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Abstract

This thesis is concerned with optimization techniques to improve the efficiency of heating and
cooling of both existing and new buildings. We focus on the thermal demand-side and we make
novel contributions to the optimality of both design and operational questions. We demonstrate
that our four novel contributions can reduce operations cost and consumption, optimize retrofit
and estimate relevant parameters of the built environment. The ultimate objective of this work is
to provide affordable and cost-effective solutions that take advantage of local existing resources.

This work addresses four gaps in the state-of-the-art. First, we contribute to current building
practice that is mostly based on human experience and simulations, which often leads to over-
sized heating systems and low efficiency. The results in this thesis show the advantages of using
optimization approaches for thermal aspects in buildings. We propose models that seek optimal
decisions for one specific design day, as well as an approach that optimizes multiple day-scenarios
to more accurately represent a whole year.

Second, we study the full potential of buildings’ thermal mass and design. This has not been
fully explored due to two factors: the complexity of the mathematics involved, and the fast develop-
ing and variety of emerging technologies and approaches. We tackle the mathematical challenge by
solving non-linear non-convex models with integer decisions and by estimating building’s thermal
mass. We support rapid architectural development by studying flexible models able to adapt to
the latest building technologies such as passive house design, smart façades, and dynamic shadings.

Third, we consider flexibility provision to significantly reduce total energy costs. Flexibility
studies often only focus on flexible building loads but do not consider heating, which is often the
largest load of a building and is less flexible. Because of that, we study and model a building’s
heating demand and we propose optimization techniques to support greater flexibility of heating
loads, allowing buildings to participate more efficiently in providing demand response.

Fourth, we consider a building as an integrated system, unlike many other modelling approaches
that focus on single aspects. We model a building as a complex system comprising the building’s
structure, weather conditions and users’ requirements. Furthermore, we account for design deci-
sions and for new and emerging technologies, such as heat pumps and thermal storage. Optimal
decisions come from the joint analysis of all these interconnected factors.

The thesis is structured in three parts: the introduction, the main body and the conclusions.
The main body is made by five chapters, each of which focuses on one research project and has the
following structure: overview, introduction, literature review, mathematical framework description,
application and results section, conclusion and future works. The first two chapters discuss the
optimization of operational aspects. The first focuses on a single thermal zone and the second in
two connected ones. The third chapter is a continuation of the first two, and presents an approach
to optimize both operations and design of buildings in a heat community. This approach integrates
the use of an energy software already in the market. The fourth chapter discusses an approach to
find the optimal refurbishment of an existing building at minimum cost. The fifth chapter shows
an inferring model to represent a house of a building stock. We study the common case where the
house’s data is lacking or inaccurate, and we present a model that is able to estimate the required
thermal parameters for modelling the house using only heating demand.



Lay summary

Global warming is negatively impacting our society. We are losing precious resources and
polluting the air we breathe: we need to take decisions today to change how we affect the eco-
systems of our planet. This growing pressure to act has resulted in a number of energy policies
across the world to reach net-zero carbon emissions as one major solution. Achieving this severe
goal, means increasing the energy efficiency of the current built environment and revisiting the
way of designing future buildings.

The purpose of our work is to apply mathematical optimisation techniques to help the environ-
mental cause. We aim to present innovative frameworks that have potential for helping engineers
and building users to increase the energy efficiency of their structures. Our mathematical frame-
works provide a first insight of strategies for taking energy decisions. We focus on buildings, since
they have a major impact on the overall city’s consumption and we specialise in heating and
cooling demand, because of its potential to increase energy efficiency. We seek sustainable and
cost-effective approaches, exploiting the existing local resources and limiting the use of external
equipment. Furthermore, we focus our effort on making models adaptable and flexible to the
variety of building technologies and structures.

In this manuscript, we present five research projects. The first, the “Adaptable Energy Man-
agement System for Smart Buildings” (EMS), is an optimisation model that allows to find the
optimal operations strategy for the user in a variety of contexts. The EMS is the basic block of
the other four projects described in this thesis and it is our personal representation of the unit
(an homogenous thermal zone, such as an apartment or an office) as a thermal storage. Our
second project, the “Flexibility Provision via Optimal Thermal Energy Management” (TEMS),
implements the house thermal model into a small heat network made of two units and it explores
the concept of sharing buildings’ heat surplus instead of wasting it. Our third research project,
the “Cost-Effective Approach to Optimise Heating Operations and Design of Heat-communities”
(ONDe), is the development of the TEMS for more complex study cases and purposes. It inte-
grates and complements a widely used energy software in the market. Our fourth research project,
“A Tool for Optimal Refurbishment Design of Low-Energy Buildings” (ORD), uses the thermal
model representation of the house for optimal building refurbishment and design. Our last project,
the “Inferring thermal features for smart city modelling” (RCT), uses a simplified version of the
thermal house model, for inferring unknown thermal features of a house in a building stock.

The impact of our work summarises in the following four main contributions. First, we motivate
the use of optimisation techniques to improve the current building practice. In fact, despite the
notable advantages of optimisation approaches, practical studies and applications are still in the
early stages. Second, we cover the gap in the literature by studying how to exploit the full potential
of buildings’ thermal mass. Third, we introduce heating and cooling demand to flexibility provision
studies. In fact, until the moment of writing, flexibility provision techniques mainly use electrical
appliances’ demand, such as that of a washing machine. Fourth, we differentiate from the common
trend of analysing one independent aspect of the building per time. We represent the building
as a complex integrated system, comprising its structure, weather conditions, user’s requirements,
emerging technologies and passive house design.
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Chapter 1

Introduction

The current environmental emergency requires a more efficient use of energy. Buildings are one of
the largest sources of energy consumption in Europe: buildings alone are responsible for 40% of the
total consumption and 36% of greenhouse gas emissions. Improving their energy efficiency would
mean to cut pollution and tackle energy costs, in favour of sustainable and affordable approaches.
Because of that, Member States are working to set measures for boosting the energy efficiency of
our current and future buildings. This effort results in several directives, strategies and standards.
The most relevant regulations are the “Energy Performance of Buildings Directive 2010/27/EU ”
(EPBD), which has been recently revised, and the “Energy Efficiency Directive 2012/27/EU ”. They
stated that all new buildings had to be nZEB by 2020. The revised EPBD directive sets out that
the building stock has to reach zero-emission and be fully decarbonised by 2050. Achieving this
goal means that Member States have to significantly increase the rate of renovation, especially for
the worst-performing buildings. In October 2020, the European Union presented the “Renovation
Wave Strategy” (MEMO), which is built on the EPBD revision. It sets out measures to at least
double the annual renovation rate by 2030. Furthermore, buildings have to apply to the “EU
Minimum Energy Performance Standard” (MEPS), which is a system that requires the renovation
of the worst energy performing structures (G and F EPC classes). The Member States can set
stricter energy targets, in line with the zero-emission achievement by 2050.

The research purpose of our work is to use mathematical optimisation techniques for helping
the environmental cause. We aim to help both decision makers and users in making the step
toward the zero-emission achievement. We focus on buildings, because of their large impact on the
overall energy consumption and we specialise in heating and cooling demand, since it is the most
challenging but profitable among building’s needs. We approach the problem from the demand-side
for its less explored potential and we aim to consider the overall spectrum of building modelling:
design, operations and analysis.

Our approach consists in studying a current need in the building sector and applying mathe-
matical techniques to take optimal decisions. We worked on the following needs: optimising daily
heating and cooling operations, integrating the newest building technologies (e.x. double façades),
prioritising local available resources (e.x. heat gains and sharing of heat surplus among users),
finding the optimal retrofit at the minimum investment cost and modelling a reliable representa-
tion of an existing building stock. Our research resulted in five novel algorithms for answering to
these needs and we present each of them in a dedicated chapter.

Our work aims to cover four gaps in the current state-of-the-art. First, the current building
practice is mostly based on human experience and simulations, which often leads to oversized
heating systems and low efficiency. On the contrary, we show the advantages of using optimization
approaches for thermal aspects in buildings. We propose models that seek optimal decisions for one
specific design day, as well as approaches that optimize multiple day-scenarios to more accurately
represent a whole year.

Second, we study the full potential of buildings’ thermal mass and design. This has not been
fully explored due to two factors: the complexity of the mathematics involved, and the fast develop-
ing and variety of emerging technologies and approaches. We tackle the mathematical challenge by
solving non-linear non-convex models with integer decisions and by estimating buildings’ thermal
mass. We support rapid architectural development by studying flexible models able to adapt to
the latest building technologies such as passive house design, smart façades, and dynamic shadings.

Third, we consider flexibility provision to significantly reduce energy costs of a city. Flexibility
studies often only focus on flexible building loads but do not consider heating, which is often the
largest load of a building and is less flexible. Because of that, we study and model a building’s
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heating demand and we propose optimization techniques to support greater flexibility of heating
loads, allowing buildings to participate more efficiently in providing demand response.

Fourth, we consider a building as an integrated system, unlike many other modelling approaches
that focus on single aspects. We model a building as a complex system comprising the building’s
structure, weather conditions and users’ requirements. Furthermore, we account for design deci-
sions and for new and emerging technologies, such as heat pumps and thermal storage. Optimal
decisions come from the joint analysis of all these interconnected factors.

Our overall achievement is to provide approaches for improving the building practice, which
is currently based on personal experiences and repeated, independent simulations. Our models
supply a first and fast answer to urgent needs, such as improving the energy efficiency of the
current building stock. We pursue an affordable and sustainable approach by giving priority to
the cheapest strategy and by minimising the use of additional external devices. This results in
solutions that are attractive for both engineers and buildings’ owners. Lastly, we focus our effort
to make the models adaptable and flexible to the variety of buildings’ structures and technologies.

Our first research project, the “Adaptable Energy Management System (EMS) for smart build-
ings”, is an optimisation model that allows to find the optimal strategy for the user in a variety
of contexts. Its innovative contribution can be summarised in two points. First, it can accommo-
date different user objectives, different building structures, information about the unit’s location
and orientation, and different heating or cooling systems. Second, our framework can support the
provision of flexibility (or demand response) to the electricity system, which is of great importance
in integrating renewable energy resources in the power grid. The EMS is discussed in Chapter 2,
where we also show some applications. These experiments demonstrate that the EMS enhances
the unit’s performance and also provides demand flexibility for the grid. We show that for heating
a unit in Montreal, Canada, there are periods where the EMS alone can lower the electricity cost
by up to 26% and the energy consumption by up to 14%. If the EMS is combined with smart
design features, the electricity cost of heating can be lowered by up to 35%, the cost of cooling by
up to 97%, and the energy consumption by up to 49%.

The EMS is the basic block of the other four projects. It is our personal representation of the
unit (an homogenous thermal zone, such as an apartment or an office) as a thermal storage. Our
second project, the “Flexibility Provision via Optimal Thermal Energy Management” (TEMS),
implements the house thermal model into a small heat network made of two units. Its novel
contribution consists in enabling the units to provide flexibility for the heat network. In fact, it
tackles the challenge of making the buildings’ heating demand flexible. We discuss the TEMS in
Chapter 3, where we show that it can reduce the heating consumption during the required hours
up to 99%. This has significant potential for demand response process between the network users
and the operator: the TEMS allows a unit to cut its heating demand for the specific hours, while
keeping indoor comfort. Furthermore, the overall network’s heating demand is lowered up to 37%
for a network of two units.

Our third research project, the “Cost-Effective Approach to Optimise Heating Operations and
Design of Heat-communities” (ONDe), is the development of the TEMS for real world applications.
This work is the result of my internship experience in Integrated Environmental Solutions Limited
(IES), during which we could use their energy software. The TEMS of the second project differs
from ONDe for three reasons. First, the TEMS evaluates each building’s demand by itself. This
makes it independent and autonomous, but limits the complexity of the study case to a small
number of users and short optimised periods. On the contrary, ONDe integrates demand data
series coming from IES VE energy software and this allows for more complex study cases. Second,
the TEMS optimises only operations, while ONDe can optimise only operations or both design
and operations. Third, the TEMS optimises one-day ahead, accounting for deterministic weather
and occupancy data. Differently, ONDe has a multi-stage stochastic solution process, which allows
it to optimise longer periods of time and to consider several day-scenarios. ONDe’s contribution
lies in its ability to tackle four challenges: increasing energy efficiency while being economically
affordable; being attractive for the heat-community; using and improving existing software; adapt-
ing to different study cases. We present ONDe in Chapter 4, where we show an application for an
heat-community in Dublin, Ireland. We demonstrate that ONDe reduces the community’s energy
cost by 6.97% during three consecutive winter months and users’ energy cost decreases by 17.52%,
23.92% 8.53%, respectively.

Our fourth research project, “A Tool for Optimal Refurbishment Design of Low-Energy Build-
ings” (ORD), uses our thermal model representation of the house for optimal refurbishment and
design. On the engineering side, the ORD shows four innovative aspects. First, it opens the way to
passive building design while focusing on affordable solutions. Second, its core component is based
on mathematical optimization. Third, it simultaneously outputs optimal thermal mass and insu-
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lation of all the required elements in the building. Fourth, it automatically accounts for the user’s
needs and local regulations. Unlike most of the approaches in the literature, the ORD’s outputs
are not limited by any pre-defined set of materials or strategies. On the mathematical side, the
ORD tackles the challenge of solving mixed-integer, non linear problems. We discuss the ORD in
Chapter 5, where we test our approach on two study cases and explore two approaches: the first is
a single-stage and second is a multi-stage model that makes use of decomposition techniques. We
show that the ORD finds the best refurbishment strategy of a private house in Devon that lowers
the existing house’s heating consumption by 33%, with a payback of less than 13 years.

Our last project, the “Inferring thermal features for smart city modelling” (RCT), uses a sim-
plified version of our thermal house model for inferring unknown thermal features of a house in a
building stock. Differently from the EMS, TEMS and ORD projects, the RCT models the house
by only one thermal mass (C) and one thermal resistance (R) between the house and the outside.
The RCT model is meant to help research analysts to simply represent the building stock of a city
or a country, for detecting specific house’s behaviours (e.g. poor energy efficiency) or for testing
new policies. The RCT main contribution is its ability to infer thermal parameters (C, R and
indoor temperature profile) from the only the house’s data demand. Furthermore, it tackles the
common situation where data are missing and incorrect. We built a benchmark study case to test
the RCT model and we found that it conducts a robust parameter estimation: we compared the
RCT’s to the benchmark’s output and found a small overall error.

The manuscript is structured in three parts: the introduction, the main body and the conclu-
sions. The main body is made by five chapters, each of which focuses on one research project and
has the following structure: overview, introduction, literature review, mathematical framework
description, application and results section, conclusion and future works. Figure 1.1 summarises
the main peculiarities of the five projects and helps the reader to navigate in the document.

Figure 1.1: Projects overview

The first three chapters discuss the optimization of operational aspects. The first focuses on a
single thermal zone (EMS project) and the second in two connected ones (TEMS project). Third
and fourth chapters deal with optimal design. The third chapter (ONDe project) is a continuation
of the first two, and presents an approach to optimize both operations and design of buildings in
a heat community. The fourth chapter discusses an approach to find the optimal refurbishment
of an existing building at minimum cost (ORD project). The fifth chapter deals with building
analysis and and provides a reliable way to represent a house of a building stock (RCT project).
The EMS, the TEMS and the RCT projects are algorithms that find the optimal solution in one
single solve. Because of that, we refer to their solution process as “Single-stage solve”. On the
contrary, the ONDe and ORD models solve several iterations before finding the optimal solution.
Specifically, they make use of Gradient Descent (GD) approaches and we refer to their solution
process as “Multi-stage solve”. The EMS and TEMS algorithms are an independent single model,
so we refer to them as “One-level model”. Differently, the ONDe, the ORD and the RCT models
are made by several levels: some of them process and prepare data series that are input for the
main level, which is the optimisation framework.
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Chapter 2

Adaptable Energy Management
System for Smart Buildings

2.1 Project overview
This study presents a novel adaptable energy management system (EMS) for smart buildings. In
this framework we model the energy consumption of a living unit and its energy exchanges with
the surroundings. A unit is a well delimited space inside a building, for which the information on
electrical consumption is known and we assume that the unit has no energy exchanges with its
neighbours. Examples of units are a household, an office, a restaurant or a gym. We explicitly
consider the impact of the outside environment and design features such as building orientation,
automatic shading, and double façade. We formulate this problem as a nonlinear optimisation
model in which the living unit minimises a performance function subject to the energy flows from
and toward the unit as well as the building-specific features. It is solved using off-the-shelf solvers.
We present computational experiments to validate the proposed approach, considering different
objective functions and several building configurations. The experiments show that our approach
enhances the unit’s performance and also provides demand flexibility for the grid. We demonstrate
that for heating a unit in Montreal, Canada, there are periods where the EMS alone can lower the
electricity cost by up to 26% and the energy consumption by up to 14%. If the EMS is combined
with smart design features, the electricity cost of heating can be lowered by up to 35%, the cost
of cooling by up to 97%, and the energy consumption by up to 49%.

We published this study in the Journal of Building and Engineering, Elsevier [1].
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2.2 Introduction
Electric energy systems must meet the demand for electricity while ensuring the security of the
power system. This is particularly challenging during periods of high demand when the system
is operating near its limits of both generation and transmission. When large-scale renewable
generation options such as wind farms are connected to the grid, their fluctuating nature requires
the system operator to keep more expensive generating units in reserve. These reserve units often
use fossil fuels, leading to increased greenhouse gas emissions (GHG) and reduced benefit from the
integration of renewable energy.

The alternative to using reserve generators is to increase the flexibility on the demand side of
the electricity equation. This work is motivated by the potential for smart buildings of the (near)
future to provide such flexibility. From the perspective of the grid operator, a building can be
viewed as a means to store thermal energy via its use of electricity to operate various heating and
cooling devices. This includes not only heating and air conditioning systems but also appliances
such as refrigerators, freezers, and hot-water heaters. All this thermal storage capacity can be used
to provide demand flexibility to the grid to the extent that the operation of these devices can be
shifted in time, specifically into periods with lower demand.

Load shifting by users is generally referred to as demand–response (DR). This is a well-known
paradigm that has been used for many years to take advantage of the flexibility of large industrial
consumers. More recently, the effectiveness of DR provision by hot-water heaters has been demon-
strated by studies such as [4], and a mathematical optimisation-based framework was proposed
in [5, 6]. The advent of time-of-use (TOU) pricing for commercial and residential customers has
partially tapped their DR potential.

Smart buildings offer the prospect of maximum utilization of the thermal storage potential of
the built environment. Buildings have a significant impact on the overall energy consumption of a
city [7], but individual buildings are unlikely to participate directly in DR because of their relatively
small DR capacity. The pooling and coordination of their capacities is done via DR aggregators,
or more generally, virtual power plants. These are commercial entities that perform near-real-time
load shifting and more generally provide new ancillary services (these are the functions required
to maintain grid stability). For example, customers in California can already participate in such
DR aggregation [8].

Our contribution is a novel mathematical optimisation framework (OF) that automatically
computes the optimal temperature for each hour, within a given time horizon, of all the unit’s
relevant elements (façade, internal walls, roof, floor, room, etc.). Because we use mathematical
optimisation, the OF is guaranteed to find the best possible decisions to achieve the given user’s
objective, which can be set according to the user’s wishes (for example, minimise electricity cost, or
minimise energy consumption, or minimise emissions). Moreover the OF can take into account the
full energy picture for a living unit in a range of residential buildings, including traditional houses,
and more energy-efficient units such as passive buildings. Because it accounts for the energy flows
between the living unit and its surroundings, the proposed OF can consider the impact of the
outside environment and of the design features such as automatic shading or a double façade. The
OF works as an EMS for the unit: it finds and automatically adjusts the optimal temperature for
each hour of all the unit’s relevant elements in order to optimise the objective chosen by the user.

From a broader perspective, the OF can in principle be used to predict each unit’s optimal
energy demand, and hence the demand of a building, as it is known that simply by forecasting the
thermal behavior of a unit according to changing environmental conditions (weather, solar energy,
activity inside the building) makes it possible to already decrease the energy cost of the HVAC
(heating, ventilation, and air conditioning systems) by up to 28% [9]. In this work we show that
using optimisation techniques, it is possible to achieve larger energy savings.

The novelty of our proposed framework is the use of mathematical optimisation. A key advan-
tage of using optimisation is the guarantee of achieving the best possible strategy for the specified
user’s objective, based on using a detailed and realistic description of the thermal dynamics of the
unit. Because the optimisation model is fully flexible and adaptable, it can accommodate various
user’s objectives. We demonstrate the capabilities and potential of the proposed OF using four
case studies of user objectives and contexts. These highlight its adaptability to building design,
its ability to account for the unit’s geographical orientation, its potential for flexibility, and its
adaptability to heating system operations.

This Chapter is structured as follows. Section 2.3 summarises the relevant literature and back-
ground. Section 2.4 presents mathematical notation and describes the proposed OF in detail.
Section 2.5 illustrates its capabilities and potential through four case studies. Section 2.6 sum-
marises our contributions and findings, and proposes directions for future research.
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2.3 Literature review
Three main fields merge in this work: operational research (OR) applied to energy in buildings,
energy storage, and building design.

2.3.1 Operational research applied to energy in buildings
The continuous development of smart grids has expanded the opportunities for OR to support
decision-making across the grid, particularly on the consumption side. Data-gathering devices and
the Internet of Things allow end-users to manage their own energy consumption, providing them
with the ability to make smart independent decisions. There are various OR-based approaches that
minimise the energy cost for residential users while providing DR services. Anjos et al. [10] presents
a comprehensive review of OR for DR in buildings. The approaches include integer programming,
stochastic optimisation, simulation, and forecasting.

Local decision-making represents a coordination challenge since the aggregated behavior of
multiple end-users can have a negative impact on the operation and economic performance of the
grid. Several authors [11, 12, 13] focus on the optimal coordination of many users. They often
define demand profile and user preferences for each household; aspects such as building design and
orientation are typically neglected since the households are assumed to be identical. Additionally,
decentralized generation such as solar and wind combined with storage resources and local decision-
making have encouraged the development of prosumers: customers with enough generation capacity
to potentially disconnect from the grid and satisfy their demand autonomously. The economic and
market frameworks must be adjusted to efficiently integrate prosumers [14]. This has motivated
several OR approaches that focus on the role of smart buildings in a market with prosumers.
Zafar et al. [15] discuss information technologies and optimisation techniques to support energy
sharing among prosumers. Simulated annealing has been used [16] to determine optimal energy
management strategies for neighboring prosumer buildings, while Iria and Soares [17] investigate
the integration of an aggregator of prosumers in the day-ahead market. Approaches based on
model predictive control (MPC) have shown that this technique can improve energy management
in buildings. MPC can reduce the energy cost and power peaks of a small commercial building
over a year, even if acting only on the heating system [18]. An approach integrating control and
mathematical optimisation was proposed in [19] to schedule domestic loads in real-time so that the
overall strategy minimises the cost of energy under TOU. However the much simpler optimisation
model in [19] does not include a detailed description of the unit’s thermal dynamics nor does it
take into account any aspects of building design.

2.3.2 Thermal energy storage
Thermal energy storage (TES) provides an interesting opportunity for the optimisation of energy
use. It has the potential to reduce the use of nonrenewable energy resources [20, 21], improve grid
operations, reduce the heating/cooling consumption of buildings, and increase thermal comfort.
TES can be an active or passive element of the heating system. It is passive if the charging and
discharging cycles rely on thermal inertia or natural convection.

Alva et al. [20] classify TES in buildings. Passive TES benefits from the sensible or latent
thermal mass of certain materials. The use of phase change materials (PCM) to control indoor
comfort is an example: their thermal mass smooths the fluctuation of the external temperature.
Active TES works in combination with other components, such as HVAC systems, the structure
of the building, or the surrounding environment. Examples include the water storage tanks of the
HVAC system and aquifer storage in the vicinity. Passive TES and HVAC storage are the most
common technologies used in buildings. Common materials include water or sand, and PCM for
low-temperature applications.

TES provides significant energy savings. Parameshwaran et al. [21] found that a combination
of latent heat energy storage and active cool TES systems can reduce the space conditioning con-
sumption of a building by 45–55%. They suggest that TES may lead to long-term cost savings, but
it is necessary to standardize the performance for different climates and policies. TES is an efficient
tool for internal comfort, with a minimal impact on the environment. It often enables buildings to
earn the Leadership in Energy and Environmental Design (LEED) certification, because it lowers
GHG emissions and improves energy efficiency [21].

There is a growing interest in the use of TES to provide flexibility to the grid. One of the
challenges is to measure this flexibility. Stinner et al. [22] quantify the flexibility via a method
based on time, power, and energy; they consider the average power cycle and the flexibility per year.
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They show that power and energy output mainly depend on the capacity of the heat generator;
TES size does not have a significant impact. On the other hand, the duration of the flexibility
depends more on the TES size than on the generator features.

In this work we focus on small-scale TES, according to the classification in [23]. Small-scale TES
systems have a short charging cycle and a low energy capacity. This technology is an efficient tool
for buildings, especially if it is integrated into their structure [23]. There have been many studies
of TES, but few address its integration into the building. We use the building itself as passive
TES: the OF uses the thermal masses of the building’s elements as passive storage. Furthermore,
some of these thermal masses become active TES: the OF benefits from them by ventilating or by
running a local heat pump (HP).

2.3.3 Building design
Passive Building Design Passive building design is a set of principles that apply to all building
types. Passive buildings are characterized by high energy efficiency because of their low energy
consumption. Such a building may be referred to as a Passivehaus, Zero-energy home, Maison
autonome en énergie, or Green building. Filippi and Fabrizio [24] suggest the following definitions:
the Passivehaus focuses on the improvement of solar gains and is characterized by heating energy
demand below 15 kWh/m2year; the Maison autonome en énergie is an off-grid building that is
autonomous in terms of energy; the Green building respects a green standard such as LEED; and
the Zero-energy home may or may not be connected to the grid and controls the total annual
consumption (not only heating). The 2010 European Directive [25] promotes the development of
near-zero-energy buildings that primarily use energy from nearby renewable sources.

Passive building design is attracting increasing interest. Moran et al. [26] found that focusing
on minimising the heating demand by reducing thermal losses throughout the envelope is the best
way to improve energy efficiency. Only after that can renewable energy integration be efficiently
planned. Several passive buildings have been built [27], and Italy is in the vanguard. The zero-
energy house in Felettano di Tricesimo (UD) is a beautiful “Home Sapiens” designed in 2010 that
controls its energy resources via its home automation system. The primary school by the architect
Vonmetz in Lajon (Sud Tirolo) is the first passive school building in Italy; it won a CasaClima
award in 2006.

Passive buildings allow their owners to both reduce costs and improve comfort (measured
as the level of satisfaction). The construction cost must be taken into account. Colclough et
al. [28] compared 20 dwellings, 11 passive and 9 standard, and concluded that passive buildings
are generally cheaper to construct than standard buildings.

We apply the proposed OF to a passive building with a double skin façade (DSF) and dynamic
shading in the air gap. We next review these two technologies.

Double skin façade A DSF is one of the best ways to efficiently manage the energy needs of
a building [29]. It impacts the heating, cooling, lighting, and ventilation loads. Under certain
conditions, a DSF may lead to significant energy-savings. DSF’s benefits depend on many factors,
such as the building’s location, its heating and cooling demand and the DSF technology itself.
Darkwa et al. [30] discuss the advantages of a DSF: energy reduction, increased ventilation and
thermal comfort, and glare control. A DSF positively affects acoustic insulation and aesthetic
appeal, increasing the building’s value. Moreover, the durability of DSF technology [31] lowers the
building’s long-term cost.

