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Abstract

Over the past decades, inflation has been the leading paradigm for describing the

initial conditions of Big Bang cosmology. It provides an account of our spatially

flat universe, and gives excellent agreement with the approximately Gaussian and

nearly scale-invariant spectrum of the cosmic microwave background (CMB), as

revealed by observations. However, shortcomings of inflation, including questions

regarding the initial singularity and a want for a UV complete theory, motivate

alternative descriptions of the very early Universe, such as via a holographic

approach.

In the holographic framework, cosmological observables are described by cor-

relation functions of dual three-dimensional quantum field theories. The CMB

power spectrum is related to the correlation function of the energy-momentum

tensor (EMT) of the dual theory. In the high multipole region of the CMB, the

perturbative holographic prediction has been shown to be competitive with the

prediction from inflation and the Lambda-Cold Dark Matter (ΛCDM) model,

the ‘standard model’ of Big Bang cosmology. In contrast, for the low multipole

region, the dual theory becomes nonperturbative, and perturbative calculations

can no longer be relied upon.

As part of the LatCos collaboration, we aim to use lattice field theory to

nonperturbatively compute the EMT correlation function of the dual quantum

field theory. In particular, we focus on the simplest version of the holographic dual

theories, which is the class of three-dimensional theories with massless scalar field

in the adjoint of SU(N) and a φ4 interaction. A feature of this class of theories

is superrenormalisability, where they suffer from severe infrared (IR) divergences

in perturbation theory. A study via finite-size scaling was performed to establish

the nonperturbative IR finiteness of these theories, as well as to obtain the critical

mass in order to approach the massless limit in our result.
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In this thesis I study the renormalisation of the EMT operator and correlation

function on the lattice. The EMT is the collection of Noether currents related

to spacetime symmetries, and is a conserved quantity in the continuum. On the

lattice, continuous translational symmetry is broken into a discrete subgroup,

and the EMT has to be renormalised. Here we utilise the Wilson flow to perform

nonperturbative renormalisation of the EMT operator. Using this result, we then

introduce a position-space window filtering method to eliminate contact terms

and to calculate the full renormalised EMT correlation function on the lattice.

These milestones allow us to make a prediction of the CMB power spectrum

across a wide range of multipoles, which can be tested against measurements

from Planck, and constitute the first steps toward testing the viability of the

holographic framework as a description of the very early Universe.
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Lay Summary

According to our standard theory of cosmology, within a fraction of a second

after the Big Bang, the universe underwent a period of rapid expansion. This

period is called inflation. During this time, the universe was very dense and the

gravitational strength was extremely strong. Physicists have long struggled to

fully understand the universe at this stage. This is because Einstein’s theory of

gravity, General Relativity, breaks down for systems with such high densities.

A new class of models has been proposed, which utilises the holographic principle,

a conjecture relating gravity to quantum field theories. Quantum field theories

are well studied by particle physicists, and have been very useful in providing

accurate descriptions of subatomic particles, such as protons and neutrons. The

aim of this project is to use supercomputers to numerically simulate the quantum

field theories within the holographic models, and make cosmological predictions

for a specific function, the cosmic microwave background power spectrum. There

has been a series of measurements of this spectrum from both ground-based

and satellite experiments. Comparing observations against our simulation results

constitutes an interesting test for these unconventional models of the early

Universe. In this thesis, we will address some of the main challenges involved

in performing numerical simulations of these holographic models, and extracting

cosmological predictions from them.
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E. Dobson, A. Jüttner, B. Kitching-Morley, J. K. L. Lee, V. Nourry, A.

iv



Portelli, and K. Skenderis (LatCos Collaboration), PoS LATTICE2021 270
(2022) [5]

.

(Joseph Kin Lok Lee, June 2022 )

v



Acknowledgements

First and foremost, I would like to sincerely thank my supervisor, Antonin
Portelli, for his unceasing guidance and encouragement throughout this PhD
project. I could not have asked for a more supportive environment in which I
could explore and grow. I have benefited significantly from his multidisciplinary
perspective; through our many discussions I have gained a deeper appreciation
for both abstract physical concepts as well as technical computational details.

I would also like to thank every member of the LatCos collaboration, including
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Introduction

With the advent of general relativity as the paradigmatic theory of gravity, as well

as the rapid improvements in astronomical observations, the study of cosmology

has transformed from philosophical ponderings to a quantitative science over the

past century. One of the most significant discoveries in observational cosmology

is the Cosmic Microwave Background (CMB) [15]. Ever since its first detection

in 1964 [16], it has become the cornerstone of modern cosmology. The CMB

captures both information about the laws of physics at the very early Universe,

as well as its evolution to the time we measure it, i.e. today. A successful theory

of cosmology must be able to explain the features observed in the CMB.

The CMB has been measured to ever-increasing precision by various ground

based and satellite observations, the most recent of which comes from the Planck

satellite mission which ended in 2013. From the CMB observations, the most

important quantities that can be extracted are the power spectra, which measures

the anisotropy of the temperature and polarisation. The power spectra measured

is very well described by the Lambda-Cold Dark Matter (ΛCDM) model, now

considered the ‘standard model’ of Big Bang cosmology. It parametrises the

contents of our expanding universe, with initial conditions set by the end of

inflation, a phase of exponential expansion.

However, digging deeper into the details of inflation as a theory of the very

early Universe, a plethora of issues surfaces. One of the main challenges comes

from the fact that the perturbations predicted by inflation originate from length

scales much smaller than the Planck scale, the scale at which new physics is

expected due to quantum gravity. The usual description of inflation does not

include such effects, and is unable to do so since we currently lack a complete

quantum theory of gravity. Fortunately, originating from the study of black

holes, physicists have discovered the holographic principle [17], a conjecture hailed

as one of the most important breakthroughs in theoretical physics. It enables

1



us to describe a gravitational theory with a dual quantum field theory (QFT)

without gravity, entities well studied by particle physicists over the past century.

Using the holographic principle, a novel framework for describing the very early

Universe arises: the four-dimensional gravitational theory of the early Universe

is to be described by a three-dimensional dual QFT. Within this framework,

the CMB power spectrum can be described by the correlation function of the

energy-momentum tensor (EMT) in the dual theory.

A class of such dual QFT models has been proposed in [18]. The QFT calculations

have been performed using perturbation theory by the authors, a method which

provides good estimates when the effective coupling of the theory is small. This

is applicable to the high-multipole region of the CMB spectrum, i.e. correlation

between temperature fluctuations at small angular scales. However, for the low-

multipole region, the effective coupling is large and perturbation theory fails. In

order to make predictions for the full CMB spectrum in the holographic theory, a

nonperturbative method for calculating the EMT correlation function has to be

used.

One such method is to utilise lattice field theory. This involves discretising our

quantum field, i.e. defining it on a lattice of discrete points, and performing Monte

Carlo simulations of this field on a (super)computer. This has proven to be a

reliable tool for providing nonperturbative physical predictions from QFTs, for

example making ab-initio predictions of the Standard Model of Particle Physics,

which have been tested against results from collider experiments.

For this project, we propose to perform lattice simulations of the dual QFT and

measure the fully nonperturbative EMT correlation function. This will allow

us to make predictions of the holographic CMB power spectrum, which will be

compared against CMB observation data from Planck. The application of lattice

methods to holographic cosmology is entirely new, and will hopefully shed light

on our understanding of the early Universe and duality conjectures.

The structure of the thesis will be as follows.

In chapter 1, I will first introduce the CMB and the concordance cosmological

model, ΛCDM. I will then describe inflation as a description of the very early

Universe, and explain the main challenges it faces. I will then introduce

holographic dualities and holographic cosmology as an alternative framework

which can avoid some of the problems inflation faces. I will discuss the

perturbative predictions of the holographic power spectrum and the fit against

2



the Planck result from [11, 12, 19], and explain its limitations. This will motivate

the need for fully nonperturbative simulations of the dual theories using lattice

field theory.

In chapter 2, I will provide a quick review of lattice field theory, focusing

on the particular theories relevant to this project, which belong to the class

of three-dimensional massless scalar QFTs with φ in the adjoint of SU(N)

and a φ4 interaction, which are superrenormalisable. I will then review the

numerical algorithms involved in simulating the field configurations, and describe

the simulation parameters, hardware, and software relevant for this project.

Finally I will present the results of our publication [3], where we discuss the

infrared finiteness of superrenormalisable theories, which is foundational for the

consistency of the holographic cosmology framework. From this study, we also

obtain the critical mass m2
c , the value of the bare mass such that the renormalised

theory is massless. This is a necessary parameter for simulating the holographic

dual theories.

In chapter 3, I will describe the EMT and the Ward-Takahashi identities, which

are important identities that the EMT satisfies in the continuum theory. Due

to the breaking of translational symmetry on the lattice, the Ward-Takahashi

identities are no longer satisfied, and the EMT has to be renormalised. I will

introduce the Wilson flow as a nonperturbative procedure to renormalise the

EMT operator, and present numerical results for the renormalisation constant c3.

The result of this chapter has been published in [2].

In chapter 4, we turn to the EMT correlation function ⟨TµνTρσ⟩, which is the

observable needed to obtain the holographic CMB spectrum. I will show using

perturbation theory and from our lattice results that divergent contact terms

are present. These contact terms occur when the spacetime arguments of the

operators coincide, and must be subtracted to obtain the renormalised correlation

function before the continuum limit can be taken. I will propose a ‘window

filtering’ method to achieve this goal. For this method, the correlation function

in position-space is multiplied by a specific window filter kernel, which is able

to remove all contact term contributions. This method will then be applied on

some synthetic data that is representative of the EMT correlation function, in

order to assess the vialibility of this renormalisation procedure. I will then use

this method to recompute the renormalisation constant c3 obtained in chapter 3.

Finally, I will present the numerical results for the EMT correlation function

after the window filtering process, and describe the steps that are necessary to

3



obtain the relevant form factors and predictions for the holographic CMB power

spectrum.

In Conclusion and Outlook, I will summarise our findings, and describe the next

steps necessary to fully test the scalar holographic cosmological models. They

include a fit and parametrisation of the windowed EMT correlation function, and

a fit against the cosmological observations from Planck. I will end by describing

the next step within the bigger picture, which is to simulate holographic

cosmological models which contain both scalar and gauge fields, and explain

some of the challenges involved and anticipated in the process. Appendix A will

be dedicated to details of the lattice perturbation theory calculations involved

in chapters 3 and 4.
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Chapter 1

Holographic Cosmology

To acquire the oldest source of knowledge, we need to look up to the sky.

Humans have ceaselessly tried to understand the movements of celestial objects,

and astronomy is arguably the oldest of the natural sciences. We have an

enduring tradition of carefully studying the sky, from Copernicus’ discovery of

heliocentrism, Kepler’s formulation of the laws of planetary motions, Eddington’s

experiment on the deflection of light by the Sun, to Hubble and Lemâıtre’s

measurements of the expansion of the Universe, astronomical observations have

brought about many a scientific revolutions.

One of the most important astronomical discoveries is the Cosmic Microwave

Background (CMB), which provides a snapshot of our young universe. With

this crucial piece of the puzzle, our knowledge of the cosmos accumulated to the

current prevailing paradigm of Big Bang cosmology, which beautifully explains a

vast range of astronomical and cosmological observations made in the past few

decades. Big Bang cosmology tells an interesting story of the birth of the universe,

and gives us a chance of predicting the fate of the universe. There are still many

open questions regarding the makeup and evolution of our early universe. With

current and future generations of telescopes and detectors such as the James

Webb Space Telescope (JWST) and Laser Interferometer Space Antenna (LISA)

trying to answer these questions, it is safe to say that observational cosmology

has never experienced a more exciting time.

In this chapter, I will first give an introduction to the CMB, which forms

one of the most important observations that led us to the highly successful
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Lambda-Cold Dark Matter (ΛCDM) model, which is considered the current

‘standard model’ of Big Bang cosmology. I will then describe inflation as a

mechanism for setting the initial conditions for the Big Bang, and describe some

challenges faced by this theory. I will then introduce holographic dualities, and

motivate why a holographic framework can solve some of inflation’s problems,

and be used to describe the very early Universe. Finally, I will discuss the

perturbative predictions from holographic cosmology, and their fit against the

Planck result. This will motivate the need for fully nonperturbative simulations

of the holographic cosmological models, in order to compare the CMB spectrum

across all multipoles.

1.1 The Concordance Model

1.1.1 Cosmic Microwave Background (CMB)

The thermal history of the Universe is populated with a string of significant

events. The moment when the Universe became transparent, and the first image

of the Universe was captured in the night sky, is perhaps the best place to begin

our story.

Approximately 290, 000 years after the Big Bang (redshift z ∼ 1320), the

temperature of the expanding and cooling Universe has reached T ≈ 0.3eV ∼
3600K. The plasma of free electrons e− and nuclei p+ that made up the Universe

now combine to form neutral hydrogen H atoms

e− + p+ → H+ γ. (1.1)

This period is known as recombination. Prior to this, photons were once tightly

coupled to free electrons via Compton scattering

e− + γ → e− + γ. (1.2)

As the density of free electrons dropped, the mean free path of photons increased

rapidly and became longer than the horizon distance. At approximately 380, 000

years (redshift z ∼ 1100), when the temperature has reached T ≈ 0.27eV ∼
3100K, the photons are decoupled from matter, and the universe became

transparent and formed the last-scattering surface. Today, these photons are
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Figure 1.1: The Cosmic Microwave Background (CMB) as seen by the Planck
satellite [6].

observed as the cosmic microwave background (CMB) [20, 21].

Today, approximately 13, 800, 000, 000 years after the Big Bang, the CMB has

been measured to increasing precision by a series of experiments, including

Cosmic Background Explorer (COBE) , Wilkinson Microwave Anisotropy Probe

(WMAP) [22], and ESA’s Planck [23], as shown in Fig. 1.1.

The CMB radiation gives a very accurate match to the Planck function, with an

average temperature of [24]

T = 2.7255± 0.0006K. (1.3)

The temperature of the CMB fluctuates across the sky at the level of one part

in 105. Assuming that the initial conditions are statistically isotropic, the most

important statistics of the temperature fluctuation δT is the two-point correlation

function, which is usually decomposed as

⟨δT (n̂)δT (n̂′)⟩ =
∑
ℓ

2ℓ+ 1

4π
CTT

ℓ Pℓ(cos θ), (1.4)

where cos θ = n̂ · n̂′, θ is the angle between two directions in the sky, and Pℓ

are the Legendre polynomials. The expansion coefficients CTT
ℓ form the angular

power spectrum, as shown in Fig. 1.2. The power spectrum is factorised into two

parts via

CTT
ℓ =

4π

(2ℓ+ 1)2

∫
d ln q T 2

ℓ (q)∆
2(q). (1.5)
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Figure 1.2: Angular power spectrum CTT
ℓ from Planck, WMAP, Atacama

Cosmology Telescope (ACT), and South Pole Telescope (SPT) experiments [7].

Here ∆2(q) is the primordial power spectrum1 which describes the initial

conditions of the primordial perturbations. The transfer function Tℓ(q) captures

the evolution of the initial fluctuations until recombination and the projection

on the surface of last-scattering [21, 25]. For this project, we are primarily

interested in the initial conditions of the early Universe, and our focus will be on

understanding and computing the primordial power spectrum ∆2(q).

Polarisation

Besides temperature anisotropy CTT
ℓ , the CMB is predicted to be polarised at the

level of roughly 5% of the temperature anisotropy [26], since Thomson scattering

of an anistropic radiation field generates linear polarisation. The polarisation

pattern is decomposed by splitting into a part from the divergence (E-mode) and

a part with a curl (B-mode) [27].

From these, four (cross-)power spectra can be constructed, CTT
ℓ , CTE

ℓ , CEE
ℓ , and

CBB
ℓ .2 Fig. 1.3 shows the power spectrum of B-mode polarisation CBB

ℓ .

1The primordial power spectrum is sometimes denoted as PR(q), where R signifies curvature
perturbation.

2Parity considerations set CBE
ℓ and CBT

ℓ to zero.
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Figure 1.3: Power spectrum of B-mode polarisation CBB
ℓ , with results from the

BI-CEP2/BICEP3/Keck Array combined analysis, Planck, POLARBEAR, SPT,
and ACT [7].

The measurement of these spectra provide further information and constraints on

the cosmological model. For example, the measurement of CTE
ℓ directly constrains

the thickness of the last-scattering surfaces. More significantly, CBB
ℓ signal allows

us to measure the primordial gravitational wave and tensor perturbations power

spectrum ∆2
T (q), and potentially derive the energy scale of inflation, which will

be described in more detail in Sec. 1.2.2.

The tensor-to-scalar ratio r is defined as the amplitude of the tensor power

spectrum relative to the curvature spectrum:

r :=
∆2

T (q∗)

∆2(q∗)
(1.6)

at some fixed momentum q∗. Due to the fact that the amplitudes of polari-

sation anisotropies are a small fraction of the temperature anisotropy, the first

measurements were only available in 2002 from the DASI experiment [28]. At

present, Planck + Keck Array + BICEP2 data has placed a constraint on the

tensor-to-scalar ratio r < 0.036 at 95% CL (see Fig. 1.6). [29, 30].

9



Higher-Order Statistics

Even though the power spectra contain most of the information about anisotropy

within the CMB, higher-order statistics can also provide weak signals for

the initial conditions set by the very early Universe. In particular, they

measure primordial non-Gaussianity in the peturbation, as well as non-linear

growth of these fluctuations on small scales, and other secondary effects [7].

The usual measurement for non-Gaussianity is using the 3-point function,

or the bispectrum. The bispectrum is used to constrain a dimensionless

number fNL, which parameterises the quadratic contribution to the curvature

perturbations. Depending on the shape of the triangles in harmonic space,

one can define different configurations, including the ‘local’, ‘equilateral’, or

‘orthogonal’ non-Gaussianities. Corresponding to each of these configurations,

the latest measurements from Planck give f local
NL = 1 ± 5, f equil

NL = −26 ± 47, and

f ortho
NL = −38 ± 24. (For more details, see [7, 31].) These results are consistent

with zero, but when more precise measurements are available, primordial non-

Gaussianity will be an important probe for models of inflationary-era physics.

1.1.2 ΛCDM

The anisotropy data of the CMB is successfully accounted for by the ΛCDM

model, which includes cold dark matter with a cosmological constant Λ [23, 32].

Of the 6 parameters found in the concordance model, four (the Hubble constant

H0, the baryon density h2Ωb, dark matter density h2Ωc and the optical depth due

to reionisation τ) make up the transfer function Tℓ(q) and give the characteristic

peak-and-tail structure of the angular power spectrum, as seen in Fig. 1.2. The

remaining two (curvature fluctuation amplitude ∆2
0, or normalisation, and scalar

spectral index ns, or tilt) parametrise the primordial power spectrum ∆2(q) via

a power law:

∆2(q) = ∆2
0

(
q

q∗

)ns−1

, (1.7)

where q∗, the pivot scale, is an arbitrary reference scale. The best fit result for

the ΛCDM model is summarised in the middle column of Table 1.1.

As mentioned before, the primordial power spectrum describes the initial

conditions of the primordial perturbations. To understand the initial conditions

and this power-law parametrisation, we need to look even earlier, into the very
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Figure 1.4: Conformal diagram of Big Bang cosmology from [8]. The
last-scattering surface of the CMB at recombination contains 105 causally
disconnected regions, and the observed homogeneity poses the horizon problem.

early Universe, or the inflationary-era.

1.2 The Very Early Universe

1.2.1 Horizon Problem

One unexpected feature of the CMB fluctuations is its homogeneity and isotropy;

as mentioned before, the temperature anisotropy fluctuates one part in 105. This

presents a problem: since only a finite conformal time has elapsed between

the start of Big Bang and recombination, most points of the CMB have non-

overlapping past light cones. This is illustrated in Fig. 1.4. In other words,

on the last-scattering surface, the source points for photons coming from two

directions are separated by a distance greater than the horizon at the time. This

is the case for any points of the CMB which are separated by more than 1 degree

in the sky. In theory, there cannot be local causal mechanisms which can relate

the temperatures at the two points. The homogeneity of the CMB is observed

to span scales much larger than the particle horizon at recombination. This is

called the horizon problem.
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1.2.2 Inflation

The standard solution 3 to the horizon problem is to introduce a period before

conformal time τ = 0 where the Hubble radius decreases, i.e.

d

dt
(aH)−1 < 0, (1.8)

where a is the scale factor, and H = ȧ
a
is the Hubble parameter. Equivalently,

this condition can be described as the Hubble parameter being slowly-varying:

ε := − Ḣ

H2
< 1, (1.9)

where ε is a slow-roll parameter. Such a period is characterised by an accelerated

expansion, and is called inflation. For an inflation which lasts sufficiently long, at

least 40 to 60 e-folds, the past light cones of widely separated points in the CMB

now have enough time to intersect, and there is no longer a causal problem, as

illustrated in Fig. 1.5. This can be achieved if ε remains small for a sufficiently

long time, i.e. for the second slow-roll parameter,

η :=
d ln ε

dN
=

ε̇

Hε
, (1.10)

|η| < 1 describes a slow change in ε and inflation persists.

A period of accelerated expansion could be explained by the presence of some

scalar field Φ, called the inflaton field.4 Given an appropriate shape of the

potential V (Φ), the field can first experience an extended period of slow-roll

inflation when most of the energy density in the universe is in the form of the

inflaton potential; then, inflation can end with a period of reheating, where the

inflaton field Φ oscilates about the minimum of the potential5, which kicks off

the Hot Big Bang, where the energy in the inflaton sector is transferred to the

particles of the Standard Model.

3Alternative solutions include ‘Matter Bounce’ (e.g. [33]) or ‘String Gas Cosmology’ (e.g.
[34])

4A variety of inflation models have been proposed, including ‘R2 inflation’, ‘Hilltop
models’, ‘D-Brane inflation’, ‘Higgs inflation’, ‘supersymmetric models’ to name a few. For
a comprehensive review and comparison, see [7], Ch.23

5This can occur either through the breakdown of the slow-roll condition in single-field models,
or due to an instability triggered by the inflaton reaching a critical value, in multi-field models
known as hybrid inflation models [35]
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Figure 1.5: Conformal diagram which includes inflation from [8]. Inflation extends
conformal time to negative values, and the Big Bang occurs at the end of inflation
τ = 0. For a sufficient long inflation, the light cones of different points intersect
at earlier time to establish causal contact.
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Seeding the Initial Conditions

Inflation also provides a natural mechainsm for producing the initial conditions

for the early Universe, which seeds the primordial information of the CMB, as

well as the large-scale structure in the Universe; here we give a very quick review

of this mechanism (For detail see [8, 25]).

Starting from the inflaton action

S =

∫
dτd3x

√−g
[
1

2
gµν∂µΦ∂νΦ− V (Φ)

]
, (1.11)

by choosing a gauge, e.g. spatially flat gauge, and rewriting the inflaton field as

an average and its fluctuation

Φ(τ,x) = Φ(τ) + δΦ(τ,x) = Φ(τ) +
f(τ,x)

a(τ)
, (1.12)

one can obtain the linearised equation of motion for f(τ,x)

f
′′

q +

(
q2 − a

′′

a

)
fq = 0, (1.13)

where fq(τ) =
∫

d3x
(2π)3/2

f(τ,x)e−iq·x is the Fourier transform of f(τ,x). This is

called the Mukhanov-Sasaki (MS) equation.

In a quasi-de Sitter background, a
′′

a
≈ 2

τ2
, we have

f
′′

q +

(
q2 − 2

τ 2

)
fq = 0. (1.14)

At early times, |τ | ≫ q−1, the Fourier mode is inside the Hubble radius, and the

MS equation reduces to a simple harmonic oscillator

f
′′

q + q2fq ≈ 0. (1.15)

The quantum fluctuations of the oscillators are subhorizon, and its magnitude can

be calculated via a standard canonical quantisation. By choosing the appropriate

(Bunch-Davies) vacuum where limτ→−∞ fq(τ) = 1√
2q
e−iqτ , Eq. (1.14) has the
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solution

fq(τ) =
e−iqτ

√
2q

(
1− i

qτ

)
. (1.16)

From this solution, we can determine the mode evolution, and in particular,

calculate the variance of the inflaton operator fluctuations

〈
|f |2
〉
:= ⟨0|f̂(τ)†f̂(τ)|0⟩ =

∫
d ln q

q3

2π2
|fq(τ)|2. (1.17)

Defining the dimensionless power spectrum as

∆2
f (q, τ) :=

q3

2π2
|fq(τ)|2, (1.18)

we can calculate the fluctuation of the inflaton field

∆2
δΦ(q, τ) =

∆2
f (q, τ)

a2
=

(
H

2π

)2(
1 +

( q

aH

)2)
. (1.19)

At horizon exit q = aH, ∆2
δΦ(q) ≈

(
H
2π

)2∣∣∣
q=aH

.

To relate the fluctuation of the scalar field to the initial conditions, we can look

at the fluctuation of the conserved curvature R, which is related to Φ in the

spatially flat gauge via

R = −HδΦ

Φ̇
. (1.20)

We therefore have the power spectrum of R at horizon exit

∆2(q) := ∆2
R(q) =

(
H2

2πΦ̇

)2
∣∣∣∣∣
q=aH

, (1.21)

which gives a scale independent power spectrum to first approximation.

The fact that fluctuations with different physical wavenumbers exit the horizon

at different times, as well as the presence of slow-roll parameters give a (small)

scale dependence to ∆2(q), i.e. ns ̸= 1 in Eq. (1.7). In particular,

ns − 1 =
d ln∆2

d ln q
= −2ε− η, (1.22)
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where again ε and η are slow-roll parameters that describe the inflaton potential

V (Φ). Therefore, measurements of the scale-dependence of the primordial power

spectra can probe the shape of the inflaton potential V (Φ).

Planck has measured ns = 0.9649 ± 0.0042 [36]. The observed percent-level

deviation from scale-invariance is the first direct measurement of time dependence

in the inflationary dynamics.

