental lenses

Figure 3.10: The total/query execution time for the put operation applied to our
DBLP database.

Chapter 3. Incremental Relational Lenses 79

track of how much time was spent querying the database and the total time spent
performing the operation. We also perform put using a database located on a
remote server and compare it to a database located on the same machine.

Our performance results for the database hosted on the local machine are shown
in Figure 3.10a. Similar to our earlier benchmarks, the incremental lenses perform
favourably in comparison to the naive lenses. The naive lenses require linear time
as the data grows and need up to 1085ms to update the database when the data
grows to 20000 rows. A large portion of the naive execution time (up to 497ms)
is used to query the entire database, and so optimising the local algorithms will
have limited effect on the overall performance.

In comparison, the incremental lenses perform much faster even as the data grows
to hundreds of thousands of rows, requiring only between 7ms and 10ms total ex-
ecution time depending on the size of the underlying tables. Of that time between
6ms and 9ms are used to query the database, making database performance the
limiting factor for small data sets.

Figure 3.10b shows the performance of the same application running on a remote
database server. Here the query time is increased due to the bandwidth limitation
and higher latency of the network. Less bandwidth means that the data loads
more slowly, while higher latency imposes a delay per query. The total execution
time of the naive version increases by a significant amount up to 1438ms, while
the incremental version remains much faster requiring only up to 23ms, of which
21ms are used for querying the database.

Figure 3.10c directly compares the performance of incremental relational lenses
when the database is located on the same machine and a remote server. For
small data sets the remote server introduces an overhead of around 9ms. The
overhead decreases as the data sets become larger, with the remote server being
5ms faster than the local version for the largest data set. The remote database
server is run on a faster computer which is able to execute queries faster than the
local machine. Figure 3.10c shows the performance of the application with data
sets up to 200000 rows, indicating that the incremental version is able to easily
scale up to larger data sets.

Chapter 3. Incremental Relational Lenses 80

3.4 Summary

Relational lenses, as defined by Bohannon et al. [12], propagate changes to the
view by completely recalculating the underlying tables. This approach is imprac-
tical because such databases may become very large and then each update to the
database becomes very inefficient. It is also unsuitable for an implementation of
language integrated relational lenses, where the application is separated from the
database server.

Rather than recomputing entire sets of source tables, our incremental relational
lenses only process the changes required. When the user submits an updated
view, a delta between the updated view and the unchanged view is first computed.
The delta is propagated down to the underlying database and can be applied by
only altering the existing tables. During propagation, the lenses can query the
database for additional information as required, preventing each materialized view
from being instantiated.

The incremental semantics are derived by first introducing incremental relational
algebra semantics, based on existing work by Griffin et al. [42]. This framework
is then used to differentiate the put operation for each lens primitive. The re-
sulting expression is then optimized to improve performance by simplifying the
expression.

The incremental semantics of relational lenses are used by both the Links and
Haskell implementations discussed in the remaining chapters of this thesis. We
perform an experimental evaluation of the incremental semantics and compare
the efficiency to the naive approach which recomputes the tables in memory and
then replaces the entire table in the database. The evaluation demonstrates the
ability of relational lenses to scale to databases with hundreds of thousands of
rows, and show that the incremental semantics can perform the same computation
in a fraction of the time.

Our work establishes for the first time the feasibility of relational lenses for solving
classical view update problems in databases. Nevertheless, there may be room
for improvement in various directions. We found a pragmatic solution that uses
a small number of simple queries, but other strategies for calculating minimal
deltas are possible. Developing additional incremental relational lens primitives
or combinators, and combining relational lenses with conventional lenses, are two

Chapter 3. Incremental Relational Lenses 81

other possible future directions.

This chapter concludes the changes to the relational lens semantics in this the-
sis. The following chapters look at how the relational lens typing rules can be
implemented.

Chapter 4

Turning Abstract Sets into
Concrete Predicates

In their original proposal for relational lenses, Bohannon et al. [12] define predi-
cates using (potentially infinite) abstract sets. Although theoretically convenient,
such a representation is not suited to implementation in a programming language.
This chapter looks at how predicates can be represented, how the required checks
can be performed on them and how they can be integrated into the target lan-
guage.

As we are working in the setting of a programming language, it is natural to treat
predicates as a function from a record to a binary value. In this case we treat all
the fields of the record as bound in the environment. Recall our earlier example
of the select lens, which selects albums with a given name:

selectalbum=“galore” from albums

Here, the predicate function checks that the album column of each record is equal
to the constant value Galore. Intuitively, this predicate includes a record in the
set of results if its album field matches Galore.

A challenge with implementing predicates for relational lenses is that some lenses
require additional checks on predicates. Recall that the drop lens allows a more
fine-grained notion of relational projection, allowing us to remove a column from
a view. Consider a lens l1 as a select lens on the tracks table with predicate
date > 1990 ∨ rating > 4.

82

Chapter 4. Turning Abstract Sets into Concrete Predicates 83

track date rating album

Lovesong 1989 5 Galore
Lovesong 1989 5 Paris

Trust 1992 4 Wish

We can then define the lens l2 as dropping the column date determined by track

from the lens l1. This lens yields the following table, on which we would like to
perform the updates marked in red:

track rating album

Lovesong 5 3 Galore
Lovesong 5 3 Paris

Trust 4 Wish

What would the new predicate constraint be? It cannot reference the field date,
since it does not exist anymore. If it were rating > 4 then the last record would
be a violation in the output view. If the predicate were true it would violate
PutGet: Changing the rating from 5 to 3 for the track Lovesong, would cause it
to no longer satisfy the parent lens’ predicate since it is from 1989 and the rating
is only 3.

For this example there is no valid predicate and the lens would not be well-
behaved. The lens should be rejected by the drop lens rule. Bohannon et al.
[12] provide the necessary checks on abstract sets. This chapter looks at how
such issues can be detected and thus prevented when working with our concrete
predicate syntax.

The underlying issue is the dependency between the dropped field date and the
field rating. It is not possible to define a predicate P which specifies if any rating

value is valid independently of the drop column date. Without being able to
construct such a P , a lens cannot be well-behaved and should be rejected.

The first contribution of this chapter is the introduction of a concrete syntax
for defining predicates. It is then shown how the predicate checks defined by
Bohannon et al. [12] can be implemented on the concrete predicate syntax. The
predicate checks on concrete predicates are proven identical to the equivalent
checks on predicate sets.

The contributions described in this chapter are as follows:

Chapter 4. Turning Abstract Sets into Concrete Predicates 84

• Section 4.1 introduces a concrete predicate language, which is easily trans-
latable into SQL.

• Section 4.2 defines the checks required on predicates for our predicate lan-
guage. These are proven correct w.r.t. the checks defined by Bohannon
et al. [12].

• The basic syntax is then extended with further features not directly sup-
ported by SQL in Section 4.3.

• We consider two language integration strategies in Section 4.4. The first
strategy allows the predicate to be defined in the native language syntax,
and covers the trade-offs between requiring predicates to be known stati-
cally during compilation and being more flexible but also performing the
predicate checks during runtime. The other approach using hybrid predi-
cates uses a more advanced language integration technique. This technique
allows more flexibility while still providing compile-time guarantees.

4.1 Basic Predicates

Syntax We start with the basic predicate syntax shown in Figure 4.1. The
predicate can either be a constant value c, a column reference ℓ, a builtin operator
application ⊙{−→P } or conditional branching if P then Q1 else Q2. Predicates
do not allow any more advanced features, in particular function abstractions.
Function applications only supports builtin operators ⊙ and require a complete
set of arguments, partial application is not allowed.

Typing This language only supports expressions that compute basic value types
A such as int. Complex types such as tuples and sets are not supported. As
the basic language does not support lambda abstractions and function types,
primitive operators receive special types A1× . . .×An → A which are function
abstractions taking n arguments of some type Ai for 1≤ i≤ n, yielding a value of
type A. These special function types are not considered part of the type system
and so a primitive operator is not a well-typed expression by itself.

The typing rule judgement R ⊢ P : A ensures that the predicate expression P has
type A when a record of type R is bound to the environment. The typing rules

Chapter 4. Turning Abstract Sets into Concrete Predicates 85

Syntax

Labels ℓ

Predicates P,Q ::= c | ℓ | ⊙{
−→
P } | if P then Q1 else Q2

Base Types A ::= bool | int | string

Typing rules R ⊢ P : A

T-Var
ℓ : A ∈R

R ⊢ ℓ : A

T-Const
c of type A

R ⊢ c : A

T-If
R ⊢ P : bool

R ⊢Q1 : A R ⊢Q2 : A

R ⊢ if P then Q1 else Q2 : A

T-Op
⊙ : A1× . . .×An→ A (R ⊢ Pi : Ai)i∈1..n

R ⊢ ⊙{
−→
P } : A

Evaluation rules P ⇓r v

E-Var
(ℓ = v) ∈ r

ℓ ⇓r v

E-Const

c ⇓r c

E-Op
(Pi ⇓r vi)i∈1..n v =⊙{v1, . . . ,vn}

⊙{
−→
P } ⇓r v

E-If-True
P ⇓r true Q1 ⇓r v

if P then Q1 else Q2 ⇓r v

E-If-False
P ⇓r false Q2 ⇓r v

if P then Q1 else Q2 ⇓r v

Figure 4.1: Syntax and typing rules for the basic predicate language.

Chapter 4. Turning Abstract Sets into Concrete Predicates 86

shown in Figure 4.1 are standard typing rules. Labels ℓ are looked up in the
environment R. Constant value expressions c type to the primitive type of the
constant. Conditional if expressions yield a type A if the condition has type bool,
and both of the branches type to A. Finally, any applications of builtin primitives
should ensure all the arguments are supplied and have the correct argument type
and will yield the result type of the primitive operator. The notation v : A is
shorthand notation for · ⊢ v : A, stating that the value v is well-typed under an
empty context.

Evaluation Figure 4.1 also introduces the big-step evaluation relation P ⇓r v,
which states that term P evaluates to a value v under the evaluation context r.
We use the notation ⊙̂{−→v } to describe the denotation of operation ⊙ applied to
arguments −→v : for example, +̂{5,10}= 15. The semantics enjoys a standard type
soundness property.

Proposition 7 (Type Soundness). If R ⊢ P : A, then for any r : R there exists
some v such that P ⇓r v and v : A.

Proof. By induction on R ⊢ P : A.

The advantage of this basic predicate syntax is that it is straightforward to con-
vert any predicate P to SQL. The conversion of a predicate to SQL only requires
syntactic changes such as converting primitive operations into their SQL equiva-
lent (e.g. ∧ becomes AND). While this language can express a lot of predicates, it
has limited abstraction capabilities due to the limited types available and lack of
functional abstractions.

A useful property to have for any predicate is the ability to extend the environ-
ment with further unreferenced variables. This lemma is also required for hybrid
predicates in Section 4.4.1.

Lemma 35 (Predicate Weakening). Given a predicate P , if R1 ⊢ P : A then for
any R2 disjoint from R1 it can be shown that R1⊕R2 ⊢ P : A.

Proof. By induction on R ⊢ P : A.

Chapter 4. Turning Abstract Sets into Concrete Predicates 87

4.2 Predicate Checks

The checks required by relational lenses are one of the main challenges of providing
relational lenses as a library. In this section we look at how the checks defined
by Bohannon et al. [12] can be performed on our concrete predicate syntax.

We first look at the dependence between columns and how the lossless join decom-
position check can be performed when working with our predicate syntax. This
work reveals how the compatibility of the default value for the dropped predicate
column can be ensured using the default value check. Finally, we look into how
the dependence of the dropped column can be removed from the predicate.

4.2.1 Set Equivalence

We would like to show that the checks performed on predicates are sound. This
requires us to show how predicates relate to set predicates. We begin with some
preliminary definitions.

Definition 20 (Predicate satisfaction). We say that a record r satisfies predicate
P , written sat(P,r), if P ⇓r true.

Given a record type R, we define inh(R) as the set of all closed records r of the
given record type R. inh(R) is formally defined as:

Definition 21 (Record type inhabitants). We define the inhabitants of a record
type R, written inh(R), as:

{r | r : R}

We can then define set(P,R) as the equivalent set of all records of type R satisfying
a predicate P . The definition of set(P,R) is used to show that our implementation
is sound.

Definition 22 (Predicate sets). We define the set representation of predicate P

over R, written set(P,R), as:

{r ∈ inh(R) | sat(P,r)}

Lemma 36. r ∈ set(P,R) if and only if sat(P,r).

Proof. By definition of sat(P, ·), · ∈ · and set(·, ·).

Chapter 4. Turning Abstract Sets into Concrete Predicates 88

Lemma 37. Suppose two disjoint type contexts R and R′ as well as r ∈ inh(R)
and s ∈ inh(R′). Then sat(P,r⊗ s) implies r ∈ {z[R] | z ∈ inh(R⊕R′). sat(P,z)}
and s ∈ {z[R′] | z ∈ inh(R⊕R′). sat(P,z)}.

Proof. sat(P,r1⊗ r2) implies that there exists an s ∈ inh(R⊕R′) which is equal
to r1⊗ r2 such that sat(P,s). We know that for s it follows that s[dom(R1)]
equals r1 by definition of ·⊗ ·. Conversely the same can be shown for r2.

Lemma 38. Suppose two predicates P,Q such that R ⊢ P and R ⊢ Q. Then
set(P ∧Q,R) = set(P,R)∩ set(Q,R).

Proof.
R ⊢ P assumption

R ⊢Q assumption

set(P ∧Q,R)

= {r | ∀r ∈ inh(R). sat(P ∧Q,r)} def. set(·, ·)

= {r | ∀r ∈ inh(R). sat(P,r) and sat(Q,r)} def. ·∧·

= {r | ∀r ∈ inh(R). r ∈ set(P,R) and r ∈ set(Q,R)} Lemma 36

= set(P,R)∩ set(Q,R) def. ·∩·

Lemma 39. Suppose two predicates P,Q such that x : R ⊢P and x : R′ ⊢Q. Then
set(P ∧Q,R⊕R′) = set(P,R) ⋊⋉ set(Q,R′).

Proof.
x : R ⊢ P assumption (1)

x : R′ ⊢Q assumption (2)

set(P ∧Q,R⊕R′)

= {r | ∀r ∈ inh(R∪R′). sat(P ∧Q,r)} def. set(·, ·)

= {r | ∀r ∈ inh(R⊕R′). sat(P,r) and sat(Q,r)} def. ·∧·

= {r | ∀r ∈ inh(R⊕R′). sat(P,r[dom(R)]) and sat(Q,r[dom(R′)])} (1,2)

= {r | ∀r ∈ inh(R⊕R′). r[dom(R)] ∈ set(P,R)

and r[dom(R′)] ∈ set(Q,R′)} Lemma 36

= set(P,R) ⋊⋉ set(Q,R′) def. ·⋊⋉ ·

Chapter 4. Turning Abstract Sets into Concrete Predicates 89

4.2.2 Lossless Join Decomposition

For the resulting view table in the example from the introduction, a date value is
attached to each record. The date value chosen is either some value that appears
in the underlying table or it is the default value specified by the programmer. It
must therefore be possible to attach any date value that could potentially appear
in the underlying view to any valid record added to this view. Any added date

value added to the resulting record should not violate the predicate P .

Assume a lens with domain R equal to the disjoint union of R1 and R2, written
R1⊕R2, where R2 should be dropped. The type checker should ensure that the
lens predicate P does not have a dependency between the dropped and remaining
columns R1 and R2 that could cause issues as described. Bohannon et al. [12]
perform this check by ensuring that the predicate set equivalent M forms a lossless
join decomposition.

This check ensures that there is a set of valid dropped column values equal to the
projection of M onto the columns of R2, written M [R2], as well as a set of valid
remaining column values equal to M [R1], such that any valid record r ∈M can
have either its R1 or R2 component be exchanged by another valid value without
changing the state of the record in the predicate set M . The check is performed
by requiring that the original set of M can be recovered by the natural join ⋊⋉ of
the two sets M [R1] and M [R2].

A lossless join decomposition on sets is formally defined as follows:

Definition 23 (Lossless join decomposition). A set M : R is a lossless join de-
composition of two record types R1 ⊆R and R2 ⊆R when:

M = M [R1] ⋊⋉ M [R2]

The lossless join decomposition check, which is defined in set semantics, needs to
be performed on predicates in our basic predicate syntax. To check the safety of
a drop lens, we need to show that the predicate does not impose any dependency
between the value of the dropped field and any other field. We formalise this
constraint by defining the notion of a lossless join decomposition for predicate
expressions. The definition below requires disjoint record types to simplify the

Chapter 4. Turning Abstract Sets into Concrete Predicates 90

definition for our purposes, but can be altered to support overlapping record
types.

Definition 24 (Predicate lossless join decomposition). A lossless join decompo-
sition of two disjoint record types R1 and R2 with respect to a predicate P of type
R1⊕R2 ⊢ P :bool, written LJD[R1,R2](P), means that for all r1, s1 ∈ inh(R1)
and r2, s2 ∈ inh(R2), it is the case that:

sat(P,r1⊗ r2)∧ sat(P,s1⊗ s2) =⇒ sat(P,r1⊗ s2)

It is possible to show that this definition for predicate lossless join decomposition
is consistent with the lossless join decomposition on sets. Given R,R1,R2 such
that R = R1⊕R2, our definition of lossless join decomposition suffices to show
that set(P,R) can be expressed as the natural join of set(P,R) restricted to the
fields of R1, with set(P,R) restricted to the fields of R2.

Lemma 40 (Predicate lossless join decomposition consistent). Suppose R = R1⊕
R2 and R ⊢ P : bool. If LJD[R1,R2](P), then set(P,R) forms a lossless join
decomposition over R1 and R2.

Proof.
R = R1⊎R2 assumption

LJD[R1,R2](P) assumption

∀r,s ∈ inh(R). sat(P,r) iff. sat(P,r[dom(R1)]⊗s[dom(R2)])

∧ sat(P,r[dom(R2)]⊗s[dom(R1)]) def. LJD[R1,R2](P) (1)

set(P,R)

= {r | ∀r ∈ inh(R). sat(P,r)} def. set(·, ·)

= {r | ∀r,s ∈ inh(R). sat(P,r[dom(R1)]⊗s[dom(R2)])

∧ sat(P,r[dom(R2)]⊗s[dom(R1)])} (1)

= {r | ∀r ∈ inh(R). r[dom(R1)] ∈ {s[dom(R1)] | ∀s ∈ inh(R). sat(P,s)}

and r[dom(R2)] ∈ {s[dom(R2)] | ∀s ∈ inh(R). sat(P,s)}} Lemma 37

= {r | ∀r ∈ inh(R). r[dom(R1)] ∈ set(P,R)[R1] and

r[R2] ∈ set(P,R)[R2]} def. · [·]

= set(P,R)[dom(R1)] ⋊⋉ set(P,R)[dom(R2)] def. ·⋊⋉ ·

Chapter 4. Turning Abstract Sets into Concrete Predicates 91

LJD†-1
R1 ⊢ P :bool

LJD†[R1,R2](P)

LJD†-2
R2 ⊢ P :bool

LJD†[R1,R2](P)

LJD†-And
LJD†[R1,R2](P)
LJD†[R1,R2](Q)

LJD†[R1,R2](P ∧Q)

Figure 4.2: Lossless join decomposition approximation.

Showing LJD[R1,R2](P) is NP-hard and could be undecidable, depending on
the atomic formulae available in the predicates. Since a predicate that satisfies
LJD[R1,R2](P) can be rewritten as a conjunction of predicates which depend
only on either R1 or R2, we can, however, define a sound but incomplete syntactic
approximation LJD†[R1,R2](P).

The approximation in Figure 4.2 has three inference rules. If the expression P

can be typed under only the subset of R1, then the predicate forms a lossless join
decomposition for R1 and R2. Similarly, if the expression can typed under only
the subset of R2, then it also forms a lossless join decomposition. Finally if a
conjunction is encountered, the conjunction forms a lossless join decomposition
if each of the terms also form a lossless join decomposition.

The lossless join decomposition approximation implies a lossless join decomposi-
tion on the predicate:

Lemma 41 (Soundness of LJD†). Given a predicate P and record types R1,R2,
it follows that LJD†[R1,R2](P) implies LJD[R1,R2](P).

Proof.
r1, r2 ∈ inh(R) assumption

s1, s2 ∈ inh(R′) assumption

sat(P,r1⊗ s1) assumption (2)

sat(P,r2⊗ s2) assumption (3)

Perform induction on LJD†[R,R′](P)

Chapter 4. Turning Abstract Sets into Concrete Predicates 92

LJD†-1
R ⊢ P :bool

LJD†[R,R′](P)
assumption

sat(P,r1) Extensionality (2)

sat(P,r1⊗ s2) Extensionality

LJD[R,R′](P) def. LJD

LJD†-2
R′ ⊢ P :bool

LJD†[R,R′](P)
assumption

sat(P,s2) Extensionality (3)

sat(P,r1⊗ s2) Extensionality

LJD[R,R′](P) def. LJD

LJD†-And
LJD†[R,R′](Q1) LJD†[R,R′](Q2)

LJD†[R,R′](Q1∧Q2)
assumption (4)

sat(Q1, r1⊗ s2) induction

sat(Q2, r1⊗ s2) induction

sat(Q1∧Q2, r1⊗ s2) def. ·∧·

LJD[R,R′](Q1∧Q2) def. LJD

Resulting from Lemma 40 and Lemma 41, any predicate P satisfying LJD†[R1,R2](P)
satisfies the lossless join decomposition required by the drop lens rules as defined
by Bohannon et al. [12].

4.2.3 Default Value Check

The put semantics for the drop lens must provide a value for the dropped columns
R2. If no matching value can be found in the underlying table, the lens uses the
default value r : R2 provided by the programmer. For the lens to be well-behaved,
it needs to ensure that the resulting records satisfy the underlying predicate of
the lens. Therefore, in addition to showing that the predicate does not impose

Chapter 4. Turning Abstract Sets into Concrete Predicates 93

any dependency between the value of the dropped field and the other fields, we
must show that the default values r of the dropped columns never violate the
predicate P . Given the set representation of a predicate set(P,R), we must show
that r ∈ set(P,R)[R2].

The property DV[R1,R2](P,r) is defined, specifying that the values r : R2 for
the dropped columns never violate the predicate P . The idea is that there must
be some record s that satisfies the predicate P , such that s[R2] = r. Unlike the
lossless join decomposition check, R1 and R2 are not commutative for the default
value check.

Definition 25. Given a predicate P and disjoint record types R1 and R2 such that
LJD[R1,R2](P) and r∈ inh(R2), we write DV[R1,R2](P,r) when set(P,R1⊕R2)
is not empty and there exists an s ∈ inh(R1) such that sat(P,r⊗ s).

The property DV[R1,R2](P,r) is consistent with the set semantics definition used
by Bohannon et al. [12].

Lemma 42. Suppose R = R1⊕R2, r ∈ inh(R2), and LJD[R1,R2](P). Then
DV[R1,R2](P,r) implies r ∈ set(P,R)[R2].

Proof.
R = R1⊎R2 assumption

∃s ∈ inh(R1). sat(P,r⊗ s) assumption

=⇒ ∃s ∈ inh(R). s[dom(R2)] = r and sat(P,s) def. ·⊗·

=⇒ r ∈ {s[dom(R2)] | ∀s ∈ inh(R). sat(P,r)} def. · ∈ ·

=⇒ r ∈ set(P,R)[dom(R2)] def. · [·]

As with the definition of LJD[R1,R2](P), determining if
DV[R1,R2](P,r) holds in the general case is NP-hard. To simplify this problem
we introduce an incomplete set of inference rules to determine DV†[R1,R2](P,r)
shown in Figure 4.3, which covers the same set of predicates as the LJD†[R1,R2](P)
rule. As with the lossless join decomposition, any conjunction of terms requires
each term to satisfy the default value check condition. If a term does not depend
on the columns that are dropped and can thus be typed under the remaining

Chapter 4. Turning Abstract Sets into Concrete Predicates 94

DV†-1
R1 ⊢ P :A

DV†[R1,R2](P,r)

DV†-2
R2 ⊢ P :A
sat(P,r)

DV†[R1,R2](P,r)

DV†-And
DV†[R1,R2](P,r)
DV†[R1,R2](Q,r)

DV†[R1,R2](P ∧Q,r)

Figure 4.3: Default value check rules.

columns R1, then the term satisfies the default value check. If the term types un-
der only the dropped columns R2, then it must be ensured that the term evaluates
to true when evaluated under the context of the default value r.

Lemma 43. Given a predicate P such that set(P,R1⊕R2) is not empty and
record r such that r : R, it follows that DV†[R1,R2](P,r) implies DV[R1,R2](P,r).

Proof.
r ∈ inh(R′) assumption

set(P,R⊕R′) not empty (5)

Perform induction on DV†[R1,R2](λx. P ,r)
DV†-1

x : R ⊢ P :D

DV†[R1,R2](P,r)
assumption

∃s ∈ inh(R). sat(P,s) (5)

∃s ∈ inh(R). sat(P,r⊗ s) widening

DV[R1,R2](P,r) def. DV

DV†-2
R′ ⊢ P :D sat(P,r)

DV†[R1,R2](P,r)
assumption

∃s ∈ inh(R). sat(P,r⊗ s) widening

DV[R1,R2](P,r) def. DV

Chapter 4. Turning Abstract Sets into Concrete Predicates 95

DV†-And
DV†[R1,R2](Q1, r) DV†[R1,R2](λx. Q2, r)

DV†[R1,R2](Q1∧Q2, r)
assumption

∃s ∈ inh(R). sat(Q1, r⊗ s) induction

∃s ∈ inh(R). sat(Q2, r⊗ s) induction

∃s ∈ inh(R). sat(Q1∧Q2, r⊗ s) def. ·∧·

DV[R1,R2](P,r) def. DV

Note that the soundness proof for DV†[R1,R2](P,r) requires that set(P,R1⊕R2)
is not empty. This is problematic in theory, because it requires us to show that
the predicate is satisfiable. According to Bohannon et al. [12], a drop lens on a
lens with predicate that is false does not typecheck. In practice however, this lens
is well behaved as it returns an empty view (a view with no records, equivalent
to the unit type) and only takes an empty view. The lens would therefore be
trivial, but still well-behaved.

4.2.4 Predicate Ignores Columns

The select lens filters a view according to a given predicate. Let us assume we
have a lens l1 which is the join of the two tables albums and tracks. We might
first define a lens l2 to find popular albums for which the stock is too low, by only
returning the albums where quantity < rating.

track date rating album quantity

Lullaby 1989 3 Galore 1
Lovesong 1989 5 Galore 1
Lovesong 1989 5 Paris 4

Trust 1992 4 Wish 4

We might then decide to further limit this view by defining a lens l3 which only
shows the tables with the album Galore.

track date rating album quantity

Lullaby 1989 3 Galore 1
Lovesong 1989 5 4 Galore 1

Chapter 4. Turning Abstract Sets into Concrete Predicates 96

The user then notices that the rating for Lovesong is not correct, and changes it
from 5 to 4. Calling put on l3 would yield the updated view for l2:

track date rating album quantity

Lullaby 1989 3 Galore 1
Lovesong 1989 5 4 Galore 1
Lovesong 1989 5 4 Paris 4

Trust 1992 4 Wish 4

Since the rating of the track Lovesong is 4 and not lower than the quantity
of the album Paris, the updated view for l2 violates the predicate requirement
quantity < rating.

To prevent such an invalid combination of lenses, the select lens needs to ensure
that the underlying lens has no predicate constraints on any fields which may be
changed by functional dependencies. The set of fields which can be changed by
functional dependencies F is outputs(F). A predicate P ignores the set R if the
result of evaluating the predicate P with respect to a row in the database is not
affected by changing any fields in R.

For lenses such as the select lens to be well-behaved, it is required to show that
the predicates do not depend on the outputs of the functional dependencies. The
generalisation of this is a restriction showing that a predicate does not depend
on any of the columns in R. Bohannon et al. [12] provide the following definition
for this check on sets:

Definition 26. Given R = R1⊕R2, M : R ignores R1 if for any r,s : R such that
r[R2] = s[R2] then r ∈M ⇔ s ∈M .

As the check should be performed on predicates, the following definition is pro-
posed:

Definition 27. Given R = R1⊕R2, if R1 ⊢ P : A then P ignores R2.

The following helper lemma shows that the result of predicate evaluation only
depends on the columns referenced by the predicate.

Lemma 44. If R1 ⊆R and R1 ⊢ P : A, then P ⇓r v and P ⇓r[R1] w implies v = w.

Chapter 4. Turning Abstract Sets into Concrete Predicates 97

Proof. By induction on P .

The definition for the ignores relation on predicates is consistent with the defini-
tion on sets:

Lemma 45 (Predicate ignores consistent). For any R ⊢ P : bool, if R = R1⊎R2

and P ignores R1, then set(P,R) ignores R1.

Proof.
R = R1⊎R2 assumption

P ignores R1 assumption

⇒R2 ⊢ P : bool defn. (1)

r,s : R assumption

r[R2] = s[R2] assumption (2)

Perform case analysis on r ∈ set(P,r)

Case r ∈ set(P,R) :

sat(P,r) assumption, defn. set(·, ·)

P ⇓r true defn. sat(P,r)

P ⇓r[R2] true Lemma 44(1)

P ⇓s[R2] true (2)

P ⇓s true Lemma 44(1)

sat(P,s) defn. sat(P,r)

Case r /∈ set(P,R) :

sat(P,r) assumption, defn. set(·, ·)

P ⇓r false defn. sat(P,r)

P ⇓r[R2] false Lemma 44(1)

P ⇓s[R2] false (2)

P ⇓s false Lemma 44(1)

sat(P,s) defn. sat(P,r)

4.2.5 Dropping Column References

Once the predicate P has passed both the default value and lossless join decom-
position checks, it is necessary to remove all references to the dropped columns

Chapter 4. Turning Abstract Sets into Concrete Predicates 98

Normalisation JP KR1,R2

JP KR1,R2 = P when R1 ⊢ P : bool
JP KR1,R2 = true when R2 ⊢ P : bool

JP ∧QKR1,R2 = JP KR1,R2 ∧ JQKR1,R2

Figure 4.4: Rewriting rules to remove column terms from predicate.

R2. This is necessary so that the resulting lens type does not become ill-typed
by referring to columns that do not exist in the resulting view.

As described in the introduction, removing the dropped columns can pose some
issues. Luckily, using the special properties of the lossless join decomposition
check makes removing references to R2 trivial. The lossless join decomposition
check ensures that the predicate is a conjunction of terms that depend either on
only the dropped column or the remaining columns. This makes it possible to
remove all terms that only refer to R2.

The lens is guaranteed to produce values r : R2 for the dropped column that will
be in P [R2]. The values r will therefore satisfy any of the sub-terms Q in the
conjunction P if Q only depends on the dropped columns R2.

Figure 4.4 shows the rewriting strategy used to remove the unwanted terms. The
first entry removes any term that only references R2 and replaces it with the
expression true, which is well typed under any record type context. The second
match expression leaves all terms that only reference the remaining columns R1.
The final expression recursively applies the rewriting rules to each term in the
conjunction.

The rewriting rules in Figure 4.4 are not defined for arbitrary predicates. The
three rules correspond to the three inference rules of LJD†[R1,R2](P). This
allows us to ensure that any predicate that satisfies LJD†[R1,R2](P) can be
rewritten. It is also possible to show that all references to R2 are removed. We
would like to show that dropping the columns as shown in Figure 4.4 is the
equivalent to performing a projection on the predicate set. We start with a few
helper Lemmas.

Lemma 46. If R1 ⊢ P : bool then set(P,R1) = set(P,R1⊕R2)[R1].

Chapter 4. Turning Abstract Sets into Concrete Predicates 99

Proof.
set(P,R1)

= {r ∈ inh(R1) | sat(P,r)} def. set(·,R1)

= {r[R1] ∈ inh(R1) | sat(P,r)} ·[R1] unit

= {r[R1] ∈ inh(R1⊕R2) | sat(P,r)} Lemma 44

= {r ∈ inh(R1⊕R2) | sat(P,r)}[R1] def. []

= set(P,R1⊕R2)[R1] def. set(·,R1⊕R2)

Lemma 47. If M and N are lossless join decompositions over the disjoint do-
mains U and V , and M ∩N is not empty, then M [U]∩N [U] = (M ∩N)[U].

Proof. For any record r : U we consider two cases.

If r ∈ (M ∩N)[U], then there must exist some s such that s[U] = r and s∈M ∩N .
From this we know that s ∈ M and s ∈ N , which means that r ∈ M [U] and
r ∈N [U].

We then show r /∈ set(P,R1⊕R2)[dom(R1)] can never hold by contradiction:

r /∈ set(P,R1⊕R2)[dom(R1)] assumption (1)

set(P,R1⊕R2) ignores R1 P ignores R1 (2)

∃s ∈ set(P,R1⊕R2) set(P,R1⊕R2) is not empty (3)

r⊗ s[R2] ∈ set(P,R1⊕R2) (2, 3); def. ignores on sets

⇒ r ∈ set(P,R1⊕R2)[dom(R1)] contradicts (1)

Lemma 48. If P ignores R1 such that set(P,R1⊕R2) is not empty, then
set(P,R1⊕R2)[dom(R1)] = set(true,R1⊕R2)[dom(R1)].

Proof. For any record r : dom(R1) we consider two cases.

If r ∈ set(P,R1⊕R2)[dom(R1)], then it is straightforward to show that
r ∈ set(true,R1⊕R2)[dom(R1)].

Chapter 4. Turning Abstract Sets into Concrete Predicates 100

We then show r /∈ set(P,R1⊕R2)[dom(R1)] can never hold by contradiction:

r /∈ set(P,R1⊕R2)[dom(R1)] assumption (1)

set(P,R1⊕R2) ignores R1 P ignores R1 (2)

∃s ∈ set(P,R1⊕R2) set(P,R1⊕R2) is not empty (3)

r⊗ s[R2] ∈ set(P,R1⊕R2) (2, 3); def. ignores on sets

⇒ r ∈ set(P,R1⊕R2)[dom(R1)] contradicts (1)

We can now show that our predicate dropping operation is equivalent to the pro-
jection operator on abstract sets. The lemma requires proof that set(P,R1⊕R2)
is not empty. This condition is technically satisfied, because the default value
condition requires such at least one entry in the predicate, meaning that it is not
empty.

Lemma 49. Suppose P such that LJD[R1,R2](P) and R1⊕R2 ⊢ P : bool such
that set(P,R1⊕R2) is not empty. Then set(JP KR1,R2 ,R1) = set(P,R1⊕R2)[dom(R1)].

Proof.
LJD[R1,R2](P) assumption

R⊕{ℓ : A} ⊢ P : bool assumption

set(P,R1⊕R2) is not empty assumption (1)

perform induction on LJD[R1,R2](P)

case LJD†−1

R1 ⊢ P :bool

LJD†[R1,R2](P)
assumption

set(JP KR1,R2 ,R1)

= set(P,R1) def. J·KR1,R2

= set(P,R1⊕R2)[dom(R1)] Lemma 46

case LJD†−2

Chapter 4. Turning Abstract Sets into Concrete Predicates 101

LJD†-2
R2 ⊢ P :bool

LJD†[R1,R2](P)
assumption

P ignores R1 def. ignores

set(JP KR1,R2 ,R1)

= set(true,R1) def. J·KR1,R2

= set(true,R1⊕R2)[dom(R1)] Lemma 46

= set(P,R1⊕R2)[dom(R1)] Lemma 48

case LJD†-And

LJD†[R1,R2](P1) LJD†[R1,R2](Q)

LJD†[R1,R2](P1∧Q)
assumption

set(P1∧Q,R1⊕R2)

= set(P1,R1⊕R2)∩ set(Q,R1⊕R2) Lemma 38

⇒ set(P1,R1⊕R2) is not empty (1); ∩ least (2)

⇒ set(Q,R1⊕R2) is not empty (1); ∩ least (3)

set(JP1∧QKR1,R2 ,R1)

= set(JP1KR1,R2 ∧ JQKR1,R2 ,R1) def. J·KR1,R2

= set(JP1KR1,R2 ,R)∩ set(JQKR1,R2 ,R1) Lemma 38

= set(P1,R1⊕R2)[dom(R1)]

∩ set(Q,R1⊕R2)[dom(R1)] (2, 3); induction hypothesis

= (set(P1,R1⊕R2)∩ set(Q,R1⊕R2))[dom(R1)] (1); Lemma 47

= set(P1∧Q,R1⊕R2)[dom(R1)] Lemma 38

An alternative approach to the one shown in Figure 4.4 is to substitute the default
values r for any column references in R2. This is the approach described in a
previous publication [51].

4.3 Normalisation

The basic predicate syntax introduced in this chapter is helpful for producing SQL
code. However, the SQL translation requirement also forms a limitation, because

Chapter 4. Turning Abstract Sets into Concrete Predicates 102

the basic predicate language does not support convenient language features such
as richer data types and function abstractions. Cooper [25] shows that when the
input data is flat, and the resulting output is also a flat data type, it is possible
to translate away additionally used language features.

It is also convenient to declare the predicate in a slightly different format. In
the basic predicate syntax, the record’s fields are captured in the evaluation
environment. Any ℓ subexpression in the predicate is a lookup of the record
value in the environment. This is identical to the SQL predicate syntax where
we may write the filter quantity > 2. In this example quantity refers to the column
quantity bound by the current record.

When the predicate should be expressed from within another language such as
Links, the environment is already bound. This existing environment is conve-
nient, because it allows the binding and use of other variables from within the
predicate. While it would be possible to just bind the record on top of the exist-
ing environment, it makes the source of values less clear. A nicer abstraction in
such situations is to require the programmer to explicitly declare the record as
an input.

In the Links implementation, the programmer writes the predicate as a function
of type R→ bool. The predicate is then translated into a basic predicate during
execution, where all variables bound by the closure are substituted for their values
in the output predicate.

Given a functional programming language for predicates, we wish to show that
predicates can be normalised to the basic predicate syntax. Figure 4.5 introduces
additional normal forms O which includes variables, constants, λ-abstractions,
records whose fields are all values, record projection from a variable, conditional
expressions whose subterms are all in normal form, and operations whose argu-
ments are all in normal form. Terms in predicate normal form, ranged over by
P̂ and Q̂, are a restriction of terms in normal forms. Terms in predicate normal
form are equivalent with terms in basic predicate language in Figure 4.1, except
for the representation of labels ℓ, which are projections x.ℓ in predicate normal
form.

Evaluation rules for this language are provided in big-step semantics. All of the
evaluation rules are standard rules for a λ-calculus. Evaluation is performed with-

Chapter 4. Turning Abstract Sets into Concrete Predicates 103

Syntax
Terms e,f,g ::= x | c | λx.e | (−−→ℓ = e) | x.ℓ

| if e then f1 else f2 | ⊙{−→e }
Types τ ::= A | τ1→ τ2 | (−−→ℓ : τ)

Normal forms

O ::= x | c | λx.O | (−−−→ℓ = O) | x.ℓ

| if O1 then O2 else O3 | ⊙{
−→
O}

P̂ , Q̂ ::= x.ℓ | c | ⊙{
−→
P̂ } | if P̂ then Q̂1 else Q̂2

Normalisation e : τ ⇝ f

(λx.f) e : τ ⇝ f [e/x]
(−−→ℓ = e).ℓ : τ ⇝ eℓ

if true then e else f : τ ⇝ e

if false then e else f : τ ⇝ f

(if e then f1 else f2)f3 : τ ⇝ if e then f1 f3 else f2 f3

if e1 then e2 else e3 : (−−→ℓ : τ) ⇝ (−−−→ℓ = f)
with fℓ =

if e1 then e2.ℓ else e3.ℓ

for each ℓ ∈
−→
ℓ

Evaluation e ⇓ v

Values v,w ::= c | λx.e | (−−−→ℓ = v)

e ⇓ v

e ⇓ λx. g

f ⇓ v g[v/x] ⇓ w

ef ⇓ w

(ei ⇓ vi)i

(−−→ℓ = e) ⇓ (−−−→ℓ = v)

e ⇓ ((ℓi = vi)i∈I) j ∈ I

e.ℓj ⇓ vj

e ⇓ true f ⇓ v

if e then f else g ⇓ v

e ⇓ false g ⇓ v

if e then f else g ⇓ v

(ei ⇓ vi)i

⊙{−→e } ⇓ ⊙̂{−→v }

Figure 4.5: Normalisation and Evaluation

Chapter 4. Turning Abstract Sets into Concrete Predicates 104

out keeping track of an environment. This differs from the basic predicate syntax,
where the record is used as the evaluation environment. Function application is
performed by substituting the variable within the function body.

Normalisation rules M⇝N are a subset of the rules proposed by Cooper [25]: the
first four rules are standard β-reduction rules; the fifth pushes function application
inside branches of a conditional; and the sixth pushes conditional expressions
inside each component of a record. Normalisation rules can be applied anywhere
in a term, so we do not require congruence rules.

The rewrite system is strongly normalising.

Proposition 8 (Strong normalisation). If Γ ⊢ e : τ , then there are no infinite ⇝
sequences from e.

Proof. A special case of the result shown by Cooper [25].

Static predicates refer only to constants and properties of a given record. Let⇝∗

be the transitive, reflexive closure of the normalisation relation. Given a variable
with base record type R, we can show that normalisation results in a term in
predicate normal form.

Proposition 9 (Normal forms). If x : R ⊢ e : τ and e⇝∗ f ̸⇝, then f is in normal
form.

Proof. By induction on the derivation of x : R ⊢ e : τ . See Appendix C.1.

As a corollary, by considering only terms with type bool, we can show that
predicate terms can be translated into predicate normal form.

Corollary 5 (Predicate normal form). If x : R ⊢ e : bool and e⇝∗ f ̸⇝, then f

is in predicate normal form.

Consequently, for any predicate of the form λx.e written in our predicate lan-
guage, e can be normalised to predicate normal form, allowing it to be used in
typechecking of lenses and for translation into SQL. The predicate normal form
term P̂ can be converted into the basic predicate language P by substituting all
occurrences of record projection x.ℓ with the label expression ℓ.

Chapter 4. Turning Abstract Sets into Concrete Predicates 105

Even though the normalisable predicate language introduced in Figure 4.5 is more
expressive than the basic predicate language, there are still some restrictions that
apply. Recursive functions, functions with side-effects (such as printing) as well
as expressions referencing any database tables are not supported.

4.4 Static, Dynamic and Hybrid Predicates

The predicate checks and normalisation process described in Section 4.2 and
Section 4.3 require knowledge of the predicate syntax. As an example, we require
that the predicate of a select lens does not refer to the outputs of the functional
dependencies of a table This has implications for when and how the predicate
is checked. The relational lenses implementation in Links differentiates between
two types of predicates:

Static Predicates Predicates that are fully known during compile time and
only rely on static information are called static predicates. An example of such
a predicate is fun(a) { a.album == "Paris"}, where there are no free variables. As
the predicates are fully known statically, it is possible to perform all checks on
the predicate during compilation, preventing any runtime errors from happening.
This approach is beneficial, because relational lenses have many checks that need
to be performed before the lens can be safely used, making it easy to forget
some of the checks. The downside is that it is not possible for predicates to be
generated during runtime or to rely on runtime values, as the predicate would be
unknown during compilation.