Adding a DSF to a building is cheaper and less intrusive than demolition and reconstruction.
Pomponi et al. [32] studied the refurbishment of an office building in London. They compared 128
DSF configurations and 8 single-skin solutions, and in 98.4% of the scenarios, DSF outperformed
single-skin in terms of energy savings. Furthermore, in 83% of the scenarios, DSF had lower carbon
emissions. Haase and Wigenstad [33] studied the refurbishment of an office building in Norway.
They compared a single-skin solution to two DSFs with different types of glass. The DSF options
performed better in both energy savings (49% and 59%) and thermal comfort.

The DSF can be common to the entire surface or in several smaller parts. We model smaller
independent spaces, one per dwelling, to illustrate the adaptability of the system. Moreover, we
study the overall performance of the unit.

Smart shading We use smart shading to control the intake of solar energy. This takes the
form of automatic blinds that open and close as desired. This increases the energy management
efficiency and improves visual and thermal comfort. Konstantoglou and Tsangrassoulis [34] show
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that the efficiency of such a dynamic façade depends on how well it is integrated with the lighting
and heating/cooling systems. The automatic control should take into account the temperature
inside the living zone (LZ) and the quantity of solar gains. They find overall energy savings of
around 20% for the cooling consumption and 50% for lighting.

To the best of our knowledge, mathematical optimisation has never been used to optimise the
control of dynamic shading in order to improve energy operations. We demonstrate the adaptability
of the proposed OF by considering the effect of dynamic shading on the internal temperature of the
unit. The smart shading optimally adapts to the available solar energy and the thermal comfort
inside the unit, while also maintaining visual comfort.

2.4 EMS: The optimisation model
The OF is a nonlinear optimisation model and its structure is inspired by two well-known modelling
paradigms. First, we view the building as an energy network of buses linked by lines, but instead
of electric energy, heat flows between the buses. Second, we represent components in the network
using RC electrical circuit analogies to the building’s thermal features. This approach makes the
OF flexible and easily applicable in different contexts and with different objectives.

2.4.1 Notation for the optimisation model
We use uppercase characters for the variables and lowercase for the parameters.

Sets

• I set of time frames, indexed by i

• B set of nodes, indexed by b

• G set of energy resources, indexed by g

• S set of thermal storage, indexed by s

• L set of lines, indexed by l

• W subset of lines, crossed by conserved flow, indexed by l ∈ L

• H subset of lines, crossed by nonconserved flow, indexed by l ∈ L

Parameters provided by the user

• Fl : node b ∈ B where line l starts

• Tl : node b ∈ B where line l ends

• Bg : node b ∈ B where energy resource g is connected

• Bs : node b ∈ B where storage s is connected

• rl : thermal resistance of line l [m2 K/kW]

• qinti,g : power generated by people, electronic devices, and lighting during time frame i [kW]

• qsol,Bi,g : power generated by the direct component of solar rays during time frame i [kW]

• qsol,Di,g : power generated by the diffuse component of solar rays during time frame i [kW]

• ys : heat capacity of storage s ∈ S [kWh/K]

• yairl : heat capacity of air in the space at the input of line l [kWh/K]

• ∆min
i,g : minimum value of ∆i,g related to resource g during time frame i [-]

• ∆max
i,g : maximum value of ∆i,g related to resource g during time frame i [-]

• tmin
i,b : minimum value of temperature Ti,b in node b during time frame i [-]

• tmax
i,b : maximum value of temperature Ti,b in node b during time frame i [-]

• pWi,l : maximum power input of line l during time frame i [kW]
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Variables optimised by the model

• Ti,b : temperature of node b during time frame i [◦C]

• PL
i,l : power in line l, from node Fl to node Tl, during time frame i [kW]

• PH,T
i,l : power reaching node Tl of line l during time frame i [kW]

• PH,F
i,l : power leaving node Fl of line l during time frame i [kW]

• PG
i,b : sum of power from generators connected to node b during time frame i [kW]

• PS
i,s : power flowing to/from storage s during time frame i [kW]

• PV
i,l : power flowing in ventilation line l during time frame i [kW]

• Wi,l : electricity input to the heat pump represented by line l [kW]

• Qsol
i,g : power from solar rays entering by path g during time frame i [kW]

• ∆i,g : coefficient of smart shading related to power generated by resource g during time frame
i [-]

• Li,s : level of energy stored in storage s at the end of time frame i [kWh]

• Xi,l : number of air exchanges per hour of the space at the input of line l during time frame
i [-]

• El : efficiency (i.e. COP) of heat pump l. This depends on its working temperatures Ti,Fl

and Ti,Tl
in each time period i [-]

2.4.2 Optimization framework
Figure 2.1 illustrates a simple instance of the energy flow network. The nodes (or buses) of the
OF represent elements with thermal capacity. Furthermore, they are associated with temperature
values. The nodes are connected by lines on which power flows (the blue arrows in Fig. 2.1).
On each line, power may be lost or conserved. The lines connecting the nodes can be balanced
or unbalanced and controlled or uncontrolled. The line is balanced if the flow leaving one end
is equal to the flow arriving at the other end. Heat exchange between two nodes is an example
of a balanced line. The line is controlled if the OF decides the timing and quantity of the flow;
ventilation is an example. In this representation, temperature plays the role of voltage in a circuit:
if the temperatures of the two nodes connected by a line are different, then power flows from
one node to the other. This is a balanced and uncontrolled line (PL

l in Fig. 2.1); an example
is heat exchange between two materials. Each line has a resistance, which is a parameter of the
optimisation model; these resistances are indicated by rectangles in Fig. 2.1 and denoted as rl.

Ventilation is a balanced and controlled line. Power flowing from one node to the other (PV
l )

varies according to the variable xi,l and the parameter yairl , representing the air exchange rate and
the air thermal capacity respectively.

The flow is unbalanced (PH
l ) when the power leaving the node at one end of a line is different

from the power reaching the other end; an example is the behavior of an HP. The electricity input
required by the HP is indicated by a yellow arrow in Fig. 2.1. Moreover, the HP line is associated
with a function that represents its energy efficiency (El): this is the coefficient of performance, i.e.,
the ratio of heat output to electricity input.

Each node can store energy. This is analogous to a capacitor in a circuit, and storage is
represented by two parallel lines in Fig. 2.1. The heat capacity (or thermal mass) of a node is
denoted ys, and it is a property of the material.

A node can receive power from one or more sources, referred to as generators. Solar gains
and internal gains (i.e. heat from people and electrical devices) are generators. Solar gains are
controlled by the variable ∆i,g representing the status of the smart shading system.
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Figure 2.1: Visualisation of OF operations.

Objective function

min
∑
l∈L

∑
i∈I

ciWi,l (2.1)

The objective of the OF minimises the product of ciWi,l, where
∑

l∈L
∑

i∈I Wi,l is the overall
electricity input of the heating/cooling system during the total running period. Parameter ciWi,l

is the weight given to the electricity input during each time frame. Depending on the values of
ci, the OF can minimise the total electricity cost, the total energy consumption, or the GHG
emissions.

Constraints
Balance at node b:∑

l∈W|b=Tl

PL
i,l −

∑
l∈W|b=Fl

PL
i,l +

∑
l∈H|b=Tl

PH,T
i,l −

∑
l∈H|b=Fl

PH,F
i,l +

+
∑

l∈W|b=Tl

PV
i,l −

∑
l∈W|b=Fl

PV
i,l+

+PG
i,b −

∑
s∈S|b=Bs

PS
i,s = 0 ∀i ∈ I,∀b ∈ B (2.2)

Branch flows:

PL
i,l =

1

rl
(Ti,Fl

− Ti,Tl
) ∀i ∈ I,∀l ∈ W (2.3)

PH,T
i,l = El(Ti,Fl

, Ti,Tl
)Wi,l ∀i ∈ I,∀l ∈ H (2.4)

PH,F
i,l = PH,T

i,l −Wi,l ∀i ∈ I,∀l ∈ H (2.5)

PV
i,l = Xi,l y

air
l (Ti,Fl

− Ti,Tl
) ∀i ∈ I,∀l ∈ W (2.6)

Air change per hour in ventilation lines:

Xmin
i,l ≤ Xi,l ≤ Xmax

i,l ∀i ∈ I,∀l ∈ W (2.7)

Constraint (2.2) ensures that the total power flowing into and out of each node is equal to zero.
Power flows represent thermal fluxes, and we assume that the power flowing into a node has a
positive sign.

There are five main types of flows. The first type is the power naturally flowing through a line,
from a higher to lower temperature node: this balanced and uncontrolled flow is represented by
the first two terms of (2.2) and by (2.3).
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The second type of flow is similar, but it is unbalanced. It is represented by the third and
fourth terms in (2.2) and by (2.4) and (2.5). These unbalanced lines simulate the heating/cooling
system of the unit, by one or more HPs. Power flows from the colder to the warmer node. This
process requires a certain amount of work, which is represented by the variable Wi,l. Equation
(2.5) describes the energy conservation of the HP system: the amount of heat allocated to the hot
node (PH,T

i,l ) must equal the amount of heat taken from the cold node (PH,F
i,l ) plus the work (Wi,l).

The efficiency of this process depends on the temperature of the two nodes at the ends of the HP
line. This dependence is described by (2.4). The output of the HP (PH,T

i,l ) is equal to its electricity
input (Wi,l) times a function that represents the HP’s energy efficiency (El). This efficiency (El)
is a novel nonlinear function of the temperatures of the nodes to which it is connected (Ti,Fl

and
Ti,Tl

) and it is described in detail in Appendix E.
The third category of flow is balanced and controlled (PV

i,l in Equations 2.2 and 2.6). It repre-
sents ventilation and simulates the air flowing from the warmer to the cooler node. The difference
between this and the first type of flow is that ventilation is associated with a variable (Xi,l) that
represents the “air change per hour” (ACH). It ranges within bounds that guarantee comfort and
hygiene inside the room (2.7). ACH bounds (Xmin

i,l and Xmax
i,l ) comes from building regulations.

The ventilation flow depends on the amount of ventilated air (Xi,l yairl ) and on the difference
between the two nodes at the extremes of the line: (Ti,Fl

− Ti,Tl
). Moreover, yairl denotes the

thermal mass of the air flowing in the ventilation line (2.6). The OF is nonlinear because of the
ventilation constraint (2.6) and the HP constraint (2.4).

Heat energy from generators:

PG
i,b =

∑
g∈G|b=Bg

(qinti,g +Qsol
i,g ) ∀i ∈ I,∀b ∈ B (2.8)

Solar gains:

Qsol
i,g = ∆i,g(q

sol,B
i,g + qsol,Di,g ) ∀i ∈ I,∀g ∈ G (2.9)

Smart shading system configuration:

∆min
i,g ≤ ∆i,g ≤ ∆max

i,g ∀i ∈ I,∀g ∈ G (2.10)

Energy storage:

Li,s = ysTi,Bs
∀i ∈ I,∀s ∈ S (2.11)

Storage level of charge:

Li,s = L(i−1),s + PS
i,sh ∀i ∈ I,∀s ∈ S (2.12)

The fourth type of flow comes from a generator. It is denoted by PG
i,g in (2.2) and defined in

(2.8). The power generation in the unit derives from sun rays (Qsol
i,g ), people, electronic devices,

and the lighting system (qinti,g ). During the heating periods, these elements are free and sustainable
energy resources, because they warm up the unit. During the cooling periods we may want to
reduce them because they represent an additional load. Accordingly, the OF can simulate a smart
shading system. The variable ∆i,g controls the solar power entering the unit, and (2.10) gives
bounds on its value. The lower bound ∆min

i,g guarantees visual comfort inside the unit when there
is sufficient sunlight. The value of ∆min

i,g can be estimated using the relevant building regulations
and code of practice.

The fifth type of flow consists of power flowing into/out of a storage unit (PS
i,s). Each node has

an associated temperature and thermal mass. The thermal mass acts as thermal storage: it can
be charged and discharged during different time frames (h in 2.12). This process is described by
(2.11) and (2.12), where Li,s is the energy stored in the node. It depends on both the temperature
(Ti,s) and heat capacity (ys) of the node. Only changes in energy are relevant to the model, so the
zero point can be chosen arbitrarily. We choose the zero point to correspond to a temperature of
zero Kelvin.

Temperature limit:

tmin
i,b ≤ Ti,b ≤ tmax

i,b ∀i ∈ I,∀b ∈ B (2.13)

Ramping limit:

−lDb ≤ Ti,b − T(i−1),b ≤ lUb ∀i ∈ I,∀b ∈ B (2.14)
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Power limit:

0 ≤ Wi,l ≤ pWi,l ∀i ∈ I,∀l ∈ H (2.15)

Constraints (2.13), (2.14), and (2.15) control the operational limits of the unit. Equation (2.13)
ensures that the node temperature stays within specified bounds. Equation (2.14) limits the rate
at which the temperature varies. Accordingly, these two constraints may be applied to guarantee
thermal limits. All these bound values (tmin

i,b , tmax
i,b , lDb and lUb ) are chosen by the user and reflect

his comfort preferences. Constraint (2.15) ensures that the power flowing on the lines is within the
operational capacity. Accordingly, parameter pWi,l comes from technical sheet of the heating source.

2.5 Applications and results
In this Section, we apply the OF to four case studies, with the aim to show its potential in
real-world scenarios and its flexibility in dealing with different user’s objectives, building designs,
external factors and heating system configurations. Section 2.5.1 illustrates OF’s adaptability to
user’s objectives, showing how it can be use as a simulator or as an optimiser to minimise either
the energy consumption or the cost for a given tariff structure. Section 2.5.2 shows how the OF
can be easily adapted to different building designs. We compare a building with a conventional
external brick wall with one that has a double façade, consisting of the same traditional wall and
an outer glass curtain wall with smart shading in between. Section 2.5.3 considers units with
different orientations and shows how the OF adjusts optimally to these different environments.
Finally Section 2.5.4 shows how the OF can be used to optimise different configurations of the
heating system. This is illustrated by two scenarios, one with a single heat pump and one with
two heat pumps in different locations.

2.5.1 User objectives: Case Study 1
In this Section, we show how the OF can be used to model different environmental conditions and
user objectives related to energy use and cost.

First, we apply the OF to what we call the “TRAD” unit: a unit without an EMS. Here the OF
acts as a load simulator: it outputs the heating/cooling energy consumption of the unit, with a
fixed temperature profile. The TRAD unit is the reference scenario for this study case (first column
in Table 2.1). Second, we apply the OF to the “SM” (standard model) unit, which is TRAD with
an EMS. We run the OF of the SM unit twice. The first time, the EMS minimises the cost of
heating over a two-day period (second column in Table 2.1), while the second time, it minimises
the heating consumption while maintaining the temperature within defined limits (third column
in Table 2.1).

The following Table 2.1 summarises the features of the three scenarios compared in this case
study. The differences among the scenarios are emphasized in bold.

Table 2.1: Scenarios for Case Study 1

TRAD SM energy-min SM cost-min
Ext. façade Brick-wall Brick-wall Brick-wall
Shadings no no no

Ventilation In-Outdoor In-Outdoor In-Outdoor
HP mode Heating Heating Heating
Season Winter Winter Winter

HP working-Temp. In-Outdoor In-Outdoor In-Outdoor
EMS no yes-min energy yes-min cost

Orientation South South South

TRAD and SM units All the simulations are for the same unit: a residential apartment in
Montreal (Canada) with one south-oriented external façade: see Fig. 2.2. Its heating/cooling
demand is met by an HP. We model the HP with a dynamic efficiency (El) that varies according
to its working temperature. We assume that the HP is centralized at the building level and works
between the external and internal (unit’s living zone) temperatures.

The simulations run for two typical winter days, and within these days El is in the range 3.1
to 4.0. We calculate the electricity cost using the tariff structure shown in Fig. 2.5.
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All the simulations consider ventilation between the exterior and interior, and this is opti-
mised by the OF. The models account for heat transfer by conduction, convection, and radiation.
Convection and radiation are linearized and simplified, as suggested in [35].

Figure 2.2 shows the RC circuit corresponding to the TRAD and SM units. There are five
nodes, each of which is associated with a temperature. We discuss them from right to left. Node 1
(text) represents the external temperature; node 2 (Twall) is the center of the external wall; node
3 (T int) is the LZ; node 4 (T intWalls) is the center of the internal walls and ceilings; and node 5
(Tnext) represents the neighbours.

Balanced flow (PL
i,l) takes place on the black lines connecting the nodes. They are characterized

by fixed thermal resistances, defined for the structure of the unit (walls, windows, and air). Each
black line represents half of the thickness of a wall/window/ceiling, and the flow (PL

i,l) is balanced
and uncontrolled. The purple line represents ventilation between nodes 1 and 3. The heat flow
(PV

i,l) includes natural and mechanical ventilation. When PV
i,l represents natural ventilation, the

flow is balanced and uncontrolled. In this case, the heat flowing between nodes only depends on
the temperature differences between the nodes and the thermal capacity yairl of the ventilated
space. When PV

i,l represents mechanical ventilation, it is balanced and controlled by the OF using
the variable Xi,l. In this case, the heat flow depends on temperatures, volume of air and variable
Xi,l. In this study, we assume that the user will not manually open the windows. The yellow line
represents the HP connecting nodes 1 and 3. The flow is unbalanced (PH,F

i,l and PH,T
i,l ).

Each internal node has an associated storage due to its thermal mass (ys). Because the heat
flows to or from the unit do not affect the external temperature, this temperature is independent
and assumed to be known. Accordingly, there is no need to model storage at this node. Further-
more, the generation power (PG

i,g) is connected to node 3. It represents heat flows due to solar
radiation, people, and electrical devices. Node 5 represents the neighbor’s internal temperature. It
may vary within the range of the LZ temperature Tint (2.13), which defines the thermal comfort.
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Figure 2.2: RC circuit for TRAD and SM units.

This case study compares the energy behaviour of a unit without (TRAD) and with (SM) EMS.
The OF acts as a simulator for TRAD: it outputs the hourly heating demand required to maintain
thermal comfort, and the unit temperature is constant. For SM, the OF is an energy or cost
minimiser, depending on the user’s preference. The temperature varies in these minimisations. We
present the results as a set of four graphs for each scenario (Figs. 2.3, 2.4, and 2.6). The first shows
the amount of solar energy entering the unit, which is the sum of parameters qsol,Bi,g and qsol,Di,g . In
our winter scenario, this helps to warm the unit. The second shows the temperatures outside, in
the LZ, on the south-oriented wall, and on the internal walls. The third specifies the heating of
the unit: the dotted curve is the HP output (corresponding to the demand), and the solid curve is
the HP input. The fourth shows the ventilation flow between the LZ and the outside.
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Figure 2.3: OF as simulator:
TRAD unit, South, Winter.

Figure 2.3 shows the energy behaviour of TRAD; Fig. 2.4 shows the optimal demand for SM
with the minimise-energy objective; and Fig. 2.6 shows the optimal demand for SM with the
minimise-cost objective.
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Figure 2.4: OF as simulator and optimiser:
SM unit, South, Winter, energy minimisation.

First, we discuss the use of the OF as an EMS to minimise the energy consumption. It decreases
the energy consumed by 14%: the total demand over the two days is 24 kWh instead of 28 kWh.
It reduces the final cost too: SM is 15% cheaper than TRAD (2.02 CAD instead of 2.39 CAD).

Comparing Figs. 2.3 and 2.4, we make two observations. First, TRAD loses significant energy
via ventilation. This happens during the solar-gain peaks, especially in the first day. TRAD
keeps the LZ temperature constant, releasing surplus heat to the outside to avoid overheating.
It then must buy energy during the subsequent hours. In contrast, SM stores surplus heat from
sun radiation and uses it later. Second, SM buys more energy when El is higher, by allowing the
indoor temperature to vary. The third plot in Fig. 2.4 shows this. The efficiency of the heat pump
(El) depends on the input and output temperature curves: the higher the gap, the lower the El.
The beginning of day 1 is an example. During period 2 (i.e. hour 2) he temperature gap between
the outside and the LZ is smaller than in period 3 (second plot). The EMS thus decides to buy
around 4 kWh in period 2 (third plot).

Next, we discuss the EMS as a cost minimiser, using the tariff structure shown in Fig. 2.5. The
EMS reduces the heating cost by 26%, from 2.39 CAD (TRAD) to 1.77 CAD (SM). It also reduces
the total energy consumption by 7%, from 28 kWh to 26 kWh.

Figure 2.5 helps us to understand the optimisation strategy. The tariff has three levels: low,
medium, and high. The third plot in Fig. 2.6 shows that SM avoids buying energy during high-tariff
and (to some extent) medium-tariff periods. It stores energy during the last low-tariff hours and
uses that energy later in the day. However, the EMS also takes into account the efficiency of the
heat pump. The unit buys electricity when the solar and internal gains do not keep the internal
temperature in the comfort range. It buys more when El is higher: when the external temperature
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(brown dotted curve in temperature graph) and the LZ temperature (black dotted curve) are closer
and the gap between the HP’s output and input curves (respectively the red dotted and grey solid
lines in the third graph) is larger. For instance, in time frames 0 to 4 there are no solar gains
and the unit buys electricity. It buys more in periods 1 and 2, when the external temperature is
warmer and the HP efficiency is higher.

Figure 2.5: Tariff structure: Ontario TOU.

The EMS cost minimiser achieves an important cost reduction, but it increases number and
magnitude of power peaks along the day. SM requires up to 7 kW (red dotted curve in second
graph of Figure 2.6), whereas TRAD never exceeds 2.5 kW (red dotted curve in second graph of
Figure 2.3). This may be an issue for the operator. In contrast, when the EMS is used as an
energy minimiser, the power peaks are lower than for TRAD and the cost minimiser, and they rise
only when the external temperature is higher. In other words, the energy minimiser reduces the
overall energy demand and moves the power peaks away from high-cost hours, which usually are
high-demand hours.
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Figure 2.6: OF as simulator and optimiser:
SM unit, South, Winter, cost minimisation.

Further comparing the two SM scenarios, we see that the living zone’s temperature (blue curve)
varies more when the EMS minimises cost. This is because it must follow both the tariff structure
and the HP’s El.

The following Table 2.2 summarises the cost, energy consumption and the maximum power
peak value of the three scenarios, with the percentage reductions of cost and energy achieved by
the SM scenarios given in parentheses.

Table 2.2: Case Study 1, summary

TRAD SM energy-min SM cost-min
Total cost [CAD/2days] 2.39 2.02 (15%) 1.77 (26%)

Total energy [kWh/2days] 28 24 (14%) 26 (7%)
Max power peak [kW] 2.5 3.9 7

2.5.2 Building design: Case Study 2
In this Section, we discuss the impact of the building design. We test the OF with a standard
external wall and a DSF with dynamic solar shading, and we minimise the cost. We apply the
EMS to the SM unit of the previous section and then to the same unit with the addition of a smart
dynamic façade (the DYN unit).

The following Table 2.3 summarises the features of the three scenarios compared in this case
study. The differences among the scenarios are emphasized in bold.
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Table 2.3: Scenarios for Case Study 2

TRAD SM DYN
Ext. façade Brick-wall Brick-wall DSF
Shadings no no yes

Ventilation In-Outdoor In-Outdoor In-DSF-Outdoor
HP mode Heating Heating Heating
Season Winter Winter Winter

HP working-Temp. In-Outdoor In-Outdoor In-Outdoor
EMS no yes-min cost yes-min cost

Orientation South South South

Standard façade vs. DSF with smart shading The SM unit has the traditional external
wall, the layers of which are given in the following Table 2.4. The parameters r0 and rin refer to
EN ISO 13786: they are external and internal heat-transfer resistance values.

Table 2.4: Standard façade thermal features

Layer thermal gross specific heat layer R
name conductivity density capacity thickness [m2 K/W]

[W/m K] [kg/m3] [j/kg K] [m]
rin 0.130

Gypsum 0.160 801 840 0.020 0.125
Insulation 0.030 28.800 1210 0.120 4

Air 0.040 1.200 1000 0.070 1.750
Brick 1.310 2082.600 920 0.100 0.076
r0 0.040

U-value [W/m2 K] Total thickness [m]
0.16 0.31

The smart façade of the DYN unit has three elements: the external wall, an air gap with
dynamic shading, and an external glass skin. Figure 2.7 shows the RC circuit, and the Table 2.5
below lists the thermal features of the DSF.

Table 2.5: Thermal features of double skin façade

Layer thermal gross specific heat layer R
name conductivity density capacity thickness [m2 K/W]

[W/m K] [kg/m3] [j/kg K] [m]
rin 0.130

Gypsum 0.160 801 840 0.020 0.125
Insulation 0.030 28.800 1210 0.120 4

Air 0.040 1.200 1000 0.070 1.750
Brick 1.310 2082.600 920 0.100 0.076
rin 0.130
Air 0.040 1.200 1000 0.800 20

Glass 0.040 2500 792 0.020 0.560
r0 0.040

U-value [W/m2 K] Total thickness [m]]
0.03 1.13

DYN has a more complex ventilation system than SM. There are three ventilation flows (purple
lines in Fig. 2.7): between the LZ and the DSF air cavity; the air cavity and the exterior; and the
LZ and the exterior.
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Figure 2.7: RC circuit for DYN unit.

The dynamic shading and ventilation are controlled by the EMS. The smart shading is repre-
sented in green in Fig. 2.7. The EMS chooses its configuration according to the optimal amount
of solar radiation (2.9). The smart shading manages the solar energy entering the LZ, which is a
form of local renewable energy generation. The temperature inside the air cavity depends on its
heat capacity, so the DYN model has one more node in the circuit. Power flows into this node:
it represents local energy generation and is indicated by PG

g−DSF in Fig. 2.7, where the elements
specific to DYN are shown in blue.

This case study compares the SM unit and the DYN unit, with cost minimisation. We consider
a south-oriented unit during two winter days. Fig. 2.6 above gives the SM results, and Fig. 2.8
gives the DM results.
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Figure 2.8: OF to double skin façade:
DYN unit, South, Winter, cost minimisation.

The DYN unit has three advantages. First, it is better insulated because of the DSF. Thus,
it has lower thermal losses, lower energy consumption, smaller power peaks before the high-tariff
period, and improved indoor comfort. Second, DYN has a larger thermal storage capacity, so it
can more readily adjust to electricity cost and weather variations and is thus cheaper than SM.
Third, the dynamic shading allows more efficient control over the local energy generation, giving
a further cost reduction.

DYN captures and stores solar energy in two physical spaces. Solar gains first enter the air
cavity of the DSF (green line in the first graph of Fig. 2.8), where part of their energy is stored.
They then reach the LZ, passing through the windows of the inner skin (black line in graph of
Fig. 2.8).

The solar gain entering the unit is represented in the first graph (Fig. 2.8). They are controlled
by the variable ∆i, resulting in different amount of solar radiation captured by the unit. ∆i,b can
vary within a range chosen by the user (see Equation 2.10). We want to ensure sufficient natural
light in the LZ, so we allow ∆ to range from 0.3 to 1, where ∆i = 1 means that the shades are
fully open. The lower bound ensures adequate visual comfort (see [36]). In winter, it is optimal
to capture as much solar energy as possible, so ∆i,b is 1 during the solar-gain hours (Fig. 2.8). In
summer, ∆i,b significantly impacts the energy demand of the unit.

The second graph of Fig. 2.8 shows first that the indoor temperature (black curve) fluctuates
less in DYN than SM. Second, the external wall (orange curve) is warmer and, because of its large
thermal inertia, helps to reduce the overall thermal loss. Third, during some solar-gain hours, the
DSF temperature (green curve) is higher than that indoors. When this happens, the thermal losses
turn into gains. Consequently, the EMS activates ventilation between the LZ and the air cavity,
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as the final plot shows. This warm air helps to heat the LZ, reducing the use of the HP (fourth
plot in Fig. 2.8).