Tensors from Inflation

Inflation also predicts tensor perturbations, coming from the fluctuations of

the metric hij. The tensor amplitude ∆2
T (q) = 2

π2
H2

Mpl2

∣∣∣
q=aH

directly measures

the expansion rate H during inflation, and the tensor power spectrum is again

parameterised by a power law:

∆2
T (q) = ∆2

T,0

(
q

q∗

)nT

. (1.23)

The spectral index nT = −2ε, which from current experiments is difficult to

distinguish from zero. Again, the tensor-to-scalar ratio r is defined as the

amplitude of the tensor power spectrum relative to the curvature spectrum:

r :=
∆2

T (q∗)

∆2(q∗)
= 16ε. (1.24)

The constraints on ns and r coming from Planck, BICEP2/Keck and BAO data,

along with predictions from a number of inflationary models are summarised

in Fig. 1.6.

Running Spectral Index

We note that equation (1.7) is only a simple power-law parameterisation of the

power spectrum; this power-law may be refined by allowing a non-zero running

of the spectral index, αs := dns/d ln q, i.e.

∆2(q) = ∆2
0(q∗)

(
q

q∗

)ns(q∗)−1+αs(q∗) ln(q/q∗)/2

(1.25)

Planck data suggests that the introduction of running does not improve the fitting

significantly [36], and is usually set to zero in the standard ΛCDM model.
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Figure 1.6: The estimate for the tilt in the scalar spectrum ns, and the tensor-to-
scalar ratio r obtained from Planck 2018 and lensing data, in combination with
BICEP2/Keck Array (BK15) and BAO data, along with predictions from some
inflationary models discussed in [9].

Non-Gaussianity

Most theoretical models of inflation, e.g. standard slow-roll inflation, generally

predict that the fluctuation modes are Gaussian, with non-Gaussian contribution

being at least an order of magnitude below current observational limits [37].

However, depending on the exact inflationary model, non-Gaussian signatures

are expected. While the current observational limits do not give clear indication

of primordial non-Gaussianity as discussed in Sec. 1.1.16, higher-order correlations

can still be a useful tool for constraining different inflationary theories.

Large Angle Anomalies and Cosmic Variance

Signatures of pre-inflationary state are expected to be seen at large angular scales,

i.e. at low multipole ℓ. In fact, anomalies have been observed in WMAP [38] and

Planck [39] at large angles. In particular, there is a hemispheric modulation of

power, and a dip in the power spectrum at multipole range ℓ ∼ 20 − 30. Some

explanations for these effects include the Universe having a large-scale power cut-

6There are some relatively weak signatures of non-Gaussianity at large scales seen in WMAP
and Planck, but they are not of sufficient significance to reject Gaussianity. See next section
on Large Angle Anomalies and Cosmic Variance.
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off or anisotropy in the initial power spectrum, or the Universe being topologically

nontrivial. However, it is important to note that none of these features are

significant at over a 3σ level, and the dominance of cosmic variance present at

these large angular scales. For an idealised full-sky observation, the variance

of a measured Cℓ (i.e. the variance of the variance) is [2/(2ℓ + 1)]C2
ℓ . This

sampling uncertainty, or cosmic variance is an unavoidable source of uncertainty

in constraining inflationary models, and particularly dominates any signal at low

multipole ℓ [40]. In light of this, these anomalous results do not constitute a

significant test for signatures of initial conditions.

1.2.3 Problems with Inflation

Although the inflationary paradigm has enjoyed much explanatory and phe-

nomenological success, it faces several serious conceptual and observational

problems, which will be described here.

Cosmological Constant Problem

The most prominent problem of scalar field driven inflation is known as the

cosmological constant problem. For a scalar inflationary field, the energy-

momentum tensor of the scalar field acts as a vacuum energy, or a cosmological

constant. However, the predicted vacuum energy density disagrees significantly

with the observed value of the cosmological constant. It is unclear whether the

mechanism which keeps quantum vacuum energy gravitationally inert today will

not also prevent the vacuum energy from gravitating during slow-roll inflation,

and render the scalar field driven inflationary mechanism pointless.

Trans-Planckian Problem

Another problem with inflation is the so-called trans-Planckian problem [41]. For

a sufficiently long period of inflation (e.g. 40 to 60 e-folds), all scales inside

the hubble radius today, i.e. perturbations now seen in the CMB, came from

wavelengths shorter than the Planck scale at the beginning of inflation. Since

the theory of cosmological perturbations uses General Relativity coupled to semi-

classical matter, these theories are not expected to be applicable on scales smaller,

or even close to the Planck scale. Since new physics is expected at such scales, our
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calculation of the origins of the fluctuations cannot be relied upon. Some methods

of addressing the problem include studying toy models which are UV complete, or

modifying the dispersion relation for the Fourier modes of fluctuations to account

for new physics.

Singularity Problem

A final problem that we mention here is the singularity problem. For solutions of

Einstein’s field equations in the presence of a matter source which also obeys the

weak energy conditions, a singularity is unavoidable. This implies that Big Bang

cosmology contains an initial singularity. Singularity theorems have been applied

to Einstein gravity coupled to scalar field matter, as in the case of scalar driven

inflation [42], and a past singularity is inevitable. Scalar field driven inflation

cannot be the ultimate theory of the very early Universe.

Bottomline

Inflation via a formally elementary scalar inflaton should at most be regarded

as an effective field theory valid at energy densities hierarchically smaller than

the Planck scale, and should eventually be embedded in a suitable ultraviolet

completion. However, this suite of problems motivate us to seek models of the very

early Universe that are UV complete, and can account for quantum gravitational

effects as well as the initial singularity.

1.3 Holographic Cosmological Models

Inflation has been a phenomenologically successful theory, but is plagued by some

serious challenges. They come from the expected failure of inflation as an effective

geometric theory near the Planck scale, or the scale of quantum gravity. It cannot

provide a good description of the initial singularity, unless we embed it into a UV

complete framework that includes quantum gravity. Recently, the holographic

principle has taken hold as a foundational principle for quantum gravity. For

the purpose of cosmology, holography offers a framework that can accommodate

inflation, as well as new models which are non-geometric and strongly interacting

at early times. In this section, I will first give a quick overview of holographic
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dualities and their general properties. I will then illustrate the application of

holography for cosmology as proposed in [10, 18], and how cosmological models

can be constructed phenomenologically. Finally, I will describe the fit results of

perturbative predictions coming from holographic cosmology against observation

data from Planck, and motivate the need for nonperturbative simulations of

holographic cosmological models, which is the aim of this work.

1.3.1 Holographic Dualities

The study of black hole thermodynamics has yielded a surprising puzzle, that

the entropy of a black hole is proportional to the area of its horizon [43, 44].

Entropy is an extensive quantity, and is a measure of the number of degrees of

freedom. The fact that the entropy is proportional to the area, rather than the

volume of the black hole, hints at a new fundamental principle, the holographic

principle. The principle states that any quantum gravitational system in (d +

1) dimensions should have a dual description of a quantum field theory (QFT)

without gravity in one dimension less [17, 45]. If gravity is holographic, the

entropy of a (d+1) dimensional black hole is equivalent to that of a d dimensional

QFT, which explains the scaling behaviour predicted. More generally, holography

is conjectured to underly any quantum theory of gravity.

The prime example and first realisation of the holographic principle is the

anti-de Sitter/conformal field theory (AdS/CFT) correspondence [46]. (For a

detailed review of the correspondence, see [47]). The AdS/CFT correspondence

is constructed by considering the low energy limit of N coincident D3-branes in

type IIB string theory on a 10-dimensional spacetime, which is governed by a

string coupling gs. In the case of gsN ≫ 1, the system corresponds to closed

strings in AdS5 × S5. This is the limit where the curvature scale in units of the

string scale ℓ/ℓs = (4πgsN)1/4 is large, and string corrections to the geometry

is suppressed, i.e. gravity is classical. On the other hand, when gsN ≪ 1,

the system is described by a four-dimensional super Yang-Mills SU(N) gauge

theory, governed by the coupling g2YM = 4πgs. The AdS/CFT correspondence

conjectures an exact equivalence between the bulk gravitational theory and the

boundary QFT. While the AdS/CFT duality has not been rigorously proven, it

has withstood an impressive array of nontrivial checks, that the consensus of the

community is that the duality holds.

Besides the fact that the AdS/CFT duality is holographic, an important feature
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of the correspondence is that it is a strong/weak coupling duality. When the

gauge theory is strongly-coupled (when gYM is large and perturbative techniques

fail), the string theory is weakly-coupled and can be computed using perturbation

theory, and vice versa. Many applications of holographic dualities make use of this

property to make predictions for the strongly coupled regime via a perturbative

calculation of the dual theory. For our purpose, we utilise the fact that a weakly

coupled QFT is dual to a strongly coupled gravitational system in order to provide

a description of a class of non-geometric models of the very early Universe.

AdS/CFT can be rephrased as an equivalence between the field theory partition

function, viewed as a function of sources for each operator, and the quantum

gravity partition function, viewed as a function of boundary conditions for each

bulk field. This allows us to establish a dictionary between observables of the

gauge theory and in the bulk. To determine which boundary operators map to

which bulk fields, we can consider the symmetries (Lorentz structure and quantum

numbers) of the operators. For example, the bulk metric hij corresponds to the

boundary stress energy tensor Tij. Correlation functions of such gauge invariant

operators can be extracted from the asymptotics of bulk solutions, and conversely,

given the correlation functions of the dual operators, one can reconstruct the

asymptotic bulk solutions.

Generalisations

Beyond the AdS/CFT duality, a number of extensions and generalisations exist.

One such extensions includes generalising the dimensions; in particular, rather

than starting from string theory, one starts with 11-dimensional M-theory. Some

examples include dualities between M5-branes on AdS7×S4 and a 6-dimensional

(0,2)-conformal field theory [46], as well as M2-branes on AdS4 × S7 and the

3-dimensional ABJM superconformal field theory [48].

Another important generalisation is to bulk spacetimes other than the ones which

are asymptotically AdS. For our cosmological purpose, we would like to obtain

holography for spacetimes with positive cosmological constant, in other words, a

dS/CFT correspondence. However, the two asymptotic spacetimes have different

causal characteristics, and metastable vacua with lower cosmological constants

can cause quantum instability for the dS case. dS/CFT correspondence has been

studied in [49–53], but there is currently no explicit realisation of dS/CFT in

string theory; as a result, the dS/CFT correspondence is less established than the

21



AdS/CFT correspondence. However, for our cosmological calculation, we utilise a

correspondence between inflationary cosmologies with domain wall solutions that

describe holographic renormalisation group flows [10, 18, 54–57]. This allows us

to define an operational gauge/gravity duality and set up a holographic dictionary

between the cosmological theory and a dual three-dimensional Euclidean QFT.

This is the key to holographic cosmology, and will be explained in more detail

in Sec. 1.3.2.

Applications

Due to the wonderful property of strong-weak duality, AdS/CFT is useful for

rendering intractable nonperturbative calculation on one side to perturbative

calculations on the other. (For a comprehensive review of different applications,

see [58]). One application of this is in understanding strongly coupled quantum

field theories, such as Quantum Chromodynamics (QCD). QCD is the theory

for strong interaction between quarks and gluons, and is a gauge theory based

on the group SU(3). Even though QCD is not supersymmetric or conformal,

at finite temperatures, both of these symmetries are broken, and the two gauge

theories become more similar. In particular, the holographic techniques are useful

at temperatures slightly above the deconfinement transitions, when the quarks

and gluons are still strongly coupled. This is relevant for understanding the

quark-gluon plasma created in heavy ion colliders, such as RHIC and ALICE.

Here we also note that AdS/CFT has also been applied to other strongly-

coupled condensed matter systems, as well as to understand turbulence via the

Fluid/Gravity correspondence.

1.3.2 Holographic Cosmology Phenomenology

In inflationary theories, the gravitational coupling is assumed to be weak, and

QFT on curved spacetime is used. However, as mentioned in Sec. 1.2.3, this runs

into problems since the earlier towards the initial singularity we probe, the more

the spacetime curvature increases, and the effects of quantum gravity becomes

relevant. Inflation as an effective theory can no longer be trusted in this regime.

Here we detail the framework proposed in [10, 18] to describe the very early

Universe, which can be strongly coupled, using the holographic principle. The

approach is succinctly summarised in Fig. 1.7.
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Figure 1.7: A schematic diagram from [10], which describes the components to
operationally define a dual QFT description to holographic cosmological models.

The first step is to establish a one-to-one correspondence between cosmologies

and Euclidean domain-wall spacetimes, i.e. the left-hand side in Fig. 1.7. The

correspondence is discussed in [57, 59], and holds for background solutions as

well as linear perturbations around them. Similar to inflation, we consider the

cosmological perturbations to the scalar and tensor metric ζ and γij. Imposing the

Bunch-Davies vacuum condition as before (in Sec. 1.2.2), we obtain the following

relations

∆2(q) =
q3

2π2
⟨ζ(q)ζ(−q)⟩ = q3

2π2

∣∣ζq(0)∣∣2 = −q3
4π2ImΩ(0)(q)

, (1.26)

∆2
T (q) =

q3

2π2
⟨γij(q)γij(−q)⟩ =

2q3

π2

∣∣γq(0)∣∣2 = −q3
2π2ImE(0)(q)

(1.27)

where γq(0) and ζq(0) are the constant late-time values of the cosmological mode

functions γq(z) and ζq(z), and ImΩ(0) and ImE(0) are the constant late-time values

of the imaginary part of the response functions to their canonical momenta.

Now the corresponding domain-wall solution is obtained by applying an analytic

continuation

κ2 = −κ2, q = −iq (1.28)

where κ2 = 8πG and G is the gravitational constant. This allows us to construct

the domain-wall response functions

Ω(−iq) = Ω(q), E(−iq) = E(q) (1.29)
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and by choosing an appropriate overall phase in the cosmological perturbations,

the domain-wall perturbation and response functions are purely real, and their

cosmological counterparts are complex.

Next, for the gauge/gravity duality on top of Fig. 1.7, there are two classes

of domain-wall solutions for which holography is well understood, which are

asymptotically AdS domain-walls and asymptotically power-law solutions. Under

the domain-wall cosmology correspondence, these solutions are respectively

mapped to cosmologies that are asymptotically de Sitter and asymptotically

power-law at late times. For these two classes of asymptotic domain wall

solutions, the holographic machinery can be applied to obtain a dictionary

between the four-dimensional bulk spacetimes and corresponding dual three-

dimensional QFT descriptions. The bulk spacetime is described by

ds2 = dr2 + gij(r, x)dx
idxj. (1.30)

As mentioned in Sec. 1.3.1, the metric gij in the bulk is dual to the energy

momentum tensor Tij on the boundary.

As a result of the Ward identities (this will be discussed in detail in Sec. 3.1), the

two-point function of the energy momentum tensor in momentum-space takes the

following form

⟨Tij(q)Tkl(−q)⟩ = A(q)Πijkl +B(q)πijπkl (1.31)

where πij(q) = δij − qiqj
q2

is the transverse projection operator, and Πijkl =
1
2
(πikπlj + πilπkj − πijπkl) is the transverse traceless projection operator. For

the two cases of asymptotic backgrounds, one can show that the two form factors

A(q) and B(q) are related to the response functions via

A(q) = 4E(0)(q), B(q) =
1

4
Ω(0)(q) (1.32)

up to contact terms.

Finally, to re-express the analytic continuation in the cosmological bulk Eq. (1.28)

in terms of QFT variables, we note that 1/κ2 is proportional to the square of the

number of colors N
2
, and that the coupling constant does not continue. It follows
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that the corresponding continuation in the QFT is

N
2
= −N2, q = −iq (1.33)

where the barred quantities are associated with the QFT dual to the domain-

wall, and the unbarred quantities associated with the pseudo-QFT dual to the

cosmology. This establishes the right-hand side link in Fig. 1.7. With this piece of

connection, the power spectrum for cosmologies that are asymptotically de Sitter

or asymptotically power-law can be directly computed from two-point functions

of the dual three-dimensional ‘pseudo-’QFT via

∆2(q) =
−q3

16π2ImB(−iq) , ∆2
T (q) =

−2q3

π2ImA(−iq) . (1.34)

In standard inflation, the description of scalar inflaton field coupled to gravity

is assumed, and perturbative quantisation of fluctuations is used even for early

times, which led us to trouble. However, in the holographic description, these

assumptions are not needed for the above results to hold. The difference is

that at early times, when the theory may be strongly coupled with no useful

geometric description in terms of low-energy fields such as the metric and the

scalar field, the holographic theory is still well defined via the dual theory. The

holographic models are complete, and there are no UV issues as the theories are

superrenormalisable (see Sec. 2.2.2). They are also IR finite, as the dimensionful

coupling constant also acts as an infrared regulator (this will be discussed in more

detail in Sec. 2.5).

The holographic set-up allows us to extract late-time behaviour of the system,

which can be expressed in terms of low-energy fields, from QFT correlators. In

this model, we can assume that the early universe began with a phase where

gravity is strongly coupled, followed by a smooth transition to the usual hot Big

Bang, when gravity is weakly coupled, as illustrated in Fig. 1.8. The primordial

power spectra and other cosmological observables, including any non-Gaussianity,

can then be computed using correlators in the dual QFT.

Dual Theory Content

So what is the content of the dual QFT? Ideally, this would be deduced from

a full string- or M-theoretic construction. However, we are interested in a
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Figure 1.8: In holographic cosmology, the primordial cosmological perturbations
at early times, where the gravity description is strongly coupled and non-
geometric, can be described by a dual QFT. After a sufficiently long time, a
hot Big Bang description in which gravity is weakly coupled can be recovered.
Figure from [10].

phenomenological approach, by specifying the most general dual QFT, which

can involve scalars, fermions, and gauge fields, and should admit a large N

limit. We then determine whether a theory can be obtained which is compatible

with current observations. In particular, we consider theories with a single

dimensionful parameter in the regime where the dimensionality of the coupling

constant drives the dynamics.

The general class of such models were proposed in [18]; the QFT is a three-

dimensional SU(N) gauge theory coupled to scalars ΦM and fermions ψL, defined

by the action:

S =
1

g2YM

∫
d3x tr

[
1

2
FijF

ij + δM1M2DiΦ
M1DiΦM2 + 2δL1L2ψ

L1
γiDiψ

L2

+
√
2µML1L2Φ

Mψ
L1
ψL2 +

1

6
λM1M2M3M4Φ

M1ΦM2ΦM3ΦM3

]
,

(1.35)

where all fields Φ = ΦaT a, are in the adjoint of SU(N) and TrT aT b = 1
2
δab. Fij

is the Yang-Mills field strength, and D is the gauge covariant derivative. This

class of theories are typical in AdS/CFT where they appear as the worldvolume

theories of D-branes.

We note that while the couplings µ and λ are dimensionless, g2YM has dimension

one. This makes the theory superrenormalisable. This theory also has a

‘generalised conformal structure’, i.e. if g2YM is promoted to a new field which
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transforms appropriately under conformal transformation, the theory becomes

conformally invariant [60, 61].

Using the generalised conformal structure and the large N limit, the two-point

function form factors in Eq. (1.31) take the form

A(q,N) = q3N2fT (g
2
eff), B(q,N) =

1

4
q3N2f(g2eff) (1.36)

where fT (g
2
eff) and f(g

2
eff) are general functions of

g2eff =
g2YMN

q
, (1.37)

which is the effective dimensionless ’t Hooft coupling constant. The q3 factor

comes from the fact that the energy-momentum tensor has dimension 3 in three

dimensions, and the N2 factor comes from the leading contribution in the large

N limit.

With this construction, we can then express the power spectra in Eq. (1.34) as

∆2(q) =
q3

4π2N2f(g2eff)
, ∆2

T (q) =
2q3

π2N2fT (g2eff)
. (1.38)

1.3.3 Perturbative Results

One method to evaluate the holographic power spectra Eq. (1.38) is via

perturbation theory. The dimensionless coupling of the theory is given by g2eff,

and perturbation theory is applicable when g2eff ≪ 1. In fact, in the high-

momentum limit q → ∞, g2eff → 0, which reflects the fact that the theory

is superrenormalisable and is asymptotically free. The theory has good UV

behaviour.

In the perturbative regime, the functions f and fT take the following forms (up

to two loops) [19]

f(g2eff) = f0
(
1− f1g

2
eff ln g

2
eff + f2g

2
eff +O

(
g4eff
))
, (1.39)

fT (g
2
eff) = fT,0

(
1− fT,1g

2
eff ln g

2
eff + fT,2g

2
eff +O

(
g4eff
))
, (1.40)

The functions f1 and fT,1 can be accurately computed in perturbation theory.

However, at the second order, f2 and fT,2 suffer from IR ambiguity. In the
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discussion above, we ignored the IR behaviour of the theory. In perturbation

theory, the same argument that shows that the theory has good UV behaviour,

also shows that it has severe IR divergences. As q → 0, the effective coupling

g2eff becomes divergent, and the order of divergence gets worse at every order. It

is conjectured that this is only an artefact of perturbation theory, and the full

theory is nonperturbatively IR finite, with the coupling g2YM effectively playing

the role of an IR regulator and the exact amplitudes are nonanalytic functions of

g2YM, as in the case of [62, 63]. This conjecture has been tested in [3] for scalar

superrenormalisable theories, and will be described in more detail in Sec. 2.5.

But back in perturbation theory, this IR divergence means that f2 and fT,2 are

scheme dependent and contain IR ambiguity. The scheme dependence can be

fixed by setting the renormalisation group (RG) scale µ to be the pivot scale q∗,

and the IR ambiguity can be fixed by setting the IR cut-off equal to g2YM, as

conjectured.

By a redefinition of variables, perturbation theory predicts a universal form for

the primordial perturbation from the holographic theory [10]:

∆2(q) =
∆2

0

1 + (gq∗/q) ln |q/βgq∗|
, ∆2

T (q) =
∆2

T,0

1 + (gtq∗/q) ln |q/βtgtq∗|
, (1.41)

where

∆2
0 =

1

4π2N2f0
, ∆2

T,0 =
2

π2N2fT,0
. (1.42)

It is worth noting that at sufficiently large momenta, the spectrum Eq. (1.41)

rapidly becomes nearly scale invariant, which again reflects the fact that the

dual QFT becomes asymptotically free at high momenta. The curvature power

spectrum in Eq. (1.41) predicted by holographic cosmology is distinct from that

of ΛCDM in Eq. (1.7): it has three free dimensionless parameters (∆2
0, β, g), as

opposed to two free parameters (∆2
0, ns) in Eq. (1.7). To compare theories of the

same number of parameters, we can compare the holographic cosmology theory

against ΛCDM with running spectral index αs.

The predicted power spectrum Eq. (1.41) has been tested against WMAP and

Planck data in [11, 12, 19]. Fig. 1.9 shows the fit of the holographic cosmology

and ΛCDM predictions against the TT , TE, and EE power spectra from Planck

2015 data, and the fit result for the primordial scalar power spectrum is shown

in Fig. 1.10. In the fits, only data from high multipoles ℓ ≥ 30 are used. This
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is because in perturbation theory, the low momentum IR region of the energy-

momentum two-point function is not within the regime of validity, and the low

multipoles result cannot be trusted.

The fit results for the parameters are summarised in Table 1.1. From these

studies, we learn that firstly, Planck data strongly suggests that the dual QFT

does not contain fermions [12]. Secondly, the model becomes nonperturbative at

very low q. Lastly, restricted to the high-multipole region, the difference in χ2

between the best fit models from holographic cosmology and ΛCDM is less than 1,

indicating that the models are within 1.0 σ of each other and that neither model

is favoured. Within their regimes of validity, perturbative holographic cosmology

and ΛCDM fit the data equally well.
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Figure 1.9: Comparison from [11, 12] of Planck 2015 CMB power spectra (CTT
ℓ ,

CTE
ℓ , CEE

ℓ ) fit to the ΛCDM model and perturbative holographic cosmology.
Green shaded region in the difference plots (lower panels) shows the Planck
relative errors.
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Figure 1.10: Plot of the primordial power spectrum for perturbative holographic
cosmology and ΛCDM from [11, 12].

HC ΛCDM ΛCDM with running

best fit 68% range best fit 68% range best fit 68% range

Ωbh
2 0.02204 0.02202± 0.00022 0.02227 0.02224± 0.00020 0.02217 0.02212± 0.00024

Ωch
2 0.1187 0.1187± 0.0014 0.1187 0.1188± 0.0013 0.1186 0.1188± 0.0013

100θ 1.04097 1.04099± 0.00042 1.04108 1.04104± 0.00043 1.04101 1.04100± 0.00041

τ 0.067 0.066± 0.017 0.0703 0.068± 0.016 0.0695 0.067± 0.016

109∆2
0 2.044 2.043± 0.074 2.158 2.151± 0.064 2.151 2.139± 0.066

ns 0.9667 0.9660± 0.0048 0.9682 0.9666± 0.0047

αs 0.0083 0.0090± 0.0094

g −0.0130 −0.0127+0.0042
−0.0038

ln β 1.01 0.90+0.32
−0.16

χ2 824.0 824.5 823.5

Table 1.1: Fit result from [11], for holographic cosmology (HC), ΛCDM with
optional running αs, against high-multipole ℓ ≥ 30 CMB data from Planck 2015
and BAO.
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Nonperturbative Region

We are interested in comparing the holographic model against ΛCDM across the

entire CMB spectrum, including the low multipoles ℓ < 30 which, as previously

mentioned, may contain anomalies. In perturbation theory, the infrared region

contains divergence and ambiguity, which can only be cured and calculated using a

fully nonperturbative approach, such as lattice simulations. This is the motivation

for this project, which is to perform lattice simulations of the dual theories in order

to obtain nonperturbative prediction of the two-point function of the energy-

momentum tensor and the power spectrum.

As a first step, we consider the simplest version of the holographic dual theories,

which is the class of three-dimensional QFTs with scalars ϕ in the adjoint of

SU(N) and a ϕ4 interaction, regularised on a Euclidean spacetime. The action

of the theory is

S [ϕ] =
N

g

∫
d3xTr

[
(∂µϕ(x))

2 + (m2 −m2
c)ϕ(x)

2 + ϕ(x)4
]
.7 (1.43)

The scalars are not necessarily minimal; non-minimal scalars on a curved

background have an extra coupling 1
2g

∫
ξRϕ2, where R is the curvature scalar.

This term induces an improvement term in the energy momentum tensor Tij,

which will be explained in more detail in Sec. 3.2.1.