Dynamic Predicates The alternative approach is to wait for the predicate to be
generated by the program and perform the tests during execution. An example of
such a dynamic predicate is fun(a) { a.album == albumName } which refers to the free
variable albumName. As a result of the checks not being performed during execution,
any errors discovered are thrown as runtime errors. Our formal results are based
on static predicates, however the same results apply for dynamic predicates (which
can be treated as closed at runtime). The normalisation procedure can be applied
to any dynamic predicate at runtime in order to allow the same checks to be
performed dynamically.

In Links the dynamic predicates are reconstructed from the intermediate rep-

Chapter 4. Turning Abstract Sets into Concrete Predicates 106

resentation of the language. Another way to achieve dynamic predicates is to
allow the implicit casting of lambda expressions to expression objects, allowing
the code to be analysed during runtime [10].

4.4.1 Hybrid Predicates

Section 4.4 introduces the concept of static and dynamic predicates. Static predi-
cates are predicates fully known during compile time. Known predicates allow all
the required checks on predicates to be made before the program is run, ensuring
that the application will produce errors during execution. Dynamic predicates
overcome this restriction by allowing arbitrary predicates to be constructed during
runtime. All required checks on dynamic predicates are then also only performed
when the program is run — at the cost of potentially introducing runtime errors
during execution. Even though performing these checks results in little overhead,
this approach is not ideal. The programmer may miss some cases that could
result in an unsuitable predicate, making the program raise a runtime error.

Hybrid predicates combine the best of static and dynamic predicates. Hybrid
predicates rely on a quotation style of language integration [21], but where the
core idea is to statically track the exact underlying predicate just as with static
predicates, but to then allow portions of the predicate to be erased so that only
the typing information is retained. This is possible because the lossless join
decomposition and default value checks can still be performed when some parts
of the predicates are unknown.

Consider the Guide to Pharmacology database (GtoPdb [71]) curation example
from [51]. Here we have the example table for diseases with the following record
type:

(disease_id : int,name : string,description : string, type : string)

In this example we would like the user to be able to enter filters for the ID, name
or type of the disease. The code should construct a predicate from this input
and create a lens based on this. We assume a primitive lens handle diseases

with the above declared record type. The lens has the functional dependencies
disease_id→ name,description,type and has no predicate restrictions.

Figure 4.6 defines the function build_diseases_lens, which produces a relational

Chapter 4. Turning Abstract Sets into Concrete Predicates 107

1. build_diseases_lens : string→ int option→ string
2. → lens of (diseases,Rds,Rds ⊢ ? : bool,Fds)
3. build_diseases_lens = λ name disease_id typ.

4. let p1 = if name ̸= ”” then erase ⌈name = ⌊name⌋⌉ else erase ⌈true⌉ in

5. let p2 = case disease_id of

 None ⇒ p1;
Some id ⇒ erase ⌈id = ⌊id⌋∧@p1⌉

 in

6. let p3 = if typ ̸= ”” then p2 else erase ⌈typ = ⌊typ⌋∧@p2⌉ in
7. let p = ⌈@p3∧description = ””⌉ in
8. let l = selectp from diseases in
9. drop description determined by (disease_id,””) from l

Figure 4.6: Hybrid predicates code example.

lens based on user input. Line 3 starts by specifying that the function takes
three arguments name, disease_id and typ. The variables name and typ are
both of type string and, if non-empty, should be used as a filter in the predicate.
The disease_id variable has the type int option (known as Maybe in Haskell),
and can either be None (also known as Nothing) or Some i, where i is an int
(equivalent to Just i in Haskell). If a disease_id is provided, it should also be
used in the predicate.

Line 4 constructs the predicate p1, which should filter the disease name if one is
specified. When constructing the predicate, the program branches on the contents
of the name variable. If name is empty, a predicate is constructed that requires
the name field of each record to equal the value of the program bound name

variable is constructed. Otherwise a default constant expression equal to true is
returned, specifying that all records should be accepted. The syntax ⌈ê⌉ is used
to specify that the term ê should be a quoted expression, hence ⌈true⌉ constructs
a quoted predicate for the constant expression true. Within any quoted pred-
icate expression, we can escape an expression e (written ⌊e⌋) specifying that e

should be computed and the resulting value inserted as a literal into the predicate
expression. In the example, the code ⌈name = ⌊name⌋⌉ constructs a predicate
which checks that the record field is equal to the value computed by executing
the term name, which refers to the lambda bound variable.

The type of any quoted predicate expression reflects the exact structure of the
expression. Consider the expression ⌈true⌉ which is of type pred true. The type

Chapter 4. Turning Abstract Sets into Concrete Predicates 108

of the term ⌈name = ⌊name⌋⌉ is a static predicate requiring equality between the
field name and an unknown string value. The type of this expression is there-
fore pred (name = (· ⊢ ? : string)), where · ⊢ ? : string specifies an unknown
quoted expression that does not depend on any fields and return a value of type
string.

The problem with the two expressions having different types

• pred (name = (· ⊢ ? : string)) and

• pred true

is that the types cannot be unified. Since neither of these predicate types depend
on any columns that will be dropped, it is safe to erase the structure of the predi-
cate, only retaining the typing information. This is done using erase, which takes
a value of type pred S and yields a value of type pred (R ⊢ ? : A) if the typing
judgement R ⊢ S : A holds. In this case, both predicates type to bool and would
both be well-typed under the record (name : string), allowing us to erase both
quoted predicates to a predicate value of type pred ((name : string) ⊢ ? : bool),
allowing them to be unified. As we are planning to extend the predicates with
additional columns later, we actually use the following type for p1 instead:

pred ((name : string,disease_id : int, typ : string) ⊢ ? : bool)

For convenience we define Rds:

type Rds = (name : string,disease_id : int, typ : string)

Line 5 branches on the disease_id argument. If no argument is specified, then
the existing predicate p1 is returned. Otherwise, the predicate p1 is extended
by adding an additional requirement that disease_id = id, where id is the actual
integer value specified. The extension of an existing predicate is done by inserting
a quoted predicate into a new quoted predicate expression, written @p1. Predi-
cate insertion and the unquote operator are both similar as they both start in a
quoted context and take an unquoted expression. The unquote operator expects
an expression that produces a primitive value such as a value of type int, which is
then inserted as an erased quoted expression. An example would be ⌈⌊5⌋⌉, which
yields a predicate of type pred (· ⊢ ? : int). This is in contrast to the insertion
operator, where the unquoted expression computes another quoted expression,

Chapter 4. Turning Abstract Sets into Concrete Predicates 109

which is then inserted without any changes. An example of an insertion would
be ⌈@⌈5⌉⌉, which yields a predicate of type pred 5. The resulting type of the
quoted expression ⌈disease_id = ⌊id⌋∧@p1⌉ thus becomes:

pred (disease_id = (· ⊢ ? : int)∧ (Rds ⊢ ? : bool))

Line 6 extends p2 with a filter on the typ field if a value is specified. All three
predicates p1, p2 and p3 all have the same predicate type pred (Rds ⊢ ? : bool).
Line 7 introduces the predicate p, which has an additional restriction on the
column description, requiring it to be empty. As description is the column that
should be dropped from the predicate, the predicate is not erased so that the
added term is retained. The additional code of the quoted expression is again
just copied verbatim into the static predicate portion, yielding the following type
for p:

pred ((Rds ⊢ ? : bool)∧description = ””)

In Line 8 the select lens l is constructed using the predicate p. As the under-
lying diseases lens does not have a predicate restrictions, the resulting predi-
cate restriction on l is equivalent to (Rds ⊢ ? : bool)∧description = ””. The
drop lens in Line 9 can be safely constructed, because both Rds ⊢ ? : bool and
description = ”” form a lossless join decomposition. The default value check is
also satisfied because the value ”” satisfies the predicate description = ””.

The resulting lens type is shown in Line 2. The lens only depends on the diseases
table, and yields records of type Rds. The predicate restriction on the lens would
be (Rds ⊢ ? : bool)∧true, which is simplified to Rds ⊢ ? : bool. The functional
dependencies of the lens are Fds, which is defined as:

Fds = disease_id→ name,type.

4.4.2 Language extension

We improve the basic predicate syntax from Section 4.1 by allowing predicates
to partially be known statically. Instead of static or dynamic predicates, hybrid
predicates are dynamic predicate values P with partial predicate information
tracked in the type using a static predicate S.

The following summarizes the language constructs used by the hybrid predicates
language:

Chapter 4. Turning Abstract Sets into Concrete Predicates 110

• Program terms e are regular program terms that include elements of the
simply typed lambda calculus and can switch to the quoted context ê using
the quotation operator ⌈·⌉.

• Quoted terms ê contain the surface syntax used to express predicates in the
language. The unquote ⌊·⌋ and insert @· operators can be used to switch
to the program term context. To help the reader differentiate quoted term
predicate constructors, these are highlighted in gold.

• Static predicates S are used to express the information known about the
predicate in the program type. We highlight the static predicate construc-
tors in red to help the reader.

• Basic predicates P from Figure 4.1 are used as the underlying value repre-
sentation of predicates in the language.

We start with the simply typed lambda calculus with record types and let expres-
sion syntactic sugar. Figure 4.7 extends this language with hybrid predicates.

Syntax The language terms e,f can also be a quoted expression term ⌈ê⌉, where
ê is a quoted term, or predicate erasure, written erase ê. Quoted terms ê, f̂ can
be any of the basic predicate terms, an unquoted term ⌊e⌋ or a predicate insertion
@e.

Evaluation The evaluation of a hybrid predicate expression yields a dynamic
predicate value P . Any basic predicate P is considered a value v in the language.
Figure 4.8 shows the evaluation rules for the language. All of the evaluation rules
either are data constructors or perform nothing and are only required for the
typing rules.

The evaluation rules of a quoted term ê are also shown in Figure 4.8. Each
predicate term constructor ê recursively evaluates all of the arguments and con-
structors the identical predicate term. An unquoted term e is expected to yield a
value v of a base type and can be inserted directly into the predicate expression.
A predicate insertion term @e yields a predicate value P , which is inserted into
the basic predicate.

Typing The language extension introduces the statically known predicate infor-
mation S,T . Static predicate information contains a constructor for each basic

Chapter 4. Turning Abstract Sets into Concrete Predicates 111

Syntax

Terms e,f ::= . . . | erase e | ⌈ê⌉
Quoted Terms ê, f̂ ::= c | ℓ | if ê then f̂1 else f̂2 | ⊙

−→
ê | ⌊e⌋ | @e

Values v ::= · · · | P
Types τ ::= · · · | A | pred S

S,T ::= R ⊢ ? : A | c | ℓ | ⊙ S⃗ | if S then T1 else S2

Static predicate typing rules R ⊢ S : A

T-S-Const
c : τc

R ⊢ c : τc

T-S-Label
(ℓ : A) ∈R

R ⊢ ℓ : A

T-S-If
R ⊢ S : bool

R ⊢ T1 : A R ⊢ T2 : A

R ⊢ if S then T1 else T2 : A

T-S-Op
⊙ : A1× . . .×An→ A (R ⊢ Si : Ai)i∈1..n

R ⊢ ⊙
−→
S : A

T-S-Erased
R1 ⊆R2

R2 ⊢ (R1 ⊢ ? : A) : A

Quoted typing rules Γ ⊢ ê : τ

T-Q-Unquote
Γ ⊢ e : A

Γ ⊢ ⌊e⌋ : pred (· ⊢ ? : A)

T-Q-Insert
Γ ⊢ e : pred S

Γ ⊢@e : pred S

T-Q-Const

Γ ⊢ c : pred c

T-Q-Label

Γ ⊢ ℓ : pred ℓ

T-Q-If
Γ ⊢ ê : pred S

Γ ⊢ f̂1 : pred T1 Γ ⊢ f̂2 : pred T2

Γ ⊢ if ê then f̂1 else f̂2 : pred if S then T1 else T2

T-Q-Op
⊙ : A1× . . .×An→ A (Γ ⊢ êi : pred Si)i∈1..n

Γ ⊢ ⊙−→ê : pred ⊙−→S

Typing rules Γ ⊢ e : τ

T-H-Erase
R ⊢ S : A Γ ⊢ e : pred S

Γ ⊢ erase e : pred (R ⊢ ? : A)

T-H-Quote
Γ ⊢ ê : pred S

Γ ⊢ ⌈ê⌉ : pred S

Figure 4.7: Language extensions for hybrid predicates.

Chapter 4. Turning Abstract Sets into Concrete Predicates 112

e ⇓ v

E-H-Quote
ê ⇓ v

⌈ê⌉ ⇓ v

E-H-Erase
e ⇓ v

erase e ⇓ v

ê ⇓ v

E-Q-Unquote
e ⇓ c

⌊e⌋ ⇓ c

E-Q-Insert
e ⇓ P

@e ⇓ P

E-Q-Const

c ⇓ c

E-Q-Label

ℓ ⇓ ℓ

E-Q-Op
(êi ⇓ vi)i∈1..n

⊙
−→
ê ⇓ ⊙−→v

E-Q-If-Else
ê ⇓ v f̂1 ⇓ w1 f̂2 ⇓ w2

if ê then f̂1 else f̂2 ⇓ if v then w1 else w2

Figure 4.8: Hybrid predicate translation.

predicate constructor, and these are highlighted in red to differentiate from other
identically named constructors. Instead of the erase constructor, static predicate
information can include an unknown predicate R ⊢ ? : A, which specifies that
the unknown predicate types to A under the row R.

The program types τ include all basic types τ as well as an additional constructor
pred S. This type is used to designate a hybrid predicate with static predicate
information S.

All program terms that correspond to basic predicate constructors type to a
hybrid predicate term pred S, where S is identical to the same basic predicate
constructor. The typing rule T-H-Erase for a term erase e requires e to type to
a hybrid predicate pred S such that the typing judgement R ⊢ S : A is satisfied,
and yields the type pred (R ⊢ ? : A). The T-H-Quote typing rule yields the
same type as the provided quoted term.

The T-Q-Unquote term expects the unquoted term e to compute a value of
primitive type A and yields a predicate of type pred (· ⊢ ? : A), specifying that
it is an erased expression under the empty record yielding a value of type A. The
T-Q-Insert rule expects an unquoted term e to yield a predicate of type pred S

and the resulting type of an inserted predicate is also pred S.

Chapter 4. Turning Abstract Sets into Concrete Predicates 113

P :: S

C-Const

c :: c

C-Label

ℓ :: ℓ

C-If
P :: S Q1 :: T1 Q2 :: T2

if P then Q1 else Q2 :: if S then T1 else T2

C-Op
⊙ :: A1× . . .×An→ A (Pi :: Si)i∈1..n

⊙{
−→
P } ::⊙−→S

C-Erased
R ⊢ P : A

P :: (R ⊢ ? : A)

Figure 4.9: Predicate consistency relation.

Note that the typing rules themselves do not immediately require the predicate
itself to be well-typed. An ill-formed predicate such as 5 = true could be con-
structed as long as it is never used. Instead, the predicate is only checked when
used as an argument to erase · or as an argument to a lens.

Any closed and well-typed terms yielding a predicate type will produce basic
predicate expressions when evaluated. It is sufficient to show this for closed
predicate terms, as we assume a big-step evaluation strategy where terms are
substituted and evaluation always happens without any free variables.

Lemma 50 (Predicate preservation). If · ⊢ e : pred S and e ⇓ v, then v is a basic
predicate.

Proof. By induction on · ⊢ e : pred S.

Evaluation is also defined on static predicates S, using the same rules as defined in
Figure 4.1. Note that there is no evaluation rule for unknown predicates. Instead,
static predicate evaluation is only defined on predicates without any unknowns.

Consistency For any hybrid predicate term · ⊢ e : pred S, the static predicate
information S acts as a restriction on the predicate P that the term e computes.
To simplify the proofs needed, Figure 4.9 introduces a relation P :: S which spec-
ifies that the predicate P is consistent with the static predicate S. If S is any of
the basic predicate constructors, then P will be that same constructor. If S is an
erased predicate R ⊢ ? : A, then P has the type A under the type context R.

Chapter 4. Turning Abstract Sets into Concrete Predicates 114

If the static predicate S types to A under the context R, then any consistent
predicate P :: S will also type to A under the context R.

Lemma 51 (Consistent Typing). If R ⊢ S : A and P :: S then R ⊢ P : A.

Proof.
R ⊢ S : A assumption (1)

P :: S assumption (2)

Perform induction on (1) :

case: T-S-Erased

R1 ⊆R

R ⊢ (R1 ⊢ ? : A) : A
assumption

by inversion on (2):

R1 ⊢ P : A

P :: (R1 ⊢ ? : A)
C-Erased

R ⊢ P : A Lemma 35

For remaining cases see Appendix C.2.

It is also necessary to show that any predicate term e that constructs a predicate
of type pred S will evaluate to a consistent predicate P :: S. The proof for this
property makes use of Lemma 51.

Lemma 52 (Static predicate consistent). For any closed term e (or term ê) such
that · ⊢ e : pred S and R ⊢ S : A, if e ⇓ P then P :: S.

Proof.
e : pred S assumption

R ⊢ S : A assumption (1)

e ⇓ P assumption (2)

Perform induction on e : pred S :

case: T-H-Erase

R1 ⊢ T : A f : pred T

erase f : pred (R1 ⊢ ? : A)
assumption

Chapter 4. Turning Abstract Sets into Concrete Predicates 115

f ⇓ P

erase f ⇓ P
E-H-Erase (2)

P :: T IH

R1 ⊢ P : A Lemma 51

P :: (R1 ⊢ ? : A) C-Erased

For remaining cases see Appendix C.2.

For any consistent predicate P :: S, if the static predicate evaluates to some value
v given a row r, then the dynamic predicate equivalent will evaluate to the same
value v when given the same row r. This property is required to show correctness
of the default value checks.

Lemma 53. Given P :: S such that R ⊢ S : A as well as r : R. If S ⇓r v, then
P ⇓r v.

Proof. As S ⇓r v is defined, S does not contain any erased predicates. Given the
static predicate S does not contain any erased predicates, it must be identical
to the predicate P and thus must evaluate to the same value v, because static
predicates and basic predicates share the same evaluation rules.

4.4.3 Checking Hybrid Predicates

The reason for introducing hybrid predicates is the desire to perform the lossless
join decomposition and default value checks described in Section 4.2 on partially
known predicates. It is necessary to define these checks on static predicates, and
to then show that they imply these properties on the recovered basic predicates.

Lossless join decomposition Figure 4.10 shows how to adjust the definition for
the lossless join decomposition from Figure 4.2. The rules are unchanged apart
from the use of static predicates. It is important to note that the LJD†-1 and
LJD†-2 rules are well-defined on unknown predicates, as such predicates can still
be typed and this is the only requirement to check if a predicate is a lossless join
decomposition.

Using the lossless join decomposition on static predicate information, we can show
that any consistent basic predicate will also form a lossless join decomposition.

Chapter 4. Turning Abstract Sets into Concrete Predicates 116

LJD†[R1,R2](S)

LJD†-S-1
R1 ⊢ S : A

LJD†[R1,R2](S)

LJD†-S-2
R2 ⊢ S : A

LJD†[R1,R2](S)

LJD†-S-And
LJD†[R1,R2](S) LJD†[R1,R2](T)

LJD†[R1,R2](S∧T)

Figure 4.10: Lossless join decomposition inference rules for static predicates.

Lemma 54 (Hybrid Lossless Join Decomposition Consistent). If P :: S such that
LJD†[R1,R2](S), then LJD†[R1,R2](P).

Proof.
P :: S assumption (1)

LJD†[R1,R2](S) assumption

Perform induction on LJD†[R1,R2](S)

LJD†-S-1 and LJD†-S-2 follow from Lemma 51.

case: LJD†-S-And

LJD†[R1,R2](S1) LJD†[R1,R2](S2)

LJD†[R1,R2](S1∧S2)
assumption

by inversion on P :: S1∧S2

∧ : bool×bool→ bool P1 :: S1 P2 :: S2

P1∧P2 : S1∧S2
C-Op (1)

LJD†[R1,R2](P1) IH

LJD†[R1,R2](P2) IH

LJD†[R1,R2](P1∧P2) LJD†-And

Given any term · ⊢ e : S that evaluates to a consistent predicate P , if the lossless
join decomposition property applies to the static predicate S, then the predicate
P must also be a lossless join decomposition.

Chapter 4. Turning Abstract Sets into Concrete Predicates 117

Lemma 55 (Hybrid Lossless Join Decomposition Consistent). For any e : pred S

such that LJD†[R1,R2](S) and R ⊢ S : A, if e ⇓ P then LJD†[R1,R2](P).

Proof. Lemma 52 allows us to show predicate consistency P :: S. Using this
property, Lemma 54 can be used to show that the lossless join decomposition
property applies to the derived predicate.

Default value check Figure 4.11 adapts the default value check to static pred-
icates. The rules are identical to those on regular predicates in Figure 4.3. The
DV†-1 rule is well-defined on predicates that have erased sub-terms while DV†-2
is not, because predicate evaluation is not defined on dynamic predicates1.

DV†[R1,R2](S,r)

DV†-S-1
R1 ⊢ S : A

DV†[R1,R2](S,r)

DV†-S-2
R2 ⊢ S : bool

S ⇓r true

DV†[R1,R2](S,r)

DV†-S-And
DV†[R1,R2](S,r) DV†[R1,R2](T,r)

DV†[R1,R2]((S∧T), r)

Figure 4.11: Default value check for static predicates.

Just as with the lossless join decomposition check, we can show that the default
value check on static predicate information implies the default value check on the
underlying predicates.

Lemma 56. If for any P :: S such that DV†[R1,R2](S,r), then DV†[R1,R2](P,r).

Proof.
P :: S assumption (1)

DV†[R1,R2](S,r) assumption

Perform induction on DV†[R1,R2](S,r).

1If predicate evaluation supports short-circuit evaluation, then some predicates with un-
knowns would be supported if they still evaluate to true.

Chapter 4. Turning Abstract Sets into Concrete Predicates 118

DV†-S-1 follows from Lemma 51.

case: DV†-S-2

R2 ⊢ S : bool
S ⇓r true

DV†[R1,R2](S,r)
assumption

R2 ⊢ P : bool Lemma 51

P ⇓r true Lemma 53

DV†[R1,R2](P,r) DV†-2

case: DV†-S-And

DV†[R1,R2](S1, r) DV†[R1,R2](S2, r)

DV†[R1,R2]((S1∧S2), r)
assumption

by inversion on P :: (S1∧S2)

∧ : bool×bool→ bool P1 :: S1 P2 :: S2

P1∧P2 : S1∧S2
C-Op (1)

DV†[R1,R2](r,P1) IH

DV†[R1,R2](r,P2) IH

DV†[R1,R2](r,P1∧P2) DV†-And

Theorem 10. For any e : pred S such that DV†[R1,R2](S,r) and R ⊢ S : A, if
e ⇓ P then DV†[R1,R2](P,r).

Proof. Lemma 52 allows us to show predicate consistency P :: S. Using this
property, Lemma 56 can be used to show that the lossless join decomposition
property applies to the derived predicate.

4.5 Summary

This chapter focuses on relational lens predicates. Predicates are expressions
yielding a binary outcome for any given record. When defining a select lens, the
programmer is required to specify a predicate used to filter out records from the
resulting view. Predicates are also used in the lens refinement type, specifying
which records may appear in the view. The lens typing rules depend on the
predicates of the input lenses to determine if the lens can be safely constructed.

Chapter 4. Turning Abstract Sets into Concrete Predicates 119

Bohannon et al. [12] define relational lenses using abstract sets. This representa-
tion of sets is convenient for defining the checks required by the relational lenses
typing rules, but is insufficient for an implementation.

In this chapter, we first introduce a basic predicate syntax and show how it relates
to an equivalent abstract set. Basic predicates are trivially translatable into an
SQL where clause. We show how the lossless join decomposition, default value
and ignores checks can be performed on the basic predicate syntax. We provide
proof that the checks on basic predicates imply the corresponding property on
the equivalent set predicates. The predicate syntax is then extended to support
additional language features such as function abstractions and tuple types, by
adapting work from Cooper [25]. We show that in the use cases required by
predicates, all of these additional language features can be desugared completely.

Lastly, this chapter discusses the trade-offs between performing the introduced
predicate checks during compilation and the increased flexibility of deferring the
checks to run-time. Based on these observations we introduce hybrid predicates,
combining the advantages from both approaches. Hybrid predicates statically
track the structure of the underlying predicate constructed at runtime, but allow
portions of the predicate to be erased. The hybrid predicate retains the type in-
formation of the erased predicate, and allows the predicate checks to be performed
if sufficient static information is available. We show that if a hybrid predicate
satisfies the required checks, then the underlying dynamic predicate used by the
relational lens also must satisfy the equivalent checks on basic predicates.

To keep this chapter simple, it restricts its focuses to the predicates of relational
lenses. Chapter 5 applies the newly defined predicate checks to provide a complete
language integration, showing that the work on predicates in this chapter is suf-
ficient to provide a concrete predicates implementation. Chapter 6 demonstrates
how hybrid predicates are implemented in the Haskell library.

Chapter 5

Language Integrated Relational
Lenses

Relational lenses as defined by Bohannon et al. [12] construct a lens mapping
from one schema to another. Consider the introductory example from Section
1.1. The application takes the two tables albums and tracks and constructs a lens
that joins, filters and projects them. In the sequential style of Bohannon et al.’s
relational lenses, the lens is defined as follows:

join_dl albums with tracks as joined;

drop date determined by (track,2018) from joined as dropped;

selectquantity>2 from dropped as filtered

In each declaration such as join_dl albums with tracks as joined, the lens
expression consumes views in the schema (in this case albums and tracks), and
replaces them with the newly defined view (joined). The lenses are composed
using simple lens composition as defined in Section 2.2. The complete example
produces a lens of type Σ⊎{albums; tracks} ⇔ Σ⊎{filtered} for any database
schema Σ that does not contain albums, tracks, filtered, dropped or joined.

There are a few disadvantages of sequential relational lenses in the context of
a functional programming language. Sequential lenses introduce an additional
namespace for relation names, even though our language already has variable
binding for referring to other values. They also require us to provide names for
each intermediate lens, even though these names are internal and unobservable.

120

Chapter 5. Language Integrated Relational Lenses 121

Finally, sequential lenses map multiple views to multiple views. The use case
required by our programming language always assumes a fixed database schema
and we are generally only interested in a single output view, giving preference
to a simpler representation. If we are interested in the input view, function
abstractions that take a lens and produce a lens can be used.

These sequential lenses reference views in the schema by name. A more id-
iomatic way of constructing relational lenses for our purposes would be to use
sub-expressions in a functional language, such as Links or Haskell, yielding a lens
to the corresponding table. The same lens could be constructed as follows:

let joined = join_dl albums with tracks in

let dropped = drop date determined by (track,2018) from joined in

selectquantity>2 from dropped

In the example, the views are let bound to regular programming variables rather
than introducing a special namespace for views in the schema. Just as one would
expect with functional expressions, it also becomes possible to avoid naming
lenses at all. The definition of dropped and joined can be inlined into the select
lens expression:

selectquantity>2 from

(drop date determined by (track,2018) from

(join_dl albums with tracks))

In this section, we adapt the rules for constructing relational lenses by Bohannon
et al. [12] to the setting of a functional programming language. Our adaptation is
required to translate compositional to sequential relational lenses in the presence
of function abstractions. We show that in our formulation, well-typed lens ex-
pressions can be evaluated to lens values that can be translated to well-behaved
sequential lenses during runtime. Our language has total get and put operations,
preserves types during execution and also satisfies round-tripping guarantees pro-
vided by lenses.

This Section is outlined as follows:

1. Section 5.1 presents the sequential relational lens typing rules as defined by
Bohannon et al. [12].

Chapter 5. Language Integrated Relational Lenses 122

Set predicates M,N

Schemas Σ,∆
Sequential lenses I,J = id | I;J | selectM S as T | renameA/B S as T

| join_dl S1 S2 as T | joinM,N S1 S2 as T

| drop ℓ determined by (U,v) from S as T

Figure 5.1: Syntax of sequential relational lenses.

2. Section 5.2 introduces our language-integrated lens typing rules.

3. Section 5.3 briefly introduces the evaluation rules used by our language.

4. Section 5.4 presents a correct translation from a lens constructed in our
language into a sequential lens.

5. Section 5.5 shows that evaluation in our language preserves typing and that
round-tripping laws are satisfied.

6. Section 5.6 describes how relational lenses are integrated into the Links
programming language.

7. Section 5.7 summarizes this chapter.

5.1 Sequential Lenses

Before introducing our language-integrated lenses, we first recapitulate the lens
typing rules as defined by Bohannon et al. [12]. We let S,T range over relation
names; Σ,∆ range over schemas (i.e., sets of relation names); and I,J range over
sequential-style lenses. Sequential lenses represent predicates as sets, hence we
use M,N to refer to them. The sort of a relation S, written sort(S) = (U,M,F),
is a 3-tuple of the set of fields U in S; a set predicate M , and the set of functional
dependencies F . If sort(S) = (U,M,F), then dom(S) = U .

The constructors for sequential-style lenses are shown in Figure 5.1. These con-
structors are like the lens constructors shown in Section 2.3 except for the follow-
ing changes:

1. Each lens explicitly mentions which relations are removed from the schema
and added to the schema.

Chapter 5. Language Integrated Relational Lenses 123

2. Product lenses are not required, because lenses always map from a single
schema to a single schema.

The id lens defines the identity lens, mapping a schema to itself, and I;J composes
lenses I and J . The selectM S as T lens filters relation S using predicate set
M , naming the resulting relation T . The join_dl S1 S2 as T lens joins relations
S1 and S2 using the delete-left strategy, naming the resulting relation T . The
join template lens joinM,N S1 S2 as T supports arbitrary deletion semantics by
specifying the predicates M and N . The rename lens renameA/B S as T renames
the column A in the source view S to B in the resulting view T .

Finally, drop ℓ determined by (U,v) from S as T drops attribute ℓ determined
by attributes U with default value v from relation S as T in the output.

Typing Relational lenses are transformations Σ⇔∆, which consume some view
from Σ and introduce a new view in the output schema ∆. Any schema can only
have a single mapping for any table name. In a similar manner, the put direction
of a lens can only output a single view for any table name. For lenses that
combine multiple tables, such as the join lens, it is necessary to take caution that
any view is used at most once. Otherwise, the put operation would also produce
two variants of the same view which cannot be unified.

Figure 5.2 shows the typing rules. The sequential lens typing judgement has the
shape I ∈Σ⇔∆, meaning that I is a lens transforming the source schema Σ into
the view schema ∆. The use of schemas makes the rules slightly more restrictive
than those defined in Section 2. Each typing rule must ensure the schemas are
disjoint from the relation names handled by the lens.

In the case of the select lens, given a predicate set M , the typing rule enforces
the invariant that the source relation S has sort (U,N,F); that the functional
dependencies F are in tree form; that N ignores the outputs of F ; and assigns
the view T the sort (U,M ∩N,F).

The join lens typing rule requires both input tables to have functional depen-
dencies in tree form, and ensures that their predicates ignore the outputs of the
corresponding functional dependencies. The functional dependencies require the
domain of the right table to be transitively covered by the join columns. Any
record should either be in the deletion set Pd or Qd.

Chapter 5. Language Integrated Relational Lenses 124

Typing rules I ∈ Σ⇔∆

sort(S) = (U,N,F) sort(T) = (U,M ∩N,F)
F is in tree form N ignores outputs(F)

selectM S as T ∈ Σ⊎{S}⇔ Σ⊎{T}
T-Select-RL

sort(S1) = (U,M,F) sort(S2) = (V,N,G)
S1 ̸= S2 sort(T) = (UV,M ⋊⋉ N,F ∪G) G ⊨ U ∩V → V

F is in tree form G is in tree form
M ignores outputs(F) N ignores outputs(G)

join_dl S1 S2 as T ∈ Σ⊎{S1,S2}⇔ Σ⊎{T}
T-Join-DL-RL

sort(S1) = (U,M,F) sort(S2) = (V,N,G)
S1 ̸= S2 sort(T) = (UV,M ⋊⋉ N,F ∪G)

G ⊨ U ∩V → V Md∪Nd =⊤UV

F is in tree form G is in tree form
M ignores outputs(F) N ignores outputs(G)

joinMd,Nd
S1 S2 as T ∈ Σ⊎{S1,S2}⇔ Σ⊎{T}

T-Join-RL

sort(S) = (U,M,F) sort(T) = (U −A,M [U −A],G)
A ∈ U F ≡G∪X → A

M = M [U −A] ⋊⋉ M [A] {A = a} ∈M [A]

drop A determined by (X,a) from S as T ∈ Σ⊎{S}⇔ Σ⊎{T}
T-Drop-RL

U ∩{A,B}= ∅
sort(S) = (UA,M,F) sort(T) = (UB,ρA/B(M),F [A/B])

renameA/B S as T ∈ Σ⊎{S}⇔ Σ⊎{T}
T-Rename-RL

I ∈ Σ⇔ Σ′ J ∈ Σ′⇔∆

I;J ∈ Σ⇔∆
T-Compose-RL

id ∈ Σ⇔ Σ
T-Id-RL

Figure 5.2: Sequential typing rules for relational lenses.

Chapter 5. Language Integrated Relational Lenses 125

The drop lens removes references to the column from the record type, the func-
tional dependencies as well as the predicate. The lens requires the predicate to
satisfy the lossless join decomposition and default value checks. It also ensures
the functional dependencies require the dropped column to be defined by the key
provided by the user.

The rename lens ensures that the new column name is not already used in the
record type. It renames all references from the old column name to the new
column name in the record type, functional dependencies and predicate.

5.2 Lens Types

We now introduce the rules we use to type check relational lenses. These rules
are adapted from the rules as defined by Bohannon et al. [12] to support nested
composition and to make use of our concrete predicate syntax. We define a simply
typed lambda calculus, along with records and sets and extend it with relational
lenses.

Figure 5.3 shows the types and terms for our language. A type τ can be a
constant type A, a function type τ1 → τ2, a set of another type {τ}, a record
type

(−−→
ℓ : τ

)
or a lens type. We sometimes use R as a placeholder for a record

type. The type of lenses, lens of (Σ,R,P,F), consists of four components: the
set of underlying tables Σ; the base record type R; a restriction predicate P ;
and a set of functional dependencies F . Predicates P,Q are basic predicates as
defined in Chapter 4. The base record type describes the type of rows which can
be retrieved or committed to the view, and the restriction predicate describes the
subset of records on which the lens operates.

The languages terms (e and f) can either be a constant value c, a variable x,
a function abstraction λx. e, function application e f , constant sets {−→e }, or
constant records

(−−→
ℓ = e

)
, any of the lens constructors, a get operation or a put

operation. Both constants and lambda expressions, as well as lens constructors
that only refer to other values, are values. In practice, a language would likely
want to include additional terms for record projection and additional set opera-
tions. As we are mainly interested in the translation of lenses, we exclude them
to keep our language simple.

Chapter 5. Language Integrated Relational Lenses 126

Table names S,T

Record Types R ::=
(−−→
ℓ : τ

)
Types τ ::= A | τ1→ τ2 | {τ} | R | lens of (Σ,R,P,F)
Terms e,f ::= c | x | λx. e | e f | {−→e } | (−−→ℓ = e)

| lens S of R with F

| selectP from e

| join_dl e with f

| joinf e1 with e2

| drop ℓ determined by (U,v) from e

| renameℓ/ℓ′ from e

| get e | put e with f

Values v,w ::= c | (−−−→ℓ = v) | {−→v } | λx. e

| lens S of R with F

| selectP from v

| join_dl v with w

| joinw v1 with v2

| drop ℓ determined by (U,v) from w

| renameℓ/ℓ′ from v

Figure 5.3: Syntax of types and terms for tables and lenses

Chapter 5. Language Integrated Relational Lenses 127

c is of type A

Γ ⊢ c :A
T-Const

(x = τ) ∈ Γ

Γ ⊢ x :τ
T-Var

Γ ⊢ e :τ1→ τ2 Γ ⊢ f :τ1

Γ ⊢ e f :τ2
T-App

Γ←+(x = τ1) ⊢ e :τ2

Γ ⊢ λx. e :τ1→ τ2
T-Abs

(Γ ⊢ ei :τi)i∈1...n

Γ ⊢
(−−→
ℓ = e

)
:

(−−→
ℓ : τ

) T-Record
(Γ ⊢ ei :τ)i∈1...n

Γ ⊢ {−→e } :{τ}
T-Const-Set

Figure 5.4: Typing rules.

We now present the typing judgements Γ ⊢ e :τ for our relational lenses language.
The typing judgement indicates that the term e types to τ under the context Γ.
We assume that the typing context Γ is a record from labels to types. An implicit
and global database schema φ is assumed in all the typing rules. The database
schema maps relation names S to relation types Rel(R,P,F). We assume that
any database context φ is an instance of the schema S, meaning that for any
S = Rel(R,P,F) in Φ the database context φ must include a relation S = M such
that M : Rel(R,P,F). Figure 5.4 presents the typing rules for constants, variables
function abstractions, sets and records.

In the remainder of the section, we describe each lens combinator and its typing
rule in turn.

5.2.1 Lens Primitive

The rule T-Lens is used to create an identity lens referring to an actual table
on the database. The programmer specifies the name of the table S which is
recorded in the type of the lens. A lens primitive is assigned the default predicate
constraint true. All columns referred to by a set of functional dependencies F ,
written names(F), should be part of the table record type R.

T-Lens
(S = Rel(R,true,F)) ∈ Φ

⋃
names(F)⊆ dom(R)

Γ ⊢ lens S of R with F : lens of ({S},R,true,F)

Chapter 5. Language Integrated Relational Lenses 128

We require a relation with the same type to be in the implicit database schema. In
practice the implementation trusts that the database contains a table matching
the above constraints. This condition is difficult to enforce statically, because
the database may be changed after the program is compiled or even during the
execution of the program. A good alternative is for the application to perform a
check at runtime instead.

5.2.2 Select Lens

The select lens takes a predicate Q and filters out records from the view that
don’t satisfy this predicate.

Section 4.2.4 discusses the ignores constraint. To prevent invalid combination of
lenses, the select lens needs to ensure that the underlying lens has no predicate
constraints on any fields which may be changed by functional dependencies. The
columns affected by functional dependencies F are all the columns outputs(F).
It is sufficient to show that the predicate does not refer to any of these columns.
Formally, the select lens requires proof that P ignores outputs(F). Lemma 45
shows the property can be derived by showing R′ ⊢ P : bool, where R′ is equal
to R without the columns outputs(F).

The T-Select rule also needs to ensure that the resulting lens only accepts
records that satisfy the given predicate Q as well as any existing constraints P

that already apply to the underlying lens. The resulting lens constraint predicate
can thus be defined as P ∧Q. The full select lens typing rule is:

T-Select
Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)

5.2.3 Join Lens

The join lens performs the natural join of two underlying views. A join lens
has limitations on the functional dependencies of the underlying tables. Let us
assume that there is another table reviews which contains album reviews by users.
The table has the functional dependency user album -> review1.

1This example does not satisfy functional dependency tree form. Even if it instead only had
the functional dependencies user -> review, the same problem would occur.

Chapter 5. Language Integrated Relational Lenses 129

user review album

musicfan 4 Galore
90sclassics 5 Galore

thecure 5 Paris

The reviews table is joined with the tracks table to produce the lens l1. Suppose
the user tries to delete the first “90sclassics” record:

user review track date rating album

musicfan 4 Lullaby 1989 3 Galore
musicfan 4 Lovesong 1989 5 Galore

90sclassics 5 Lullaby 1989 3 Galore
90sclassics 5 Lovesong 1989 5 Galore

thecure 5 Lovesong 1989 5 Paris

In this case, there is no way to define a correct behaviour for put. If the user’s
review is deleted then the other entry by the same user would also be removed
from the joined table. If the track is deleted, then the entry from the other user
for the same track would also be removed.

The issue is resolved by requiring that one of the tables is completely determined
by the join key. The added functional dependency restriction ensures that each
entry in the resulting view is associated with exactly one entry in the left table.
In this case, if the reviews table contained a single review per track, it would be
possible to delete any individual record by only deleting the entry in the reviews
table. In practice, we need to show that we can derive the functional dependency
U ∩V → V , where U ∩V are the join columns and V is the set of columns of
the right table. We can check if this functional dependency can be derived by
calculating the transitive closure of U ∩V and then checking if V is a subset.

Join lenses come in different variants with varying deletion behaviours: a variant
that always deletes the entry from the left table, a variant that tries to delete from
the right table and otherwise deletes from the left table, and a variant that deletes
the entries from both tables if possible. We first look at the delete left variant.
The rule T-Join-Left requires us to also show that P ignores outputs(F) and
Q ignores outputs(G). The resulting lens should have the predicate P ∧Q since
the record constraints of both input lenses apply to the output lens.

Chapter 5. Language Integrated Relational Lenses 130

T-Join-Left
Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f : lens of (∆,R′,Q,G)

G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ join_dl e with f : lens of (Σ∪∆,R∪R′,P ∧Q,F ∪G)

Join Template Lens The join template lens can be used to specify the deletion
behaviour. The lens requires the programmer to specify two predicates, Pd and
Qd where Pd is a predicate which determines if the predicate should be deleted
from the left table and Qd specifies if the record should be deleted from the right
table.

An important side condition of the predicates Pd and Qd is that any record must
either be in Pd or Qd. If this condition is not met, the lens cannot be well-behaved.

A nicer approach than requiring the predicates to fulfil these side-conditions is
to use a method that is correct by construction. Such a method could be for the
programmer to specify a total function λd : R→ (↖ | ↑ |↗), where (↖ | ↑ |↗) is
a variant type that can either be ↖, ↑ or ↗.

The predicate sets Pd and Qd are derived from the deletion function λd.

Definition 28. Given a deletion function λd : R→ (↖| ↑ |↗), define the deletion
functions Pd and Qd as:

Pd = {r | r ∈R,λd r =↖ or λd r = ↑}

Qd = {r | r ∈R,λd r = ↑ or λd r =↗}

Lemma 57. Given a deletion function λd : R→ (↖ | ↑ |↗), for any record r : R

either r ∈ Pd or r ∈Qd and therefore Pd∪Qd =⊤dom(R).

Proof.
λd : R→ (↖ | ↑ | ↗) suppose λd

r : R suppose r

first show ∀r : R. r ∈ Pd or r ∈Qd by destruction on λd r λd total (1)

case λd r =↖

Chapter 5. Language Integrated Relational Lenses 131

r ∈ Pd def. Pd

case λd r = ↑

r ∈ Pd def. Pd

case λd r =↗

r ∈Qd def. Qd

P1∪Q2

= {r | r ∈ Pd}∪{r | r ∈Qd} def. set

= {r | r ∈ Pd or r ∈Qd} def. ∪

= {r | r : R} (1)

=⊤R def. ⊤

The typing rule for the template join lens includes an additional premise Γ ⊢
f :R→ (↖ | ↑ | ↗), where f represents the deletion predicate λd.