The third plot shows that the EMS affects the electricity demand of DYN in three ways. First,
it lowers the power peaks: they are always below 6 kW (SM reaches 7 kW). Second, it expands
the time window during which the heating system is off. Because of its large thermal inertia and
improved insulation, DYN is less dependent on the grid and more attractive for DR purposes.
Third, it reduces the overall energy consumption.

To summarise, DYN’s energy cost is cheaper than both SM and TRAD. Furthermore, it re-
quires less energy and reduces the power peaks. The following Table 2.6 shows the cost, energy
consumption and maximum power peak of the three scenarios. The percentage reductions of cost
and consumption are given in parentheses.

Table 2.6: Case Study 2, summary

TRAD Standard façade DSF with dynamic shading
Total cost [CAD/2days] 2.39 1.77 (26%) 1.23 (49%)

Total energy [kWh/2days] 28 26 (7%) 18.30 (35%)
Max power peak [kW] 2.5 7 6

2.5.3 Unit orientation: Case Study 3
In this Section, we discuss the impact of the unit orientation and the potential for DR. We consider
four TRAD units and four DYN units with different orientations. We study two days with the
summer tariff of Ontario, Canada (Fig. 2.5) with the objective of minimising the cost.

The following Table 2.7 summarises the features of the two scenarios compared in this case
study. The differences among the scenarios are emphasized in bold.

Table 2.7: Scenarios for Case Study 3

TRAD DYN
Ext. façade Brick-wall DSF
Shadings no yes

Ventilation In-Outdoor In-DSF-Outdoor
HP mode Cooling Cooling
Season Summer Summer

HP working-Temp. In-Outdoor In-Outdoor
EMS no yes-min cost

Orientation All All

The Table 2.8 shows that the DYN units’ energy costs are about 96% cheaper than the TRAD
units and furthermore the DYN units have a lower energy demand. There are two reasons for this
cost reduction. The first one is the smart shading system: TRAD units do not have shadings at all
(this is true especially in residential buildings located in northern countries) while the DYN unit
not only has shadings, but their configuration is also optimal due to the EMS control.

Table 2.8: OF applied to TRAD and DYN for different orientations

TRAD DYN % cost reduction
[CAD/2 days] [kWh/2 days] [CAD/2 days] [kWh/2 days] for DYN

South 0.640 5.700 0.021 0.390 97%
East 0.660 6.350 0.025 0.380 96%
West 0.760 7.110 0.032 0.460 96%
North 0.490 4.660 0.016 0.240 97%

The second reason is cold storage. DYN units are able to store cool air and use it when it is
needed. In the literature, this phenomenon is known as passive cooling or free cooling. It takes
advantage of the temperature-difference during the day, usually between day and night times. The
house cools down during the night by ventilating with the outside and it benefits from that during
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day-time. Passive cooling is possible only for DYN units, but not for our TRAD ones. In fact, it
is the consequence of smart building design and the use of EMS. DYN units’ design makes them
low-energy buildings. It consists in the DSF and integrated dynamic shading, which allow the
DYN unit to store and optimally use energy. The EMS makes use of the unit design to enhance
passive cooling by optimally controlling ventilation and temperatures.

Figures 2.9 to 2.13 show these two aspects of the shading and cooling operations. First, the
smart shading in the DYN units automatically reduces the solar gains in summer days so as to
reduce the need for cooling. The EMS minimises the cooling loads, which are closely connected to
the solar gains and the orientation. Second, the EMS uses the structure of the DYN units as cold
storage: it cools the unit during the night (by running the central heat pump or by ventilating)
and releases the indoor heat during the day. During day 1, when the exterior temperature is lower
than that indoors, the EMS avoids buying electricity and relies on ventilation. During day 2 it
turns on the HP but only during off-peak hours.

Figure 2.9: OF as simulator:
TRAD unit, South, Summer.

The results show the importance of orientation: the units have different energy requirements
and the EMS strategy adapts accordingly. The east and west units have the highest cooling
demand. The west unit captures solar energy until late in the afternoon and so stays warm longer.
Consequently, on day 2, the west unit turns on the HP one hour earlier than the other orientations
do. The TRAD units’ cooling demand mainly depends on the solar-gain peaks (Fig. 2.9). On the
other hand, the DYN demand depends on the tariff structure and the HP El.
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Figure 2.10: OF as cost minimiser:
DYN unit, South, Summer.
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Figure 2.11: OF as cost minimiser:
DYN unit, East, Summer.
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Figure 2.12: OF as cost minimiser:
DYN unit, West, Summer.
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Figure 2.13: OF as cost minimiser:
DYN unit, North, Summer.

2.5.4 Heating system configuration: Case Study 4
In this Section, we discuss the impact of the HP location. In the first scenario, we consider a
central HP that works between the exterior and interior. In this scenario the building heating is
centralized. In the second scenario, the unit has two HPs: one central and one local. The local HP
is located in the DSF air cavity and it operates between the DSF and the interior. We simulate a
south-oriented unit on two winter days, and we minimise the energy. For each scenario, we consider
a) the solar gains of the previous simulations, and b) scaled solar gains.

The following Table 2.9 summarises the features of the two scenarios compared in this case
study. The differences among the scenarios are emphasized in bold.
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Table 2.9: Scenarios for Case Study 4

DYN central HP DYN central and local HPs
Ext. façade DSF DSF
Shadings yes yes

Ventilation In-DSF-Outdoor In-DSF-Outdoor
HP mode Heating Heating
Season Winter Winter

HP working-Temp. In-Outdoor In-Outdoor (central HP)
In-DSF (local HP)

EMS yes-min energy yes-min energy
Orientation South South

The first set of results shows the optimal behaviour in each scenario for the original solar gain
profile. We report these results as scenario 1a (central heat pump only) and scenario 2a (both
central and local heat pumps). The results for scenario 1a are reported in Fig. 2.14, and those for
scenario 2a in Fig. 2.15.

Figure 2.14: Results for Scenario 1a: DYN unit, South, Winter, Energy min, Central heat pump,
Original solar profile.

The second set of results shows that the value of a local HP depends on the solar gains. We
report these results as scenarios 1b and 2b. The results for scenario 1b are reported in Fig. 2.16,
and those for scenario 2b in Fig. 2.17. Here we scale the solar gains on day 1 and day 2 by 0.35
and 1.90 respectively. The solar gains are no longer sufficient to raise the air cavity temperature
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above that of the LZ. The EMS can not benefit from natural ventilation and must turn on the HP.

Figure 2.15: Results for scenario 2a: DYN unit, South, Winter, Energy min, 2 heat pumps, Original
solar profile.

In the first day of Solar Pattern a there is a large amount of solar gain which is enough to raise
the temperature of the DSF significantly above the LZ temperature. In this case the ventilation
system alone is able to transfer most of this excess heat to the LZ and so in Scenario 2a the local
HP is not used during the peak, and only briefly on either side of the peak. In the second day
the solar gain is much less and the DSF temperature remains much lower that the LZ. The local
pump is used then in scenario 2 to transfer some of the energy in the DSF to the LZ. The local
pump has a high efficiency then because of the low temperature gap between the DSF and the
LZ, however because the solar gain in the second day is low, there is little energy to transfer so
the heat transferred to the LZ is not large. Nevertheless there is a small advantage in having the
local pump: the total electricity consumption is reduced by 1%, from 16.60 kWh (when only the
central HP is available) to 16.43 kWh (when both central and local heat pumps are available), by
reducing the use of the central HP in favour of the local one.
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Figure 2.16: Results for scenario 1b: DYN unit, South, Winter, Energy min, central heat pump,
Modified solar profile.

In Solar Pattern b the solar gains on day 1 and day 2 are scaled by 0.35 and 1.90 respectively.
These solar gains do not raise the DSF temperature in either day enough to allow ventilation from
the DSF to the LZ to heat the LZ. However the temperature of the DFS is close to that of the
LZ and so the local HP is efficient and is used in both days and transfers significant heat from
the DSF to the LZ. As a result the total energy consumption is reduced by more than for Solar
Pattern a: from 24.68 kWh to 23.94 kWh. The heating energy demand of scenarios having two
heat pumps (i.e. scenarios 2a and 2b) is 1% and 3% lower than those of scenarios having only the
central heat pump (i.e. scenarios 1a and 1b) for the cases with regular solar gains and modified
one, respectively.
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Figure 2.17: Results for scenario 2b: DYN unit, South, Winter, Energy min, 2 heat pumps,
Modified solar profile.

The advantage of the local heat pump is its higher El due to the lower DSF to LZ temperature
gap compared to the LZ to exterior gap for the central HP: the local HP El value in Solar Pattern
b at times when the local HP is used is 7.5, whereas central heat pump’s El value at these times is
only 3.8. However the use of the local HP reduces the temperature of the DFS, and that increases
the heat loss from the LZ to the DSF. This limits how much use of the local HP is beneficial,
however the EMS achieves the optimal balance between these two conflicting factors.

The following Table 2.10 summarises the two sets of results.

Table 2.10: Case Study 4, summary

Scenario Assumptions Results
Solar gains Solar gains Total energy Final cost Strategy

day 1 day 2 [kWh/2days] [CAD/2days]
1a qsoli,s qsoli,s 16.60 1.45 HP + ventilation
2a qsoli,s qsoli,s 16.43 1.43 2 HPs + ventilation
1b 0.35qsoli,s 1.9qsoli,s 24.68 1.64 HP
2b 0.35qsoli,s 1.9qsoli,s 23.94 1.61 2 HPs
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2.6 Conclusions and future research
We have proposed an optimisation framework (OF) for an energy management system (EMS) for
smart buildings. The EMS uses detailed and realistic descriptions of the thermal dynamics of a
living unit to find the best possible strategy for achieving a given objective. We carried out four
case studies and our findings confirm the effectiveness of the proposed EMS in different situations.
First, we applied the EMS to minimising the heating energy consumption and cost. When we
minimised energy, the EMS reduced the heating energy consumption by 14%. When we minimised
cost, it lowered the electricity cost by 26%. Second, we considered a unit with a traditional external
wall and the same unit with a double skin façade (DSF). The EMS reduced both the heating energy
consumption and the final electricity cost. The consumption and cost for the DSF unit decreased
by 35% and 49% respectively. Third, we applied the EMS to four units with different orientations,
reducing their electricity cost by up to 97%. Fourth, we applied the EMS to a unit with a single
central heat pump and to one with two heat pumps, one central and one local (within the DSF).
The latter unit achieved a small energy reduction: the heating energy consumption lowered by
1% for the case with Montreal design solar radiation, and by 3% for the case with modified solar
radiation.

The overall conclusion of this work is that the adaptabiliy of the optimisation model underpin-
ning the proposed EMS allows it to find the optimal strategy for the user in a variety of contexts. It
can accommodate different user objectives, different building structures (including passive design),
information about the unit’s location and orientation, and different heating or cooling systems.
In particular, our framework can support the provision of flexibility (or demand response) to the
electricity system, which is of great importance in integrating renewable energy resources in the
power grid.

Future work could use the OF as a tool to help design the best demand response strategy.
First, it may be of interest to model the effect of longer off-peak time windows, to lower the power
peaks. Second, the OF could be used to avoid a situation where all the users wish to buy electricity
in the same time period: a carefully designed personalized tariff for each user could spread such
purchases over multiple periods. Future work will also include the application of the approach to
larger instances such as heat districts, and the consideration of heat-recovery and energy sharing
systems.
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Chapter 3

Flexibility Provision via Optimal
Thermal Energy Management

3.1 Project overview
Decarbonizing the energy sector requires the integration of renewable resources to the largest
possible extent. However, renewable resources do not readily adapt to fluctuating energy needs.
Instead, we can adapt the demand to the production, and this leads to demand-side management
(DSM). Buildings have great potential for DSM because of two reasons. First, they represent
33% of the world’s total energy consumption. Second, their thermal mass can be used to store
heat or coldness, and if these are procured electrically, then the building is in principle able to
provide flexibility to the electric power grid. We study the ability of a mathematical-optimisation-
based thermal energy management system (TEMS) for residential/commercial/institutional units
to improve the flexibility provided by such units to the grid. The TEMS provides benefits to both
the unit users and the grid operator, since it manages heating while guaranteeing indoor thermal
comfort and provides flexibility to the grid. In addition to that, the TEMS supplies an affordable
way to increase building’s efficiency: it primarily makes use of existing resources, such as the
building’s structure, heat gains and natural ventilation, and limits the use of additional tools. This
makes the initial investment cost significantly lower compared to that of other technologies, like
batteries.

We published and presented this study in the uSIM2020 conference - Building to Buildings:
Urban and Community Energy Modelling, November 12th, 2020 [2].

45



3.2 Introduction
Recent changes in power systems and the increasing integration of renewable resources have led to
the need for a flexible energy demand. Imbalances between energy consumption and generation
result in user discomfort and high operational costs for utility companies [37].

In this study, we apply and implement the energy management system (EMS) presented in
Chapter 2 and published in the Journal of Building Engineering [1]. We denote this model as
“TEMS” (“Termal Energy Management System”) and we discuss its potential to increase the flex-
ibility of the heating demand of an independent unit and a small heat-network. We demonstrate
that the TEMS also reduces the overall energy consumption. In the next Chapter (4), we show a
further development of the TEMS, that integrates an energy software already in the market and
optimises a more complex heat-network.

In this work, we address three main challenges. First, we study how to make the heating
demand flexible. Such demand has a significant potential for demand-response, but this is under-
utilised because users have strong comfort preferences, which make the heating load hardly flexible.
A flexible heating demand can greatly improve the energy efficiency of buildings [38], since heating
often represents the largest component of the energy consumption.

Second, in existing studies the heating demand is often oversimplified or it is estimated from
historical data. If the demand is computed in details, it is usually calculated by external software,
which are energy simulators rather than optimisers. We use a detailed model that represents the
house as a set of thermal masses and resistances. Our model computes and optimises each unit’s
demand without requiring any external input. By doing that, it places itself mid-way between an
oversimplified house model and the dependence on an external software.

Third, in existing studies flexibility is studied from the perspective of the grid operator in
unit commitment problems. For example, Romanchencko and his group [38] aim to improve the
efficiency of the generators in the district heating (DH) system of Gothenburg, Sweden. We instead
focus on the customer, to reduce not only the heat-network cost but also the users’.

Our contribution to the state-of-the-art can be summarised in four points. First, we focus on
the demand side and specifically on the customer. The TEMS improves the operations of the
grid and reduces the heating demand of each customer. Second, it computes a detailed heating
demand for each individual unit and exploits its thermal flows to maximize the flexibility. The
customer benefits by the increased flexibility in two ways. First, it allows the unit to answer more
demand-response calls by the grid-operator, which will turn into a monetary reward. Second, the
unit is more resilient to grid failures, since it can guarantee thermal comfort for long periods when
the heating system is off. The TEMS adjusts the indoor temperature by controlling the shading,
ventilation, and heating systems and considering the thermal mass of the representative elements of
each unit. In contrast, other studies oversimplify the system. For instance, [38] consider only two
zones, indoor and outdoor, and they estimate the heating demand by computing the heat flowing
between the two. No existing studies consider the integrated control of shading, ventilation, and
heating systems, and they often assume the thermal mass of the building as a whole. Third,
we introduce flexibility by allowing each unit to greatly reduce its consumption for a time. Other
studies instead consider load-shifting, where energy is shifted from a peak to a valley. Our approach,
which not only reduces the demand during specific hours, but reduces the overall demand, allows
the user to be more independent on grid failure and lowers the electricity bill. The ability to reduce
or turn off the heating system at times makes the unit resilient to grid uncertainties. Our final
innovation is in the way that the TEMS provides flexibility. When the TEMS is applied to a single
unit, it takes advantage of the unit’s thermal mass, using the unit’s structure as thermal storage.
When the TEMS is applied to a network of units, it can move the heat surplus from one unit to
another, by ventilation. Heat that would have been wasted by one unit is thus used to warm the
others.

This Chapter is organised as follows. In the Literature Section we discuss the state-of-the-art
and limitations of existing heat flexibility studies. We focus on the impact of automation systems
on energy demand, the optimisation framework of the TEMS, and heat recovery processes. In the
Methodology Section, we present our approach. In the Applications and Results Section, we apply
the TEMS to a single residential unit and to a network of two connected units. We demonstrate
the potential of the TEMS to introduce flexibility by analysing three scenarios. Finally, in the
Conclusions and Future Work Section we provide concluding remarks.
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3.3 Literature review

3.3.1 Building automation systems
Various external factors, such as weather conditions, increase energy consumption, but building
automation systems (BAS) can mitigate this phenomenon [39]. The BAS is a distributed control
system that integrates several building’s systems together (such as lighting and HVAC) into one
centralised location. Its main purpose is to ensure indoor comfort and people’s security, but
applications to support energy management systems are increasing. The literature and the current
practice show that BAS can reduce buildings’ maintenance and operations cost, because it simplifies
how to monitor, analyse and communicate real time data. In addition to that, it limits the
user’s interference with the system. It has been shown that the solely automation of certain
activities, such as the heating system control and the indoor temperature setting, can improve
energy efficiency. Shaikh et al. [40] state that unaware energy activities can add one-third to the
building’s energy consumption.

Osma and his group [39] study the BAS of the Electrical Engineering Building of the University
of Santander (Bucaramanga, Colombia). This BAS controls lighting and air conditioning, and the
authors explore the impact of: a heat island, energy outages, new constructions, and different
user’s habits. They also consider a scenario with no BAS. They find that the BAS significantly
reduces energy consumption and also lowers fuel consumption and CO2 emissions in power-outage
scenarios.

We believe that the TEMS model, which represents the energy management system of one or
more units, could complement a BAS for lowering heating consumption and cost, and providing
flexibility. First, the BAS monitors, collects the unit’s real time data and sends them to the TEMS;
second, the TEMS runs optimisation analysis to output the best strategy for achieving the goal and
sends the strategy back to the BAS, which puts it into practice by controlling the unit’s appliances.

3.3.2 Thermal mass, heat recovery and ventilation for flexibility provi-
sion

The TEMS’ optimal energy management is significantly affected by units’ thermal mass and ben-
efits from heat recovery and optimal ventilation. Braun [41] studies the energy-saving potential
of buildings’ thermal capacity. Braun finds that controlling the building’s inertia can significantly
reduce the cooling demand of a commercial structure. The total savings depend on many factors,
such as the occupancy schedule and the climate. Zhang [42] shows that buildings’ thermal mass
can provide energy flexibility for demand-response (DR). They test a typical Canadian house and
evaluate how it is able to modify its energy demand during the winter season. They consider two
strategies for providing flexibility: downward and upward. When providing downward flexibility,
the building uses less energy during cost-peaks; when providing upward flexibility, it uses more
energy during off-peaks. They do not implement any optimisation model and they assume a simple
set point temperature modulation during DR event: when downward flexibility, the target temper-
ature decreases by 2◦C; when upward flexibility, it increases by 2◦C. They find that the building’s
potential to provide flexibility is larger during cold weather conditions, since the house has higher
energy demand. They also observe the importance of actions to mitigate the rebound effect after
DR. By contrast, the TEMS allows for peak-shaving instead of load-shifting: it cuts instead of
shifting the unit’s heating demand while providing flexibility. Furthermore, the TEMS makes use
of optimisation techniques, which allow for larger efficiency improvements.

O’Connor and his group [43] discuss reducing a buildings’ energy demand via heat recovery,
i.e., using the exhaust air as a heat source or sink. They find that recent changes in the users’
behaviour and the increasing use of electrical devices produce enough heat gains to provide a
reliable heat source. Recovering this energy reduces the reliance on heating systems. Furthermore,
it significantly lowers the HVAC (heating, ventilation, and air conditioning) demand [44].

O’Connor et al. [43] points out the advantages of using ventilation for increasing energy effi-
ciency: the low running cost, improved indoor comfort, and low environmental impact make this
technology attractive to both governing bodies and users.

When optimising a network of units, the TEMS finds the optimal sharing of heat gains among
the users for achieving the goal. The heat sharing is done by a ventilation system equipped with
apposite filters that guarantee air quality levels. A good combination of filters is required to
ensure that airborne particles and CO2 level stay within the limits. Standard air purifiers in the
market, remove indoor air pollutants, such as fine dust and mould spores. They are usually made
of cellulose, polyester or glass fibre media, and are divided into classes based on the size of the
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smallest particles that they are able to filter out. Carbon dioxide requires special filters, such as
the “ZPure CO2 Filter” by Chromatography Research Supplies, which cleans dry air by consuming
CO2 in a reaction with highly-dispersed NaOH on a silicate support.

3.3.3 TEMS’ optimisation framework
We present the TEMS model, based on the optimisation framework (OF) proposed in Chapter 2
and denoted as EMS [1]. In that Chapter, we showed how the OF adapts to different structures,
locations, energy systems, and objectives: it simulates and optimises a single independent unit
using an RC-circuit analogy. In Chapter 2 we also demonstrated that the OF both ensures comfort
and reduces the overall heating/cooling consumption or cost. The TEMS adapts the OF for
multiple units, includes the possibility to connect them for optimal heat gains sharing and focuses
on flexibility provision.

3.4 Methodology
We adjust the optimisation framework of the EMS (Chapter 2) to become the core of our TEMS for
heating flexibility. Specifically, we use the parameter ci in the objective function (2.1) to maximize
the heating flexibility of the unit. During the hours when flexibility is required, parameter ci has
larger values than the remaining hours. Parameter ci is a weight in the objective function, which
associate a different “cost” to the energy demand during each time frame. We point out that this
cost is not the energy cost per hour.

We apply the TEMS to a single unit and to a heat-network, and we discuss its potential for
providing flexibility. When applied to the heat-network, a further ventilation line that connects
two units is considered. That line can link any two nodes of different units, such as the living zone
or the air-cavity in a double façade.

We demonstrate that TEMS increases the flexibility provided during the selected hours and
also reduces the overall heating demand. We measure flexibility via the user’s ability to reduce the
use of the heating system during the selected hours. The maximum flexibility is when the user can
totally turn off the heating system during the required hours, while keeping indoor comfort.

3.5 Applications and results
In this Section, we discuss the results of two case studies. We optimise two winter days with the
weather conditions of Montreal (Canada). TEMS works to provide flexibility during two periods:
from 7 to 10 a.m. and from 5 to 6 p.m. We refer to these periods as “flexible hours” (Fig. 3.1).
During flexible hours, parameter ci takes the value of 13; during all the remaining hours, ci takes
the value of 6.5. Accordingly, energy during flexible hours is twice more costly than during the
remaining hours.

Figure 3.1: Flexible hours in a two-day period.
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All the units have a double skin façade (DSF) and are designed as DYN units [1].
In the two cases (single unit and network), we assume that the ventilation between the units

satisfies the hygiene requirements. The two units exchange energy but not mass. If the unit
does not have the TEMS, it does not maximize flexibility and simply calculates the demand that
will keep the indoor temperature steady at 21°C. Accordingly, the cases without the TEMS have
controlled ventilation and aim to stay within the temperature limits.

In the first scenario, we apply the TEMS to a single west-oriented residential unit. Four people
live in the unit and they are at home from 6 PM to 8 AM, and from noon to 2 PM. We compare
the heating demand with and without the TEMS. In the second scenario, we model two units
and simulate two cases. In case 1, we apply the TEMS to two residential units (one east-oriented
and one south-oriented) from the same large building with a DSF. The air-cavity of the DSF may
connect the two units. When the TEMS is present, it controls this connection and optimally moves
warm air from one unit to the other via ventilation. When there is no TEMS, there is no connection
and the two units are independent. The two residential units (e.x. two semi-detached houses) have
the same occupancy profile: there are four people living in the unit, who stay at home from 6 PM
to 8 AM, and from noon to 2 PM. In case 2, there are two institutional units (e.x. two classrooms).
They are east- and west-oriented and they have different occupancy schedules. We assume that
users are in the east unit from 9 AM to 12 noon and that they move to the west unit from 12
noon to 5 PM When the TEMS is present, the living room of the two units may be connected by
a ventilation line; if there is no TEMS, the units are independent.

3.5.1 Scenario I: Single user
In this scenario we compare the heating demand of an independent west-oriented residential unit
having a smart double skin façade, during the heating season, with and without the TEMS. For
sake of clarity, we point out that this and the following study cases are slightly different from any
case previously shown in Chapter 2. Table 3.1 summarises the unit’s features in each of the two
variants (i.e. with and without TEMS).

Table 3.1: Variants in Scenario I: Single user

without TEMS with TEMS
Ext. façade DSF DSF
Shadings yes yes

Ventilation In-Outdoor In-Outdoor
HP mode Heating Heating

HP working-Temp. In-Outdoor In-Outdoor
TEMS no yes

Orientation West West
Unit type Residential Residential

People per unit 4 4
People inside from 6 AM to 8 AM from 6 AM to 8 AM

from noon to 2 PM from noon to 2 PM

Table 3.2 shows the electricity input of the heat pump. The demand during the flexible hours
is 83% lower for the unit with the TEMS. Furthermore, the overall demand is 40% smaller for the
same unit. This is because the TEMS controls the ventilation and makes use of the unit’s thermal
mass.

Table 3.2: Electricity demand of a west-oriented residential unit with and without
TEMS

demand without with reduction
[kWh] TEMS TEMS [%]

during flex-hours 3.03 0.51 83.17
during two days 10.32 6.17 40.21

Figures 3.2 and 3.3 compare the two units. The first graph of each figure shows the electricity
input of the heat pump (grey curve) and the heating output (pink curve). The TEMS pre-heats
the unit before the flexible hours: it uses the building’s structure as thermal storage, so that it
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can reduce its electricity requirement when needed. The second graph shows the temperature
profiles of the elements in the unit with a thermal mass and the outside. During solar gain peaks,
the air temperature in the air-cavity (green line) is warmer than that indoors. Thus, some heat
spontaneously flows from the air-cavity to the room. The unit without the TEMS aims to keep
a constant indoor temperature of 21°C and to stay within the air-cavity temperature bounds. It
achieves this by ventilating the room and the air-cavity, pushing the surplus heat outside. In
contrast, the unit with the TEMS uses the unit’s elements as thermal storage: it stores the surplus
heat in the walls, room, and DSF and uses it during the flexible hours.

The third graph shows this phenomenon. It represents the ventilation flows between the air-
cavity and the outside (the red line labelled “pV DSF-ext”), the living zone and the DSF (the green
line “pV LZ-DSF”), and the living zone and the outside (the blue line “pV LZ-ext”). When the
curves are negative, ventilation cools the first zone; when they are positive, it warms the first zone
(in the example of the “pV LZ-DSF”, the first zone is the LZ, the second one is the DSF). The
unit without the TEMS uses only part of the energy from the sun (green curve in Fig. 3.2), and
it wastes the surplus outside (blue and red curves). On the other hand, the unit with the TEMS
ventilates the surplus from the air-cavity to the room (green curve in Fig. 3.3) and wastes less
energy (red and blue curves).

Figure 3.2: West-oriented unit without TEMS.
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Figure 3.3: West-oriented unit with TEMS.

3.5.2 Scenario II: Heat network
In this scenario we compare the heating flexibility of two independent units without the TEMS,
to that of the heat-network with the TEMS. All the units in Case 1 and Case 2 have a double skin
façade and differ for orientation and/or occupancy profile.