This model is interesting in its own right. If correct, this model would provide

a remarkably simple description of the very early Universe, with the microscopic

theory containing only two parameters, N and the nonminimality parameter ξ.8

Preliminary results show that it provides an excellent fit to CMB data in the

regime where perturbation theory can be trusted, while suggesting that the model

becomes nonperturbative at higher multipoles than the best fit model based

on Yang-Mills theory coupled to scalars (roughly, ℓ ≲ 250 versus ℓ ≲ 30), so

this model also serves as an example of a holographic model where the effective

dimensionless coupling is of intermediate strength (neither very large nor very

7For the pure scalar case, we denote the coupling as g instead of g2YM. In this case, the
dimension of g is still 1.

8Note the distinction between the number of parameters appearing in empirical models,
such as the ΛCDM model, and the number of parameters appearing in the microscopic theory.
For example, ΛCDM contains two parameters associated with the very early Universe (the
amplitudes of primordial perturbations ∆0 and the spectral index ns), but the underlying
microscopic inflationary models contain a lot more parameters (the parameters appearing in
the inflaton potential etc.)
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small) for a sizeable part of the CMB spectrum, and as such it requires a

nonperturbative treatment, which is the reason for using lattice simulations to

perform the calculation.
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Chapter 2

Dual Theory on the Lattice

Quantum Field Theory (QFT) is the natural framework that arises from com-

bining Special Relativity and Quantum Mechanics, two foundational principles

of modern physics. By encompassing locality and symmetries, QFT allows

physicists to accurately describe and predict a plethora of physical phenomena via

simple principles. It is the standard operational paradigm of particle physicists,

cosmologists, and condensed matter physicists alike.

One prominently fruitful example of QFT is the ‘Standard Model’ of particle

physics. It describes three of the four fundamental interactions (electromagnetic,

weak, and strong), and is verified by a wide range of experiments to extreme

precision. As explained in the previous chapter, holography has cast new light

on the relation between QFT and gravity, the last of the four interactions that

has long resisted a full quantum treament.

As much as it is simple to write down a local QFT, it is highly non-trivial to

obtain accurate predictions from it. One approach is via perturbation theory,

which evaluates observables with a perturbative series in the coupling parameter.

One can evaluate higher order results as (decreasingly significant) corrections to a

free, non-interacting field. When the interaction strength is weak, this method is

able to make reliable predictions. However, life is rarely simple, and interactions

are scarcely weak. In strongly coupled systems, perturbation theory is no longer

predictive; nonperturbative calculations are required. Using lattice field theory,

whereupon the theory is regularised by fitting into a finite box and discretised

onto a lattice of discrete points, the theory can then be numerically evaluated by

means of Monte Carlo sampling. The advancement of computational power has
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made this a feasible and powerful method for evaluating nonperturbative regimes

of QFTs, such as the low-energy limit of Quantum Chromodynamics.

In this chapter, I will first give a rapid introduction to (Euclidean) QFTs, how to

discretise them on the lattice, and lattice perturbation theory, a valuable tool to

help us evaluate lattice integrals we will encounter later on. I will focus on our

superrenormalisable scalar action. I will then describe the numerical Monte Carlo

algorithms used to evaluate our lattice scalar action, the particular challenges

associated with them, the parameter space we are interested in exploring, as

well as the set-up used for this project. Finally, I will discuss the results of the

paper [3] concerning the infrared finiteness of superrenormalisable theories, which

is necessary for the consistency of the holographic cosmology framework, as well

as to approach the critical, massless limit of the theory.

2.1 Discretising Quantum Field Theories

2.1.1 Euclidean Quantum Field Theory

In the path integral formulation of Euclidean quantum field theory, we define a

QFT with a functional integral,

Z =

∫
Dφe−S[φ], (2.1)

which is called the partition function. Here φ stands for a collection of fields of

arbitrary spins, which may include scalar, spinor or gauge fields. The partition

function is integrated over the functional measure Dφ within the space of field

configurations. For a local quantum field theory, the action

S[φ] =

∫
dDxL[φ(x)] (2.2)

can be defined as the spacetime integral over a Lagrangian density L[φ(x)]. For
our purpose, we are interested in the three-dimensional dual theory containing a

scalar field ϕ(x) in the adjoint of SU(N).
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It is also useful to introduce the generating functional,

Z[J ] =

∫
Dφe−

∫
dDxL[φ(x)]+J(x)φ(x), (2.3)

where we have Z = Z[J = 0].

To extract physical information of a quantum field theory, we can calculate

expectation values of an operator O,

⟨O⟩ = 1

Z

∫
DφO[φ]e−S[φ]. (2.4)

In the limit where the time dimension is infinite, the expectation value ⟨O⟩ is equal
to the vacuum expectation value ⟨0|Ô|0⟩, where Ô is the operator representation

of O in canonical quantisation. Transition amplitudes are related to such vacuum

expectaion values via the LSZ formula [64].

Spatial correlation functions of operators ⟨O1(x)O2(y)⟩, due to translational

invariance, can be simplified as a function of the separation

⟨O1(x)O2(y)⟩ = C(x− y) = ⟨O1(x
′)O2(0)⟩ (2.5)

where x′ = x − y. From hereon, we will abuse notation and use ⟨O1(x)O2(y)⟩
to mean the connected correlation function ⟨O1(x)O2(y)⟩c = ⟨O1(x)O2(y)⟩ −
⟨O1(x)⟩ ⟨O2(y)⟩.

The standard way to proceed in any sensible QFT curriculum is to calculate

some observables, using Feynman diagrams, up to some perturbative order of the

coupling. This is hugely successful for calculations in the weak coupling regime,

but presents a challenge for strong coupling. This fact is very pertinent in cases

such as QCD at low energy. The expansion in coupling constant is no longer

applicable, and other methods are required, such as chiral perturbation theory

or soft-collinear effective theory. In fact, for most quantum field theories and in

particle physics in general, analytical calculations of observables are only possible

via some perturbative expansion. However, there are nonperturbative effects that

are impossible to obtain from purely perturbative calculations.
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2.1.2 Lattice Field Theory

An alternative method, called lattice field theory (LFT), is to define a QFT on

a discrete and finite spacetime, and then approach the continuum and infinite

volume limits. Looking at the form of the expectation value Eq. (2.4), this is

suggestive of a Monte Carlo interpretation, where the probability measure is

P [φ] =
1

Z
Dφe−S[φ]. (2.6)

If the spacetime is discrete and finite, then the path integral has a finite and

discrete number of variables or degrees of freedom. Equipped with sufficient

computational power, this Monte Carlo evaluation can indeed be performed

numerically.

A LFT is formulated on a periodic, finite Euclidean spacetime, which is

represented by a D-dimensional hypercubic lattice. For concreteness, we

formulate our field theory on a three-dimensional cubic lattice with spacing a

Λ3
L =

∏
µ

a(Z/NµZ) = a(J0, N0 − 1K × J0, N1 − 1K × J0, N2 − 1K). (2.7)

Here Nµ is a 3-dimensional vector with integer components indicating the number

of lattice sites in the direction µ1 and J0, nK is the set of all integers i satisfying

0 ≤ i ≤ n. The spatial extent of the lattice in the direction µ is Lµ = aNµ.

With the field now defined on this discrete lattice Λ3
L, the action Eq. (2.2) can

be discretised. Firstly, the derivative term can be discretised by one of the finite

difference operators, including

δµf(x) =
1

a
[f(x+ aµ̂)− f(x)], (2.8)

δ∗µf(x) =
1

a
[f(x)− f(x− aµ̂)], (2.9)

δ̃µf(x) =
1

2
(δµ + δ∗µ), (2.10)

which are the forward, backward, and central finite difference operators respec-

tively. Using a Taylor expansion, the first two operators can be shown to recover

the derivative in the continuum up to O (a), and the third one up to O (a2)

discretisation effects. The central finite difference has the added benefit of being

1For consistency with existing literature, Greek letters µ, ν, · · · will be used to denote
directions for any number of dimensions including three
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hermitian.

Next, the spacetime integral is replaced by a discrete sum∫
d3x→ a3

∑
x∈Λ3

L

. (2.11)

Finally, for the discretised version of the functional integral Eq. (2.1), we note

that the functional measure Dφ =
∏

n∈Λ3
L
dφ is now a product of the elementary

Lebesgue measures dφ, which is well defined since the number of spacetime points

is finite. To approach the physical result, two separate limits have to be taken:

1. the continuum limit, i.e. a→ 0

2. the infinite volume limit, i.e. Lµ → ∞

The lattice provides both an ultraviolet (UV) and an infrared (IR) regulator.

In finite volume, momentum is discretised in units of 2π
L
, and the inverse lattice

spacing a−1 acts as a ultraviolet cut-off. The momentum modes |kµ| are bounded
by 2π

Lµ
and 2π

a
.

The spacetime symmetry group is also reduced by discretisation. In the

continuum, the theory possesses a T(D) translational symmetry and O(D)

rotational symmetry, which together makes up a Euclidean group E(D). When

the theory is discretised on a periodic (hyper)cubic lattice, the translational group

is broken into the discrete translation group ZD
NL

, and the rotational symmetry

is broken to a hyperoctahedral group BD. This has substantial consequence

since operators in a specific representation of the continuum symmetry group will

experience mixing between different representations of the reduced group. As a

result, when operators are renormalised on the lattice, more terms are generally

present in the operator mixing than in the continuum case. This will be discussed

in more detail in Sec. 3.3.1.

2.1.3 Lattice Perturbation Theory

Even though lattice field theory was introduced as a tool for performing

purely nonperturbative calculations, perturbative calculations of lattice fields

are still important and valuable. In particular, lattice perturbation theory

(LPT) is essential for obtaining renormalisation constants which can be matched
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with continuum physical calculations. Another important use is to perform

‘improvements’ to reduce lattice artifacts. Here we summarise the most important

points relevant to following discussions. (An exhaustive review of the subject can

be found in [65].)

Similar to perturbative calculations in the continuum theory, we can write

down Feynman rules for the lattice fields, and associate Feynman diagrams with

integrals. One important difference is that in momentum-space, the momentum

integration is confined within the Brillouin zone
{
−π

a
< kµ ≤ π

a

}
, and propagators

differ from the continuum integrals. To see this, we look at the action of a free

scalar theory

S[ϕ] = a3
∑
x∈Λ3

ϕ(x)∆ϕ(x), (2.12)

where ∆ = −δ̃2 + m2. By the usual ‘completing the square’ technique, we can

obtain the two-point function, or the propagator

D(x, y) = ⟨ϕ(x)ϕ(y)⟩ = a−3(∆−1δx)(y) (2.13)

In momentum-space, this can be written as∫ π
a

−π
a

d3k

(2π)3
eik·(x−y)

k̂2 +m2
(2.14)

where k̂2 =
∑

µ k̂
2
µ and k̂µ = 2

a
sin
(

akµ
2

)
. In the continuum limit a → 0, we

indeed recover the continuum propagator.

A generic lattice integral associated with a diagram takes the form

I =

∫ π
a

−π
a

d3k1
(2π)3

· · ·
∫ π

a

−π
a

d3kL
(2π)3

V (k, q,m, a)

C(k, q,m, a)
, (2.15)

where q consists of the external momenta and m the mass, C(k, q,m, a) =

ΠI
i=1Ci(li,m, a) contains the denominator of propagators, with I internal lines

and line momenta li(k, q), and V (k, q,m, a) contains vertices and numerators of

the propagators.

If the integral I is convergent, in the sense that the degree of divergence for all
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its possible Zimmermann subspaces are negative 2, the power-counting theorem

of Reisz [66] says that

lim
a→0

I =

∫ ∞

−∞

d3k1
(2π)3

· · ·
∫ ∞

−∞

d3kL
(2π)3

P (k, q,m)

ΠI
i=1(l

2
i +m2

i )
, (2.16)

where P (k, q,m) = lima→0 V (k, q,m, a) and l2i +m2
i = lima→0Ci(li,m, a) are the

continuum limit of the numerator and the demoninator of Eq. (2.15) respectively.

In other words, the initial integral can be reduced to a simpler continuum integral,

which is absolutely convergent.

If the integral I is UV divergent, an additional technique introduced [67] can

be used. In essence, we separate out the divergent part using an expansion in

the external momenta, and evaluate them separately. As an example, consider a

quadratically divergent integral

I(q) =

∫
dkI(k, q), (2.17)

where q is the external momentum. We split this integral into two parts

I = J + (I − J) (2.18)

where

J =

∫
dkI(k, 0) +

∑
ρ,σ

qρqσ
2

∫
dk
∂2I(k, q)
∂qρ∂qσ

∣∣∣∣∣
q=0

(2.19)

is the Taylor expansion of the integral I(q) to second order. The integrals in J do

not depend on the external momentum, and can be calculated using a recursive

technique described below. Any dependence on the external momentum q remains

in I − J , which by the subtraction is UV finite in the limit a→ 0. Thanks to the

theorem of Reisz from above, the näıve continuum limit can be taken. With these

two techniques, any lattice integral can be reduced to computing zero-momentum

integrals on the lattice, and convergent integrals in the continuum. This is the

method used to calculate the perturbative result for the EMT renormalisation

constant, as well as two-point functions in later sections.

2There are additional conditions the integrand must satisfy, including that the continuum
limit of the denominator exists and recovers the continuum propagator, and that each of the
propagator denominator diverge like 1/a2 when the momenta are at the edges of the Brillouin
zone. Integrands coming from certain types of theories, such as näıve fermions and staggered
fermions, do not satisfy such conditions. For details see [65], 15.1
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Evaluating Zero-Momentum Lattice Integrals

In order to compute the zero-momentum lattice integrals in J , we utilise an

algorithm proposed in [68]. The algorithm makes use of recursion relations to

reduce any scalar Feynman integrals in d dimensions to expressions with (d −
1) constants, which can be evaluated to high precision using coordinate-space

methods [69].

Consider a zero-momentum lattice integral:

Bδ(p;n0, n1, n2) =

∫ π

−π

d3k

(2π)3
k̂2n0
0 k̂2n1

1 k̂2n2
2

(k̂2 +m2)p+δ
, (2.20)

where p is an arbitrary integer and δ is a real number which will be set to zero at

the end. The parameter δ is introduced to handle singularities in the intermediate

steps of the reduction. Here a has been set to 1 for simplicity.

The first recursion relation is given by

Bδ(p; . . . , r) = 4Bδ(p; . . . , r − 1)

+
r − 1

p+ δ − 1
Bδ(p− 1; . . . , r − 1)− 4r − 6

p+ δ − 1
Bδ(p− 1; . . . , r − 2)

(2.21)

for r > 1. This relation allows us to lower the value of a numerator argument ni

to at most 1.3

Once a numerator argument ni reaches 1, the following relations4

Bδ(p; 1) =
1

3

[
Bδ(p− 1)−m2Bδ(p)

]
Bδ(p;x, 1) =

1

2

[
Bδ(p− 1;x)− Bδ(p;x+ 1)−m2Bδ(p;x)

]
Bδ(p;x, y, 1) = Bδ(p− 1;x, y)− Bδ(p;x+ 1, y)− Bδ(p;x, y + 1)−m2Bδ(p;x, y)

(2.22)

can be used to eliminate the index.

3For p = 1, some coefficients in the relation diverge as 1/δ; therefore, in order to compute
Bδ(1; . . . ) in the limit δ → 0, we need to compute Bδ(0; . . . ) including terms of order δ. In
general, one needs to compute the intermediate expressions for the integrals Bδ(p;n0, n1, n2)
with p ≤ 0 while keeping all terms of order δ.

4When one of the arguments ni is zero it will be omitted.
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By recursively applying Eqs. (2.21) and (2.22), every integral Bδ(p;n0, n1, n2) can

be reduced to a sum of the form

Bδ(p;n0, n1, n2) =

p∑
r=p−n0−n1−n2

ar(m, δ)Bδ(r), (2.23)

where ar(m, δ) are polynomials in m2, which may diverge as 1/δ for p > 0 and

r ≤ 0. This sum only includes integrals Bδ(r) with pure denominators and no

numerator.

A final useful relation is given by

p∑
r=p−3

br(p; δ)Bδ(r) + f(p;m, δ) = 0. (2.24)

Here br(p; δ) are rational functions, and f(p;m, δ) = O (m2) for p ≤ 2, and is a

polynomial in 1/m2 for p > 2, which is finite in the limit δ → 0. This relation

can be obtained by applying the recursion relations on the identity

Bδ(p; 1, 1, 1)− 4Bδ(p+ 1; 2, 1, 1)−m2Bδ(p+ 1; 1, 1, 1) = 0. (2.25)

Eq. (2.24) essentially allows us to express all Bδ(p) in terms of Bδ(r) which are

within r ∈ {0, 1, 2}. To achieve this, for p > 2, Bδ(p) can be rewritten in terms

of Bδ(p − 1),Bδ(p − 2),Bδ(p − 3), and iterate until r is within the range. A

similar approach can increase the index for p < 0, by expressing Bδ(p) in terms

of Bδ(p+ 1),Bδ(p+ 2),Bδ(p+ 3). Therefore, we are able to express

Bδ(p) =
2∑

r=0

cr(p; δ)Bδ(r) + g(p;m, δ), (2.26)

where g(p;m, δ) is a polynomial in 1/m2.

Combining the recursive relations, a general three-dimensional bosonic integral

can be written as

Bδ(p;n0, n1, n2) = A(δ)Bδ(0) +B(δ)Bδ(1) + C(δ)Bδ(2) +D(m, δ), (2.27)

where D(m, δ) is a polynomial in 1/m2. It can be shown that the limit δ → 0 is
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finite at this stage, and we can finally obtain

B(p;n0, n1, n2) = A(0) +B(0)B(1) + C(0)B(2) +D(m, 0) (2.28)

in terms of the two constants B(1) and B(2). Here we used the fact that B(0) =
1. This tells us that every purely bosonic integral in three dimensions can be

expressed by just two constants, with B(1) and B(2) forming a minimal set.

One common basis for expressing the bosonic constants is

Z0 = B(0)
∣∣∣
m=0

≈ 0.252731009858663, (2.29)

Z1 =
1

3
B(1; 1, 1)

∣∣∣
m=0

≈ 0.181058342883210. (2.30)

All subsequent lattice perturbation theory calculations will be evaluated using this

recursive algorithm, and these constants will be present within the expressions.

2.2 Dual Theory Action

2.2.1 Scalar SU(N) Action

The theory we are interested in is a three-dimensional Euclidean scalar φ4 theory,

S [φ] =

∫
d3xTr

[
(∂µφ(x))

2 + (m2 −m2
c)φ(x)

2 + λφ(x)4
]
, (2.31)

with fields φ = φa(x)T a where φa(x) is real, and T a are the generators of SU(N),

which are normalised so that Tr
[
T aT b

]
= 1

2
δab. Here λ is the φ4 coupling constant

with mass dimension one (which does not renormalise),m2 is the bare mass. Since

the mass of the theory renormalises additively, we include the mass counterterm,

or critical mass m2
c(g), i.e. the value of the bare mass such that the renormalised

theory is massless. The critical mass will be calculated in Sec. 2.5.

To make the ’t Hooft scaling explicit, hereafter the following rescaled version of

the action will be used,

S [ϕ] =
N

g

∫
d3xTr

[
(∂µϕ(x))

2 + (m2 −m2
c)ϕ(x)

2 + ϕ(x)4
]
, (2.32)

which can be obtained by identifying ϕ =
√
g/Nφ and λ = g/N from Eq. (2.31).
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The theory is discretised on a three-dimensional Euclidean lattice by replacing

the action with

S [ϕ] =
a3N

g

∑
x∈Λ3

Tr

[∑
µ

(δµϕ(x))
2 + (m2 −m2

c)ϕ(x)
2 + ϕ(x)4

]
. (2.33)

Here δµ is the forward finite difference operator from Eq. (2.8). Λ3 is again a lattice

with cubic geometry containing N3
L points (with periodic boundary conditions),

and a the lattice spacing.

2.2.2 Superrenormalisability

This massless theory contains a coupling g of mass dimension one, and belongs

to the class of superrenormalisable theories. Superrenormalisable quantum field

theories suffer from severe infrared (IR) divergences in perturbation theory. When

we expand a correlation function C(q) in momentum-space using perturbation

theory, the only dimensionless combination of parameters is geff = g
q
, i.e.

C(q) = a3
∑
x∈Λ3

e−iq·x⟨O1(x)O2(0)⟩ =
∑
i

giefffi(geff). (2.34)

for some functions fi. For each increasing order in the perturbative expansion,

the IR degree of divergence increases. For example, up to two loops in lattice

perturbation theory, the following two-point function takes the form

C2(q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Trϕ2(0)⟩

=
N2

16g

[(
1− 1

N2

)
geff −

1

4

(
2− 5

N2
+

3

N4

)
g2eff

]
,

(2.35)

which corresponds to the diagrams in Fig. 2.1. The perturbative results, along

with the lattice simulations are plotted in Fig. 2.2.

N
g Trφ

2 N
g Trφ

2

(a) 1-loop

N
g Trφ

2 N
g Trφ

2

(b) 2-loop

Figure 2.1: Perturbative expansion of C2(q) at one and two loops.
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Figure 2.2: Plot of gC2(q) from Eq. (2.34). Data points are from lattice
simulations, and the dashed lines are the 1- and 2-loop perturbative expressions.
At high momentum q/g > 1, the perturbative expressions accurately predict
the lattice results; at low momentum q/g < 1, nonperturbative effects become
dominant and can non longer be described by the perturbative expressions.

At high momentum g−1
eff = q

g
> 1, we can see that the 1- and 2-loop perturbative

expansions accurately predict the lattice results. From this we can also determine

a nonperturbative window where g−1
eff < 1. In the massless limit, the perturbative

expressions diverge in the IR. However, this is an artifact of perturbation theory,

and the theory is in fact nonperturbatively IR finite, and is regulated by the

coupling constant g. The mechanism has been conjectured in [62, 63], and is

tested in Sec. 2.5.
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2.3 Numerical Simulations

2.3.1 General Strategy

As mentioned in Sec. 2.1.1, the expectation value of an observable in a Euclidean

QFT on the lattice is given by the functional integral

⟨O⟩ = 1

Z

∫
Dφe−S[φ]O[φ]. (2.36)

This path integral is a high-dimensional integral over the field variables, which

are the field degrees of freedom living on each lattice site. An exact evaluation of

the integral would require summing over all possible field configurations, which

is infeasible except for very simple systems on small lattices.

Using importance sampling Monte Carlo method, this huge sum can be approx-

imated by a small subset of configurations, which are sampled according to the

Boltzmann weight factor e−S. By generating a set of field configurations {φi}
distributed with probability proportional to e−S, the expectation value can be

computed

⟨O⟩ = 1

N

∑
{φi}

O[φi] +O
(

1√
N

)
. (2.37)

In order to generate the field configurations {φi} that satisfy the appropriate

statistical properties, a Markov chain is used, where a series of configurations

{φi} are generated subsequently at each Monte Carlo step. A Markov chain is

characterised by a conditional transition probability

T (φ′|φ) = P (φn = φ′|φn−1 = φ). (2.38)

We first start the process from an arbitrary configuration φ0 with initial

distribution P (0)(φ) = δ(φ = φ0). By applying the transition matrix iteratively,

P (i) approaches an equilibrium distribution P , which is a fixed point of the

Markov chain.

There are two desired properties of the Markov chain. The first is ergodicity,

where the Markov chain is able to access all configurations within the field

space. If the transition matrix T (φ′|φ) is strictly positive for all pairs φ, φ′,

46



then the process is aperiodic and every configuration can be reached. This is

a stronger property than ergodicity, and is aptly named strong ergodicity. The

second property is detailed balance, where the transition matrix satisfies

T (φ′|φ)P (φ) = T (φ|φ′)P (φ′). (2.39)

This condition guarantees that the probability of arriving at a configuration φ is

the same as the probability of leaving φ at a given time step, i.e.∑
φ

T (φ′|φ)P (φ) =
∑
φ

T (φ|φ′)P (φ′). (2.40)

This is required in order to ensure there are no sinks or sources of probability in

the Markov chain.

2.3.2 Autocorrelation and Critical Slowing Down

To determine which Monte Carlo algorithm best suits our purpose, we have to

discuss the problem of increasing autocorrelation as we approach the critical,

massless theory [70].

The autocorrelation function for an observable X is defined as

CX(Xi, Xi+t) = ⟨(Xi − ⟨Xi⟩)(Xi+t − ⟨Xi+t⟩)⟩
= ⟨XiXi+t⟩ − ⟨Xi⟩ ⟨Xi+t⟩ .

(2.41)

Once the Markov chain reaches equilibrium, the autocorrelation function depends

only on the time separation, i.e.

CX(t) = CX(Xi, Xi+t). (2.42)

Typically, the normalised correlation function exhibits an exponential decay

asymptotically for large t,

ΓX(t) :=
CX(t)

CX(0)
∼ exp

(
− t

τX,exp

)
, (2.43)

where τX,exp is called the exponential autocorrelation time for observable X.
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Another quantity that can be defined is the integrated correlation time

τX,int =
1

2
+

N∑
t=1

ΓX(t). (2.44)

If we have a set of values (X1, · · · , XN) and an estimator

X̂ =
1

N

N∑
i=1

Xi, (2.45)

in the case where the values are uncorrelated, the variance is given by 5

σ2
X̂,uncorr

=
1

N2

〈
N∑

i,j=1

(Xi − ⟨X⟩)(Xj − ⟨X⟩)
〉

=
1

N

〈
(Xi − ⟨Xi⟩)2

〉
=

1

N
σ2
X .

(2.46)

In the case where the set of values are correlated, it can be shown that

σ2
X̂
=

1

N2

N∑
i,j=1

CX(|i− j|)

≈ σ2
X

N
2τX,int.

(2.47)

Here we can see that

σ2
X̂
= 2τX,intσ

2
X̂,uncorr

. (2.48)

So in order to effectively generate Nindep independent data such that we

can achieve a statistical variance of σ2
X̂,uncorr

, N = 2τX,intNindep correlated

configurations have to be generated.

This becomes a particularly thorny problem when τX,int becomes large, which

occurs when the parameters of the simulation approaches a critical point. This

is called critical slowing down. In general, the autocorrelation time is related to

the correlation length ξX for an observable X

τX,int ∼ (ξX)
z (2.49)

5In theory one should multiply this by a factor N
N−1 to obtain an unbiased estimator of the

variance
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for some dynamical critical exponent z which depends on the update algorithm.

At the critical (massless) point, the correlation length ξ diverges, which on

the lattice is bound by the lattice size L. Fig. 2.3 shows an example of the

integrated autocorrelation time growing as the critical point is approached.