T-Join-Template
Γ ⊢ e1 : lens of (Σ,R,P,F)

Γ ⊢ e2 : lens of (∆,R′,Q,G) Γ ⊢ f :R∪R′→ (↖ | ↑ | ↗)
G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form

P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ joinf e1 with e2 : lens of (Σ∪∆,R∪R′,P ∧Q,F ∪G)

The derived join lenses can be defined using syntactic sugar of the join template
lens. For each of the three cases it is easy to show that the λd function terms
λx. ↖, λx. ↗ and λx. ↑ are total functions of type R→ (↖ | ↑ |↗). We use the
following definitions:

join_dl e with f = join(λx. ↖) e with f

join_dr e with f = join(λx. ↗) e with f

join_db e with f = join(λx. ↑) e with f

5.2.4 Drop Lens

The drop lens allows a more fine-grained notion of relational projection, removing
a column from a view. Note that this is not to be confused with the SQL DROP

Chapter 5. Language Integrated Relational Lenses 132

statement, which deletes a table. We use the drop term to remain consistent with
Bohannon et al. [12].

The term drop ℓ determined by (U,v) from e constructs a lens which removes
column ℓ from view e, given that the functional dependencies of the view ensure
that ℓ is determined by the columns U . The typing rule for the drop lens is as
follows:

T-Drop
F ≡G∪{U → ℓ} Γ ⊢ e : lens of (Σ,R⊕ (ℓ′ : A),P,F)

U ⊆ dom(R) · ⊢ v :A
LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

Γ ⊢ drop ℓ determined by (U,v) from e : lens of (Σ,R,JP KR1,R2 ,G)

The clause F ≡ G∪{U → ℓ} checks that the functional dependencies of the
underlying lens e imply that U does indeed determine ℓ; that U is contained in
the domain of the record type R of underlying lens e; that v has the same type
as the dropped field; that R and (ℓ : A) define a lossless join decomposition with
respect to the lens predicate; and finally that v is a suitable default value with
respect to the predicate.

The resulting type lens of (Σ,R,JP KR1,R2 ,G) contains the updated record type
without the dropped column, and the updated predicate with the default variable
in place of all references to the dropped column.

5.2.5 Rename Lens

The rename lens changes the name of column ℓ to ℓ′ in the output view. The
typing rule requires the provided lens to contain a column ℓ : A, and replaces it
with the column ℓ′ : A in the resulting type. The provided lens may not contain
an existing column ℓ′. All references to the column ℓ in the predicate P and
functional dependencies F are replaced with ℓ′ using substitution. The substitu-
tion [ℓ/ℓ′], defined on both predicates and functional dependencies, replaces all
occurrences of ℓ with ℓ′. The semantics of substitution is straightforward and is
not further described.

Chapter 5. Language Integrated Relational Lenses 133

T-Rename
Γ ⊢ e : lens of (Σ,R⊕ (ℓ : A),P,F)

Γ ⊢ renameℓ/ℓ′ from e : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

5.2.6 Lens Functions

Lens Get Finally, we define typing rules for making use of relational lenses.
Since the target language is not dependently typed, we discard the constraints
which apply to the view, and specify that calling get returns a set of records
which all have the type R.

T-Get
Γ ⊢ e : lens of (Σ,R,P,F)

Γ ⊢ get e :{R}

Lens Put Just as with T-Get, we have no way of statically ensuring that the
input satisfies P and F , so we only statically check that the updated view is a
set of records matching type R, deferring to runtime the checks to ensure that
the set of records satisfies F and P .

To ensure that the constraint P applies to each record r in a view, runtime
checks ensure that sat(P,r). Functional dependency constraints can be checked by
projecting the set of records down to each functional dependency and determining
if any two records violate a functional dependency.

The result of calling put indicates whether the input view computed by f satisfies
the constraints P and F and hence the database could be updated.

T-Put
Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e with f :bool

5.3 Evaluation Rules

Figure 5.5 introduces the big-step evaluation rules of our sequential lenses. The
evaluation rule e,φ ⇓ v,γ evaluates the term e given a database state φ and
yields the value v, while changing the database state to γ. We assume the rules

Chapter 5. Language Integrated Relational Lenses 134

E-Value

v,φ ⇓ v,φ

E-App
e,φ ⇓ λx. e1,φ1 f,φ1 ⇓ v,φ2 e1[v/x],φ2 ⇓ w,γ

e f,φ ⇓ w,γ

E-Record
(ei,φi ⇓ vi,φi+1)i∈1...n(−−→

ℓ = e
)

,φ1 ⇓
(−−−→
ℓ = v

)
,φn+1

E-Const-Set
(ei,φi ⇓ vi,φi+1)i∈1...n

−→w = set of v

{−→e },φ1 ⇓ {−→w },φn+1

E-Lens-Select
e,φ ⇓ v,γ

selectP from e,φ ⇓ selectP from v,γ

E-Join
e1,φ ⇓ v1,φ1 e2,φ1 ⇓ v2,φ2 f,φ2 ⇓ w,γ

joinf e1 with e2,φ ⇓ joinw v1 with v2,γ

E-Drop
e,φ ⇓ w,γ

drop ℓ determined by (U,v) from e,φ ⇓ drop ℓ determined by (U,v) from w,γ

E-Rename
e,φ ⇓ v,γ

renameℓ/ℓ′ from e,φ ⇓ renameℓ/ℓ′ from v,γ

E-Get
e,φ ⇓ v,γ w = getv(γ)

get e,φ ⇓ w,γ

E-Put-Sat
e,φ ⇓ v,φ1 f,φ1 ⇓ w,φ2 v : lens of (Σ,S,P,F)

w |= F ∀r ∈ w. sat(P,r)
γ = putφ2,v(w)

put e with f,φ ⇓ true,γ

E-Put-Unsat
e,φ ⇓ v,φ1 f,φ ⇓ w,γ v : lens of (Σ,S,P,F)

w ⊭ F or ∃r ∈ w. ¬sat(P,r)

put e with f,φ ⇓ false,γ

Figure 5.5: Lens evaluation rules.

Chapter 5. Language Integrated Relational Lenses 135

E-Value and E-App, which are standard big-step evaluation rules. The E-
Record rule evaluates all the subterms and constructs the corresponding record.
E-Const-Set evaluates all the arguments and constructs a set from them. The
primitive lens is always a value, and therefore covered by the E-Value rule. The
join, drop, select and rename lenses all require the subterms to be evaluated first
and the resulting values inserted into the lens constructor. As the join variants
are definable as syntactic sugar, the join lens variants are all handled by the
E-Join rule.

In the E-Get rule, we assume that getv(φ) queries the database server and
returns the resulting view. The put term has two evaluation outcomes. If the
input view satisfies the functional dependency and predicate constraints, then
the E-Put-Sat rule returns the new database state γ = putv(φ2,w), where φ2 is
the database state after evaluating all the subterms. The E-Put-Sat rule then
yields the value true, indicating that the operation was successful. If the view
does not satisfy the predicate and functional dependency constraints, then the
E-Put-Unsat rule applies, which returns false indicating the operation failed.

5.4 Translation

Bohannon et al. [12] prove that lenses satisfying correctness conditions are well-
behaved (i.e., satisfy GetPut and PutGet, and therefore safely compose).
Their typing rules are not in a form amenable to implementation, since predicates
are defined as abstract sets; lenses are composed using a sequential composition
operator as defined in Section 2.2 rather than allowing arbitrarily-nested lenses as
one would in a functional language; and there is no distinction between a relation
and a lens on a relation.

Nevertheless, we must show that our typing rules also guarantee well-behavedness.
Our approach is to define a type-preserving translation from our functional-style
lenses into the sequential-style lenses defined by Bohannon et al. [12].

Figure 5.6 shows the translation from functional lenses to sequential-style lenses.
The process involves flattening functional lenses by introducing intermediate re-
lations with fresh table names. The translation function LvM = Σ/I/S states that
functional lens value v depends on tables Σ, translates to sequential lens I, and
produces a view with name S.

Chapter 5. Language Integrated Relational Lenses 136

Flattening translation LvM = Σ/I/S

Llens S of R with F M = {S}/id/S

LselectP from vM =
Σ/I;selectset(P,dom(S)) S as T/T

where LvM = Σ/I/S and T is globally unique
Ljoin_dl v with wM =

Σ⊎∆/I;J ;join_dl S1 S2 as T/T

where LvM = Σ/I/S1,LwM = ∆/J/S2 and T is globally unique
Ldrop ℓ determined by (V,v) from wM =

Σ/I;drop ℓ determined by (V,v) from S as T/T

where LwM = Σ/I/S

Figure 5.6: Sequential-style lenses [12] and flattening

We would like to show that any well-typed closed lens value v translates to a
well-behaved sequential lens expression I. We require that any lens expression
v such that · ⊢ v : lens of (Σ,R,P,F) and LvM = ∆/I/{T}, then Σ = ∆, I ∈ Σ⇔
{T} and sort(T) = (R,P,F). We first show this property holds true for all lens
constructors. The properties that should be satisfied are also the invariants we
use for each sub-term.

Lemma 58 (Sequential Lens Weakening). Given Σ and ∆ which are disjoint
from Σ′. If I ∈ Σ⇔∆, and all intermediate views in I are globally unique, then
I ∈ Σ⊎Σ′⇔∆⊎Σ′.

Proof. For select, join and projection lenses of type Σ⇔∆ the typing rules allows
us to extend both schemas in the lens type with additional relation names as long
as they are disjoint from Σ and ∆. If the lens I is a sequential composition of
two lenses of types Σ⇔∆′ and ∆′⇔∆, then the global uniqueness conditions
ensures that ∆′ is disjoint from Σ′. We apply the induction hypothesis to both
lenses, and then use the sequential composition rule.

Primitive Lens

Sequential relational lenses are not actually able to introduce completely new
views in the schema. Instead they assume that underlying tables exist, and so

Chapter 5. Language Integrated Relational Lenses 137

the primitive lens for a table S is actually just translated into an identity lens,
while asserting that the table S exists in the schema.

Lemma 59. Suppose · ⊢ lens S of R with F : lens of (Σ,R,true,F). Then
Llens S of R with F M = {S}/id/S, id ∈ {S} ⇔ {S} and sort(S) =
(dom(R),set(true,R),F).

Proof.
T-Lens-Prim
(S = Rel(R,true,F)) ∈ Φ

⋃
names(F)⊆ dom(R)

Γ ⊢ lens S of R with F : lens of ({S},R,true,F)
assumption

sort(S) = (dom(R),set(true,R),F) define

I = id ∈ {S}⇔ {S} T-Id-RL

Llens e with F M = {S}/I/S

Select Lens

The select lens filters out records that do not match a user supplied predicate.
Rather than taking an abstract predicate, the select lens in our language must
take a concrete predicate. We assume a predicate in the basic predicate syntax
introduced in Section 4.1.

The select lens translates into a lens composition I;J , where J is a select lens and
I is the lens computed from the expression e. The select lens typing rule requires
us to relate the logical and-operator with set intersection on set predicates, which
has been covered in Section 4.2.1. It is also necessary to show that the ignores
constraint on the concrete predicate implies the ignores constraint on the abstract
set, which is covered in Section 4.2.4.

Lemma 60. Suppose · ⊢ v : lens of (Σ,R,P,F), · ⊢ selectQ from v :
lens of (Σ,R,P ∧Q,F) and LvM = Σ/I/S such that I ∈ Σ⇔ {S} and sort(S) =
(dom(R),set(P,R),F). Then LselectQ from vM = Σ/I ′/T such that I ′ ∈ Σ⇔
{T} and sort(T) = (dom(R),set(P ∧Q,R),F).

Chapter 5. Language Integrated Relational Lenses 138

Proof.
· ⊢ v : lens of (Σ,R,P,F) R ⊢Q :bool

F is in tree form P ignores outputs(F)

· ⊢ selectQ from v : lens of (Σ,R,P ∧Q,F)
assumption (1)

LvM = Σ/I/S assumption (2)

I ∈ Σ⇔{S} assumption (3)

sort(S) = (dom(R),set(P,R),F) assumption (4)

sort(T) = (dom(R),set(P ∧Q,R),F) define (5)

= (dom(R),set(P,R)∩ set(Q,R),F) Lemma 38 (6)

set(Q,R) ignores outputs(F) Set-Ignores (1) (7)

J = select from S where set(Q,R) as T

∈ {S}⇔ {T} T-Select-RL (4,6,7) (8)

LselectQ from vM = Σ/I;J/T def. L·M

I;J ∈ Σ⇔{T} T-Compose-RL (3,8)

Join Lens

The join lens performs a natural join between the two input views. The template
join lens allows the programmer to specify a function f : R→ (↖ | ↑ | ↗) that
determines which table to delete any record r such that r : R from, if deleting the
record from either table would correctly propagate the changes. The delete left,
delete right and delete both join table variants can be derived from the template
join using the corresponding deletion function.

We show that our join lens can derive a correct sequential style relational lens.
The corresponding sequential lens is computed by first composing the translation
of the two input lens expressions e1 and e2, and then composing a join lens on top
of that. We rely on Lemma 57 to show that the equivalent deletion predicates
Pd and Qd satisfy the requirements necessary. As with the select lens, work in
Section 4.2.4 shows that the ignores requirement on the predicate set constraints
of each lens can be derived from the ignores constraint on basic predicate.

Lemma 61. Suppose · ⊢ v1 : lens of (Σ,R,P,F), · ⊢ v2 : lens of (∆,R′,Q,G),
· ⊢ joinf v1 with v2 : lens of (Σ⊎∆,R∪R′,P ∩Q,F ∪G) and Lv1M = Σ/I1/S1

Chapter 5. Language Integrated Relational Lenses 139

and Lv2M = ∆/I2/S2 such that I1 ∈ Σ ⇔ {S1}, sort(S1) =
(dom(R),set(P,R),F) and I2 ∈ ∆⇔ {S2}, sort(S2) = (dom(R′),set(Q,R′),G).
Then Ljoinw v1 with v2M = Σ⊎∆/I/T such that I ∈Σ⊎∆⇔{T} and sort(T) =
(dom(R⊕R′),set(P ∩Q,R⊕R′),F ∪G).

Proof.
T-Join-Template
· ⊢ v1 : lens of (Σ,R,P,F) · ⊢ v2 : lens of (∆,R′,Q,G) · ⊢ w :R→ (↖ | ↑ | ↗)

G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

· ⊢ joinw v1 with v2 : lens of (Σ∪∆,R∪R′,P ∩Q,F ∪G)

assumption (1)

Lv1M = Σ/I1/S1 assumption

Lv2M = Σ/I2/S2 assumption

I1 ∈ Σ⇔{S1} assumption

I2 ∈∆⇔{S2} assumption

sort(S1) = (dom(R),set(P,R),F) assumption (2)

sort(S2) = (dom(R′),set(Q,R′),G) assumption (3)

Pd = {r | r ∈R,λd r =↖ or λd r = ↑} define

Qd = {r | r ∈R,λd r = ↑ or λd r =↗} define

Pd∪Qd =⊤dom(R⊕R′) Lemma 57 (4)

I1 ∈ Σ⊎∆⇔{S1}⊎∆ weakening∗ (5)

I2 ∈ {S1}⊎∆⇔{S1,S2} weakening∗ (6)

I1;I2 ∈ Σ⊎∆⇔{S1,S2} T-Compose-RL
∗ all intermediate views are globally unique due to def. of L·M.

sort(T)

= (dom(R⊕R′),set(P ∧Q,R⊕R′),F ∪G) define (7)

= (dom(R)∪dom(R′),set(P,R) ⋊⋉ set(Q,R′),F ∪G) Lemma 39 (8)

set(P,R) ignores outputs(F) Set-Ignores (1) (9)

set(Q,R′) ignores outputs(G) Set-Ignores (1) (10)

T-Join-RL

J = joinPd,Qd
S1 S2 as T ∈ {S1,S2}⇔ {T} (2, 3, 4, 8, 1 9, 10)

Ljoinw v1 with v2M = Σ⊎∆/I1;I2;J/T def. L·M

Chapter 5. Language Integrated Relational Lenses 140

I1;I2;J ∈ Σ⊎∆⇔{T} T-Compose-RL

Drop Lens

The drop lens projects away some columns from the view. The drop lens must
show that it is safe to remove the portion of the predicate that refers to the
dropped columns, as well as that the default value to be used for the dropped
columns satisfies those dropped portions of the predicate. These restrictions,
known as the lossless join decomposition and default value checks, are performed
on the basic predicate constraint of the underlying lens refinement type.

Based on the work in Section 4.2 we can show that performing these checks on
basic predicates implies that the equivalent set predicates satisfy these conditions
as well. Just as with the select lens, the drop lens translates into a composition
of the translated underlying lens and a sequential drop lens.

Lemma 62. Suppose · ⊢ w : lens of (Σ,R,P,F) as well as
· ⊢drop ℓ determined by (U,v) from w : lens of(Σ,R′,Q,G) and LwM = Σ/I/S

such that I ∈ Σ ⇔ {S} and sort(S) = (dom(R),set(P,R),F). Then
Ldrop ℓ determined by (U,v) from wM = Σ/J/T such that J ∈ Σ⇔ {T} and
sort(T) = (dom(R′),set(Q,R),G).

Proof.
T-Drop

F ≡G∪{U → ℓ} w ⊢ lens of (Σ,R⊕ (ℓ : A),P,F) :
U ⊆ dom(R) · ⊢ v :A

LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

· ⊢ drop ℓ determined by (U,v) from w : lens of (Σ,R,JP KR1,R2 ,G)
assumption (1)

LwM = Σ/I/S assumption (2)

I ∈ Σ⇔{S} assumption (3)

sort(S) = (dom(R⊕ (ℓ : A)),set(P,R⊕ (ℓ : A)),F) assumption

= (dom(R)∪{ℓ},set(P,R⊕ (ℓ : A)),F) assumption (4)

set(P,R⊕ (ℓ : A))

= set(P,R⊕ (ℓ : A))[dom(R)] ⋊⋉ set(P,R⊕ (ℓ : A))[ℓ] Lemma 40 (5)

(ℓ = v) ∈ set(P [ℓ′],R) Lemma 42 (6)

Chapter 5. Language Integrated Relational Lenses 141

sort(T) = (dom(R),set(JP KR,(ℓ:A),R),G) define

= (dom(R),set(P,R⊕ (ℓ : A))[dom(R)],G) Lemma 49 (7)

* for the special case where set(P,R⊕ (ℓ : A)) = ∅ see Appendix D.3

{ℓ} ∈ dom(R)∪{ℓ} trivial (8)

J = drop ℓ determined by (U,v) from S as T

∈ {S}⇔ {T} T-Drop-RL(4,8,1,7,5,6) (9)

w′ = drop ℓ determined by (U,v) from w define

Ldrop ℓ determined by (U,v) from wM = Σ/I;J/T (2); def. L·M

I;J ∈ Σ⇔{T} T-Compose-RL (3,9)

Rename Lens

The rename lens requires us to first relate renaming in functional predicates to
the rename operator on predicate sets.

Lemma 63. Given R disjoint from {ℓ,ℓ′} and R⊕ (ℓ : A) ⊢ P :bool then

set(P [ℓ/ℓ′],R⊕ (ℓ′ : A)) = ρℓ/ℓ′(set(P,R⊕ (ℓ : A))).

Proof.
R disjoint from {ℓ,ℓ′} assumption (1)

R⊕ ℓ : A ⊢ P :bool assumption (2)

set(P [ℓ/ℓ′],R⊕ (ℓ′ : A))

= {r ∈ inh(R⊕ (ℓ′ : A)) | sat(P [ℓ/ℓ′], r)} def. set(·, ·)

= {r[ℓ/ℓ′] ∈ inh(R⊕ (ℓ : A)) | sat(P [ℓ/ℓ′], r[ℓ/ℓ′])} (1); def. inh(·)

= {r[ℓ/ℓ′] ∈ inh(R⊕ (ℓ : A)) | sat(P,r)} (1, 2)

= ρℓ/ℓ′({r ∈ inh(R⊕ (ℓ : A)) | sat(P,r)}) def. ρ·(·)

= ρℓ/ℓ′(set(P,R⊕ (ℓ : A))) def. set(·, ·)

Chapter 5. Language Integrated Relational Lenses 142

Lemma 64. Suppose · ⊢ v : lens of (Σ,R,P,F), · ⊢ renameℓ/ℓ′ from v :
lens of (Σ,R′,Q,G) and LvM = Σ/I/S such that I ∈ Σ ⇔ {S} and sort(S) =
(dom(R),set(P,R),F). Then Lrenameℓ/ℓ′ from vM = Σ/J/T such that J ∈Σ⇔
{T} and sort(T) = (dom(R′),set(Q,R′),G).

Proof.
R1 = R⊕ (ℓ : A) define (1)

R2 = R⊕ (ℓ′ : A) define (2)

· ⊢ v : lens of (Σ,R1,P,F)

· ⊢ renameℓ/ℓ′ from v : lens of (Σ,R2,P [ℓ/ℓ′],F [ℓ/ℓ′])
assumption (3)

LvM = Σ/I/S assumption (4)

I ∈ Σ⇔{S} assumption

sort(S) = (dom(R1),set(P,R1),F) assumption

= (dom(R)∪{ℓ},set(P,R1),F) def. R1 (5)

sort(T) = (dom(R2),set(P [ℓ/ℓ′],R2),F [ℓ/ℓ′]) define

= (dom(R)∪{ℓ′},ρℓ/ℓ′(set(P,R1)),F [ℓ/ℓ′]) (6)

dom(R)∩{ℓ,ℓ′}= ∅ (1, 2); def. ⊕ (7)

J = renameℓ/ℓ′ S as T ∈ {S}⇔ {T} T-Rename-RL (7, 5, 6)

Lrenameℓ/ℓ′ from vM = Σ/I;J/T (4); def. L·M

I;J ∈ Σ⇔{T} T-Compose-RL

Soundness of Lenses

We can now state our soundness theorem, stating that once translated, lenses
typeable in our system are typeable using the original rules proposed by Bohannon
et al. [12]. All of the above Lemmas are then be combined to show that any well-
typed lens expression always produces a well-typed lens.

Theorem 11 (Soundness of Translation).
If · ⊢ v : lens of (Σ,R,P,F) then LvM = Σ/I/T , I ∈ Σ ⇔ {T} and sort(T)
= (dom(R),set(P,R),F).

Proof.
· ⊢ v : lens of (Σ,R,P,F) assumption

Chapter 5. Language Integrated Relational Lenses 143

Perform induction on · ⊢ v : lens of (Σ,R,P,F)

· ⊢ lens S of R with F : lens of ({S},R,true,F) assumption (1)

Llens S of R with F M = {S}/I/S Lemma 59 (1)

I ∈ {S}⇔ {S} Lemma 59 (1)

sort(S) = (dom(R),set(P,R),F) Lemma 59 (1)

· ⊢ selectQ from w : lens of (Σ,R,P ∧Q,F) assumption

· ⊢ w : lens of (Σ,R,P,F) T-Select (2)

LselectQ from wM = Σ/I/S by induction

I ∈ Σ⇔{S} by induction (3)

sort(S) = (dom(R),set(P,R),F) by induction (4)

LvM = Σ/J/T Lemma 60 (2, 3, 4)

J ∈ Σ⇔{T} Lemma 60 (2, 3, 4)

sort(T) = (dom(R),set(P ∧Q,R),F) Lemma 60 (2, 3, 4)

· ⊢ joinw v1 with v2 : lens of (Σ⊎∆,R∪R′,P ∧Q,F ∪G) assumption

· ⊢ v1 : lens of (Σ,R,P,F) T-Join (5)

· ⊢ v2 : lens of (∆,R′,Q,G) T-Join (6)

Lv1M = Σ/I1/S1 by induction

I1 ∈ Σ⇔ S1 by induction (7)

sort(S1) = (dom(R),set(P,R),F) by induction (8)

Lv2M = ∆/I2/{S2} by induction

I2 ∈∆⇔{S2} by induction (9)

sort(S2) = (dom(R′),set(Q,R′),G) by induction (10)

Ljoinw v1 with v2M = Σ⊎∆/J/T Lemma 61 (5, 6, 7, 8, 9, 10)

J ∈ Σ⊎∆⇔{T} Lemma 61 (5, 6, 7, 8, 9, 10)

sort(T) = (dom(R⊕R′),set(P ∧Q,R′),F ∪G) Lemma 61 (5, 6, 7, 8, 9, 10)

· ⊢ drop ℓ determined by (U,v′) from w : lens of (Σ,R,P,F) assumption

· ⊢ w : lens of (Σ,R′,Q,G) T-Drop (11)

LwM = Σ/I/T def. L·M

I ∈ Σ⇔{T} by induction (12)

sort(S) = (dom(R′),set(Q,R′),G) by induction (13)

Chapter 5. Language Integrated Relational Lenses 144

Ldrop ℓ determined by (U,v′) from wM = Σ/J/T Lemma 62 (11, 12, 13)

J ∈ Σ⇔{T} Lemma 62 (11, 12, 13)

sort(T) = (dom(R),set(P,R),F) Lemma 62 (11, 12, 13)

· ⊢ renameℓ/ℓ′ from w : lens of (Σ,R,P,F) assumption

· ⊢ w : lens of (Σ,R′,Q,G) T-Rename (14)

LwM = Σ/I/S by induction

I ∈ Σ⇔{T} by induction (15)

sort(S) = (dom(R′),set(Q,R′),G) by induction (16)

Lrenameℓ/ℓ′ from wM = Σ/J/T Lemma 64 (14, 15, 16)

J ∈ Σ⇔{T} Lemma 64 (14, 15, 16)

sort(T) = (dom(R),set(P,R),F) Lemma 64 (14, 15, 16)

5.5 Language is well-behaved

We would now like to show that our language behaves well at runtime. This
chapter is focused on the typing of relational lenses and does not directly specify
the semantics of the lenses themselves. Instead, we rely on the getv and putv

functions to satisfy certain properties. Appendix D.2 provides an example of
non-incremental definitions for the get and put functions, along with proofs they
satisfy the specification. We first require getv and putv to be well-typed total
functions:

Lemma 65 (Get Total). If φ : Φ and · ⊢ v : lens of(Σ,R,P,F) then getv(φ) = M

and M : Rel(R,P,F).

Lemma 66 (Put Total). Given φ : Φ, if M : Rel(R,P,F) and · ⊢ v : lens of(Σ,R,P,F)
then putv(φ,M) = γ and γ : Φ.

The following lemma states that substitution in our language behaves correctly.
A substitution e[v/x] specifies that all free variables x in the term e should be
substituted with the value v. The definition for substitution is standard and is
included in Appendix D.1.

Lemma 67 (Substitution). If Γ←+(x = τ1) ⊢ e :τ and · ⊢ v :τ1 then Γ ⊢ e[v/x] :τ .

Chapter 5. Language Integrated Relational Lenses 145

Proof. Shown in Appendix D.1.

Any term that can be evaluated to a value preserves the type of the initial term.

Theorem 12 (Preservation). Given φ : Φ, if · ⊢ e :τ and e,φ ⇓ v,γ then · ⊢ v :τ
and γ : Φ.

Proof.
φ : Φ assumption

· ⊢ e :τ assumption (1)

e,φ ⇓ v,γ assumption (2)

Perform induction on e ⇓ v

case E-Lens-Select

e,φ ⇓ v,γ

selectP from e,φ ⇓ selectP from v,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)
1; T-Select

Γ ⊢ v : lens of (Σ,R,P,F) induction

γ : Φ induction

Γ ⊢ selectQ from v : lens of (Σ,R,P ∧Q,F) T-Select

case E-Get

e′,φ ⇓ v′,γ w = getv′(γ)

get e,φ ⇓ w,γ
assumption

· ⊢ e′ : lens of (Σ,R,P,F)

· ⊢ get e′ :{R}
(1); T-Get

· ⊢ v′ : lens of (Σ,R,P,F) induction

γ : Φ induction

w : Rel(R,P,F) Lemma 65

· ⊢ w :{R} def. Rel(R,P,F)

case E-Put-Sat

Chapter 5. Language Integrated Relational Lenses 146

e,φ ⇓ v′,φ1 f,φ1 ⇓ w,φ2 · ⊢ v′ : lens of (Σ,S,P,F)
w |= F ∀r ∈ w. sat(P,r) γ = putv(φ2,w)

put e with f,φ ⇓ true,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e with f :bool
(1); T-Put (3)

φ1 : Φ (3); induction (4)

φ2 : Φ (3, 4); induction (5)

· ⊢ w :{R} (3, 4); induction

w : Rel(R,P,F) def. Rel(R,P,F) (6)

· ⊢ true :bool (6); T-Const

γ : Φ (5); Lemma 66

case E-Put-Unsat

e,φ ⇓ v,φ1 f,φ1 ⇓ w,γ v : lens of (Σ,S,P,F)
w ⊭ F or ∃r ∈ w. ¬sat(P,r)

put e with f,φ ⇓ false,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e with f :bool
(1); T-Put (7)

φ1 : Φ (7); induction (8)

γ : Φ (7, 8); induction

· ⊢ false :bool T-Const

Full proof in Appendix D.1.

An additional requirement of the get and put functions is that they satisfy round-
tripping guarantees. This property is specified in the following two lemmas.

Lemma 68 (GetPut). If φ : Φ and · ⊢ v : lens of(Σ,R,P,F) then putv(φ,getv(φ)) =
φ.

Lemma 69 (PutGet). If φ : Φ and · ⊢ v : lens of(Σ,R,P,F) and M : Rel(R,P,F)
then getv(putv(φ,M)) = M .

Using the above properties we can show that get and put terms in our language
also satisfy round-tripping. Care must be taken to ensure there are no side-
effecting computations that may alter the state of the database between the get

Chapter 5. Language Integrated Relational Lenses 147

and put operations. We require that the lens is a value v, as the computation of
a lens value may otherwise alter the database.

Theorem 13. Given a lens value · ⊢ v : lens of (Σ,R,P,F) then we know that
put v with (get v),φ ⇓ true,φ.

Proof.
· ⊢ v : lens of (Σ,R,F,A) assumption

v,φ ⇓ v,φ E-Value

M : Rel(R,P,F) = getv(φ) Lemma 65

get v,φ ⇓M,φ E-Get

putv(φ,M)

= putv(φ,getv(φ)) def. M

= φ Lemma 68

put v with (get v),φ ⇓ true,φ E-Put-Sat

Theorem 14. Given a lens value · ⊢ v : lens of (Σ,R,P,F) and a view M ∈
Rel(R,P,F) then we know that (λx. get v) (put v with M),φ ⇓M,γ.

Proof.
· ⊢ v : lens of (Σ,R,F,A) assumption

M : Rel(R,P,F) assumption

v,φ ⇓ v,φ E-Value

λx. get v,φ ⇓ λx. get v,φ E-Value

γ = putv(φ,M) define

put v with M,φ ⇓ true,γ E-Put-Sat

get v[true/x] = get v def. subst

getv(γ) = getv(putv(φ,M)) = M Lemma 69 (1)

get v,γ ⇓M,γ (1); E-Get

(λx. get v) (put v with M),φ ⇓M,γ E-App

Chapter 5. Language Integrated Relational Lenses 148

Types τ ::= · · · | table of (S,R)
Terms e,f ::= · · · | lens e of R with F

Figure 5.7: Links implementation.

It would also be possible to show that the language we specified is total using
techniques such as by Altenkirch and Chapman [5], but practical languages such
as Links are rarely total. The lenses themselves are essentially sum types, and
Lemma 65 and 66 ensure that the get and put operations themselves are total if
the arguments are.

5.6 Integration in Links

We implement relational lenses in Links. The Links implementation supports
both incremental and naive relational lens semantics, and was used for the bench-
marks in the evaluation presented in Section 3.3. Links can statically check the
relational lens typing rules defined in this chapter. This section describes some
of the specifics of the Links implementation.

Internally, Links relies on a version of relational lenses implemented in OCaml.
Our OCaml implementation does not support any form of static type checking
of the relational lens checks, but does include functions to perform the checks
at runtime. The Links compiler extends the language with constructors for the
various lenses, and uses the OCaml library to perform typechecking during com-
pilation. When a Links program constructs a relational lens, the interpreter uses
the OCaml library. Links supports executing code on both the web server and
the client, but relational lenses are only supported in server side code.

Tables. Our relational lenses build on top of existing database support by
reusing existing table handles. Links defines a primitive table expression which
takes the relation name and a database handle, yielding a handle to a table in
the database. The table expression assumes that the programmer has supplied a
record type which corresponds to the types in the underlying database schema.
Type table of(S,R) is the type of a table handle with relation name S containing
records of type R. The programmer must take care not to construct lenses that

Chapter 5. Language Integrated Relational Lenses 149

use multiple different databases, however this is not supported by existing query
mechanisms either.

Lens Primitives. The lens primitive expression in Links requires the program-
mer to provide a table handle and specify the functional dependencies. The rule
T-Lens is used to create a relational lens from a Links table. A lens primitive
is assigned the default predicate constraint true. All columns referred to by a
set of functional dependencies F , written names(F), should be part of the table
record type R.

T-Lens
Γ ⊢ e :table of (S,R)

⋃
names(F)⊆ dom(R)

Γ ⊢ lens e with F : lens of ({S},R,true,F)

Predicates. The programmer defines predicates as functions from records to
boolean values. If the predicate does not depend on any unbound variables, then
the record is known statically and all checks can be performed. If the record
contains unbound variables then Links is unable to perform the predicate checks
during compilation. In this case the programmer must explicitly acknowledge that
the check is not performed during compilation by using the lenscheck constructor.
This constructor may throw a runtime exception during application execution.

Evaluation The implementation was also used in a case study of the IUPHAR/BPS
Guide to Pharmacology (GtoPdb) in Appendix E. The case study implements a
curation interface for pharmacological targets in Links, making use of the rela-
tional lenses implementation described here. The curation interface is developed
using the Model-View-Update (MVU) originally developed by Elm [1]. Rela-
tional lenses generate the data model used to populate the user interface, and the
changed model from the user interface can directly be applied to the database.
Development of the application is simplified by not requiring any special code to
query the data or convert it either into or from a format required by the user
interface.

Chapter 5. Language Integrated Relational Lenses 150

5.7 Summary

The sequential style of relational lenses as defined by Bohannon et al. [12] is
good for modelling transformations between whole database schemas, but is less
optimal when working from a programming language. When using relational
lenses in this setting, the programmer is more likely to work with a single view
at a time. The programmer also does not provide the lens with a complete
instantiated database, but instead expects the lens to query and update the
database in a side-effecting manner.

As part of the language integration process, we propose treating relational lenses
as handles to database views. Rather than sequentially composing lenses as
in 2.2, our implementation uses sub-expressions to construct input lenses. The
programmer is then able to use let-binding and lambda expressions to structure
their code as desired. This approach also prevents the programmer from having
to name intermediate views.

This chapter introduces language integrated lenses and provides typing rules. We
provide a translation from our language integrated lenses to the sequential style
lenses, and prove that a well-typed language integrated lens always constructs a
well-typed sequential lens. The language integrated lenses also make use of the
basic predicate syntax introduced in Chapter 4, showing that concrete lenses and
the corresponding checks satisfy all requirements of abstract lenses. We also show
that our language preserves types during execution and satisfies the relational lens
round-tripping guarantees.

The work presented in Chapter 4 and this chapter form the basis for both the
Links implementation and the Haskell relational lens library. Chapter 6 describes
the Haskell library in more detail.

Chapter 6

Relational Lenses as a Library

The work presented in this thesis is motivated by the task of turning relational
lenses into a practical language feature. The two relational lenses implementa-
tions presented in this thesis are the only known implementations at the time of
writing.

The relational lens typing rules contain many small side conditions, making it
easy for the programmer to forget to check some of them. These side-conditions
can generally be checked mechanically though. Yet implementing the various
checks required by relational lenses proves to be a challenging task.

A straightforward method to perform these checks would be to defer them to
runtime, an approach proposed for predicates in Section 4.4. Doing so means
that the program may still crash during execution if the lens is not correctly
constructed. This places the burden of checking onto the programmer, who is
required to thoroughly test the software with all possible inputs.

The implementation should therefore ideally perform compile-time checking of
relational lenses. The implementation described in Section 5.6 is for the Links
programming language [26]. However, executing the checks during compilation
proves to be challenging. Simple type systems as provided by some of the most
commonly used programming languages are not sufficient to implement something
like the relational lenses checks. Bringing relational lenses to Links required addi-
tional changes to the core language. The extensions made to the Links compiler
are specific to relational lenses, providing the flexibility required by the typing
rules. This way of implementing relational lenses makes the first approach an ad-

151

Chapter 6. Relational Lenses as a Library 152

hoc solution. Such domain specific compiler extensions increase the complexity
of the core compiler, making it more difficult to maintain and show soundness
of the compiler itself. Extending the compiler specifically for a single language
feature is not desirable.

If relational lenses should be implemented without extending the compiler, it is
necessary for the language to be extensible enough to support the static checks
required by relational lenses. This chapter aims to demonstrate how relational
lenses can be implemented as a library for Haskell.

The Glasgow Haskell Compiler (GHC) boasts a powerful type system supporting
many useful features such as type-classes [87] and qualified types [53]. In addition,
the type system supports many available extensions that can be used to equip
the typechecker with additional capabilities. Some of these features which allow
limited dependently typed programming help it to support a complex language
feature such as relational lenses.

This chapter demonstrates how a combination of qualified types, type classes
and type-families [77, 78] can be used to implement relational lenses as a library.
The implementation requires no extension to the compiler despite its extensive
compile-time checks which ensure that the relational lenses will be well-behaved.

There is an additional advantage of implementing relational lenses in such a more
disciplined way. With the ad-hoc implementation it is not possible to provide
types to functions where all components of a relational lens are known. Consider
the following example:

from_date :: ∀ Σ R P Q F.

int→ lens of (Σ,R,P,F)→ lens of (Σ,R,P ∧Q,F)

from_date = λ y l.

selectdate=y from l

The function from_date constructs a select lens, using the function argument l

as the underlying lens. This function is not well-typed because it is not possible
to provide every lens to this function (e.g. what if the lens does not have a date

column). This function is still useful though, because there are lenses it does ac-
cept. The function type is also not able to ensure that Q is correctly instantiated
to reflect the date = y predicate introduced. Using qualified types, we can restrict

Chapter 6. Relational Lenses as a Library 153

which lenses can be used by the function. With the additional restriction, the
function is well-typed. The Haskell relational lenses allows the above function to
be expressed as follows, where the Selectable (Var "date":= Erased '[] Int) s snew

constraint ensures the function is only ever used correctly.

from_date ::

Selectable (Var "date" := Erased '[] Int) s snew

=> Int -> Lens s -> Lens snew

from_date y l =

select (var @"date" #= di y) l where

This chapter presents the end-to-end implementation of relational lenses in Haskell,
which makes use of qualified types and also relies on the hybrid predicates pre-
sented in Section 4.4.1. The actual implementation also makes of incremental
relational lens semantics for efficient database querying. The full source code can
be found at https://github.com/rudihorn/haskell-lenses.

An introduction to type-level programming in GHC is given in Section 6.1, in-
cluding an example of how record types can be implemented in Section 6.1.5.
Section 6.2 introduces various type-level data structures and functions used by
relational lenses. Section 6.3 then provides an overview of how relational lenses
can be used, and then describes how the constructors for relational lenses are
implemented.

6.1 Type-Level Programming

For relational lenses to be well-behaved, certain conditions must apply to the
constructed lens. These conditions, shown in the lens typing rules in Figure 2.7,
are non-trivial and should be checked to ensure correct usage of the lens. While
the program can perform the checks required during execution, the best time to
perform the relational lens checks is during compilation of the program.

The relational lens side-conditions cannot be performed by standard unification
type-checking, as the requirements go beyond simple type-checking. Instead, a
form of general-purpose computation is required, so that algorithms such as tree
cycle detection can be performed. This section looks at how GHC’s type system
can be used for tasks beyond the scope of traditional type systems.

https://github.com/rudihorn/haskell-lenses

Chapter 6. Relational Lenses as a Library 154

6.1.1 Type level values

Haskell exposes modules for working with type-level literals1. Type-level literals
allow the programmer to use values such as text and numbers within types. All
type expressions have a kind, where kinds are to types as types are to values.
Existing types that can be used to construct values are of kind ⋆. Text is of kind
Symbol and numbers are of kind Nat.

type Hello = "Hello"

-- Hello has kind Symbol

type Five = 5

-- Five has kind Nat

Existing data types can be promoted into a kind by prepending any constructor
with a single quote ('). As the boolean type is defined as a variant data type,
true or false of kind boolean can be used as types:

data Bool = False | True

-- Definition of Bool

bTrue = True

-- bTrue is a value true of type Bool

type BTrue = 'True

-- BTrue is the type true of kind Bool

Types must generally be attached to values to pass around. In some cases we
may want to provide type arguments to functions that aren’t attached to values.
The Proxy type can be used as a type witness. It takes one type parameter p of
kind k and has a single constructor Proxy taking no values, making it equivalent
to the unit value. The definition of the Proxy data type and a usage example
constructing a value v with the type argument 'True is shown below.

data Proxy (p :: k) = Proxy

v :: Proxy 'True = Proxy

1http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-TypeLits.html

Chapter 6. Relational Lenses as a Library 155

6.1.2 Type Families

Type families support type-level static computations [77, 78] . A type family is
defined by pattern matching on type expressions. Recursion is supported, but
partial applications and higher order functions require an additional extension
[56]. Type families must be well kinded. The following is an example of a type
family for calculating the length of a list and its usage. It makes use of the built-in
+ operator for performing number addition.

type family Length (l :: [k]) :: Nat where

Length '[] = 0

Length (_ ': xs) = 1 + Length xs

type Five = Length '[1, 2, 3, 4, 5]

This section also relies on the type level :++ infix operator, which performs a
concatenation of two lists.

Another commonly used type family in the relational lenses implementation is a
conditionally branching If type family from the Data.Type.Bool package, which
is defined as follows:

type family If cond tru fls where

If 'True tru fls = tru

If 'False tru fls = fls

6.1.3 Type Classes

Type classes allow the generation of type-specific functions and values [87]. They
are used to generate functions which extract static type information and convert
it into a runtime value. Type classes can also be used to generate functions
which transform values with known static information, such as calculating the
projection of a record which statically tracks the fields and types.

During various processing stages of relational lenses, as well as for other features
such as printing values to the console, it is necessary to convert types into runtime
values conveying the same information. The Recoverable i t type class takes a
type of kind i and yields a value of type t.

The instance Recoverable (s :: Symbol) String is an example showing how to

Chapter 6. Relational Lenses as a Library 156

convert Symbol types into String values using the Haskell built-in symbolVal2. The
function symbolVal is provided by satisfying the KnownSymbol type class. The GHC
compiler automatically provides the KnownSymbol class for all symbol constants,
and similarly provides the KnownNat class for all type level natural numbers.

class Recoverable i t where

recover :: Proxy i -> t

instance KnownSymbol s => Recoverable (s :: Symbol) String where

recover p = symbolVal p

instance Recoverable 'True Bool where

recover Proxy = True

instance Recoverable 'False Bool where

recover Proxy = False

Values can be instantiated with explicit type signatures (val :: typ) or we can
make use of explicit type applications using the @ symbol. The following are
all invocations of the recover function with a type argument, but each using a
different syntax:

bTrue = recover (Proxy :: Proxy 'True)

-- bTrue == True

bFalse = recover @'False Proxy

-- bFalse == False

sHello = recover @"Hello" Proxy

-- sHello == "Hello"

6.1.4 Constraints

Constraints are restrictions on types. Constraints can be used to prevent invalid
type combinations and for deriving type classes.