Case 1: Different orientation

In Case 1, we study two residential units having the same occupancy profile but different orienta-
tion. The occupancy profile assumption is that there are four users, which are at home from 6 PM
to 8 AM and from noon to 2 PM. The units’ heating demand is significantly more flexible if the
TEMS is present. In fact, it controls the ventilation between and within the units. The units have
a different heating demand, since the south-oriented unit captures more solar gain and for a longer
period than the east-oriented one, which receives solar radiation mainly during the morning. Table
3.3 summarises the units’ features in the two variants (i.e. with and without TEMS).
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Table 3.3: Variants in Scenario II, Case 1

without TEMS with TEMS
Ext. façade DSF DSF
Shadings yes yes

Ventilation In-Outdoor In-Outdoor and
between the units, throughout the DSF

HP mode Heating Heating
HP working-Temp. In-Outdoor In-Outdoor

TEMS no yes
Orientation unit 1 South South
Orientation unit 2 East East

Units type Residential Residential
People per unit 4 4

People inside unit 1 from 6 AM to 8 AM from 6 AM to 8 AM
from noon to 2 PM from noon to 2 PM

People inside unit 2 from 6 AM to 8 AM from 6 AM to 8 AM
from noon to 2 PM from noon to 2 PM

Table 3.4 shows that the TEMS reduces the units’ heating demand by 80% during the flexible
hours. Furthermore, the overall consumption is 37% lower.

Table 3.4: Electricity demand of south and east units with and without TEMS

demand without with reduction
[kWh] TEMS TEMS [%]

during flex-hours 8.04 1.63 79.73
during two days 33.18 21.00 36.71

The connection between the two units allows heat recovery and sharing processes. When the
units are independent (Fig. 3.2), the south-oriented unit (graphs on the left) wastes the surplus
heat coming from the sun by ventilating with the outside. The heat wasted is represented by
the blue and red curves, showing the energy ventilated from the room and the DSF towards the
outside.

By contrast, when the units are connected (3.3), the TEMS recovers this surplus and moves it
towards the east-oriented unit, where it is used in place of the heating system. This is shown by the
third graphs of Figs. 3.2 and 3.3, where the units’ connection is represented by the yellow curve.
The energy wasted by the independent south-oriented unit (blue and red curves in Fig. 3.2) is now
moved towards the east-oriented unit (yellow curve in Fig. 3.3). The advantage of the TEMS is
visible in the first graphs of Figs. 3.2 and 3.3: the heating system of the connected units runs less
than it does for the independent units.
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Figure 3.4: South- and east-oriented units without TEMS.
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Figure 3.5: South- and east-oriented units with TEMS and ventilation connection by the units’
double façade.

Case 2: Different occupancy

In Case 2, we study two institutional units having different orientations and occupancy profile.
There are four people in each of the two units. Users in the east unit stay inside from 9 AM to
noon, and users in the west unit stay inside from noon to 5 PM. Table 3.5 summarises the units’
features in the two variants (i.e. with and without TEMS).

Table 3.5: Variants in Scenario II, Case 2

without TEMS with TEMS
Ext. façade DSF DSF
Shadings yes yes

Ventilation In-Outdoor In-Outdoor and
between the living zone of the two units

HP mode Heating Heating
HP working-Temp. In-Outdoor In-Outdoor

TEMS no yes
Orientation unit 1 East East
Orientation unit 2 West West

Units type Institutional Institutional
People per unit 4 4

People inside unit 1 from 9 AM to noon from 9 AM to noon
People inside unit 2 from noon to 5 PM from noon to 5 PM

Occupants produce significant heat that can be used to reduce the unit’s heating demand.
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Table 3.6 shows the impact of the TEMS when the occupancy varies. The heating demand with
the TEMS is 99% lower during the flexible hours, and the overall consumption is 22% lower.

The east-oriented unit has solar gains during the morning; furthermore, occupants generate
heat from 9 a.m. to 12 noon. On the other hand, the west-oriented unit captures solar gain
during the afternoon, and occupants are present from 12 noon to 5 p.m. The TEMS controls the
connection between the two units and uses the heat surplus of the east-oriented unit to warm the
west-oriented one. When the units are independent, the heat surplus is wasted by ventilating the
room to the outside (blue curve in the third graph of Fig. 3.6). By contrast, with the TEMS, the
heat surplus is moved where it is needed (yellow curve in the third graph of Fig. 3.7).

Table 3.6: Electricity demand of east and west units with and without TEMS

demand without with reduction
[kWh] TEMS TEMS [%]

during flex-hours 8.45 0.09 98.93
during two days 35.83 27.89 22.16

Figure 3.6: East- and west-oriented units without TEMS.
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Figure 3.7: East- and west-oriented units with TEMS and ventilation connection between the
units’ living zones

3.6 Conclusions and future research
In this Chapter, we demonstrated that TEMS introduces flexibility to the heating demand of a
single unit and a heat-network. The TEMS can reduce the heating consumption during specified
hours by 83% for a single unit and up to 99% for a network of two units. The TEMS lowers the
overall heating demand too: the consumption decreases by 40% for a single unit and up to 37%
for the network.

Besides its potential for improving heating and cooling efficiency of units, the TEMS has two
remarkable advantages. First, it is affordable: it primarily benefits from the structure of the
building, heat gains, and natural ventilation, limiting the use of additional tools. Accordingly, the
initial investment cost and the operational cost are significantly lower compared to those of other
technologies, such as batteries.

Second, the TEMS has advantages for both the users and the grid operator: it can reduce the
unit’s overall heating demand and also provide flexibility to the power grid.

We suggest three directions for future studies. We believe that the TEMS has potential to
boost the use of renewable energy resources, since it makes the heating demand more adaptable
to the production. Accordingly, we suggest the implementation of TEMS in studies that consider
renewable energy resources, such as solar radiation and wind power, as future research. In addition
to that, it would be interesting to apply the TEMS to a larger network and real city districts. We
also suggest to consider other ventilation system options for heat gains sharing and testing their
ability to guarantee air quality.
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Chapter 4

Cost-Effective Approach to Optimise
Heating Operations and Design of
Heat-communities

4.1 Project overview
In the previous Chapter, we explored a novel optimisation framework to optimise heating operations
of two connected units (TEMS). In this Chapter, we present how we improved that framework for
more complex study cases.

This is the results of the work done during my internship within Integrated Environmental So-
lutions (IES). IES is a software developing and consultancy company in the field of smart buildings.
IES uses its own software to provide insights for its clients and IES software are widely used among
building engineers and architects. At the moment of writing, no one among the IES software does
include any optimisation features: IES software only simulates the energy consumption of build-
ings and cities. I worked within the R&D team and our purpose was to implement optimisation
features in IES software. We specifically worked on thermal optimisation, focusing on flexibility
provision and design optimisation.

The result of our work is ONDe: a tool for optimising heating operations and the design
of a heat-community. It tackles four challenges: increasing energy efficiency with economically
affordable solutions; being attractive for both the network operator and the users; using and
improving existing software; adapting to different study cases. ONDe is an optimisation framework
that represents the energy management system of the heat-network: it outputs indoor-temperature
profiles and power demand of each building to achieve the goal. ONDe can also find the optimal
design of a new heat-community or the optimal changes from an existing one. It analyses the
specific design options that the community has, such as adding local thermal storages (TES), and
outputs design details and optimal operations to achieve the goal. This makes ONDe a cost-effective
and attractive solution for both residents and the network operator.
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4.2 Introduction
At the moment of writing, the majority of energy software used in the building energy simulation
practice does not have optimisation features. The IES R&D team is currently working to add
the optimisation techniques to their own software. Specifically, they are focusing on optimising
demand response between a building and the electricity and heat networks. Until this moment, the
R&D team limited their optimisation studies to the only shiftable electrical loads, such as laundry
machine and kitchen appliances. The research question that we studied during my internship is
if also heating load can provide flexibility in the demand response process. The first two models
discussed in Chapters 2 and 3 of this thesis, show that buildings’ heating demand has large potential
for flexibility provision. Because of that, we worked to integrate our approach to IES software. The
result of our collaboration is a first insight of an optimisation framework (ONDe) that integrates
the heating demand found by Virtual Environment (IES VE) dynamic simulator and optimises
demand response among buildings of a heat-community.

The IES R&D team was particularly interested in exploring buildings’ thermal mass. Our
previous models benefit from the use of the house’s thermal mass as thermal storage. ONDe
adopts the same approach, moreover it implements the design on top of the optimal operations
feature: in addition to optimise one day-ahead heating operations, it can also output the optimal
network design to further increase heating efficiency. ONDe evaluates two design decisions: adding
any local thermal storage for increasing the existing building’s thermal mass and connecting by
ventilation lines any two buildings of the network.

In this Chapter, we discuss how we develop the second research project (the TEMS of a small
heat district, Chapter 3) to complement two notorious energy software already in the market:
IES VE and IES iVN. There are three main changes from the TEMS model that we previously
discussed. First, the TEMS evaluates each building’s demand by itself. This makes it independent
and autonomous, but limits the complexity of the study case to a small number of users and short
optimised periods. On the contrary, the framework presented in this Chapter (ONDe) integrates
demand data series coming from IES VE energy software, allowing more complex study cases.
Second, the TEMS optimises only operations, while ONDe can optimise only operations or both
design and operations. Third, the TEMS optimises one-day ahead, accounting for deterministic
weather and occupancy data. Differently, ONDe has a multi-stage stochastic process solution,
which allows it to optimise longer periods of time and to consider several day-scenarios.

We test and apply the ONDe model with a computer-based study case of a heat-community in
Dublin. The heat-community is a group of buildings, whose heating operations are managed by
the network-operator. ONDe minimises the overall heating demand or heating cost of the heat-
community. To do that, it optimises demand response between the buildings and the operator.
The operator can ask the buildings’ users for flexibility during specific hours. If any user answers
the call, he needs to shift or cut his heating demand during the required hours. When he answers,
he receives a monetary reward by the operator. When running in the design-mode, ONDe outputs
changes to the current network that can further minimise the overall demand or cost. We found
that ONDe not only minimises heating demand (or cost) for the operator, but also that all users
benefit by reducing their energy bill.

This Chapter is structured as follows: first, we discuss the current state-of-the-art, focusing on
the challenges tackled by the research project. Second, we discuss the methodology, going deeper
in the mathematical framework and presenting the two modes in which ONDe can operate. In the
following section, we present an application, we test ONDe and discuss the final strategy that it
outputs. Ultimately, we summarise our contribution and suggest future works.

4.3 Literature review

4.3.1 Sustainable and affordable approach
ONDe helps decision makers to follow sustainability by affordable means. We first look at the
available local resources, such as buildings’ thermal mass and heat gains. If additional equipment
is required, we consider the cheapest option, such as water tanks for increasing thermal storage of
a user. Braun [41] showed that controlling buildings’ thermal mass can significantly reduce heating
and cooling demand. The few studies that optimise the use of buildings’ thermal mass, focus on
model predictive control (MPC) approaches, like Hu et al. [45]. The main limits of MPC is the
running time, which often turns out in analysing only one thermal zone of a building per time,
and in using one specific weather and occupancy scenario. O’Connor et al. [43] demonstrate that
heat gains in our buildings provide a reliable heat source. Despite its potential, the impact of
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using waste heat in residential buildings has not been addressed much. Korpela and his group [46]
led a pioneering work on this front. They specifically study how heat pump system can benefit
from waste heat and they test their approach on a residential apartment in Finland’s Kymenlaakso
region. They find that recovering heat waste not only reduces the electricity bill, but also CO2

emissions. The counterpart of the heat recovery system studied, which consists of the heat pump,
water accumulator, exhaust air fan with heat exchanger and heat recovery piping, is the high initial
cost.

ONDe benefits and controls internal heat gains and it transfers them among connected users of
the heat-community. This “shared ventilation system” does not need any further appliance besides
the air fan and piping. Because of that, the initial investment is much lower.

We refer to one among our papers [2] for the innovative and affordable idea of recovering and
sharing heat gains surplus among buildings. In that paper, we demonstrated with a test-bed that
optimising heating operations between two dwellings connected by ventilation, significantly reduces
the overall consumption. That paper directly computes the dwellings demand and this limits the
complexity of the study case to only two users. Furthermore, it optimises next-day operations by
accounting for deterministic weather and occupancy. On the contrary, ONDe stochastic solution
process allows to increase the complexity of the network and to optimise longer period, such as the
whole winter season.

4.3.2 Building energy software
Appendix C reports the most relevant building energy software in the market at the moment of
writing. Per each software, it summarises the use, its particular strengths, its limits and provides
a reference link to the software webpage. They divide into three groups: software to analyse
performance of a building, software to model the power grid from the operator’s perspective,
and tools that collect and elaborate data for consultancy companies. We are interested in the
first group, which includes the following software: SIMEB, Energy Plus, DOE-2, BEopt and IES
Virtual Environment. All of them, except for BEopt, only run simulations of the building and
do not have any optimisation features. BEopt software is a pioneering computer program that
optimises the design process of a building. Nevertheless, it only accounts for a discrete, pre-
defined set of design options. Furthermore, it deals only with the design phase (i.e. before that
the building is constructed), by finding the best among a few options, but it does not optimise
building’s operations after the construction.

To summarise, many software for thermal-energy modelling simulate buildings having given
features, but they do not output optimal strategies to achieve a given goal. On the other hand,
they can run accurate analysis of one single building. ONDe implements optimisation features
without oversimplifying buildings and analyses the whole heat-community as an integrated system.
ONDe integrates an energy software already in the market, which runs detailed dynamic analysis,
and implements optimisation techniques to help decision makers in managing and designing a heat-
community. Specifically, we focus on IES software tools (Integrated Environmental Solutions).
ONDe integrates and builds on data-series coming from IES VE, which is one among the most used
energy simulation software in the market. It conducts building performance analysis and is used
by engineers during the design phase for testing different options, comparing different solutions
and guaranteeing indoor comfort and CO2 emissions limits. IES VE runs dynamic simulation of
one single building having given features [47]. ONDe’s optimisation framework has potential to
be integrated in IES iVN software [48], which models separated heat and electricity networks as a
system of nodes and lines. IES iVN is a network modelling and management tool, which integrates
electricity, heating, cooling and waste heat. It simulates the network and the share energy across
buildings. The IES iVN does not find buildings’ demand by itself, but it receives it as input coming
from IES VE’s simulations or historical data. ONDe offers the further option to have optimised
heating demand for achieving the required goal as input data-series.

ONDe thermal model refers to the node and lines model presented in our first paper [1]. In
this paper, we showed an innovative mathematical framework to optimise heating and cooling
operations of a single residential/industrial/institutional unit (EMS model). ONDe uses the same
node-line approach (i.e. RC-analogy) but at a larger scale, where nodes represent buildings or
storages of the heat-community. The advantages of this approach are the small running-time and
the adaptability to the specific study case. Differently from our previous approach, ONDe does
not use the RC-analogy to simplify and compute the building’s demand, but it receives demand
data coming from IES VE dynamic analysis.
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4.4 Methodology
ONDe is a mathematical framework, built on two stages, each of which is a non-linear optimi-
sation model and has a multi-stage stochastic solution process. Figure 4.1 represents ONDe’s
methodology.

In Stage 1, ONDe receives three types of input: one from the decision-maker, one from IES VE
software and one from the energy market (grey box on the top-right in Figure 4.1).

First, the decision-maker defines the purpose of the optimisation (i.e. if minimising cost or
energy consumption of the heat-community), the optimisation mode (i.e. if optimising only op-
erations or also network’s design) and heating systems’ specifications. Second, ONDe receives
data-series of heat sensible balance variables, indoor temperatures and weather conditions from
IES VE software. As a reminder, IES VE models one single building per time. Third, ONDe re-
ceives hourly energy cost and the cost of demand-response (i.e. the price that the network operator
has to pay to any user who answers demand-response).

ONDe Stage 1 processes all these input data to define the network of the heat-community. To
do that, ONDe finds values of thermal resistance (R), thermal mass (C) and power flowing to/from
the structure of each building (blue box on the left in Figure 4.1).

These three output variables are validated by comparison to IES VE software, using RMSE
coefficients and further visual check. After that, they become input parameters to Stage 2, which
outputs the final strategy for the decision maker.

Stage 2 can run in two modes: only operations optimisation (O-mode) and operations and design
optimisation (OD-mode). In the O-mode, the network does not vary and ONDe achieves the goal
(i.e. reducing heating cost or heating consumption) by only load shifting and peak shaving. It
takes advantage from buildings’ thermal mass and heat gains by controlling indoor temperature and
ventilation. The optimisation makes users’ heating demand flexible and allows demand response
in the heat-community. The OD- differs from the O-mode for the design feature. In the OD-mode,
the network can vary according to the optimal design for achieving the goal. There are two design
options: adding a local thermal storage to any user and connecting any two users by ventilation
lines. If any of the design options is optimal, ONDe outputs optimal operations (heating demand
and indoor temperature data series, and the costs of DR) and design details (storage’s size and
mass rate, and shared-ventilation air change per hour), as shown by the bottom green box in Figure
4.1.

Weather conditions and occupancy largely affect heating operations and design. We implement
an heuristic multi-stage stochastic solution process to deal with this uncertainty. Specifically, we
refer to the Gradient Descent (GD) techniques. We discuss the GD more in detail in Chapter
5, where we present the ORD model. Both ONDe and ORD models have a GD approach, but
ONDe makes use of the Stochastic Gradient Descent (SGD) and the ORD implements the Batch
Gradient Descent (BGD) variant. In fact, the large data set that ONDe receives from IES VE
makes the SGD approach more convenient (IES VE simulates each building of the network and
sends to ONDe hourly heating demand and temperatures of the whole heating season).

ONDe’s two stages run one scenario per each iteration. Scenarios differ for external tempera-
ture, solar and internal gains, indoor temperature setpoint and energy cost. Length and number
of scenarios depend on the specific study case; an example is scenarios of one-day length and 365
iterations (one per each day of the year). ONDe runs the first scenario and finds the optimal
decisions. After that, it runs the following scenario and it finds the optimal closest decision to
the previous scenario. This process of finding a scenario’s optimal solution while minimising the
deviation from the previous one, goes on until all scenarios have been run. We consider the final
decision to be optimal if the optimal solution did not change along a defined number of iterations.
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Figure 4.1: ONDe flow chart

4.4.1 Notation for the model
Sets

• T F set of time frames, indexed by i

• B set of nodes, indexed by b

• BD subset of prosumer nodes, indexed by d ∈ B

• BS subset of nodes having thermal mass, indexed by s ∈ B

• BSS subset of nodes representing a local thermal storage, indexed by ss ∈ B

• LL set of thermal losses lines, indexed by l

• LPP set of lines connecting a prosumer node to the heating source, indexed by pp

• LVHS set of heat sharing lines between two prosumer’ nodes, indexed by v

• K set of iteration, indexed by K

Parameters provided by the user

• Fl : node b ∈ B where line starts

• Tl : node b ∈ B where line ends

• Bd : node b ∈ B that is a prosumer-node

• Bs : node b ∈ B where storage s is connected

• Bss : node b ∈ B where the additional local storage ss is connected

• dt+ max
d : maximum temperature deviation above prosumer d ’s target temperature [◦C]

• dt− max
d : maximum temperature deviation below prosumer d ’s target temperature [◦C]
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Parameters provided by VE Software

• texti : external temperature, during time frame i [◦C]

• tV E
i,b : indoor target temperature of prosumer b, during time frame i [◦C]

• ppV E
i,pp : heat power demand in line pp, from heating source to prosumer node, during time

frame i [kW]

• pLductV E
i,d : power losses throughout duct of prosumer d ’s heating system, during time frame

i [kW]

• pLleakV E
i,d : leakage power losses of prosumer d, during time frame i [kW]

• pLfornV E
i,s : power flowing from/to air and furniture of node s, during time frame i [kW]

• pGV E
i,d : total internal and solar gains of prosumer d, during time frame i [kW]

• pLextV E
i,d : thermal losses in line l connecting a prosumer node and the outside, during time

frame i [kW]

• pIV E
i,d : infiltration losses of prosumer d, during time frame i [kW]

• pV V E
i,d : total ventilation losses (natural and mechanical ventilation) of prosumer d, during

time frame i [kW]

Parameters from electricity market

• cei : cost of energy during time frame i [£]

• cDR
i : cost of demand response to be paid to the user by the network operator, during time

frame i [£]

Parameters for heating systems components

• vV E
d : volume of prosumer d ’s apartment

• ρair : density of air [kg/m3]

• ρwater : density of water [kg/m3]

• cpair : specific heat of air [J/kgK]

• cpwater : specific heat of water [J/kgK]

• dT gen : temperature difference between the generator’s inlet and outlet [◦C]

• dMmax : maximum mass flow rate in the circuit connecting the local storage to the room [-]

• dV max
ss : maximum volume of local storage ss [m3]

• ϵ : efficiency of heat sharing by ventilation [-]

• dXmax
i,v : maximum air change per hour of ventilation system to guarantee comfort level [-]

Parameters for penalty function

• θ : weight of penalty function in objective function [-]

• β : weight coefficient in the penalty function [-]
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Variables optimised by the model The following elements are variables in both Stages 1 and
2.

• Ti,b : temperature of node b during time frame i [◦C]

• PPi,pp : heat power demand in line pp, from heating source to prosumer node, during time
frame i [kW]

• pLexti,l : thermal losses in line l, during time frame i [kW]

• pSi,s : power flowing from/to air and furniture of node s, during time frame i [kW]

• pSwall
i,l : power flowing from/to line l connecting prosumer nodes to the outside, during time

frame i [kW]

• Li,s : energy stored into air and furniture of node s, during time frame i [kWh]

• dT+
i,d : temperature deviation above prosumer node d ’s target calculated by tV E

i,b [◦C]

• dT−
i,d : temperature deviation below prosumer node d ’s target calculated by VE tV E

i,b [◦C]

• dPP+
i,pp : power demand deviation of prosumer d above value ppV E

i,pp calculated by VE [kW]

• dPP−
i,pp : power demand deviation of prosumer d below value ppV E

i,pp calculated by VE [kW]

• dpL+
i,l : thermal losses deviation in line l above value pLextV E

i,l calculated by VE [kW]

• dpL−
i,l : thermal losses deviation in line l below value pLextV E

i,l calculated by VE [kW]

• dpLforn+
i,l : power deviation above value pLfornV E

i,s calculated by VE [kW]

• dpLforn−
i,l : power deviation below value pLfornV E

i,s calculated by VE [kW]

• MGen Room
i,pp : mass flow rate of water in line pp [kg/s]

The following elements are variables in Stage 1 and input parameter in Stage 2.

• Rl : thermal resistance of line l [K/kW]

• Cs : thermal mass of air and furniture in node s [kWh/K]

The following elements are variables only in Stage 2.

• Variables for design option 1: heat sharing by ventilation.

– pV HS
i,v : power flowing in heat sharing line v, during time frame i [kW]

– XHS
i,v : air change per hour of ventilation in heat sharing line v, during time frame i [-]

• Variables for design option 2: local thermal storage.

– MGen Store
i,ss : mass flow rate of water in the line connecting local thermal storage ss to

the heat source, during time frame i [kg/s]
– MStore Room

i,ss : mass flow rate of water in the line connecting local thermal storage ss
to its prosumer, during time frame i [kg/s]

– V store
ss : volume of local thermal storage ss [m3]

– Sstore
i,ss : power charged/discharged from local thermal storage ss to prosumer, during

time frame i [kW]
– pSstore

i,ss : power flowing from/to local storage ss ’s thermal mass, during time frame i
[kW]

– T store
i,ss : temperature of local thermal storage ss, during time frame i [◦C]

– Lstore
i,ss : energy stored in local thermal storage ss, during time frame i [kWh]

– PP store
i,ss : heat power demand of local thermal storage ss, during time frame i [kW]
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4.4.2 Stage 1
We point out that both stages 1 and 2 are stochastic in their solution process, but they do not
have stochastic data. In fact, each stage solves a finite number of iterations, each of which is
constituted by a certain number of scenarios and each scenario has deterministic data. At the end
of each iteration, the model estimates an appropriately scaled gradient, which is added to the next
iteration. In this Section, we show the optimisation model of ONDe Stage 1 and we make use of
the RC-analogy presented in Chapter 2.

Figure 4.2 shows the RC-analogy for the study case of a heat-network of three prosumers, later
discussed in this Chapter. Input data series from IES VE simulations are in green colour and
ONDe’s output are in black. Among Stage 1’s output, Cs, Rl and pSwall

i,l will be fixed parameter
in Stage 2. Prosumers nodes are in yellow colour and the external node is in grey. Each node
is associated to a temperature, which for prosumers represents the average indoor temperature.
All prosumers’ nodes have a thermal mass (Cs) and are connected to the external node by a line,
which is characterised by a thermal resistance (Rl) and a thermal storage capacity. Power fluxes
flowing from/to prosumers’ nodes are: the three data series coming from IES VE (heat gains pGV E

i,d ,
ventilation losses pV V E

i,d , infiltration losses pIV E
i,d ), heat power from the heating system (PPi,pp)

and power flowing from/to the node’s mass (pSi,s).

Figure 4.2: RC-analogy, ONDe Stage 1

Objective function

min
∑
d∈BD

∑
i∈T F

dT+
i,d + dT−

i,d +
∑

pp∈LPP

∑
i∈T F

dPP+
i,pp + dPP−

i,pp

+
∑
l∈LL

∑
i∈T F

dpL+
i,l + dpL−

i,l +
∑
l∈LL

∑
i∈T F

dpLforn+
i,l + dpLforn−

i,l

+θk
∑
s∈BS

(Cs − (βkCs + (1− βk)C̃s))
2 + θk

∑
l∈LL

(Rl − (βkRl + (1− βk)R̃l))
2 (4.1)
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The objective function is made of two parts: the first part minimises the deviation from IES
VE data-series (indoor temperature dT

+/−
i,d , power demand dPP

+/−
i,pp , thermal losses dpL

+/−
i,l and

power flowing to/from the air and furniture of the building dpLforn
+/−
i,l ) and the second part is

the penalty function (θk
∑

s∈BS(Cs−(βkCs+(1−βk)C̃s))
2+θk

∑
l∈LL(Rl−(βkRl+(1−βk)R̃l))

2).
The penalty function penalises the deviation of decisional variables (Cs and Rl) in iteration k

from those of the previous iterations, named as C̃s and R̃l in Equation 4.1. Coefficient θk gives the
weight of the penalty over the objective function and it is zero for the first iteration. Coefficient βk

gives the importance of the current decision over the previous ones. It decreases along iterations
and it is computed as following:

βk =
1

k − 1
∀k ∈ K (4.2)

Constraints

Balance at node b:∑
pp∈LPP|b=Tl

PPi,pp +
∑

l∈LL|b=Tl

pLexti,l −
∑

l∈LL|b=Fl

pLexti,l −
∑

s∈BS|b=Bs

pSi,s

+
∑

d∈BD|b=Bd

pGV E
i,d +

∑
d∈BD|b=Bd

pIV E
i,d +

∑
d∈BD|b=Bd

pV V E
i,d = 0 ∀i ∈ T F ,∀b ∈ B (4.3)

Thermal losses to the outside:

pLexti,l =
1

Rl
(Ti,Tl

− Ti,Fl
)− pSwall

i,l ∀i ∈ T F ,∀l ∈ LL (4.4)

Equation 4.3 requires that the sum of power flowing into and from each node, during each time
frame is equal to zero. The first four terms (power demand, thermal losses and power in/from
air and furniture) are decisional variables and the last three (heat gains, infiltration losses and
ventilation losses) are data series coming from IES VE.

Equation 4.4 defines thermal losses from the room to the outside as the power flowing between
the room and the external nodes, minus the power flowing to/from the external walls of the
building.

Energy stored in prosumer node:

Li,s = CsTi,s ∀i ∈ T F ,∀s ∈ BS (4.5)
pSi,s = Cs(Ti,s − T(i−1),s) ∀i ∈ T F ,∀s ∈ BS (4.6)
Li,s = L(i−1),s + pSi,sh ∀i ∈ T F ,∀s ∈ BS (4.7)

Power demand for space heating:

PPi,pp = MGen Room
i,pp cpwaterdT gen ∀i ∈ T F ,∀pp ∈ LPP (4.8)

The three Equations starting from 4.5 define the energy stored in the room-nodes (Li,s) and
power flowing to/from them (pSi,s) as in the thermal model discussed in Chapter 2.