Because of this, the autocorrelation time, and hence computational cost to

generate statistically independent configurations, grow rapidly as a function of

the lattice size near the critical point. In the following sections, we describe three

algorithms, namely Hybrid Monte Carlo (HMC), Heatbath with Overrelaxation

(HB+OR), and Multilevel ; in particular, the latter two are designed to decrease

the autocorrelation time and reduce computational cost of the Markov chain

simulation.

0

20

40

60

80

100

120

140

−0.157 −0.156 −0.155 −0.154 −0.153 −0.152 −0.151 −0.15

τ i
n
t

(am)2

ag = 0.5, NL = 128

Figure 2.3: Integrated autocorrelation time τint for ensemble ag = 0.5, NL = 128.
The grey dotted line denotes the value of the critical mass (amc)

2.

2.3.3 Hybrid Monte Carlo

The Hybrid Monte Carlo [71] is a global update algorithm, which updates

the entire field at once. In cases where the change in action includes non-

local interactions, the algorithm provides much better scaling behaviour with

respect to the lattice volume compared to site-wise update algorithms. The

basic idea underlying the algorithm is to pass from the original theory to a

classical Hamiltonian system, and to evolve the fields by integrating the Hamilton
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equations, also called molecular-dynamics equations.

Firstly, a random su(N) valued ‘momentum’ field

π(x) = πa(x)T a (2.50)

is generated with a Gaussian probability ∼ exp
{
−1

2
(π, π)

}
, where (π, π) =∑

x π
a(x)πa(x) is the scalar product for su(N).

For this momentum field, the associated Hamiltonian function is given by

H(π, ϕ) =
1

2
(π, π) + S[ϕ]. (2.51)

The path integral can then be expressed as,∫
D[ϕ]e−S[ϕ] ∝

∫
D[π]D[ϕ]e−H[π,ϕ] (2.52)

where the momentum field does not affect the physics content of the theory, and

is integrated over.

For a classical system with the Hamiltonian Eq. (2.51), the classical equations of

motion are:

dπ(x)

dt
= −F (x) = −∂S [ϕ]

∂ϕ(x)
6, (2.53)

ϕ̇ = π(x)ϕ(x), (2.54)

and these are referred to as the molecular-dynamics equations. The time t here

is a fictitious time, unrelated to the time coordinate of our spacetime.

The solution ϕ(τ) to the molecular dynamics equations can be obtained by

integrating from time t = 0 to some later time t = τ , taking π and ϕ as the

initial values of the fields. It can be proven [72] that this procedure produces an

ergodic Markov chain that reproduces the equilibrium distribution.

In practice, the molecular-dynamics equations cannot be integrated exactly,

and numerical integration methods such as the ‘leap-frog integrator’ are used.

The numerical integration is not exact, and in general does not preserve the

6More specifically, F a(x) = ∂S(eωϕ)
∂ωa(x)

∣∣∣
ω=0
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Hamiltonian function, i.e. ,

∆H(π, ϕ) = H(πτ , ϕτ )−H(π0, ϕ0) ̸= 0. (2.55)

As a result, the equilibrium distribution is not preserved after the update process.

To correct for this, the new field ϕ′ is set to the field ϕτ from the molecular-

dynamics integration with an acceptance probability

paccept(π, ϕ) = min{1, e−∆H(π,ϕ)}. (2.56)

In practice, there are two parameters in the HMC algorithm, which are the

trajectory length τ and the integration step size ε. The two parameters are

usually empirically tuned to achieve approximately 70 − 80 percent acceptance

rate for efficient simulation.

2.3.4 Heatbath with Overrelaxation

For the Heatbath and Overrelaxation (HB+OR) algorithm, each trajectory

update, or sweep, involves one heatbath step and n overrelaxation steps.

We first rewrite the action Eq. (2.33) (generalised to d dimensions) as

S[ϕ] =
N

g

∑
x∈Λd

Tr

[∑
µ

(
−2ϕxϕx+µ̂ + ϕ2

x+µ̂

)
+ dϕ2

x +m2ϕ2
x + ϕ4

x

]
, (2.57)

where for brevity, ϕx = ϕ(x). Both Heatbath and Overrelaxation are local,

sitewise update algorithms, we therefore focus only on the terms local to ϕx:

V [ϕx] =
N

g
Tr

[
d(ϕx − b)2 +

(
ϕ2
x +

m2

2

)2
]
, (2.58)

where b = 1
d

∑
µ∈{NN} ϕx+µ̂, which is the sum of the nearest-neighbours (NN) of

x.
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Heatbath

For a heatbath update, a new matrix ϕx is drawn from a Gaussian distribution

p[ϕx] ∼
{
−N
g
Tr
[
d(ϕx − b)2

]}
, (2.59)

where

ϕx = ϕa
xT

a and bx = baxT
a. (2.60)

This can be done by randomly sampling D = Dim [su(N)] independent real

numbers Ma with Gaussian distribution exp
{
−1

2
(Ma)2

}
, then recover

ϕx =
∑
a

(√
g

dN
Ma

x + bax

)
T a. (2.61)

To account for the contribution from the quartic term, the new matrix ϕx is

accepted with probability

paccept[ϕx] = exp

{
−N
g
Tr

[(
ϕ2
x +

m2

2

)2
]}

. (2.62)

Overrelaxation

The aim of the overrelaxation step is to increase the step size of the Markov chain,

thereby reducing the autocorrelation time and mitigating critical slowing down.

This is done by exploiting symmetry properties of the action.

The quadratic term in Eq. (2.58) contains a symmetry

ϕ→ ϕ′ = 2b− ϕ. (2.63)

In the limit where the quartic coupling λ→ 0, i.e. for a purely quadratic action,

the field can be updated without any change to the action. In our case, where

λ ̸= 0, the correct statistical distribution can be recovered by adding a metropolis

accept/reject step [73, 74], where the updated field ϕ′ is accepted with probability

paccept[ϕ
′] = min

{
1, eV (ϕ)−V (ϕ′)

}
(2.64)
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This step ensures that detailed balance Eq. (2.39) is satisfied. To observe this,

we take the case where V (ϕ) > V (ϕ′),

T (ϕ′|ϕ)P (ϕ) = 1× e−V (ϕ) = e−V (ϕ) (2.65)

T (ϕ|ϕ′)P (ϕ′) = eV (ϕ′)−V (ϕ)e−V (ϕ′) = e−V (ϕ) = T (ϕ′|ϕ)P (ϕ). (2.66)

This overrelaxation step itself is not ergodic, and has to be combined with a

non-microcanonical update step to generate representative ensembles, hence the

combination with a heatbath step. In practice, the number of overrelaxation steps

n performed after each heatbath step is a tunable parameter of the simulation.

The step number is tuned to optimise the auto-correlation between configurations.

2.3.5 Multilevel Algorithm

The multilevel algorithm [75] has been used extensively to improve signal-to-

noise ratio in lattice simulations. The idea behind the multilevel algorithm is to

divide the lattice into sub-regions separated by boundaries, and simulating the

sub-regions independently.

As an illustration, we can study the case of a two-level setup, where the lattice

Λ is split into two sub-regions {Λ1,Λ2}, which are separated by boundaries ∂B,

as illustrated in Fig. 2.4a. The path integral can be decomposed as

∫
x∈Λ

D[ϕ]e−S[ϕ] =

∫
x∈∂B

D[ϕ]e−S[ϕ]

2∏
r=1

∫
x∈Λr

D[ϕ]e−S[ϕ], (2.67)

where sites on the boundary ∂B and the bulk Λr are integrated over separately.

The multilevel algorithm then proceeds as follows: first, we perform a simulation

of N configurations of the whole lattice. These configurations are then used to fix

boundary sites ∂Bi for i ∈ {1, . . . , N}. For each of the boundary ∂Bi, we produce

M sub-lattice configurations. The computational cost of a multilevel simulation

is equivalent to a single level simulation with NM configurations.

To observe the effect on the signal-to-noise ratio, we are interested in correlation

functions ⟨O1(x)O2(x+ δ)⟩. For the case where the correlation length ξ of the

system is small compared to the lattice size, the sub-lattice sites are largely

independent of the boundary. Effectively, the multilevel algorithm producesNM2

independent configurations, as compared toNM for the single level simulation. In
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the best case, the standard deviation of correlation function with small separation

(small δ) is reduced by a factor
√
M . However, close to criticality, the correlation

length ξ is large, and the sub-lattice field values are almost entirely determined

by the boundary. Because of this, the multilevel does not improve any signal,

and for the same computational cost, multilevel algorithm results in a standard

deviation
√
M times larger than single level simulation.

In [13], this phenomenon has been studied for the case of the 2D Ising model,

as shown in Fig. 2.4b. It can be seen here that the multilevel improvement,

i.e. the ratio between the single-level error σs and multilevel error σm for the

same computational cost, decreases drastically as the correlation length increases,

i.e. close to the critical point. It was found that in this setup, there is a cross-

over at ξ/L ≈ 0.1, where the multilevel performance starts to become worse than

single-level. For this project, we are interested in exploring the critical region

of the theory. Multilevel is not expected to provide any improvement for our

purpose, it is therefore not implemented in our simulations.

δ = y − x

φ(x)

φ(y)

∂B

Λ1

Λ2

(a) A multilevel set up with two
sub-lattices.
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√
M

δ/L = 0.5
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L = 32

(b) Performance of a two-level algorithm of the 2D
Ising model with N = 500 boundary configurations
and M = 500 sub-lattice configurations.

Figure 2.4: Figures from [13] for a multilevel setup.
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2.4 Setup

2.4.1 Parameter Space

In Sec. 1.3.3, it was shown that perturbative calculations of the dual theory fail

to be predictive at low momentum, which corresponds to low-multipoles ℓ in the

CMB power spectrum; this was the motivation for performing nonperturbative

lattice simulations, which aims to accurately predict the power spectrum even in

the nonperturbative window.

The nonperturbative window is characterised by g−1
eff = q

g
< 1, and for the lattice

results to meaningfully describe this region, there must be sufficient data points

within the window. On the lattice, momentum q are bounded and quantised in

q =
2π

aNL

n, (2.68)

where n is a vector with integer components. For there to be at least nmax points

within the nonperturbative window q
g
< 1 (in a single dimension), the number of

sites NL on each side of the lattice must satisfy

NL >
2π

ag
nmax. (2.69)

The value of ag determines the discretisation error, which we extrapolate to 0

to recover the continuum limit. To justify the discretisation as an expansion,

the value of ag must be sufficiently small, at most O(0.1). Combining these two

constraints, Fig. 2.5 shows that the number of lattice points NL needs to be of

O(100− 1000), in order to meaningfully describe the nonperturbative region.
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The list of ensembles simulated is summarised in Table 2.1 for SU(2) and Table 2.2

for SU(3) and SU(4). For each value of ’t Hooft couplings ag, up to three bare

masses (am)2 in the vicinity of the critical mass (amc)
2 have been simulated

(see Table 3.2). Data analysis is performed using bootstrap resampling [76], and

only every 50th or 100th trajectory is sampled in order to reduce autocorrelation.

The first 5000 trajectories are discarded to ensure the ensembles are thermalised.

A representative example of the value of the observableM2 = Tr
(
a3
∑

x∈Λ3 ϕ(x)
)2

across one HMC simulation (ag = 0.1, NL = 128, (am)2 = −0.031) is shown

in Fig. 2.6.

2.4.2 Hardware and Software setup

The theory is simulated using both the Hybrid Monte Carlo algorithm and the

Heatbath with Overrelaxation algorithm, which were implemented using the

Grid library [77, 78]. Correlation function computations are performed using

the Hadrons library [79] and the data analysis is based on the LatAnalyze

library [80]. Simulations were performed using the Cambridge Service for

Data Driven Discovery (CSD3) with Intel Cascade Lake CPU nodes, and has

subsequently been ported to Edinburgh ‘Tursa’ with Nvidia A100 GPU nodes.

Some of the steps taken to port and optimise our simulation code for the Nvidia
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ag (am)2 NL Trajectories Sample Frequency Algorithm

0.1 -0.0305, -0.031 64 1,500,000 50 HMC
0.1 -0.0305, -0.031 128 500,000 50 HMC
0.1 -0.0305, -0.031 256 200,000 100 HMC
0.1 -0.0313 256 200,000 100 HB+OR
0.1 -0.0305, -0.031 512 100,000 100 HMC
0.1 -0.0313 512 100,000 100 HB+OR

0.15 -0.046, -0.0465 256 200,000 100 HMC
0.15 -0.046, -0.0465 512 100,000 100 HMC

0.2 -0.061, -0.062 64 1,500,000 50 HMC
0.2 -0.061, -0.062 128 500,000 50 HMC
0.2 -0.061, -0.062 256 200,000 100 HMC
0.2 -0.06215 256 200,000 100 HB+OR
0.2 -0.061, -0.062 512 100,000 100 HMC
0.2 -0.06215 512 100,000 100 HB+OR

0.3 -0.091, -0.092 64 1,500,000 50 HMC
0.3 -0.091, -0.092 128 500,000 50 HMC
0.3 -0.091, -0.092 256 200,000 100 HMC
0.3 -0.09275 256 200,000 100 HB+OR
0.3 -0.091, -0.092 512 100,000 100 HMC
0.3 -0.09275 512 100,000 100 HB+OR

Table 2.1: Simulation ensembles for SU(2).

GPU architecture are summarised in [5].

57



N ag (am)2 NL Trajectories Sample Frequency Algorithm

3 0.2 -0.082, -0.0825 256 200,000 100 HB+OR
3 0.2 -0.082, -0.0825 512 100,000 100 HB+OR

3 0.3 -0.11, -0.115 256 200,000 100 HB+OR
3 0.3 -0.11, -0.115 512 100,000 100 HB+OR

4 0.2 -0.088, -0.0883 256 200,000 100 HB+OR
4 0.2 -0.088, -0.0883 512 100,000 100 HB+OR

4 0.3 -0.01295, -0.013 256 200,000 100 HB+OR
4 0.3 -0.01295, -0.013 512 100,000 100 HB+OR

Table 2.2: Simulation ensembles for SU(3) and SU(4).
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Figure 2.6: Example of the Monte Carlo history for the observable M2 =

Tr
(
a3
∑

x∈Λ3 ϕ(x)
)2

for ag = 0.1, NL = 128, (am)2 = −0.031. The first 5000
trajectories are discarded to ensure the simulations are thermalised.
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2.5 Infrared Finiteness of the Dual Theory

In Sec. 2.2.2, it was mentioned that superrenormalisable QFTs suffer from severe

IR divergences in perturbation theory. The fate of these IR singularities have been

discussed in [62, 63]. These studies were motivated by the high-temperature limit

of four-dimensional Yang-Mills theory, where the dimensionally reduced theory

is superrenormalisable. In the examples analysed, the nonperturbative answers,

when expanded in the small coupling constant, reduce to the perturbative results

but with the IR regulator ΛIR replaced by the dimensionful coupling constant.

As a reminder, we are interested in the nonperturbative window of the energy-

momentum tensor two-point function of the dual theory, where the IR behaviour

is important. Moreover, cosmic evolution within the holographic framework

corresponds to inverse RG flow, and the initial singularity in the bulk is mapped

to the IR behaviour of the dual QFT. Thus a mechanism for curing the IR

singularities would also provide a holographic resolution of the initial bulk

singularity. Furthermore, for later analysis, we need to accurately obtain the

value of the critical mass m2
c in order to extrapolate to the massless point. In this

section, we will discuss the finite-size scaling (FSS) analysis which supports the

nonperturbative IR finiteness of the dual theory, and obtain the critical masses

for the couplings relevant for our simulations. The results of this section have

been published in [3].

Figure 2.7: One- and two-loop diagrams contributing to the mass renormalisation.
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2.5.1 Critical Mass m2
c from Perturbation Theory

The diagrams that contribute to the critical mass m2
c at the two-loop level are

shown in Fig. 2.7. The IR-finite but linearly UV-divergent one-loop integral is

π/a∫
−π/a

d3k

(2π)3
1

k̂2
=
Z0

a
, (2.70)

where

k̂ =
2

a
sin

(
ka

2

)
, (2.71)

and the constant Z0 ≈ 0.252731 has been defined in Eq. (2.29).

The integral corresponding to two-loops with external momentum p is

D(p) =

π/a∫
−π/a

d3k

(2π)3
d3l

(2π)3
1

k̂2 l̂2 r̂2
, (2.72)

where r = −k− l−p. By näıve dimensional counting, and confirmed by repeating

the analysis of the IR-properties of this diagram in [69] for d = 3, this integral

diverges logarithmically in the IR,

D(p)
p→0
= DIR(p) = − log(|pa|)

(4π)2
(2.73)

Following [62, 63], one can introduce an IR regulator by setting the external IR

momentum to g/(4πN) ≡ Λ.7 The two-loop expression for the critical mass then

evaluates to

m2
c(g) = −gZ0

a

(
2− 3

N2

)
+ g2D(Λ)N (N) , (2.74)

where N (N) = 1− 6/N2 +18/N4. Representative values for D(Λ) and m2
c(g) at

one- and two-loops for N = 2 are listed in Table 2.3. For the range of couplings,

the change from one- to two-loop corresponds to a relative change in the range 1%

to 6%. For higher order terms, the contribution at n-loop (n > 2) to the critical

mass is power-law IR-divergent, ∼ g2(g/Λ)n−2. If the mechanism of [62, 63] is

satisfied, i.e. the IR regulator Λ ∼ g, such terms are finite and proportional to g2.

7While the expression for the logarithmic cut-off dependence for a given UV regulator can
be computed in perturbation theory [81, 82], the precise form for the IR regulator is unknown.
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ag D(Λ)
(amc)

2

One loop Two loops

0.1 0.05469(19) -0.03159 -0.03125
0.2 0.04953(13) -0.06318 -0.06194
0.3 0.04783(13) -0.09477 -0.09208
0.5 0.045311(92) -0.15796 -0.15088
0.6 0.044134(90) -0.18955 -0.17962

Table 2.3: Results for the two-loop integral D(Λ) and the critical mass for N = 2
in lattice perturbation theory.

On the other hand, if the theory is truly IR divergent such terms would dominate

in the IR.

2.5.2 Finite-Size Scaling for m2
c

The strategy to determine the critical mass is to compute it as a function of the

IR cutoff given in terms of the inverse lattice size 1/L, which can be parametrised

via finite-size scaling. Here we use the Binder cumulant

B = 1− N

3

⟨Tr{M4}⟩
⟨Tr{M2}⟩2 , (2.75)

where M = 1
L3

∫
d3xϕ(x) is the magnetisation matrix.

For each choice of simulation parameters, we determine the bare input mass,

m2(B, g, L), in the critical region for which the Binder cumulant takes some

chosen value B. The Binder cumulant in a finite volume of extent L in the

critical scaling region is described by a scaling function f ,

B = f

((
m2(B, g, L)−m2

c(g)
)

g2
x1/ν

)
, (2.76)

where x = gL and ν is the critical exponent associated to the correlation length

ξ.

Expanding f in the vicinity of the critical mass, at leading order in FSS, we

obtain

m2(B, g, L) =m2
c(g) + g2x−1/νB − f(0)

f ′(0)
. (2.77)
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Using an effective field theory (EFT) of the zero-mode of the field ϕ, it can be

shown that at leading-order, ν|N=2,4 = 2/3, f(0)|N=2 ≈ 0.5431 and f ′(0)|N=2 ≈
−0.03586, and f(0)N=4 ≈ 0.4459 and f ′(0)N=4 ≈ −0.02707, respectively. (See

supplementary material of [3]).

By using multi-histogram reweighting [83], a continuous representation of the

Binder cumulant as a function of the bare mass can be obtained. Example

results for B(N, g, L) are shown in Fig. 2.8. The reweighting allows for a model-

independent determination of m2(B, g, L) by means of an iterative solution.

Example results for m2(B, g, L) are listed in Table 2.4. We can observe that

the finite-volume results is very close to the 2-loop infinite volume predictions

listed in Table 2.3.

−4 −2 0 2 4

0.35

0.40

0.45

0.50

0.55

0.60

0.65

B
(N
,g
,L

)

f(0) (EFT)

B for (am)2 → +∞ (EFT)

B for (am)2 → −∞ (EFT)

N = 2

L/a = 8

L/a = 16

L/a = 32

L/a = 48

L/a = 64

L/a = 96

L/a = 128

−2 0 2

0.35

0.40

0.45

0.50

0.55

0.60

0.65

f(0) (EFT)

B for (am)2 → +∞ (EFT)

B for (am)2 → −∞ (EFT)

N = 4

(m2 −m2
c)/g

2 x1/ν

Figure 2.8: N = 2 (left) and N = 4 (right) results for the Binder cumulant,
the EFT prediction for f(0) and the value of the Binder cumulant in the limits
m2 → ±∞. The values on the x-axis have been rescaled using the values of the
critical exponent ν and the critical masses m2

c determined in Sec. 2.5.2. Darker
colour corresponds to larger value of gL.
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L/a
ag

0.1 0.2 0.3 0.5 0.6

8 -0.024289(87) -0.05048(16) -0.07717(13) -0.12989(17) -0.15680(31)
16 -0.028398(37) -0.057413(65) -0.086163(97) -0.143556(77) -0.17205(13)
32 -0.030071(19) -0.060181(51) -0.090135(40) -0.149284(65) -0.178777(53)
48 -0.030595(21) -0.061032(37) -0.091267(47) -0.151126(48) -0.180582(51)
64 -0.030841(13) -0.061448(45) -0.091814(26) -0.151816(72) -0.181522(28)
96 -0.031067(12) -0.061811(16) -0.092270(31) -0.152521(29) -0.182345(66)
128 -0.0311266(93) -0.061962(43) -0.092486(29) -0.152808(33) -0.182680(29)

Table 2.4: Results for (am)2(B = 0.53, g, L) for N = 2.

Finite-Size Scaling Analysis

To perform a fit of m2(B, g, L), we are guided by Eq. (2.77) to choose the fit

ansatz

m2(B, g, L) = m2
c(g)|1−loop + g2α + g2

(
x−1/νB − f0

f1
+ βDIR(ΛIR)N (N)

)
,

(2.78)

The first term is the 1-loop result for the critical mass and it removes the linear

UV divergence perturbatively (cf. Eq. (2.74)). The coefficient α includes potential

residual scheme dependence in the IR/UV regulator, e.g. normalisation factors in

the argument of DIR, as well as the contribution from higher loops when ΛIR ∼ g.

The second term in brackets parameterises the dependence on the IR cutoff, which

we are interested in in this study. The IR dependence takes the form

1. ΛIR =
1

4π

g

N
, or

2. ΛIR =
1

L
.

In the case ΛIR = 1
L
, the n-loop IR divergent contribution yields g2xn−2, which

is of the same form as the finite scaling correction but with effective scaling

dimension that tends to zero as n → ∞. If such terms are present, their effects

would dominate over the logarithmic or the finite-size behaviour in the IR.

From the fits using B = {0.52, 0.53} for N = 2 and {0.42, 0.43} for N = 4, it

was found that the ansatz in Eq. (2.78) with ΛIR ∝ g provides an excellent

parameterisation for the simulation data over the entire range gLmin ≳ 12 to
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Figure 2.9: Central fit for the critical mass for N = 2, B = 0.52, 0.53. Dashed
lines correspond to the 2-loop prediction for the effective mass, solid lines to
the fit result including error band. Value of ag increasing from bottom to top.
At each coupling the top set of points corresponds to B = 0.52, bottom set to
B = 0.53.

gLmax = 76.8. The case N = 2 is illustrated in Fig. 2.9 for ΛIR = 1
4π

g
N
. Table 2.5

summarises the fit results.

On the other hand, fits with ΛIR ∝ 1/L are not possible for similarly small values

of gLmin. For N = 2 the first acceptable (p ≥ 0.05) fit is possible only after

discarding all data with gL < 32 and for N = 4, gL < 24. The r.h.s. axis

in Fig. 2.10 shows how the p-value varies with the cut in gL. Generally, larger

p-values for ΛIR ∝ g at a given value of gL indicate that this ansatz provides a

better description of the data in terms of a χ2-analysis. If we assume IR power-

divergencesDIR(x) ∼ xn (n = 1, 2, 3, 4) in lieu of logarithmic, no single acceptable

fit was found (p = 0.00).

Inserting the fit parameters in Table 2.5 into Eq. (2.78) and taking the limit x→
∞, we can obtain predictions for the infinite-volume critical mass, which is needed

for later analyses. For instance, for ag = 0.1 we find (amc)
2 = −0.031341(4)(6)

for N = 2 and (amc)
2 = −0.045515(2)(7) for N = 4.
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N αi ν β f(0) f ′(0) p χ2/Ndof Ndof

2 0.0019(8)(18) 0.71(1)(6) 1.05(5)(10) 0.577(1)(16) -0.058(4)(53) 0.2 1.2 31

4
0.0010(5)(3)
0.0014(4)(4)

0.840(8)(8) 1.03(2)(2) 0.497(1)(5) -0.090(3)(3) 0.07 1.4 30

Table 2.5: Results of χ2 fits to finite-size-scaling data. The two errors are
statistical and systematic respectively (obtained by varying the value of B). The
data volume ranges from gLmin = 12.8 to gLmax = 76.8.
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(b) N = 4, B = 0.42, B = 0.43

Figure 2.10: The p-value of the fit of Eq. (2.78) with ΛIR ∝ g and ΛIR ∝ 1
L

(right y-axis) is shown by the orange squares and green triangles respectively.
The black circles represent E = log10(

E1

E2
), where E1 and E2 are the marginal

probabilities for fits with (ΛIR ∝ g) and (ΛIR ∝ 1/L) respectively. The coloured
regions represent the strength of the evidence under the Jeffreys’ Scale, where
blue regions represent decisive evidence (|E| > 2), yellow regions represent strong
evidence (1 < |E| < 2), and pink region represents insignificant evidence (|E| < 1).

The question of the IR regulator has also been addressed using the framework of

Bayesian inference. The marginalised probabilties of each model (ΛIR ∝ g and

ΛIR ∝ 1/L) were calculated across a range of cuts in gLmin and pairings of B

values with suitably set (uniform) priors. In Fig. 2.10 both the p-value, and the

Bayes Factor of the central fit are shown across the range of gLmin values. In this

plot, the graph is broken down into regions according to the Jeffreys’ scale. The

Bayes Factor K = E1

E2
, where E1 and E2 are the marginal probabilities for model

1 (ΛIR ∝ g) and model 2 (ΛIR ∝ 1/L) respectively. If E = log10(K) is greater
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than 1, this suggests there is strong evidence for model 1 over model 2, and if it

is greater than 2 it is considered decisive. The reverse is true for negative values

of E in support of model 2.