Equality constraints τ1 ∼ τ2 specify that the types τ1 and τ2 should be equal.
2https://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-TypeLits.html#v:symbolVal

https://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-TypeLits.html#v:symbolVal

Chapter 6. Relational Lenses as a Library 157

Using the Length type family defined in Section 6.1.2, the function myfun requires
a Proxy of a type level list containing exactly two elements.

myfun :: Length l ~ 2 => Proxy l -> ()

myfun Proxy = ()

We define a function which takes any type that is recoverable to a string by
requiring the constraint Recoverable a String.

recover_string :: forall a. Recoverable a String => Proxy a -> String

recover_string Proxy = recover @a @String Proxy

Constraints can also be combined using tuple like notation, e.g. a function that
recovers the string value of a list with exactly two elements can be defined as:

only_two :: forall l. (Length l ~ 2, Recoverable l [String])

=> Proxy l -> [String]

only_two Proxy = recover @l @[String] Proxy

The code can be simplified by defining a type alias for multiple constraints. For
the above example we could define a type alias OnlyTwo which ensures that a type
l can be recovered into a string list and that the list only contains two elements.

type OnlyTwo l = (Length l ~ 2, Recoverable l [String])

only_two' :: forall l. OnlyTwo l => Proxy l -> [String]

only_two' Proxy = recover @l @[String] Proxy

6.1.5 Record Types

Relational lenses are used for processing tabular data. Tabular data contains
collections of entries, called records, containing different values for the same set
of columns. Recall the albums table from Section 1.1, which contains a collection
of records with two columns, one called album containing a string and the other
containing a number for the available quantity.

A record is a named and typed tuple of values. For each record the names
and types of all the columns are known in the type, while the contents of in-
dividual columns are only known during runtime as part of the value. The
record {album: "Disintegration"; quantity: 6} in the albums table has the type

Chapter 6. Relational Lenses as a Library 158

{album: String; quantity: Int}. A table is a collection of records with the same
type.

Existing work shows how extensible records can be implemented as a Haskell
library [55], and various Haskell packages providing extensible records 3 4 are
available. The relational lenses library described here makes use of its own ex-
tensible records library, which is briefly described in this section. There is not
necessarily anything novel about the implementation of extensible records here,
but a custom implementation was used to ensure that all required operations
are supported. This section is more helpful as an introduction to how type-level
programming can be used in Haskell to implement features such as relational
lenses.

Haskell supports a rich constraint based type system, allowing an approach com-
parable to work by Morris and McKinna [70] to be adopted. The idea is to de-
scribe the requirements on a row variable as a constraint on the row type rather
than directly in the row type itself. This approach doesn’t require extensions to
the type unification system to support type inference such as in the approach
by Rémy [76]. It also allows us to express more advanced row restrictions as
constraints such as the relational join.

Instead of a projection function having the type signature {album: String; _}

-> String the function might then instead have the type signature ∀z1.{album :
String}◁z1.z1→ String, denoting that the function expects a row of type z1 such
that {album: String} is a subtype of z1. However, unlike the approach by Morris
and McKinna [70], our constraints are more explicit for operations the row should
support. An example would be the type constraint Project r "album" String,
denoting it should be possible to project r on the column album which should
return a String.

The first definition required is a kind for storing the column information called
Env. The columns are stored as a list of tuples, where each column tuple contains
the name, and type of kind ⋆. Changes to the environment can be performed by
defining type families on Env kinds. The definition of the Env kind is shown in
Figure 6.1.

3https://hackage.haskell.org/package/row-types
4https://hackage.haskell.org/package/CTRex

https://hackage.haskell.org/package/row-types
https://hackage.haskell.org/package/CTRex

Chapter 6. Relational Lenses as a Library 159

type Env = [(Symbol, *)]

data Row (e :: Env) where

Empty :: Row '[]

Cons :: (Ord t, Eq t) => t -> Row env -> Row ('(key, t) ': env)

Figure 6.1: The definition of the Env kind and the Row type.

A row value is constructed similarly to lists; any instance is either an empty row
which has an empty environment, or a cons constructor with a value of type t

extending an existing row, whose environment is extended by a new tuple with
a given name and the data type t. The two constructors ensure that the corre-
sponding values are well typed with respect to Env. More complicated operations
such as projections can then be defined using type classes.

The following code snippet demonstrates the usage of records. A record can be
constructed using the Cons and Empty constructors, as shown in the first example.
A user friendly syntax, shown in the second example, allows the record to be
constructed from a tuple using the toRow function. The user-friendly syntax has
type class instances for various tuple sizes. Both examples are used to construct
the record {A = 5, B = "h"}. The labels for the field names are only provided in
the type information.

Records contain an implementation for the Show type class to support pretty-
printing into a form { field = value, . . . }.

-- Examples

row1 :: Row '['("A", Int), '("B", String)]

row1 = Cons 5 (Cons "h" Empty)

-- equivalent friendly syntax

type MyRow = @'['("A", Int), '("B", String)]

row1' = toRow @MyRow (5, "h")

-- pretty printing

row1

> { A = 5, B = "h" }

Chapter 6. Relational Lenses as a Library 160

-- projection

fetch @"A" row1

> 5

update @"C" 20 row1

> { C = 20, A = 5, B = "h" }

The above snippet also shows an example of how a record can be projected onto
a field. This is done using the fetch function, whose type signature is shown in
the snippet below. This function requires the constraint Fetchable s env t evid

to be satisfied, which ensures that there is a field s of type t given a record of type
env. Details of how the fetch function works are shown later in this Section. The
other example shows how a record can be updated. In this example field C is set
to the value 20 on record row1. The function signature of the update function is
also shown in the snippet below.

fetch :: forall s env t evid. Fetchable s env t evid => Row env -> t

update :: forall s t env tnew evid. Updatable s t env tnew evid =>

t -> Row env -> Row tnew

Fetch The fetch function should return the value of a column specified by the
programmer. The desired column is provided as a type-level argument. In order
to define a type class that projects out the column, a representation of the location
of the column is required. The InEnvEvid data type defines a path to the requested
field. The data type has two constructors. A Take constructor specifies that the
head (first value attached to a Cons constructor) should be returned. Alternatively
a Skip evid value indicates that the first cons element should be ignored, and
evid is a path to the required column in the remaining elements. This datatype
is equivalent to the natural numbers, and it would be possible to use the builtin
Nat instead, but we use a special data type for clarity.

data InEnvEvid where

Take :: InEnvEvid

Skip :: InEnvEvid -> InEnvEvid

To fetch the column of a record, it is necessary to construct the path to that
column first. The Find env s type family looks up the field s in the row type env.
It returns a path of type InEnvEvid to that field.

Chapter 6. Relational Lenses as a Library 161

type family Find (env :: Env) (s :: Symbol) :: InEnvEvid where

Find ('(key, _) ': env) key = 'Take

Find (_ ': env) key = 'Skip (Find env key)

The evidence path is used to determine the type of the field in the record. The
type family EvidType env s returns the field type of kind ⋆ for a given record env

and an evidence path s. The type family just follows the path and returns the
second component of the corresponding tuple. It is used t

type family EvidType (env :: Env) (s :: InEnvEvid) :: * where

EvidType ('(_, val) ': _) 'Take = val

EvidType (_ ': xs) ('Skip evid) = EvidType xs evid

The next step is to implement a type class FetchRow t i r that returns the record
field value of type t given an evidence path i for a given record value r. It defines
two instances, one for a 'Take value which matches on a Cons v _ and returns
the current value v. The other instance matches on 'Skip evid and calls intfetch

using the evidence evid on the tail of the row.

class FetchRow t (i :: InEnvEvid) r where

intfetch :: r -> t

instance FetchRow t 'Take (Row ('(s, t) ': env)) where

intfetch (Cons v _) = v

instance (FetchRow t evid (Row env)) =>

FetchRow t ('Skip evid) (Row ('(so, to) ': env)) where

intfetch (Cons _ row) = intfetch @t @evid row

The final step is to wrap up everything in a single constraint alias Fetchable s env

t evid as well as a function fetch using the constraint. The constraint first looks
up an evidence path evid using the Find type family. An equality constraint
ensures that the type t is equal to the type looked up by the EvidType type
family, and there must also be an instance of the FetchRow type class for the given
record and type. The fetch function can then just use the intfetch function from
the FetchRow type class to retrieve the value.

type Fetchable s env t evid = (

evid ~ Find env s,

Chapter 6. Relational Lenses as a Library 162

t ~ EvidType env evid,

FetchRow t evid (Row env))

fetch :: forall s env t evid. Fetchable s env t evid => Row env -> t

fetch row = intfetch @t @evid row

6.2 Relational Lens Kinds

The relational lens typing rules require conditions on the lens invariants and
inputs to be met. This includes restrictions on the row type of the view, functional
dependencies, referenced tables as well as a predicate restriction on the view. For
these checks to be performed during compilation, a type-level representation of
these invariants is required. This section introduces the data types required, as
well as some common checks required on them.

6.2.1 Tables

Relational lenses need to ensure that no underlying tables are used twice in a
single relational lens expression. Relational lenses keep track of the table names
used by a lens expression. Each table name is a string value, we define the Table

kind as a Symbol to represent this.

type Table = Symbol

A collection of tables is represented using a list of tables. The kind Tables is
defined as [Table].

type Tables = [Table]

The IsDisjoint type family is used to show that the two collections of tables
are disjoint. The type family returns a boolean value indicating if the two col-
lections of symbols are disjoint. This constraint is defined as a predicate called
DisjointTables.

type family IsElement (s :: k) (r :: [k]) :: Bool where

IsElement _ '[] = 'False

IsElement x (x ': xs) = 'True

IsElement x (y ': ys) = IsElement x ys

Chapter 6. Relational Lenses as a Library 163

type family IsDisjoint (l :: [Symbol]) (r :: [Symbol]) :: Bool where

IsDisjoint '[] _ = 'True

IsDisjoint (x ': xs) ys = Not (IsElement x ys) && IsDisjoint xs ys

type DisjointTables ts1 ts2 =

IsDisjoint ts1 ts2 ~ True

6.2.2 Functional Dependencies

Functional dependency constraints X→ Y are restrictions on tabular data spec-
ifying that all records with the same values for the fields X should have the same
values for the fields Y . Functional dependencies are all tracked statically in the
type system. The following data type is used to represent functional dependen-
cies.

data FunDep where

FunDep :: [Symbol] -> [Symbol] -> FunDep

The infix operator --> is used to construct functional dependencies by the pro-
grammer. It is defined as user friendly syntax rather than using the constructor
FunDep. The friendly syntax is also used to normalize the functional dependen-
cies, so that all duplicate are removed and the columns are stored in alphabetical
order using the SymAsSet type family.

type family (-->) (left :: [Symbol]) (right :: [Symbol]) :: FunDep where

xs --> ys = ('FunDep (SymAsSet xs) (SymAsSet ys) :: FunDep)

The type families Left and Right are used to project a functional dependency
X → Y onto its left component X or right component Y . The type families
Lefts and Rights do the same for lists of functional dependencies. Finally, given
a collection of functional dependencies, all referenced columns can be determined
using the Cols type family.

type family Left (f :: FunDep) :: [Symbol] where

Left ('FunDep left _) = left

type family Right (f :: FunDep) :: [Symbol] where

Right ('FunDep _ right) = right

Chapter 6. Relational Lenses as a Library 164

type family Rights (f :: [FunDep]) :: [[Symbol]] where

Rights '[] = '[]

Rights (x ': xs) = Right x ': Rights xs

type family Lefts (f :: [FunDep]) :: [[Symbol]] where

Lefts '[] = '[]

Lefts (x ': xs) = Left x ': Lefts xs

type family Cols (f :: [FunDep]) :: [Symbol] where

Cols '[] = '[]

Cols ('FunDep l r ': fds) = l :++ r :++ Cols fds

In most cases we work with collections of functional dependencies in the form
[FunDep]. An important operation on functional dependencies is the transitive
closure of a collection of symbols. The following code snippet shows how the
type family TransClosure st fds is defined, which calculates the transitive clo-
sure starting with a set of columns st for the functional dependencies fds. The
transitive closure type family uses the Closure type family which non-transitively
adds the right side of each functional dependency whose left side is a subset of the
given columns. The closure type family is applied n times by the TransClosureF

family. By using the count of functional dependencies for n, it is ensured that
the full transitive set is calculated.

type family Closure (from :: [Symbol]) (to :: [FunDep]) :: [Symbol] where

Closure fr '[] = fr

Closure fr (f ': fds) = If (IsSubset (Left f) fr)

(SymUnion (Right f) (Closure fr fds))

(Closure fr fds)

type family TransClosure (st :: [Symbol]) (fds :: [FunDep]) :: [Symbol] where

TransClosure fr fds = TransClosureF fr fds (Len fds)

type family TransClosureF (st :: [Symbol]) (fds :: [FunDep]) n :: [Symbol] where

TransClosureF fr fds 0 = fr

TransClosureF fr fds n = (TransClosureF (Closure fr fds) fds (n-1))

Chapter 6. Relational Lenses as a Library 165

Another important type family on functional dependencies is the Outputs func-
tional dependency, which returns all the columns which may be restricted by
a functional dependency. This function is implemented following the definition
from Figure 2.4.

type family OutputsL (fds :: [FunDep]) where

OutputsL '[] = '[]

OutputsL (fd ': fds) = (SetSubtract (Right fd) (Left fd)) :++ OutputsL fds

type family Outputs (fds :: [FunDep]) where

Outputs fds = SymAsSet (OutputsL fds)

Many lenses require the tree form check on functional dependencies. This check
requires the functional dependencies to form a forest of nodes, where all nodes
are disjoint from each other. This check is performed by ensuring that for all
functional dependencies X → Y , the right component Y ’s are disjoint from each
other, as well as the set (i.e. with all duplicates removed) of all X’s and Y ’s are
also disjoint from each other. Finally the set of functional dependencies should
not have any cycles, which is checked using the IsAcyclic type family. The
definitions of AllDisjoint and IsAcyclic are available in the source code, as they
are long.

type family IsInTreeForm (fds :: [FunDep]) where

IsInTreeForm fds =

AllDisjoint (Rights fds) &&

AllDisjoint (SLAsSet (Rights fds :++ Lefts fds)) &&

IsAcyclic fds

6.2.3 Predicates

The select lens allows the user to filter out records using predicates. Predicates
are functions from records to booleans, indicating if the record should be included
(true) or filtered out (false). Any predicate should be equivalent to testing for the
membership of the record in a (possibly infinite) fixed relation, restricting which
predicates can be expressed. For example, predicates cannot depend on any other
records or unfixed values, preventing the use of aggregates or the dependency on
other relational tables.

Chapter 6. Relational Lenses as a Library 166

In the Links implementation of relational lenses, predicates are defined as func-
tions in the regular language syntax [51]. The predicates can be defined as regular
functions, which are then normalised into a lens predicate as presented in Section
4.3. Recall the basic predicate language from Section 4.1 in Figure 6.2 . Predi-
cates can either be a constant value c, a field label ℓ, an n-ary operator ⊙ applied
to its arguments, or an if-then-else statement.

P,Q ::= c | x.ℓ | ⊙{P} | if P1 then P2 else P3

Figure 6.2: The basic predicate predicate language introduced in Chapter 4.

The Haskell library implementation of relational lenses is presented using the
hybrid predicates technique introduced in Section 4.4.1. There are some dif-
ferences to the version presented in Section 4.4.1. Rather than using a form
of quasi-quotation which would likely require something like Template Haskell,
this implementation provides distinct constructors for static, dynamic and hybrid
predicate expressions. It is also necessary to differentiate between static and dy-
namic values due to technical reasons. Both static and dynamic predicates use
the same underlying data structure, and as these data types are considered inter-
nal, it is ensured that no erased dynamic predicates will be constructed. Finally,
the hybrid predicates described in Section 6.2.3 are actually just construction
functions.

Predicate Values

Predicates require a value kind to store constant values and to perform evalu-
ation. Value kinds are used to box values. The implementation requires two
datatypes. The first datatype DValue stores a dynamic value that is only known
during runtime. In dynamic predicates this means having a single type to store
any possible primitive value, such as a string or an integer. DValue has a construc-
tor for boxing each value type. Each constructor takes a corresponding runtime
value and returns a DValue.

data DValue where

Bool :: Bool -> DValue

Int :: Int -> DValue

String :: String -> DValue

Chapter 6. Relational Lenses as a Library 167

The SValue datatype is used to contain compile-time predicate values. It is re-
quired because the String and Symbol types/kinds differ for runtime and compile
time values. Similarly, the Nat and Integer also differ. The new datatype also
contains a constructor for each static primitive type.

data SValue where

Bool :: Bool -> SValue

Int :: Nat -> SValue

String :: Symbol -> SValue

Predicate Kind

Predicates are implemented using the abstract data type defined in Figure 6.3.
Unlike the work in Section 4.4.1, the same underlying datatype is used for both
static and dynamic predicates, but with type variables to differentiate between
static and dynamic value types. The data type depends on two type variables, id
for the identifier type and v for the value type. Static identifiers are represented
using the Symbol type, while runtime identifiers are represented using the String

type. Similarly the value type variable is defined as SValue and DValue respectively.
Constants take a value representing the constant, variables take an identifier,
unary and infix operator applications take the operator and one or two arguments
respectively. A case statement is a more general, but equivalent, constructor for if
statements. The Erased constructor is used for hybrid predicates and is explained
further in Section 6.2.3.

The type DPhrase representing dynamic predicates is defined as a Phrase with
identifiers of type String and values of type DValue. SPhrase on the other hand
represents static phrases, where identifiers are of kind Symbol and values are of
kind SValue. Predicates are converted into values for querying by implementing
the type class Recoverable SPhrase DPhrase.

For lenses with predicates it is necessary to ensure that the predicates are well
typed. The type family Typ is defined, which takes a typing environment (equiv-
alent to a row type) as well as a predicate and returns either some type if the
environment is well typed, or nothing if the predicate is ill-typed. In practice
this requires validating that for a given lens’ row type rt and predicate p the
constraint (Typ rt p ~ 'Just 'Bool) holds. We omit the definition of Typ, as it is

Chapter 6. Relational Lenses as a Library 168

data Phrase id v where

Constant :: v -> Phrase id v

Var :: id -> Phrase id v

UnaryAppl :: UnaryOperator -> Phrase id v -> Phrase id v

InfixAppl :: Operator -> Phrase id v -> Phrase id v -> Phrase id v

Case :: Maybe (Phrase id v) -> [(Phrase id v, Phrase id v)]

-> Phrase id v -> Phrase id v

Erased :: Env -> * -> Phrase id v

type SPhrase = Phrase Symbol SValue

type DPhrase = Phrase String DValue

Figure 6.3: The data type defining static and dynamic predicates.

straightforward and provided in the code.

type family Typ (env :: Env) (phrase :: SPhrase) :: Maybe Type

Evaluation is also defined for static predicates. The type family Eval takes an
evaluation environment, which is a collection of label and value pairs, as well as
a static phrase and returns a value if the expression is static and well typed. The
definition is fairly straightforward and is available in source code.

type family Eval (env :: EvalEnv) (phrase :: SPhrase) :: Maybe Value

In addition a type family to determine the set of free type variables is required.
The FTV type family takes as static phrase and returns a list of symbols that can
be found in the predicate. The definition of FTV is a straightforward traversal of
the syntax tree and has also been left out.

type family FTV (phrase :: SPhrase) :: [Symbol]

Drop Lens checks

The drop lens requires more in-depth checks on lens predicate constraints, which
are covered in Section 4.2. For a drop lens to behave correctly, it requires evi-
dence that the equivalent relation of the predicate for the underlying lens forms
a lossless join decomposition of the dropped column and all remaining columns.
In predicate terms, a sufficient but not necessary condition is to check that for
any predicate it is either a logical conjunction P ∧Q and both P and Q are loss-

Chapter 6. Relational Lenses as a Library 169

less join decompositions, or the predicate can be typed under either the dropped
column or all columns except the dropped column.

The IsLJDI type family is used to check the lossless join decomposition property
on static predicates. IsLJDI matches on two cases:

1. If the predicate is P ∧Q then both P and Q must be a lossless join decom-
position.

2. For any other predicate, the free variables must either be a subset of the
dropped columns or completely disjoint from them.

The second condition is a slight variation from the definition in Section 4.2.2, as
only the set of dropped columns are provided. If the set of freely bound variables
is not a subset of the dropped columns, it must be completely disjoint, relying
on the fact that R1 and R2 must be disjoint in the other definition. The lossless
join decomposition check is formally defined as follows.

type family IsLJDI (vs :: [Symbol]) (phrase :: SPhrase) :: Bool where

IsLJDI vs ('InfixAppl 'LogicalAnd p1 p2) =

IsLJDI vs p1 && IsLJDI vs p2

IsLJDI vs p = IsSubset (FTV p) vs || IsDisjoint (FTV p) vs

type family LJDI (vs :: [Symbol]) (phrase :: SPhrase) where

LJDI vs p = IsLJDI vs p ~ 'True

The drop lens also requires that the supplied default values for the dropped
columns satisfy the predicate constraints. The used definition for IsLJDI simplifies
the check from Section 4.2 to the following three cases:

1. If the predicate is P ∧Q then perform the default value check on P and Q.

2. If the predicate only depends on the dropped columns, then evaluating it
on the default value should return true.

3. If the predicate does not depend on the dropped columns, then it no further
checks are necessary.

Formally we define the default value check IsDefVI as follows. The UnpackTrue

type family returns 'True if its argument is equal to 'Just ('Bool 'True) or 'False
otherwise.

Chapter 6. Relational Lenses as a Library 170

type family IsDefVIEx (subs :: Bool) (disj :: Bool) (env :: EvalEnv)

(phrase :: SPhrase) :: Bool where

IsDefVIEx 'True _ env p = UnpackTrue (Eval env p)

IsDefVIEx 'False 'True env p = 'True

IsDefVIEx _ _ _ _ = 'False

type family IsDefVI (env :: EvalEnv) (phrase :: SPhrase) :: Bool where

IsDefVI env ('InfixAppl 'LogicalAnd p1 p2) =

IsDefVI env p1 && IsDefVI env p2

IsDefVI env p = IsDefVIEx (IsSubset (FTV p) (Vars env))

(IsDisjoint (FTV p) (Vars env)) env p

type family DefVI (vs :: [Symbol]) (phrase :: SPhrase) where

DefVI vs p = IsDefVI vs p ~ 'True

Finally, a type family is required to remove all terms in a static predicate that
refer to the removed columns. The type family ReplacePredicate traverses all
conjunction terms in a predicate, and if the term only depends on the set of
dropped columns then the term in the conjunction is replaced with the default
term true.

type family ReplacePredicate (env :: EvalEnv) (phrase :: SPhrase) :: SPhrase where

ReplacePredicate env ('InfixAppl 'LogicalAnd p1 p2) =

ReplacePredicate env p1 :& ReplacePredicate env p2

ReplacePredicate env p = If (IsSubset (FTV p) (Vars env)) (B 'True) p

Hybrid predicates

Hybrid predicates have an internal (i.e. not allowed to be used by the program-
mer) constructor HPred which takes a dynamic predicate dp and returns a hybrid
predicate of type HPhrase p, where p is an arbitrary static predicate.

data HPhrase (p :: SPhrase) where

HPred :: DPhrase -> HPhrase p

The public programming interface for hybrid predicates contains the same set
of constructors for static predicates and applies the same operation to both the
static and the dynamic predicate. The following is an example of the (#>) infix

Chapter 6. Relational Lenses as a Library 171

operator for the greater than comparison. When a greater than hybrid predicate
is constructed, it returns a new hybrid predicate the dynamic predicate is the
combination of both underlying dynamic predicates combined with a greater than
infix operator application. The static predicate is also generated by combining
the two static predicates with a greater than binary operator (:>).

(#>) :: forall p1 p2. HPhrase p1 -> HPhrase p2 -> HPhrase (p1 :> p2)

(HPred p1) !> (HPred p2) = HPred $ P.InfixAppl P.GreaterThan p1 p2

The concrete information of a hybrid predicate can be erased so that only the type
information of the predicate is retained. The additional predicate constructor
Erased env ret, which is only considered valid for static predicates, indicates a
predicate with an unknown body, but which is known to type to the return type
ret given an environment env.

data Phrase id v where

-- ...

Erased :: RT.Env -> T.Type -> Phrase id v

The programmer can erase a predicate using the erase function, which takes a
hybrid predicate and removes the function body in the type. The static predicate
is replaced with an Erased constructor that only contains the typing information
of the predicate. The erase function ensures that the predicate is well-typed using
the Typ constraint. The underlying dynamic predicate is left unchanged.

erase :: forall rt ret (p :: SPhrase). (P.Typ rt p ~ 'Just ret)

=> HPhrase p -> HPhrase ('P.Erased rt ret)

erase (HPred p) = HPred p

In the hybrid predicates formulation in Section 4.4.1, an anti-quotation operator
is used to insert runtime values into the predicates as literals. Here, specific
constructors to perform this task are introduced instead. The following example
shows how an integer literal predicate can be constructed from an Int value
provided at runtime. The function constructs a dynamic underlying predicate
with the integer value, while the static predicate is constructed as an Erased

predicate that returns an integer value.

di :: Int -> HPhrase ('P.Erased '[] 'T.Int)

di v = HPred (P.Constant $ DP.Int v)

Chapter 6. Relational Lenses as a Library 172

The FTV function can be extended to support the Erased constructor. This allows
the DefVI and LJDI type families to still be used on predicates that contain erased
parts.

The following snippet shows an example of how a function can be defined that
constructs a predicate depending on the input parameters b, i and s. If b is true,
then the predicate is chosen to be quantity > i, where i refers to the function
parameter. Otherwise the predicate is chosen to be album = s, where s refers
to the function parameter. These predicates can be unified to the result of the
if statement, because they are both erased to predicates taking a quantity and
album field, returning a boolean value. The predicate still satisfies the lossless
join decomposition requirement when constructing the drop lens, because the
predicate does not refer to the dropped column date.

type PredRow = '['("quantity", 'T.Int), '("album", 'T.String)]

my_lens b i s = do

testdb tracks3 where

pred = if b

then (erase @PredRow @'T.Bool (var @"quantity" #> di i))

else (erase @PredRow @'T.Bool (var @"album" #= ds s))

tracks1 = join tracks albums

tracks2 = select pred tracks1

tracks3 = dropl @'['("date", 'P.Int 2020)] @'["track"] tracks2

Currently the user is required to explicitly specify the erased typing information.
By extending the type system to support basic polymorphism it could be possible
to remove the requirement of having explicitly declared typing environments.
This would likely require a type-checking plugin extension to allow the unification
of erased static predicates.

Other Checks

Another requirement used by multiple lenses ensures that information propagat-
ing via functional dependencies doesn’t cause records to violate the predicate
constraint. This property can be checked by ensuring that the predicate does not
depend on any columns that are considered outputs of a functional dependency.

Chapter 6. Relational Lenses as a Library 173

In practice, this check ensures that the set of columns referred to by the predi-
cate is disjoint from the output columns of the functional dependencies calculated
using the Outputs type family.

type family IgnoresOutputs (phrase :: SPhrase) (fds :: [FunDep]) :: Bool where

IgnoresOutputs p fds = IsDisjoint (FTV p) (Outputs fds) ~ 'True

6.2.4 Lens Sort

The lens sort is a kind describing the compile-time information required by a lens
to perform typechecking. The sort is a tuple of the used tables, the view’s record
type, a static predicate restriction and a collection of functional dependencies. It
only has a single constructor Sort taking each component as an argument.

We define a type family to project the sort onto each of its components. Ts sort

gets the tables used by the lens, Rt sort returns the row type, P sort returns the
predicate restricting the view and Fds sort returns the functional dependency
constraints. We show the sort kind the projection type family Ts sort below.
The remaining projections functions Rt, P and Fds can be defined similarly to Ts.

data Sort where

Sort :: Tables -> Env -> SPhrase -> [FunDep] -> Sort

-- get tables

type family Ts (s :: Sort) :: Tables where

Ts ('Sort ts _ _ _) = ts

6.3 Using Relational Lenses

Before detailing how relational lenses work, this section presents an intuition on
how relational lenses can be used from a programmer perspective.

6.3.1 Syntax

Figure 6.4 presents the syntax used by relational lenses.

The presented syntax is not used for the implementation, and is only provided as
an overview of how relational lenses can be defined, combined and used. For all

Chapter 6. Relational Lenses as a Library 174

expressions it is possible to abstract types by using type aliases and to abstract
expressions using let binding or function abstractions.

The <lens> token is used to construct lenses. Lens expressions can either con-
struct a primitive lens, a select lens, a join lens or a drop lens.

The primitive lens requires the name of the table it represents. This is provided
as a string type-level argument. The programmer must also provide the row type
using a <row> token, which expects a list of key and type tuples the lens expects.
Finally the functional dependencies are provided as an <fds> token, which is a
list of functional dependencies.

The select lens expects a predicate expression which can be constructed using the
<pred> token. The predicate expressions are differentiated from other identical
expressions using a # symbol.

The join lens expects two further lens expressions. Lastly the drop lens requires a
type-level record <env> token with the columns to be dropped, where the value
of the record indicates the default value. It also requires the list of columns that
define the dropped columns to be provided as a list of symbols <ids>.

Lenses can actually be used with <query> tokens. The get operation queries
the lens using a given connection <conn>, while the put operation submits the
updated view in the form of a <data> token to the given lens using the connection
provided. Syntax for the <conn> token is not provided, as this depends on the
database provider used. The <data> token is also not specified, as this could be
any code that constructs or alters a view.

6.3.2 Database Connection

The presented relational lenses library relies on the postgresql-simple5 library for
performing database interactions. Performing get and put require a Connection

value (<conn> in Figure 6.4). As the connection is established using the third
party library, we only give an example of how to connect to the database. The
following code yields a Connection in the IO monad [86].

connect defaultConnectInfo {

connectDatabase = <database>,

5https://hackage.haskell.org/package/postgresql-simple

https://hackage.haskell.org/package/postgresql-simple

Chapter 6. Relational Lenses as a Library 175

<table> ::= <string>

<id> ::= <string>

<typ> ::= Int | Bool | String

<col> ::= ’(<id> , <typ>)

<row> ::= ’[] | ’[<col> (, <col>)*]

<ids> ::= ’[] | ’[<row> @<typ> <pred>@*) <id> (, <id>)*]

<fd> ::= <ids> --> <ids>

<fds> ::= ’[] | ’[<fd> (, <fd>)*]

<val> ::= ’P.Int <int> | ’P.String <string> | ’P.Bool <bool>

<asign> ::= ’(<id> , <val>)

<env> ::= ’[] | ’[<asign> (, <asign>)*]

<pred> ::= <pred> #= <pred> | <pred> #> <pred> | <pred> #< <pred>

| <pred> #& <pred> | <pred> #| <pred> | <pred> #+ <pred>

| #<label> | neg <pred> | i @’<int> | s @’<string> | b @’<bool>

| di <int expr> | ds <string expr> | db <bool expr>

| erase @<row> @<typ> <pred>

<lens> ::= prim @<table> @<row> @<fds>

| select <pred> <lens>

| join <lens> <lens>

| dropl @<env> @<ids> <lens>

<query> ::= get <conn> <lens> | put <conn> <lens> <data>

Figure 6.4: Syntax of relational lenses in Haskell.

Chapter 6. Relational Lenses as a Library 176

connectUser = <user>,

connectPassword = <password>

}

6.3.3 Lens Constructors

This section presents type signatures and restrictions of each lens constructor.
Existing work on language integrated relational lenses [51] explains in more detail
why these restrictions are required.

Primitive Lens The primitive lens is used to declare an existing table within
the database. The user supplies a static string referring to the table name within
the database, a row type and a set of functional dependencies.

Many of the type constructors contain arguments which do not need to be spec-
ified by the user. These are greyed out.

prim :: forall table rt fds s.

(s ~ 'Sort '[table] rt DefaultPredicate fds,

Lensable s)

=> Lens s

The primitive lens typing rule first constructs a lens sort using the provided
functional dependencies and row type. The primitive lens constructor uses the
default predicate accepting all records. An additional constructor can be provided
that accepts a predicate, which is useful if the database contains other constraints
on the table contents. The Lensable constraint should perform all checks required
by the primitive Lens typing rule from Section 5:

T-Lens
Γ ⊢ e :table of (S,R)

⋃
names(F)⊆ dom(R)

Γ ⊢ lens e with F : lens of ({S},R,true,F)

Primitive lenses only require basic sanity checks. The sanity checks ensure that
the record type does not contain any duplicate columns and that the functional
dependencies of the lens only refer to existing columns. If an arbitrary predicate is
provided, the constraint ensures that it is well-typed. The LensableImplConstraints

alias ensures that all type class constraints that are required for technical reasons
have instances, but the definition of it is left out.

Chapter 6. Relational Lenses as a Library 177

type Lensable s =

(P.Typ (Rt s) (P s) ~ 'Just Bool,

Subset (Cols (Fds s)) (VarsEnv (Rt s)),

LensableImplConstraints s)

Join Lens The join lens takes two lenses and produces a lens performing the
natural join between the two underlying views. The difficulty with view-updates
on join lenses is that defining the put semantics are ambiguous. Bohannon et al.
[12] define multiple variants, and we use the delete left variant, but any deletion
semantics can be used. The delete left variant resolves ambiguous record deletion
behaviour by only deleting from the left table.

The join lens has the type signature shown in the snippet below. The program-
mer is not required to specify any type arguments explicitly. The join function
takes two lenses with lens sorts s1 and s2 and returns a lens with the sort snew,
constrained by the Joinable constraint.

join :: Joinable s1 s2 snew joincols =>

Lens s1 -> Lens s2 -> Lens snew

To understand the Joinable constraint, first recall the typing rule for the join lens
from Section 5.

T-Join-Left
Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f : lens of (∆,R′,Q,G)

G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ join_dl e with f : lens of (Σ∪∆,R∪R′,P ∧Q,F ∪G)

The required constraints for the join lens are shown in Figure 6.5. The Joinable

constraint expand out the lens sorts and applies them to the JoinableExp con-
straint. It is also used to construct the new sort type based on the old sorts. The
following conditions are checked:

The disjointedness of tables check Σ ∩ ∆ = ∅ is performed using the
DisjointTables ts1 ts2 constraint.

The overlapping columns of two tables are the join columns, and they should
have identical types for both, which is ensured by the OverlappingJoin rt1 rt2

constraint.

Chapter 6. Relational Lenses as a Library 178

type JoinableExp ts1 rt1 p1 fds1 ts2 rt2 p2 fds2 rtnew joincols =

(rtnew ~ JoinEnv rt1 rt2,

joincols ~ R.InterCols rt1 rt2,

DisjointTables ts1 ts2,

OverlappingJoin rt1 rt2,

IgnoresOutputs p1 fds1, IgnoresOutputs p2 fds2,

Subset (VarsEnv rt2) (TransClosure joincols fds2),

InTreeForm fds1, InTreeForm fds2,

JoinImplConstraints ts1 rt1 p1 fds1 ts2 rt2 p2 fds2 rtnew joincols)

type Joinable s1 s2 snew joincols =

(JoinableExp (Ts s1) (Rt s1) (P s1) (Fds s1)

(Ts s2) (Rt s2) (P s2) (Fds s2)

(Rt snew) joincols,

snew ~ 'Sort (Ts s1 :++ Ts s2) (JoinEnv (Rt s1) (Rt s2))

(Simplify (P s1 :& P s2)) (SplitFDs (Fds s1 :++ Fds s2)))

Figure 6.5: The constraints required by the join lens.

The check G ⊨ dom(R)∩ dom(R′)→ dom(R′) ensures that the functional de-
pendencies transitively define the right table by the join key. The constraint
Subset (VarsEnv rt2) (TransClosure joincols fds2) checks this condition, where
the type family VarsEnv returns a list of symbols given a row type.

The tree form checks on functional dependencies are ensured using the InTreeForm

type families.

The ignores outputs checks on predicates are performed using the IgnoresOutputs

type family.

All type class instances that need to be checked for implementation purposes are
summarized in the JoinImplConstraints constraint. As these are mostly technical
requirements they are not covered in detail here.

Select Lens To construct a select lens, the programmer provides a hybrid pred-
icate that evaluates under the context of a record in the table to a boolean value.
If the value is true then the record is included in the output.

Chapter 6. Relational Lenses as a Library 179

select :: forall p s snew.

(Selectable p s snew) => HPhrase p -> Lens s -> Lens snew

select pred l = Select pred l

T-Select
Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)

The Selectable p s snew constraint takes the static predicate p of a hybrid predi-
cate, as well as the sort of the underlying lens s and ensures that all requirements
are met. In addition, the constraint constructs the sort of the resulting lens snew.
The formal definition for the constraints are shown in Figure 6.6.

As with the join lens, the Selectable constraint expands the lens sort and ap-
plies the components to the SelectableExp constraint, which performs the actual
checks. The new lens sort is constructed by taking the components of the old
lens, but extends the predicate with the user supplied predicate. The Simplify

type family performs some simplifications for cosmetic purposes, such as short
circuiting logical and expressions where one of the arguments is known.

The predicate should type check on the row type of the input lens. As the Haskell
implementation makes use of hybrid predicates, it is sufficient to show that the
static predicate S satisfies the typing judgment R ⊢ S : bool in order to show
that the underlying dynamic predicate Q satisfies R ⊢ Q : bool. This can be
checked with the TypesBool rt p constraint, where rt is the row type and p is the
static predicate portion. In the constraint this check is performed by ensuring
that Typ env phr ~ 'Just Bool is satisfied.

The next requirement is to check that the predicate does not refer to any columns
that are in the outputs of the functional dependencies. The IgnoresOutputs pred fds

constraint defined earlier performs this check.

The functional dependencies of the underlying lens must be in tree form, which
is ensured by the constraint InTreeForm fds.

All required type class instances are summed up in the SelectImplConstraints

constraint. As these are mainly required for technical reasons, the definition for
this constraint is left out for brevity.

Chapter 6. Relational Lenses as a Library 180

type SelectableExp p rt pred fds =

(Typ env phr ~ 'Just Bool,

IgnoresOutputs pred fds,

InTreeForm fds,

SelectImplConstraints rt p pred fds)

type Selectable p s snew =

(snew ~ 'Sort (Ts s) (Rt s) (Simplify (p :& (P s))) (Fds s),

SelectableExp p (Rt s) (P s) (Fds s))

Figure 6.6: The constraints required by the select lens.

Drop Lens The drop lens projects away a set of columns specified by the user.
To construct a drop lens, the programmer provides a set of columns to drop with
default values to use as well as a set of columns which determine the dropped
columns. The dropped columns are specified using a type level row, where the
key corresponds to the value, and the value is the default value.

The drop lens requires various checks on the underlying lens as well as the dropped
columns and their default values. Recall the typing rule for the drop lens from
Section 5.

T-Drop
F ≡G∪{U → ℓ} Γ ⊢ e : lens of (Σ,R⊕ (ℓ′ : A),P,F)

U ⊆ dom(R) · ⊢ v :A
LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

Γ ⊢ drop ℓ determined by (U,v) from e : lens of (Σ,R,JP KR1,R2 ,G)

dropl :: forall env (key :: [Symbol]) s snew.

(Droppable env key s snew) => Lens s -> Lens snew

The side-conditions for the drop lens are checked using the Droppable env key s snew

constraint shown in Figure 6.7, where env is the set of dropped columns with their
default values, key is the set of columns that must define the dropped column
and the lens sort s. The components of the sort are projected out and checked
using the DroppableExp constraint.

The first requirement is that the dropped columns should be in the domain of the
input lens, and that the default values should also have the correct type. This is a

Chapter 6. Relational Lenses as a Library 181

type DroppableExp env key rt pred fds rtnew =

(EnvSubset (EvalRowType env) rt,

Subset (Vars env) (TransClosure key fds),

LJDI (Vars env) pred,

DefVI env pred,

DropImplConstraints env key rt pred fds rtnew)

type Droppable env key s snew =

(snew ~ 'Sort (Ts s) (RemoveEnv (Vars env) (Rt s))

(Simplify (ReplacePredicate env (P s)))

(DropColumn (Vars env) (Fds s)),

DroppableExp env key (Rt s) (P s) (Fds s) (Rt snew))

Figure 6.7: The constraints required by the drop lens.

combination of the restrictions U ⊆ dom(R) and Γ ⊢ v :A. The check is performed
by calculating the row type of env using EvalRowType and then checking that it is
a subset of rt.

The next check ensures that the functional dependencies of the underlying lens
specify that the key columns define the dropped columns. This is checked by
computing the transitive closure of key, and ensuring that the dropped columns
are in the resulting set.

As covered in Section 4.2, the predicate on the underlying lens must pass both
the lossless join and default value checks. These conditions are checked using the
LJDI and DefVI type families defined in Section 6.2.3.

All further type class constraints required by the implementation are provided
by the DropImplConstraints constraints. As these are mainly technical they have
been left out for brevity.

The Droppable constraint also constructs the lens sort snew for the resulting lens.
It removes all references to the old column in the new row type, the predicate of
the lens as well as from the functional dependencies.

Chapter 6. Relational Lenses as a Library 182

6.3.4 Lens Operations

Relational lenses form a bidirectional transformation on a relational database.
Bidirectional transformations generally provide two operations. The forward
transformation retrieving the view is called get, while the operation to submit
changes is called put.

Get The get operation queries a database using the provided database connec-
tion for the view defined by the given lens. The view is a collection of records
having the same record type as the lens. The get operation is executed in an
IO monad, because the querying operation has side-effects. The LensGet con-
straint is a technical requirement providing the type class instance required by
the implementation.

get :: forall t rt p fds. LensGet t rt p fds c =>

c -> Lens t rt p fds -> IO (RecordsSet rt)

Put The programmer uses the put operation to alter the database. The pro-
grammer provides the operation with an updated view as a collection of records
with the same record type that the lens has. The update operation is side-
effecting, so the put operation must be executed under an IO monad. The LensPut

constraint also requires some type class constraints required by the implementa-
tion to be satisfied. The put function expects the set of records to satisfy the
predicate and functional dependency constraints of the lens, but these are not
statically checked. Instead the function returns a boolean value indicating if the
operation was successful.

put :: forall c ts rt p fds. LensPut t rt p fds c =>

c -> Lens t rt p fds -> RecordsSet rt -> IO Bool

6.4 Summary

For a programming language feature to become useful, it requires an implemen-
tation. Our first implementation of relational lenses in Links required feature
specific extensions to the compiler. Such intrusive changes are reasonable to ex-
periment with a language feature, but are not ideal in practice. The additional

Chapter 6. Relational Lenses as a Library 183

rules increase the complexity of the compiler and are more likely to be incompat-
ible with other language features.

Due to limitations in the type system, the Links implementation is also less
flexible. The relational lens type checking rules require full knowledge of the lens
type to be known. This prevents the programmer from using polymorphism on
lens types, restricting their usage. The programmer is unable to define functions
taking lenses with partially unknown sort types as arguments.