Equation 4.8 defines power demand for space heating of each user, during each time frame.
The demand is the mass flow rate of the fluid-vector in the circuit connecting the room to the local
heat generator (MGen Room

i,pp ), multiplied by the specific heat of the fluid-vector (cpwater) and the
gradient temperature between generator’s inlet and outlet (dT gen).

Deviation from VE data series:

Ti,d = tV E
i,d + dT+

i,d − dT−
i,d ∀i ∈ T F ,∀d ∈ BD (4.9)

pLexti,l = pLextV E
i,l + dpLext+i,l − dpLext−i,l ∀i ∈ T F ,∀l ∈ LL (4.10)

pSi,s = pLfornV E
i,s + dpLforn+

i,s − dpLforn−
i,s ∀i ∈ T F ,∀s ∈ BS (4.11)
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Non negativity:

Rl ≥ 0 ∀l ∈ LL (4.12)
Cs ≥ 0 ∀s ∈ BS (4.13)

MGen Room
i,pp ≥ 0 ∀pp ∈ LPP (4.14)

pSwall
i,l ≥ 0 ∀l ∈ LL (4.15)

dT+
i,d ≥ 0 ∀d ∈ BD (4.16)

dT−
i,d ≥ 0 ∀d ∈ BD (4.17)

dPP+
i,pp ≥ 0 ∀pp ∈ LPP (4.18)

dPP−
i,pp ≥ 0 ∀pp ∈ LPP (4.19)

dpL+
i,l ≥ 0 ∀l ∈ LL (4.20)

dpL−
i,l ≥ 0 ∀l ∈ LL (4.21)

dpLforn+
i,s ≥ 0 ∀s ∈ BS (4.22)

dpLforn−
i,s ≥ 0 ∀s ∈ BS (4.23)

The three Equations starting from 4.9 are soft constraints and ask the variables (Ti,d, pLexti,l
and pSi,s) to be equal to the correspondent IES VE data-series (tV E

i,d , pLextV E
i,l and pLfornV E

i,s ),
plus or minus a deviation (dT+/−

i,d , dpLext+/−
i,l and dpLforn

+/−
i,s ).

Non negativity constraints (from Equation 4.23 to the end) force decisional and deviation
variables to be greater than or equal to zero.

4.4.3 Stage 2
In this Section, we discuss the optimisation framework of Stage 2. According to the optimisation
purpose, it can minimise energy consumption or cost and the two options only differ for the objec-
tive function. Furthermore, Stage 2 can run in O-mode or OD-mode and in the next Paragraph,
we show the optimisation framework of the OD-mode. The O-mode differs from the OD-mode for
missing design constraints, which are:

• Energy stored in local storage node

• Discharge from local storage to the room

• Mass flow rate limits in local storage circuit

• Local storage volume limits

• Power demand of local storage

• Ventilation to share heat gains among prosumers

Figure 4.3 shows the RC-analogy that we saw in the previous Section, for Stage 2 in the OD-
mode. In Stage 2, prosumers’ thermal mass (Cs), resistances (Rl) and power from/to the external
mass of the house (pSwall

i,l ) are known: they come from Stage 1 and are in purple colour. Blue
nodes are local storages and the two lines connecting prosumers 1 and 2, and 2 and 3, are the
ventilation lines for heat sharing. If any of the two design options is optimal, Stage 2 will output
the relative operations details: power demand to the local storage (PP store

i,ss ), power discharged
by the local storage (Sstore

i,ss ), power flowing through the ventilation line (pV SH
i,v ) and air change

per hour (XSH
i,v ). In addition to that, ONDe outputs operations details to achieve the goal: total

power demand (space heating: PPi,d and local storage: PP store
i,ss ), indoor temperatures (Ti,d) and

mass flow rate of all fluid-vectors in the three circuits (generator - heating terminals, local storage
- heating terminals, generator - local storage).
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Figure 4.3: RC-analogy, ONDe Stage, OD-mode

Objective function Equation 4.24 is the objective function of Stage 2, when minimising energy
cost in OD-mode. It is made of three parts: the first, minimises the cost of DR; the second, min-
imises the cost of operations and the last is the penalty function. The cost of DR (cDR

i ) is the price
that the network operator has to pay to the any user deviating from his target temperature. The
cost of operating the heating system is given by the electricity price (cei ) multiplied by the demand
for space heating (

∑
pp∈LPP

∑
i∈T F PPi,pp) and for any local storage (

∑
ss∈BSS

∑
i∈T F PP store

i,ss ).
The penalty function minimises the deviation of the decisional design variable V store

ss from its op-
timal value in the previous iteration. Coefficients θk and βk work as discussed in the previous
Section. The optimisation framework of ONDe in O-mode is much simpler than the one of ONDe
in OD-mode and does not need the stochastic solution process approach. The objective function
of ONDe in O-mode is similar to that one in the OD-mode, with two differences: it does not have
the penalty part and it only minimises the cost of demand response and the cost for space heating.
The objective function of ONDe in O-mode is shown by Equation 4.26

Equation 4.25 is the objective function of Stage 2, when minimising energy consumption in
OD-mode. It is made by two parts: the first minimises the heating demand for space heating and
for any local storage, and the second is the penalty function. The objective function of ONDe
in O-mode, when minimising energy consumption only minimises the heating demand for space
heating and it is shown by Equation 4.27

ONDe OD-mode, cost minimisation:

min cDR
i

∑
d∈BD

∑
i∈T F

(dT+
i,d + dT−

i,d)

+cei (
∑

pp∈LPP

∑
i∈T F

PPi,pp +
∑

ss∈BSS

∑
i∈T F

PP store
i,ss )

+θk
∑

ss∈BSS
(V store

ss − (βkV
store
ss + (1− βk) ˜V store

ss ))2 (4.24)
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ONDe OD-mode, energy consumption minimisation:

min
∑

pp∈LPP

∑
i∈T F

PPi,pp +
∑

ss∈BSS

∑
i∈T F

PP store
i,ss

+θk
∑

ss∈BSS
(V store

ss − (βkV
store
ss + (1− βk) ˜V store

ss ))2 (4.25)

ONDe O-mode, cost minimisation:

min cDR
i

∑
d∈BD

∑
i∈T F

(dT+
i,d + dT−

i,d)

+cei
∑

pp∈LPP

∑
i∈T F

PPi,pp (4.26)

ONDe O-mode, energy consumption minimisation:

min
∑

pp∈LPP

∑
i∈T F

PPi,pp (4.27)

Constraints Constraints “Balance at node b”, “Thermal losses to the outside”, “Energy stored
in prosumer node”, “Power demand of space heating” and “Non negativity constraints” work as
explained in the previous Section. Nevertheless, decisional variables in Stage 1 (Cs, Rl and pSwall

i,l )
are now input parameter in Stage 2 and Constraint “Balance at node b” has additional terms, which
are related to design decisions. These terms are: power demand for any local storage (PP store

i,ss ),
power discharged from any local storage to the room (Sstore

i,ss ), power from/to the storage’s thermal
mass (pSstore

i,ss ) and power shared between any two users by ventilation (pV HS
i,v ).

Balance at node b:∑
pp∈LPP|b=Tl

PPi,pp +
∑

ss∈BSS|b=Bss

PP store
i,ss +

∑
ss∈BSS|b=Tl

Sstore
i,ss −

∑
ss∈BSS|b=Fl

Sstore
i,ss

+
∑

ss∈BSS|b=Bss

pSstore
i,ss +

∑
l∈LL|b=Tl

pLexti,l −
∑

l∈LL|b=Fl

pLexti,l −
∑

s∈BS|b=Bs

pSi,s

+
∑

d∈BD|b=Tl

pGV E
i,d +

∑
d∈BD|b=Tl

pIV E
i,d +

∑
d∈BD|b=Tl

pV V E
i,d

+
∑

v∈LVHS|b=Tl

pV HS
i,v −

∑
v∈LVHS|b=Fl

pV HS
i,v = 0 ∀i ∈ T F ,∀b ∈ B (4.28)

Thermal losses to the outside:

pLexti,l =
1

Rl
(Ti,Tl

− Ti,Fl
)− pSwall

i,l ∀i ∈ T F ,∀l ∈ LL (4.29)

Energy stored in prosumer node:

Li,s = CsTi,s ∀i ∈ T F ,∀s ∈ BS (4.30)
pSi,s = Cs(Ti,s − T(i−1),s) ∀i ∈ T F ,∀s ∈ BS (4.31)
Li,s = L(i−1),s + pSi,sh ∀i ∈ T F ,∀s ∈ BS (4.32)
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Energy stored in local storage node:

Lstore
i,ss = ρwaterV store

ss cpwaterT store
i,ss ∀i ∈ T F ,∀ss ∈ BSS (4.33)

pSstore
i,ss = ρwaterV store

ss cpwater(T store
i,ss − T store

(i−1),ss) ∀i ∈ T F ,∀ss ∈ BSS (4.34)

Lstore
i,ss = Lstore

(i−1),ss + pSstore
i,ss h ∀i ∈ T F ,∀ss ∈ BSS (4.35)

The three constraints starting from Equation 4.33 describe the energy stored in any local
storage (Lstore

i,ss ) and power flowing to/from it (pSstore
i,ss ). They work as the three constraints above

(from Equation 4.30), which represent the energy stored in a prosumer node (Li,s) and power
flowing to/from it (pSi,ss). For a local storage, thermal mass is explicitly defined as the product
of the density (ρwater), the specific heat of the fluid-vector(cpwater) and the volume of the storage
(V store

ss ).

Discharge from local storage to the room:

Sstore
i,ss = MStore Room

i,ss cpwater(T store
i,Tl

− Ti,Fl
) ∀i ∈ T F ,∀ss ∈ BSS (4.36)

Mass flow rate limits in local storage circuit:

0 ≤ MStore Room
i,ss ≤ dMmax ∀i ∈ T F ,∀ss ∈ BSS (4.37)

Local storage volume limits:

0 ≤ V store
ss ≤ dV max

ss ∀i ∈ T F ,∀ss ∈ BSS (4.38)

Equation 4.36 defines the power discharged from any local storage to the room. It is the
product of the mass flow rate of the fluid-vector in the circuit connecting the storage to the
heating terminals (MStore Room

i,ss ), the specific heat of the fluid-vector (cpwater) and the temperature
difference between the storage and the room ((T store

i,Tl
− Ti,Fl

)).
Equations 4.37 and 4.38 bound the mass flow rate of the fluid-vector in the circuit connecting

the storage to the heating terminals (MStore Room
i,ss ), and the storage’s volume (V store

ss ).

Power demand of space heating:

PPi,pp = MGen Room
i,pp cpwaterdT gen ∀i ∈ T F ,∀pp ∈ LPP (4.39)

Power demand of local storage:

PP store
i,ss = MGen Store

i,ss cpwaterdT gen ∀i ∈ T F ,∀ss ∈ BSS (4.40)

Equations 4.39 and 4.40 describe the heating demand for space heating and for the local storage,
respectively. The demand is the product of the mass flow rate in the circuit, the specific heat of
the fluid-vector and the temperature gradient between the inlet and outlet of the generator.

Ventilation to share heat gains among prosumers:

pV HS
i,v = ϵ ρairmin(vV E

Tl
, vV E

Fl
) cpairXHS

i,v (Ti,Tl
− Ti,Fl

) ∀i ∈ T F ,∀v ∈ LVHS (4.41)

0 ≤ XHS
i,v ≤ dXmax

i,v ∀i ∈ T F ,∀v ∈ LVHS (4.42)

The two ventilation constraints from Equation 4.41, define the power flowing between any
couple of prosumers (pV HS

i,v ) and the air change per hour (XHS
i,v ), respectively. Power ventilated is

the product of the ventilation system’s efficiency (ϵ), the air density (ρair), the minimum volume
between the two prosumer’ rooms (min(vV E

Tl
, vV E

Fl
)), the specific heat of air (cpair), the air change

per hour (XHS
i,v ) and the temperature difference between the two prosumer’s rooms (Ti,Tl

− Ti,Fl
).

The second ventilation equation bounds the air change per hour to stay within the comfort limits
required by buildings regulations. Nevertheless, in case of specific requirements, parameter dXmax

i,v

can be defined directly by the user.
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Indoor temperature deviation from the target:

Ti,d = tV E
i,d + dT+

i,d − dT−
i,d ∀i ∈ T F ,∀d ∈ BD (4.43)

0 ≤ dT+
i,d ≤ dtmax +

i,d ∀i ∈ T F ,∀d ∈ BD (4.44)

0 ≤ dT−
i,d ≤ dtmax −

i,d ∀i ∈ T F ,∀d ∈ BD (4.45)

The three Equations from 4.43 define prosumers’ indoor temperatures. The first, describe
the indoor temperature as the target temperature (tV E

i,d ) plus a deviation (dT+/−
i,d ). The last

two equations bound the variables representing this deviation. Prosumers decide their target
temperature (tV E

i,d ) and comfort bounds (dtmax +
i,d and dtmax −

i,d ). When any prosumer answers to
DR, he deviates from his target temperature and his reward is proportional to the deviation.

Non negativity:

PPi,pp ≥ 0 ∀pp ∈ LPP (4.46)

PPStore
i,ss ≥ 0 ∀ss ∈ BSS (4.47)

MGen Room
i,pp ≥ 0 ∀pp ∈ LPP (4.48)

MGen Store
i,ss ≥ 0 ∀ss ∈ BSS (4.49)

Li,s ≥ 0 ∀s ∈ BS (4.50)

Lstore
i,s ≥ 0 ∀ss ∈ BSS (4.51)

dT+
i,d ≥ 0 ∀d ∈ BD (4.52)

dT−
i,d ≥ 0 ∀d ∈ BD (4.53)

(4.54)

4.5 Applications and results

4.5.1 The study case

Figure 4.4: ONDe flow chart for the study case

70



We test ONDe with a computer-based study case, where we minimise the heating cost of a com-
munity of three terraced-houses in Dublin, Ireland (terraced-houses are a typical reality in the UK
and Ireland). Figure 4.4 shows the flow chart that we discuss in the Methodology Section, for the
specific study case. Each house has different thermal features, indoor temperature set point, ge-
ometry and occupancy. Figure 4.5 shows the houses’ model in IES VE and summarises prosumers’
thermal mass, temperature range (i.e. day-time and night-time indoor temperature set point) and
demand for space heating. Each house has its own local heating system, which is an electric boiler.
Radiators are the heating terminals and water is the fluid-vector in all the circuits (generator -
heating terminals, local storage - heating terminals, generator - local storage).

Figure 4.5: The three prosumers

Figure 4.6: Tariff structure of ONDe study case
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Energy costs are input parameters for ONDe and heating is electric. Electricity cost is the 3-
tariff time-of-use (TOU) shown in Figure 4.6. It has high-cost hours during mornings and evenings
(£0.3/kWh), mid-cost around noon (£0.2/kWh) and low-cost during the remaining day-time
hours and night (£0.1/kWh). Also demand response costs are input parameters for ONDe: if
any user answers a call by shifting/shaving his heating load during high- and mid-cost hours, he
receives a reward paid by the network operator. The reward is directly proportional to the indoor
temperature deviation from the user’s set point: each user receives £0.05 per each kelvin degree
deviation during an hour (£0.05/K/hr).

The community is willing to change the heat-network according to the optimal design. Design
options are the following two: adding a local TES, consisting in a plastic tank filled by water, and
connecting any two neighbour users by ventilation ducts. In this specific study case, we model
terraced houses; accordingly, we assume that each house can be connected by ventilation to only
its two next neighbours.

The test-bed is written in Julia programming language and the non-linear solver is IpOpt
by JuMP library. Stage 1 runs 144 iterations, each of which is 30-days long; Stage 2 runs 12
iterations, 7-days long and data-series have 1-hour time resolution. The total solving time is
around 50 minutes.

We validate the model in three ways:

• RMSE check: by comparing power demand and indoor temperature output of ONDe Stage
1 to those of IES VE software. We compute RMSE (Root-mean-square deviation) coeffi-
cients and follow ASHRAE guidelines [49]. In building practice, a validation is successful if
RMSE ≤ 0.5. For the presented test-bed, RMSE coefficients stay within this range for all
users (top-left in Figures 4.7 and 4.8).

• Visual check: we also plot power demand and indoor temperature output of ONDe Stage 1
and IES VE software for sample days, as in Figures 4.7 and 4.8. We check that ONDe (solid
lines) and IES VE output (dotted lines) overlap along the sample days, for the three users.

• Convergence check: we require that all the decisional variables converge to a unique value
and that the penalty function converges to zero. Thermal mass Cs and resistance Rl are the
decisional variables of Stage 1 and their convergence to a common value, per each prosumer,
is shown in the first and second plots of Figure 4.9. The bottom-plot in the same Figure
shows the Stage 1’s penalty function converging to zero. The top-plot in Figure 4.10 shows
the convergence of the local storage’s volume, for the three users, to a unique value. The
bottom-plot in the same Figure, shows the convergence of the Stage 2 penalty function.

Figure 4.7: Power demand comparison between ONDe and IES VE
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Figure 4.8: Indoor temperature comparison between ONDe and IES VE

Figure 4.9: Stage 1: C and R convergence to a unique value and penalty function convergence to
zero
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Figure 4.10: Stage 2: Local storage’s volume convergence to a unique value and penalty function
convergence to zero

4.5.2 Results
ONDe’s final strategy reduces the operator’s heating cost by 6.97% during three consecutive winter
months. Users’ heating cost decreases by 17.52%, 23.92% 8.53%, respectively. The operator’s cost
includes the cost of energy and the price to pay for DR actions, and users’ cost is the cost of energy
minus the reward for answering DR calls.

Figure 4.11 compares cost before (black dots) and after optimisation (crosses), per each week
of the three winter months, for the network operator (top-left plot), prosumer 1 (top-right plot),
prosumer 2 (bottom-left plot) and prosumer 3 (bottom-right plot). Figure 4.12 shows the energy
cost before and after optimisation in more detail. It compares costs before and after optimisation
and estimates savings, per each week, for the network operator and the three prosumers. In the
last row, there are average values: the average energy cost before and after the optimisation, and
the related savings.

Prosumer 2 has the smallest heating demand and achieves the largest savings. The house’s
surface area to volume ratio (S/V) and the window-to-wall ratio minimise thermal losses to the
outside. On the contrary, prosumer 3 has disadvantageous S/V and window-to-wall ratios, which
result in a low building’s inertia and high thermal losses to the outside. Because of that, prosumer
3 has the largest heating demand and cost variation along the weeks. Despite these differences, all
the users achieve significant savings.
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Figure 4.11: Cost before and after optimisation for network operator and three prosumers

Figure 4.12: Cost and savings before and after optimisation, by week, for the network operator
and three prosumers

Savings are due to both operations and design optimisation. Despite optimal operations sig-
nificantly improve the process of demand response between the operator and the users, we found
that the optimal design has a larger impact on final savings. ONDe finds that the optimal strategy
is adding a local TES of around 6.25, 4.17 and 5.12m3, to each user respectively, and having a
ventilation connection among users 1 and 2.

With this network design, heating demand is satisfied not only by the local electric heaters,
but also by discharging from local TES and ventilating between users 1 and 2. The further storage
capacity, together with the possibility of sharing heat gains among users, increases the flexibility
provided by the users by either reducing the amount of hours during which the heating system is
on or by lowering the power demand.
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Figure 4.13: Power demand before vs after optimisation

Figure 4.13 compares heating demand of each user before and after optimisation, for two sample
days. Demand before optimisation is in dotted lines, demand after is the solid line in the same
colour. User 1 is in green, user 2 in blue, user 3 in red. The plot also shows the tariff structure in
grey dot-dash line.

Heating demand is overall lowered (peak-shaving) and power peaks are shifted from the highest
to lowest cost hours (load-shifting).

Prosumers 1 and 2 benefit from their houses’ thermal mass in different ways. Prosumer 1 has
the largest thermal mass and temperature set point range among all. Figure 4.14 shows indoor
temperature before and after optimisation, for four sample days (Figure 4.13 and Figure 4.14 do
not represent the same days, but they are a focus to show by a representative sample, the general
behaviour observed along the whole simulation). Prosumer 1 (green lines) has the same strategy
during all the days: he lets the temperature drop during mid-cost hours and overheats just after
(i.e. keeps the heating system on after reaching the set point temperature), during the only one
low-cost hour, which comes just before the evening high-cost peak.

Differently, prosumer 2 (blue lines), whose smaller temperature range does not allow significant
overheating, keeps the temperature steady during the day, until the evening high-cost peak. At
that moment, he lets the temperature drop to reduce thermal losses to the outside and when the
evening high-cost peak ends, he increases the temperature again, just enough to stay above the
night-set point without using the heating system.

Prosumer 3 (red lines) has the smallest thermal mass and the largest heating demand. He
requires large and fast increasing of the indoor temperature during some days (such as the first
two days in Figure 4.14). Furthermore, temperature peaks arise during mid-day, when the energy
cost is higher. These three factors make prosumer 3 the less flexible among all. Thanks to the
optimal design, also prosumer 3 achieves significant savings. The local TES allows him to reduce
the overall demand and the total hours during which the heating system is on (Figure 4.13 shows
that in the second day, prosumer 3 turns on the heating system two hours later).

Prosumer 1 receives heat power from prosumer 2 by the ventilation line. This mainly happens
during night-times and helps user 1 to delay the turning on of the heating system in the following
morning.
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Figure 4.14: Indoor temperature before vs after optimisation

We assume that the network operator pays the cost of the ventilation system for heat sharing
and each user pays his local storage. Ventilation system (ducts, installation and connection to the
local system) costs £3000; the local storage (water tank and connection to the system) costs £1000
for user 1, £767 for user 2 and £863 for user 3. We assume that the heating system is on during
six months per year and that the equipment’s life is 25 years. The estimated payback for operator
and users are lower than twenty years: 19.46, 7.38, 10.13 and 9.02 years, respectively. Table 4.1
summarises investment costs, the operations cost before and after the optimisation, savings and
the estimated payback period per each of the operator and users. Despite the fact that User 1
faces the largest investment cost among the users, he gets the shortest payback period, due to his
mid-high heating demand. On the contrary, User 2, who pays the smallest initial investment, gets
the longest payback period among the users because of his low heating demand.

Table 4.1: ONDe, summary

Investment Op. cost before opt. Op. cost after opt. Savings Payback
[£] [£/6 months] [£/6 months] % [years]

Operator 3000 2212.36 2058.20 6.97 19.46
User 1 1000 774.06 638.48 17.52 7.38
User 2 767 316.64 240.90 23.92 10.13
User 3 863 1121.56 1025.92 8.53 9.02

4.6 Conclusions and future research
We presented ONDe, which is a novel optimisation framework that builds on the thermal models
presented in the previous two Chapters (2 and 3) of this manuscript.

In this Chapter, we discussed how ONDe optimises operations and design of a heat-community.
We presented the context, the methodology, the mathematical framework and how it integrates
a current dynamic energy software. Finally, we tested our approach in a computer-based study
case and we showed the potential to reduce heating cost of a heat-community in Dublin by a
cost-effective, immediate and sustainable solution. The study case optimised heating operations
and design of a community made by three terraced houses, where users and operator participate
to demand response process. We showed that ONDe reduces the operator’s operation cost by
6.97% during three consecutive winter months and users’ cost decreases by 17.52%, 23.92% 8.53%,
respectively. The estimated investment of the extra equipment has a payback of less than one year
for all the operator and users.
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We suggest two directions for future works. The first one is to explore further design options and
compare local to centralised strategies, such as one central heat generator versus local heaters and
a large centralised thermal storage versus smaller local storages. The second direction is on the IES
VE software. During my internship, we experienced two technical issues, one in the heat sensible
balance process and the second one, when running the software with input indoor temperature
data series. The first issue consisted in a wrong calculation of the energy balance by the software
for a given thermal zone: during some time frames, the energy balance was not respected. The
second issue arose during the validation process, when we needed to run the software to output
data demand from fixed indoor temperature input values: the software did not allow to input
the exact values of indoor temperature data, then the output always included a certain noise. A
deeper understanding and analysis would be needed and might enlarge ONDe’s applications. In
fact, in the study case presented in this Chapter, ONDe optimises different buildings within the
same heat-community. Solving the two issues would provide the opportunity to test and validate
ONDe for optimising different thermal zones within the same large building.
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Chapter 5

A Tool for Optimal Refurbishment
Design of Low-Energy Buildings

5.1 Project overview
In this Chapter, we propose a model that aims to fulfill the following three necessities: the demand
for refurbishing the existing built environment, the lack of reliable means to help architects navigate
among the numerous possible technologies and solutions for low-energy constructions, and the
need for a multi-function tool to analyse buildings as complex, integrated systems. We introduce
the Optimal Refurbishment Design (ORD) model that is a novel tool to help architects with the
refurbishment of an existing building or the design of a new one. On the engineering side, the ORD
shows five innovative aspects. First, it opens the way to passive building design while focusing on
affordable solutions. Second, its core component is based on mathematical optimization. Third,
it simultaneously outputs optimal thermal mass and insulation of all the required elements in the
building. Fourth, it automatically accounts for the user’s needs and local regulations. Last, unlike
most of the approaches in the literature, the ORD’s outputs are not limited by any pre-defined
set of materials or strategies. On the mathematical side, the ORD tackles the challenge of solving
mixed-integer, non linear, non-convex problems. We explore and compare two approaches: the first
is a single-stage and the second is a multi-stage model that makes use of decomposition techniques.
We tested the ORD with two study cases. The first is a simple simulated case of a residential home
in Montreal, Canada. The second is a real house in Devon, UK. In the simple case, we found that
the renovated house lowers its annual heating/cooling consumption by 42%. In the realistic case,
the single-stage lowers the annual heating consumption by 6%; the multi-stage process, by 33%.

We published [3] and presented this study in the CISBAT 2021 conference: Carbon Neutral
Cities - Energy Efficiency & Renewables in the Digital Era, EPFL, 8-10 September 2021.
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5.2 Introduction
The research purpose of this Chapter is to find the optimal way to refurbish an existing building
or to design a new one. We aim to present an approach that has potential to improve the current
building practice.

As we discuss in the Introduction of this thesis (Chapter 1), the Member States are required
to achieve zero-emission and fully decarbonisation of the building stock by 2050. Because of that,
refurbishing the existing built environment is essential. For achieving such strict requirements in
short time, not only buildings, but also the designing approach need to be renewed.

We present the ORD, which is a multi-stages model, whose optimisation framework is based on
the thermal model of a unit discussed in Chapter 2. Differently from the EMS project that seeks
to optimise one day-ahead heating and cooling operations, the ORD outputs the optimal design
decisions for the specific building. The ORD’s final refurbishment strategy is the best one that
lowers heating and cooling cost, at the minimum retrofit price.

The ORD’s optimisation framework is more challenging to solve than the EMS, because it is
non-convex and with both integer and continuous decisions (MINLP). Furthermore, it needs to
run more day-scenarios for finding reliable design decisions. We discuss and compare two solution-
process approaches, one single and the other multi-stages. We present novel heuristic approaches,
based on decomposition methods in the literature. We focus on Gradient Descent techniques and
Progressive Hedging algorithm; we test them and study the open questions and limits that they
currently have.

We believe that the ORD has potential to improve the current architectural practice. We tested
the ORD to refurbish a real residential apartment in Devon, UK, and we show that the model can
find a reliable refurbishing strategy. Nevertheless, further tests in laboratories that can monitor
the real effect of the refurbishment strategy over one year would be needed.