As more data is included by reducing the cut on gLmin, the evidence for model 1

(ΛIR ∝ g) increases, with there being decisive evidence under the Jeffreys’ scale

for all gLmin cuts for N = 2 and for gLmin ≤ 19.2 cuts for N = 4. The same

pattern is observed for all B values.

Bottomline

Bayesian inference strongly prefers the IR-finite ansatz (ΛIR ∝ g) over the IR-

divergent one (ΛIR ∝ 1
L
); complementary to and consistent with this, from the

χ2 analysis we find the IR-finite FSS ansatz to describe more degrees of freedom

(i.e. larger range in gL) with acceptable p-value. This gives us great confidence

in confirming the IR-finiteness conjecture for this class of superrenormalisable

theories, and allows us to obtain the critical mass m2
c , which is necessary for

subsequent analyses.
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Chapter 3

Energy-Momentum Tensor

Renormalisation

The energy-momentum tensor (EMT) plays a fundamental role in quantum field

theories, by virtue of being the collection of Noether currents related to spacetime

symmetries. It acts as the source for spacetime curvature in the Einstein field

equations, and its expectation value encodes the energy and momentum carried

by quantum excitations. In chapter 1, we saw that in the holographic framework,

cosmological observables, such as the CMB power spectra, can be described in

terms of correlation functions of the EMT of a dual three-dimensional quantum

field theory with no gravity. We have also motivated that a nonperturbative

evaluation of the EMT is required to fully exploit the duality in the low-multipole

regime.

For this project, we nonperturbatively compute the EMT by means of lattice

field theory, as described in the previous chapter. A fundamental limitation of the

lattice framework is that spacetime symmetries, including Poincaré invariance, are

explicitly broken at finite lattice spacing; these symmetries are restored only in the

continuum limit. Consequently, the Ward identities associated with translations

are violated, and the EMT, which generates such transformations, has to be

defined with care. On the lattice, the EMT has to be renormalised by tuning the

coefficients of a linear combination of all operators with dimension not greater

than the spacetime dimension d, which are compatible with lattice symmetries.

This ensures that the Ward identities are recovered in the continuum limit.
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In this chapter, we perform renormalisation of the EMT operator for the

holographic dual theories describe in Sec. 2.2.1, which is the class of three-

dimensional massless scalar QFTs with φ in the adjoint of SU(N) and a φ4

interaction, regularised on a Euclidean spacetime lattice. I will first discuss the

Ward-Takahashi identities and define the EMT operator in the continuum. I

will then explain how composite operators can be renormalised, and perform

perturbative renormalisation of the EMT on the lattice. I will describe the Wilson

flow as a nonperturbative renormalisation procedure for the EMT operator, and

define the relevant flowed correlators, i.e. correlators at finite flow time. I will

finally present numerical results for the renormalisation constant for the N = 2

theory; theories with N > 2 and the large N limit will be deferred to a later

publication. The results of this chapter have been published in [2].

3.1 Ward-Takahashi Identities

Consider a classical field φ, and a global infinitesimal transformation of the field,

φ(x) → φ′(x) = φ(x) + ε∆φ(x). (3.1)

For the transformation to be a symmetry of the theory, the action S[φ] is invariant

up to a surface term under this transformation, and the Lagrangian is invariant

up to a total divergence

L [φ] → L [φ] + ε∂µJ µ (3.2)

for some J µ.

For the given transformation Eq. (3.1), we can calculate the change in the

Lagrangian δL to be

εδL =
∂L
∂φ

ε∆φ+
∂L

∂(∂µφ)
∂µ(ε∆φ)

= ε

[
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

]
δφ+ ε∂µ

(
∂L

∂(∂µφ)
δφ

)
.

(3.3)

When the equations of motion are satisfied, the first term in the square bracket
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vanishes, and by comparing Eq. (3.2) and Eq. (3.3), we obtain

∂µj
µ(x) = 0, where jµ(x) =

∂L
∂ (∂µφ)

∆φ− J µ. (3.4)

This relation is Noether’s theorem, which states that a continuous symmetry of

the Lagrangian gives rise to a conserved current jµ.

Now consider some expectation value from a continuum path integral

⟨φ(x1) . . . φ(xn)⟩ =
1

Z

∫
Dφe−

∫
dDxL[φ(x)]φ(x1) . . . φ(xn). (3.5)

Assuming that the same symmetry transformation of the field as before φ(x) →
φ′(x) = φ(x) + ε∆φ(x) preserves not only the Lagrangian, but also the

integration measure D[φ] → D[φ′] = D[φ].1 In this case, by expanding the

path integral Eq. (3.5), we obtain the equation∫
Dφe−

∫
dDxL[φ(x)]

{
∂µj

µ(x)φ(x1) . . . φ(xn)

+
n∑

i=1

φ(x1) . . .∆φ(xi)δ(x− xi) . . . ϕ(xn)
}
= 0,

(3.6)

where jµ is the conserved current from Eq. (3.4). Therefore, we have

⟨∂µjµ(x)φ(x1) . . . φ(xn)⟩ = −
n∑

i=1

⟨φ(x1) . . .∆φ(xi)δ(x− xi) . . . ϕ(xn)⟩ . (3.7)

This is the set ofWard-Takahashi identities (WI), which are the Schwinger-Dyson

equations associated with global symmetries and Noether currents.

We can also obtain a more general form of the WI by replacing the source terms

with generic operators P (x), which can be composite operators of the underlying

fields φ(x). In this case, the WI is

⟨∂µjµ(x)P1(x1) . . . Pn(xn)⟩ = −
n∑

i=1

⟨P1(x1) . . .∆Pi(xi)δ(x− xi) . . . ϕ(xn)⟩ ,

(3.8)

1The case where this does not hold are called quantum anomalies, as in the case of axial
vector anomaly.
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where

∆Pi =
δPi

δφ
∆φ. (3.9)

If we integrate Eq. (3.7) over a small sphere Ω around xi, we obtain∫
∂Ωxi

dσµ ⟨jµ(x)φ(x1) . . . φ(xn)⟩ = −⟨φ(x1) . . .∆φ(xi) . . . ϕ(xn)⟩ . (3.10)

If the transformation ∆φ(x) is linear in the fundamental field, then the correlator

of the renormalised field on the right is finite. As a consequence, ∂µj
µ is also finite,

and jµ finite, except for a possible divergent contribution Kµ with vanishing

divergence ∂µK
µ. For the case of spacetime symmetry, an improvement term has

to be included to construct a finite EMT which does not renormalise [84, 85].

This will be discussed in more detail in Sec. 3.2.1.

In general, the Ward identities hold for renormalised correlation functions, as long

as the regulator also preserves the symmetry [86]. When anomalous breaking of

the symmetry occurs, as in the case of dilatation, conformal, or chiral etc., they

no longer hold.

In essence, the WI states that at the quantum level, the conservation of the

Noether current holds inside correlation functions up to contact terms. Contact

terms contribute when the current insertion jµ(x) coincide with any of the

fields φ(xi) in the correlator. Even when the operators and correlators are

renormalised and are finite at finite separation, contact terms can still produce

further divergences. Such contact terms are significant in the renormalisation of

the EMT operator in this chapter and the correlator in the next chapter.

When the symmetry is broken, either by the action or the measure, the insertion

of jµ(x) and ∆φ can generate additional terms and UV divergences, and these

need to be subtracted to render Eq. (3.7) finite. To do so, a set of counterterms

have to be included in the renormalised operators jµR, which is the process of

renormalising a composite operator, which will be explained in Sec. 3.3.1. For our

purpose, since the regulator we utilise, i.e. the lattice regulator, breaks spacetime

symmetry explicitly, the associated current, i.e. the energy-momentum tensor, on

the lattice has to be renormalised, which is the main subject of the chapter.
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3.2 Energy-Momentum Tensor in the Continuum

Here we will first introduce the energy-momentum tensor in the continuum. In the

continuum, a three-dimensional spacetime possesses a Euclidean group symmetry

E(3) = T(3) ⋊ SO(3), which is the semidirect product of the T(3) continuous

translational group, and the SO(3) rotational group. The EMT is defined as the

conserved current of translational symmetry:

ϕ→ ϕ+ εµ(x)∂µϕ(x). (3.11)

Using Eq. (3.4), we can obtain the (canonical) EMT

Tµν :=
∂L

∂ (∂µφ)
∂νφ− δµνL. (3.12)

For our scalar theory of interest defined by the action Eq. (2.32), the canonical

EMT reads

Tµν =
N

g
Tr

{
2(∂µϕ)(∂νϕ)− δµν

[∑
ρ

(∂ρϕ)
2 + (m2 −m2

c)ϕ
2 + ϕ4

]}
. (3.13)

For this translational symmetry, the associated Ward-Takahashi identity reads

⟨∂µTµν(x)P (y)⟩ = −
〈
δP (y)

δϕ(x)
∂νϕ(x)

〉
(3.14)

for some operator P (y).

Note that for fields with non-0 spin, the canonical EMT is not symmetric, and

the canonical EMT can be modified to obtain the Belinfante-Rosenfeld tensor

[87], which is symmetric. An alternative definition of the (Hilbert) EMT is the

functional derivative of the action with respect to the metric

Θµν =
−2√−g

δS

δgµν

∣∣∣∣
gµν=δµν

=
−2√−g

δ
√−gL
δgµν

∣∣∣∣
gµν=δµν

, (3.15)

which is also symmetric.

71



3.2.1 Improvement Term

The EMT as obtained by the Noether prescription is not unique, since it is defined

only up to terms with vanishing divergence. Therefore additional terms can be

added to an improved EMT,

T I
µν = Tµν + η

(
∂µ∂ρL

ρ
ν + ∂ν∂ρL

ρ
µ − ∂2Lµν − δµν∂ρ∂σL

ρσ
)
+ ξ

(
δµν∂

2Lρ
ρ − ∂µ∂νL

ρ
ρ

)
(3.16)

for an arbitrary symmetric tensor Lµν . The extra terms do not contribute to

the Euclidean charges, and are identically conserved without any dynamical

information. In general, the improvement terms correspond to the modification

of the gravitational coupling as

δS =

∫
ddx
√
|g|
(
−ηRµνL

µν +
κ

2
RLρ

ρ

)
(3.17)

where Rµν is the d-dimensional Ricci tensor and R is the scalar curvature. One

typical example is the coupling of the curvature to scalar field

δS =

∫
ddx
√

|g|ξRϕ2, (3.18)

which corresponds to Lµν = ξδµνϕ
2.

For our purpose, non-minimally coupled (i.e. ξ ̸= 0) scalar fields can be included

in the three-dimensional action Eq. (2.33) by adding a term δS =
∫
d3xξR trϕ2.

In this case, the improved EMT becomes

T I
µν =

N

g
Tr

{
2(∂µϕ)(∂νϕ)− δµν

[∑
ρ

(∂ρϕ)
2 + (m2 −m2

c)ϕ
2 + ϕ4

]

+ ξ

(
δµν
∑
ρ

(∂ρϕ)
2 − (∂µϕ)(∂νϕ)

)}
.

(3.19)

Given the improvement ambiguity, it is shown [84, 85, 88, 89] that for the value

ξ =
(d− 2)

4(d− 1)
, (3.20)

the insertion of Tµν is finite and does not renormalise. At this value, the field

theory is conformally invariant, as can be checked by calculating the trace of
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the improved EMT T I
µµ. In the case of three dimensional scalars, they are

characterised by ξ = 1
8
.

In the holographic cosmology framework, the breaking of conformal invariance

by any improvement term is related to the boundary conditions for the scalar

field which mixes the boundary metric and the boundary scalar sources [90].

The boundary condition is related to the transition mechanism to the radiation

dominated phase, as the metric perturbations are eventually converted into the

matter fluctuations of the Universe. To specify a cosmological model, it is

important to specify which boundary condition is realised. However, for the

phenomenological approach of this project, ξ is taken as a free parameter of

the theory. It affects cosmological observables including the power spectrum,

bispectrum of the curvature perturbations, as well as the tensor-to-scalar ratio.

For the purpose of this chapter, which is to renormalise the EMT operator on

the lattice, ξ will be set to 0 for the remainder of the chapter.

3.3 Energy-Momentum Tensor on the Lattice

As mentioned in chapter 2, on the lattice, the continuous spacetime symmetry

group is broken by discretisation, as well as the geometry of lattice. In the

continuum, our three-dimensional theory possesses the Euclidean symmetry

group E(3); when the theory is discretised on a periodic cubic lattice, the

translational symmetry T(3) is reduced to Z3
NL

, and the rotational symmetry

O(3) is reduced to the octahedral group Oh. In general, this has substantial

consequences since observables in a specific representation of the continuum

symmetry group will experience mixing between different representations of the

reduced groups on the lattice. As a result, when renormalising (composite)

operators on the lattice, more terms will be present in the operator product

expansion than in the continuum case, which is the focus of the next section.

3.3.1 Renormalisation of Composite Operators

A composite operator consists of products of elementary fields and their

derivatives at the same point. At finite separation x ̸= y, the product of fields

e.g. ϕ(x)ϕ(y) (understood as inserted in a correlation function) is unambiguous,

but when they coincide x = y, the operator ϕ(x)2 can contain UV divergence.
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For a general composite operator O, the renormalised composite operator OR

can be defined by subtracting the divergences by means of an operator product

expansion (For a detailed treament, see [86]):

OR =
∑
P

ZOPP (3.21)

where the sum is over the set of operators P that has the same or lower dimension

as O, and transforms as O under symmetry. The coefficients ZOP are called

renormalisation constants, and contain the divergent parts of the insertion of the

operator O in Green’s functions. Perturbatively, their values can be determined

at a given order of the coupling; different renormalisation prescriptions can also be

chosen to define the divergent renormalisation constant, the most useful of which

include BPHZ [91] and minimal-subtraction [92]. Nonperturbatively, specific

renormalisation conditions are imposed to determine their values. With the

definition Eq. (3.21), the operator OR remains finite when the UV cut-off is

removed, where the bare operator O diverges.

As a simple example, consider a scalar theory in six dimensions with a gϕ3

interaction. To renormalise the composite operator ϕ2(x), equation Eq. (3.21)

tells us that the renormalised operator undergoes mixing as

ϕ2
R = Z1ϕ

2 + Z2ϕ+ Z3□ϕ, (3.22)

which are the three operators with dimensions equal to or lower than ϕ2. A proof

of this can be obtained using dimensional analysis. To obtain the values of Zi in

perturbation theory, we consider the following insertion ⟨ϕ(x)ϕ(y)ϕ2(z)⟩, which
in tree level is described by the diagram Fig. 3.1.

φ(x) φ(y)

φ2(z)

Figure 3.1: Diagram for the insertion ⟨ϕ(x)ϕ(y)ϕ2(z)⟩ at tree level.
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(a) (b) (c) (d)

Figure 3.2: Diagrams for the insertion ⟨ϕ(x)ϕ(y)ϕ2(z)⟩ at one loop.

At one loop, i.e. up to order g2, we need to consider the Feynman diagrams

in Fig. 3.2. At this order, UV divergences appear. Using dimensional

regularisation and minimal subtraction, it can be shown that the renormalisation

constants required to subtract the divergences can be expressed in this expansion

ϕ2
R =

[
1 +

g2

64π3(d− 6)

]
ϕ2 +

gµd/2−3

32π3(d− 6)
(m2 +

1

6
□)ϕ+O

(
g3
)
, (3.23)

where µ is the renormalisation mass scale. From this, we can read off the

perturbative value for the renormalisation constants Zi. In this example, ϕ2,

ϕ, and □ϕ are closed under renormalisation.

It is also worth noting some useful properties of renormalised composite operators:

1. linearity, i.e.

aAR + bBR = (aA+ bB)R (3.24)

2. distributive differentiation, i.e. for a composite operator A =
∏n

j=1 ϕj(x),

∂

∂xµ
AR =

(
∂A

∂xµ

)
R

=
n∑

i=1

(
∂ϕi

∂xµ

∏
i ̸=j

ϕj

)
R

. (3.25)

For both of the properties, the equations are understood as operators within a

Green’s function.

3.3.2 Perturbative Renormalisation of EMT

We are now ready to initiate the process of renormalising the energy-momentum

tensor for our lattice scalar theory, defined by the action Eq. (2.33). Since the
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lattice regulator breaks translational symmetry, the associated current, i.e. the

EMT, needs to be renormalised. A näıvely discretised EMT

T 0
µν =

N

g
Tr

{
2(δµϕ)(δνϕ)− δµν

[∑
ρ

(δρϕ)
2 + (m2 −m2

c)ϕ
2 + ϕ4

]}
, (3.26)

can be obtained by replacing the partial derivatives ∂µϕ(x) in the canonical

EMT Eq. (3.13) with the central finite difference δµϕ(x) =
1
2a
[ϕ(x+ aµ̂)− ϕ(x− aµ̂)],

which is chosen in order to obtain a Hermitian EMT operator.

This operator does not in fact satisfy the continuum WI Eq. (3.14) due to the

symmetry breaking. The WI on the lattice includes additional terms [93],

⟨δµT 0
µν(x)P (y)⟩ = −

〈
δP (y)

δϕ(x)
δνϕ(x)

〉
+ ⟨Xν(x)P (y)⟩. (3.27)

Here δP (y)

δϕ(x)
is obtained by replacing the fields and derivatives in the continuum

functional derivative δP (y)
δϕ(x)

with their lattice counterparts, and Xν is an operator

proportional to a2, which classically vanishes in the continuum limit. However,

radiative corrections cause the expectation value ⟨Xν(x)P (y)⟩ to produce a

linearly a−1 divergent contribution to the WI. Therefore, the näıvely discretised

EMT will not reproduce the continuum WI when the regulator is removed. In

other words, T 0
µν has to be renormalised by including a linear combination of

lower-dimensional counterterms which satisfy the same symmetries, using the

renormalisation prescription mentioned above.

For a four dimensional scalar theory, it has been shown in [93] that T 0
µν contains

divergent mixing with five lower-dimensional operators

Õ1 = Tr δµϕ(x)δνϕ(x)

Õ2 = δµν Tr
∑
ρ

δρϕ(x)δρϕ(x)

Õ3 = δµν Trϕ(x)
2

Õ4 = δµν Trϕ(x)
4

Õ5 = δµν Tr δµϕ(x)δµϕ(x).

(3.28)

Note here that Õ5 has no summation over the directions µ, and is not allowed

by the continuum O(3) symmetry; only on the lattice can this operator mix.

However, by counting dimensions, it can be seen that for a three dimensional
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theory, divergent mixing can only occur with O3 = δµν
N
g
Trϕ2. The renormalised

EMT on the lattice can therefore be defined as an operator mixing,

(Tµν)R = T 0
µν − C3O3

= T 0
µν − C3δµν

N

g
Trϕ2. (3.29)

C3 has to be tuned to satisfy the continuum WI up to discretisation effects when

the regulator is removed.

In the continuum limit a → 0, dimension counting suggests that the value of C3

diverges as a−1. To account for this leading behaviour, we define

C3 =
g

a
c3, (3.30)

and by determining the value of c3 nonperturbatively, we are able to renormalise

the EMT on the lattice.

To calculate the mixing coefficient perturbatively, consider the insertion of Tµν

in the two-point correlator, i.e. ⟨ϕa(x)ϕb(y)Tµν(z)⟩. The one-loop diagrams

are shown in Fig. 3.3. Both in the continuum and on the lattice, diagram

(a) in Fig. 3.3 is finite, and contributes to the WI. However, for diagram (b),

as a result of the breaking of translational invariance, the result from lattice

perturbation theory diverges, even though in the continuum the perturbative

result is finite (this could be calculated by replacing the lattice momenta q̂ with

the continuum momenta q, and the integration limit by
∫∞
−∞).

φa φb

Tµν

diagram (a)

φa φb

Tµν

diagram (b)

Figure 3.3: The insertion of Tµν in a two-point correlator, i.e. ⟨ϕa(x)ϕb(y)Tµν(z)⟩,
up to one loop. The black dot represents the insertion of Tµν .
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Using lattice perturbation theory, diagram (b) in Fig. 3.3 evaluates to

Bµν(q) = −δab
(
2N − 3

N

)[
−2Iµν(q) + δµν

(∑
ρ

Iρρ(q) +m2V (q)

)

+ ξ

(
Iµν(q)− δµν

∑
ρ

Iρρ(q)

)]
,

(3.31)

where

V (q) =

∫ π/a

−π/a

d3k

(2π)3
1

(k̂2 +m2)(q̂ − k
2
+m2)

, (3.32)

Iµν(q) =

∫ π/a

−π/a

d3k

(2π)3
kµ(q − k)ν

(k̂2 +m2)(q̂ − k
2
+m2)

, (3.33)

k =
1

a
sin(ka) , (3.34)

and k̂ has been defined in Eq. (2.71).

These fundamental scalar lattice integrals are evaluated in more detail in ap-

pendix A.1. The divergent term of Bµν(q) can be isolated with Bµν(0), while

the remaining terms are finite or vanish in the continuum limit. For ξ = 0, this

evaluates to

Bµν(0) =
δµν
a

(
2N − 3

N

)(
6Z0 − 1

12

)
=
N

g
C1 loop

3 δµν . (3.35)

where Z0 ≈ 0.252731 is defined in Eq. (2.29).

From this, we have the perturbative value of the renormalisation constant

C1 loop
3 =

g

a
c1 loop
3 (3.36)

c1 loop
3 =

(
2− 3

N2

)(
6Z0 − 1

12

)
, (3.37)

where we can see the leading 1
a
behaviour in C3. For the case of N = 2, c1 loop

3 ≈
0.05379. As mentioned in Sec. 2.5, at two-loops, the perturbative value of c3

diverges logarithmically with the IR regulator, which is nonperturbatively finite.

Before discussing the strategy to obtain the value of c3 nonperturbatively, we
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define an EMT correlator which will be useful in our analysis. Consider the

momentum-space two-point correlator,

Cµν(q) =
N

g
a3
∑
x∈Λ

e−iq·x⟨(Tµν)R (x) Trϕ2(0)⟩. (3.38)

This particular correlator is chosen since Trϕ2 is the lowest dimension nonvan-

ishing scalar operator in the theory. By inserting the definitions in Eqs. (3.29)

and (3.30), we obtain

Cµν(q) = C0
µν(q)−

g

a
c3δµνC2(q), (3.39)

where

C0
µν(q) =

N

g
a3
∑
x∈Λ

e−iq·x⟨T 0
µν(x) Trϕ

2(0)⟩, (3.40)

C2(q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Trϕ2(0)⟩. (3.41)

The superscript 0 is used to distinguish the näıvely discretised EMT from the

renormalised one.

The correlator ⟨Tµν(x) Trϕ2(0)⟩ also contains a divergent contact term, which

is proportional to δ(x) in position-space; in momentum-space, this manifests

as a constant (momentum-independent) contribution Cµν(0) which needs to be

subtracted before the proper continuum limit can be obtained,

Ĉµν(q) = Cµν(q)− Cµν(0). (3.42)

By dimensional counting, Cµν(0) has a leading a−1 divergent contribution. We

therefore define

Cµν(0) =
κ

a
δµν (3.43)

for some constant κ.

To evaluate the correlators perturbatively up to next-to-leading order (NLO), we

consider the Feynman diagrams in Fig. 3.4.

Lattice perturbation theory gives the following results for the various expressions
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T 0
µν

N
g Trϕ

2

(a) 1-loop

T 0
µν

N
g Trϕ

2

(b) 2-loop

Figure 3.4: Perturbative expansion of C0
µν(q) at one and two loops.

from above (details can be found in appendix A.2):

Ĉ1 loop
µν (q) =

N2q

64

(
1− 1

N2

)
πµν +O (a) , (3.44)

Ĉ2 loop
µν (q) = −N

2q

256
geff

(
1− 1

N2

)(
2− 3

N2

)
πµν +O (a) , (3.45)

κ = −N
2

2

(
1− 1

N2

)(
6Z0 − 1

12

)
, (3.46)

where geff = g
|q| is again the effective coupling, and πµν = δµν − qµqν

q2
the transverse

projector. It can be seen that Ĉµν(q) has a leading N2q behaviour; an overall q

is expected from Ĉµν(q) being a dimension one correlator, where at LO (i.e. one

loop) there is no coupling constant dependence, and at NLO (i.e. two loops) we

encounter the first order expansion in the effective coupling geff. In both terms,

the planar diagram contributes to the leading N2 factor, whereas nonplanar

diagrams can be seen as 1
N2 corrections to the leading planar diagram, which

is the typical behaviour for large-N theory. The fact that the finite piece of

Ĉµν(q) is proportional to the transverse projector is a consequence of the WI, i.e.

qµĈµν(q) ∝ qµπµν = 0. (3.47)

3.4 Wilson Flow

Having perturbatively renormalised the EMT up to one-loop, we are ready

to perform a nonperturbative renormalisation. Various strategies have been

proposed to nonperturbatively renormalise the EMT on the lattice (see [94] and

references therein), such as the shifted boundary condition [95–98], applying the

Wilson flow on the EMT [99–106], and on probe operators [107–109], which is

the strategy considered in this chapter. The Wilson flow [110–113] has been used

to renormalise composite operators in various scenarios [114–118]. The method

adopted here is to construct probes from fields at some positive flow time, which

will be defined later. These are operators which are nonlocal in the elementary
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Figure 3.5: Schematic diagram of the Wilson flow prescription from [14]. The
field ϕ(t = 0, y) on the boundary flows at finite flow time towards the bulk ρ(t, x),
which consists of smeared contribution of the boundary field.

fields, that can eliminate the divergent contact terms present in the correlators.

The divergence properties and regularisation of Ward identities of flowed gauge

fields are discussed extensively in [119].

From above, we see that the correlator C0
µν(q) contains divergent contributions in

terms of g
a
c3 from the operator mixing, as well as κ

a
due to the contact term. In

order to nonperturbatively renormalise the EMT operator, we need to isolate the

contact term from the operator mixing, and we will utilise the Wilson flow [112]

to achieve this.