In this chapter we show how relational lenses can be implemented using the
type-level programming features provided by Haskell. The relational lens library
makes use of type classes, type families, data type promotion and qualified types.
This implementation of relational lenses does not require any changes to the type
system. The use of qualified types also allows the programmer to abstract over
lenses, by allowing the type checking restrictions required to be required as a
prerequisite to use the encompassing function.

The Haskell implementation also supports hybrid predicates. We show how the
hybrid predicates introduced in Section 4.4.1 are implemented and provide an
example of their usage. This allows the programmer to safely construct predicates
at runtime.

Our work shows that qualified types and type level programming can be useful
to ensure that any relational lens constructed is well-behaved. This is an im-
provement over the Links version, which requires trade-offs between static and
dynamic predicates. The GHC extensions used by relational lenses are still not
ideal however. Doing type-level programming feels mostly distinct from regular
programming and we require many workarounds to achieve desired functionality
such as missing let-in constructs. From this perspective a fully dependently typed
language such as Idris 2 might be a better suited general purpose programming
language for relational lenses.

Relational databases are ubiquitous in application development, yet working with
them sometimes proves to be challenging. In the past, working with relational
databases has justified the introduction of additional language features such as
quasiquotation and anonymous functions in C# [14]. We show that it is possible
to implement relational lenses as a library that does not require changes to the
compiler. In addition, this implementation makes relational lenses available in an

Chapter 6. Relational Lenses as a Library 184

industrially-used programming language. We argue that our implementation is
a good justification for introducing dependent types and type-level programming
features to more programming languages.

Chapter 7

Related Work

7.1 Language-integrated query

Language-integrated query refers to programming language features that assist
the programmer in expressing database queries from the host language. The idea
is to let the programmer write queries in native language constructs, which can
then be translated into the database query language, such as SQL, and efficiently
executed on the database server [91, 82]. Language-integrated query expressions
can be type-checked during compilation, ensuring that the application won’t crash
because of an ill-formed query when run. Language integrated-query supports
more advanced queries than relational lenses, as there is no requirement for round-
tripping guarantees. Unlike relational lenses, support for database updates with
language integrated query can be considered an afterthought, and the user must
manually translate changes made by the user into updates on the database.

The language integrated query can be preprocessed before being translated into
the target query language. This allows the use of additional features that the
query language does not support, as long as these can be desugared into the
query language. An example is nested data structures, which can be desugared
into multiple efficient queries [22]. More advanced data types such as tuples
and records can also be used in predicates [25]. Predicates can also make use of
functional abstractions, which can be removed using beta normalisation before
being sent to the server. Our implementation of relational lenses does not support
nested queries, but limited support may be feasible.

185

Chapter 7. Related Work 186

Most language-integrated query approaches allow the query to be expressed us-
ing list comprehensions [91]. The C# and F# implementations also support
constructing expressions using collection functions such as map and filter [82].
Relational lenses use lens composition instead, but it may be possible to extend
the syntax to make use of list comprehensions.

From a language-integration perspective there are a different ways to support
querying databases. The existing language-integrated query in Links generates
the expression by translating the intermediate representation (IR) code used by
the interpreter into an SQL expression directly [26]. The approach used by F#
and C# is to translate the query expression into a query object constructing
expression. The resulting query object which is created at runtime is then pro-
cessed into an SQL query during execution [82]. C# uses meta-programming
techniques to support the translation of functions into the underlying query lan-
guage. Specifically, any lambda function expression can be cast to an Expression

value representing that function. Meta-programming and reflection have the ben-
efit of being useful beyond relational lenses. Our relational lenses in Links is im-
plemented by extending the type-system, while the Haskell implementation uses
data type promotion.

7.2 Updatable views and lenses

Updatable views have been studied extensively in database literature, and are
supported (in very limited forms) in recent SQL standards and systems. We refer
to Bohannon et al. [12] for discussion of earlier work on view updates and how
relational lenses improve on it. Although updatable views (and their limitations)
are well-understood, they are still finding applications in current research, for
example for annotation propagation [17] or to “explain” missing answers, via
updates to the source data that would cause a missing answer to be produced [47].
Date [28] discusses current practice and proposes pragmatic approaches to view
update.

To the best of our knowledge, the work that comes closest to implementing re-
lational lenses is Brul [93], which builds on top of BiGUL [58], a put-oriented
language for programming bidirectional transformations. Brul includes the core
relational lens primitives and these can be combined with other bidirectional

Chapter 7. Related Work 187

transformations written in BiGUL. However, Zan et al. [93] implement the state-
based definitions of relational lenses over Haskell lists and do not evaluate their
performance over large databases or consider efficient (incremental) techniques.
They also do not consider functional dependencies or predicate constraints, so it
is up to the programmer to ensure that these constraints are checked or main-
tained. Ko and Hu [57] recently proposed a Hoare-style logic for reasoning about
BiGUL programs in Agda, which could perhaps be extended to reason about
relational lenses.

Asano et al. [7] extend the putback-based approach for relational databases. They
introduce a language for specifying put expressions, which are used to derive the
corresponding get expression. A put expression can either verify its equality to a
query of a database using a check expression, or use the data to update tables.
Put expressions can be split horizontally or vertically to perform operations on
multiple tables. The system does not perform static verification of the update
operations, and does not verify functional dependencies or predicates. Put oper-
ations are total, and may fail if a check expression is not satisfied. Tran et al.
[83] extend on this approach by showing how fine-grained put expressions can be
defined in Datalog. These put-expressions can then be verified to ensure well-
behavedness. The system supports additional constraints, but there are some
limitations and functional dependencies are not explicitly demonstrated. While
the relational lens expressions are mostly derived from the forward semantics,
adding additional lenses with different put semantics is possible. These putback
approaches could be useful for deriving new lenses.

Object-relational mapping (ORM) is a popular technique for accessing and up-
dating relational data from an object-oriented language. ORM can impose perfor-
mance overhead but Bernstein et al. [9] show that incremental query compilation
is effective in this setting. We would like to investigate whether incremental rela-
tional lenses could be composed with more conventional (edit) lenses to provide
ORM-like capabilities for functional languages.

Bidirectional approaches to query languages for XML or graph data models have
also been proposed [48, 65]. However, to the best of our knowledge these ap-
proaches are not incremental and have not been evaluated on large amounts of
data. There is also work on translating updates to XML views over relational
data, for example Fegaras [34]; however, this work does not allow joins in the

Chapter 7. Related Work 188

underlying relations.

7.3 Incremental computation

Incremental view maintenance is a well-studied topic in databases [44]. We em-
ploy standard incrementalisation translations for relations (sets of tuples) [73, 42].
More recently, Koch [59] developed an elegant framework for incremental query
evaluation for bags (multisets of tuples), and Koch et al. [60] extended this ap-
proach to nested relational queries. We think it would be very interesting to
investigate (incremental) lenses over nested collections or multisets.

Incremental recomputation also has a large amount of literature, including work
on adaptive functional programming and self-adjusting computation [3, 46]. While
closely related in spirit, this work focuses on a different class of problems, namely
recomputing computationally expensive results when small changes are made to
the inputs. In this setting, recording a large trace that caches intermediate results
can yield significant savings if the small changes to the input only lead to small
changes in the trace. It is unclear that such an approach would be effective in our
setting. In any case, to the best of our knowledge, this approach has not been
used for database queries or view updates.

Our approach to incrementalisation does draw inspiration from the incremental
lambda calculus of Cai et al. [18]. They used Koch’s incremental multiset op-
erations in examples, but our set-valued relations and deltas also fit into their
framework. Another relevant system, SQLCache [79], shows the value of language
support for caching: in SQLCache, query results (and derived data) are cached
and when the database is updated, dynamic checking is used to avoid recomputing
results if the query did not depend on the changed data. Otherwise, SQLCache
recomputes the results from scratch. Language support for incremental query
evaluation could be used to improve performance in this case.

7.4 Incremental lenses

Wang et al. [89] considered incremental updates for efficient bidirectional pro-
gramming over tree-shaped data structures, but not relations. There are several
approaches to lenses that are based on translating changes. Edit lenses [50] are a

Chapter 7. Related Work 189

form of bidirectional transformations where, rather than translating directly be-
tween one data structure and another, the changes to a data structure are tracked
and then translated into changes on the other data structure. Delta lenses [31]
split the process of incremental view updates into an alignment and a propaga-
tion phase. The alignment computes the delta, which is not unique to the input
and may be altered by the programmer. The delta is then translated into a delta
on the opposite data structure using the propagation process. Diskin et al. [31]
also consider undoability and invertibility for their lenses. They provide a gen-
eral framework which is not based on differentiation and that does not rely on
a specific data structure. Additional work also includes c-lenses [52] and update
lenses [4].

Lenses translating changes between data structures are particularly useful in the
case of symmetric lenses [32]. There, neither of the data structures contain all
of the data, and thus none of the data structures can be considered the ’source’
[49]. Changes could be described by insert, update and delete commands, and
will usually result in similar insert, update or deletion commands for the other
data structure.

None of these approaches has been applied to relational lenses as far as we know.
Rather than utilize (and recapitulate) the needed technical background for these
approaches, we have opted for a concrete approach based on incrementalisation
by differentiation in the style of Cai et al. [18], but it would be interesting to un-
derstand the precise relationships among these various formalisms. The approach
presented in this thesis preserves the exact semantics of the non-incremental ver-
sion, and the delta of two tables is unique.

7.5 Row Type Inference

Records have long been a desirable feature to have in programming languages.
They make it easier to work with data by allowing components in product types
to be addressed by name rather than position. Records are of particular interest
in the context of relational lenses. Not only do relational lenses require records to
represent table records, but they also represent a challenging feature to integrate
into programming language.

A straightforward method to implement records could be to define these as map-

Chapter 7. Related Work 190

pings from labels to values. The type of such a record would then be a mapping
from labels to types. Such records are fairly straightforward, but also have their
limitations. Each record that is constructed in such a way must be constructed
with all the fields defined, and the corresponding type of the record must also
reflect all fields. A function using such a record cannot accept a record which
contains additional fields. This becomes troubling in combination with type in-
ference. Consider a function λr. r.x which may receive the type Λα. {x : α}→ α

could not be used on a record {x : int,y : int} because the two record types cannot
be unified.

An approach to solving this problem is the use of row polymorphism [76, 54].
Row are constructed inductively, with the possibility of extending an existing
row kind with an additional field. Each additional field is explicitly marked as
either absent or present with a type τ describing the value in that field. Types
are able to use polymorphism to abstract over a row kind. This allows various
more interesting applications, such as requiring a record to contain some specific
fields, along with arbitrary additional fields. A record field can also be explicitly
removed by overriding it with an absent value. Additional work extends on row
polymorphism to also support row concatenation [75, 88].

Such approaches to records also come with complexity. Records aren’t just naively
typed as mappings from fields to types, but instead require presence kinds. Type
inference must be extended with additional unification rules to support row poly-
morphism. As more features such as row concatenation are added, the complexity
is increased.

Another method of implementing records is by using constraints. A constraint
on a record type can specify properties such as subset relations and disjointed-
ness [70]. Such an approach can then support explicit row kinds that are closed
mappings from labels to types, while still supporting more advanced operations.
For example the type ∀r,s, t. r⊕ s ∼ t⇒ Πr→ Πs→ Πt could be the type of a
concatenation function, where r⊕ s ∼ t is a constraint specifying that the con-
catenation of row variables r and s must be equal to the row variable t. This
approach can become cumbersome when a function requires many constraints on
records, and in some cases an approach using both constraints and a specific row
notation may be desirable.

Chapter 7. Related Work 191

There is no particular advantage to our implementation of records over other
implementations such as HList [55] or CTRex. Our implementation is mainly
included as an exercise to demonstrate how the type-level programming features
in Haskell can be used to implement something like records.

7.6 Dependently Typed Programming

Haskell provides a limited form of dependent types [67, 43, 33]. Our relational
lenses library makes extensive use of many related features such as generalized
algebraic datatypes [61, 19, 85] type families [77, 78] and data type promotion
[92]. These features are useful for performing additional type checking otherwise
not possible, but cannot be used to prove the correctness of properties quantified
over type variables.

In contrast, fully dependently typed programming languages, such as Agda [13],
Coq [23] and Idris [15] can be used as general purpose theorem provers. These
languages are based on the intuitionistic type theory of Martin-Löf and Sambin
[66]. Based on this logic, the existence of an instance of a data type can be used
as evidence that properties hold, and lemmas can be described by the type of a
function. In the following snippet we define a data type n < m, which specifies
that n is less than m. The data type has two constructors, <base specifies that
any number n is less than its successor n + 1. The other constructor <suc allows
us to derive n < m+1 if we can provide evidence that n < m. Using this Lemma
we can prove transitivity of the < property, by defining a total function <trans

that provides evidence that n < o given evidence that n < m and m < o. The
function is implemented by pattern matching on the proof object m < o.
data _<_ : Nat -> Nat -> Set where
<base : forall {n} -> n < S n
<suc : forall {n m} -> n < m -> n < S m

<trans : forall {n m o} -> n < m -> m < o -> n < o
<trans p1 <base = <suc p1
<trans p1 (<suc p2) = <suc (<trans p1 p2)

An advantage of fully dependently typed programming languages is that there is
not as much of a distinction between types used to construct values and higher
order kinds to be used within other types. There is also no distinction between
functions and type families. As a result it is possible to use existing functions

Chapter 7. Related Work 192

and control structures such as if -statements or let-binding for type-level compu-
tations. The type system also does not require constraints to add this type-level
computation. The type system does not distinguish between string values and
symbols, or between numbers and type level natural numbers. These changes
make type-level programming feel more natural.

Scala 3 includes support for match types, offering a similar feature set to type
families, but with additional support for sub-typing [11]. These features are used
to ensure type-safety of tensor shapes in a TensorFlow programming interface.
The type-level programming capabilities provided by Scala 3 would be helpful for
implementing type-safe relational lenses, but it would be necessary to determine
if the use of other features such as data type promotion and constraints can be
translated into Scala.

The most commonly used programming languages today, with the exception of
Haskell and Scala, do not support any form of dependent types. One could
speculate that this may either be related to the complexity of dependent types
or, because many of these languages are primarily designed as proof assistants.
Rather than writing the whole application in such languages some, such as Coq,
allow code to be extracted into other languages [62].

Idris 2 introduces quantitative type theory to a dependently typed programming
language [16]. In quantitative type theory, variables can be given a multiplicity
indicating how often they are used. A multiplicity of zero prevents variables from
being used in any other runtime value. By giving proof objects a multiplicity of
zero, it becomes safe to erase them during compilation, improving performance
and bringing dependently typed programming closer to common applications.

Chapter 8

Future Work

8.1 Table Keys

Many relational database servers support auto-incrementing columns. Auto-
incrementing columns allow a record to be inserted into a table without specifying
what the id value is. The database server then uses some mechanism to deter-
mine a value for the unspecified id column, so that it can be uniquely determined.
In Postgresql for example, the programmer defines a column with the datatype
SERIAL, which automatically creates a sequence. The sequence is incremented
each time a new record is inserted into the table.

The Links implementation of relational lenses contains some support for auto-
incrementing columns. Links defines a variant datatype Serial, which can either
be an existing key value v in the database Key v, a new key that does not exist
in the database yet and is considered unequal to any other key value NewKey, and
a new key value NewKeyMapped i with an attached value i which should be equal
to any other new key value with the same i.

The updating process of a view v then happens in a few stages. The first step
is to replace any NewKey value with a value NewKeyMapped i such that the i value
is unique to the view. Relational lenses then compute the updated database
table or change set to the database depending on which semantics are used.
The resulting view or delta is used to update the database. While updating the
database, the database returns the newly inserted values for each inserted record.
This information is used to compute a mapping m from NewKeyMapped i values to

193

Chapter 8. Future Work 194

incremented values j.

Without further handling this approach violates the PutGet law, because the
database has no notion of NewKeyMapped values. To restore well-behavedness, it
is necessary to adjust the law. We assume that the put function returns a tuple
of both the updated source table, and the mapping m from NewKeyMapped values.
We can then formulate PutGet as follows, where m(Y) applies the mapping m to
each NewKeyMapped value in the view and the fix(Y) function replaces all NewKey
values with NewKeyMapped values.

let Y ′ = fix(Y) in

let (X ′,m) = put(X,Y ′) in

m(get(X ′)) == Y ′

We don’t provide any further proofs that this approach works, and leave further
investigation as future work.

8.2 Incremental Performance

The incremental semantics presented in Chapter 3 offer a significant improvement
over the naive relational lens semantics. Unfortunately, these semantics are still
not always ideal. All lenses currently require some intermediate queries to the
database server, which slows down the update operation significantly.

Another issue is that join and select lenses can potentially result in very large
intermediate queries that can seriously impact update performance. These hap-
pen in cases when views have functional dependencies X→ Y such that there are
many records with the same X value. This would likely also result in very big
deltas if the Y value of the record is changed.

A potential remedy for the second issue may be to use an approach inspired by
query shredding [22]. Rather than always querying the complete set of informa-
tion required, the semantics may try to issue multiple queries for each functional
dependency. The amount of data sent by the individual queries would then be
smaller than the join of the queries containing redundant data.

Similarly, it could be helpful to investigate other change structure definitions.
The current semantics define a delta as a tuple of the inserted records and deleted

Chapter 8. Future Work 195

records. This representation may include unnecessary information. When chang-
ing a field in a record for example, all the unchanged fields are also included.
Using a different change structure may also reduce the amount of information
that must be queried from the database server.

There are probably also many opportunities to improve the performance of the
update semantics when certain criteria are met. For example, a select lens with
only a single functional dependency X → Y that only filters records based on
their X value may not require additional queries for put operations. For deltas
that only delete or update existing records (not inserting new ones), the numbers
of queries that must be issued could potentially be reduced.

8.3 Concurrent Database Access

We have not yet investigated how well the current incremental semantics would
handle multiple simultaneous updates to the same table at once. When working
with databases, one typically uses transactions to detect when another process
might interfere with the current process [45]. Transactions record which data is
read from and written to during transaction processes. If there is some poten-
tially harmful overlap between two transactions such as read-write or write-write
conflicts, the transaction is rejected and all changes are rolled back. Transactions
could possibly be used to improve concurrent access by relational lenses.

Another issue is the way delta views are calculated. If a client fetches a view,
and the underlying view is then changed by another process while the client is
altering their copy of the view, then when the client submits the changed view
it will overwrite all of the changes by the other process. This could potentially
be improved by ensuring that the delta is calculated by comparing it to a cached
version of the old view. Another issue is that the granularity of deltas used by our
incremental relational lenses is on a row-by-row basis. It may be helpful for the
change structure to track exactly which columns or functional dependencies have
been changed. These problems commonly affect lenses and distributed systems.

Chapter 8. Future Work 196

8.4 Additional Lenses

In this thesis we use the relational lens primitives introduced by Bohannon et al.
[12]. These offer a good foundation of operations that the programmer might
require, but other lenses may be of interest as well. The following lenses may also
be interesting to investigate:

The join lens described here only supports the natural join, requiring a record
in the output to be combined from records in both the left table and the right
table. SQL also provides outer joins, where records are still included in the
output if they are only contained in either the left or right table depending on
the exact query. Such outer join semantics may have favourable performance to
the inner join lenses. However, outer joins usually rely on null values, which are
not supported in Links.

Another interesting application of lenses could be the integration of temporal
databases [41]. Temporal databases can be used to keep track of when a record
is valid, allowing the table to have multiple valid versions at different times. A
relational lens could be defined to construct the table at a specific time.

Another helpful feature could be access control annotations on the source tables.
The programmer could mark which fields may be written to and which fields
should remain read-only. These permissions could be propagated to the views,
preventing undesirable changes to the view. The read-only information might
simplify put operations.

8.5 Well behaved Lenses

Relational lenses currently require well-behavedness. While this property is gen-
erally desirable, there are also some situations where this contradicts the require-
ments of the lenses. Consider the case where a select lens should be used to find
records that contain some issue to be fixed. The select lens would use a predicate
P that describes the issue, returning a collection of records satisfying P . By fixing
the records, it is assumed that they would not satisfy P anymore, and it would
not be possible to update the database with put, as this would violate PutGet.

In addition to weakening well-behavedness it is also possible to strengthen it.
Foster et al. [36] define a lens as very well behaved if it satisfies the PutPut law,

Chapter 8. Future Work 197

defined as:
put(X ′,put(X,Y)) = put(X ′,Y).

The PutPut rule specifies that the result of doing a put can be undone with
another put, and is thus sometimes associated with undoability [80]. This prop-
erty is often considered too restrictive [36, 80]. Relational lenses only satisfy a
restricted version of this property, where PutPut is only satisfied with monoton-
ically decreasing views [12]. Diskin et al. [31] define undoability and invertability
properties for delta-lenses, which are less restrictive. Investigating the applica-
bility of such additional properties is left as future work.

Chapter 9

Conclusion

View update is a classical problem in databases. It has applications to database
programming, security, and data synchronization. Updatable views seem partic-
ularly valuable in web programming settings, for bridging gaps between a nor-
malized relational representation of application data and the representation the
programmer actually wants to work with. Updatable views were an important
source of inspiration for work on lenses in the functional programming languages
community. There has been a great deal of research on lenses for functional
programming since the influential work of Foster et al. [36], but relatively little
of this work has found application to the classical view update problem. The
main exception to this has been Bohannon et al. [12], who define well-behaved
relational lenses based on a type system that tracks functional dependencies and
predicate constraints in addition to the usual type constraints. Unlike updatable
views in mainstream relational databases, relational lenses support complex view
definitions (including joins) and offer strong guarantees of correct round-tripping
behaviour. However, prior to the work on this thesis no public implementation
of relational lenses was available. This thesis shows that relational lenses can be
implemented in practice.

Turning relational lenses into a practical language feature poses some additional
challenges. A naive implementation of the semantics as defined by Bohannon
et al. [12] recomputes the entire table. This model may work on small databases,
but typical web applications accumulate data over time. The growing database
would slow down ever more as time progresses. This is particularly suboptimal

198

Chapter 9. Conclusion 199

because web applications are designed to serve as many clients at the same time
as possible.

This thesis introduces an equivalent definition for the semantics of relational
lenses, based on incrementalization. Here, we draw on parallel developments in
the database and functional programming communities: incremental view main-
tenance is a classical topic in databases, and there has been a great deal of work
in the programming language community on adaptive or incremental functional
programming. We show how to embed relational lenses (and their associated
type and constraint system) into Links and prove the correctness of incremental
versions of the select, drop, and join relational lenses and their compositions.
We also present an implementation and evaluate its efficiency. In particular, we
show that the naive approach of shipping the whole source database to a client
program, evaluating the put operation in-memory, and replacing the old source
tables with their new versions is realistic only for trivial data sizes. We demon-
strate scalability to databases with hundreds of thousands of rows; for reasonable
view and delta sizes, our implementation takes milliseconds whereas the naive
approach takes seconds.

The other challenge to implementing language integrated relational lenses is the
complexity of checking the typing rules required by relational lenses. For rela-
tional lenses to be well-behaved, it is necessary for the lenses to satisfy many
side conditions. These side conditions are defined on the record type, functional
dependency and predicate constraints applying to the input and output views for
each lens primitive. The typing rules also ensure linear usage of the underlying
tables.

As defined by Bohannon et al. [12], predicates are abstract sets and the checks
on predicates are specified using relational algebra expressions. This thesis in-
troduces a concrete predicate syntax amenable to implementation. We show how
these predicates relate to abstract sets, and provide equivalent checks for our
concrete predicate syntax. The work is supported by proofs verifying that these
checks are sufficient. This thesis compares the advantages and disadvantages of
performing the predicate checks during program execution or as a static check
during compilation. The thesis then introduces hybrid predicates, which capture
some benefits of both approaches. Such predicates allow portions of a static pred-
icate to be erased in such a way that only the typing information retained when

Chapter 9. Conclusion 200

this is sufficient to perform the predicate checks.

Bohannon et al. [12] define relational lenses as bidirectional transformations be-
tween database schemas. In the language integrated form of relational lenses, a
more favourable representation would be lenses representing a handle to single
view, such that the get and put functions are side-effecting operations on the
lenses. This thesis presents the typing rules of such a full integration of relational
lenses together with the work on predicates. The provided proofs show that lenses
satisfying these typing rules produce an equivalent well-behaved database schema
mapping relational lens.

The work presented in this thesis is used by two implementations of relational
lenses. The first implementation extends the Links compiler, and has support
for both static and dynamic predicates as well as incremental relational lens
semantics. The other implementation of relational lenses is in the form of a
Haskell library. This library can be implemented using various Haskell type-level
programming techniques and does not require any changes to the compiler. This
thesis documents how the relational lens typing rules are implemented in Haskell
using type classes, type families, data type promotion and constraints.

Our work establishes for the first time the feasibility of relational lenses for solv-
ing classical view update problems in databases. We improve the performance of
the relational lens semantics using incrementalization, provide a concrete predi-
cate syntax and corresponding checks satisfying the specifications of abstract set
predicates and provide a formulation of relational lenses that is more suitable for
language integration. The resulting implementations support our hypothesis that
relational lenses can be turned into a practical language feature.

Bibliography

[1] Elm: A delightful language for reliable webapps. http://www.elm-lang.org,
2019.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional pro-
gramming. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(6):990–1034, 2006.

[4] D. Ahman and T. Uustalu. Coalgebraic update lenses. Electronic Notes in
Theoretical Computer Science, 308:25–48, 2014.

[5] T. Altenkirch and J. Chapman. Big-step normalisation. Journal of Func-
tional Programming, 19(3-4):311–333, 2009.

[6] W. W. Armstrong. Dependency structures of data base relationships. In Pro-
ceedings of IFIP congress, volume 74, pages 580–583. Geneva, Switzerland,
1974.

[7] Y. Asano, S. Hidaka, Z. Hu, Y. Ishihara, H. Kato, H.-S. Ko, K. Nakano,
M. Onizuka, Y. Sasaki, T. Shimizu, et al. A view-based programmable ar-
chitecture for controlling and integrating decentralized data. arXiv preprint
arXiv:1803.06674, 2018.

[8] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems (TODS), 6(4):557–575, 1981.

[9] P. A. Bernstein, M. Jacob, J. Pérez, G. Rull, and J. F. Terwilliger. In-
cremental mapping compilation in an object-to-relational mapping system.
In Proceedings of the ACM SIGMOD International Conference on Manage-

201

http://www.elm-lang.org

Bibliography 202

ment of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages
1269–1280, 2013. doi: 10.1145/2463676.2465294.

[10] G. M. Bierman, E. Meijer, and M. Torgersen. Lost in translation: formal-
izing proposed extensions to C#. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming systems, languages
and applications, pages 479–498, 2007.

[11] O. E. P. Blanvillain. Abstractions for Type-Level Programming. PhD thesis,
EPFL, 2022.

[12] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language
for updatable views. In Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART symposium on Principles of Database Systems, pages 338–347.
ACM, 2006.

[13] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda – a functional
language with dependent types. In International Conference on Theorem
Proving in Higher Order Logics, pages 73–78. Springer, 2009.

[14] D. Box and A. Hejlsberg. LinQ: .NET language-integrated query. MSDN
Developer Centre, 89, 2007.

[15] E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of functional programming, 23(5):552–
593, 2013.

[16] E. Brady. Idris 2: Quantitative type theory in practice. arXiv preprint
arXiv:2104.00480, 2021.

[17] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and an-
notations through views. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 150–
158, 2002.

[18] Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann. A theory of changes
for higher-order languages: incrementalizing λ-calculi by static differenti-
ation. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, pages 145–155, 2014. doi: 10.1145/2594291.2594304.

Bibliography 203

[19] J. Cheney and R. Hinze. First-class phantom types. Technical report, Cornell
University, 2003.

[20] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-
integrated query. In Proceedings of the 18th ACM SIGPLAN international
conference on Functional programming, ICFP ’13, pages 403–416, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.
2500586. URL http://doi.acm.org/10.1145/2500365.2500586.

[21] J. Cheney, S. Lindley, G. Radanne, and P. Wadler. Effective quotation:
relating approaches to language-integrated query. In Proceedings of the ACM
SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation,
pages 15–26, 2014.

[22] J. Cheney, S. Lindley, and P. Wadler. Query shredding: efficient relational
evaluation of queries over nested multisets. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, pages 1027–
1038, 2014.

[23] A. Chlipala. Certified programming with dependent types: a pragmatic in-
troduction to the Coq proof assistant. MIT Press, 2013.

[24] A. Chlipala. Ur/web: A simple model for programming the web. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 153–165, 2015. doi: 10.1145/2676726.2677004.

[25] E. Cooper. The script-writer’s dream: How to write great SQL in your
own language, and be sure it will succeed. In International Symposium on
Database Programming Languages, pages 36–51. Springer, 2009.

[26] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming
without tiers. In Formal Methods for Components and Objects, 5th Inter-
national Symposium, FMCO 2006, Amsterdam, The Netherlands, Novem-
ber 7-10, 2006, Revised Lectures, pages 266–296, 2006. doi: 10.1007/
978-3-540-74792-5_12. URL https://doi.org/10.1007/978-3-540-74792-5_

12.

[27] G. Copeland and D. Maier. Making Smalltalk a database system. In Proceed-

http://doi.acm.org/10.1145/2500365.2500586
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12

Bibliography 204

ings of the 1984 ACM SIGMOD international conference on Management of
data, pages 316–325, 1984.

[28] C. J. Date. View updating and relational theory. O’Reilly, 2012.

[29] U. Dayal and P. A. Bernstein. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems (TODS), 7(3):
381–416, 1982.

[30] C. Delobel and R. G. Casey. Decomposition of a data base and the theory
of boolean switching functions. IBM Journal of Research and Development,
17(5):374–386, 1973.

[31] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based bidi-
rectional model transformations: the asymmetric case. Journal of Ob-
ject Technology, 10:6: 1–25, 2011. doi: 10.5381/jot.2011.10.1.a6. URL
https://doi.org/10.5381/jot.2011.10.1.a6.

[32] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Ore-
jas. From state-to delta-based bidirectional model transformations: The
symmetric case. In International Conference on Model Driven Engineering
Languages and Systems, pages 304–318. Springer, 2011.

[33] R. A. Eisenberg. Dependent types in Haskell: Theory and practice. University
of Pennsylvania, 2016.

[34] L. Fegaras. Propagating updates through XML views using lineage tracing.
In Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 309–
320, 2010. doi: 10.1109/ICDE.2010.5447896. URL https://doi.org/10.1109/

ICDE.2010.5447896.

[35] S. Fehrenbach and J. Cheney. Language-integrated provenance by trace anal-
ysis. In Proceedings of the 17th ACM SIGPLAN International Symposium
on Database Programming Languages, pages 74–84, 2019.

[36] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to
the view-update problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 29(3):17, 2007.

https://doi.org/10.5381/jot.2011.10.1.a6
https://doi.org/10.1109/ICDE.2010.5447896
https://doi.org/10.1109/ICDE.2010.5447896

Bibliography 205

[37] J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable security views.
In Computer Security Foundations Symposium, 2009. CSF’09. 22nd IEEE,
pages 60–74. IEEE, 2009.

[38] N. Foster, K. Matsuda, and J. Voigtländer. Three complementary approaches
to bidirectional programming. In Generic and Indexed Programming - Inter-
national Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Re-
vised Lectures, pages 1–46, 2010. doi: 10.1007/978-3-642-32202-0_1. URL
https://doi.org/10.1007/978-3-642-32202-0_1.

[39] S. Fowler, S. Harding, J. Sharman, and J. Cheney. Cross-tier web pro-
gramming for curated databases: A case study. Under review., 2020. URL
http://arxiv.org/abs/2003.03845.

[40] T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of
the ACM SIGPLAN 1991 conference on Programming language design and
implementation, pages 268–277, 1991.

[41] V. Galpin and J. Cheney. Curating Covid-19 Data in Links. In Provenance
and Annotation of Data and Processes, pages 237–243. Springer, 2020.

[42] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm for the incre-
mental recomputation of active relational expressions. IEEE Transactions
on Knowledge and Data Engineering, 9(3):508–511, 1997.

[43] A. M. Gundry. Type inference, Haskell and dependent types. PhD thesis,
University of Strathclyde, 2013.

[44] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Engineering Bulletin, 18(2):3–18,
1995. URL http://sites.computer.org/debull/95JUN-CD.pdf.

[45] T. Haerder and A. Reuter. Principles of transaction-oriented database re-
covery. ACM computing surveys (CSUR), 15(4):287–317, 1983.

[46] M. A. Hammer, Y. P. Khoo, M. Hicks, and J. S. Foster. Adapton: com-
posable, demand-driven incremental computation. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014, pages 156–166, 2014.

https://doi.org/10.1007/978-3-642-32202-0_1
http://arxiv.org/abs/2003.03845
http://sites.computer.org/debull/95JUN-CD.pdf

Bibliography 206

doi: 10.1145/2594291.2594324. URL http://doi.acm.org/10.1145/2594291.

2594324.

[47] M. Herschel, R. Diestelkämper, and H. Ben Lahmar. A survey on provenance:
What for? what form? what from? The International Journal on Very
Large Data Bases, 26(6):881–906, 2017. doi: 10.1007/s00778-017-0486-1.
URL https://doi.org/10.1007/s00778-017-0486-1.

[48] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirec-
tionalizing graph transformations. In Proceeding of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 205–216, 2010. doi: 10.1145/
1863543.1863573. URL http://doi.acm.org/10.1145/1863543.1863573.

[49] M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 371–384, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926428. URL
http://doi.acm.org/10.1145/1926385.1926428.

[50] M. Hofmann, B. Pierce, and D. Wagner. Edit lenses. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’12, pages 495–508, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103715. URL
http://doi.acm.org/10.1145/2103656.2103715.

[51] R. Horn, S. Fowler, and J. Cheney. Language-integrated updatable views.
In 31st Symposium on Implementation and Application of Functional Lan-
guages, 2020.

[52] M. Johnson and R. Rosebrugh. Delta lenses and opfibrations. In Proceedings
of the Second International Workshop on Bidirectional Transformations: BX
2013, volume 57, pages 1–18. European Association of Software Science and
Technology, 2013.

[53] M. P. Jones. A theory of qualified types. In European symposium on pro-
gramming, pages 287–306. Springer, 1992.

[54] M. P. Jones and S. Peyton Jones. Lightweight extensible records for Haskell.
In Haskell Workshop. Citeseer, 1999.

http://doi.acm.org/10.1145/2594291.2594324
http://doi.acm.org/10.1145/2594291.2594324
https://doi.org/10.1007/s00778-017-0486-1
http://doi.acm.org/10.1145/1863543.1863573
http://doi.acm.org/10.1145/1926385.1926428
http://doi.acm.org/10.1145/2103656.2103715

Bibliography 207

[55] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous
collections. In Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell,
pages 96–107, 2004.

[56] C. Kiss, T. Field, S. Eisenbach, and S. Peyton Jones. Higher-order type-
level programming in Haskell. Proceedings of the ACM on Programming
Languages, 3(ICFP):1–26, 2019.

[57] H. Ko and Z. Hu. An axiomatic basis for bidirectional programming. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):41:1–41:29, 2018.
doi: 10.1145/3158129. URL http://doi.acm.org/10.1145/3158129.

[58] H.-S. Ko, T. Zan, and Z. Hu. Bigul: A formally verified core language
for putback-based bidirectional programming. In Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion, PEPM ’16, pages 61–72, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4097-7. doi: 10.1145/2847538.2847544. URL http://doi.acm.

org/10.1145/2847538.2847544.

[59] C. Koch. Incremental query evaluation in a ring of databases. In Proceed-
ings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 87–98. ACM, 2010.

[60] C. Koch, D. Lupei, and V. Tannen. Incremental view maintenance for col-
lection programming. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 75–90, 2016. doi: 10.
1145/2902251.2902286. URL http://doi.acm.org/10.1145/2902251.2902286.

[61] D. Leijen and E. Meijer. Domain specific embedded compilers. ACM Sigplan
Notices, 35(1):109–122, 1999.

[62] P. Letouzey. Extraction in Coq: An overview. In Conference on Computabil-
ity in Europe, pages 359–369. Springer, 2008.

[63] M. Ley. DBLP: Some lessons learned. Proceedings of the VLDB Endowment,
2(2):1493–1500, 2009.

[64] S. Lindley and J. Cheney. Row-based effect types for database integration.

http://doi.acm.org/10.1145/3158129
http://doi.acm.org/10.1145/2847538.2847544
http://doi.acm.org/10.1145/2847538.2847544
http://doi.acm.org/10.1145/2902251.2902286

Bibliography 208

In Proceedings of the 8th ACM SIGPLAN workshop on Types in language
design and implementation, pages 91–102, 2012.

[65] D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of XQuery. In
Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-based Program Manipulation, 2007, Nice, France, January
15-16, 2007, pages 21–30, 2007. doi: 10.1145/1244381.1244386. URL http:

//doi.acm.org/10.1145/1244381.1244386.

[66] P. Martin-Löf and G. Sambin. Intuitionistic type theory, volume 9. Bibliopo-
lis Naples, 1984.

[67] C. McBride. Faking it: simulating dependent types in Haskell. Journal of
functional programming, 12(4-5):375–392, 2002.

[68] E. Meijer, B. Beckman, and G. M. Bierman. LINQ: Reconciling object,
relations and XML in the .NET framework. In SIGMOD, 2006.

[69] R. Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

[70] J. G. Morris and J. McKinna. Abstracting extensible data types: Or, rows
by any other name. Proceedings of the ACM on Programming Languages, 3
(POPL):1–28, 2019.

[71] A. J. Pawson, J. L. Sharman, H. E. Benson, E. Faccenda, S. P. Alexander,
O. P. Buneman, A. P. Davenport, J. C. McGrath, J. A. Peters, C. Southan,
et al. The IUPHAR/BPS guide to PHARMACOLOGY: an expert-driven
knowledgebase of drug targets and their ligands. Nucleic acids research, 42
(D1):D1098–D1106, 2014.

[72] T. Petricek. Data exploration through dot-driven development. In 31st Euro-
pean Conference on Object-Oriented Programming (ECOOP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[73] X. Qian and G. Wiederhold. Incremental recomputation of active relational
expressions. IEEE transactions on knowledge and data engineering, 3(3):337–
341, 1991. doi: 10.1109/69.91063. URL https://doi.org/10.1109/69.91063.

[74] R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.).
McGraw-Hill, 2003. ISBN 978-0-07-115110-8.

http://doi.acm.org/10.1145/1244381.1244386
http://doi.acm.org/10.1145/1244381.1244386
https://doi.org/10.1109/69.91063

Bibliography 209

[75] D. Rémy. Typing record concatenation for free. In Proceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 166–176, 1992.

[76] D. Rémy. Type inference for records in a natural extension of ML. Theoretical
Aspects Of Object-Oriented Programming. Types, Semantics and Language
Design, 1993.

[77] T. Schrijvers, M. Sulzmann, S. Peyton Jones, and M. Chakravarty. Towards
open type functions for Haskell. Implementation and Application of Func-
tional Languages, (12):233–251, 2007.

[78] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM SIG-
PLAN international conference on Functional programming, pages 51–62,
2008.

[79] Z. Scully and A. Chlipala. A program optimization for automatic database
result caching. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, pages 271–284, 2017. URL http://dl.acm.org/citation.cfm?id=

3009891.

[80] P. Stevens. Bidirectional model transformations in QVT: Semantic issues and
open questions. In International Conference on Model Driven Engineering
Languages and Systems, pages 1–15. Springer, 2007.

[81] P. Stevens. A landscape of bidirectional model transformations. In Inter-
national Summer School on Generative and Transformational Techniques in
Software Engineering, pages 408–424. Springer, 2007.

[82] D. Syme. Leveraging .NET meta-programming components from F#: inte-
grated queries and interoperable heterogeneous execution. In ML, 2006.

[83] V.-D. Tran, H. Kato, and Z. Hu. Programmable view update strategies on
relations. arXiv preprint arXiv:1911.05921, 2019.

[84] A. Ulrich and T. Grust. The flatter, the better: Query compilation based on
the flattening transformation. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data, Melbourne, Victoria, Aus-

http://dl.acm.org/citation.cfm?id=3009891
http://dl.acm.org/citation.cfm?id=3009891

Bibliography 210

tralia, May 31 - June 4, 2015, pages 1421–1426, 2015. doi: 10.1145/2723372.
2735359. URL http://doi.acm.org/10.1145/2723372.2735359.

[85] D. Vytiniotis, S. Weirich, and S. Peyton Jones. Simple unification-based type
inference for GADTs. In International Conference on Functional Program-
ming (ICFP’06), 2006.

[86] P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM Con-
ference on LISP and Functional Programming, pages 61–78, 1990.

[87] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 60–76, 1989.

[88] M. Wand. Type inference for record concatenation and multiple inheritance.
Information and Computation, 93(1):1–15, 1991.

[89] M. Wang, J. Gibbons, and N. Wu. Incremental updates for efficient bidi-
rectional transformations. In Proceeding of the 16th ACM SIGPLAN inter-
national conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011, pages 392–403, 2011. doi: 10.1145/2034773.2034825.
URL http://doi.acm.org/10.1145/2034773.2034825.

[90] E. Wcisło, P. Habela, and K. Subieta. A Java-integrated Object Oriented
Query Language. In International Conference on Informatics Engineering
and Information Science, pages 589–603. Springer, 2011.

[91] L. Wong. Kleisli, a functional query system. Journal of Functional Program-
ming, 10(1):19–56, 2000.

[92] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In Proceedings of the 8th ACM SIG-
PLAN Workshop on Types in Language Design and Implementation, pages
53–66, 2012.

[93] T. Zan, L. Liu, H. Ko, and Z. Hu. Brul: A putback-based bidirectional
transformation library for updatable views. In Proceedings of the 5th In-
ternational Workshop on Bidirectional Transformations, Bx 2016, co-located
with The European Joint Conferences on Theory and Practice of Software,

http://doi.acm.org/10.1145/2723372.2735359
http://doi.acm.org/10.1145/2034773.2034825

Bibliography 211

ETAPS 2016, Eindhoven, The Netherlands, April 8, 2016., pages 77–89,
2016. URL http://ceur-ws.org/Vol-1571/paper_3.pdf.

http://ceur-ws.org/Vol-1571/paper_3.pdf

Appendix A

Proofs for Chapter 2

A.1 Comparison to original Relational Lenses

In this section we compare the definition of the select lens as defined by Bohannon
et al. [12] with our definition in Chapter 2.

Original Formulation of Select Lens

In the original formulation by Bohannon et al. [12], a database φ,γ is a mapping
from relation names S,T to relation names M,N . The sort of a relation name
S, written sort(S), is a tuple (R,P,F). For any mapping φ(S) = M such that
sort(S) = (R,P,F), it is required that M : Rel(R,P,F). The schema of a database
∆,Σ is a set of relation names. A database φ is an instance of a schema ∆, written
φ : ∆ if it contains a mapping for each relation name in ∆.

A relational lens consumes a relation in the left database, replacing it with a
new relation in the right database. The following lens removes the relation S

and replaces it with a relation T , where T only contains the entries from S that
satisfy the predicate P :

select from S where P as T

We define I as the above lens. The lens has the type {S}⊎Σ⇔ {T}⊎Σ where
sort(S) = (R,Q,F) and sort(T) = (R,P ∧Q,F). The function I↗ (φ) computes
the get direction given a database φ and I ↘ (γ,φ) computes the put direction
given the updated view database γ and the original database φ.