This Chapter is structured as follows. First, we discuss the state-of-the-art, focusing on the
limits that the ORD aims to overcome. Second, we present the mathematical framework, by
discussing each ORD’s Stage independently and the decomposition algorithm used. Third, we test
the model with two study cases and two solution-process approaches. Fourth, we tackle the limits
of Progressive Hedging technique and suggest a solution. Finally, we discuss the results, summarise
our contributions and suggest further research works.

5.3 Literature review

5.3.1 Optimization techniques for building design
The complex nature of a building system is well suited to the use of optimization techniques
because they can handle conflicting objectives and each building’s uniqueness. Nevertheless the
application of optimisation to real-world building design is still very limited. Some optimisation
methods are incorporated in software for building simulation, but they mainly integrate results
coming from independent single-function analyses. Almost half of the models proposed to date
are single-objective, and the majority of them minimise energy consumption. Other objectives
sometimes considered are cost minimisation and comfort [50]. Most of the models in the literature
are built ad hoc for a specific study case. For example Pernodet et al. [51] compare single-criteria
approaches with global ones and show that the former do not give robust solutions. However
their study has the following limitations: it runs static and over-simplified algorithms, it only
considers heating demand, and it only works for a specific building and climate. Chantrelle et al.
[52] present a 2-level model to tackle four criteria: cost, energy use, environmental impact, and
comfort. Like [51], they consider existing genetic algorithms, and integrate an external simulator
to calculate energy load. Their study has two main limitations: possible solutions are restricted
to a pre-defined set, and the multi-criteria algorithm was not reliable for real-world applications.
By contrast, Jin and Overend [53] consider renovation strategies instead of individual parameters,
but again the possible outputs are restricted to pre-defined solutions based on practical experience.
Asadi and his team [54] present a combinatorial bi-objective optimization problem that defines a
Pareto front. Its main limitation is the very simple thermal model of the building, which is static
and assumes perfect heating efficiency. Indeed few optimization studies in the literature consider,
or even mention, the thermal mass of the building.
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5.3.2 A further step from deterministic approaches
The current building practice is guided by designers’ experiences and knowledge, helped by regu-
lations, directives, handbooks and guidelines. This “trial-and-error” practice is not robust against
uncertainty of external conditions, such as the weather. We explore mathematical optimisation
techniques to overcome the issue.

Despite its potential, mathematical optimisation techniques is rarely approached. On the other
side, the literature shows the advantages of optimisation analysis, specifically of stochastic ap-
proaches, over the “trial-and-error” current practice.

Correa-Florez et al. study one-day ahead optimal operations and suggest a two-stage stochastic
model to minimise cost [55]. They demonstrate that taking into account uncertainties is important
to avoid high expected cost, which is a typical issue of deterministic approaches.

Lu et al. [56] study and compared the “trial-and-error”, the deterministic and the stochastic
approaches. They show that optimisation analysis always overcomes the “trial-and-error” prac-
tice. Furthermore, they demonstrate that the stochastic approach always perform better than
the deterministic one. Nevertheless, the stochastic approach overcomes the deterministic one but
with limited improvements. On the contrary, large improvements follows when the uncertainty is
reduced before the optimisation analysis.

Because of these reasons, we present two solution process of the ORD: a single and multi-
stage approaches. None of the two problems has stochastic data, but the multi-stage approach
tackles the uncertainty of weather data. It reduces the uncertainty before optimisation by building
representative scenarios, each of which has the same probability. We solve each scenario one after
the other and we iterate the process until any stopping criteria is satisfied. Each scenario solve
affects the following one, defining a multi-stage approach.

Specifically, we study the advantage of using a Gradient Descent method (GD). At the moment
of writing, the Gradient Descent (GD) approach is largely studied. It consists in solving successive
iterations: an appropriately scaled gradient is estimated at the end of each iteration and is added
to the following one.

Haji et and Abdulazeez [57] compare the three GD variants: Batch Gradient Descent (BGD),
Stochastic Gradient Descent (SGD) and Mini-batch Gradient Descent.

The difference among the variants is in the training data used to compute the gradient: the
BGD uses the whole training sample, the SGD uses only one training sample and the mini-batch
GD divides the whole training sample into small batches and updates each of them, independently.

The SGD is much faster and less computationally expensive than others GD. Furthermore, it
can be used for more complex problems and with large training samples. The counter part is that
the SGD does not guarantee to achieve a global optima, neither for convex problem. Because of its
features, the SGD has become a leading method to solve complex model, such as machine learning
and big-data problems. The BGD offers the most precise performance but requires more expensive
running times.

In this Chapter, we explored the BGD approach because of the peculiarities of the ORD model.
The ORD solves a complex problem, which is non-convex, non-linear with mixed-integer decisions,
but the data set is relatively small. Because of the small size of the training sample, the SGD does
not bring any significant improvement compared to the BGD, but could add further complexity to
the problem. On the contrary, the SGD approach is a valid method for the ONDe model (Chapter
4), which is characterised by a large data set.

GD algorithms have two main issues: finding a proper learning rate and getting stuck in local
optima. The learning rate affects the convergence of the GD: if it is too high, the model can move
too fast and miss the minimum without reaching the convergence; if it is too small, the training will
take too long. We tackle the challenge by adjusting the learning rate along the solve. Furthermore,
we define a different rate per each variable. To do that, we implemented the progressing hedging
technique discussed in the next Section. To deal with the second challenge, we studied a Lagrangian
relaxations of the main problem. Specifically, we used the Lagrangian relaxation to find a lower
bound of the main problem.

5.3.3 Progressive hedging algorithm
The ORD model has continuous and integer decision variables. Discrete decisions particularly
challenge the multi-stage approach. Because of that, we study progressive hedging (PH), which
is a scenario-based decomposition technique. Decomposition methods allow to replace a large
complex problem by a collection of smaller problems.
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PH is a dual decomposition method for multi-stage programming, whose algorithm was intro-
duced by Rockafellar and Wets [58]. PH was originally explored to solve continuous problems, until
few studies showed that some heuristic versions of PH could solve discrete but convex problems.
Nevertheless, PH with integer decisions is difficult to implement and convergence is not guaranteed.

Watson and Woodruff innovative algorithm tackles the issue [59] by developing and presenting
several algorithmic enhancements to the current PH. The multi-stage approach of ORD focuses
and implements those that apply to both one and two-sides constraints. Specifically, we look at
the penalty factor ρ and suggest an heuristic method to determine the goodness of the results.

Gade and his team [60] present a method for computing a tight lower bound of the main
problem, within the PH algorithm. The ORD shares the same objective, but with a further
challenge: while Gade studies convex mixed-integer linear problems (MILP), the ORD faced the
issue of solving non-convex mixed-integer non linear problems (MINLP). The resulting difference
is that Gade and his team can rely on the fact that a global solution is guaranteed. On the
contrary, the ORD’s solver can not guarantee a global optima. In addition to that, when a MILP
problem is relaxed or when its integer variables are fixed, it simplifies to be a linear problem (LP).
Nevertheless, this simplification does not apply to non-convex MINLP: when MINLP problems are
relaxed or their integer variables are fixed, they turn to be non-convex non linear problems (NLP),
then the global optima is still not guarantee. Both the ORD and Gade’s algorithm apply the PH
to the main problem and use multipliers to evaluate the Lagrangian Relaxation of that problem,
with the aim of finding the tightest lower bound. Gade and his team evaluate the Lagrangian after
each iteration of the PH. On the contrary, the ORD evaluates the Lagrangian only at the final
termination point of the PH. In one study case, Gade showed that the best lower bound among
those found is not the one at the final termination point. Nevertheless, evaluating the Lagrangian
after each iteration means solving twice more problems than what the ORD does. In addition to
that, there is no guarantee that for non-convex problems, the lower bound found is actually the
tightest bound to the main problem, nor that it is the global solution.

Boland and her team aims to find the tightest lower bound of MILP [61]. Boland finds the best
lower bound by applying the PH algorithm to a primal formulation of the Lagrangian relaxation
of the main problem. Boland proves that her algorithm converges to the optimal Lagrangian dual
value. Nevertheless, this is guaranteed for MILP problems with bounded feasible regions and
it does not apply to MINLP, even if the MINLP is convex. Boland’s method is an alternative
approach of the Steepest Ascent algorithm used in the ORD model, but does not bring further
guarantees.

At the moment of writing, there are no studies in the Literature that tackle the issue of finding
the tightest lower bound of a non-convex MINLP. The complexity that the ORD faces is due to
the fact that it can not rely on solving the problem to global optimality.

5.4 The optimal refurbishment design model (ORD)

Figure 5.1: ORD structure
The ORD is a 2-stage model whose structure is depicted in Figure 5.1. The ORD’s stages are
represented by golden rectangles (the optimization Stage in dark gold, the stages to prepare data
in light gold). The white rectangles show input and output data of each stage: green data come
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from the building/location’s characteristics, gold are output from the ORD’s Stage 1 and blue are
given by the architect. The multi-stages structure makes it possible to overcome several of the
limits of the state-of-the-art.

5.4.1 Stage 1a
Stage 1a is the design condition - maker (DCm). It tackles the issue of choosing relevant design
conditions for building refurbishment/design. In fact, average or extreme conditions by themselves
are inaccurate: designing buildings on the basis of only average external temperatures does not
guarantee that thermal comfort is satisfied during very hot/cold days. On the other hand, consid-
ering the hottest/coldest days might lead to unnecessary expensive heating/cooling systems and
thermal discomfort.

The DCm outputs the “external temperature of design” (texti ) for the particular house location.
Its framework is based on the 2017 ASRHAE Handbook - Fundamentals regulation [35], which
suggests how to find representative external temperatures and solar radiations for buildings’ en-
ergy system design. For a given location, ASHRAE gives weather information associated to its
probability during the year, on the base of 30-years of observations.

The DCm outputs texti of the required days. In the single-stage approach (Sections 5.5.1 and
5.5.2), the DCm outputs two design days: the first one is representative for heating conditions and
the second one, for cooling. For the heating design day, the DCm considers the external temperature
that has 99% probability: the house’s location stays above that temperature during 99% of the
hours of the year. For the cooling design day, the DCm considers the external temperature having
1% probability: the location stays above that temperature during less than 1% of the hours of the
year. In the multi-stage approach (Section 5.5.3), the DCm outputs 12 evaluation days, each of
which represents the typical day of a month.

The framework of DCm is built around the equation suggested in the ASHRAE regulation
(5.1). It gives what the ASHRAE calls “standard hourly profile” (Tdb) that in our terms is the
external design temperature (texti ).

The other terms in the equation are:

• Tdb, des : it is the “monthly design dry bulb” and it is associated to a certain probability. It
is a parameter of a given location and it is provided by the ASHRAE database.

• DRdb : it represents the “mean daily temperature range” associated to the same probability
of the monthly dry bulb.

• f : it is the “hourly fraction” of the design day, given by the ASHRAE 2017a handbook.

This equation is integrated in an algorithm that develops a loop to output the hourly external
design temperatures of the two/twelve days.

Tdb = Tdb, des − f DRdb (5.1)

5.4.2 Stage 1b
Stage 1b is the materials cost and bound - maker (CBm). It allows to consider different building
solutions and any material chosen by the architect. It makes the ORD model adaptable for different
study-cases and overcome the limit of pre-defined solutions.

Input parameters of CBm are:

• rl : Thermal resistance of the l-element in the existing house [kWK ]

• ys : Thermal mass of the s-element in the existing house [kWh
K ]

• cinsulation mat : Cost per square metre of the chosen material for thermal resistance refur-
bishment of walls [ £

m2 ]

• cmassive mat : Cost per cubic metre of the chosen material for thermal mass refurbishment
of walls [ £

m3 ]

• s̃pmax
l : Maximum suitable space for the insulation layer in each wall of the existing house

[m]
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• s̃pref mat : Reference-thickness given by the producer, for a given insulation material [m]

• ṽmax
s : Maximum suitable space for the massive layer in each element of the existing house

[m3]

• ṽmin
s : Minimum suitable space for the massive layer in each element of the existing house

[m3]

• λmat : Conductance of the chosen material for thermal resistance refurbishment [ kWmK ]

• ρmat : Density of the chosen material for thermal mass refurbishment [ kgm3 ]

• cmat
heat : Specific-heat capacity of the chosen material for thermal mass refurbishment [kWh

kgK ]

• al : Surface of element l [m2]

• nwindow : Number of window [-]

• ndoor : Number of doors [-]

• ccoatingl : Cost of coating for the l-window [ £
m2 ]

• cpartl : Cost of part replacement for the l-window [ £
window ]

• cwhole
l : Cost of the l-window having higher R-value, [ £

window ]

• cdecreasel : Cost of the l-window having lower R-value, [ £
window ]

• cdoor +
l : Cost of the l-door having higher R-value, [ £

door ]

• cdoor −
l : Cost of the l-door having lower R-value, [ £

door ]

• drcoatingl : Maximum windows R-value increase by adding coating, [ K
kW ]

• drpartl : Maximum windows R-value increase by replacing part of a window, [ K
kW ]

• drwhole
l : Maximum windows R-value increase by replacing the whole window with one having

higher R-value, [ K
kW ]

• drdecreasel : Maximum windows R-value decrease by replacing the whole window with one
having lower R-value, [ K

kW ]

• drdoor +
l : Maximum door R-value increase by replacing the whole door with one having

higher R-value, [ K
kW ]

• drdoor −
l : Maximum door R-value decrease by replacing the whole door with one having

lower R-value, [ K
kW ]

• cbuilder : Builder’s salary, [ £
hour ]

• hrwork wall R/wall Y/window : Hours of work required for the refurbishment of R-value of walls,
Y-value of walls and room, R-value of window and R- value of door [ hours

wall side/room/window/door ]

For the case of building-refurbishing, the CBm outputs three set of parameters. First, the cost
of material for changing thermal mass (cy,+s and cy,−s ) and thermal resistance (cr,+l and cr,−l ) of
each elements of the existing house (EX). Second, the cost of working for changing R- and Y-
values. Third, the upper and lower bounds of thermal mass (ymax

s and ymin
s ), thermal resistance

(rmax
l and rmin

l ), per each element of the house, according to the refurbishment materials.
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Cost of materials for changing R- and Y- values

The CBm computes costs for increasing thermal resistance (R-value) cr,+l by Equations 5.2. Dif-
ferently, costs of changing R-value of windows are given by three strategies.

When l is a wall:

cr,+l =
cinsulation mat

s̃pref mat

λmat

(5.2)

When l is a window or a door, the cost of material is directly entered by the architect. Three
strategies for windows refurbishment are possible, each of which has a different cost.

For increasing the R-value of windows:

• Strategy 1: adding coatings to the glazing. Its cost is given by parameter ccoatingl , [ £
m2 ]

• Strategy 2: replacing part of the window. Its cost is given by parameter cpartl , [ £
window ]

• Strategy 3: replacing the whole window with one having higher R-value. Its cost is given by
parameter cwhole

l , [ £
window ]

For decreasing windows’ R-value, the only strategy is to replace the whole window with one
having lower R-value. Its cost is given by parameter cdecreasel , [ £

window ]. The EX’s R-value can
increase/decrease up to a specific value, which are input parameter and are chosen by the architect:
drcoatingl , drpartl , drwhole

l and drdecreasel .
Concerning door refurbishment, there is only one strategy: replacing any current door with

one having higher or lower thermal resistance. The cost of the new door having higher (or lower)
thermal resistance is given by parameter cdoor +

l (or cdoor −
l ) and increases (or decreases) the EX’s

R-value by drdoor +
l (or drdoor −

l ).

The CBm computes cost for increasing thermal mass (Y-value) cy,+s by Equation 5.3.

cy,+s =
cmassive mat

ρmatcmat
heat

(5.3)

Cost of materials for decreasing thermal resistance and thermal mass of a element (cr,−l and
cy,−s ) are input chosen by the architect.

Cost of working for changing R- and Y- values

The cost of working is computed by multiplying the builder’s salary (cbuilder) by the time required
for the specific work (hrwork wall R/wall Y/window/door):

cwork windows = cbuilderhrwork windownwindow (5.4)

cwork door = cbuilderhrwork doorndoor (5.5)

cwork R = cbuilderhrwork R (5.6)

cwork Y = cbuilderhrwork Y (5.7)

Upper and lower bounds of R- and Y- values

The CBm outputs R-values’ upper bounds of walls (rmax
l ) by Equations 5.8. Index l represents an

element having thermal resistance in the house.

When l is a wall:

rmax
l = rl +

s̃pmax
l

alλmat
(5.8)
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Lower bound values of thermal resistance (rmin
l ) are the minimum allowed by the building

regulation for the specific house location.
The CBm computes Y-values’ upper and lower bounds (ymax

s and ymin
s ) by Equations 5.9 and

5.10. Index s represents a element having thermal mass.

ymax
s = ys + ṽmax

s ρmatcmat
heat (5.9)

ymin
s = ys − ṽmin

s ρmatcmat
heat (5.10)

5.4.3 Stage 2
Stage 2 is the mixed integer non-linear optimisation problem (MINLP) and takes the output of the
previous stages to find the optimal Y- and R-values, the corresponding cost of refurbishing, and
the estimated heating/cooling consumption of the refurbished house (RE).

We model the house referring to our EMS model, presented in Chapter 2 and published in the
Journal of Building Engineering [1], with some differences. First, the ORD is a MINLP, since it
has both integer and continuous decisional variables. Second, in the ORD, R- and Y- values are
decisional variables. Third, the objective functions are different. Fourth, we keep the constraints
of the EMS model corresponding to “balance at node b”, “branch flows”, “air change per hour in
ventilation lines”, “heat energy from generators”, “energy storage”, “storage level of charge” and
“temperature limit” and we add three new sets of constraints. The first includes Constraints from
5.12 to 5.17 for considering thermal insulation refurbishment, Constraints 5.19, 5.18 for thermal
mass refurbishment, and Constraints 5.21, 5.20 and 5.22 for infiltration refurbishment. The second
set defines indoor temperatures and thermal comfort (Constraints 5.33 and 5.34). The last set
describes the cost function of refurbishment work (Constraint 5.35).

In this Section, we first show sets, parameters and decisional variables. After, we present the
constraints and the objective function, discussing those that differ from the EMS’ framework.

Sets

• I set of time frames, indexed by i

• B set of nodes, indexed by b

• G set of energy resources, indexed by g

• S set of thermal storage, indexed by s

• L set of lines, indexed by l

• W sub-set of lines representing ventilation, crossed by conserved flow, indexed by l ∈ L

• LL sub-set of lines representing thermal losses throughout a wall/window/door element,
crossed by conserved flow, indexed by l ∈ L

• H sub-set of lines representing a heating/cooling system, crossed by non conserved flow,
indexed by l ∈ L

• WI sub-set of lines representing infiltration losses, crossed by conserved flow, indexed by
l ∈ L

• ST RA set of strategies for infiltration refurbishment, indexed by st

• DD set of design days, indexed by d

Parameters

• Fl : Node b ∈ B where line l starts

• Tl : Node b ∈ B where line l ends

• Bg : Node b ∈ B where energy resource g is connected

• Bs : Node b ∈ B where storage s is connected
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• rl : Thermal resistance of line l, before building refurbishment [K/kW]

• rmin
l : Lower bound of thermal resistance of line l [K/kW]

• rmax
l : Upper bound of thermal resistance of line l [K/kW]

• cr,−l : Cost of material for decreasing thermal resistance of line l ∈ L [£/K/kW]

• cr,+l : Cost of material for increasing thermal resistance of line l ∈ L [£/K/kW]

• ys : Heat capacity of storage s ∈ S, before building refurbishment [kWh/(K s)]

• ymin
s : Lower bound of heat capacity of storage s ∈ S [kWh/(K s)]

• ymax
s : Upper bound of heat capacity of storage s ∈ S [kWh/(K s)]

• yairl : Heat capacity of the air mass flowing in line l [kWh/(K s)]

• cy,−s : Cost of material for decreasing the heat capacity of storage s ∈ S [£/(kWh/K)]

• cy,+s : Cost of material for increasing the heat capacity of storage s ∈ S [£/(kWh/K)]

• pGi,b : Sum of power from generators connected to the node b, during time frame i [kW]

• qinti,g : Power generated by people, electronic devices and lighting, during time frame i [kW]

• qsol,Bi,g : Power generated by the direct component of solar rays, during time frame i [kW]

• qsol,Di,g : Power generated by the diffuse component of solar rays, during time frame i [kW]

• tset point : Target temperature of the room, chosen by the user [◦C]

• tmin
i : Minimum temperature allowed in the room, chosen by the user [◦C]

• tmax
i : Maximum temperature allowed in the room, chosen by the user [◦C]

• xmin
i,l : Lower bound of air exchange rate of the ventilation represented by line l, during time

frame i [-]

• xmax
i,l : Upper bound of air exchange rate of the ventilation represented by line l, during time

frame i [-]

• h : Conversion coefficient to pass from energy to power [kWh/kW]

• celectricity : Hourly cost of electricity [ £
kWh ]

• cdiscomfort : Hourly penalty to deviate from user’s target temperature [ £
◦Ch ]

• φrefu : Estimated life time of refurbishment [years]

• φcoat : Estimated life time of coating used for windows’ refurbishment [years]

• cACH
st : Cost of the st-infiltration refurbishment strategy [£]

• ACHoption
l,st : Air change per hour of the st-infiltration refurbishment strategy of line l [-]

• wW : Weight of energy consumption in the objective function [£/years]

• wW : Weight of thermal penalty in the objective function [£/years]

• wR/Y/w/I : Weights in the objective function of R-value refurbishment/Y-value refurbish-
ment/windows refurbishment/infiltration refurbishment, respectively [-]

• µW/T : Correction factor of energy consumption and thermal penalty, respectively [-]

• nday year : Number of days over one year [days]
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Decisional variables

Continuous variables

• Ropt
l : Optimal resistance of line l ∈ LL after building refurbishment [K/kW]

• Y opt
s : Optimal heat capacity of storage s ∈ S after building refurbishment [kWh/(K s)]

• dR+
l : Positive deviation from the initial resistance of line l ∈ LL before building refurbish-

ment [K/kW]

• dR−
l : Negative deviation from the initial resistance of line l ∈ LL before building refurbish-

ment [K/kW]

• dY +
s : Positive deviation from the initial heat capacity of storage s ∈ S before building

refurbishment [kWh/(K s)]

• dY −
s : Negative deviation from the initial heat capacity of storage s ∈ S before building

refurbishment [kWh/(K s)]

• Ti,b : Temperature of node b, during time frame i [◦C]

• dT+
i,b : Positive deviation from the temperature set point of node b, during time frame i [◦C]

• dT−
i,b : Negative deviation from the temperature set point of node b, during time frame i [◦C]

• PL
i,l : Power in line l, naturally flowing from node Fl to node Tl, during time frame i [kW]

• PH,T
i,l : Power reaching node Tl of line l, representing output from the heat pump in heating

mode, during time frame i [kW]

• PH,F
i,l : Power leaving node Fl of line l, representing input to the heat pump in heating mode,

during time frame i [kW]

• PC,T
i,l : Power reaching node Tl of line l, representing output from the heat pump in cooling

mode, during time frame i [kW]

• PC,F
i,l : Power leaving node Fl of line l, representing input to the heat pump in cooling mode,

during time frame i [kW]

• PS
i,s : Power flowing to/from storage s, during time frame i [kW]

• PV
i,l : Ventilation air flow in line l, during time frame i [kW]

• P I
i,l : Infiltration losses in line l, during time frame i [kW]

• ACHopt
l : Air change per hour of infiltration losses in line l [-]

• WH
i,l : Electricity input to the heat pump represented by line l, heating mode [kW]

• WC
i,l : Electricity input to the heat pump represented by line l, cooling mode [kW]

• Li,s : Level of energy stored inside the storage s, during time frame i [kWh]

• Xi,l : Air exchange rate of ventilation represented by line l, during time frame i [-]

• El : Function of the efficiency of an heat pump, working between the temperatures Ti,Fl
and

Ti,Tl
, represented by line l, during time frame i [-] (more details in Appendix E)

• frefu : Function representing the total cost of refurbishment [£]
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Binary variables

• Xcoating
l : It is active (equal to 1) if coating is added to the windows to increase its R-value

• Xpart
l : It is active (equal to 1) if part of the window is replaced to increase its R-value

• Xwhole
l : It is active (equal to 1) if the whole window is replaced to increase its R-value

• Xdecrease
l : It is active (equal to 1) if the whole window is replaced to decrease its R-value

• Xdoor +
l : It is active (equal to 1) if the whole door is replaced to increase its R-value

• Xdoor −
l : It is active (equal to 1) if the whole door is replaced to decrease its R-value

• XR
l : It is active (equal to 1) if work is done to increase/decrease the wall’s R-value

• XY
s : It is active (equal to 1) if work is done to increase/decrease the wall/room’s Y-value

• XACH
l,st : It is active (equal to 1) if the st-infiltration refurbishment strategy of the l-line is

done

Constraints

We refer to Chapter 2, Section 2.4.2 for the explanation of constraints: “balance at node b”, “branch
flows”, “air change per hour in ventilation lines”, “heat energy from generators”, “energy storage”,
“storage level of charge” and “temperature limit”. More details concerning the heat pump’s efficiency
function El can be found in Appendix E.

Constraints from 5.12 to 5.17 define refurbishment decision concerning thermal resistances.
When l is a wall-element, the optimal thermal resistance (Ropt

l ) is bounded within the feasible
range by constraint 5.12 and is defined as the thermal resistance before refurbishing (rl) plus/minus
the optimal increment/reduction (dR+

l − dR−
l ), multiplied by the binary variable XR

l (Constraint
5.13). The binary variable XR

l is equal to 1 if thermal resistance of the l-wall is refurbished,
otherwise it is equal to zero. When l is a window-element, the optimal resistance is given by the
value before refurbishment, plus/minus the optimal increment/reduction (Constraint 5.14). The
optimal increment is equal to the sum of the products between cost and binary variable of all the
strategies: adding coating, partial replacement and whole window replacement (Constraint 5.15).
The optimal reduction is equal to the cost of the window with lower thermal resistance, multiplied
by the binary variable Xdecrease

l . When l is a door-element, the optimal resistance is given by the
value before refurbishment, plus/minus the product between the new door’s cost and the binary
variable (Constraint 5.17). When any l-window and l-door is refurbished, the binary related to the
strategy used is equal to 1.

Constraints 5.18 and 5.19 define refurbishment decisions concerning thermal masses. Con-
straint 5.18 bounds the optimal thermal mass value (Y opt

s ) to stay within the given range. The
optimal thermal mass is defined as the value before refurbishment (ys) plus/minus the optimal
increment/reduction (dY +

s − dY −
s ), multiplied by the binary variable XY

s (Constraint 5.19).
Constraints from 5.20 to 5.22 describe refurbishment to improve infiltration losses. Constraint

5.20 defines infiltration losses (Pi,l) as the product of the optimal air-change-per-hour after refur-
bishment (ACHopt

l,st), the thermal mass of the flux (yairl ) and the temperature difference between
the house and the outside (Ti,Fl

− Ti,Tl
). The optimal air-change-per-hour is given by the sum of

the product of each air-change-per-hour option and the related binary variable (Constraint 5.21).
Differently from ventilation (5.28), infiltration has a constant air-change-per-hour during all the
time frames. The binary XACH

l,st is equal to 1 if any st-strategy of refurbishment is applied. Con-
straint 5.22 forces the sum of the binary variable of all the strategy to be equal to one. By doing
that, only one strategy can be chosen for infiltration refurbishing.