For our scalar field ϕ(x), define a flowed field ρ(t, x) governed by the flow

equations,

∂tρ(t, x) = ∂2ρ(t, x), ρ(t, x)|t=0 = ϕ(x), (3.48)

where ∂2 =
∑

µ ∂
2
µ is the Laplacian, and t is the flow time, a new parameter

introduced into the theory. Solving by means of Fourier transformation, one

finds

ρ̃(t, k) = e−k2tϕ̃(k), (3.49)

where ρ̃(t, k) is the Fourier transform of ρ(t, x); the flow effectively smears the

field with radius
√
6t.

The Wilson flow suppresses high-momentum modes exponentially, and thereby
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regulates the divergent contact term present in the EMT correlator C0
µν(q). We

are therefore able to isolate the divergent mixing c3 from the divergent contact

term. There have been extensive discussions of various implementations of the

Wilson flow for renormalising the EMT, which can be found in [97, 99, 107–

109, 119].

In our case, we are interested in determining the flowed correlator

Cµν(t, q) =
N

g
a3
∑
x∈Λ

e−iq·x⟨(Tµν)R (x) Tr ρ2(t, 0)⟩, (3.50)

at finite flow time. Here we replaced the operator Trϕ2(x = 0) with the operator

Tr ρ2(t, x = 0) at finite flow time t, and kept the renormalised EMT operator

(Tµν)R (x) at flow time t = 0. By definition, Cµν(0, q) = Cµν(q). Since the

divergent operator mixing with O3 is local to the EMT operator Tµν(x), it is

not affected by replacing the probe Trϕ2(x = 0) with the one at finite flow time

Tr ρ2(t, x = 0). On the other hand, the divergent contact term Cµν(t, q = 0) is

suppressed.

More explicitly, we similarly define (analogous to Eqs. (3.42) and (3.43))

Ĉµν(t, q) = Cµν(t, q)− Cµν(t, 0), (3.51)

Cµν(t, 0) = δµνK(t). (3.52)

As recorded in Eqs. (3.43) and (3.46), at vanishing flow time, K(t = 0) = κ
a
. On

the other hand, at small finite flow time,

K(t) =
ω√
t
+O

(√
t
)
, (3.53)

where at leading order in perturbation theory,

ω = −N
2

2

(
1− 1

N2

)( √
2

24π3/2

)
. (3.54)

The details of this calculation can be found in Eq. (A.28) in appendix A.3.

We utilise this small t expansion to remove the contact term contribution in our

correlation function Cµν(t, q) in order to obtain the value of c3. The strategy will

be explained in further detail in the following section.

82



In analogy to Eqs. (3.39)–(3.41) we have the relation

Cµν(t, q) = C0
µν(t, q)−

g

a
c3δµνC2(t, q), (3.55)

where

C0
µν(t, q) =

N

g
a3
∑
x∈Λ

e−iq·x⟨T 0
µν(x) Tr ρ

2(t, 0)⟩, (3.56)

C2(t, q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Tr ρ2(t, 0)⟩. (3.57)

Having defined the above correlation functions, we can now nonperturbatively

renormalise the EMT on the lattice.

3.5 Nonperturbative Renormalisation

The nonperturbative renormalisation scheme can be defined by imposing the

Ward identity on an EMT correlator. However, because of the presence of contact

terms, the renormalisation condition cannot simply be imposed on the original

EMT correlator Ĉµν(q). We therefore need to utilise the Wilson flow to remove

the contribution from the divergent contact term, and impose the renormalisation

condition on the flowed correlator Ĉµν(t, q) instead, i.e.

qµĈµν(t, q) = 0, (3.58)

For the complete procedure, this condition is imposed on all lattice ensembles

at specific values of momentum aq∗. This gives a value of c3 for each choice of

momentum aq∗, mass (am)2, volume (gL)3 and ’t Hooft coupling ag. We then

extrapolate the value c3 towards the massless and infinite volume limit to obtain

c3. This defines a massless renormalisation scheme, which is independent of the

volume. We will also investigate the dependence of c3 on the value of the ’t Hooft

coupling ag.

The renormalisation condition Eq. (3.58) implies that Ĉµν(t, q) is purely trans-

verse, i.e. ,

Ĉµν(t, q) = F (t, q)πµν (3.59)
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where πµν = δµν − qµqν
q2

is the transverse projector with lattice momentum

q. In other words, Ĉµν(t, q) vanishes in the direction with purely longitudinal

momentum. For example, picking the momentum to be purely in the direction

ql = (q0, q1, q2) = (0, 0, q2), we have

Ĉ22(t, ql) = 0. (3.60)

Substituting the definition of Ĉµν(t, ql) from Eqs. (3.51) and (3.55), we obtain

Ĉ22(t, ql) = C22(t, ql)− C22(t, 0)

= C0
22(t, ql)−

g

a
c3C2(t, ql)−K(t) = 0 (3.61)

→ c3 =
a

g

C0
22(t, ql)

C2(t, ql)
− fg(g

√
t, ql), (3.62)

where

fg(g
√
t, ql) =

a

g

K(t)

C2(t, ql)
. (3.63)

Using the one-loop perturbative expressions forK(t) and C2(t, q) from Eqs. (A.21)

and (A.28), this gives

fg(g
√
t, ql) =

ω′(ql)

g
√
t
+O

(
ql
√
t
)
, (3.64)

where ω′(q) =
√
2(aq)

3π3/2 . (Details of this calculation can be found in appendix A.3).

The strategy to obtain the value of c3 is to first ‘flow’ the correlators to a range

of small finite flow times, at a fixed momentum aq∗l . Then, utilising Eq. (3.62),

we fit the ratio on the left-hand side of

a

g

C0
22(t, q

∗
l )

C2(t, q∗l )
= c3 + fg(g

√
t, q∗l ), (3.65)

as a function of the physical flow time g
√
t, which is dimensionless. A variety of

fit functions for fg have been tested, and we have found that the ansatz

a

g

C0
22(t, q

∗
l )

C2(t, q∗l )
= c3 +

Ω

g
√
t

(3.66)

provides an excellent fit to the data. Here we keep the first term linear in

the inverse physical flow time 1
g
√
t
from Eq. (3.64), and leave Ω and c3 as fit
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parameters. From the fit we can extrapolate c3 from the y intercept.

3.5.1 Numerical Results

Fits Against Flow Time

Picking the fit ranges for the physical flow time g
√
t requires attention. They must

first be sufficiently small to justify the small flow time expansion of Eq. (3.64).

This also ensures the smearing radius is sufficiently smaller than the length of

the lattice (gL = gaNL) such that there will be small finite volume contributions

from the boundaries. The physical flow time must also be larger than the lattice

spacing (ag) such that actual smearing occurs across lattice points. We therefore

impose the range to be between ag < g
√
t < 1. We performed the analysis for

four values of momenta a|q∗l | = 0.049, 0.098, 0.147, 0.196.

The fits with respect to the inverse flow time for one of the momenta a|q∗l | = 0.098

are shown in Fig. 3.6, and the fit values of c3 for each ensemble are summarised

in Table 3.1.
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Figure 3.6: Plots showing c3 against the inverse physical flow time 1
g
√
t

using Eq. (3.66) for three ’t Hooft couplings and three volumes at momentum
a|q∗l | = 0.098. The red and blue data points are for the lighter and heavier mass
simulations respectively, and the corresponding error bands in the fit are from
statistical uncertainty. The value of c3 is the y intercept on the fit.
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ag NL (am)2 a|q∗l | Ndof χ2/Ndof p-value c3

0.1 64 -0.0305 0.098 4 1.60 0.17 0.0531(35)

0.1 64 -0.031 0.098 3 0.15 0.93 0.0467(39)

0.1 128 -0.0305 0.098 5 0.06 1.00 0.0334(90)

0.1 128 -0.031 0.098 5 1.00 0.42 0.0445(85)

0.1 256 -0.0305 0.098 3 0.18 0.91 0.015(25)

0.1 256 -0.031 0.098 3 1.26 0.28 0.033(23)

0.2 64 -0.061 0.098 5 1.14 0.34 0.0466(23)

0.2 64 -0.062 0.098 5 1.64 0.15 0.0519(24)

0.2 128 -0.061 0.098 5 0.70 0.62 0.0464(53)

0.2 128 -0.062 0.098 5 0.67 0.65 0.0402(41)

0.2 256 -0.061 0.098 2 0.27 0.77 0.050(14)

0.2 256 -0.062 0.098 2 0.04 0.96 0.059(12)

0.3 64 -0.091 0.098 5 0.56 0.73 0.0478(19)

0.3 64 -0.092 0.098 5 0.85 0.51 0.0488(15)

0.3 128 -0.091 0.098 6 0.52 0.79 0.0484(29)

0.3 128 -0.092 0.098 5 0.85 0.52 0.0430(39)

0.3 256 -0.091 0.098 3 0.14 0.94 0.0643(97)

0.3 256 -0.092 0.098 3 0.52 0.67 0.0645(89)

Table 3.1: For each simulation, we perform the fit for the value of c3
using Eq. (3.66). This table shows the fits for momentum a|q∗l | = 0.098, and
the flow time fit range is bounded by ag < g

√
t < 1.

Global Fits

In order to include the mass, volume and lattice-spacing dependence of the value

of c3, we perform global fits using

c3(m2
R, gL, ag) = c3 + p0m2

R +
p1
gL

+ p2(ag), (3.67)

where m2
R = (m2 −m2

c)/g
2 is the dimensionless renormalised mass (the values of

m2
c are summarised in Table 3.2), gL is the dimensionless length of the lattice,

and ag the dimensionless lattice spacing. Since we have chosen our simulation to

have large volume, small lattice spacing, and close to the critical mass, we believe

that the linear corrections are appropriate. In particular, since the divergent
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mixing is a UV effect, we expect there to be small volume dependence coming

from the IR.

ag
(amc)

2

One loop Two loops Nonperturbative

0.1 -0.03159 -0.03125 -0.0313408(38)
0.2 -0.06318 -0.06194 -0.0622974(98)
0.3 -0.09477 -0.09208 -0.092935(16)

Table 3.2: The critical masses (amc)
2 in the infinite volume limit are calculated

at NLO in lattice perturbation theory, as well as nonperturbatively in [3] using
the prescription from Sec. 2.5.2, which are listed for each ’t Hooft coupling ag.
These are used in the global fit to obtain c3 in the massless limit.

For the global fits, the three parameters p0, p1, p2 are switched on individually,

resulting in 2 × 2 × 2 = 8 fit models for each of the four momenta, which gives

a total of 32 fit results for the value of c3. The fit models and the fit values for

c3 using different models are summarised in Table 3.3. Fig. 3.7 show examples of

the global fits for models 1-4 for momentum a|q∗l | = 0.098.
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Figure 3.7: c3 global fits using model 1, 2, 3, 4 for a|q∗l | = 0.098. Model 1 is
a constant fit for c3, and models 2, 3, 4 are plotted against the respective free
fitting parameter for each model, i.e. m2

R, 1/gL, and ag; the value for c3 is the y
intercept of the fit line.
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a|q∗l | Model Fit parameters c3 p0 p1 p2 χ2/Ndof p-value

0.049 1 c3 0.0489(15) 0.49 0.18
0.049 2 c3, p0 0.0514(24) -0.129(93) 0.35 0.06
0.049 3 c3, p1 0.0499(36) -0.029(96) 0.53 0.26
0.049 4 c3, p2 0.0456(58) 0.014(24) 0.50 0.22
0.049 5 c3, p0, p1 0.0498(36) -0.17(11) 0.07(12) 0.35 0.08
0.049 6 c3, p1, p2 0.040(16) 0.07(18) 0.031(44) 0.55 0.32
0.049 7 c3, p0, p2 0.0522(78) -0.13(11) -0.003(27) 0.39 0.11
0.049 8 c3, p0, p1, p2 0.041(16) -0.17(11) 0.16(19) 0.026(44) 0.35 0.11

0.098 1 c3 0.04828(81) 1.40 0.25
0.098 2 c3, p0 0.0481(12) 0.009(44) 1.49 0.19
0.098 3 c3, p1 0.0469(17) 0.022(23) 1.43 0.23
0.098 4 c3, p2 0.0481(30) 0.000(12) 1.49 0.19
0.098 5 c3, p0, p1 0.0468(17) -0.038(60) 0.036(32) 1.50 0.19
0.098 6 c3, p1, p2 0.0363(74) 0.072(41) 0.030(20) 1.38 0.30
0.098 7 c3, p0, p2 0.0471(48) 0.017(58) 0.003(15) 1.58 0.14
0.098 8 c3, p0, p1, p2 0.0368(76) -0.018(62) 0.076(43) 0.029(21) 1.47 0.22

0.147 1 c3 0.0418(23) 0.98 0.93
0.147 2 c3, p0 0.0445(41) -0.14(18) 1.01 0.86
0.147 3 c3, p1 0.0496(60) -0.25(18) 0.88 0.9
0.147 4 c3, p2 0.029(10) 0.051(39) 0.91 0.95
0.147 5 c3, p0, p1 0.0497(61) -0.04(20) -0.24(20) 0.97 0.92
0.147 6 c3, p1, p2 0.042(25) -0.18(30) 0.020(65) 0.97 0.93
0.147 7 c3, p0, p2 0.031(13) -0.04(20) 0.046(44) 1.00 0.88
0.147 8 c3, p0, p1, p2 0.043(25) -0.03(20) -0.17(31) 0.018(66) 1.09 0.74

0.196 1 c3 0.0414(24) 0.33 0.08
0.196 2 c3, p0 0.0476(50) -0.36(26) 0.09 0.002
0.196 3 c3, p1 0.0452(57) -0.067(91) 0.29 0.09
0.196 4 c3, p2 0.034(11) 0.028(42) 0.31 0.10
0.196 5 c3, p0, p1 0.0485(63) -0.34(28) -0.024(97) 0.10 0.01
0.196 6 c3, p1, p2 0.042(24) -0.05(14) 0.009(65) 0.34 0.17
0.196 7 c3, p0, p2 0.046(15) -0.35(28) 0.007(45) 0.11 0.01
0.196 8 c3, p0, p1, p2 0.050(24) -0.34(28) -0.03(14) -0.004(65) 0.12 0.02

Table 3.3: Each global fit model is defined by including a combination of the
parameters (p0, p1, p2) from Eq. (3.67) along with the value of c3. For reference,
the 1-loop perturbative value, Eq. (3.37), gives c1 loop

3 ≈ 0.05379.
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In order to estimate the final statistical and systematic errors, we adopt the

following procedure inspired by [120].2 We construct the distribution of values

for c3 from global fits which does not include any parameter with a fit value 0.5σ

compatible with zero. From the 17 results within the distribution, the central

value of c3 is defined to be the mean of the distribution, the statistical error to be

the statistical error of the mean as measured with the bootstrap samples, and the

systematic error to be the symmetrised central 68.3% confidence interval of the

distribution. A summary of the values of c3 and a histogram of the distribution

are shown in Figs. 3.8 and 3.9 respectively, along with the one-loop value c1 loop
3

from Eq. (3.37). This procedure yields the final result c3 = 0.0440(16)stat(51)sys,

where the perturbative value is c1 loop
3 ≈ 0.05379.

It is worth noting again that the finiteness of this value in the infinite volume

limit is a nonpeturbative feature of the theory. In perturbation theory, all

terms of O (g2) are IR divergent and depend on the IR regulator; but as shown

in [3] and Sec. 2.5, the theory is in fact nonperturbatively IR finite, where the

dimensionful coupling effectively acts as the IR regulator in the infinite volume

limit. Comparing the nonperturbative result for c3 with the one-loop perturbative

value, the nonperturbative value is approximately 20% smaller than the one-loop

result. This is qualitatively expected, as the higher order terms in perturbation

theory (with the IR regulator replaced by the coupling) changes sign at every

order, and the two-loop result is a correction of the opposite sign to the one-loop

value.

3.6 Summary

In this chapter, we have perturbatively renormalised the EMT operator for

the three dimensional scalar dual theory, and introduced the Wilson flow as a

nonperturbative renormalisation procedure. The results of the renormalisation

constant for the N = 2 theory have been presented. In order to obtain the

holographic power spectrum, we now need to perform renormalisation on the two-

point function of the renormalised EMT operator, which contains more contact

terms. This will be the objective of the following chapter.

2A more detailed evaluation of the systematics of the fit by means of performing cuts on the
data will be performed in further studies.
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Figure 3.8: The values of c3 from Table 3.3 for models with no fit parameters
which are 0.5σ compatible with zero. The red line shows the final central
result, the red and grey bands represent the statistical and systematic errors
respectively. The brown dashed line shows the 1-loop perturbation theory value
from Eq. (3.37). The fact that the nonperturbative lattice result is close to the
1-loop perturbative value is expected due to the superrenormalisability of the
theory.

92



0

2

4

6

8

10

0.02 0.03 0.04 0.05 0.06 0.07 0.08

LO Lattice PT

fr
eq
u
en
cy

c3
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lattice result is close to the one-loop perturbative value is expected due to the
superrenormalisability of the theory.
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Chapter 4

EMT Correlation Function

Renormalisation

In this chapter, we discuss the renormalisation of the EMT two-point correlation

function ⟨TµνTρσ⟩ on the lattice. This is the object of interest from holographic

cosmology framework in Sec. 1.3, which maps to the primordial power spectra

via Eq. (1.38). In the previous chapter, we have renormalised the EMT to

obtain (Tµν)R. To evaluate the correlation function
〈
(Tµν)R (Tρσ)R

〉
which can

be taken to the continuum limit, divergent contact terms still have to be

removed. Here the correlation function and contact terms will first be calculated

using perturbation theory. Then, I will propose a ‘window filtering’ method of

renormalising the correlator. As a check, this technique will be used to recompute

the renormalisation constant c3 obtained in the previous chapter. Finally, I will

present some numerical results for the filtered two-point function, and discuss the

upcoming steps and challenges.
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4.1 The EMT Two-Point Function

4.1.1 Perturbative Results

In the Continuum

In the continuum, O(3) symmetry and the Ward Identity constrains the EMT

two-point function to take the following form:

Cµνρσ(q) = ⟨Tµν(q)Tρσ(−q)⟩ = A(q)Πµνρσ +B(q)πµνπρσ (4.1)

where πµν = δµν − qµqν/q
2 is again the transverse projector, and Πµνρσ =

1/2(πµρπνσ + πµσπνρ − πµνπρσ) the transverse-traceless projector. There are only

two possible form factors A(q) and B(q) in the correlator, and this relation holds

nonperturbatively.

Using perturbation theory with dimensional regularisation in the continuum, the

expressions of A(q) and B(q) can be computed. Up to two loops, the relevant

diagrams are found in Fig. 4.1, and the expressions read [121]

A(q) =
(
N2 − 1

) q3

256
, (4.2)

B(q) =
(
N2 − 1

) q3

256

[
1−

(
1

4
− 3

8N2

)
geff

]
. (4.3)

Tµν Tρσ

(a) 1-loop

Tµν Tρσ

(b) 2-loop

Figure 4.1: Perturbative expansion of Cµνρσ(q) at one and two loops.

Here we can see that as a result of the generalised conformal structure, A(q) and

B(q) indeed take the form

A(q) = q3N2fT (g
2
eff), B(q) =

1

4
q3N2f(g2eff), (4.4)

where the q3 factor comes from the fact that the energy-momentum tensor has
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dimension three in three dimensions, and the N2 factor comes from the leading

contribution in the large-N limit.

Dimensional regularisation in the continuum gives UV finite results for the form

factors. In practice, to extract the form factors A(q) and B(q) from numerical

results, one can do so by choosing appropriate indices and momentum direction,

which will be discussed in more detail in Sec. 4.3.

On the Lattice

For the lattice correlation function, we define

Cµνρσ(q) =
〈
(Tµν)R (q) (Tρσ)R (−q)

〉
(4.5)

to be the correlator of the renormalised EMT operator (Tµν)R, which was defined

in Eq. (3.29).1

Using lattice perturbation theory, the integrals associated with the diagrams are

C1 loop
µνρσ =

N2 − 1

4
[4fµνρσ − 2(δµνfααρσ + δρσfµναα) + δµνδρσfααββ] (4.6)

C2 loop
µνρσ = −g

(
N2 − 5

2
+

3

2N2

)
(2Iµν − δµνIαα) (2Iρσ − δρσIββ)

− g

a
c1 loop
3

(
δµνC

0 1 loop
ρσ + δρσC

0 1 loop
µν

)
, (4.7)

where

fµνρσ(q) =

∫ π
a

−π
a

d3k

(2π)3

kµ(q − k)ν

(
kρ(q − k)σ + kσ(q − k)ρ

)
(k̂2 +m2)(q̂ − k

2
+m2)

(4.8)

and Iµν(q) has been defined in Eq. (3.33). These integrals are evaluated

in Eq. (A.6) and Eq. (A.5) in appendix A.1 respectively. The two-loop result

also depends on the one-loop value of the renormalisation constant c1 loop
3 which

has been calculated in Eq. (3.37), as well as the one-loop result of C0 1 loop
µν which

is calculated in Eq. (A.15).

Like the ones encountered in the previous chapter, these integrals are divergent.

To isolate the divergent part, we use the method outlined in Sec. 2.1.3 and perform

1For the remainder of this chapter, the subscript R will be dropped in the EMT correlator〈
(Tµν)R (Tρσ)R

〉
, and Tµν will be taken to represent the renormalised EMT operator.
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a Taylor expansion in the external momentum q,

Cµνρσ(q) = Dµνρσ + (Cµνρσ −Dµνρσ), (4.9)

Dµνρσ = Cµνρσ(0) +
qαqβ
2

∂2Cµνρσ(q)

∂qα∂qβ

∣∣∣∣
q=0

, (4.10)

such that Dµνρσ contains all the divergent part, while (Cµνρσ−Dµνρσ) is UV finite.

According to the power counting theorem of Reisz, (Cµνρσ −Dµνρσ) must recover

the continuum result Eq. (4.2) in the limit a→ 0. Evaluating this expansion and

using the the result from Eq. (A.5) and Eq. (A.6), we obtain in the massless limit

Dµνρσ =
(N2 − 1)

48a3

[
(83− 96Z0 − 324Z1) δµνδρσ

+ (28− 48Z0 − 81Z1) (δµσδνρ + δµρδνσ)− 9 (40− 48Z0 − 153Z1) δµνρσ

]
+

(N2 − 1)

192a

[
2 (4− 8Z0 − 9Z1)

(
qµqνqρqσ

q2
+ 2q2Πµνρσ − q2δµνδρσ

)
+
(
8 (11− 24Z0 − 27Z1) q

2 + 18 (20− 16Z0 − 87Z1) q
2
µ

)
δµνρσ

− (28− 48Z0 − 81Z1)
(
q2µ + q2ν

)
(δµσδνρ + δµρδνσ)

− 4 (35− 24Z0 − 162Z1)
(
q2µ + q2ρ

)
δµνδρσ

]

− g

(
N2 − 5

2
+

3

2N2

)[
(1− 6Z0)

2

144a2

]
δµνδρσ

(4.11)
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and

Cµνρσ −Dµνρσ =
(N2 − 1)

256
q3 (Πµνρσ + πµνπρσ)

+
(N2 − 1) a

46080

[
q4
(
5 (36 + 2Z0 − 99Z1) δµνδρσ

− 40 (4− 8Z0 − 9Z1) (δµσδνρ + δµρδνσ)
)

+ 72 (4− 2Z0 − 9Z1) qµqνqρqσ

+ 4q4
(
2 (28− 74Z0 − 63Z1)Πµνρσ − 5 (20− 22Z0 − 45Z1)πµνπρσ

)
+ non-O(3)-covariant terms

]

+ g

(
N2 − 5

2
+

3

2N2

)[
− q2

1024
πµνπρσ

]
+O(a),

(4.12)

where as before, Z0 ≈ 0.252731 and Z1 ≈ 0.181058 are constants defined

in Eqs. (2.29) and (2.30) respectively. It can easily be shown from Eq. (4.12)

that (Cµνρσ − Dµνρσ) does indeed recover the continuum result Eq. (4.2) in the

limit a→ 0.

We also observe another important feature, which is the presence of terms which

are non-O(3)-covariant but are allowed by the cubic symmetry group, such as

q2µδµνρσ. They can be found in both the divergent terms in Dµνρσ as well as

the discretisation effects in (Cµνρσ − Dµνρσ). (Some of the terms are omitted

in Eq. (4.12) for brevity, but can be computed using Eq. (A.6).) This comes

from the fact that the rotational symmetry group is broken on the lattice, and

representations of the smaller cubic group will be present.

4.1.2 Contact Terms

From Eq. (4.11), we can see Dµνρσ contains two types of divergent terms, which

are proportional to

1.
1

a3
or

g

a2
, i.e. momentum-independent constants; and

2.
q2

a
.
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In position-space, their Fourier transforms are proportional to δ(x) and its second

derivative ∂2δ(x). These correspond to contact terms, which are local divergences

when the arguments of the operators coincide in position-space. In the continuum,

these distributions have infinitesimal support around x = 0.

On the lattice, the distribution δ(x) becomes periodic, and its derivative is

replaced by a finite difference operator δµ (as defined in Eq. (2.8)). This

means that the support of ∂2δ(x) on the lattice includes the nearest neighbours

surrounding the origin.

Numerical Results

In Fig. 4.2a, we show the numerical results of ⟨TµνTρσ⟩ from perturbation theory

in Eqs. (4.11) and (4.12), and Fig. 4.2b shows the results from lattice simulation

(for ag = 0.3, NL = 256, (am)2 = −0.09275). The momentum is in a single

direction q = (q0, q1, q2) = (0, 0, q2).

For this momentum, there are six combinations of indices (µ, ν, ρ, σ) which are

distinct and non-zero. From the plots, a distinctive structure can be observed.

Firstly, at zero momentum, the correlators go to three finite values. This reflects

the three tensor structures for the a−3 contact term found in Eq. (4.11), which

are proportional to δµνδρσ, (δµσδνρ + δµρδνσ), and δµνρσ; the three values of the

contact terms correspond to the combination of their respective coefficients.