212

Appendix A. Proofs for Chapter 2 213

I ↗ (φ) = φ\S [T 7→ P ∩φ(S)]

I ↘ (γ,φ) = γ\T [S 7→M1\N#]

where

M1 = (¬P ∩φ(S))←F γ(T)

N# = (P ∩M1)\γ(T)

F = fd(S)

Bohannon et al. [12] show that I ↗ (φ) is a total function of type ({S}⊎Σ)→
({T}⊎Σ), where sort(S) = (R,Q,F) and sort(T) = (R,P ∧Q,F). They also show
that I ↘ (γ,φ) is a total function of type ({T}⊎Σ)× ({S}⊎Σ)→ ({S}⊎Σ).

Sequential Select Lens

The select lens introduced in Chapter 2 is a bidirectional mapping between rela-
tion types Rel(R,Q,F)⇔ Rel(R,P ∧Q,F). We derive the semantics of a select
lens v = selectP : Rel(R,Q,F)⇔ Rel(R,P ∧Q,F) by constructing a relational
lens I = selectS P as T assuming that there are no other tables in the schema
(Σ =∅). We then define the get and put functions by first constructing databases
using the provided relations, then calling the underlying get or put function on
I and finally projecting the result onto the resulting table name. We swap the
order of the put function arguments.

getv(M) = I ↗ ({S 7→M})(T)

putv(M,N) = I ↘ ({T 7→N},{S 7→M})(S)

The above expressions for get and put are simplified by substituting the arguments
into the definitions of I ↗ and I ↘. In the get function φ is substituted with
{S 7→M}. When expanded, the expression φ(S) is equal to M . The resulting
expression of the get function takes the form φ\S [S 7→O](S), which is simplified
to the expression O. The function body of put(M,N) similarly replaces each
instance of φ(S) with M and J(S) with N . The resulting expression of the form
γ\T [S 7→O](S) can be simplified to O. The resulting getv and putv functions are:

getv(M) = σP (M)
putv(M,N) = let M0 = mergeF (σ¬P (M),N) in

let N# = σP (M0)−N in
M0−N#

Appendix A. Proofs for Chapter 2 214

The formulations is equivalent with the following notable differences:

• The use of let-bindings rather than where-bindings.

• The relational select operation (σP (M)) is used instead of set intersection
(P ∩M). Semantically these are equivalent, but the relational select oper-
ator makes it more explicit that P is fixed. This makes incrementalization
easier, because the incremental version of the select operator is simpler than
the incremental intersection operator.

• Set difference is denoted using − rather than \, but rely on the same se-
mantics of these operations.

• Functional notation for operators such as relational merge are written M←F

N instead of mergeF (M,N).

• Only the relevant tables are computed instead of the full database.

We know that I↗ (φ) is a total function of the type {S}→{T}, where sort(S) =
(R,Q,F) and sort(T) = (R,P ∧Q,F). If M is of type Rel(R,Q,F), then {S 7→M}
is a database of schema {S} and I ↗ ({S 7→M}) is a database instance of the
schema {T}. The projection of this expression is a relation of type Rel(R,P ∧
Q,F), making getv a total function from type Rel(R,Q,F)→ Rel(R,P ∧Q,F).

I↘ (φ) is a total function from {T}×{S}→ {S}, where sort(S) = (R,Q,F) and
sort(T) = (R,P ∧Q,F). {S 7→M} and {T 7→N} are instances of {S} and {T}.
It follows that putv is a total function of type Rel(R,Q,F)×Rel(R,P ∧Q,F)→
Rel(R,Q,F).

We now show that the round-tripping rules hold, starting with GetPut:

∀φ : {S}. {S 7→ φ(S)}= φ (1)

getv(put(M,N))

= I ↗ ({S 7→ I ↘ ({T 7→N},{S 7→M})(S)})(T) def. getv/putv

= I ↗ (I ↘ ({T 7→N},{S 7→M}))(T) (1)

= {T 7→N}(T) I well behaved

= N

Next we show that PutGet holds:

putv(M,get(M))

Appendix A. Proofs for Chapter 2 215

= v↘ ({T 7→ v↗ ({S 7→M})(T)},{S 7→M})(S) def. getv /putv

= v↘ (v↗ ({S 7→M}),{S 7→M})(S) (1)

= {S 7→M}(S) I well behaved

= M

The remaining lenses (with the exception of the change to the project lens shown
in the following section) can be defined in a similar manner.

A.2 BPV to Structural Sequential Lenses

The representation of relational lenses presented in Section 2.2 differs slightly
from the representation from Bohannon et al. [12], which we refer to as BPV
relational lenses. BPV lenses construct a bidirectional transformation between
two database schemas, where each schema is a mapping from schema names
to table types. Our representation is a mapping between structural schemas,
which are product types of individual table types that aren’t referred to by name.
Consider the difference between the lens selectP S as T which maps between
the schemas {S} and {T} and the lens selectP which maps between the relations
Rel(R,Q,F) and Rel(R,P ∧Q,F). Our formulation does not refer to tables by
relation names. BPV style lenses are used for Chapter 5, which also contains the
corresponding typing rules.

BPV relational lenses must be careful to ensure linearity of relation names. This
ensures that no lens consumes a lens twice, as the put operation would otherwise
produce two variants of these lenses which may differ (e.g. if a table is joined
with itself, and a record is then only deleted from the left lens). The structural
sequential lenses avoid this issue, as there is no notion of reusing a table. Instead
each of the tables in the product type are considered unique.

For any lens I : Σ⇔ ∆ we can compute the mapping m from any S ∈ ∆ to
the corresponding sequential lenses using the seq function. We use the notation
m\S⃗

to mean the mapping m with all entries S⃗ removed, m[S 7→ I] to mean the
mapping m with S set to I and m(S) a lookup of the value S in m.

seq (I) = seq′ ({S 7→ idS | S ∈ Σ}, I)

where seq’ is defined as

Appendix A. Proofs for Chapter 2 216

seq′ (m,selectP S as T) = m[T 7→m(S);selectP]

seq′ (m,drop ℓ determined by (U,v) from S as T) = m[T 7→m(S);drop ℓ determined by (U,v)]

seq′ (m,joinPd,Qd
S1 S2 as T

)
= m[T 7→m(S1)⊗m(S2);joinPd,Qd

]

seq′ (m,I;J) = seq′ (seq′ (m,I),J
)

A.3 Equivalence of project lens definitions
Theorem 15. The definition of the project lens given in Section 2.3.3:

get(M) = πU−A(M)
put(M,N) = let M1 = N ⋊⋉ {{A = a}}) in

reviseX→A(M1,M)

is equivalent to the definition given in Bohannon et al. [12]:

get(M) = πU−A(M)
put(M,N) = let Nnew = N −πU−A(M) in

let M0 = (M ⋊⋉ N)∪ (Nnew ⋊⋉ {{A = a}}) in
reviseX→A(M0,M)

Proof.

M : U and N : U −A with A ∈ U and X ⊆ U −A suppose (M,U,A,X)

M0 = (M ⋊⋉ N)∪ ((N −πU−A(M)) ⋊⋉ {(A = a)}) define (M0) (1)

M1 = N ⋊⋉ {(A = a)} define (M1) (2)

Now show reviseX→A(M0,M) = reviseX→A(M1,M).

=⇒ direction :

m ∈M0 suppose (m) (1)

if m ∈M ⋊⋉ N :

m ∈M def. ⋊⋉

m[U −A] ∈N def. ⋊⋉

m′ = m[U −A]←+(A = a) define (m′) (2)

m′[U −A] = m[U −A] (3)

↪→m′ ∈M1 (1); def. ⋊⋉

↪→ recreviseX→A(m′,M) = m′←+m[A] def. recreviseX→A(·, ·); m ∈M

Appendix A. Proofs for Chapter 2 217

= m←+m[A] (3)

= recreviseX→A(m,M) m ∈M ; def. recreviseX→A(·, ·)

if m ∈ (N −πU−A(M)) ⋊⋉ {(A = a)} :

↪→m ∈M1 ⋊⋉ monotone; (1)

⇐= direction :

m ∈M1 suppose (m)

m[U −A] ∈N

if ∃m′ ∈M.m′[U −A] = m[U −A] : (4)

m′ ∈M ⋊⋉ N

↪→m′ ∈M0 (1)

↪→ recreviseX→A(m′,M) = m′←+m′[A] def. recreviseX→A(·, ·); m′ ∈M

= m←+m′[A] (4)

= recreviseX→A(m,M) m′ ∈M ; def. recreviseX→A(·, ·)

if ∄m′ ∈M.m′[U −A] = m[U −A] :

m[U −A] ∈N −πU−A(M)

m ∈ (N −πU−A(M)) ⋊⋉ {(A = a)}

↪→m ∈M0 (1)

Appendix B

Proofs for Chapter 3

B.1 Proofs for Section 3.1

Proof of Theorem 2

Theorem 2. If q : Rel(U1)×·· ·×Rel(Un)→Rel(U) then δ(q) and (q)† are delta-correct
with respect to q.

Proof. By induction on the structure of q. First observe that in any case (q)† is delta-
correct with respect to q if and only if δ(q) is. Thus, we show that δ(q) is delta-correct
by induction, and the reasoning for (q)† is similar.

• If q = M , a constant relation, then δ(q) = ∅ which is delta-correct with respect
to q since q(R1⊕∆R1, . . . ,Rn⊕∆Rn) = M = q(R1, . . . ,Rn)⊕∅. Minimality is
obviously preserved.

• If q = Ri, a relation reference, then δ(Ri) = ∆Ri is delta-correct with respect to q

since q(R1⊕∆R1, . . . ,Rn⊕∆Rn) = Ri⊕∆Ri = q(R1, . . . ,Rn)⊕∆Ri. Minimality
is obviously preserved.

• If q = op(q1, . . . , qn) then the desired result follows from the definition of δop
(which are delta-correct by construction), the induction hypothesis applied to
the subexpressions qi, and finally Lemma 25.

• If q = let R = q1 in q2, then the translation is

let (R,∆R) = (q1)† in δ(q2(R))

218

Appendix B. Proofs for Chapter 3 219

where q2 has an additional parameter R, so (q2)† will have an additional pair of
parameters (R,∆R). By induction both (q1)† and (q2)†(R,∆R) are delta-correct
with respect to q1 and q2 respectively. We reason as follows:

let R′ = q1(R1⊕∆R1, . . . ,Rn⊕∆Rn) in q2(R′,R1⊕∆R1, . . . ,Rn⊕∆Rn) (1)

= let R′ = q1(R1, . . . ,Rn)⊕ δ(q)((R1,∆R1), . . . ,(Rn,∆Rn)) in q2(R′,R1⊕∆R1, . . . ,Rn⊕∆Rn) (2)

= let (R′,∆R′) = (q1)†((R1,∆R1), . . . ,(Rn,∆Rn)) in q2(R′⊕∆R′,R1⊕∆R1, . . . ,Rn⊕∆Rn) (3)

= let (R′,∆R′) = (q)†
1((R1,∆R1), . . . ,(Rn,∆Rn)) in (4)

q2(R′,R1, . . . ,Rn)⊕ δ(q2)((R′,∆R′),(R1,∆R1), . . . ,(Rn,∆Rn)) (5)

= (let (R′,∆R′) = (q1)†((R1,∆R1), . . . ,(Rn,∆Rn)) in q2(R′,R1, . . . ,Rn)) (6)

⊕ (let (R′,∆R′) = (q1)†((R1,∆R1), . . . ,(Rn,∆Rn)) in δ(q2)((R′,∆R′),(R1,∆R1), . . . ,(Rn,∆Rn)))(7)

= (let R′ = q1(R1, . . . ,Rn) in q2(R′,R1, . . . ,Rn))⊕ δ(let R′ = q1(R1, . . . ,Rn) in q2(R′,R1, . . . ,Rn))

Moreover, minimality is preserved by δ(q1), so ∆R′ is minimal, which together
with the minimality of other deltas implies that the delta computed by δ(let R′ =
q1 in q2(R′)) is also minimal. This shows that δ(let R′ = q1 in q2(R′)) is delta-
correct.

Proof of Lemma 26

Lemma 26. [Valid optimisations] Assume ∆M , ∆N are minimal for M,N respec-
tively. Then:

1. σ̇P (M,∆M) = (σP (∆M+),σP (∆M−))

2. π̇U (M,∆M) = (πU (∆M+)−πU (M),πU (∆M−)−πU (M ⊕∆M))

3. (M,∆M) ⋊̇⋉ (N,∆N) = (((M ⊕∆M) ⋊⋉ ∆N+)∪ (∆M+ ⋊⋉ (N ⊕∆N)),(∆M− ⋊⋉
N)∪ (M ⋊⋉ ∆N−))

4. ρ̇A/B(M,∆M) = (ρA/B(∆M+),ρA/B(∆M−))

5. If N ⊆M and N ⊕∆N ⊆M ⊕∆M then (M,∆M) −̇ (N,∆N) = ∆M ⊖∆N

To simplify notation, we abbreviate M ′ = M⊕∆M and N ′ = N⊕∆N . Recall that the
positive and negative parts of a delta are always disjoint; we freely use the fact that
(X ∪Y)−Z = (X−Z)∪Y when Y and Z are disjoint.

The proof of parts (1)-(4) all follow a similar pattern: we first find expressions ∆N+,∆N−

for the components of a minimal relational delta such that op(M⊕∆M) = op(M)⊕∆N .

Appendix B. Proofs for Chapter 3 220

By Lemma 24 it then follows that δop(M,∆M) = op(M ⊕∆M)⊖op(M) = (op(M)⊕
∆N)⊖op(M) = ∆N .

Proof of part (1)

σP (M ′) = σP ((M ∪∆M+)−∆M−)

= σP (M ∪∆M+)−σP (∆M−)

= (σP (M)∪σP (∆M+))−σP (∆M−)

= σP (M)⊕ (σP (∆M+),σP (∆M−))

where clearly σP (∆M+)∩σP (∆M−) = ∅. Moreover, σP (∆M+)∩σP (M) = ∅ by min-
imality of ∆M , and likewise σP (∆M−) ⊆ σP (M) by minimality and monotonicity of
selection.

Proof of part (2)

First we observe that

πU (M ∪N) = πU (M)∪πU (N)

πU (M −N) = πU (M)− (πU (N)−πU (M −N))

Now we proceed as follows:

πU (M ′) = πU ((M ∪∆M+)−∆M−)

= (πU (M ∪∆M+))− (πU (∆M−)−πU (M ′))

= (πU (∆M+)∪πU (M))− (πU (∆M−)−πU (M ′))

= ((πU (∆M+)∪πU (M)) − (πU (M)−πU (M)))− (πU (∆M−)−πU (M ′))

= (πU (M)∪ (πU (∆M+)−πU (M)))− (πU (∆M−)−πU (M ′))

= πU (M)⊕ (πU (∆M+)−πU (M),πU (∆M−)−πU (M ′))

where line 4 follows from the identity X ∪ (Y −Z) = (X ∪Y)− (Z−X), line 2 from the
first observation above and line 1 by the second observation.

To establish minimality, clearly (πU (∆M+)−πU (M))∩πU (M) =∅, while πU (∆M−)−
πU (M ′)⊆ πU (M) by monotonicity of projection since ∆M− ⊆M .

Proof of part (3)

We need to prove:

M ′ ⋊⋉ N ′ = (M ⋊⋉ N ∪ (M ′ ⋊⋉ ∆N+∪∆M+ ⋊⋉ N ′))− (M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)

Appendix B. Proofs for Chapter 3 221

We first consider the special cases where ∆M− = ∆N− = ∅ and ∆M+ = ∆N+ = ∅.
In the first case we have:

(M ∪∆M+) ⋊⋉ (N ∪∆N+) = M ⋊⋉ N ∪ (∆M+ ⋊⋉ N ∪M ⋊⋉ ∆N+∪∆M+ ⋊⋉ ∆N+)

= M ⋊⋉ N ∪ (∆M+ ⋊⋉ N ∪∆M+ ⋊⋉ ∆N+∪M ⋊⋉ ∆N+∪∆M+ ⋊⋉ ∆N+)

= M ⋊⋉ N ∪ ((M ∪∆M+) ⋊⋉ ∆N+∪∆M+ ⋊⋉ (N ∪∆N+))

In the second case we have:

(M −∆M−) ⋊⋉ (N −∆N−) = M ⋊⋉ (N −∆N−)−∆M− ⋊⋉ (N −∆N−)

= M ⋊⋉ N −M ⋊⋉ ∆N−−∆M− ⋊⋉ (N −∆N−)

= M ⋊⋉ N − (M ⋊⋉ ∆N−∪∆M− ⋊⋉ (N −∆N−))

= M ⋊⋉ N − (M ⋊⋉ ∆N−∪ (∆M− ⋊⋉ N −∆M− ⋊⋉ ∆N−))

= M ⋊⋉ N − ((M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)− (∆M− ⋊⋉ ∆N−−M ⋊⋉ ∆N−))

= M ⋊⋉ N − ((M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)− (∆M−−M) ⋊⋉ ∆N−)

= M ⋊⋉ N − (M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)∪ (M ⋊⋉ N ∩ (∆M−−M) ⋊⋉ ∆N−)

= M ⋊⋉ N − (M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)

where the final step follows because M and ∆M−−M are disjoint, and so M ⋊⋉ N ∩
(∆M−−M) ⋊⋉ ∆N− = ∅.

We now proceed as follows:

M ′ ⋊⋉ N ′ = ((M −∆M−)∪∆M+) ⋊⋉ ((N −∆N−)∪∆N+)

= (M −∆M−) ⋊⋉ (N −∆N−)

∪ (((M −∆M−)∪∆M+) ⋊⋉ ∆N+∪∆M+ ⋊⋉ ((N −∆N−)∪∆N+))

= (M −∆M−) ⋊⋉ (N −∆N−)∪ (M ′ ⋊⋉ ∆N+∪∆M+ ⋊⋉ N ′)

= (M ⋊⋉ N − (M ⋊⋉ ∆N−∪∆M− ⋊⋉ N))∪ (M ′ ⋊⋉ ∆N+∪∆M+ ⋊⋉ N ′)

= (M ⋊⋉ N ∪ (M ′ ⋊⋉ ∆N+∪∆M+ ⋊⋉ N ′))− (M ⋊⋉ ∆N−∪∆M− ⋊⋉ N)

where in the last step we use the disjointness of ∆N− with N ′ and ∆N+, and likewise
of ∆M− with M ′ and ∆M+, and the fact that X,Y disjoint implies X ⋊⋉ Z and Y ⋊⋉ W

disjoint. Clearly, the positive and negative deltas resulting in this case are disjoint.
Minimality follows since M ′ ⋊⋉∆N+∩M ⋊⋉N =∅= ∆M+ ⋊⋉N ′∩M ⋊⋉N by minimality
of ∆M,∆N and the fact that X ∩Y = ∅ implies X ⋊⋉ Z ∩Y ⋊⋉ Z = ∅, and likewise
M ⋊⋉ ∆N− ⊆M ⋊⋉ N ⊇∆M− ⋊⋉ N by minimality and monotonicity of ⋊⋉.

Proof of part (4)

ρA/B(M ′) = ρA/B((M ∪∆M+)−∆M−)

Appendix B. Proofs for Chapter 3 222

= (ρA/B(M)∪ρA/B(∆M+))−ρA/B(∆M−)

= ρA/B(M)⊕ (ρA/B(∆M+),ρA/B(∆M−))

Clearly, ρA/B(∆M+) and ρA/B(∆M−) are disjoint, and minimal since ρA/B(M)∩
ρA/B(∆M+) = ∅ and ρA/B(∆M−)⊆ ρA/B(M).

Proof of part (5)

Lemma 70. If N ∩O = ∅, N ′ ⊆N and M ⊆N , then M ⊆N ′∪O implies M ⊆N ′.

Proof.

M ⊆N ′∪O

⇒M ∩N ⊆ (N ′∪O)∩N ∩ monotone

⇒M ∩N ⊆ (N ′∩N)∪ (O∩N) ∪ distributes over ∩

⇒M ∩N ⊆N ′∩N N ∩O = ∅

⇒M ∩N ⊆N ′ N ′ ⊆N ; ∩ induces ⊆

⇒M ⊆N ′ M ⊆N ; ∩ induces ⊆

We want to show:

If N ⊆M and N ′ ⊆M ′ then (M,∆M) −̇ (N,∆N) = ∆M ⊖∆N .

Proof.

∆N minimal for N suppose (∆N,N)

∆N− ⊆N def. minimal (8)

∆N+∩N = ∅ def. minimal (9)

∆M minimal for M suppose (∆M,M)

∆M− ⊆M def. minimal (10)

∆M+∩M = ∅ def. minimal (11)

N ⊆M suppose (12)

∆M+∩N = ∅ ∩ monotone (11) (13)

∆O = (M,∆M) −̇ (N,∆N) suppose (∆O)

= (M ′−N ′)⊖ (M −N) delta-correctness

= ((M ′−N ′)− (M −N),(M −N)− (M ′−N ′)) lem. 17 (14)

Appendix B. Proofs for Chapter 3 223

N ′ ⊆M ′ suppose

⇒ (N −∆N−)∪∆N+ ⊆ (M −∆M−)∪∆M+ lem. 16

⇒ (N −∆N−)⊆ (M −∆M−)∪∆M+ ·∪∆N+ incr.; trans. (15)

⇒N −∆N− ⊆M −∆M− lem. 70 (12, 11)

⇒N ⊆ (M −∆M−)∪∆N− lem. 1

⇒N ∩∆M− ⊆ ((M −∆M−)∪∆N−)∩∆M− ∩ monotone

⇒N ∩∆M− ⊆ ((M −∆M−)∩∆M−)∪ (∆N−∩∆M−) distr.

⇒N ∩∆M− ⊆∆N−∩∆M− lem. 6; simpl. ∅ (16)

∆N−∩∆M− ⊆N ∩∆M− ∩ monotone (8)

⇒∆N−∩∆M− = N ∩∆M− (16); antisym. (17)

∆N+ ⊆ (M −∆M−)∪∆M+ (15); ∪ LUB; trans. (18)

N −∆N− ⊆M ·−∆N− decr.; (12); trans.

⇒M ∩ (N −∆N−) = N −∆N− ∩ induces ⊆ (19)

M ∩∆M− = ∆M− ∩ induces ⊆ (10) (20)

∆O+

= (M ′−N ′)− (M −N) (14)

= M ′− (N ′∪ (M −N)) lem. 2

= ((M −∆M−)∪∆M+)− ((N −∆N−)∪∆N+∪ (M −N)) lem. 16

= ((M −∆M−)− ((N −∆N−)∪∆N+∪ (M −N))) ∪

(∆M+− ((N −∆N−)∪∆N+∪ (M −N))) −/∪ distr.

= ((M −∆M−)− ((N −∆N−)∪∆N+∪ (M −N)))∪ (∆M+−∆N+) (13, 11)

= (((M −∆M−)− (M −N))− ((N −∆N−)∪∆N+)) ∪

(∆M+−∆N+) ∪ comm.; lem. 2

= ((N −∆M−)− ((N −∆N−)∪∆N+))∪ (∆M+−∆N+) lem. 3; N ⊆M

= (((N −∆M−)− (N −∆N−))−∆N+)∪ (∆M+−∆N+) lem. 2

= ((∆N−−∆M−)−∆N+)∪ (∆M+−∆N+) lem. 3; ∆N− ⊆N

= (∆N−−∆M−)∪ (∆M+−∆N+) ∆N−∩∆N+ = ∅ (21)

∆O−

= (M −N)− (M ′−N ′) (14)

= (M −N)− (((M −∆M−)∪∆M+)−N ′) lem. 16

= (M −N) − (((M −∆M−)− (N ′))∪ (∆M+−N ′)) −/∪ distr.

= (M −N)− ((M − (N ′∪∆M−))∪ (∆M+− (N ⊕∆N))) lem. 2; ∪ comm.

= (M −N)−

((M − (N ′∪∆M−))∪ (∆M+− ((N −∆N−)∪∆N+))) lem. 16

Appendix B. Proofs for Chapter 3 224

= (M −N)− ((M − (N ′∪∆M−))∪ (∆M+−∆N+)) (13); lem. 9

= M − ((M − (N ′∪∆M−))∪ (∆M+−∆N+)∪N) lem. 2

= (M − (M − (N ′∪∆M−)))− ((∆M+−∆N+)∪N) lem. 2

= (M ∩ (N ′∪∆M−))− ((∆M+−∆N+)∪N) ∩ in terms of −

= (M ∩ ((N −∆N−)∪∆N+∪∆M−))− ((∆M+−∆N+)∪N) lem. 16

= ((N −∆N−)∪ (M ∩∆N+)∪∆M−)− ((∆M+−∆N+)∪N) distr.; (19, 20)

= ((M ∩∆N+)∪∆M−)− ((∆M+−∆N+)∪N) lem. 8

= ((M ∩∆N+)− ((∆M+−∆N+)∪N)) ∪

(∆M−− ((∆M+−∆N+)∪N)) −/∪ distr.

= (M ∩∆N+)∪ (∆M−−N) (9, 11); lem. 9

= (∆N+−∆M+)∪ (∆M−−N) lem. 7; (18)

= (∆N+−∆M+)∪ (∆M−−∆N−) lem. 5 (17) (22)

∆O = (∆M+,∆M−)⊕ (∆N−,∆N+) def. ·⊕ · (21, 22)

= ∆M ⊖∆N def. ·⊖ ·

Join Alternative

This is an alternative but equivalent definition of the join delta used in the implemen-
tation but not used in the formulation in Chapter 3. As it is not essential, the proofs
are presented are less formal.

The definition requires the following definition for the join operator between sets and
deltas:

Definition 29. Given the sets M and the delta ∆N , define the join between the two
as:

M ⋊⋉ ∆N = (M ⋊⋉ ∆N+,M ⋊⋉ ∆N−)

The delta join operation can then be defined as follows. Note that it is not as efficient
as the other definition, as more calculations are required

Definition 30. Given the sets M,N and minimal deltas ∆M,∆N , define ⋊̇⋉ as follows:

(M,∆M) ⋊̇⋉ (N,∆N) = ((M ⊕∆M) ⋊⋉ ∆N)⊕ (∆M ⋊⋉ (N ⊕∆N))

Lemma 71.
((M ⊕∆M) ⋊⋉ ∆N)⊕ (∆M ⋊⋉ (N ⊕∆N))

=
(
(M ⊕∆M) ⋊⋉ ∆N+∪∆M+ ⋊⋉ (N ⊕∆N),(M ⊕∆M) ⋊⋉ ∆N−∪ (N ⊕∆N) ⋊⋉ ∆M−)

Appendix B. Proofs for Chapter 3 225

Proof.
((M ⊕∆M) ⋊⋉ ∆N)⊕ (∆M ⋊⋉ (N ⊕∆N))

= ((M ⊕∆M) ⋊⋉ ∆N+,(M ⊕∆M) ⋊⋉ ∆N−) def. ⋊⋉

⊕ (∆M+ ⋊⋉ (N ⊕∆N),∆M− ⋊⋉ (N ⊕∆N))

=
(
((M ⊕∆M) ⋊⋉ ∆N+−∆M− ⋊⋉ (N ⊕∆N))

∪ (∆M+ ⋊⋉ (N ⊕∆N)− (M ⊕∆M) ⋊⋉ ∆N−),

((M ⊕∆M) ⋊⋉ ∆N−−∆M+ ⋊⋉ (N ⊕∆N))

∪ ((N ⊕∆N) ⋊⋉ ∆M−−∆N+ ⋊⋉ (M ⊕∆M))
)

def.⊕

(M ⊕∆M) is disjoint from ∆M− def. ⊕

it follows that:

(M ⊕∆M) ⋊⋉ ∆N+ is disjoint from ∆M− ⋊⋉ (N ⊕∆N)

=⇒ (M ⊕∆M) ⋊⋉ ∆N+−∆M− ⋊⋉ (N ⊕∆N) = (M ⊕∆M) ⋊⋉ ∆N+

similarly applies to other terms yielding:

((M ⊕∆M) ⋊⋉ ∆N)⊕ (∆M ⋊⋉ (N ⊕∆N))

=
(
(M ⊕∆M) ⋊⋉ ∆N+∪∆M+ ⋊⋉ (N ⊕∆N),

(M ⊕∆M) ⋊⋉ ∆N−∪ (N ⊕∆N) ⋊⋉ ∆M−)

Proof of Lemma 27

To prove this property, we first observe that reviseF (M,N) can be written as mapf (M) =
{f(m) |m ∈M} where f = recreviseF (·,N).

Lemma 72. Suppose ∆M is minimal with respect to M . Then

δmapf (M,∆M) = (mapf (∆M+)−mapf (M),mapf (∆M−)−mapf (M ⊕∆M))

Proof. We first observe that

mapf (M ∪N) = mapf (M)∪ (mapf (N)−mapf (M)) (23)

mapf (M −N) = mapf (M)− (mapf (N)−mapf (M −N))

These equations are easy to show by calculation. Combining them we have

mapf (M ⊕∆M)

= mapf ((M ∪∆M+)−∆M−)

= mapf (M ∪∆M+)− (mapf (∆M−)−mapf ((M ∪∆M+)−∆M−))

= (mapf (M)∪ (mapf (∆M+)−mapf (M)))− (mapf (∆M−)−mapf (M ⊕∆M))

= mapf (M)⊕ (mapf (∆M+)−mapf (M),mapf (∆M−)−mapf (M ⊕∆M))

Appendix B. Proofs for Chapter 3 226

Moreover, it is easy to see that mapf (∆M+)−mapf (M) is disjoint from mapf (M) and
mapf (∆M−)−mapf (M ⊕∆M) ⊆ mapf (M), assuming ∆M is minimal with respect
to M . Hence by uniqueness of minimal deltas, δmapf (M,∆M) = (mapf (∆M+)−
mapf (M),mapf (∆M−)−mapf (M ⊕∆M)) as required.

Lemma 73. If f is injective on M ∪N and M,N are disjoint then so are mapf (M)
and mapf (N).

Proof. Suppose x ∈mapf (M)∩mapf (N). Then x = f(y) = f(z) for some y ∈M and
z ∈ N . By injectivity, f(y) = f(z) implies y = z, which is impossible since M and N

are disjoint.

Lemma 74. If f is injective on M and on M ⊕∆M , where ∆M is minimal for M ,
then

δmapf (M,∆M) = (mapf (∆M+),mapf (∆M−))

Proof. By Lem. 72 we have

δmapf (M,∆M) = (mapf (∆M+)−mapf (M),mapf (∆M−)−mapf (M ⊕∆M))

Using Lem. 73 since f is injective on M , and ∆M is minimal, we have

mapf (∆M+)∩mapf (M) = ∅

hence, mapf (∆M+)−mapf (M) = mapf (∆M+). Using the same lemma since f is
injective on M ⊕∆M , since minimality implies (M ⊕∆M)∩∆M− = ∅, we have

mapf (∆M−)∩mapf (M ⊕∆M) = ∅

and so mapf (∆M−)−mapf (M⊕∆M) = mapf (∆M−). The desired result follows.

Lemma 75. recreviseX→A(m,N)\A = m\A.

Proof. There are two cases according to the definition of recreviseX→A(m,N). If m is
unchanged the result is immediate, otherwise the result is m←+n[A] for some n ∈ N

where n[X] = m[X], and only the A field is changed.

Lemma 76. If M ⊨ X → A then recreviseX→A(·,N) is injective on M ; that is, for
m,m′ ∈M we have

recreviseX→A(m,N) = recreviseX→A(m′,N) =⇒m = m′

Appendix B. Proofs for Chapter 3 227

Proof. Clearly A /∈X since {X→A} is required to be in tree form. Let m,m′ ∈M be
given and assume that recreviseX→A(m,N) = recreviseX→A(m′,N). By Lem. 75, we
know also that

m\A = recreviseX→A(m,N)\A = recreviseX→A(m′,N)\A = m′\A

Since A /∈X, it follows that m[X] = m′[X], so m[A] = m′[A] because M ⊨X→A. Thus,

m = m\A←+m[A] = m′\A←+m′[A] = m′

Hence, recreviseX→A(·,N) is injective.

Lemma 27. Suppose M |= X →A and M ⊕∆M |= X →A. Then

δreviseX→A((M,∆M),(N,∅)) = (reviseX→A(∆M+,N),reviseX→A(∆M−,N)).

Proof. Let f = recreviseX→A(·,N). Then by Lem. 76, f is injective on M and M⊕∆M ,
so we have:

reviseX→A(M ⊕∆M,N) = mapf (M ⊕∆M) (24)

= mapf (M)⊕ δmapf (M,∆M) (25)

= reviseX→A(M,N)⊕ δmapf (M,∆M)

which implies

δreviseX→A((M,∆M),(N,∅)) = δmapf (M,∆M) (26)

= (mapf (∆M+),mapf (∆M−)) (27)

= (reviseX→A(∆M+,N),reviseX→A(∆M−,N))

by uniqueness of minimal deltas.

Proof of Lemma 28

Lemma 77. Given m,N,N ′ : U with X ⊆ U , then exactly one of the following holds:

• There is no n ∈N ′ with m[X] = n[X]

• There exists n ∈N ′−N with m[X] = n[X].

• There exists n∈N ′∩N with m[X] = n[X], but no n′ ∈N ′−N with m[X] = n′[X].

Appendix B. Proofs for Chapter 3 228

Proof. It is easy to see that the three cases are mutually exclusive. To see that they
are exhaustive, suppose the first and second cases do not hold. The failure of the first
case implies that there is an n ∈ N ′ with m[X] = n[X] and the failure of the second
case implies that such an n must fall in N ′∩N and there can be no other n′ ∈N ′−N

satisfying m[X] = n′[X], as required.

Definition 31. Suppose m,N,N ′,F : U are given. For the sake of an inductive invari-
ant for lem. 79, we define

InvF (m,N,N ′) ⇐⇒ ∀X → Y ∈ F. if ̸ ∃n ∈ (N ′−N).m[X] = n[X]

then m,(N ′∩N) ⊨X → Y

Lemma 78. Given m,N,N ′,F : U , we have:

1. m ∈N |= F implies InvF (m,N,N ′)

2. InvF (m,N,N ′) implies InvF ′(m,N,N ′) whenever F ′ ⊆ F .

3. If InvF (m,N,N ′) and F = {X→ Y }·F ′ and there exists n∈N ′−N with n[X] =
m[X] then InvF ′(m←+n[Y],N,N ′).

Proof. 1. Since m,N ⊨ F we know that m,N ⊨X → Y for all X → Y ∈ F . Clearly
also m,(N ∩N ′) ⊨X → Y .

2. For the second part, assume InvF (m,N,N ′). Suppose X→ Y ∈ F ′ ⊆ F is given.
Then InvF (m,N,N ′) implies that if ̸ ∃n ∈ (N ′−N).m[X] = n[X] then m,(N ′∩
N) ⊨X → Y , as required.

3. Suppose InvF (m,N,N ′) and F = {X→ Y } ·F ′ and there exists n ∈N ′−N with
n[X] = m[X]. To show InvF ′(m←+n[Y],N,N ′), let X ′→ Y ′ ∈ F ′ be given. We
must show that if ̸ ∃n′ ∈N ′−N with n′[X ′] = (m←+n[Y])[X ′] then m←+n[Y],(N∩
N ′) |= X ′→ Y ′.

Because F is in tree form, we know that X ′,Y ′,X,Y are all either disjoint or
identical, and X ̸= Y,X ′ ̸= Y ′. We consider the following cases:

• Y ′ = X is impossible since X was a root and X ′→X ∈ F ′ implies that X

could not be a root.

• Y ′ = Y is impossible since there cannot be two FDs X → Y,X ′→ Y in F

since it is in tree form.

Appendix B. Proofs for Chapter 3 229

• X ′ = X is impossible since by assumption n ∈ N ′ −N satisfies n[X] =
m[X] = (m←+n[Y])[X], since X,Y are disjoint, which contradicts the as-
sumption that ̸ ∃n′ ∈N ′−N with n′[X] = (m←+n[Y])[X].

• X ′ = Y is impossible since n[Y] = (m←+n[Y])[Y], which contradicts the
assumption that ̸ ∃n′ ∈N ′−N with n′[Y] = (m←+n[Y])[Y].

• If X ′ and Y ′ are both disjoint from X and Y then using InvF (m,N,N ′) we
can conclude m,(N ∩N ′) |= X ′→ Y ′, and since X ′,Y ′ are disjoint from Y

we can also conclude m←+n[Y],(N ∩N ′) |= X ′→ Y ′ since updating m[Y]
to n[Y] has no effect on the values of m[X ′] or m[Y ′].

Lemma 79. Suppose InvF (m,N,N ′). Then

recreviseF (m,N ′) = recreviseF (m,N ′−N).

Proof. Let N,N ′ be given. We prove by induction on F that for any m, if InvF (m,N,N ′)
then recreviseF (m,N ′) = recreviseF (m,N ′−N).

• If F = ∅ the desired conclusion is immediate.

• If F = {X→ Y }·F ′, then suppose InvF (m,N,N ′), and note that InvF ′(m,N,N ′)
holds by Lem. 78(2). We consider the following three subcases:

– If there is no n ∈N ′ such that n[X] = m[X], then

recreviseF (m,N ′) = recreviseF ′(m,N ′) (28)

= recreviseF ′(m,N ′−N) (29)

= recreviseF (m,N ′−N)

using the induction hypothesis on m and since N ′ ⊇N ′−N .

– If there exists n ∈ N ′−N such that n[X] = m[X], then observe that by
Lemma 78(3) we have InvF ′(m←+n[Y],N,N ′), so the induction hypothesis
is available for m←+n[Y]. We reason as follows:

recreviseF (m,N ′) = recreviseF ′(m←+n[Y],N ′) (30)

= recreviseF ′(m←+n[Y],N ′−N) (31)

= recreviseF (m,N ′−N)

where we use the induction hypothesis on m←+n[Y] and the fact that
n ∈N ′−N .

Appendix B. Proofs for Chapter 3 230

– If there exists n ∈N ∩N ′ such that n[X] = m[X] but no n′ ∈N ′−N with
n′[X] = m[X] then InvF (m,N,N ′) implies that m,(N ∩N ′) ⊨ X → Y , so
m[X] = n[X] implies m[Y] = n[Y]. Moreover, m←+n[Y] = m←+m[Y] = m.
So, we can reason as follows:

recreviseF (m,N ′) = recreviseF ′(m←+n[Y],N ′) (32)

= recreviseF ′(m,N ′) (33)

= recreviseF ′(m,N ′−N) (34)

= recreviseF (m,N ′−N)

using the induction hypothesis on m and the fact that there was no n′ ∈
N ′−N matching m on X.

These three cases are exhaustive by lemma 77, so the proof of the induction step
is complete.

Lemma 80. Suppose m ∈N and N ⊨ F . Then

recreviseF (m,N ⊕∆N) = recreviseF (m,∆N+).

Proof. Note that (N ⊕∆N)−N = ∆N+, and m ∈N implies InvF (m,N,N ⊕∆N), so
by Lemma 79 we can conclude recreviseF (m,N ⊕∆N) = recreviseF (m,∆N+).

Lemma 81. If mergeF (M,N) = M and N ⊕ ∆N ⊨ F , then
N −∆N− ⊆mergeF (M,∆N+).

Proof.

mergeF (M,N) = M assumption

N ⊆M def. merge·(·, ·)

N −∆N− ⊆N ⊆M ·−∆N− decr.; transitivity (1)

N ⊕∆N ⊨ F assumption

m ∈N −∆N− suppose (m) (2)

m ∈N (1) (3)

Now show recreviseF (m,∆N+) = m by induction on cardinality of F .

Case F = ∅ :

Appendix B. Proofs for Chapter 3 231

↪→ recreviseF (m,∆N+) = m def. recreviseF (·, ·)

Case F = X → Y ·F ′ :

N ⊕∆N ⊨ F ′ N ⊕∆N ⊨ F and F ′ ⊆ F

Case ∃n ∈∆N+.n[X] = m[X] :

n[Y] = m[Y] N ⊕∆N ⊨ F

recreviseF (m,∆N+)

= recreviseF ′(m←+n[Y],∆N+) def. recreviseF (·, ·)

↪→ recreviseF (m,∆N+)

= recreviseF ′(m,∆N+) = m n[Y] = m[Y]; IH

Case ∄n ∈∆N+.n[X] = m[X] :

↪→ recreviseF (m,∆N+)

= recreviseF ′(m,∆N+) = m def. recreviseF (·, ·); IH (4)

N −∆N− = reviseF (N −∆N−,∆N+) ∀ intro (2); def. recreviseF (·, ·)

⊆ reviseF (M,∆N+) recreviseF (·,∆N+) monotone

⊆mergeF (M,∆N+) def. mergeF (·, ·)

Lemma 28. If mergeF (M,N) = M then

δmergeF ((M,∅),(N,∆N)) = mergeF (M,∆N+)⊖M.

Proof.

reviseF (M,N ⊕∆N) = {recreviseF (m,N ⊕∆N) |m ∈M} def. revise(·, ·)

=
{

recreviseF (m,∆N+)
∣∣∣ m ∈M

}
lemma 80

= reviseF (M,∆N+) def. revise(·, ·) (1)

mergeF (M,N ⊕∆N)

= reviseF (M,N ⊕∆N)∪ (N ⊕∆N) def. merge(·, ·)

= reviseF (M,∆N+)∪ (N ⊕∆N) (1)

= reviseF (M,∆N+)∪ ((N −∆N−)∪∆N+) def. ⊕

= reviseF (M,∆N+)∪∆N+∪ (N −∆N−) comm. ∪; assoc. ∪

= mergeF (M,∆N+)∪ (N −∆N−) def. merge(·, ·)

= mergeF (M,∆N+) lemma 81 (2)

Appendix B. Proofs for Chapter 3 232

δmergeF ((M,∅),(N,∆N))

= mergeF (M,N ⊕∆N)⊖mergeF (M,N)

= mergeF (M,N ⊕∆N)⊖M assumption

= mergeF (M,∆N+)⊖M (2)

Proof of Lemma 29

Lemma 82. If P = affectedG(N), F ⊆G and m∈σ¬P (M) for any M , then recreviseF (m,N) =
m.

Proof.

P = affectedG(N) suppose (P)

m ∈ σ¬P (M) suppose (m)

Now show recreviseF (m,N) = m by induction on the cardinality of F .

Case F = ∅ :

↪→ recreviseF (m,N) = m def. recreviseF (·, ·)

Case F = X → Y ·F ′ :

∄n ∈N.n[X] = m[X] m ∈ σ¬P (M); def. affectedG(·)

↪→ recreviseF (m,N) = recreviseF ′(m,N) = m def. recreviseF (·, ·); IH

Lemma 83. If P = affectedF (N), then reviseF (M,N) = reviseF (σP (M),N)∪σ¬P (M).