Balance, node b: ∑
l∈LL|b=Tl

PL
i,l −

∑
l∈LL|b=Fl

PL
i,l+

∑
l∈H|b=Tl

PH,T
i,l −

∑
l∈H|b=Fl

PH,F
i,l +

∑
l∈H|b=Tl

PC,T
i,l −

∑
l∈H|b=Fl

PC,F
i,l +
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+
∑

l∈W|b=Tl

PV
i,l −

∑
l∈W|b=Fl

PV
i,l + pGi,b −

∑
s∈S|b=Bs

PS
i,s −

∑
l∈WI|b=Fl

P I
i,l = 0 ∀i ∈ I,∀b ∈ B (5.11)

Refurbishment design :

Thermal resistance refurbishment:

When l is a wall:

rmin
l ≤ Ropt

l ≤ rmax
l ∀l ∈ LL (5.12)

Ropt
l = rl + (dR+

l − dR−
l )X

R
l ∀l ∈ LL (5.13)

When l is a window:

Ropt
l = rl + dR+

l − dR−
l ∀l ∈ LL (5.14)

dR+
l = drcoatingl Xcoating

l + drpartl Xpart
l + drwhole

l Xwhole
l ∀l ∈ LL (5.15)

dR−
l = drdecreasel Xdecrease

l ∀l ∈ LL (5.16)

When l is a door:

Ropt
l = rl + drdoor +

l Xdoor +
l − drdoor −

l Xdoor −
l ∀l ∈ LL (5.17)

Thermal mass refurbishment:

ymin
s ≤ Y opt

s ≤ ymax
s ∀s ∈ S (5.18)

Y opt
s = ys + (dY +

s − dY −
s )XY

s ∀s ∈ S (5.19)

Infiltration refurbishment:

Pi,l = ACHopt
l yairl (Ti,Fl

− Ti,Tl
) ∀i ∈ I,∀l ∈ WI (5.20)

ACHopt
l =

∑
st∈ST RA

ACHoption
l,st XACH

l,st ∀l ∈ WI (5.21)

∑
st∈ST RA

XACH
l,st = 1 ∀l ∈ WI (5.22)

Branch flows:

PL
i,l =

1

Ropt
l

(Ti,Fl
− Ti,Tl

) ∀i ∈ I,∀l ∈ LL (5.23)

PH,T
i,l = El (Ti,Fl

,Ti,Tl
) W

H
i,l ∀i ∈ I,∀l ∈ H (5.24)

PH,F
i,l = PH,T

i,l −WH
i,l ∀i ∈ I,∀l ∈ H (5.25)

−PC,T
i,l = El (Ti,Fl

,Ti,Tl
) W

C
i,l ∀i ∈ I,∀l ∈ H (5.26)

PC,F
i,l = PC,T

i,l −WC
i,l ∀i ∈ I,∀l ∈ H (5.27)

PV
i,l = Xi,l y

air
l (Ti,Fl

− Ti,Tl
) ∀i ∈ I,∀l ∈ W (5.28)

PS
i,l = Y opt

s (Ti,Fl
− T(i−1),Fl

) ∀i ∈ I,∀s ∈ S (5.29)

Air change per hour in ventilation lines:

xmin
i,l ≤ Xi,l ≤ xmax

i,l ∀i ∈ I,∀l ∈ W (5.30)
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Heat energy from generators:

pGi,b =
∑

g∈G|b=Bg

(qinti,g + qsoli,g ) ∀i ∈ I,∀b ∈ B (5.31)

Storage level of charge:

Li,s = L(i−1),s + PS
i,s h ∀i ∈ I,∀s ∈ S (5.32)

Indoor temperature:

Ti,broom = tset point + dT+
i,broom − dT−

i,broom ∀i ∈ I (5.33)

tmin
i ≤ Ti,broom ≤ tmax

i ∀i ∈ I (5.34)

Cost function of refurbishment:

frefu = ww coating fw coating + ww part fw part + ww whole fw whole (5.35)

+ww decrease fw decrease + wdoor fdoor + wR fR + wY fY + wI f I

Where the cost of refurbishing any window is given by:

fw coating :=
∑
l∈LL

ccoatingl alwindowXcoating
l (5.36)

fw part :=
∑
l∈LL

(cpartl nwindow + cwork window)Xpart
l (5.37)

fw whole :=
∑
l∈LL

(cwhole
l nwindow + cwork window)Xwhole

l (5.38)

fw decrease :=
∑
l∈LL

(cdecreasel nwindow + cwork window)Xdecrease
l (5.39)

Where the cost of refurbishing any door is given by:

fdoor :=
∑
l∈LL

((cdoor +
l ndoor + cwork door)Xdoor +

l + (cdoor −
l ndoor + cwork door)Xdoor −

l ) (5.40)

The cost of refurbishing any wall insulation is:

fR :=
∑
l∈LL

(cr,+l dR+
l + cr,−l dR−

l ) +
∑
l∈LL

XR
l cwork R (5.41)

The cost of refurbishing any wall thermal mass is:

fY :=
∑
s∈S

(cy,+s dY +
s + cy,−s dY −

s ) +
∑
s∈S

XY
s cwork Y (5.42)

The cost of infiltration refurbishment is:

f I :=
∑

l∈WI

∑
st∈ST RA

cACH
st XACH

l,st (5.43)

Non negativity:

dT+
i,broom ≥ 0 ∀i ∈ I (5.44)

dT−
i,broom ≥ 0 ∀i ∈ I (5.45)

dR+
l ≥ 0 ∀l ∈ LL (5.46)

dR−
l ≥ 0 ∀l ∈ LL (5.47)

dY +
s ≥ 0 ∀s ∈ S (5.48)

dY −
s ≥ 0 ∀s ∈ S (5.49)

frefu ≥ 0 (5.50)

WH
i,l ≥ 0 ∀i ∈ I,∀l ∈ H (5.51)

WC
i,l ≥ 0 ∀i ∈ I,∀l ∈ H (5.52)
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Constraints 5.33 and 5.34 define indoor temperatures and guarantee thermal comfort inside
the room. During each time frame i, the temperature of the room (Ti,broom) can deviate from the
set point chosen by the user (tset point) by the value of dT+

i,broom (positive deviation) or dT−
i,broom

(negative deviation). Constraint 5.34 bounds the indoor temperature to stay within the comfort
range.

Constraint 5.35 is the cost function of the whole refurbishment work and it includes both mate-
rial and labour costs. A cost is considered only if any binary variable Xcoating/part/whole/decrease/R/Y/ACH

is active. The cost function is made by 7 terms (Equations from 5.36 to 5.43), each of which cor-
responds to a refurbishment work and is discussed in the next Paragraph.

Finally, all the deviation variables are restricted to be non-negative (Constraints from 5.44 to
the end).

Objective function

The ORD’s objective function is constituted by three terms. The first two minimise energy con-
sumption and indoor-temperature deviation from the target, respectively, and they represent the
cost of operations. The last term minimises the refurbishment cost (Equation 5.35) and it is the
sum of the 7 cost functions defined from Equation 5.36 to 5.43.

We now look closely to these 7 cost functions. The fR function associates costs of materials (cr,+l

and cr,−l ) to each change in R-value of a wall-element (dR+
l and dR−

l ) and considers the cost of work
(cwork R

l ) if the binary variable Xl is active (Equation 5.41). The fY function acts similarly to fR,
but for changes in Y-value (Equation 5.42). The fw coating, fw part, fw whole and fw decrease func-
tions minimise the cost of the three windows refurbishment strategies: adding coatings to the win-
dows’ glaze and replacing part of the windows, replacing the whole windows with one having higher
or lower thermal resistance (Equations from 5.36 to 5.39). Per each strategy, the refurbishment cost
is given by the sum of the cost of material (for coating: ccoatingl alwindow , for partial replacement:
cpartl nwindow, for whole replacement: cwhole/decrease

l nwindow) and the cost of labour (cwork window).
A cost is considered if the related binary variable is active (Xcoating/part/whole/decrease

l ). The fdoor

function minimises the cost of replacing any door with one having higher or lower thermal resis-
tance (Equation 5.40). Door refurbishment consists in replacing any current door with one having
higher/lower thermal resistance. The cost of changing is given by the sum of the cost of material
(cdoor +/−

l ndoor) and the cost of labour (cwork door). The f I function minimises the cost of infiltra-
tion refurbishment and it associates the infiltration level after refurbishment (XACH

l,st ) to the cost
of work that it requires (cACH

st ) (Equation 5.43).
Each of the 7 functions and the two terms representing the cost of operations, is multiplied by

a weight (wW/T/R/Y/window) that adjusts the cost over the assumed life of refurbishing materials.
Weights are computed as following:

wW = nday yearµW celectricityφrefu (5.53)

wT = nday yearµT cdiscomfortφrefu (5.54)

ww coating =
φrefu

φcoat
(5.55)

The other weights ww part, ww whole, ww decrease, wdoor wR, wY and wI are equal to 1. The
µW/T values are correction factors and are computed according to degree days. The µW/T values
are equal to the ratio of the degree days given for the house’s location over the degree days estimated
considering that all the days in the year have weather conditions similar to the design days. Degree
days given for the specific location are regularly used in the building practice. They can be found
opensource online (e.g. the BizEE Software at: https://www.degreedays.net) and are usually
based on 5 years of observations.

The objective function is:

min
∑
i∈I

wW
∑
l∈H

(WH
i,l +WC

i,l) +
∑
i∈I

wT (dT+
i + dT−

i ) + frefu (5.56)

5.4.4 Multi-stage approach and progressive hedging decomposition
We explore two solution processes of the ORD: one single- and the other multi- stage. The multi-
stage (MS) approach differs from the single-stage (SS) in the number of design days considered. SS
optimises only two design days, which represent the typical winter and summer days. In contrast,
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MS optimises 12 design days, one per each month of the year, to more realistically represent the
whole typical year. All the design days are built according to ASHRAE guidelines.

The SS optimises the two design days in one solve. Nevertheless, the model failed when trying
to optimise all the 12 days in one solve: the heterogeneity of the 12 days, the complexity of
the model and the large number of discrete variables led the problem to exceed the maximum
number of iterations allowed, without reaching the optima. Because of that, we moved toward a
Gradient Descent approach. We explored and tested some heuristics and SGD approaches, to finally
end to the BGD solution process. To deal with the discreteness of the model, we implemented
the innovative PH algorithm presented by Watson and his team [59]. Differently from Watson’s
algorithm, in Step 10, we replace the absolute values of |x − ˜x(k−1)| with the squared terms√

(x− ˜x(k−1))2.
The final ORD multi-stage algorithm follows. We indicate the objective function in Equation

5.56 as fobj and all the constraints shown in the previous section as Qd.
We show the algorithm for a generic vector x, whose components are decisional variables. In

the ORD model, there are several x-vectors, one per each decisional variable: Ropt
l , Y opt

s , Xcoating,
Xpart, Xwhole, Xdecrease, Xdoor +

l , Xdoor −
l , XR

l , XY
s ans XACH

l,st . In the same way, in the ORD
model there are several w- ρ- x̃k- vectors.

1. k := 0

2. For all d ∈ DD, xd,k := argminx fobj : (xs) ∈ Qd

3. x̃k :=
∑

d∈DD Prd xd,k

4. If xs is a binary variable, then ρ := c
xmax−xmin+1

If xs is not a binary variable, then ρ := c
max((

∑
d∈DD Prd |xs,0−x̃0|),1)

5. For all d ∈ DD, wd,k := ρ (xd − x̃k)

6. k := k + 1

7. For all d ∈ DD, xd,k := argminx fobj + wd,(k−1) xd,k + ρ
2 (x− ˜x(k−1))

2 : (xs) ∈ Qd

8. x̃k :=
∑

d∈DD Prd xd,k

9. For all d ∈ DD, wd,k := wd,(k−1) + ρ (xd − x̃k)

10. gk :=
∑

d∈DD Prd
√

(x− ˜x(k−1))2

11. If gk > ϵ and k < kmax, then go to step 6. Otherwise, terminate.

Where Prd is the probability associated to each d-scenario, which in our case is 1
12 per each.

Index k indicates the iteration and d indicate the scenario. The value ϵ is the termination threshold
and it is any small value close enough to zero. The value kmax is the maximum number of iteration
allowed before interrupting the algorithm.

The value ρ is the penalty factor and it is a open research topic in the literature. In fact, ρ
value heavily affects the convergence. We implement the innovative method presented by Watson
and Woodruff [59], who have found that the optimal value of ρ need not be fixed to a constant
value. Furthermore, it has to be proportional to the specific cost of each decisional variable. They
call their heuristic method, “SEP” and we integrate it to the ORD algorithm (step 4).

Iteration k=0 solves the same objective function as the single-stage approach (Equation 5.56).
The objective function in k+1 iterations differs from the one in iteration k=0, because of the
penalty term (fpen):

fpen := wd,(k−1) xd,k +
ρ

2
(xd − ˜xd,(k−1))

2 (5.57)

So the objective function in k+1 iterations is:

min
∑
i∈I

wW
∑
l∈H

(WH
i,l +WC

i,l) +
∑
i∈I

wT (dT+
i + dT−

i ) + frefu + fpen (5.58)

Where:

fpen :=
∑

lwall∈LL

(wR wall
lwall,d,(k−1) R

opt
lwall,d,k

+
ρR wall
lwall

2
(Ropt

lwall,d,k
− ˜Ropt

lwall,d,(k−1)
)2) (5.59)
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+
∑

lwall∈LL

(wX wall R
lwall,d,(k−1) X

R
lwall,d,k +

ρX wall R
lwall

2
(XR

lwall,d,k − ˜XR
lwall,d,(k−1)

)2)

+
∑

lwind∈LL

(wX coat
lwind,d,(k−1) X

coating
lwind,d,k

+
ρX coat
lwind

2
(Xcoating

lwind,d,k
− ˜
Xcoating

lwind,d,(k−1)
)2)

+
∑

lwind∈LL

(wX part
lwind,d,(k−1)

Xpart
lwind,d,k

+
ρX part
lwind

2
(Xpart

lwind,d,k
− ˜Xpart

lwind,d,(k−1)
)2)

+
∑

lwind∈LL

(wX whole
lwind,d,(k−1) X

whole
lwind,d,k +

ρX whole
lwind

2
(Xwhole

lwind,d,k − ˜Xwhole
lwind,d,(k−1)

)2)

+
∑

lwind∈LL

(wX decr
lwind,d,(k−1) X

decrease
lwind,d,k +

ρX decr
lwind

2
(Xdecrease

lwind,d,k − ˜Xdecrease
lwind,d,(k−1)

)2)

+
∑

ldoor∈LL

(wX door+
ldoor,d,(k−1)

Xdoor+
ldoor,d,k

+
ρX door+
lwind

2
(Xdoor+

ldoor,d,k
− ˜Xdoor+

ldoor,d,(k−1)
)2)

+
∑

ldoor∈LL

(wX door−
ldoor,d,(k−1)

Xdoor−
ldoor,d,k

+
ρX door−
lwind

2
(Xdoor−

ldoor,d,k
− ˜Xdoor−

ldoor,d,(k−1)
)2)

+
∑
s∈S

(wY
s,d,(k−1) Ys,d,k +

ρYs
2

(Ys,d,k − ˜Ys,d,(k−1))
2)

+
∑
s∈S

(wX wall Y
s,d,(k−1) XY

s,d,k +
ρX wall Y
s

2
(XY

s,d,k − ˜XY
s,d,(k−1))

2)

5.5 Application and results
In this Section, we apply the ORD model to two study cases. The first is a simplified, ad-hoc built
study case that optimises the refurbishment of a residential home in Montreal, Canada. We aim
to refurbish the house for reducing its heating and cooling consumption.

The second study case is a real house in Devon, UK. The house’s owner is a retired building
engineer, who recorded and collected his house’s indoor temperatures, thermal mass and resistance
features. For this case, we aim to refurbish the house for minimising its heating consumption (there
is no cooling system).

In Section 5.5.1, we solve the first study case by the single-stage approach, with the aim of
showing how the ORD model works. In Sections 5.5.2 and 5.5.3 we solve the second study case by
the single- and multi-stage approaches, respectively, with the aim of comparing the two solution
processes.

5.5.1 Simplified study case of residential apartment in Montreal, Canada:
single-stage approach

In this Section we use the ORD model to optimise the refurbishing of an apartment located in
Montreal, Canada. The apartment has the same features of the TRAD unit presented in Chapter
2 and shown by the top-image of Figure 2.2.

The equivalent RC circuit is represented in Figure 5.2. In this simplified study case, only 5
nodes and 7 lines represent the whole house system. All internal partitions (internal walls and
floor) are considered together by node 2. In the same way, all external elements (external façade
and roof) are merged together by node 4, and all windows are considered by line 3-5.
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The house has both heating and cooling systems, which are provided by an heat pump. Figure
5.2 shows the heat pump working in cooling mode, between the room and the outside nodes.

Heat gains enter the house in node 3 (yellow arrow in Figure 5.2). Ventilation and infiltration
losses are represented by the purple and blue lines that connect the room to the outside node,
respectively.

The indoor space (node 3), the external walls and the internal walls nodes have thermal mass
(yx in Figure 5.2), which is the equivalent thermal mass of all the elements (internal partitions,
roof, floor and façade).

This Section has the following structure: we first describe the existing house’s features, refur-
bishing and energy costs and computational details. Second, we show the refurbished house with
the optimal strategy of the ORD model. Last, we compare the existing to the refurbished house.

Figure 5.2: RC circuit analogy, Montreal residential unit

The Existing House (EX) We consider as EX the case of a dwelling in a larger building.
The dwelling has only one south-oriented façade and the user aims to reduce the overall heat-
ing/cooling demand. We assume neighbours on all sides at the same temperature as the dwelling.
Heating/cooling demand is satisfied by a heat pump that runs in heating and cooling mode. The
heat pump is centralized at the building level and operates between the outdoor and indoor tem-
peratures. There is a family of four people living in the house and the owner is willing to refurbish
all the walls (internal walls, roof, floor and external façade) and windows. His preference is a
indoor temperature set point of 21 ◦C from 7 a.m. until 9 p.m. (day-time). During night-time, the
indoor temperature can vary between 16 and 25 ◦C.

The data for EX are as follows, where the R- and Y-values of the walls and ceilings are computed
according to the EN ISO 13786. The façade is constituted by 0.015 m of plaster, 0.20 m of concrete,
0.01 m of EPS 030 insulant, and an external 0.02 m layer of natural stone. Its Y-value is 1.19
kWh/K and its external and internal R-values are both equal to 10.34 K/kW. The internal walls
are constituted by 0.015 m of plaster, 0.45 m of bricks and a second 0.015 m layer of plaster. The
ceilings are constituted by 0.015 m of plaster, 0.20 m of bricks, 0.05 m of concrete, 0.015 m of
insulant, 0.05 m of concrete and 0.018 m of linoleum. The Y-values of ceilings and internal walls
are 12.73 kWh/K, and their internal and external R-values are 3.53 K/kW. The windows are made
of 24 mm clear double glazing glass in a PVC frame. The equivalent R-value is 27.78 K/kW. The
living space has a Y-value of 0.69 kWh/K.

The architect carries out R-value refurbishment by adding/removing EPS 030 insulation panels
(same of in EX). A panel costs $14.63/m2, is 0.08 m thick, and has a conductance of 0.03 W/m
K. The maximum suitable space to increase the thermal insulation of each element is 0.1 m.

Thermal mass refurbishment is achieved by adding/removing concrete layers. Concrete costs
$128.04/m3, has a density of 1800 kg/m3 and specific heat of 0.00028 kWh/kg K. The maximum
suitable space to increase the Y-value of each element is 0.08 m.
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The architect can provide a window more insulated than the EX’s one at $682.91 each, and a
worse insulated at $341.45. Furthermore, coating is $17.07/m2 and replacing part of window (ex.
frame) is $256.09 each. The better (resp. worse) window increases (resp. decreases) R by a factor
of 4, the coating by half and the part-replacing by 80%.

Labour costs $20.49/hr; windows refurbishment requires 1 hour of work per window, R-value
refurbishment of the external side of a wall needs 1 hour of work per m2, R- refurbishment of the
inner side, half hour per m2, Y- refurbishment of any wall requires 1 hour of work per m2 and Y
refurbishment of the room needs 4 hours of work.

We assume that the refurbishment lifetime is 20 years for all the materials, except for coating
is 8. Electricity costs $0.34 kWh and penalty for deviating from the indoor target temperature is
1/3 the electricity price. Accordingly, wW = 248.20, wT = 86.87, wcoat = 2.5 and wR = wY =
wpart/whole = 1. The correction factors (µW/T ) are both equal to 0.34. The optimisation runs for
two independent design days for Montreal (average winter external is −24.07 ◦C, during summer
is +22.06 ◦C). The code is written in Julia language and solved by JuMP package; IpOpt is the
NLP solver and Juniper is the MINLP solver. During those days, EX has a heating (resp. cooling)
consumption of 38.37 kWh/2days (resp. 1.77 kWh/2days), for a total of 40.13 kWh/2days.

The Refurbished House (RE) The optimal combination of R and Y found by the ORD lowers
RE’s energy demand by 52% to 19.40 kWh/2days during the two days of design (heating demand
of 17.88 kWh/2days, cooling of 1.52 kWh/2days).

RE guarantees thermal comfort: during day-time, the indoor temperature is always equal to
the user’s target.

The total cost of refurbishing is $2491.17 (£1457.47) and it includes the cost of increasing R-
value of the inner side of the façade ($856.91, £501.37), the cost of increasing R- value of windows
by adding coatings and replacing part of the existing windows ($1534.90, £898.00) and the cost of
reducing Y- value of the room ($99.31, £58.10).

Figure 5.3 illustrates the refurbishing strategy, where EX’s values are shown by black crosses,
RE’s by red dots, and variable bounds by grey lines. The top graph shows Y-values of each node,
while the bottom graph shows R-values for each line representing the insulation of an element.
“Int-walls” include internal wall-partitions, ceilings and floors.

Increasing R- has a larger impact on consumption than varying Y-values. The ORD improves
the insulation of the external envelope of the house, by increasing both the façade’s and windows
R-values. In this example refurbishment of the inner side of the wall has a cheaper cost, but
similar high advantages than of the external side, so this is the solution found by the ORD. For
this specific study case and weather conditions, a low thermal mass brings energy savings. In fact,
lowering the room’s Y is an advantage in winter as it allows the night time room temperature to
drop more rapidly, so lowering thermal losses to the exterior. During summer, when cooling is
required only for few hours of the day and the external temperature fluctuates around the indoor
target, a low thermal mass is also convenient. The ORD finds the optimal compromise for the
winter and summer conditions.

Performance Validation: EX vs RE In this Section, we validate the strategy by comparing
the annual consumptions of EX and RE. We now use the Stage 2 of the ORD model as an energy
simulator with fixed R and Y values. In the case of EX, they are fixed to the EX’s values. Similarly,
for the RE, they are fixed to the optimal values found. We run one-year simulations and we use
real weather data from 2007 for Montreal.

We find that RE’s annual energy consumption (1708.20 kWh/year) is 42% lower than EX’s
(2922.22 kWh/year). The one year simulation confirms the improvements estimated by the opti-
mization. The estimated payback is 6 years.
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Figure 5.3: R-value and Y-value comparison

5.5.2 Real study case of residential apartment in Devon, UK: single-
stage approach

In this Section, we use the ORD model to optimise the refurbishment of a private house in Devon,
UK. The Section has the same structure of the Montreal study case: we first describe the existing
house’s features, refurbishing and energy costs and computational details. Second, we show the
refurbished house after optimising two design days in only one solve (single stage approach). In
the following Section 5.5.3, we will discuss the multi-stage approach applied to this same study
case of a residential house in Devon.

The house’s floor plan, elevation plans and recorded indoor temperatures are shown in Appendix
A. The house’s thermal features (thermal mass and thermal resistance, geometry) location, energy
costs, heating operations and construction details are shown in Appendix B. The house’s owner
provided and wrote all the documents in Appendixes A and B.

The owner is willing to refurbish all the walls (internal walls, roof, floor and external façade),
doors and windows, including the annex and conservatory. His preference is an indoor temperature
set point of 19 ◦C from 7 a.m. until 9 p.m. (day-time). During night-time, the indoor temperature
can vary between 13 and 27 ◦C.

The equivalent RC circuit is represented in Figure 5.4 and discussed in the following Section.

The Existing House (EX) This study case differs from the previous one (Section 5.5.1) for
the following reasons:

• The complexity of the equivalent RC circuit:

– the house in Devon has three separated thermal zones (the main house, the annex and
the conservatory);

– it has several types of external walls, internal walls, floor, doors and windows;

– each element type is modelled separately by a specific node:

∗ there are three thermal zones (green nodes 1, 2 and 3 in Figure 5.4): the main
house (bedrooms, kitchen, living room, bathroom and hall), the annex and the
conservatory;

∗ there are two types of internal walls: single (SL) and double leafs (DL) (orange
nodes 5, 4, 9 and 12);
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∗ there are two types of external walls: single (SL) and double leafs (DL) (blue nodes
8, 11 and 14);

∗ there are five types of windows (lines with blue rectangles): double glazed windows
in the house; double glazed windows in the conservatory; single glazed, french-style
windows between the conservatory and the house; double glazed windows between
the house and the annex; single glazed windows in the annex;

∗ there are two types of doors (lines with brown rectangles): the house’s front door
and the one dividing the house and the annex;

∗ there are two types of roof: the house’s roof, which is mainly made of wood (red
node 7) and the conservatory’s and annexe’s one, which is made of transparent
plastic (lines with red rectangles);

∗ there are three types of floor (grey nodes 6, 10 and 13): the suspended wooden
house’s floor and the concrete conservatory’s and annexe’s floors.

• The house in Devon has only heating system but not cooling. The heating system is a
traditional gas boiler (red arrow in Figure 5.4) and the gas costs £0.033/kWh. The energy
efficiency of the gas boiler is 0.94;

• The house in Devon is a detached house (i.e. there are no neighbours).

Refurbishing materials, costs, strategies and occupancy are the same as for the Montreal study
case.

External and ground temperatures come from MIDAS CEDA open source database. We refer
to the closest station to the house’s location (Newton Abbot, QTQ12), which is Exeter airport.

Since the house in Devon has only heating system but no cooling, the optimisation runs for
two winter design days of Devon (average winter external temperature is −2.4 ◦C). The code is
written in Julia language and solved by JuMP package; IpOpt is the NLP solver and Juniper is
the MINLP solver.

Figure 5.4: RC circuit analogy, Devon residential unit

The Refurbished House (RE) The ORD (SS) refurbishment strategy lowers the estimated
yearly operations cost of the EX house by 6%. The operations cost includes the cost of gas to
run the heating system and the cost of deviating from the indoor target temperature (cost of
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discomfort). The estimated yearly cost of operations of the house goes from £402.37/y (EX) to
£378.09/y (RE SS), leading to a saving £24.28 per year. The cost of refurbishment has a payback
of less than 17 years (Table 5.3).

The whole refurbishment work costs £406.49 and it consists in only a change of windows’
insulation. The optimal strategy is to increase thermal resistance of two window types: the dou-
ble glazed windows of the house and the single glazed, french-style windows between the sitting
room and the conservatory (see floor plan in Appendix A). This increment is achieved by adding
coating to the glass. The double glazed windows increase their thermal resistance from 25.96 to
38.94K/kW ; the french-style windows from 60.92 to 91.37K/kW (Table 5.2).

Windows’ thermal transmittance has the largest impact on the house’s energy consumption. In
addition to that, adding a coating layer to the existing windows is the cheapest refurbishing work.

Both the simplified study case of Montreal and this of Devon (SS), refurbish windows’ insulation,
but Montreal case increases also the external walls’ thermal insulation and lowers the room’s
thermal mass. The Montreal case invests more in the refurbishment and achieves largest savings.
This is due to two reasons. First, Montreal’s more severe winter turns out in larger cost of
operations but refurbishment works have the same cost as the Devon study case: the ratio of
investment over savings is more advantageous for the Montreal case than for the Devon one.
Second, the Montreal case optimises both heating and cooling conditions, while the Devon case
solves only winter conditions and might miss or underestimate the benefit of lowering the house’s
thermal mass during summer scenarios.