Secondly, for each of the three contact term values, at finite momentum, they

split into two different functions. This comes from the fact that the momentum

in a particular direction breaks the cubic symmetry. From these two plots,

we can see that the perturbative expansion in Fig. 4.2a gives very accurate

predictions for the values and hierarchy of the constant a−3 contact terms in the

lattice simulations in Fig. 4.2b; however, the general functions themselves are not

completely described by perturbation theory. The functions at finite momentum

include a mixture of unphysical contact term contributions, i.e. proportional to
q2

a
, as well as the physical part.
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Figure 4.2: Numerical results of ⟨TµνTρσ⟩ for q = (0, 0, q2) with ag = 0.3.
The upper plot shows the results obtained from lattice perturbation theory
in Eqs. (4.11) and (4.12), and the lower plot shows the lattice simulation results
for NL = 256, (am)2 = −0.09275. Six unique index combinations are displayed
in different colours.
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Figure 4.3: Contact terms in ⟨T22T22⟩. The upper plot shows in momentum-space
the presence of a constant contact term proportional to 1

a3
. The lower plot shows

in position-space the contact terms which are proportional to δ(x) and ∂2δ(x),
which manifest as large (absolute) values at x = 0 and x = a compared to the
remaining points.

Fig. 4.3 shows the effects of the contact term in the data. In Fig. 4.3a, the

correlation function ⟨T22(−q)T22(q)⟩ in momentum-space for three different lattice

spacings (ag = 0.1, 0.2, 0.3) are plotted. What can be clearly seen here is a

hierarchy of the data, which is proportional to (ag)−3. In Fig. 4.3b, we see the
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same correlator for ag = 0.3 in position-space. The (absolute) values at x = 0

and x = a is much larger than the signal at other spatial separations. The Fourier

transform of contributions from these points result in the large 1
a3

constant and
q2

a
found in the momentum-space plot.

Even though these contributions can be accurately predicted using perturbation

theory, a subtraction of such large contributions using the perturbative values

would leave the error bars extremely large relative to the remaining signal. This

is why a different renormalisation procedure is needed to remove these divergent

contact terms.

4.2 Position-Space Renormalisation

On the lattice, the divergent contact terms have a finite support about the origin

x = 0. The idea behind the position-space renormalisation method is to ‘remove’

the local contact terms within a correlation function ⟨O1(x)O2(0)⟩ by multiplying

a window function Γ(x), i.e.

C(q) = a3
∑
x∈Λ

e−iq·x ⟨O1(x)O2(0)⟩ (4.13)

→ a3
∑
x∈Λ

e−iq·x ⟨O1(x)O2(0)⟩Γ(|x|). (4.14)

Since the contact term occurs within a finite support around x = 0, we demand

that the regulating kernel Γ(|x|) = 0 around the neighbourhood of x = 0, which

is wide enough to ‘kill’ the contact term.

Filtering Window Function

The goal is to construct a radial, smooth ‘bump function’ Γr0,ε(x) ∈ C∞(R) which
satisfies the following criteria:

1. Γr0,ε(0 < x < r0) = 0 ;

2. Γr0,ε(x > r0 + ε) = 1 ; and

3. Γr0,ε(x) smoothly interpolates between r0 < x < r0 + ε.
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One such function can be constructed using

Γr0,ε(x) = 1−
∫ r0+ε

x
duβ(u, r0, ε)∫ r0+ε

r0
duβ(u, r0, ε)

(4.15)

where

β(x, r0, ε) = f(x− r0)f(r0 + ε− x), (4.16)

f(x) =

0 for x ≤ 0

exp
{
− 1

x

}
for x > 0

. (4.17)

An example of the construction of Γr0,ε(x) for r0 = 2, ε = 4 is plotted in Fig. 4.4.
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Figure 4.4: An example of the construction of the window function Γ2,4(x) as
defined in Eq. (4.15).
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Properties of Γr0,ε(x)

r0 determines the radius of the ‘hole’ of the window function, and ε determines

the width (and smoothness) of the interpolation. This smooth bump function

Γr0,ε(x) and its Fourier transform FΓr0,ε(p) are members of the Schwartz space.

As a result of the Paley-Wiener theorem, FΓr0,ε(p) decays faster than any power

of 1
|p| , asymptotically as |p|−ne−|p|m for some n,m for large |p|. The smoothness

parameter ε determines the rate of decay of FΓr0,ε(p), i.e. the smoother the

window function, the more rapid the decay. This can be seen in Fig. 4.5,

where a range of windows Γr0,ε(x) with different values of ε are shown in both

position-space and momentum-space. In momentum-space, the Fourier transform

FΓr0,ε(p) decays quicker for greater values of ε.

There is a wide range of possible window functions that could be chosen;

expansions and Fourier properties of different window functions have been

discussed in [122], and a similar windowing technique using the Planck-taper

window has been used in the context of reducing the signal cutoff dependence of

gravitational wave measurements [123]. The choice of window function as well as

the parameters r0 and ε contribute to the systematics of the method.
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Figure 4.5: The left plot shows examples of window functions Γr0,ε(x) and the
right plot shows their respective Fourier transforms FΓr0,ε(p). The three windows
have the same value of r0, but different choices of ε. It can be seen that for a
smoother window, i.e. larger ε, its Fourier transform decays more rapidly.

Definition of Window Filter Procedure

For the momentum-space correlation function C(q) = a3
∑

x e
−iq·x ⟨O1(x)O2(0)⟩

and its position-space counterpart C(x) = 1
(2π)3

∑
q e

iq·xC(q), we define the
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‘windowed’ correlation function2

Wr0,ε[C](q) := F
[
C(x)Γr0,ε

(|x|)
]

= a3
∑
x∈Λ

e−iq·xC(x)Γr0,ε(|x|).
(4.18)

The window function Γr0,ε(|x|) in three dimensions is purely radial and O(3)

symmetric. A schematic of this procedure is shown in Fig. 4.6. In Fig. 4.6a we

see the position-space correlation function C(x) contains a large contact term

about the origin x = 0. The window function Γr0,ε(x) has a sufficiently wide

hole where Γr0,ε(x) = 0, which after multiplication, ‘removes’ the contact term in

C(x)Γr0,ε(x), as shown in Fig. 4.6b.
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Figure 4.6: Schematic plots of the window filter procedure in position-space. On
the left plot, the blue line represents a correlation function C(x) containing a
divergent contact term around the origin. The red line is a window filter Γr0,ε(x)
which has a sufficiently wide radius r0 to cover this region. Then, their product
C(x)Γr0,ε(x) in the right plot will be free of the contact terms.

Using the Convolution theorem,

Wr0,ε[C](q) = {C ∗ FΓr0,ε} (q)
=
∑
p

C(p)FΓr0,ε(q − p) =
∑
p

C(q − p)FΓr0,ε(p) .
(4.19)

From the convolution theorem, we can see that the window procedure convolves

and smears out the momentum-space correlation function. This is reminiscent to

the Wilson flow prescription, and this comparison will be explored in more detail

2From hereon, the subscripts r0, ε from Wr0,ε and Γr0,ε are sometimes omitted, which are
taken as implicit
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in Sec. 4.2.2.

Renormalisation Procedure

Now that the window filtering procedure has been defined, we can remove the

contact terms and construct a process to recover the renormalised correlation

function.

Consider a momentum-space correlation function

C(q) = CR(q) +D(q), (4.20)

where CR(q) is the finite renormalised correlation function (cf. Cµνρσ(q)−Dµνρσ(q)

in Eq. (4.9)) and D(q) is the divergent contact terms, which contains for example

a−3, a−1q2 terms (cf. Dµνρσ(q) in Eq. (4.9)). Using the windowing method

in Eq. (4.18), for a given r0 and ε, measure

Wr0,ε[C](q) = a3
∑
x∈Λ

e−iq·xC(x)Γr0,ε(|x|)

= a3
∑
x∈Λ

e−iq·x
[
CR(x)Γr0,ε(|x|) +D(x)Γr0,ε(|x|)

]
.

(4.21)

For the correlation function C(q) containing up to q2r order contact terms, the

contact terms are contained in D(x) and have a compact support of r nearest

neighbours around x = 0. Since Γr0,ε(|x|) = 0 for |x| < r0, for a sufficiently large

radius r0 > r, Γr0,ε(|x|)D(x) = 0 for all x; in other words, the window function

kills the contact terms, and the second term in Eq. (4.21) vanishes.

In order to recover the renormalised correlation function CR(q), we use a finite

ansatz function f(q) which is free of any contact terms, and we find the best

fit for the ‘windowed’ ansatz Wr0,ε[f ](q) against Wr0,ε[C](q). Here we use the

same value of r0 and ε as were used to perform the measurements in Wr0,ε[C](q).

This is related to finding a solution to the deconvolution of the windowed data;

deconvolution in itself is ill-posed and does not have a unique solution. However,

by constraining the fit form to have a particular physics-motivated ansatz, this

process can still uniquely determine the fit parameters of the ansatz.

In theory, the only constraints on the choice of (r0, ε) is that r0 be sufficiently large

to cover the support of the contact terms. Furthermore, one can in theory measure

with different choices of (r0, ε), and perform a (highly correlated) combined fit
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usingWr0,ε[f ](q). However, the larger the values of r0 and ε, the wider the window

function, and the more signal from CR(q) will also be killed. This will increase

the error of the windowed correlation function Wr0,ε[C](q) and consequently the

quality of the fit. Furthermore, since the value of ε effectively controls the

smoothness of the window function in position-space, it also determines the size of

the decay of the convolution kernel in momentum-space. The smaller the value of

ε, i.e. the sharper the window function, the slower the decay of the kernel. This

results in a stronger mixing with the high momentum modes, which contains

lattice discretisation artefacts.

4.2.1 Synthetic Data

To assess the robustness of this procedure, we perform the above renormalisation

procedure on synthetic Monte Carlo data, which are representative of the EMT

two-point function ⟨Tµν(−q)Tρσ(q)⟩.

The momentum function used is

C(q) = α0q̂
3 +

β0
a
q̂2 +

γ0
a3
, (4.22)

where q̂ =
(∑

µ q̂
2
µ

)1/2
, q̂µ = 2

a
sin aqµ

2
. This function has dimension three, which

is the same as ⟨TµνTρσ⟩. In dimensionless form, this reads

C(q)

g3
= α0

(
q̂

g

)3

+
β0
ag

(
q̂

g

)2

+
γ0

(ag)3
. (4.23)

Comparing with the expression for ⟨TµνTρσ⟩ from perturbation theory in Eqs. (4.11)

and (4.12), the first term in Eq. (4.23) is the finite part (cf. Eq. (4.12)), and the

last two terms are the contact terms (cf. Eq. (4.11)).

The parameters α0, β0, γ0 are chosen to be 0.01, which are the approximate values

from the perturbative calculation of ⟨TµνTρσ⟩ for N = 2. The lattice spacing is

chosen to be ag = 0.1, with NL = 128 lattice points on each side. To generate

the synthetic data, we create n samples of data Si(q) for i ∈ n using the following

procedure:

1. Fill a three-dimensional field Cexact(q) in momentum-space with the exact

values of C(q) ;
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2. Add a Gaussian error σ to each point

Ci(q) = Cexact(q) + σG (4.24)

where G is a random number from a Gaussian distribution with standard

deviation 1;

3. Fourier transform into position-space Ci(x) =
1

(2π)3

∑
q e

iq·xCi(q) ;

4. Multiply the window function for a choice of (r0, ε) and Fourier transform

to momentum-space

Wr0,ε[Ci](q) = a3
∑
x∈Λ

e−iq·xCi(x)Γr0,ε(|x|) ; (4.25)

5. Pick a particular momentum direction, e.g. q = (0, 0, q2), and store the

result in a single dimension

Si(q2) = Wr0,ε[Ci](q = (0, 0, q2)) . (4.26)

We then perform a numerical fit to the sample results Si(q2) using the ansatz

Wr0,ε[f ](q), (4.27)

where

f(q) = αq̂3, (4.28)

to extract the best-fit result for the parameter α. This ansatz is the same as the

function C(q), but does not contain any of the contact terms.

In order for the window filtering procedure to be robust, i.e. able to fit the

correlator function and recover the parameter α0 faithfully, two properties are

investigated:

1. the effect on the fit parameter α as the magnitude of the noise σ is increased;

and

2. the effect on the fit parameter α as the window size parameters r0 and ε

are varied.
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To the dimensionless correlator C(q)/g3, different magnitudes of noise σ ∈
{1, 2, 4, 8} are added. The raw data C(q)/g3 with these noises are plotted

in Fig. 4.7.
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Figure 4.7: Plots of the synthetic data for C(q)/g3 with different magnitudes of
noise σ added.

For each of the set of data with a given error σ, we then perform the window

procedure to produce Wr0,ε[C](q) for a range of window sizes (r0/a ∈ {1, 2, 3, 4},
and ε/a ∈ {1, 2, 3, 4, 5, 6, 7}). These are in units of the lattice spacing a. For each

choice of (σ, r0/a, ε/a), a fit for the parameter α using Wr0,ε[f ](q) is performed.

For each of the fits, the first 50 momentum points are included. Some examples

of the fits are plotted in Fig. 4.8. In each of the plots, we show the points of

the window filtered data Wr0,ε[C](q), and the best fit curve using the windowed

ansatz function Wr0,ε[f ](q) with the same values of r0/a and ε/a. The result of

the best fit values of α for different choices of σ, r0/a, and ε/a are summarised

in Table 4.1.
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Figure 4.8: Plots of the synthetic data after the window filter procedure
Wr0,ε[C]/g

3 with different magnitudes of σ added to the raw data. In each plot,
one or two different choices of windows (r0, ε) are shown in different colours. Also
included are the best fit curves using the ansatz Wr0,ε[f ], which contain one free
parameter α.

110



σ
r 0
/a

ε/
a

1
2

3
4

5
6

7

1

1
0.
01
00
(1
)

0.
00
97
(2
)

0.
01
03
(4
)

0.
01
03
(6
)

0.
01
08
(9
)

0.
00
89
(1
3)

0.
00
77
(1
6)

2
0.
01
06
(9
)

0.
01
17
(1
5)

0.
00
63
(2
4)

0.
00
60
(3
7)

0.
00
78
(5
0)

0.
00
93
(5
9)

3
0.
00
95
(3
3)

0.
01
26
(4
9)

0.
00
48
(7
5)

-0
.0
02
9(
97
)

0.
02
32
(1
28
)

4
-0
.0
00
1(
87
)

0.
01
43
(1
21
)

0.
02
08
(1
58
)

0.
00
12
(2
02
)

2

1
0.
01
03
(2
)

0.
00
96
(4
)

0.
01
05
(8
)

0.
00
96
(1
3)

0.
01
17
(1
8)

0.
01
11
(2
5)

0.
00
59
(3
0)

2
0.
01
20
(2
0)

0.
01
09
(3
1)

0.
01
04
(4
8)

0.
01
21
(6
9)

0.
00
17
(9
8)

0.
01
87
(1
26
)

3
0.
01
41
(6
5)

0.
00
20
(1
06
)

0.
01
95
(1
43
)

-0
.0
28
5(
18
9)

-0
.0
08
9(
25
3)

4
0.
00
10
(1
66
)

-0
.0
05
7(
24
3)

-0
.0
15
4(
31
9)

-0
.0
29
7(
41
3)

4

1
0.
00
98
(3
)

0.
01
07
(8
)

0.
00
94
(1
6)

0.
00
78
(2
5)

0.
01
41
(3
6)

0.
00
67
(4
8)

0.
01
35
(5
9)

2
0.
01
42
(3
8)

0.
00
72
(6
2)

0.
01
42
(9
7)

0.
01
17
(1
52
)

-0
.0
27
7(
19
2)

0.
01
98
(2
51
)

3
0.
00
95
(1
29
)

-0
.0
17
6(
19
6)

0.
04
48
(2
86
)

0.
07
34
(3
83
)

0.
09
93
(4
83
)

4
-0
.0
13
3(
34
5)

0.
00
78
(4
58
)

-0
.1
22
4(
64
7)

0.
04
94
(8
62
)

8

1
0.
01
06
(7
)

0.
00
78
(1
6)

0.
01
35
(3
1)

0.
01
45
(5
1)

0.
00
91
(7
0)

0.
01
53
(9
7)

0.
00
26
(1
26
)

2
0.
01
38
(7
5)

0.
02
04
(1
28
)

0.
02
10
(1
92
)

-0
.0
23
4(
28
2)

0.
01
21
(3
99
)

0.
03
98
(4
79
)

3
0.
02
51
(2
75
)

0.
05
17
(4
02
)

0.
04
90
(5
74
)

0.
18
82
(8
17
)

-0
.0
84
4(
10
13
)

4
-0
.0
20
8(
64
4)

-0
.0
04
4(
91
8)

0.
23
46
(1
21
6)

0.
25
34
(1
73
0)

T
ab

le
4.
1:

T
h
e
b
es
t
fi
t
re
su
lt

fo
r
th
e
p
ar
am

et
er
α
w
it
h
d
iff
er
en
t
m
ag
n
it
u
d
es

of
er
ro
rs
σ
ad

d
ed

an
d
ch
oi
ce
s
of

w
in
d
ow

s
(r

0
,ε
).

F
or

su
ffi
ci
en
tl
y
sm

al
l
w
in
d
ow

s,
th
e
fi
t
ac
cu
ra
te
ly

re
co
ve
rs

th
e
or
ig
in
al

va
lu
e
of
α
0
=

0.
01
.

111



For all the fits listed, the χ2/Ndof are between 0.67 and 1.38. From Table 4.1, we

can see that for each of the error magnitudes σ, for a sufficiently small window

size, where both r0/a and ε/a are small, the fit performs extremely well, i.e. it

can recover the parameter α0 = 0.01 with very high precision. We can also clearly

see that for larger magnitudes of error σ, the error for the fit parameter α grows.

This is shown in Fig. 4.9a, where we show the relative error, i.e. the ratio between

the error of the fit parameter α and the value of α0, and the three lines correspond

to three different choices of window size. As the window size increases, the error

in the fit parameter α also becomes larger. In Fig. 4.9b we see that for different

choices of ε/a, as the the window radius r0/a increases, the relative error for the

α/a increases rapidly. Similarly, in Fig. 4.9c, the growth in relative error against

increasing window ‘width’ ε/a is plotted.

From this test using synthetic data, we conclude that the position-space window

filtering method is able to remove the divergent contact terms, and allows us to

fit the numerical results using an ansatz for the renormalised correlation function.
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Figure 4.9: Growth of relative error for the fit parameter α as the added error
magnitude σ, window radius r0, and window width ε are increased. As expected,
as the window radius and width are increased, more of the original data signal is
removed, and the fit result becomes worse.
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4.2.2 EMT Operator Renormalisation Revisited

In chapter 3, we renormalised the EMT operator Tµν by means of the Wilson

flow. The gist of the procedure was to isolate the contribution from the contact

term at finite flow time, and to obtain the value of the renormalisation constant

c3 in the limit t → ∞. With the position-space renormalisation method, we

can directly remove the contribution coming from the contact term; however,

a new complication is introduced, in that the windowing procedure does not

preserve the Ward Identity. Therefore, a separate limit has to be taken in order

to recover the value for c3. There are some suggestive similarities between the

Wilson flow and this position-space windowing procedure, and a more detailed

comparison will be provided later in this section. For now, we are interested in

using the position-space window filtering method to recover the result for the

renormalisation constant c3 from chapter 3.

As a reminder, the bare EMT correlator on the lattice is given by

C0
µν(q) =

N

g
a3
∑
x

e−iq·x 〈T 0
µν(x) trϕ

2(0)
〉

= Ĉµν(q) +
g

a
c3δµνC2(q) +

κ

a
δµν ,

(4.29)

where Ĉµν(q) denotes the renormalised correlator without any contact term. Here

there is a divergent contribution coming from the renormalisation operator mixing

with coefficient g
a
c3, and a divergent contact term proportional to κ

a
for some

constant κ.

The corresponding correlator at finite Wilson flow time from Eqs. (3.51), (3.55)

and (3.56) reads

C0
µν(t, q) =

N

g
a3
∑
x

e−iq·x 〈T 0
µν(x) tr ρ

2(t, 0)
〉

= Ĉµν(t, q) +
g

a
c3δµνC2(t, q) +K(t).

(4.30)

Here the divergent operator mixing is still present, but the contact term is

replaced by a finite function of the flow time. In the limit t → ∞, the term

K(t) vanishes.
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The renormalised EMT correlator Ĉµν(t, q) satisfies the Ward Identity

qµĈµν(t, q) = 0 (4.31)

at vanishing flow time (t = 0), as well as finite flow time (t > 0). As a result, the

renormalised EMT correlator at finite flow time is proportional to the transverse

projector

Ĉµν(t, q) = F (t, q)πµν(q) = f(q), (4.32)

where πµν(q) =
(
δµν − qµqν

q2

)
is the transverse projector. For a longitudinal

momentum ql = (0, 0, q2), the correlator in the longitudinal direction vanishes,

Ĉ22(t, ql) = 0. (4.33)

However, looking at the ‘windowed’ version of the EMT correlator in position-

space Ĉµν(x)Γ(|x|) and computing its divergence

∂µ

(
Ĉµν(x)Γ(|x|)

)
= ∂µ

(
Ĉµν(x)

)
Γ(|x|) + Ĉµν(x)∂µΓ(|x|), (4.34)

the first term vanishes due to the Ward Identity, while the second term does

not for a non-constant function Γ(|x|). As a sanity check, without any window

filtering, i.e. Γ(x) = 1, the second term vanishes and the Ward Identity is

recovered.

To understand the contribution of the term in violation of the Ward Identity, we

use the convolution theorem

W [Ĉµν ](q) =
∑
p

Ĉµν(q − p)FΓ(|p|). (4.35)

Again, for a longitudinal momentum ql = (0, 0, q2), the longitudinal component

W [Ĉ22](ql) =
∑
p

Ĉ22(ql − p)FΓ(|p|) (4.36)

mixes with momenta which are not in the longitudinal direction, since the

convolution is summed over all momentum p, with a kernel FΓ(|p|). More
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concretely, at zero external momentum q = (0, 0, 0),

W [Ĉµν ](q = 0) =
∑
p

Ĉµν(−p)FΓ(|p|)

=
∑
p

f(−p)πµν(−p)FΓ(|p|) (4.37)

→ W [Ĉ22](q = 0) =
2

3

∑
p

f(p)FΓ(|p|) (4.38)

Here we used the fact that f(p) and FΓ(|p|) are all rotationally invariant. The

term
∑

p f(p)FΓ(|p|) is the Ward Identity-violating contribution.

As mentioned in Sec. 4.2, the Fourier transform of the window function FΓr0,ε(p)

is a rapidly decaying function. It decays faster than any power of |p|−n, and

asymptotically as |p|−ne−|p|m for some n,m. Furthermore, the decay of FΓr0,ε

is controlled by the smoothness or width of the window function; the larger the

value of ε, the smoother the window function, the faster the decay. Therefore,

we obtain that

lim
ε→∞

Wr0,ε[Ĉ22](q = 0) → 0 (4.39)

Starting from Eq. (4.29), we apply the window filtering procedure

C0
µν(q) = Ĉµν(q) +

g

a
c3δµνC2(q) +

κ

a
δµν (4.40)

→ Wr0,ε[C
0
µν(q)] = Wr0,ε[Ĉµν ](q) +

g

a
c3δµνWr0,ε[C2](q). (4.41)

Here we used the fact that the final contact term vanishes under the window

process, i.e. Wr0,ε

[
κ
a

]
= 0. In the longitudinal components µ = ν = 2, this can

be rearranged to obtain

aWr0,ε[C
0
22](ql)

Wr0,ε[C2](ql)
= c3 +

aWr0,ε[Ĉ22](ql)

Wr0,ε[C2](ql)
(4.42)

→ c3 =
aWr0,ε[C

0
22](ql)

Wr0,ε[C2](ql)
− aWr0,ε[Ĉ22](ql)

Wr0,ε[C2](ql)
(4.43)

In the limit of ε→ ∞, Eq. (4.39) tells us that the second term, which is the Ward

Identity-violating term, vanishes. In other words, we have

c3 = lim
ε→∞

aWr0,ε[C
0
22](ql = 0)

Wr0,ε[C2](ql = 0)
. (4.44)
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To compute this value, we first measure the ratio
aWr0,ε[C

0
22](ql=0)

Wr0,ε[C2](ql=0)
for a range of

r0 and ε from lattice simulations. We then perform a fit of the ratio using the

ansatz

aWr0,ε[C
0
22](ql = 0)

Wr0,ε[C2](ql = 0)
= c3 +

b

ε
, (4.45)

where b is a fit parameter. When plotted against 1
ε
, the value of c3 is extrapolated

from the y intercept. This fit ansatz is found to provide a good fit to the data.

The range of window sizes are chosen to be within r0/a ∈ {1, 2, 3} and

ε/a ∈ {2, 3, 4, 5}. The fits against 1
ε
are summarised in Table 4.2, and plotted

in Fig. 4.10. In each of the plots of Fig. 4.10, the three colours of the fitted

functions and their error bands correspond to the different choices of window

radius r0/a. The grey band corresponds to the result for c3 obtained in chapter 3

using the Wilson flow. Here we note that these fits are uncorrelated, due to the

fact that the data points at different window widths ε/a for the same ensemble

are highly correlated, and an accurate correlated fit cannot be performed with

the limited measurements provided.
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Figure 4.10: Fit results for the renormalisation constant c3 using the
ansatz Eq. (4.45), which is the value of the y intercept. This is performed for three
ensembles (NL = 256) and different choices of window radius r0/a ∈ {1, 2, 3}, as
represented by the three colours. The grey bands correspond to the result for c3
obtained in chapter 3 using the Wilson flow.
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The values for c3 for each ensemble, which are obtained from the y intercepts of

the fits in Fig. 4.10, are summarised in Fig. 4.11. From this we observe firstly

that the results from the window filtering method for different choices of window

radius r0/a are consistent with each other. The variation between the results

provide an estimate for the systematic error of this procedure. Furthermore, we

also notice that the result obtained using this procedure is compatible with the

value obtained via the Wilson flow in chapter 3.
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Wilson Flow

c3

Figure 4.11: The fit values of the renormalisation constant c3 from Table 4.2
for three ensembles and three choices of window radius r0/a ∈ {1, 2, 3}. Also
included at the bottom is the result obtained using the Wilson flow in chapter 3,
which is compatible with the value from the window filter procedure.