Proof.
P = affectedF (N) suppose (P)

m ∈ σ¬P (M) suppose (m)

m = recreviseF (m,N) lemma 82

reviseF (σ¬P (M),N) = σ¬P (M) ∀ intro (m); def. reviseF (·, ·) (1)

M = σP (M)∪σ¬P (M) decompose M

reviseF (M,N) = reviseF (σP (M),N)∪ reviseF (σ¬P (M),N) def. reviseF (·, ·)

= reviseF (σP (M),N)∪σ¬P (M) (1)

Appendix B. Proofs for Chapter 3 233

Lemma 84. If P = affectedF (N), then mergeF (M,N) = mergeF (σP (M),N)∪σ¬P (M).

Proof.

P = affectedF (N) suppose (P)

mergeF (M,N) = reviseF (M,N)∪N def. mergeF (·, ·)

= (reviseF (σP (M),N)∪σ¬P (M))∪N lemma 83

= (reviseF (σP (M),N)∪N)∪σ¬P (M) comm. ∪

= mergeF (σP (M),N)∪σ¬P (M) def. mergeF (·, ·)

Lemma 85. If M ∩P = N ∩O = ∅, then (M ∪N)⊖ (O∪P) = (M ⊖O)⊕ (N ⊖P).

Proof. First observe that because M ∩P = N ∩O = ∅, we have

(M ∪N)− (O∪P) = (M − (O∪P))∪ (N − (O∪P)) −/∪ distr.

= (M −O)∪ (N −P)

Now we proceed as follows:

(M ∪N)⊖ (O∪P)

= ((M ∪N)− (O∪P),(O∪P)− (M ∪N)) lem. 17

= ((M −O)∪ (N −P),(O−M)∪ (P −N)) observation

= (((M −O)− (P −N))∪ ((N −P)− (O−M)),

((O−M)− (N −P))∪ ((P −N)− (M −O))) M ∩P = ∅; N ∩O = ∅

= (M −O,O−M)⊕ (N −P,P −N) def. ⊕

= (M ⊖O)⊕ (N ⊖P) lem. 17

Lemma 29. If P = affectedF (∆N+) and either F ̸= ∅ or ∆N+∩M = ∅ then

mergeF (M,∆N+)⊖M = mergeF (σP (M),∆N+)⊖σP (M).

Proof.

M ∩∆N+ = ∅ or F ̸= ∅ assumption (1)

P = affectedF (∆N+) =
∨

X→Y ∈F

X ∈ πX(∆N+) suppose (P); def. affectedF (·) (2)

Appendix B. Proofs for Chapter 3 234

First show mergeF (σP (M),∆N+)∩σ¬P (M) = ∅ by case analysis on F. (3)

Case F = ∅ :

M ∩∆N+ = ∅ (1); F = ∅ (4)

mergeF (σP (M),∆N+)

= mergeF (σ⊥(M),∆N+) def. affectedF (·)

= mergeF (∅,∆N+) σ⊥(·)

= reviseF (∅,∆N+)∪∆N+ = ∆N+ def. mergeF (·, ·); def. reviseF (·, ·)

↪→mergeF (σP (M),∆N+)∩σ¬P (M)

= ∆N+∩σ¬P (M) = ∅ (4)

Case F = X → Y ·F ′ :

P = X ∈ πX(∆N+)∨
∨

X′→Y ′∈F ′

X ′ ∈ πX′(∆N+) expand F in P

¬P = X /∈ πX(∆N+)∧
∧

X′→Y ′∈F ′

X ′ /∈ πX′(∆N+) de Morgan

m ∈mergeF (σP (M),∆N+)

= reviseF (σP (M),∆N+)∪∆N+ suppose (m); def. mergeF (·, ·)

Case m ∈ reviseF (σP (M),∆N+) :

∃m′ ∈ σP (M).m = recreviseF (m′,∆N+) and m′[X] = m[X] def. reviseF (·, ·)

m′[X] ∈ πX(∆N+)

m[X] ∈ πX(∆N+) m[X] = m′[X]

∀n ∈ σ¬P (M).n[X] ̸= m[X] n[X] /∈ πX(∆N+)

↪→m /∈ σ¬P (M)

Case m ∈∆N+ :

↪→m /∈ σ¬P (M) def. affectedF (·)

↪→mergeF (σP (M),∆N+)∩σ¬P (M) = ∅ ∀ intro (m)

mergeF (M,∆N+)⊖M

= (mergeF (σP (M),∆N+)∪σ¬P (M))

⊖ (σP (M)∪σ¬P (M)) lemma 84; decompose M

= (mergeF (σP (M),∆N+)⊖σP (M))

⊕ (σ¬P (M)⊖σ¬P (M)) (3); lemma 85

= mergeF (σP (M),∆N+)⊖σP (M) simpl.

Appendix B. Proofs for Chapter 3 235

B.2 Proofs for Section 3.2

Proof of Theorem 3

Lemma 86. Suppose M ⊨ F . Then reviseF (σ¬P (M),N)∩σP (M) = ∅.

Proof.

Z = U −outputs(F) suppose (Z)

m ∈ σ¬P (M) suppose (m)

Case recreviseF (m,N) = m :

↪→m /∈ σP (M) m ∈ σ¬P (M)

Case recreviseF (m,N) = m′ ̸= m :

m′[Z] = m[Z] def. recreviseF (·, ·)

∀m′′ ∈M and m[Z] = m′′[Z].m = m′′ ̸= m′ M |= F

↪→m′ /∈ σP (M) m′ /∈M

Lemma 87. Suppose M ⊨F . Then reviseF (σ¬P (M),N) = reviseF (σ¬P (M),N−σP (M)).

Proof. It suffices to show that if m∈σ¬P (M), then recreviseF (m,N) = recreviseF (m,N−
σP (M)), by the definition of relational revision. This follows from Lemma 79, pro-
vided that InvF (m,σP (M),N) holds. To show this, let X → Y ∈ F be given and
assume that there is no n ∈N −σP (M) such that n[X] = m[X]. We need to show that
m,(σP (M)∩N) ⊨X → Y . This is immediate since {m}∪ (σP (M)∩N)⊆M ⊨ F .

Lemma 88. If M ⊨ F then mergeF (σ¬P (M),N) = mergeF (σ¬P (M),N − σP (M))∪
(σP (M)∩N).

Proof.

mergeF (σ¬P (M),N)

= reviseF (σ¬P (M),N)∪N def. mergeF (·, ·)

= reviseF (σ¬P (M),N −σP (M))∪N lem. 87

= reviseF (σ¬P (M),N −σP (M))∪ (N −σP (M))∪ (σP (M)∩N) decompose N

Appendix B. Proofs for Chapter 3 236

= mergeF (σ¬P (M),N −σP (M))∪ (σP (M)∩N) def. mergeF (·, ·)

Lemma 89. Suppose M |= F and ∆N minimal for σP (M). Then

mergeF (σ¬P (M),σP (M)⊕∆N)⊖mergeF (σ¬P (M),σP (M))

= (mergeF (σ¬P (M),∆N+)⊖σ¬P (M))⊖∆N−.

Proof.

(σP (M)⊕∆N)−σP (M) = ∆N+ lem. 21 (1)

reviseF (σ¬P (M),∆N+)∩σP (M) = ∅ (1); lem. 86

∆N+∩σP (M) = ∅ (1)

(reviseF (σ¬P (M),∆N+)∪∆N+)∩σP (M) = ∅

mergeF (σ¬P (M),∆N+)∩σP (M) = ∅ def. merge (2)

σP (M)∩σ¬P (M) = ∅

σP (M)∩ (σP (M)⊕∆N)∩σ¬P (M) = ∅ ∩ monotone (3)

(σP (M)∩ (σP (M)⊕∆N))⊖σP (M) =⊖∆N− lem. 22 (4)

mergeF (σ¬P (M),σP (M)⊕∆N)⊖mergeF (σ¬P (M),σP (M))

=
(
mergeF (σ¬P (M),(σP (M)⊕∆N)−σP (M))

∪ (σP (M)∩ (σP (M)⊕∆N))
)

⊖ (mergeF (σ¬P (M),σP (M)−σP (M))∪ (σP (M)∩σP (M))) lem. 88; lem. 88

= (mergeF (σ¬P (M),∆N+)∪ (σP (M)∩ (σP (M)⊕∆N)))

⊖ (mergeF (σ¬P (M),∅)∪σP (M)) (1); simpl.

= (mergeF (σ¬P (M),∆N+)∪ (σP (M)∩ (σP (M)⊕∆N)))

⊖ (σ¬P (M)∪σP (M)) mergeF (·,∅) = id

= (mergeF (σ¬P (M),∆N+)⊖σ¬P (M))

⊕ ((σP (M)∩ (σP (M)⊕∆N))⊖σP (M)) (2, 3); lem. 85

= (mergeF (σ¬P (M),∆N+)⊖σ¬P (M))⊖∆N− (4); def. ⊖

Theorem 3. [Correctness of optimised select lens] Suppose N = σP (M) where M :
Rel(U,Q,F). Suppose also that ∆N is minimal with respect to N and that N ⊕∆N :
Rel(U,P ∧Q,F). Then δputℓ(M,∆N) = δputℓ′(M,∆N).

Appendix B. Proofs for Chapter 3 237

Proof.
N = getℓ(M) suppose (N,M)

(M0,∆M0) = merge†
F (σ†

¬P (M,∅),(N,∆N)) suppose (M0,∆M0,∆N)

(N#,∆N#) = σ†
P (M0,∆M0)−† (N,∆N) suppose (N#,∆N#) (1)

δputℓ(M,∆N) = (M0,∆M0) −̇ (N#,∆N#) def. δputℓ (2)

N = σP (M) def. getℓ

M0 = mergeF (σ¬P (M),N) def. ·†; (·, ·) reflects =

= mergeF (σ¬P (M),σP (M)) N = σP (M)

= σ¬P (M)∪σP (M) M |= F ; defs. reviseF (·, ·), mergeF (·, ·)

= M

N ⊆N = σP (M) = σP (M0) (3)

M0⊕∆M0 = mergeF (σ¬P (M),N ⊕∆N) delta-correctness

N ⊕∆N ⊆M0⊕∆M0 def. merge

σP (N ⊕∆N)⊆ σP (M0⊕∆M0) monotone σP (·)

N ⊕∆N ⊆ σP (M0⊕∆M0) idemp. σP (·)

⊆ σP (M0)⊕ σ̇P (M0,∆M0) delta-correctness (4)

(N#,∆N#)

= (σP (M0)−N,(σP (M0), σ̇P (M0,∆M0)) −̇ (N,∆N)) def. ·†

∆N# = (σP (M0), σ̇P (M0,∆M0)) −̇ (N,∆N) (·, ·) reflects =

= σ̇P (M0,∆M0)⊖∆N (3, 4); lem. 26 part 5

= (σP (∆M0
+),σP (∆M0

−))⊖∆N lem. 26 part 1

Q = affectedF (∆N+) suppose (Q) (5)

∆M0 = δmergeF ((σ¬P (M), σ̇¬P (M,∅)),(N,∆N)) def. ·†; (·, ·) reflects =

= δmergeF ((σ¬P (M),∅),(N,∆N)) delta-correctness

= mergeF (σ¬P (M),N ⊕∆N)⊖mergeF (σ¬P (M),N) def. δop

= (mergeF (σ¬P (M),∆N+)⊖σ¬P (M))⊖∆N− lemma 89

= (mergeF (σQ∧¬P (M),∆N+)⊖σQ∧¬P (M))⊖∆N− (5); lemma 29

δputℓ′(M,∆N) = ∆M0⊖∆N# def. δputℓ′ (6)

N# ⊆N# = σP (M0)−N ⊆ σP (M0)⊆M0 def. N# (7)

Appendix B. Proofs for Chapter 3 238

N#⊕∆N#

= σP (M0⊕∆M0)− (N ⊕∆N)

⊆ σP (M0⊕∆M0) (1); delta-correctness

⊆M0⊕∆M0 (8)

(M0,∆M0) −̇ (N#,∆N#) = ∆M0⊖∆N# (7, 8); lem. 26 part 5) (9)

δputℓ′(M,∆N) = δputℓ(M,∆N) (6, 9, 2); transitivity

Proof of Theorem 4

Theorem 4. [Correctness of optimised project lens] Suppose M : Rel(U,P,F) and
N = πU−A(M). Suppose also that ∆N is minimal with respect to N and that N⊕∆N :
Rel(U−A,πU−A(P),F ′), where F ≡F ′⊎{X→A}. Then δputℓ(M,∆N) = δputℓ′(M,∆N).

Proof.
N = getℓ(M) suppose (N,M)

(M ′,∆M ′) = (N,∆N) ⋊⋉† ({{A = a}},∅) suppose (M ′,∆M ′,∆N)

δputℓ(M,∆N) = δreviseX→A((M ′,∆M ′),(M,∅)) def. δputℓ (1)

∆M ′ = (N,∆N) ⋊̇⋉ ({{A = a}},∅) def. ·†; (·, ·) reflects =

= (∆N+ ⋊⋉ {{A = a}},∆N− ⋊⋉ {{A = a}}) lemma 26 part 3

δputℓ′(M,∆N)

= (reviseX→A(∆M ′+,M),reviseX→A(∆M ′−,M)) def. δputℓ′ (2)

(reviseX→A(∆M ′+,M),reviseX→A(∆M ′−,M))

= δreviseX→A((M ′,∆M ′),(M,∅)) lemma 27 (3)

δputℓ′(M,∆N) = δputℓ(M,∆N) (2, 3, 1); transitivity

Proof of Theorem 5

Lemma 90. If M =∅ and ∆M is minimal for M , then π̇U (M,∆M) = (πU (∆M+),∅).

Appendix B. Proofs for Chapter 3 239

Proof.
M = ∅ suppose M (1)

∆M minimal for M suppose ∆M

∆M− = ∅ lem. 23 (2)

π̇U (M,∆M)

= (πU (∆M+)−πU (M),πU (∆M−)−πU (M ⊕∆M)) lem. 26 part 2

= (πU (∆M+)−∅,∅−πU (M ⊕∆M)) (1, 2);def. πU (·)

= (πU (∆M+),∅) def. −

Lemma 91. If M,N = ∅ and ∆M is minimal for M and ∆N is minimal for N , then
(M,∆M) ∪̇ (N,∆N) = (∆M+∪∆N+,∅).

Proof. We need to prove (M ⊕∆M)∪ (N ⊕∆N) = (M ∪N)⊕ (∆M+∪∆N+,∅).

M = ∅ suppose M (1)

N = ∅ suppose N (2)

∆M minimal for M suppose ∆M

∆N minimal for N suppose ∆N

∆M− = ∅ lem. 23 (3)

∆N− = ∅ lem. 23 (4)

(M ⊕∆M)∪ (N ⊕∆N)

= ((M ∪∆M+)−∆M−)∪ ((N ∪∆N+)−∆N−) def. ⊕

= ∆M+∪∆N+ (1, 2, 3, 4)

= ∅∪ (∆M+∪∆N+) ∅ unit for ∪

= (∅∪ (∆M+∪∆N+))−∅ ∅ unit for −

= ∅⊕ (∆M+∪∆N+,∅) def. ⊕

= (M ∪N)⊕ (∆M+∪∆N+,∅) M ∪N = ∅

Lemma 92. If M =∅ and ∆M is minimal for M , then σ̇P (M,∆M) = (σP (∆M+),∅).

Proof.
M = ∅ suppose M

Appendix B. Proofs for Chapter 3 240

∆M minimal for M suppose ∆M

∆M− = ∅ lem. 23 (1)

σ̇P (M,∆M)

= (σP (∆M+),σP (∆M−)) lem. 26 part 2

= (σP (∆M+),σP (∅)) (1)

= (σP (∆M+),∅) def. σP (·)

Theorem 5. [Correctness of optimised join lens] Suppose M : Rel(U,P,F) and N :
Rel(V,Q,G) and O = M ⋊⋉ N . Suppose also that ∆O is minimal with respect to O, and
O⊕∆O : Rel(U ∪V,P ⋊⋉ Q,F ∪G). Then δputℓ((M,N),∆O) = δputℓ′((M,N),∆O).

Proof.
O = M ⋊⋉ N suppose (O,M,N); def. getℓ

(M0,∆M0) = merge†
F ((M,∅),π†

U (O,∆O)) suppose (M0,∆M0,∆O) (1)

(N0,∆N0) = merge†
G((N,∅),π†

V (O,∆O)) suppose (N0,∆N0) (2)

(L,∆L) = ((M0,∆M0) ⋊⋉† (N0,∆N0))−† (O,∆O) suppose (L,∆L) (3)

(La,∆La) = (L,∆L) ⋊⋉† π†
U∩V (O,∆O) suppose (La,∆La) (4)

(Ll,∆Ll) = (L,∆L)−† (La,∆La) suppose (Ll,∆Ll) (5)

∆M ′ = (M0,∆M0) −̇

π†
U ((Ll,∆Ll) ∪† σ†

Pd
((La,∆La))) suppose (∆M ′)

∆N ′ = (N0,∆N0) −̇ π†
U (σ†

Qd
((La,∆La))) suppose (∆N ′)

δputℓ((M,N),∆O) = (∆M ′,∆N ′) def. δputℓ (6)

PM = affectedF ∗U (πU (∆O+)) suppose (PM) (7)

PN = affectedG∗V (πV (∆O+)) suppose (PN) (8)

We derive the optimized expressions for ∆M0 and ∆N0:

M0 = mergeF (M,πU (O)) = M def. ·†; πU (O)⊆M

∆M0 = δmergeF ((M,∅),(πU (O), π̇U (O,∆O))) def. ·†

= mergeF (M,π̇U (O,∆O)+)⊖M lemma 28

= mergeF (M,πU (∆O+)−πU (O))⊖M lemma 26 part 2

= mergeF (M,πU (∆O+))⊖M πU (O)⊆M

= mergeF (σPM
(M),πU (∆O+))⊖σPM

(M) (7); cor. 3

Appendix B. Proofs for Chapter 3 241

N0 = mergeG(N,πV (O)) = N def. ·†; πV (O)⊆N

∆N0 = δmergeG((N,∅),(πV (O), π̇V (O,∆O))) def. ·† (9)

= mergeG(N,π̇V (O,∆O)+)⊖N lemma 28

= mergeG(N,πV (∆O+)−πV (O))⊖N lem. 26 part 2

= mergeG(N,πV (∆O+))⊖N πV (O)⊆N

= mergeG(σPN
(N),πV (∆O+))⊖σPN

(N) (8); cor. 3

The unchanged set of records to be deleted L is always empty:

L = (M0 ⋊⋉ N0)−O = (M ⋊⋉ N)−O = O−O = ∅

We define O⊕∆O′ as the output view containing all functional dependency updates,
but before deleting additional rows that may violate round-tripping guarantees.

∆O′ = (M,∆M0) ⋊̇⋉ (N,∆N0) define (∆O′) (10)

∆O′+ = ((M ⊕∆M0) ⋊⋉ ∆N0
+)

∪ (∆M0
+ ⋊⋉ (N ⊕∆N0)) lem. 26 part 3

∆O′− = (∆M0
− ⋊⋉ N)∪ (M ⋊⋉ ∆N0

−) lem. 26 part 3

We then show that desired output view O⊕∆O is a subset of the previously defined
view O⊕∆O′:

M0⊕∆M0 = mergeF (M,πU (O⊕∆O)) (1); delta-correctness

N0⊕∆N0 = mergeG(N,πV (O⊕∆O)) (2); delta-correctness

πU (O⊕∆O)⊆M0⊕∆M0 def. mergeF (·, ·)

πV (O⊕∆O)⊆N0⊕∆N0 def. mergeG(·, ·)

πU (O⊕∆O) ⋊⋉ πV (O⊕∆O)

⊆ (M0⊕∆M0) ⋊⋉ (N0⊕∆N0) ⋊⋉ monotone

O⊕∆O ⊆ (M0⊕∆M0) ⋊⋉ (N0⊕∆N0) ⋊⋉ aft. πU ×πV incr.; trans.

O⊕∆O ⊆O⊕∆O′ (10); delta-correctness (11)

We now derive the expression for ∆L:

M0 ⋊⋉ N0 = M ⋊⋉ N = O (12)

∆L

= ((M0,∆M0) ⋊⋉† (N0,∆N0)) −̇ (O,∆O) delta-correctness

Appendix B. Proofs for Chapter 3 242

= (O,∆O′) −̇ (O,∆O) (12, 10)

= ∆O′⊖∆O (11); lemma 26 part 2

=
(
((M ⊕∆M0) ⋊⋉ ∆N+

0)∪ (∆M+
0 ⋊⋉ (N ⊕∆N0)),

(∆M−
0 ⋊⋉ N)∪ (M ⋊⋉ ∆N−

0)
)
⊖∆O def. ∆O′

We now derive some straightforward properties required later in the proof, including
that L projected onto U is a subset of M0 and that L⊕∆L is a subset of M0⊕M0.

πU (L) = ∅⊆M0 L = ∅; ∅ least (13)

πU (L)⊕ π̇U (L,∆L)

= πU (L⊕∆L) delta-correctness

= πU (((M0⊕∆M0) ⋊⋉ (N0⊕∆N0))− (O⊕∆O)) (3); delta-correctness

⊆ πU ((M0⊕∆M0) ⋊⋉ (N0⊕∆N0)) πU (·) monotone

⊆M0⊕∆M0 πU after ⋊⋉ decr. (14)

We also show that La and Ll are empty, as well as that La⊕∆La and Ll⊕∆Ll are
both subsets of L⊕∆L:

La = L ⋊⋉ πU∩V (O) = ∅ L = ∅ (15)

Ll = L−La = ∅ L = ∅ (16)

La⊕∆La

= (L ⋊⋉ πU (O))⊕ ((L,∆L) ⋊̇⋉ π†
U∩V (O,∆O)) exp. La,∆La

= (L⊕∆L) ⋊⋉ (πU∩V (O)⊕ π̇U∩V (O⊕∆O)) delta-correctness

= πU∪V ((L⊕∆L) ⋊⋉ (πU∩V (O)⊕ π̇U∩V (O⊕∆O))) π identity

⊆ L⊕∆L πU∪V after ⋊⋉ decr. (17)

σPd
(La)⊕ σ̇Pd

(La,∆La)

= σPd
(La⊕∆La) delta-correctness

⊆ La⊕∆La σPd
(·) decreasing

⊆ L⊕∆L (17);⊆ transitive (18)

Ll⊕∆Ll

= (L−La)⊕ ((L,∆L) −̇ (La,∆La))

= (L⊕∆L)− (La⊕∆La) delta-correctness

⊆ (L⊕∆L) − decreasing (19)

Appendix B. Proofs for Chapter 3 243

The following few properties are required later in the proof:

(Ll∪σPd
(La))⊕ ((Ll,∆Ll) ∪̇ (σ†

Pd
(La,∆La)))

= (Ll⊕∆Ll)∪ (σPd
(La)

⊕σPd
(La,∆La)) delta-correctness

⊆ L⊕∆L (18, 19);∪ least up. bound (20)

πU (Ll∪σPd
(La))⊕ π̇U ((Ll,∆Ll) ∪† σ†

Pd
(La,∆La))

= πU ((Ll∪σPd
(La))⊕ ((Ll,∆Ll) ∪̇ (σ†

Pd
(La,∆La)))) delta-correctness

⊆ πU (L⊕∆L) (20);πU (·) monotone

⊆M0⊕∆M0 (14);⊆ transitive (21)

σPd
(La) = ∅ (15);∅ least (22)

πU (L∪σPd
(La)) = ∅⊆M0 (16, 22);∅ least (23)

We can now derive expressions for ∆La
+,∆Ll

+ and ∆M ′:

∆L+
a

= La⊕∆L+
a (15); lem. 23

= (L ⋊⋉ πU∩V (O))⊕ (L,∆L) ⋊̇⋉ π†
U∩V (O,∆O) def. L⊕∆L+

a

= (L⊕∆L) ⋊⋉ πU∩V (O⊕∆O) delta-correctness

∆Ll

= (L,∆L) −̇ (La,∆La) def. ∆Ll

= ∆L⊖∆La lem. 26 part 2

= ∆L⊕ (∆L−
a ,∆L+

a) def. ⊖ (24)

∆L+
l

= (∆L+−∆L+
a)∪ (∆L−

a −∆L−) (24); def. ⊕

= ∆L+−∆L+
a ∆L−

a = ∅

∆M ′

= (M0,∆M0) −̇ (π†
U ((Ll,∆Ll) ∪† σ†

Pd
(La,∆La)))

After showing some helper properties, we derive an expression for ∆N ′:

= ∆M0⊖ (π̇U ((Ll,∆Ll) ∪† σ†
Pd

(Ll,∆Ll))) (23, 21); lem. 26 part 5

Appendix B. Proofs for Chapter 3 244

= ∆M0⊖ (πU (∆L+
l ∪σPd

(∆L+
a))) (22, 23); lem. 90, 91, 92 (25)

σQd
(La) = ∅ (15); def. σQd

(·) (26)

πV (σQd
(La)) = ∅⊆N0 (26); ∅ least (27)

πV (L) = ∅⊆N0 L = ∅, ∅ least (28)

πV (L)⊕ π̇V (L,∆L)

= πV (L⊕∆L) delta-correctness

= πV (((M0⊕∆M0) ⋊⋉ (N ′⊕∆N ′))− (O⊕∆O)) (3); delta-correctness

⊆ πV ((M0⊕∆M0) ⋊⋉ (N ′⊕∆N ′))

⊆N0⊕∆N0 (29)

σQd
(La)⊕ σ̇Qd

(La,∆La)

= σQd
(La⊕∆La) delta-correctness

⊆ La⊕∆La σQd
(·) decreasing

⊆ L⊕∆L (30)

πV (σQd
(La))⊕ π̇V (σ†

Qd
(La))

= πV (σQd
(La)⊕ σ̇Qd

(La,∆La)) delta-correctness

⊆ πV (L⊕∆L) (30); πV (·) monotone

⊆N0⊕∆N0 (29); ⊆ transitive (31)

∆N ′

= (N0,∆N0) −̇ (π†
V (σ†

Qd
(La,∆La)))

= ∆N0⊖ (π̇V (σ†
Qd

(La,∆La))) (27, 31); lem. 26 part 5

= ∆N0⊖ (πV (σQd
(∆L+

a)),∅) (26, 27); lem. 90, 92

δputℓ′((M,N),∆O) = (∆M ′,∆N ′) def. δputℓ′ (32)

δputℓ′((M,N),∆O) = δputℓ((M,N),∆O) (32, 6); transitivity

Proof of Theorem 6

Theorem 6. [Correctness of rename lens] Suppose M : Rel(U,P,F) and N = ρA/B(M),
and that ∆N is minimal with respect to N and satisfies N ⊕∆N : Rel(U ∪ V,P ⋊⋉
Q,F ∪G). Then δputℓ(M,∆N) = δputℓ′(M,∆N).

Appendix B. Proofs for Chapter 3 245

Proof.
N = getℓ(M) suppose (N,M)

(M ′,∆M ′) = ρ†
B/A(N,∆N) suppose (Nnew ,∆Nnew ,∆N)

= (ρB/A(N), ρ̇B/A(N,∆N)) def. ·† (1)

δputℓ = ∆M ′ def. δputℓ (2)

∆M ′ = ρ̇B/A(N,∆N) (1)

= (ρB/A(∆N+),ρB/A(∆N−)) lem. 26 part 4 (3)

δputℓ′ = ∆M ′ def. δputℓ′

= (ρB/A(∆N+),ρB/A(∆N−)) (3) (4)

δputℓ = δputℓ′ (4, 2); transitivity

Appendix C

Proofs for Chapter 4

C.1 Normalisation Proofs 4.3
Proposition 9 (Normal forms). If x : R ⊢ e : τ and e⇝∗ f ̸⇝, then f is in normal
form.

Proof. As the rewrite rules can be applied anywhere in a term, it follows that if we
cannot apply a normalisation rule to a term, then we cannot apply a normalisation rule
to any of its subterms.

Terms typeable by rules T-Var, T-Const, and T-Abs are already in normal form.
Rules T-Record and T-Op follow directly from the induction hypothesis. The re-
mainder of the cases follow.

Case T-App

Assumption:

x : R ⊢ e :A→B x : R ⊢ f :A

x : R ⊢ ef :B

By the induction hypothesis, we have that e and f are in normal form.

Given that e is in normal form and has function type, there are the following possibil-
ities:

• e = x, which is not possible since the only variable in the typing environment is
x, and R is not a function type

246

Appendix C. Proofs for Chapter 4 247

• e = c, which is not possible since constants only have base types, not function
types

• e = λx. e′. In this case, we could apply the first normalisation rule, which would
be a contradiction.

• e = x.ℓ, which is not possible since R only contains fields with base types, not
function types

• if v1 then v2 else v3. In this case, we could apply the fifth normalisation rule,
which would be a contradiction.

• ⊙{−→v }, which is not possible since the result of an operator must have base type.

Thus, a term x : R ⊢ ef :τ cannot be in normal form.

Case T-Project

assumption:

Γ ⊢ e : ((ℓi : Ai)i∈I) j ∈ I

Γ ⊢ e.ℓj :Aj

By the IH, we have that e is in normal form. We now perform case analysis on e, giving
us the following possibilities for terms in normal form which can have record type:

• e = x: We have that x.ℓ which is in normal form.

• e = (−−−→ℓ = v): Impossible, since it would be possible to reduce by the second nor-
malisation rule

• e = if v1 then v2 else v3: Impossible, since it would be possible to reduce by
the sixth reduction rule

Case T-If

Assumption:

Γ ⊢ e :bool Γ ⊢ f1 :A Γ ⊢ f2 :A

Γ ⊢ if e then f1 else f2 :A

Immediate by the induction hypothesis on all three subterms; normalisation rules 3
and 4 serve only as an optimisation.

Appendix C. Proofs for Chapter 4 248

C.2 Hybrid Predicates (Section 4.4.1)
Lemma 51 (Consistent Typing). If R ⊢ S : A and P :: S then R ⊢ P : A.

Proof.
R ⊢ S : A assumption

P :: S assumption (1)

Perform induction on R ⊢ S : A.

case: T-S-Const

c : τc

R ⊢ c : τc

assumption

by inversion on P :: c

c :: c C-Const (1)

R ⊢ c : τc T-Const

case: T-S-Label

(ℓ : A) ∈R

R ⊢ ℓ : A
assumption

by inversion on P :: ℓ

ℓ :: ℓ C-Label (1)

R ⊢ ℓ : τc T-Label

case: T-S-If

R ⊢ S1 : bool
R ⊢ T1 : A R ⊢ T2 : A

R ⊢ if S1 then T1 else T2 : A
assumption

by inversion on P :: if S1 then T1 else T2

P1 :: S Q1 :: T1 Q2 :: T2

if P1 then Q1 else Q2 :: if S then T1 else T2 ::
C-If (1)

R ⊢ P1 : bool IH

R ⊢Q1 : A IH

R ⊢Q2 : A IH

R ⊢ if P1 then P1 else Q2 : A T-If

Appendix C. Proofs for Chapter 4 249

case: T-S-Op

⊙ : A1× . . .×An→A (R ⊢ Si : Ai)i∈1..n

R ⊢ ⊙
−→
S : A

assumption

by inversion on P ::⊙−→S

⊙ : A1× . . .×An→A (Pi :: Si)i∈1..n

⊙{
−→
P } ::⊙−→S

C-Op (1)

(R ⊢ Pi : Ai)i∈1..n IH

R ⊢ ⊙
−→
P : A T-Op

case: T-S-Erased

R1 ⊆R

R ⊢ (R1 ⊢ ? : A) : A
assumption

by inversion on P :: (R1 ⊢ ? : A)

R1 ⊢ P : A

P :: (R1 ⊢ ? : A)
C-Erased (1)

R ⊢ P : A Lemma 35

Lemma 52 (Static predicate consistent). For any closed term e (or term ê) such that
· ⊢ e : pred S and R ⊢ S : A, if e ⇓ P then P :: S.

Proof.
· ⊢ e : pred S assumption

R ⊢ S : A assumption (1)

e ⇓ P assumption (2)

Perform induction on e : pred S :

case: T-Q-Const

c : pred c
assumption

by inversion on c ⇓ P

c ⇓ c E-Q-Const (2)

c :: c C-Const

case: T-Q-Label

Appendix C. Proofs for Chapter 4 250

ℓ : pred ℓ
assumption

by inversion on ℓ ⇓ P

ℓ ⇓ ℓ E-Q-Label (2)

ℓ :: ℓ C-Label

case: T-Q-If-Else

ê : pred S1

f̂1 : pred T1 f2 : pred T2

if ê then f̂1 else f̂2 : pred if S1 then T1 else T2
assumption

by inversion on R ⊢ if S1 then T1 else T2

R ⊢ S1 : bool
R ⊢ T1 : A R ⊢ T2 : A

R ⊢ if S1 then T1 else T2 : A
T-S-If (1)

by inversion on if ê then f̂1 else f̂2 ⇓ P

ê ⇓ P1

f̂1 ⇓Q1 f̂2 ⇓Q2

if ê1 then f̂1 else f̂2 ⇓ if P1 then Q1 else Q2
E-If-Else (2)

P1 :: S1 IH

Q1 :: T1 IH

Q2 :: T2 IH

if P1 then Q1 else Q2 :: if S1 then T1 else T2 C-If

case: T-Q-Op

⊙ : A1× . . .×An→A (êi : pred Si)i∈1..n

⊙
−→
ê : pred ⊙−→S

assumption

by inversion on R ⊢ ⊙
−→
S : A

⊙ : A1× . . .×An→A (R ⊢ Si : Ai)i∈1..n

R ⊢ ⊙
−→
S : A

T-S-Op (1)

by inversion on ⊙−→ê ⇓ P

(êi ⇓Qi)i∈1..n

⊙
−→
ê ⇓ ⊙{

−→
Q}

E-Q-Op (2)

(Qi :: Si)i∈1..n IH

⊙{
−→
Q} ::⊙−→S C-Op

Appendix C. Proofs for Chapter 4 251

case: T-H-Erase

R1 ⊢ T : A f : pred T

erase f : pred (R1 ⊢ ? : A)
assumption

by inversion on erase f ⇓ P

f ⇓ P

erase f ⇓ P
E-H-Erase (2)

P :: T IH

R1 ⊢ P : A Lemma 51

P :: (R1 ⊢ ? : A) C-Erased

Appendix D

Proofs for Chapter 5

D.1 Language is well-behaved
We first define substitution in Figure D.1.

c[v/x] = c

x[v/x] = v

y[v/x] = w where x ̸= y

λx. e[v/x] = λx. e

λy. e[v/x] = λy. e[v/x] where x ̸= y

(e f)[v/x] = (e[v/x]) (f [v/x])

{−→e }[v/x] = {
−−−→
e[v/x]}(−−→

ℓ = e
)

[v/x] =
(−−−−−−→

ℓ = e[v/x]
)

(lens S of R with F)[v/x] = lens S of R with F

(selectQ from e)[v/x] = selectQ from e[v/x]

(drop ℓ determined by (U,v) from e)[v/x] = drop ℓ determined by (U,v) from e[v/x]

(renameℓ/ℓ′ from e)[v/x] = renameℓ/ℓ′ from e[v/x]

(get e)[v/x] = get e[v/x]

(put e with f)[v/x] = put e[v/x] with f [v/x]

Figure D.1: Substitution on terms

Lemma 93 (weakening). If Γ ⊢ e :τ and Γ is a subset of Γ′ then Γ′ ⊢ e :τ .

252

Appendix D. Proofs for Chapter 5 253

Proof.
Γ ⊢ e :τ assumption

Γ⊆ Γ′ assumption

perform induction on Γ ⊢ e :τ

case T-Const:

c is of type A

Γ ⊢ c :A
assumption

Γ′ ⊢ c :A T-Const

case T-Var:

(x = τ1) ∈ Γ

Γ ⊢ x :τ1
assumption

(x = τ1) ∈ Γ′ Γ⊆ Γ′

Γ ⊢ x :τ1 T-Var

case T-Abs:

Γ←+(x = τ1) ⊢ f :τ1

Γ ⊢ λx. f :τ1→ τ2
assumption

Γ←+(x = τ1)⊆ Γ′←+(x = τ1) Γ⊆ Γ′

Γ′←+(x = τ1) ⊢ f :τ1(x = τ1) induction

Γ′ ⊢ λx. f :τ1→ τ2

case T-App:

Γ ⊢ e1 :τ1→ τ2 Γ ⊢ f :τ1

Γ ⊢ e1 f :τ2
assumption

Γ′ ⊢ e1 :τ1→ τ2 induction

Γ′ ⊢ f :τ1 induction

Γ′ ⊢ e1 f :τ2 T-App

case T-Record:

(Γ ⊢ ei :τi)i∈1...n

Γ ⊢
(−−→
ℓ = e

)
:
(−−→
ℓ : τ

) assumption

(Γ′ ⊢ ei :τi)i∈1...n induction

Γ′ ⊢
(−−→
ℓ = e

)
:
(−−→
ℓ : τ

)
T-Record

Appendix D. Proofs for Chapter 5 254

case T-Const-Set:

(Γ ⊢ ei :τ)i∈1...n

Γ ⊢ {−→e } :{τ}
assumption

(Γ′ ⊢ ei :τ)i∈1...n induction

Γ′ ⊢ {−→e } :{τ} T-Const-Set

case T-Lens:

(S = Rel(R,true,F)) ∈ Φ
⋃

names(F)⊆ dom(R)

Γ ⊢ lens S of R with F : lens of ({S},R,true,F)
assumption

Γ′ ⊢ lens S of R with F : lens of ({S},R,true,F) T-Lens

case T-Select:

Γ ⊢ f : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from f : lens of (Σ,R,P ∧Q,F)
assumption

Γ′ ⊢ f : lens of (Σ,R,P,F) induction

Γ′ ⊢ selectQ from f : lens of (Σ,R,P ∧Q,F) T-Select

case T-Drop:

F ≡G∪{U → ℓ} Γ ⊢ f : lens of (Σ,R⊕ (ℓ′ : A),P,F)
U ⊆ dom(R) · ⊢ v :A

LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

Γ ⊢ drop ℓ determined by (U,v) from f : lens of (Σ,R,JP KR1,R2 ,G)

assumption

Γ′ ⊢ f : lens of (Σ,R⊕ (ℓ′ : A),P,F) induction

Γ′ ⊢ drop ℓ determined by (U,v) from f : lens of (Σ,R,JP KR1,R2 ,G) T-Drop

case T-Join-Templ:

Γ ⊢ e1 : lens of (Σ,R,P,F)
Γ ⊢ e2 : lens of (∆,R′,Q,G) Γ ⊢ f :R⊕R′→ (↖ | ↑ | ↗)

G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ joinf e1 with e2 : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G)

assumption

Γ′ ⊢ e1 : lens of (Σ,R,P,F) induction

Appendix D. Proofs for Chapter 5 255

Γ′ ⊢ e2 : lens of (∆,R′,Q,G) induction

Γ′ ⊢ f :R⊕R′→ (↖ | ↑ | ↗) induction

Γ′ ⊢ joinf e1 with e2 : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G) T-Join-Templ

case T-Rename:

Γ ⊢ f : lens of (Σ,R⊕ (ℓ : A),P,F)

Γ ⊢ renameℓ/ℓ′ from f : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

assumption

Γ′ ⊢ f : lens of (Σ,R⊕ (ℓ : A),P,F) induction

Γ′ ⊢ renameℓ/ℓ′ from f : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′]) T-Rename

case T-Get:

Γ ⊢ f : lens of (Σ,R,P,F)

Γ ⊢ get f :{R}
assumption

Γ′ ⊢ f : lens of (Σ,R,P,F) induction

Γ′ ⊢ get f :{R} T-Get

case T-Put:

Γ ⊢ e1 : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e1 with f :bool
assumption

Γ′ ⊢ e1 : lens of (Σ,R,P,F) induction

Γ′ ⊢ f :{R} induction

Γ′ ⊢ put e1 with f :bool T-Put

Lemma 67 (Substitution). If Γ←+(x = τ1) ⊢ e :τ and · ⊢ v :τ1 then Γ ⊢ e[v/x] :τ .

Proof.
Γ←+(x = τ1) ⊢ e :τ assumption

· ⊢ v :τ1 assumption (1)

Perform induction on Γ←+(x = τ1) ⊢ e :τ

case T-Const:

c is of type A

Γ←+(x = τ1) ⊢ c :A
assumption

Appendix D. Proofs for Chapter 5 256

c[v/x] = c def. subst

Γ ⊢ c :A T-Const

case T-Var:

(x = τ1) ∈ Γ←+(x = τ1)

Γ←+(x = τ1) ⊢ y :τ1
assumption (2)

if x = y :

x[v/x] = v def. subst

Γ ⊢ v :τ1 (1); weakening

else x ̸= y :

y[v/x] = y def. subst

(y = τ1) ∈ Γ (2)

Γ ⊢ y :τ1 T-Var

case T-Abs:

(Γ←+(x = τ1))←+(y = τ3) ⊢ f :τ2

Γ←+(x = τ1) ⊢ λy. f :τ3→ τ2
assumption (3)

if x = y :

(λx. f)[v/x] = λx. f def. subst

(Γ←+(x = τ1))←+(x = τ3) = Γ←+(x = τ3) overwrites (4)

Γ←+(x = τ3) ⊢ λx. f :τ2 (3, 4)

Γ ⊢ λy. f :τ3→ τ2 T-Abs

else x ̸= y :

(λy. f)[v/x] = λy. (f [v/x]) def. subst

(Γ←+(x = τ1))←+(y = τ3)

= (Γ←+(y = τ3))←+(x = τ1) x ̸= y

Γ←+(y = τ3) ⊢ f [v/x] :τ2 induction

Γ←+(y = τ3) ⊢ (λy. f)[v/x] :τ2 T-Abs

case T-App:

Γ←+(x = τ1) ⊢ e1 :τ1→ τ2 Γ←+(x = τ1) ⊢ f :τ1

Γ←+(x = τ1) ⊢ e1 f :τ2
assumption

Γ ⊢ e1[v/x] :τ1→ τ2 induction

Γ ⊢ f [v/x] :τ1 induction

Appendix D. Proofs for Chapter 5 257

(e1 f)[v/x] = (e1[v/x]) (f [v/x]) def. subst.

Γ ⊢ (e1 f)[v/x] :τ2 T-Abs

case T-Record:

(Γ←+(x = τ1) ⊢ eiτi)i∈1...n :

Γ←+(x = τ1) ⊢
(−−→
ℓ = e

)
:
(−−→
ℓ : τ

) assumption

(−−→
ℓ = e

)
[v/x] =

(−−−−−−→
ℓ = e[v/x]

)
def. subst.

(Γ ⊢ ei[v/x] :τi)i∈1...n induction

Γ ⊢
(−−→
ℓ = e

)
[v/x] :

(−−→
ℓ : τ

)
T-Abs

case T-Const-Set:

(Γ←+(x = τ1) ⊢ ei :τ)i∈1...n

Γ←+(x = τ1) ⊢ {−→e } :{τ}
assumption

{−→e }[v/x] = {
−−−→
e[v/x]} def. subst.