Comparison with the Wilson flow

The Wilson flow and the position-space window filtering method outlined in this

chapter both aim at mitigating contact terms, which are local contributions

in correlation functions. Here we highlight some important similarties and

differences between the two approaches.
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The Wilson flow can be defined as a (d+1)-dimensional theory, with the original

theory living on its d-dimensional boundary and the flow time t acting as a

new dimension. This means that one can define operators at finite flow time

O(t) (which are essentially smeared operators on the boundary) as operators

in the larger (d + 1)-dimensional theory, and a new set of Feynman rules can

be defined for this extended theory. This allows us to calculate correlation

functions for flowed operators using perturbation theory. On the other hand,

the position-space method is defined on the level of the correlation function,

with an extra filter kernel applied to completely remove contributions when the

spacetime arguments coincide. This window filter can then be applied directly to

the result of correlation functions calculated using perturbation theory.

Since the fields at finite flow time are defined by a set of diffusion equations, the

Wilson flow framework can be generalised to fermion and gauge fields, which are

governed by covariant diffusion equations. Similarly, the position-space method

can also be applied for gauge-invariant correlation functions.

To summarise the two methods: the Wilson flow performs a Gaussian, non-

compact smearing of the probe operator ρ(t, x), and the smearing length-scale is

defined by the inverse physical flow time 1
g
√
t
. This does not completely remove

the contact term, but can be extrapolated away in the limit t → ∞. On the

other hand, the position-space method completely removes the contact term by

zeroing out a compact region around the origin; the parameters r0 and ε determine

how smoothly the windowed correlator returns to the original correlator at large

distance.

4.3 Recovering Form Factors A(q) and B(q)

From Sec. 1.3.2, we have seen that to obtain the tensor and scalar power spectra

in the holographic framework, we need to compute the form factors A(q) and

B(q) of the renormalised EMT two-point function respectively, which are defined

by

⟨Tµν(q)Tρσ(−q)⟩ = A(q)Πµνρσ +B(q)πµνπρσ. (4.46)

By making an appropriate choice of momentum and indices, the form factors

A(q) and B(q) can be recovered. One convenient choice of momentum is q =
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(q0, q1, q2) = (0, 0, q2). For this choice of momentum, the minimal set of correlators

needed to recover the form factors are ⟨T00T11⟩ and ⟨T01T01⟩, via

A = 2 ⟨T01T01⟩ (4.47)

B = ⟨T00T11⟩+ ⟨T01T01⟩ , (4.48)

where all the correlators are renormalised. This can be seen by expanding the

transverse projectors Πµνρσ(q) and πµν(q)πρσ(q) (defined below Eq. (1.31)) for the

momentum q = (0, 0, q2). Therefore, for the following section, we only perform

the renormalisation procedure and show the numerical results for the correlators

⟨T01T01⟩ and ⟨T00T11⟩.

4.4 Numerical Results

Here we perform the window filtering process on the ⟨T01T01⟩ and ⟨T00T11⟩.
In Fig. 4.12 we showWr0,ε[⟨T01T01⟩] andWr0,ε[⟨T00T11⟩] for three choices of window
size (r0/a, ε/a) ∈ {(1, 2), (1, 3), (1, 4)} for three ensembles respectively.
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Figure 4.12: Numerical results for the windowed EMT correlators Wr0,ε[⟨T01T01⟩]
and Wr0,ε[⟨T00T11⟩] for NL = 256.

From the data, we can observe discernible signal in the Wr0,ε[⟨T00T11⟩] function,
especially at large values of ’t Hooft coupling ag, most noticeably in Fig. 4.12b.
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In the case of Wr0,ε[⟨T01T01⟩], the signal is extremely weak, and seems to be

dominated by statistical noise. This is the most recent data for this project,

and our current effort is in trying to understand the source of the noise, and to

perform a fit for these correlation functions. For the fits, an ansatz Wr0,ε[f ](q)

will be used. As a first step, we will test the leading order perturbative expression

f(q) = αq̂3. The level of statistical uncertainty permitting, this fit ansatz can be

refined to give a fully nonperturbative parametrisation of the EMT correlation

function.

4.5 Summary

In this chapter, we computed the EMT two-point correlation function ⟨TµνTρσ⟩
using perturbation theory, and found that large contact terms, which are

proportional to 1
a3

and q2

a
in momentum-space, dominate the signal in the lattice

results. A window filtering method was then introduced, where in order to

‘kill’ the divergent local contact terms which occur at a short finite distance

about the origin x = 0, we multiply a window filter Γr0,ε(|x|) to the correlation

function ⟨Tµν(x)Tρσ(0)⟩ in position-space. The window filtering kernel Γr0,ε(|x|)
is defined such that it is zero within |x| < r0, and smoothly interpolates to one

for |x| > r0 + ε. We tested this procedure on synthetic data of an artificial

momentum function containing contact terms, which is representative of the

correlation function ⟨Tµν(q)Tρσ(q)⟩. This filtering procedure is also used to recover

the value of the EMT renormalisation constant c3 obtained in chapter 3. Finally,

we showed the latest numerical results for Wr0,ε[⟨T00T11⟩] and Wr0,ε[⟨T01T01⟩],
which can be combined to obtain the form factors A(q) and B(q) of the EMT

correlator, and subsequently be used to calculate the nonperturbative holographic

cosmological power spectra.
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Conclusion and Outlook

The aim of the project presented in this thesis is to use nonperturbative lattice

field theory simulations to understand the nature of the very early Universe via

the holographic framework. It is motivated by the suite of problems faced by

the standard Inflation description of the very early Universe, and the inability

of perturbation theory to provide reliable predictions in the low multipole,

nonperturbative regime of the CMB power spectrum. It is exceptionally

interesting as it lies in the intersection of cosmology, quantum field theory, and

high-performance computing. It also presents a unique set of challenges, some of

which have been addressed in this thesis.

The holographic dual theories studied in this thesis belong to the class of three-

dimensional massless scalar QFTs with φ in the adjoint of SU(N) and a φ4

interaction, which are superrenormalisable. For these theories, perturbative

calculations are plagued by severe infrared divergences. For the cosmological

models to be consistent, a mechanism to cure such IR divergences must exist.

The first significant result of this work is in establishing strong evidence

for the conjecture from [62, 63], which hypothesised such a mechanism for

superrenormalisable theories to nonperturbatively cure their IR divergences.

In this conjecture, the dimensionful coupling g acts as the IR regulator

nonperturbatively. In chapter 2, we used finite-size scaling analysis along with

both frequentist and Bayesian frameworks to support the IR-finiteness conjecture

for the class of theories. This result is valuable in improving our understanding of

the nature of superrenormalisable theories, which has applications including high

temperature QCD. From this analysis, we were also able to extract the critical

mass m2
c , i.e. the value of the bare mass such that the renormalised theory is

massless. This is where the cosmological dual theory is defined.

In the holographic framework, cosmological observables are described by corre-

lation functions of the dual QFT. The CMB power spectrum is mapped to the
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correlation function of the energy-momentum tensor (EMT) of the dual theory.

In the continuum, the energy-momentum tensor Tµν is a conserved quantity,

satisfies the Ward identities, and does not renormalise. On the lattice, continuous

translational symmetry is explicity broken. Since the EMT is generated by this

symmetry, it no longer satisfies the Ward identities and requires renormalisation.

In chapter 3, we utilised the Wilson flow as a method to control contact terms

in the lattice EMT correlation functions. At finite Wilson flow time, the

divergent contact terms are regulated by the inverse physical flow time. We have

numerically extrapolated the EMT renormalisation constant c3, which constitutes

the next significant result of this work. This allows us to obtain the renormalised

EMT operator (Tµν)R on the lattice.

Having obtained the renormalised EMT operator (Tµν)R, we need to compute

the correlation function
〈
(Tµν)R (Tρσ)R

〉
. On the lattice, this correlation function

contains contact terms which diverge as 1
a3

and q2

a
in momentum-space; in

position-space, these correspond to divergences proportional to δ(x) and its

finite differences. In chapter 4, a window filter renormalisation procedure was

introduced, which is the next breakthrough of this work. For this method,

a window filter Γr0,ε(|x|) multiplies the correlation function ⟨Tµν(x)Tρσ(0)⟩ in

position-space. This product completely kills all divergent contributions coming

from contact terms. Combined with a numerical fit using a divergence-free ansatz,

this allows us to extract the renormalised correlation function. The method

has been tested using synthetic data, and has also been used to recover the

renormalisation constant c3 as obtained in chapter 3. Numerical lattice results of

the window filtered EMT correlation function were also presented.

On top of these theoretical and numerical challenges, this project also required

intensive technical efforts. In particular, as we approach the massless limit,

algorithms with short autocorrelation time and long Markov chains are required

to combat critical slowing down. Furthermore, as we are interested in the

nonperturbative low momentum behaviour of the QFTs, large volume simulations

are required. Combining these two requirements, considerable computational

power was consumed. A substantial amount of time and effort were dedicated

to optimising the simulation code for GPU architecture. Tackling the aforemen-

tioned issues takes us closer towards a fully nonperturbative lattice simulation of

scalar holographic cosmological models.
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Next Steps

To approach the goal of obtaining the holographic CMB power spectrum, the

following next steps are required.

Numerical Fit and Parametrisation

Having obtained the measurements for the window filtered EMT correlation

functions Wr0,ε[⟨TµνTρσ⟩](q) at the end of chapter 4, we have to parametrise

the renormalised correlation function. One ansatz f(q) (excluding the indices)

motivated by the perturbative calculation is

f(q) = α

(
q

g

)3

+ β

(
q

g

)2

log
q

g
. (4.49)

Using this or other ansatzes, we can test the quality of the parametrisation by

performing a best fit of the data Wr0,ε[⟨TµνTρσ⟩](q) against Wr0,ε[f ](q). Then we

can use the method outlined in Sec. 4.3 to obtain the relevant form factors A(q)

and B(q) by suitable choices of indices.

Cosmology Fit

Once the proper parametrisation of the EMT correlation function and form

factors A(q) and B(q) are obtained, the scalar holographic power spectrum can be

predicted using Eq. (1.34). Once the holographic power spectrum is available, the

next step will be to perform a fit against the CMB observation results including

Planck, similar to the work performed in [11] where the perturbative holographic

power spectrum was fitted. The difference is that the nonperturbative prediction

will be able to include lower multipoles ℓ in the fits. Dedicated cosmological

expertise and software packages, such as CosmoMC [124–130], will be required.

This will allow us to test the viability of scalar holographic models as a description

of the very early Universe.
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Gauge Fields

Finally, the most important extension is to include gauge fields into the dual

theory simulation. This is the theory favoured by the perturbative fit, and is

much more general. The general scalar and gauge action is given by

S [ϕ, U ] =
N

g

∑
x∈Λd

Tr

[
a3

(
d∑

µ=1

(∆µϕ(x))
2 +m2ϕ2(x) + λϕ4(x)

)
+

1

a

∑
µ<ν

Re [1− Pµν ]

]
,

(4.50)

where Pµν = Uµ(x)Uν(x + aµ̂)U †
µ(x + ν̂)U †

ν(x) is the plaquette operator and

∆µϕ(x) = a−1(Uµ(x)ϕ(x + aµ̂)U †
µ(x) − ϕ(x)) is the gauge covariant lattice

derivative in the adjoint representation. Compared to the scalar action, the scalar

and gauge action contains an extra parameter λ; in terms of the cosmological

phenomenology, the power spectrum contains an extra variable β.

The first challenge is the additional computational cost associated with the

inclusion of gauge fields in the simulation. Both the scalar and gauge fields

have to be updated via heatbath and overrelaxation, and there is an increase in

computing time involved. Appreciable effort has been spent by our collaboration

to implement and optimise the simulation algorithms. Another challenge is to

locate the critical line in the parameter space, the vicinity of which the relevant

simulations will be performed. This is essential for approaching the massless

limit, similar to the result obtained in chapter 2. This parameter scan requires

substantial effort, and is being actively pursued by the collaboration.

Next, the lattice EMT of the gauge theory has to be renormalised. The inclusion

of gauge degrees of freedom means that more counterterms are required to

renormalised the composite operator. Fortunately, the Wilson flow method for

renormalising the EMT for gauge fields has been explored, for example in [119],

which we can utilise for our work.

Finally, we can also apply the position-space window filtering technique intro-

duced in chapter 4 to renormalise the EMT correlation function in the scalar

and gauge theory. By employing similary machinery, we ultimately seek to test

the holographic power spectrum for the full scalar and gauge dual theory against

cosmological observations.
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Appendix A

Lattice Perturbation Theory

Calculations

In this appendix we present details of the lattice perturbation theory (LPT)

calculations in chapters 3 and 4. In appendix A.1, we first evaluate the three

basic massless lattice integrals V (q), Iµν(q), and fµνρσ(q) used in Sec. 3.3.2

and 4.1.1. Then, the correlators C2(q), Cµν(q) at vanishing flow time will be

evaluated in appendix A.2, and the correlators C2(t, q), Cµν(t, q) at finite flow

time in appendix A.3.

A.1 Massless Lattice Integrals: V (q), Iµν(q), and

fµνρσ(q)

The three momentum-dependent scalar lattice integrals required for the following

LPT calculations are

V (q) =

∫ π/a

−π/a

d3k

(2π)3
1

(k̂2 +m2)(q̂ − k
2
+m2)

, (A.1)

Iµν(q) =

∫ π/a

−π/a

d3k

(2π)3
kµ(q − k)ν

(k̂2 +m2)(q̂ − k
2
+m2)

, (A.2)

fµνρσ(q) =

∫ π
a

−π
a

d3k

(2π)3

kµ(q − k)ν

(
kρ(q − k)σ + kσ(q − k)ρ

)
(k̂2 +m2)(q̂ − k

2
+m2)

, (A.3)
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where k = 1
a
sin(ka).

These integrals can be evaluated using the method described in Sec. 2.1.3, where

the expressions are expanded in powers of the external momenta using Eq. (2.18)

and by using a set of recursion relations Eqs. (2.21), (2.22) and (2.26). These

integrals can then be expressed in terms a combination of two constants Z0 ≈
0.252731 and Z1 ≈ 0.181058, which are defined in Eqs. (2.29) and (2.30)

respectively.

In the massless limit, these evaluate to

lim
m→0

V (q) =
1

8q
+ a

(
14Z0 + 9Z1 − 4

96

)
+ a3q2

(
34Z0 − 9Z1 + 4

27648

)
+O

(
a5q4

)
(A.4)

lim
m→0

Iµν(q) =
δµν
a

(
1− 6Z0

12

)
+

q

64
(2δµν − πµν)

+ a

[
Z0

16
δµνq

2
µ + q2(2πµν − 3δµν)

(
10Z0 − 9Z1 + 4

1152

)]
+

a3

552960

[
4
(
δµν(q

4
1 + q42 + q43) + 6q2q2µδµν + 4qµqν(q

2
µ + q2ν)

)
(52− 86Z0 − 117Z1)

+ 360δµνq
4
µ(6Z0 + 9Z1 − 4) + q4(4πµν − 5δµν)(236− 298Z0 − 531Z1)

]
+O

(
a5q6

)
.

(A.5)
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lim
m→0

fµνρσ(q) =
1

48a3

[
(28− Z0 − 81Z1)(δµσδνρ + δµρδνσ + δµνδρσ)− 9(40− 48Z0 − 153Z1)δµνρσ

]
+

1

192a

[
2(4− 8Z0 − 9Z1)

(
(qµqρδνσ + qνqρδµσ + qµqσδνρ + qνqσδµρ)

− 2(qµqνδρσ + qρqσδµν)− q2(δµσδνρ + δµρδνσ + δµνδρσ)
)

+ 2(16− 48Z0 − 27Z1)δµνδρσ(q
2
µ + q2ρ)

− (28− 48Z0 − 81Z1)(δµσδνρ + δµρδνσ)(q
2
µ + q2ν)

+ 2
(
9(20− 16Z0 − 87Z1)q

2
µ + 4(11− 24Z0 − 27Z1)q

2
)
δµνρσ

]
+

q3

256

[
Πµνρσ + 2δµνδρσ − πµνπρσ +

2qµqνqρqσ
q4

]
+

a

11520

[
− (28− 74Z0 − 63Z1) q

2 (qµqνδνσ + qνqρδµσ + qµqσδνρ + qνqσδµρ)

− 3 (4− 2Z0 − 9Z1)
(
4q2 (qµqνδρσ + qρqσδµν) + q4 (δµσδνρ + δµσδνρ + δµνδρσ)

)
− 24 (4− 2Z0 − 9Z1) (δµσ + δνσ + δµρ + δνρ + δµν + δρσ) qµqνqρqσ

+
(
30 (4− 8Z0 − 9Z1) q

2
(
q2µ + q2ν

)
+ 18 (4 + 8Z0 − 9Z1) q

2
µq

2
ν

+ 5 (12− 16Z0 − 45Z1)
(
q4µ + q4ν

) )
(δµσδνρ + δµρδνσ)

+ 2
(
12 (28− 44Z0 − 63Z1) q

2
µq

2
ρ + 5 (16Z0 − 9Z1)

(
q4µ + q4ρ

))
δµνδρσ

+ 8 (44− 52Z0 − 99Z1) (δµνρ + δµνσ + δµρσ + δνρσ) qµqνqρqσ

+ 48 (8− 19Z0 − 18Z1)
(
qµq

3
σδµνρ + qµq

3
ρδµνσ + qµq

3
νδµρσ + qνq

3
µδνρσ

)
+ 2
(
4q4 (17− 51Z0 − 27Z1)− 3q4µ (956− 1528Z0 − 2781Z1)

− 2 (128− 324Z0 − 243Z1)
(
q20q

2
1 + q21q

2
2 + q20q

2
2

) )
δµνρσ

]
+O

(
a3
)

(A.6)

A.2 Correlators at Vanishing Flow Time: C2(q)

and Cµν(q)

The first two-point correlation function to calculate is defined in Eq. (3.41):

C2(q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Trϕ2(0)⟩. (A.7)

The one- and two-loop diagrams are shown in Fig. A.1(a) and (b) respectively.
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Figure A.1: Perturbative expansion of C2(q) at one and two loops.

Note that the two-loop diagram is simply the square of the one-loop diagram up

to an overall color factor. These diagrams evaluate to

C1 loop
2 (q) = tr(TaTb) tr(TcTd)(δacδbd + δadδbc)V (q) =

N2

2

(
1− 1

N2

)
V (q), (A.8)

C2 loop
2 (q) = −2

( g
N

)
tr(TaTb) tr(TcTdTeTf ) tr(TgTh) (δac(16δbdδeg + 8δbeδdg)δfh)V (q)2

= −N2g

(
2− 5

N2
+

3

N4

)
V (q)2. (A.9)

In the massless limit, using Eq. (A.4), these yield

C1 loop
2 (q) =

N2

16g

(
1− 1

N2

)[(
g

q

)
+ (ag)

14Z0 + 9Z1 − 4

12

+ (ag)3
(
q

g

)2
34Z0 − 9Z1 + 4

3456
+O

(
(ag)5

) ]
, (A.10)

C2 loop
2 (q) = −N2

64g

(
2− 5

N2
+

3

N4

)[(
g

q

)2

+ (ag)

(
g

q

)(
14Z0 + 9Z1 − 4

6

)
+ (ag)2

(14Z0 + 9Z1 − 4)2

144

+ (ag)3
(
q

g

)(
34Z0 − 9Z1 + 4

1728

)
+O

(
(ag)4

) ]
. (A.11)

Now we evaluate the correlation function in Eq. (3.38):

Cµν(q) =
N

g
a3
∑
x∈Λ

e−iq·x⟨TR
µν(x) Trϕ

2(0)⟩ = C0
µν(q)−

gc3
a
δµνC2(q), (A.12)
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where

C0
µν(q) =

N

g
a3
∑
x∈Λ

e−iq·x⟨T 0
µν(x) Trϕ

2(0)⟩, (A.13)

C2(q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Trϕ2(0)⟩ (A.14)

T 0
µν

N
g Trϕ

2

(a) 1-loop

T 0
µν

N
g Trϕ

2

(b) 2-loop

Figure A.2: Perturbative expansion of C0
µν(q) at one and two loops.

The relevant one- and two-loop diagrams for the correlator C0
µν(q) are shown

in Fig. 3.4(a) and (b) respectively, and they evaluate to

C0 1 loop
µν (q) =

N2

2

(
1− 1

N2

)[
− 2Iµν(q) + δµν

∑
ρ

Iρρ(q) + δµνm
2C1 loop

2 (q)

+ ξ
(
Iµν(q)− δµν

∑
ρ

Iρρ(q)
)]

(A.15)

C0 2 loop
µν (q) = −N2g

(
1− 5

2N2
− 3

2N4

){[
− 2Iµν(q) + δµν

∑
ρ

Iρρ(q)
]
V (q)

+ δµνm
2C2 loop

2 (q) + ξ
(
Iµν(q)− δµν

∑
ρ

Iρρ(q)
)
V (q)

}
. (A.16)

At one loop, Eq. (A.15), C0
µν contains only the tree-level EMT, so C1 loop

µν =

C0 1 loop
µν . There is no contribution coming from the operator mixing c3, which

comes with another order O(g). However, the term δµν
∑

ρ Iρρ(q) − 2Iµν(q)

presents a divergent contact term at C0 1 loop
µν (0),

C0 1 loop
µν (0) = −N

2

2a

(
1− 1

N2

)(
6Z0 − 1

12

)
δµν

=
κ

a
δµν . (A.17)

The integral producing this contact term is similar to that in c1 loop
3 in Eq. (3.35),

with the only difference being the color factor. This contact term has to be

subtracted before the continuum limit of the correlator is taken.
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For the two-loop expression, it can be shown that after subtracting the correlator
gc3
a
δµνC

1 loop
2 (q) to renormalise the EMT from Eq. (A.12), the correlator is

UV finite; no extra divergences other than the one coming from the operator

expansion appear.

A.3 Correlators at Finite Flow Time: C2(t, q),

Cµν(t, q)

At finite flow time, the lattice integrals are regulated by the flow time t. In

perturbation theory, the kernel for each propagator has an extra exponential

factor, e−tq2 , where q is the momentum of the propagator. We first evaluate the

correlator

C2(t, q) =

(
N

g

)2

a3
∑
x∈Λ

e−iq·x⟨Trϕ2(x) Tr ρ2(t, 0)⟩ (A.18)

at finite flow time. This correlator is obtained by replacing Trϕ2(x) with

Tr ρ2(t, 0) in C2(q). Since the regulated correlators are finite, we look at the

continuum limit (a → 0) of the correlator in perturbation theory. At one loop,

this evaluates to

C1 loop
2 (t, q) =

N2

16

(
1− 1

N2

)∫
d3k

(2π)3
e−tq2e−t(q−k)2

(k2 +m2)((q − k)2 +m2)
. (A.19)

In the massless limit,

C1 loop
2 (t, q) =

N2

16g

(
1− 1

N2

)[
1− 2

π

∫ σ

0

ds
e−2s2 Erfi(s)

s

](
g

q

)
, (A.20)

where σ =
√
tq2/2, and Erfi(z) = −i erf(iz) is the imaginary error function,

which has the series expansion Erfi(z) = π−1/2
(
2z + 2

3
z3 + · · ·

)
about z = 0.

Expanding in σ, this evaluates to

C1 loop
2 (t, q) ≈ N2

16g

(
1− 1

N2

)[
1 +

(
32q2t

π3

)1/2(
5q2t

18
− 1

)](
g

q

)
+O

(
σ5
)
.

(A.21)
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Similarly, we look at the continuum limit of

C0
µν(t, q) =

N

g
a3
∑
x∈Λ

e−iq·x⟨T 0
µν(x) Tr ρ

2(t, 0)⟩ (A.22)

at finite flow time. In the continuum limit, the EMT does not require

renormalisation; we can therefore drop the 0 superscript. At one loop,

C1 loop
µν (t, q) =

N2

2

(
1− 1

N2

){∫
d3k

(2π)3
δµνk · (q − k)− 2kµ(q − k)ν + ξ(qµqν − δµνq

2)

(k2 +m2)((q − k)2 +m2)

(A.23)

· e−tq2e−t(q−k)2

}
(A.24)

In the massless limit, this evaluates to

C1 loop
µν (t, q) =− N2

2

(
1− 1

N2

)
q

64π3/2

[
√
π Erfi(σ)(πµν(3 + 2σ2)− 2δµν)σ

−4e−2σ2

+ 8
√
π(1− 4ξ)πµν

∫ σ

0

e−2s2 Erfi(s)

s
ds

− 2(1− 4ξ)π3/2πµν + e−σ2

(4δµν − 6πµν)σ
−3

]
(A.25)

where πµν = δµν − qµqν
q2

is the transverse projector. To obtain the ‘flowed contact

term’ K(t) from Eqs. (3.51) and (3.53), we utilise the fact that the contact term is

the longitudinal part of the correlator Cµν(t, q). We separate the above expression

for Cµν(t, q) into a transverse part, Cµν(t, q)
transverse (which is proportional to the

πµν), and the remaining longitudinal part Cµν(t, q)
longitudinal. The transverse part

Cµν(t, q)
transverse =− πµν

N2

2

(
1− 1

N2

)
q

64π3/2

[
√
π Erfi(σ)(3 + 2σ2)σ−4e−2σ2

+ 8
√
π(1− 4ξ)

∫ σ

0

e−2s2 Erfi(s)

s
ds

− 2(1− 4ξ)π3/2 + 6e−σ2

σ−3

]
(A.26)

135



is finite, as ensured by the WI. The remaining longitudinal part gives

Cµν(t, q)
longitudinal = −δµν

N2

2

(
1− 1

N2

)
q

64π3/2

[
√
π Erfi(σ)(−2)σ−4e−2σ2

+ 4e−σ2

σ−3

]
.

(A.27)

When expanded about σ = 0, the leading order term contributing to the contact

term Cµν(t, q)
longitudinal is

Cµν(t, q)
longitudinal ≈ −δµν

N2

2

(
1− 1

N2

)
q

64π3/2

8

3σ
+O (σ)

= −δµν
N2

2

(
1− 1

N2

) √
2

24π3/2
√
t
+O (σ)

= δµνK(t), (A.28)

which gives us the result in Eq. (3.53).

Using Eqs. (A.21) and (A.27), the perturbative expression for the ratio in Eq. (3.63)

can be calculated,

fg(g
√
t, ql) =

a

g

K(t)

C2(t, ql)

= −
√
2

3π3/2

aql

g
√
t
+O (σ) , (A.29)

giving the result in Eq. (3.64).
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