(Γ ⊢ ei[v/x] :τ)i∈1...n induction

Γ ⊢ {−→e }[v/x] :{τ} T-Const-Set

case T-Lens:

(S = Rel(R,true,F)) ∈ Φ
⋃

names(F)⊆ dom(R)

Γ←+(x = τ1) ⊢ lens S of R with F : lens of ({S},R,true,F)
assumption

Γ ⊢ lens S of R with F : lens of ({S},R,true,F) T-Lens

case T-Select:

Γ←+(x = τ1) ⊢ f : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ←+(x = τ1) ⊢ selectQ from f : lens of (Σ,R,P ∧Q,F)
assumption

(selectQ from f)[v/x] = selectQ from f [v/x] def. subst.

Γ ⊢ f [v/x] : lens of (Σ,R,P,F) induction

Γ ⊢ (selectQ from f)[v/x] : lens of (Σ,R,P ∧Q,F) T-Select

case T-Drop:

F ≡G∪{U → ℓ} Γ←+(x = τ1) ⊢ f : lens of (Σ,R⊕ (ℓ′ : A),P,F)
U ⊆ dom(R) · ⊢ w :A

LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = w))

Γ←+(x = τ1) ⊢ drop ℓ determined by (U,w) from f : lens of (Σ,R,JP KR1,R2 ,G)

Appendix D. Proofs for Chapter 5 258

assumption

(drop ℓ determined by (U,w) from f)[v/x]

= drop ℓ determined by (U,w) from f [v/x] def. susbst.

Γ ⊢ f [v/x] : lens of (Σ,R⊕ (ℓ′ : A),P,F) induction

Γ ⊢ drop ℓ determined by (U,w) from f : lens of (Σ,R,JP KR1,R2 ,G)T-Drop

case T-Join-Templ:

Γ←+(x = τ1) ⊢ e1 : lens of (Σ,R,P,F)
Γ←+(x = τ1) ⊢ e2 : lens of (∆,R′,Q,G) Γ←+(x = τ1) ⊢ f :R⊕R′→ (↖ | ↑ | ↗)

G ⊨ dom(R)∩dom(R′)→ dom(R′) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ←+(x = τ1) ⊢ joinf e1 with e2 : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G)

assumption

(joinf e1 with e2)[v/x] = joinf [v/x] e1[v/x] with e2[v/x] def. subst.

Γ ⊢ e1[v/x] : lens of (Σ,R,P,F) induction

Γ ⊢ e2[v/x] : lens of (∆,R′,Q,G) induction

Γ ⊢ f [v/x] :R⊕R′→ (↖ | ↑ | ↗) induction

Γ ⊢ (joinf e1 with e2)[v/x] : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G)T-Join-Templ

case T-Rename:

Γ←+(x = τ1) ⊢ f : lens of (Σ,R⊕ (ℓ : A),P,F)

Γ←+(x = τ1) ⊢ renameℓ/ℓ′ from f : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

assumption

(renameℓ/ℓ′ from f)[v/x] = renameℓ/ℓ′ from f [v/x] def. subst.

Γ ⊢ f : lens of (Σ,R⊕ (ℓ : A),P,F) induction

Γ ⊢ (renameℓ/ℓ′ from f)[v/x] : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

T-Rename

case T-Get:

Γ←+(x = τ1) ⊢ f : lens of (Σ,R,P,F)

Γ←+(x = τ1) ⊢ get f :{R}
assumption

(get f)[v/x] = get f [v/x] def. subst.

Γ ⊢ f [v/x] : lens of (Σ,R,P,F) induction

Γ ⊢ (get f)[v/x] :{R} T-Get

Appendix D. Proofs for Chapter 5 259

case T-Put:

Γ←+(x = τ1) ⊢ e1 : lens of (Σ,R,P,F) Γ←+(x = τ1) ⊢ f :{R}

Γ←+(x = τ1) ⊢ put e1 with f :bool
assumption

(put e1 with f)[v/x] = put e1[v/x] with f [v/x] def. subst.

Γ ⊢ e1[v/x] : lens of (Σ,R,P,F) induction

Γ ⊢ f [v/x] :{R} induction

Γ ⊢ (put e1 with f)[v/x] :bool T-Put

Theorem 12 (Preservation). Given φ : Φ, if · ⊢ e :τ and e,φ ⇓ v,γ then · ⊢ v :τ and
γ : Φ.

Proof.
φ : Φ assumption

· ⊢ e :τ assumption (1)

e,φ ⇓ v,γ assumption (2)

Perform induction on e,φ ⇓ v,γ

case E-Value

v,φ ⇓ v,φ
assumption

· ⊢ v :τ (1); e = v

case E-App

e,φ ⇓ λx. e1,φ1 f,φ1 ⇓ v′,φ2 e1[v′/x],φ2 ⇓ v,γ

e f,φ ⇓ v,γ
assumption

· ⊢ e :τ1→ τ · ⊢ f :τ1

· ⊢ e f :τ
T-App

from (1); T-App

· ⊢ λx. e1 :τ1→ τ induction

φ1 : Φ induction

· ⊢ v′ :τ1 induction

φ2 : Φ induction

Γ←+(x = τ1) ⊢ e1 :τ T-Abs

· ⊢ e1[w′/x] :τ substitution [67]

Appendix D. Proofs for Chapter 5 260

· ⊢ v :τ induction

γ : Φ induction

case E-Record

(ei,φi ⇓ vi,φi+1)i∈1...n(−−→
ℓ = e

)
,φ1 ⇓

(−−−→
ℓ = v

)
,φn+1

assumption

(Γ ⊢ ei :τi)i∈1...n (1); T-Record

(· ⊢ vi :τi)i∈1...n induction

(φi+1 : Φ)i∈1...n induction

· ⊢
(−−−→
ℓ = v

)
:τ T-Record

case E-Const-Set
E-Const-Set
(ei,φi ⇓ vi,φi+1)i∈1...n

−→w = set of v

{−→e },φ1 ⇓ {−→w },φn+1
assumption

(· ⊢ ei :τ)i∈1...n (1); T-Const-Set

(· ⊢ vi :τ)i∈1...n induction

(φi+1 : Φ)i∈1...n induction

· ⊢ {−→v } :{τ} T-Const-Set

case E-Lens-Select

e,φ ⇓ v,γ

selectP from e,φ ⇓ selectP from v,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)
1; T-Select

Γ ⊢ v : lens of (Σ,R,P,F) induction

γ : Φ induction

Γ ⊢ selectQ from v : lens of (Σ,R,P ∧Q,F) T-Select

case E-Join

e1,φ ⇓ v1,φ1 e2,φ1 ⇓ v2,φ2 f,φ2 ⇓ w,γ

joinf e1 with e2 ⇓ joinw v1 with v2
assumption

Appendix D. Proofs for Chapter 5 261

Γ ⊢ e1 : lens of (Σ,R,P,F) Γ ⊢ e2 : lens of (∆,R′,Q,G)
Γ ⊢ f :R⊕R′→ (↖ | ↑ | ↗) G ⊨ dom(R)∩dom(R′)→ dom(R′)

F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G)

Σ∩∆ = ∅

· ⊢ joinf e1 with e2 : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G)
(1); T-Join

· ⊢ v1 : lens of (Σ,R,P,F) induction

φ1 : Φ induction

· ⊢ v2 : lens of (∆,R′,Q,G) induction

φ2 : Φ induction

· ⊢ w :R⊕R′→ (↖ | ↑ | ↗) induction

γ : Φ induction

· ⊢ joinw v1 with v2 : lens of (Σ∪∆,R⊕R′,P ∧Q,F ∪G) T-Join

case E-Drop

e,φ ⇓ w,γ

drop ℓ determined by (U,v′) from e,φ ⇓ drop ℓ determined by (U,v′) from w,γ

assumption

F ≡G∪{U → ℓ} · ⊢ e : lens of (Σ,R⊕ (ℓ′ : A),P,F)
U ⊆ dom(R) · ⊢ v′ :A

LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

Γ ⊢ drop ℓ determined by (U,v′) from e : lens of (Σ,R,JP KR1,R2 ,G)

(1); T-Drop

· ⊢ w : lens of (Σ,R⊕ (ℓ′ : A),P,F) induction

γ : Φ induction

· ⊢ drop ℓ determined by (U,v′) from w : lens of (Σ,R,JP KR1,R2 ,G) T-Drop

case E-Rename

f,φ ⇓ w,γ

renameℓ/ℓ′ from f,φ ⇓ renameℓ/ℓ′ from w,γ
assumption

· ⊢ f : lens of (Σ,R⊕ (ℓ : A),P,F)

· ⊢ renameℓ/ℓ′ from f : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])
(1); T-Rename

· ⊢ w : lens of (Σ,R⊕ (ℓ : A),P,F) induction

γ : Φ induction

Appendix D. Proofs for Chapter 5 262

· ⊢ renameℓ/ℓ′ from w : lens of (Σ,R⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′]) T-Rename

case E-Get

e′,φ ⇓ v′,γ w = getv′(γ)

get e,φ ⇓ w,γ
assumption

· ⊢ e′ : lens of (Σ,R,P,F)

· ⊢ get e′ :{R}
(1); T-Get

· ⊢ v′ : lens of (Σ,R,P,F) induction

γ : Φ induction

Lv′M = Σ/I/S Theorem 11

sort(S) = (dom(R),set(P,R),F) Theorem 11

· ⊢ w :{R} I well-behaved

case E-Put-Sat

e,φ ⇓ v′,φ1 f,φ1 ⇓ w,φ2 · ⊢ v′ : lens of (Σ,S,P,F)
w |= F ∀r ∈ w. sat(P,r) γ = putv(φ2,w)

put e with f,φ ⇓ true,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e with f :bool
(1); T-Put (3)

φ1 : Φ (3); induction (4)

φ2 : Φ (3, 4); induction (5)

· ⊢ w :{R} (3, 4); induction

w : Rel(R,P,F) def. Rel(R,P,F) (6)

· ⊢ true :bool (6); T-Const

γ : Φ (5); Lemma 66

case E-Put-Unsat

e,φ ⇓ v,φ1 f,φ1 ⇓ w,γ v : lens of (Σ,S,P,F)
w ⊭ F or ∃r ∈ w. ¬sat(P,r)

put e with f,φ ⇓ false,γ
assumption

Γ ⊢ e : lens of (Σ,R,P,F) Γ ⊢ f :{R}

Γ ⊢ put e with f :bool
(1); T-Put (7)

φ1 : Φ (7); induction (8)

γ : Φ (7, 8); induction

Appendix D. Proofs for Chapter 5 263

· ⊢ false :bool T-Const

D.2 Naive Lens Semantics
Chapter 5 shows how relational lenses can be integrated into the type system of a
functional language. The chapter abstracts over the actual lens semantics. For any
lens value v we require an implementation for the getv(φ) and putv(φ,M) functions,
which should query and update the database value φ. We first provide definitions for
get and put for each lens primitive. We rely on the non-incremental semantics, and
all of these functions are simple adaptions from the relational lens semantics shown in
Chapter 2. We later show that the round-tripping properties required in 5 apply to
these lenses.

Definition 32. Given the value v = lens S of R with F such that
· ⊢ v : lens of (Σ,R,Q,F), define the functions getv and putv as follows:

getv(φ) = φ(S)
putv(φ,w) = φ\S←+(S = w)

Definition 33. Given the value v = selectw from P such that · ⊢ v : lens of(Σ,R,Q,F),
define the functions getv and putv as follows:

getv(φ) = σP (getw(φ))
putv(φ,M) = let N = getw(φ) in

let M0 = mergeF (σ¬P (M),φ) in
let N# = σP (M0)−N in
putw(φ,M0−N#)

Definition 34. Given the value v = drop ℓ determined by (U,v′) from w such that
· ⊢ v : lens of (Σ,R,Q,F), define the functions getv and putv as follows:

getv(φ) = πU−ℓ(getw(φ))
putv(φ,M) = let N = getw(φ) in

let M ′ = N ⋊⋉ {(ℓ = v′)} in
reviseU→ℓ(M ′,M)

Definition 35. Given the value v = joinw v1 with v2 such that · ⊢ v : lens of(Σ,R,Q,F),
define the functions getv and putv as follows:

Appendix D. Proofs for Chapter 5 264

getv(φ) = getv1(φ) ⋊⋉ getv2(φ)
putv(φ,O) = let M = getv1(φ) in

let N = getv2(φ) in
let M0 = mergeF (M,πU (O)) in
let N0 = mergeG(N,πV (O)) in
let L = (M0 ⋊⋉ N0)−O in
let La = L ⋊⋉ πU∩V (O) in
let Ll = L−La in
let M ′ = M0−πU (Ll∪σPd

(La)) in
let N ′ = N0−πV (σQd

(La)) in
putv2(putv1(φ,M ′),N ′)

Pd and Qd are defined by w according to Definition 28.

Definition 36. Given the value v = renameℓ/ℓ′ from w such that
· ⊢ v : lens of (Σ,R,Q,F) is define the functions get and put as follows:

getv(φ) = ρℓ/ℓ′(getw(φ))
putv(φ,M) = putw(φ,ρℓ′/ℓ(M))

To show our lenses satisfy the required lemmas, we rely on the fact that we can rewrite
the semantics of each lens using the definitions from Chapter 2. For example, given
a select lens v = selectP from w, it is safe to construct the lens I = selectP . The
definitions for get and put can then be written as:

• getv(φ) = getI(getw(φ))

• putv(φ,M) = putw(φ,putI(getw(φ),M))

We first show that the put and get functions are total. For this we rely on the underlying
lens to be total and well-typed (see Appendix A.1).

Lemma 65 (Get Total). If φ : Φ and · ⊢ v : lens of (Σ,R,P,F) then getv(φ) = M and
M : Rel(R,P,F).

Proof.
φ : Φ assumption

(1)

M : Rel(R,P,F) assumption

Appendix D. Proofs for Chapter 5 265

· ⊢ v : lens of (Σ,R,Q,F) assumption

perform induction on · ⊢ v : lens of (Σ,R,Q,F)

case T-Lens-Prim

(S = Rel(R,true,F)) ∈ Φ
⋃

names(F)⊆ dom(R)

Γ ⊢ lens S of R with F : lens of ({S},R,true,F)
assumption

∃N : Rel(R,true,F). φ(S) = N (1)

getv(φ) = N : Rel(R,true,F)

case T-Select

Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)
assumption

v = selectQ from w assumption

I = selectQ define

M = getw(φ) : Rel(R,P,F) induction

getv(φ)

= getI(getw(φ)) def. getv(·)

= getI(M) : Rel(R,P ∧Q,F) getI(M) total

case T-Drop

F ≡G∪{U → ℓ} Γ ⊢ e : lens of (Σ,R′⊕ (ℓ′ : A),P,F)
U ⊆ dom(R) · ⊢ v′ :A

LJD[R′,(ℓ : A)](P) DV[R′,(ℓ : A)](P,(ℓ = v′))

Γ ⊢ drop ℓ determined by (U,v′) from e : lens of (Σ,R′,JP KR1,R2 ,G)

assumption

v = drop ℓ determined by (U,v′) from w assumption

I = drop ℓ determined by (U,v′) define

N = getw(φ) : Rel(R,P,F) induction

getv(φ) = getI(getw(φ)) : Rel(R′,JP KR1,R2 ,G) getI(·) total

case T-Join

Appendix D. Proofs for Chapter 5 266

Γ ⊢ v1 : lens of (Σ,R1,P1,F1)
Γ ⊢ v2 : lens of (∆,R2,Q,G) Γ ⊢ f :R1∪R2→ (↖ | ↑ | ↗)

G ⊨ dom(R1)∩dom(R2)→ dom(R2) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ joinf e1 with e2 : lens of (Σ∪∆,R∪R′,P ∧Q,F1∪G)

assumption

v = joinw v1 with v2 assumption

I = joinPd,Qd
define

getv1(φ) : Rel(R1,P1,F1) induction

getv2(φ) : Rel(R2,Q,G) induction

getv(φ) = getI(getv1(φ),getv2(φ)) : Rel(R1∪R2,P1∧Q,F1∪G) getI total

case T-Rename

Γ ⊢ e : lens of (Σ,R′⊕ (ℓ : A),P,F)

Γ ⊢ renameℓ/ℓ′ from e : lens of (Σ,R′⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

v = renameℓ/ℓ′ from w assumption

I = renameℓ/ℓ′ define

getw(φ) : Rel(R,P,F) induction

getv(φ) = getI(getw(φ)) : Rel(R′,JP KR1,R2 ,G) getI total

Lemma 66 (Put Total). Given φ : Φ, if M : Rel(R,P,F) and · ⊢ v : lens of (Σ,R,P,F)
then putv(φ,M) = γ and γ : Φ.

Proof.
φ : Φ assumption (1)

M : Rel(R,P,F) assumption

· ⊢ v : lens of (Σ,R,Q,F) assumption

perform induction on · ⊢ v : lens of (Σ,R,Q,F)

case T-Lens-Prim

(S = Rel(R,true,F)) ∈ Φ
⋃

names(F)⊆ dom(R)

Γ ⊢ lens S of R with F : lens of ({S},R,true,F)
assumption

∃N : Rel(R,true,F). φ(S) = N (1)

Appendix D. Proofs for Chapter 5 267

M : Rel(R,true,F) def. P (2)

putv(φ,M) = φ\S←+(S = M) def. putv

φ\S←+(S = M) : Φ (2)

putv(φ,M) : Φ def. ·←+ ·

case T-Select

Γ ⊢ e : lens of (Σ,R,P,F) R ⊢Q :bool
F is in tree form P ignores outputs(F)

Γ ⊢ selectQ from e : lens of (Σ,R,P ∧Q,F)
assumption

v = selectQ from w assumption

I = selectQ define

N = getw(φ) : Rel(R,P,F) Lemma 65

putI(N,M) : Rel(R,P,F) putI total

putv(φ,M) = putw(φ,putI(getw(φ),M)) : Φ def. putv; induction

case T-Drop

F ≡G∪{U → ℓ} Γ ⊢ e : lens of (Σ,R⊕ (ℓ′ : A),P,F)
U ⊆ dom(R) · ⊢ v :A

LJD[R,(ℓ : A)](P) DV[R,(ℓ : A)](P,(ℓ = v))

Γ ⊢ drop ℓ determined by (U,v) from e : lens of (Σ,R,JP KR1,R2 ,G)

assumption

v = drop ℓ determined by (U,v′) from w assumption

I = drop ℓ determined by (U,v′) define

N = getv(φ) : Rel(R,P,F) Lemma 65

putI(M,N) : Rel(R,P,F) putI total

putv(φ,M) = putw(φ,putI(getw(φ),M)) : Φ def. putv; induction

case T-Join

Γ ⊢ v1 : lens of (Σ,R1,P1,F1)
Γ ⊢ v2 : lens of (∆,R2,Q,G) Γ ⊢ f :R1∪R2→ (↖ | ↑ | ↗)

G ⊨ dom(R1)∩dom(R2)→ dom(R2) F is in tree form G is in tree form
P ignores outputs(F) Q ignores outputs(G) Σ∩∆ = ∅

Γ ⊢ joinf e1 with e2 : lens of (Σ∪∆,R∪R′,P ∧Q,F1∪G)

assumption

v = joinw v1 with v2 assumption

Appendix D. Proofs for Chapter 5 268

I = joinPd,Qd
define

* Pd and Qd defined from w according to Definition 28

getv1(φ) : Rel(R1,P1,F1) Lemma 65

getv2(φ) : Rel(R2,Q,G) Lemma 65

(M ′,N ′) = putI((getv1(φ),getv2(φ)),M) define

M ′ : Rel(S1,P1,F1) putI total

N ′ : Rel(S2,Q,G) putI total

putv1(φ,M ′) : Φ induction (3)

putv(φ,M) = putv2(putv1(φ,M ′),N ′) : Φ (3); induction

case T-Rename

Γ ⊢ e : lens of (Σ,R′⊕ (ℓ : A),P,F)

Γ ⊢ renameℓ/ℓ′ from e : lens of (Σ,R′⊕ (ℓ′ : A),P [ℓ/ℓ′],F [ℓ/ℓ′])

assumption

v = renameℓ/ℓ′ from w assumption

I = renameℓ/ℓ′ define

N = getw(φ) : Rel(R′⊕ (ℓ : A),P,F) Lemma 65

putI(M,N) : Rel(R′⊕ (ℓ′ : A),P,F) putI total

putv(φ,M) = putw(φ,putI(getw(φ),M)) : Φ def. putv; induction

For the round-tripping properties we rely on the lens I being well-behaved. This means
we can use the following equivalences:

• getI(putI(M,N)) = N

• putI(M,getI(M)) = M

Lemma 68 (GetPut). If φ : Φ and · ⊢ v : lens of(Σ,R,P,F) then putv(φ,getv(φ)) = φ.

Proof.
· ⊢ v : lens of (Σ,R,Q,F) assumption

perform induction on · ⊢ v : lens of (Σ,R,Q,F)

case T-Lens-Prim

v = lens S of R with F assumption

Appendix D. Proofs for Chapter 5 269

putv(φ,get(φ))

= φ\S←+φ(S) def. get,put

= φ def. ·←+ ·

case T-Select

v = selectP from v assumption

I = selectP define

M = getw(φ) define

putv(φ,getv(φ))

= putw(φ,putI(M,getI(M))) def. putv

= putw(φ,M) PutGet for I

= putw(φ,getw(φ)) def. M

= φ induction

case T-Drop

v = drop ℓ determined by (U,v′) from w assumption

I = drop ℓ determined by (U,v) define

M = getw(φ) define

putv(φ,getv(φ))

= putw(φ,putI(M,getI(M))) def. putv

= putw(φ,M) PutGet for I

= putw(φ,getw(φ)) def. M

= φ induction

case T-Join

v = joinw v1 with v2 assumption

I = joinPd,Qd
define

* Pd and Qd defined from w according to Definition 28

M = getv1(φ) define

N = getv2(φ) define

(M ′,N ′) = putI(getI(M,N)) define

= (M,N) PutGet for I (1)

(M,N) = getw(φ) define

putv(φ,getv(φ))

Appendix D. Proofs for Chapter 5 270

= putv2(putv1(φ,M ′),N ′) def. putv

= putv2(putv1(φ,M),N) (1)

= putv2(φ,N) induction

= φ induction

case T-Rename

v = renameℓ/ℓ′ from w assumption

I = renameℓ/ℓ′ define

M = getw(φ) define

putv(φ,getv(φ))

= putw(φ,putI(M,getI(M))) def. putv

= putw(φ,M) PutGet for I

= putw(φ,getw(φ)) def. M

= φ induction

Lemma 94. If · ⊢ v : lens of (Σ,R,P,F) and · ⊢ w : lens of (∆,R′,Q,G) and Σ and ∆
are disjoint, then getv(putw(φ,M)) = getv(φ).

Proof. The lens w only ever modifies tables in ∆, so any tables referenced by Σ which
may affect the result are unchanged.

Lemma 69 (PutGet). If φ : Φ and · ⊢ v : lens of (Σ,R,P,F) and M : Rel(R,P,F) then
getv(putv(φ,M)) = M .

Proof.
· ⊢ v : lens of (Σ,R,Q,F) assumption

perform induction on · ⊢ v : lens of (Σ,R,Q,F)

case T-Lens-Prim

v = lens S of R with F assumption

getv(putv(φ,M))

= get(φ\S←+M)(S) def. get,put

= M def. ·←+ ·

case T-Select

Appendix D. Proofs for Chapter 5 271

v = selectP from v assumption

I = selectP define

getv(putv(φ,M))

= getI(getw(putv(φ,M))) def. getv

= getI(getw(putw(φ,putI(getw(φ),M)))) def. putv

= getI(putI(getw(φ),M)) induction

= M PutGet for I

case T-Drop

v = drop ℓ determined by (U,v′) from w assumption

I = drop ℓ determined by (U,v′) define

getv(putv(φ,M))

= getI(getw(putv(φ,M))) def. getv

= getI(getw(putw(φ,putI(getw(φ),M)))) def. putv

= getI(putI(getw(φ),M)) induction

= M PutGet for I

case T-Join

v = joinw v1 with v2 assumption

I = joinPd,Qd
define

* Pd and Qd defined from w according to Definition 28

(M ′,N ′) = putI((getv1(φ),getv2(φ)),O) define

putv(φ,O)

= putv2(putv1(φ,M ′),N ′) def. putv

getv1(putv(φ,O))

= getv1(putv2(putv1(φ,M ′),N ′)) def. putv

= getv1(putv1(φ,M ′)) Lemma 94

= M ′ induction

getv2(putv(φ,O))

= getv2(putv2(putv1(φ,M ′),N ′)) def. putv

= N ′ induction

getv(putv(φ,O))

= getI(getv1(putv(φ,O)),getv2(putv(φ,O))) def. getv

Appendix D. Proofs for Chapter 5 272

= getI(getw(putw(φ,putI(getw(φ),M)))) def. putv

= getI(putI(getw(φ),M)) induction

= M PutGet for I

case T-Rename

v = renameℓ/ℓ′ from w assumption

I = renameℓ/ℓ′ define

getv(putv(φ,M))

= getI(getw(putv(φ,M))) def. getv

= getI(getw(putw(φ,putI(getw(φ),M)))) def. putv

= getI(putI(getw(φ),M)) induction

= M PutGet for I

D.3 Empty Drop Lens
In this section we would like to show that constructing a drop lens for any lens such
that set(P,R) = ∅ is still sound.

The drop lens typing rules from Bohannon et al. [12] does not permit any lens where
the predicate P =∅ (where P is a set predicate), because it does not satisfy the default
value constraint {A = a} ∈ πA(P). This lens, even if not very useful, is still well-behaved
as long as the resulting predicate set is also empty. Instead the only permitted view is
the ∅ value. Consider a lens with the following semantics:

get(M) = ∅

put(∅,M) = M

It is easy to show that this lens is well-behaved:

get(put(∅,M)) = ∅

put(get(M),M) = M

For the typing rules to remain well-behaved, it is necessary to show that JP KR1,R2 pre-
serves predicates that are empty. We start by specifying the inductive rules NoSat[R1,R2](P,r),

Appendix D. Proofs for Chapter 5 273

which specify that the record r : R1 causes an evaluation of P to yield false.

NoSat-1
R1 ⊢ P :bool P ⇓r false

NoSat[R1,R2](P,r)

NoSat-Left
NoSat[R1,R2](P,r)

NoSat[R1,R2](P ∧Q,r)

NoSat-Right
NoSat[R1,R2](Q,r)

NoSat[R1,R2](P ∧Q,r)

We show that if a predicate P satisfies the default value constraint, then the NoSat[R1,R2](P,r)
is equivalent to showing that there is no value s : R2 such that r⊗s satisfies the predi-
cate.

Lemma 95. Assuming DV†[R1,R2](P,v) and r : R1. Iff. NoSat[R1,R2](P,r) then
∀s : R2. r⊗s ⇓P false.

Proof. For the first half of this proof we need to show that ∀s : R2. r⊗ s ⇓P false if
NoSat[R1,R2](P,r). We perform induction on the NoSat[R1,R2](P,r) property. If
NoSat-1 applies, then we know that R1 ⊢ P :bool and P ⇓r false. Using Lemma 44 it
follows that ∀s : R2. r⊗s ⇓P false. The other two cases follow trivially from induction
and the fact that false∧v = v∧ false = false.

In the other direction we perform induction on DV†[R1,R2](P,v).

• DVI†-1: We know that R1 ⊢ P :bool and hence NoSat-1 follows trivially from
Lemma 44.

• DVI†-2: We know that R2 ⊢ P :bool and P ⇓v true. Using Lemma 44 we can
derive P ⇓r⊗v true which contradicts our assumption.

• DVI†-And: We know that the predicate is a conjunction P = P ′∧Q. We first
argue that either ∀s : R2. P ′ ⇓r⊗s false or ∀s : R2. Q ⇓r⊗s false must hold. If
neither of these properties applied, then the default value property would require
that both P ′ ⇓r⊗v true and Q ⇓r⊗v true which would imply that P ⇓r⊗v true
holds, contradicting our assumption. In the case of ∀s : R2. P ′ ⇓r⊗s false the
induction property allows us to show NoSat[R1,R2](P ′, r), and hence NoSat-
Left applies. In the other case, we can use the induction hypothesis to show
NoSat[R1,R2](Q,r), and hence NoSat[R1,R2](Q,r) can be derived.

If the predicate satisfies our inductive property, then the rewritten predicate does not
contain that record r.

Lemma 96. If NoSat[R1,R2](P,r), then JP KR1,R2 ⇓r false.

Appendix D. Proofs for Chapter 5 274

Proof. Perform induction on NoSat[R1,R2](P,r):

• NoSat-1: We know that R1 ⊢ P :bool, and so JP KR1,R2 = P . We also know that
P ⇓r false and therefore P ⇓r false.

• NoSat-Left: In this case P = P ′∧Q and JP KR1,R2 = JP ′KR1,R2∧JQKR1,R2 . From
the condition NoSat[R1,R2](P ′, r) we can derive JP ′KR1,R2 ⇓r false using the
induction hypothesis, and hence JP KR1,R2 ⇓r false.

• NoSat-Right: In this case P = P ′ ∧Q and JP KR1,R2 = JP ′KR1,R2 ∧ JQKR1,R2 .
From the condition NoSat[R1,R2](Q,r) we can derive JQKR1,R2 ⇓r false using
the induction hypothesis, and hence JP KR1,R2 ⇓r false.

Lemma 97. Iff. ∀r : R. P ⇓r false then set(P,R) = ∅.

Proof. Follows trivially from the definition of set and sat.

Lemma 98. Assuming R = R1⊕R2 and v : R2. If DV†[R1,R2](P,v) and set(P,R) =∅
then set(JP KR1,R2 ,R1) = ∅.

We can then show that if a predicate is empty, the rewritten predicate must also be
empty. This means that our typing rule is correctly behaved even if the predicate is
empty (which would not be permitted with the Bohannon et al. [12] rule).

Proof. From the conditions DV†[R1,R2](P,v) and set(P,R) = ∅ we can derive ∀r :
R. P ⇓r false using Lemma 97. This allows us to derive ∀r : R1. NoSat[R1,R2](P,r)
using Lemma 95. We can then show that ∀r : R1.JP KR1,R2 ⇓r false using Lemma 96.
From Lemma 97 it follows that set(P,R1) = ∅.

Appendix E

Case Study: Curated Scientific
Databases

This case study was authored by Simon Fowler.

In this section, we illustrate the use of relational lenses in the setting of a larger Links
application: part of the curation interface for a scientific database. Scientific databases
collect information about a particular topic, and are curated by subject matter experts
who manually enter and update entries.

The IUPHAR/BPS Guide to Pharmacology (GtoPdb) [71] is a curated scientific database
which collects information on pharmacological targets, such as receptors and enzymes,
and ligands such as pharmaceuticals which act upon targets. GtoPdb consists of a
PostgreSQL database, a Java/JSP web application frontend to the database, and a
Java GUI application used for data curation.

In parallel work [39], a workalike frontend application has been developed in Links,
using the Links LINQ functionality. In this section, we demonstrate how we are begin-
ning to use relational lenses for the curation interface, and show how relational lenses
are useful in tandem with the Model-View-Update (MVU) paradigm pioneered by the
Elm programming language [1].

E.1 Disease Curation Interface
One section of GtoPdb collects information on diseases, such as the disease name,
description, crossreferences to other databases, and relevant drugs and targets. In this
section, we describe a curation interface for diseases, where all interaction with the

275

Appendix E. Case Study: Curated Scientific Databases 276

Figure E.1: Java disease curation interface

Figure E.2: Links reimplementation of the curation interface for diseases

Appendix E. Case Study: Curated Scientific Databases 277

database occurs using relational lenses.

Figure E.1 shows the official Java curation interface. The main data entries edited
using the curation interface are the name and description of the disease; the crossrefer-
ences for the disease which refer to external databases; and the synonyms for a disease.
As an example, a synonym for “allergic rhinitis” is “hayfever”. Note that this cura-
tion interface does not edit ligand or target information; curation of ligand-to-disease
and target-to-disease links are handled by the ligand and target curation interfaces
respectively.

E.2 Links Reimplementation
Figure E.2 shows the curation interface as a Links web application. In the original
implementation of Links [26], requests invoked Links as a CGI script. Modern Links
web applications execute as follows:

1. A Links application is executed, which registers URLs against page generation
functions, and starts the webserver

2. A request is made to a registered URL, and the server runs the corresponding
page generation function

3. The page generation function may spawn server processes, make database queries,
and register processes to run on the client, before returning HTML to the client

4. The client application spawns any client processes, and renders the HTML

5. Client processes can communicate with server processes over a WebSocket con-
nection.

E.2.1 Architecture

The disease curation interface consists of a persistent server process, and a client process
which is spawned by the Links MVU library.

Upon page creation, the application creates lenses to the underlying tables: the lenses
retrieve data from, and propagate changes to, the database. Since lenses only exist on
the server and cannot be serialised to the client, we spawn a process which awaits a
message from the client with the updated data.

Appendix E. Case Study: Curated Scientific Databases 278

E.2.2 Tables and Lenses.

We begin by defining the records we need, and handles to the underlying database and
its tables.

First, we define a database handle, db, to the gtopdb database.
var db = database "gtopdb";

Next, we define type aliases for the types of records in each table. The disease curation
interface uses tables describing four entity types: disease data (DiseaseData), metadata
about external databases (ExternalDatabase), links from diseases to external databases
(DatabaseLink), and disease synonyms (Synonym). (Note that "prefix" appears in quotes
as prefix is a Links keyword).
typename DiseaseData =
(disease_id: Int, name: String,
description: String, type: String);

typename ExternalDatabase =
(database_id: Int, name: String, url: String,
specialist: Bool, "prefix": String);

typename DatabaseLink =
(disease_id: Int, database_id: Int, placeholder: String);

typename Synonym = (disease_id: Int, synonym: String);

We will need to join the ExternalDatabase and DatabaseLink tables in order to render
the database name of each external database link. It is therefore useful to define a type
synonym for the record type resulting from the join:
typename JoinedDatabaseLink =
(disease_id: Int, database_id: Int, placeholder: String,
name: String, url: String,
specialist: Bool, "prefix": String);

Next, we can define handles to each database table. The with clause specifies a record
type denoting the column name and type of each attribute in the table, and the
tablekeys clause specifies the primary keys (i.e., sets of attributes which uniquely iden-
tify a row in the database) for each table. We show only the definition of diseaseTable;
the definitions for databaseTable, dbLinkTable, and synonymTable are similar.
var diseaseTable =
table "disease" with DiseaseData
tablekeys [["disease_id"]] from db;

The ID of the disease to edit (diseaseID) is provided as a GET parameter to the page,
and thus we need a dynamic predicate as not all information is known statically. With
the description of the entities and tables defined, we can describe the relational lenses
over the tables. We work in a function scope where diseaseID has been extracted from
the GET parameters.

Appendix E. Case Study: Curated Scientific Databases 279

fun diseaseFilter(x) { x.disease_id == diseaseID }
Disease lenses
var diseasesLens = lens diseaseTable default;
var diseasesLens =
check (select from diseasesLens by diseaseFilter);(*\vspace{0.5em}*)

Database link lenses
var dbLens = lens databaseTable
with { database_id -> name url specialist "prefix" };

var dbLinksLens = lens dbLinkTable default;
var dbLinksLens =
check (select from dbLinksLens by diseaseFilter);

var dbLinksJoinLens = check (
join dbLinksLens with dbLens
on database_id delete_left);(*\vspace{0.5em}*)

Synonym lenses
var synonymsLens = lens synonymTable default;
var synonymsLens =
check (select from synonymsLens by diseaseFilter);

We create a lens over a table using the lens keyword, writing default when we do not
need to specify functional dependencies. The dbLens lens specifies a functional depen-
dency from database_id to each of the other columns, as knowledge of this dependency
is required when constructing a join lens.

We need not filter the databaseTable table since we wish to display all external databases.
The diseaseLens, dbLinksLens, and synonymsLens lenses make use of the select lens com-
binator, allowing us to consider only the records relevant to the given diseaseID. Note
that each entity has a disease_id field: as a result, we can make use of Links’ row
typing system [64] to define a single predicate, diseaseFilter, for each select lens using
row polymorphism.

The dbLinksJoinLens lens joins the external database links with the data about each
external database by using the join lens combinator, stating that if a record is deleted
from the view, then it should be deleted from the dbLinkTable rather than the dbLens

table. Joining these two tables is only possible because database_id uniquely determines
each column of the databaseTable table; as the lens uses a dynamic predicate, this
property is checked at runtime.

E.2.3 Model

In implementing the case study, we make use of the Model-View-Update (MVU) paradigm,
pioneered by the Elm programming language [1]. MVU is similar to the Model-View-
Controller design pattern in that it splits the state of the system from the rendering
logic. In contrast to MVC, MVU relies on explicit message passing to update the model.
The key interplay between MVU and relational lenses is that MVU allows the model
to be directly modified in memory, and relational lenses allow the changes in the model

Appendix E. Case Study: Curated Scientific Databases 280

to be directly propagated to the database without writing any marshalling or query
construction code.
typename DiseaseInfo =
(diseaseData: DiseaseData, databases: [ExternalDatabase],
dbLinks: [JoinedDatabaseLink], synonyms: [Synonym]);

typename Model =
Maybe(
(diseaseInfo: DiseaseInfo, selectedDatabaseID: Int,
accessionID: String, newSynonym:String,
submitDisease: (DiseaseInfo) {}~> ()));

The model (Model) contains all definitions retrieved from the database (DiseaseInfo),
as well as the current value of the various form components for adding database links
(selectedDatabaseID and accessionID) and synonyms (newSynonym). Finally, the model
contains a function submitDisease which commits the information to the database. Note
that the {}~> function arrow denotes a function which cannot be run on the database,
and does not perform any effects. The Model type is wrapped in a Maybe constructor to
handle the case where the application tries to curate a nonexistent disease.

E.2.3.1 Initial model.

To construct the initial model, we fetch the data from each lens using the get primitive.
We include type annotations for clarity, but they are not required.
var (diseases: [DiseaseData]) = get diseasesLens;
var (dbs: [ExternalDatabase]) = get dbLens;
var (dbLinks: [JoinedDatabaseLink]) = get dbLinksJoinLens;
var (synonyms: [Synonym]) = get synonymsLens;

Next, we spawn a server process which awaits the submission of an updated DiseaseInfo

record. The Submit message contains the updated record along with a client process ID
notifyPid which is notified when the query is complete.

The submitDisease function takes an updated DiseaseInfo process ID and sends a Submit

message to the server. The spawnWait keyword spawns a process, waits for it to complete,
and returns the retrieved value. In our case, we use spawnWait to only navigate away
from the page once the query has completed.
var pid = spawn {
receive {
case Submit(diseaseInfo, notifyPid) ->
put diseasesLens with [diseaseInfo.diseaseData];
put dbLinksJoinLens with diseaseInfo.dbLinks;
put synonymsLens with diseaseInfo.synonyms;
notifyPid ! Done

}
};

sig submitDisease : (DiseaseInfo) {}~> ()

Appendix E. Case Study: Curated Scientific Databases 281

fun submitDisease(diseaseInfo) {
spawnWait {
pid ! Submit(diseaseInfo, self());
receive { case Done -> () }

};
redirect("/editDiseases")

}

Given the above, we can construct the initial model. Recall that the result of get diseasesLens

is a list of DiseaseInfo records. As disease_id is the primary key for the disease ta-
ble, we know that the result set must be either empty or a singleton list. Finally,
we can initialise the model with the data retrieved from the database along with the
submitDisease function and default values for the form elements.
var (initialModel: Model) = {
switch(diseases) {
case [] -> Nothing
case d :: _ ->
var diseaseInfo =
(diseaseData = d, databases = dbs,
dbLinks = dbLinks, synonyms = synonyms);

Just((diseaseInfo = diseaseInfo,
accessionID = "", newSynonym = "",
selectedDatabaseID = hd(dbs).database_id,
submitDisease = submitDisease))

}
};

The model is rendered to the page using a view function which takes a model and
produces some HTML to display. Interaction with the page produces messages which
cause changes to the model. Finally, submission of the form causes the submitDisease

function to be executed, which in turn sends a Submit message to the server to propagate
the changes to the database using the lenses.

E.3 Discussion
In this section, we have described part of the curation interface for a scientific database.
Our application is a tierless web application with the client written using the Model-
View-Update architecture.

Relational lenses allow seamless integration between all three layers of the application.
Lenses with dynamic predicates allow us to retrieve the relevant data from the database;
the data is used as part of a model which is changed directly as a result of interaction
with the web page; and the updated data entries are committed directly to the database.
At no point does a user need to write a query: every interaction with the database uses
only lens primitives.

Appendix E. Case Study: Curated Scientific Databases 282

The primary limitation of the implementation at present is that it does not cur-
rently support auto-incrementing primary keys, which are commonly used in relational
databases.

	Cover Sheet.pdf
	thesis_language_integrated_relational_lenses.pdf
	Introduction
	Relational lenses by example
	Research Challenges
	Outline and contributions

	Background
	Database Preliminaries
	Relation Types and Database Schemas
	Relations
	Functional Dependencies

	Lenses
	Relational Lenses
	Relational Revision
	Table Sorts
	Relational Lens Primitives

	Qualified Types

	Incremental Relational Lenses
	Incremental framework
	Change Structures
	Delta Relations
	Delta-Relational Operations
	Optimisation Rules for Delta Operations

	Incrementalising Relational Lenses
	Incremental Lenses
	Select Lens
	Project Lens
	Join Lens
	Rename Lens

	Evaluation
	Microbenchmarks
	DBLP Example

	Summary

	Turning Abstract Sets into Concrete Predicates
	Basic Predicates
	Predicate Checks
	Set Equivalence
	Lossless Join Decomposition
	Default Value Check
	Predicate Ignores Columns
	Dropping Column References

	Normalisation
	Static, Dynamic and Hybrid Predicates
	Hybrid Predicates
	Language extension
	Checking Hybrid Predicates

	Summary

	Language Integrated Relational Lenses
	Sequential Lenses
	Lens Types
	Lens Primitive
	Select Lens
	Join Lens
	Drop Lens
	Rename Lens
	Lens Functions

	Evaluation Rules
	Translation
	Language is well-behaved
	Integration in Links
	Summary

	Relational Lenses as a Library
	Type-Level Programming
	Type level values
	Type Families
	Type Classes
	Constraints
	Record Types

	Relational Lens Kinds
	Tables
	Functional Dependencies
	Predicates
	Lens Sort

	Using Relational Lenses
	Syntax
	Database Connection
	Lens Constructors
	Lens Operations

	Summary

	Related Work
	Language-integrated query
	Updatable views and lenses
	Incremental computation
	Incremental lenses
	Row Type Inference
	Dependently Typed Programming

	Future Work
	Table Keys
	Incremental Performance
	Concurrent Database Access
	Additional Lenses
	Well behaved Lenses

	Conclusion
	Bibliography
	Proofs for Chapter 2
	Comparison to original Relational Lenses
	BPV to Structural Sequential Lenses
	Equivalence of project lens definitions

	Proofs for Chapter 3
	Proofs for Section 3.1
	Proofs for Section 3.2

	Proofs for Chapter 4
	Normalisation Proofs 4.3
	Hybrid Predicates (Section 4.4.1)

	Proofs for Chapter 5
	Language is well-behaved
	Naive Lens Semantics
	Empty Drop Lens

	Case Study: Curated Scientific Databases
	Disease Curation Interface
	Links Reimplementation
	Architecture
	Tables and Lenses.
	Model

	Discussion