The Devon and Montreal study cases take similar short running time, both less than 3 minutes.

5.5.3 Real study case of residential apartment in Devon, UK: multi-
stage approach

The ORD SS approach finds the optimal strategy assuming that the weather conditions during
each day of the whole refurbishment life (20 years for these study cases) are similar to those of the
two design days. The house in Montreal has both heating and cooling system, so the two design
days are the January and July typical days for winter and summer conditions, respectively. The
house in Devon has only the heating system, so the SS approach runs only one winter design day,
which is the month of January.

To analyse the solve, we find the typical day of each month of the year, according to the
ASHRAE guidelines and we solve again the ORD SS for each of these day, independently. Table
5.1 shows the estimated operations cost during the refurbishment life (e.g. 20 years), based on each
of the 12 evaluation days. This is the cost of operations if all the days have weather conditions
similar to the evaluation day. The first column is the typical day used (e.g. day 1 is January);
the second column is the estimated operations cost of the EX, over 20 years; the third column is
the estimated cost of the house after refurbishment by the SS approach, over 20 years. The Table
shows that the estimated cost largely depends on the evaluation day (i.e. on the assumed weather
conditions). The SS approach only considers one or two among these typical days, whereas the MS
approach considers all the 12 evaluation days to better represent the average weather conditions
of the year. The MS approach solves, iteratively, all the 12 scenarios, each of which represents a
typical day. After solving, the ORD finds the best refurbishment strategy for all the 12 evaluation
days. The code is written in Julia language and solved by JuMP package; IpOpt is the NLP solver
and Juniper is the MINLP solver. Each scenario has 2454 variables, among which 63 are binary
variables.

Table 5.1: Estimated cost of operations during refurbishment life, based on each eval-
uation day
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Evaluation day EX [£/20y] RE (SS) [£/20y]
1 12219.45 11481.40
2 11800.00 11108.90
3 12606.24 11824.90
4 12286.26 11519.50
5 8757.44 8275.08
6 3764.33 3467.12
7 1945.63 1772.60
8 1932.95 1759.97
9 4481.65 4244.79
10 7041.21 6650.31
11 9323.65 8806.69
12 10409.36 9831.03

Average 8047.35 7561.86

The Refurbished House (RE) The ORD MS’s refurbishment strategy is more efficient than
the ORD SS’s one and lowers the estimated yearly operations cost of the EX house by 33%. The
estimated yearly cost of operations of the house goes from £402.37 (EX) to £269.56/y, leading to
a saving of £132.81 per year. The cost of refurbishing has a payback of less than 13 years (last
row in Table 5.3).
The whole refurbishment work costs 1635.98£ and it consists in improving windows and external
wall insulation and in lowering the thermal mass of the house’s living space. Windows refurbish-
ment is the same of the SS approach. In addition to that, the MS approach increases thermal
insulation on the inner side of the double leaf external walls from 4.9950 to 22.5355K/kW . This
work costs £1165.44. Furthermore, the MS approach reduces the house’s thermal mass from 1.0780
to 0.5390kWh/K, for a cost of £64.04. The house’s thermal mass is given by furniture and air in
the living space, excluding the annex and conservatory.
Differently from the SS, the MS approach solves not only winter weather conditions. In fact, it
optimises refurbishment considering the average weather of each month of the year and this gives
reasons to a larger refurbishing investment. We also notice that the strategy is similar to the
simplified case of Montreal. In fact, the Montreal case also solves both winter and summer condi-
tions, even if in a simplified manner. The two cases (Montreal and Devon MS) find that increasing
windows’ and external walls’ insulation and lowering the house’s thermal mass, reduce the overall
consumption. The SS approach, which solves only winter conditions, limits the refurbishing to the
only windows’ insulation. When testing the two SS’s and MS’s strategies over one year, we find
that the MS’s refurbishment is much more effective: it achieves larger savings with lower payback
times.
The MS’s running time is significantly longer than for the SS approach. The MS requires almost
one day to solve, while the SS needs only few minutes. Since it is a design decision problem, both
running times are acceptable.
The following table summarises the refurbishing strategy of the SS and MS approaches. The table
reports only the elements that have been refurbished by at least one among the two strategies.

Table 5.2: Refurbishment strategy comparison
Element EX RE (SS) RE (MS)

House double glazed windows [K/kW] 25.9600 38.9400 ↑ 38.9400 ↑
French single glazed windows [K/kW] 60.9200 91.3700 ↑ 91.3700 ↑

Ext walls (DL), inner side [K/kW] 4.9950 4.9950 22.5355 ↑
House’s air and furniture thermal mass [kWh/K] 1.0780 1.0780 0.5390 ↓

The Table below shows operations cost during the assumed refurbishment life, operations cost dur-
ing one year, cost of refurbishment, savings after refurbishment and payback. The Table compares
the existing (EX) and refurbished houses by the two approaches (RE (SS) and RE (MS)).

Table 5.3: Cost, savings and payback comparison
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EX RE (SS) RE (MS)
Cost of operations during refurbish. life [£/20y] 8047.35 7561.86 5391.10

Yearly cost of operations [£/y] 402.37 378.09 269.56
Total cost of refurbishment [£] - 406.50 1635.98

Yearly savings [£/y] - 24.28 132.81
Payback [years] - 16.75 12.32

5.6 The challenge of the penalty factor ρ

In this Section, we present a deeper study of the penalty factor in Progressive Hedging (PH)
algorithm.
At the moment of writing, dealing with the penalty factor ρ is an open challenge. The choice of
ρ value significantly affects the convergence of the algorithm. The ORD model makes use of the
heuristic method of “selecting per-element” (SEP), suggested by Watson and Woodruff [59] and
explained in Section 5.4.4. Despite the novelty of the approach, we found that the SEP method
still has issues that need to be studied.
In this Section, we show a study case where different values of ρ led to different feasible solutions.
We present an approach to deal with the issue and judge the goodness of the solution found. The
approach consists in two analyses. First, we find the feasible solution of the main problem and
we compare it to each optimal solution found. In fact, the optimal solution might be infeasible if
perfect convergence is not reached. Second, we apply Lagrangian Relaxation (LR) technique with
Steepest Ascent method to find the lower bound of the main problem. Nevertheless, the complexity
of the study case challenges the MINLP solver, which can not guarantee a global solution for either
the relaxed or the main problems. Because of that, we solve several iterations of the LR problem,
under different starting conditions and we find the best lower bound to the main problem. We call
this approach as “multi-start method”.
Finally, we use the lower bound found to judge the goodness of the optimal solution.

5.6.1 The study case and the issue
We studied the reliability of the ORD model by solving different study cases, which are based on
the residential apartment in Devon (Section 5.5.3) with some variations in the input parameters. In
this Section, we discuss one among these experiments, which is a representative case to show how
the progressive hedging algorithm is sensible to the value of ρ. The only difference from the case
solved in Section 5.5.3 is the cost of gas, which we have increased from £0.033/kWh to £0.1/kWh.
We solve the problem by using different values of ρ. In some variants, we scale ρ values of all
decisional variables, and in some other variants we scale ρ values for the only continuous variable
representing the thermal resistance of walls (Ropt

lwall). In this Section, we focus and discuss those
variants that converged within the maximum number of iteration allowed (i.e. 101). These variants
are:

• Test 2 : ρ values of each variable is computed following the SEP method. We refer to these
ρ values as ρl and to the values associated with thermal resistance of walls as ρR wall

lwall ;

• Test 2a : ρ values of Ropt
lwall are decreased by 0.3: ρR wall

lwall = 0.3 ρR wall
lwall ;

• Test 2b : ρ values of Ropt
lwall are decreased by 0.6: ρR wall

lwall = 0.6 ρR wall
lwall ;

• Test 2c : ρ values of Ropt
lwall are increased by 1.4: ρR wall

lwall = 1.4 ρR wall
lwall ;

• Test 2d : ρ values of Ropt
lwall are increased by 1.8: ρR wall

lwall = 1.8 ρR wall
lwall ;

• Test 2e : ρ values of Ropt
lwall are increased by 2: ρR wall

lwall = 2 ρR wall
lwall ;

• Test 2f : ρ values of all variables are increased by 1.4: ρl = 1.4 ρl;

Test 2a has the smallest ρ values that can achieve convergence within the maximum number of
iterations.
The seven variants have different convergence behaviour and also converge to different solutions,
some of which are almost identical. Table 5.4 compares the seven solves.
Test 2 is the fastest variant to achieve convergence, since it needs only 15 iterations. All the
seven variants satisfy the stopping criteria of g < ϵ, where ϵ = 0.001 and reach the acceptable

101



convergence. As a reminder for the reader, the g value is one of the two stopping criterias in the
PH algorithm and it is computed as shown in step 10. Test 2 achieves the g value that is the
closest to 0: 1.368239119373996e−20. By contrast, the other tests are slower and farther from 0,
though still very close.
The average objective value among all the scenarios is significantly higher in Test 2 than in the
other variants. Moreover, tests 2b and 2c find very similar values, which differ from each other
only after the 14th decimal place. Similarly, tests 2d, 2e and 2f found very similar values that differ
only after the 6th decimal place.
All tests except tests 2 and 2a, find almost the same optimal refurbishment strategy, which consists
in adding coating to the double-glazed windows of the house and to the window between the kitchen
and the annex (Xcoating

1 and Xcoating
2 ), replacing the single-glazed french-style window between

the sitting room and the conservatory with one having higher thermal resistance (Xwhole
3 ) and

increasing thermal insulation on the inner side of the wall between the sitting room and the
conservatory (Ropt

11 wall). In contrast, test 2 finds that the optimal strategy is to refurbish only
windows but not the wall. Accordingly, the refurbishing cost of test 2’s strategy is significantly
cheaper than the one of the other tests, which are very similar to each other. The second cheapest
strategy is found by test 2a. The refurbishment strategy is the same as tests 2b, 2c, 2d, 2e and
2f, except for walls’ insulation works. In fact, variant 2a refurbishes Ropt

12 wall instead of Ropt
11 wall:

it increases thermal insulation on the outer side of the wall between the sitting room and the
conservatory, instead of the inner side.

Table 5.4: Variant comparisons
Var. ρ Iter. g last iter. Ave. obj. val. Ref. strat. Ref. cost

Xcoating
1

2 ρl 15 1.368239119373996e-20 18066.785250000000 Xcoating
2 753.9998077747085

and Xwhole
3

Xcoating
1

2a 0.3 ρR wall
lwall 101 0.0009676442605750782 17985.429364490952 Xcoating

2 807.0474583333333
Xwhole

3

and Ropt
12 wall

Xcoating
1

2b 0.6 ρR wall
lwall 63 0.0009846270979866189 17985.734033333334 Xcoating

2 813.6494290733655
Xwhole

3

and Ropt
11 wall

Xcoating
1

2c 1.4 ρR wall
lwall 47 0.0007953173783655342 17985.734033333330 Xcoating

2 813.6476283519071
Xwhole

3

and Ropt
11 wall

Xcoating
1

2d 1.8 ρR wall
lwall 33 0.0008565754484673228 17985.734031256503 Xcoating

2 813.6507083333332
Xwhole

3

and Ropt
11 wall

Xcoating
1

2e 2 ρR wall
lwall 31 0.0004915905942417338 17985.734032047818 Xcoating

2 813.6508500000001
Xwhole

3

and Ropt
11 wall

Xcoating
1

2f 1.4 ρl 55 0.0005406332043068499 17985.734031135737 Xcoating
2 813.6508166666667

Xwhole
3

and Ropt
11 wall

5.6.2 The feasible solution
Since none of the seven variants achieves perfect convergence (i.e. g = 0 in Step 10), we expect
that all the seven optimal decisions will be slightly infeasible. The fact that the final decision is
infeasible is because scenarios do not quite agree on the associated refurbishing strategy. We aim
to find a close feasible solution for each of the variant.
After averaging the final investment from a PH run over all scenarios, we use the common value of
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each variable and run one single iteration of all scenarios with variables fixed. We find the resulting
objective value (feasible solution), consisting in the cost of operations and of refurbishment and we
compare it to the values found by the seven variants’ infeasible PH solutions. We find that all the
seven variants are only slightly infeasible, since the feasible solution differs from the infeasible only
after the 3rd decimal place. It follows that the PH problem not always finds the global optima. All
tests except for 2a, got stuck in a local optima and could not reach the global one. Test 2a might
have found a value that has potential to be the global solution to the problem. The next step is
judging the goodness of this solution by analysing the Lagrangian relaxation of the problem.
To summarise, the steps in getting the feasible PH solution are:

1. Run the PH algorithm until it converges, for different values of ρ. This will be nearly infeasible
if the value of g differs from zero in Step 10.

2. For each case in (1), find a corresponding feasible solution by using the average investment
in all the evaluation days.

3. The best of the feasible solutions in (2) is the best candidate solution.

5.6.3 Lagrangian relaxation to find a lower bound
In this Section, we show how to use the relaxed version of the main problem to judge the goodness
of the optimal strategy. First, we define the Lagrangian as a relaxation of the main problem,
referring to the mathematical framework of Prof. Kenneth McKinnon in Appendix D and we
solve the problem by the Steepest Ascent search. Second, we iteratively solve the relaxed problem
to find the highest Lagrangian values (L) and we collect the Lagrangian multipliers (w). If the
Lagrangian value is a global solution, it is a lower bound of the main problem value (V ). The
highest Lagrangian value, is the tightest lower bound to the main problem. Nevertheless, for this
study case the MINLP solver could not find the global solution. Because of that, we move to the
third step: we solve a further single iteration of the Lagrangian problem with the stored Lagrangian
multipliers. We repeat this solve with different warmstart (i.e with different initial values) of the
decisional variables, where the starting values are feasible solutions of the main problem V . At the
end of each solve, we collect the Lagrangian value of each scenario. Fourth, we compare all the
values from different warmstarting by finding the minimum value of each scenario. The average
of all the scenarios is or is close enough to the global solution of the Lagrangian problem and it is
the lower bound of the main problem.
Steps in getting a lower bound on the optimal feasible solution can be summarised in the two
following:

1. Iteratively minimising the Lagrangian relaxation of the main problem with Steepest Ascent
search, varying the Lagrangian multipliers in each iteration.

2. Once the Lagrangian converged to a maximum value, test if this is the global minimum for
the converged multiplier values. To do that, perform multiple runs of the MINLP while
minimising from different warmstart of the refurbishing variables.

Problem relaxation In this Paragraph, we present the relaxation of the main problem as La-
grangian.
The main problem minimises V given by:

V = min
x,y1..yn

f(x) +
∑
d

Prdgd(x, yd) (5.60)

s.t. x, yd ∈ Fd ∀d ∈ DD

Where DD is the set of evaluating days. There are n scenarios and scenario d has probability Prd,
so

∑
d Prd = 1. Variable x is common to all scenarios and variable yd occurs in scenario d only.

The feasible regions are of the form x, yd ∈ Fd.
We define hi(x, yi) = f(x) + gi(x, yi), then the main problem becomes:

V = min
x1..xn,y1..yn

∑
d

Prdhd(xd, yd)

s.t. xd =
∑
j

Prjxj ∀d ∈ DD
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The Lagrangian relaxation (L(w1..wn)) with multipliers Prdwd is defined as:

L(w1..wn) =
∑
d

PrdLd(wd) (5.61)

where:

Ld(wd) = min
xd,yd

hd(xd, yd) + (wd − w̃)xd (5.62)

s.t. xd, yd ∈ Fd

and w̃ is the average of the wd:

w̃ =
∑
i

piwi

We use the Steepest Ascent approach to update the Lagrangian multipliers wd with:

wd := wd + γPrd(x
∗
d − x̃∗) (5.63)

where γ is a parameter controlling the step size and the optimal solution of Equation 5.61 for
current value of wd is x∗

d with x̃∗ =
∑

j Prjx
∗
j .

Find the global solution We iteratively solve the Lagrangian problem (5.61) to find the max-
imum value, which is the tightest lower bound to the main problem, provided all the individual
problems (5.62) are solved to global optimality:

V ≥ L = max
w1..wn

L(w1..wn) (5.64)

To try to ensure that the L(w1..wn) value is a global solution, we apply the multi-start method:
we fix the Lagrangian multipliers to the values that give L = maxw1..wn

L(w1..wn) and run several
solves with different warmstart of the decisional variables. For this study case, we find that the
problem easily got stuck in local solutions, since the multiple solves give different optimal values.
We look at the minimum value over the solves of each Ld(wd) separately and we compute the
minimum of L(w1..wn) as the weighted sum of all Ld(wd). The value found is the best close lower
bound to the main problem.
For the study case, the lower bound found is 15442.289025000004. The optimal solution from the
PH (test 2a) is 17985.429364490952, then the lower bound is 0.86 of the optimal value. The gap
between the optimal solution and the lower bound depends on the peculiarity of the problem. We
can not guarantee yet that the PH optimal solution is the global optimum, but we restricted the fo-
cus for further analysis. For the final purpose of refurbishing the house, the ORD model has found
a valid strategy, which can be further investigated by fixing any decisional variable and search-
ing for any optimal solution between the values of 15442.289025000004 and 17985.429364490952.
Moreover, we provided an approach to find the PH feasible solution of each variant, which allows
to exclude local optima and focus on only one potential global solution.

5.7 Conclusions and Future Research
We presented and tested the ORD model, which is a novel 2-stages MINLP optimization framework
to assist architects with building refurbishment and design. Our innovative contribution is to use
optimisation techniques to achieve solid decisions in the building practice. We proposed a model
to find the best refurbishment of an existing house or to design a new one. The model adapts
to different house design and has potential to improve the current building practice, which is
mainly based on personal experience and software simulations. The ORD model deals with the
mathematical challenge of solving non-linear, non-convex, mixed-integer optimisation problems.
We faced the issue of the solver getting stuck to local optimum and we presented an novel heuristic
approach to estimate the global solution.
We optimised two study cases: the first is a simplified case of a residential apartment in Montreal
and the second is a real private house in Devon. We discussed two solving approaches: a single-
(SS) and a multi-stage (MS) solution process. First, we solved the Montreal simple case by the SS
approach to show how the ORD model works. After that, we solved the Devon case by the two
approaches, to compare them. We found that in the simple case of Montreal, the renovated house’s
heating/cooling consumption is 42% lower than that of the existing house, with a refurbishment
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payback of 6 years. In the realistic case of Devon, the renovated house’s heating cost is 6% (SS)
and 33% (MS) lower than that of the EX, with a refurbishment payback of less than 17 (SS) and
13 (MS) years.
We conclude that, if both winter and summer conditions are considered, the ORD SS approach
finds reliable strategies for simple house’s structures. The SS model solves in a very short running
time, which suits the preliminary stage of building design. When the house’s structure is more
complex or a detailed analysis of each thermal element is needed (e.g. two different floor types,
doors, different vertical partition types, specific windows’ location or type etc.), the MS approach
is more accurate. It requires longer running times than the SS, but still acceptable for taking
decisions in the design stage.
For future works on the engineering side, we suggest four open questions: the possibility of refur-
bishing the heating/cooling system (e.g. changing from a gas boiler to a heat pump); the optimal
design of sun-shadings; the integration of a local energy storage and the possibility of adding renew-
able energy sources, such as PV panels. On the mathematical side, there are still open challenges
to be explored in applying the Progressive Hedging algorithm. Specifically, a deeper understanding
of the penalty factor ρ and how it affects the problem’s convergence would be needed. We suggest
the study of varying ρ values along the solve of the main PH problem. Starting from an heavier
penalty (i.e. large ρ values) and lowering the penalty after a certain amount of iteration, might
help the convergence. The effect of lowering ρ values along iterations would be similar to the one
of relaxing the main problem. On the programming side, we faced the issue that the MINLP
solver could not guarantee the global optimum for the specific study case and indeed often found
significantly sub-optimal solutions: developing current open-source solvers or testing new ones that
can provide global solutions, would be of interest.
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Chapter 6

Inferring thermal features for smart
city modelling

6.1 Project overview
In this Chapter, we present the work started during my internship within the Energy Power Group
(EPG) at the University of Oxford. At that time, the EPG was collaborating with the City Council
in the Local Energy Oxfordshire project (LEO), which aimed to decarbonise the City of Oxford.
This internship gave us the opportunity to understand and tackle real world issues, such as dealing
with missing and incomplete data set.
In this Chapter, we present a novel optimisation framework (RCT) to infer thermal parameters of
a house or a thermal storage. The objective is to simply, but significantly, represent each house of
a building stock. Furthermore, we want to do that by facing the common reality of having missing
and unreliable data.
We test our approach with two study cases. In both cases, we aim to find thermal parameters of
a UK house and we only know its heating demand. The second study case differs from the first
because it simulates the case in which the external temperature data are inaccurate. We show that
the RCT recognises and accounts for the increased losses due to the wind and for heat gains coming
from the sun. We compare RCT’s results to a benchmark, which is an analytic iterative approach.
We show that the error between the RCT’s estimated thermal resistance and the benchmark is
0.2% and 0.4% for the case without and with external temperature noise, respectively. The error
for the thermal mass value is 0.2% and 2.8%, respectively and the error for the indoor temperature
is 0.2% and 1.1%, respectively.
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6.2 Introduction
The research purpose of this work is providing a tool to support large scale analysis at the city
or country level. An example of these analyses is testing the effect of a new energy policy or
the introduction of a new technology, such as decarbonising the residential sector of a city by
changing all gas boilers to heat pumps. These analyses focus on relative effects and prioritise
overall tendencies over details: the main purpose is detecting problematic users, identifying zones
that have more potential than others and forecasting energy savings and costs. The LEO project
makes use of these analyses. It runs trials and analysis to test new technologies and services,
with the purpose of understanding their impact on local people and communities. The aim is
decarbonising the Oxfordshire area and to accelerate the UK’s transition to zero-carbon energy
emissions. During my internship within the University of Oxford, the research team was interested
in estimating the relevant parameters to represent each house of a building stock by only one value
of thermal mass (C) and one of thermal resistance (R). The result of our collaboration is the RCT
model presented in this Chapter.
There are four main reasons and needs behind this study. First, effective energy simulations
analyses need reliable models of the building stock, but recent studies have found that this is not
always the case. In fact, it has been shown that, despite many energy simulation software are
already in use, there are significant discrepancies between expected energy performances and real
applications [62]. A better estimate of buildings’ thermal transmittance (R), mass (C) and indoor
temperature is required for studying energy policies’ effectiveness, building design, construction
and refurbishment.
Second, when studying a building stock, reliable thermal parameter estimation is crucial to identify
where an intervention has the largest effect on the overall energy performance. It allows to identify
which houses have the lowest energy efficiency and to design more effective policies and strategies.
Third, it has been shown that C and R are the larger source of uncertainty in energy perfor-
mance simulations [62]. Furthermore, the effective estimation of R, C and indoor temperature is
challenging, especially C’s one.
Last, many database of residential houses’ heating demand are available for use in the UK. They
come from smart meter record and efficiency studies. Accordingly, do not benefit from is a missed
opportunity.
Despite its relevance, there are very few studies that tackle the issue of estimating thermal mass
of a building. Furthermore, there are no studies that face the challenge of inferring thermal mass
from only heating demand data, without any knowledge of the indoor temperature profile.
Estimating thermal parameters of a building on the only base of its heating demand, presents
two main challenges. First, it requires reliable assumptions on the heating schedule and indoor
temperature profile of the house. Second, the current data set available often reveals to be missing
and incorrect. Furthermore, it needs to be integrated to external database of weather conditions
and the coherence between the two different sources is challenging and requires a dedicated study.
The Chapter is structured as follows. We first discuss the context and introduce the reasons behind
the project, the limits in the literature and the challenges that we face. Second, we present the
methodology, the multi-stages structure and the optimisation framework. Third, we test the RCT
model with two study cases and discuss the results. Finally, we summarise our contribution and
suggest future research works.

6.3 Literature review

6.3.1 Energy modelling of a building stock
The RCT aims to overcome three main limits in the literature about modelling a building stock.
First, they mainly consider a steady-state (ex. Brown et Al. [63]) but this makes the estimation
of thermal mass unreliable. On the contrary, the RCT models dynamic thermal power flows and
the timestep is defined by the user.
Second, most of them present data-driven models, built ad-hoc for a particular study case (ex.
Biddulph et Al. [64]). Accordingly, it is not possible either to use the approach with an other
building or with more than one. Differently, the RCT aims to be a flexible model that can adapt
to different houses.
Third, the majority of the studies considers only one element of a building, which usually is the
external façade (ex. Ghoreishi [65]). By doing that, they miss the buildings’ peculiarity of being a
complex interconnected system. On the contrary, the RCT consider the house in its whole, as an
integrated system.
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6.3.2 Thermal parameters modelling
We can identify in the state-of-the-art five ways to consider thermal parameters of buildings in
energy studies. First, by referring to existing libraries of materials in energy software packages in
the market. This approach reveals to be inaccurate because it misses the peculiarity of a building
[66].
Second, by referring to in-situ measurements. This approach shows significant inaccuracies as well,
which are due to errors in making the measurements, material’s inhomogeneities, thermal bridges
and moisture in the structure and air movements in cavities [67].
A third way is a combination of the first two and it consists in analysing the in-situ measurements.
Biddulph and his team present an example of that [64]. They state that analysing in-situ measure-
ments is the most effective way to estimate thermal parameters of a given building. Nevertheless,
it is not a common approach. They present a methodology that combines a single-mass model of
the building to bayesian statistics, with the aim of evaluating thermal mass and transmittance of a
building. The approach is not novel, but their contribution improves and facilitates its application.
It can be summarized in three points: fewer in-situ measurements are required (indoor and out-
door temperatures and heat flux on the inner façade’s face); the use of statistical methods to also
compare flow models; the implementation of a dynamic approach, which simultaneously outputs
thermal mass and transmittance of a wall. In addition to that, they demonstrate that a single-
mass model is accurate enough to represent thermal behaviour of a building, but they suggest that
dynamic conditions need to be considered. Concerning our purpose, their work present two main
limits. First, the necessity of making in-situ measurements restricts the use of the method to one
or few buildings. Accordingly, the approach can not be adaptable to building stock modelling.
Second, it account for the only heating case, but not cooling. Nevertheless, thermal mass estima-
tion is strictly connected to cooling as well and walls’ conditions may be different when exposed
at different temperatures and humidity levels.
A fourth approach makes use of quantitative research and simulation analysis to study the rela-
tionship between thermal parameters and energy consumption of a building. They usually aim
to give a preliminary guideline to architects and engineers during the design and refurbishment
phases of a building. Nevertheless, they do not represent a method to estimate the specific value
of thermal mass and insulation: they only express their dependence and effect on the final energy
load. Furthermore, they mainly consider one specific element of a building, which usually is the
external façade. An example of that approach is given by Ghoreishi [65]. They state that, despite
the importance of the topic, the effect of thermal mass of a building is not well-studied in the
current literature. They focus on only the external thermal mass and show that a proper design of
it can significantly reduce heating and cooling consumption of a building. They study the main US
climate zones and find that, concerning heating loads, buildings in hot locations benefit more from
a higher thermal mass than those in cold areas. On the other hand, the largest advantage of having
higher thermal mass is connected to cooling loads. Ghoreishi also suggests a general guideline for
the external wall’s thickness, to help during the design and renovation processes. They find that
for heating load, 30 cm is the best thickness; for cooling, it is 20 cm. Concerning our purposes,
this study has two limits. First, it is based on average behaviours and values, since they aim to
give a general orientation for designers. Second, the study is limited to only one element of the
building, its façade, despite the fact that it is a complex system where each element interacts with
the other.
A second example of simulation analysis to estimate thermal mass of a building is given by
Nowoswiat and his team [68]. They particularly focus on analysing the effect of thermal mass
in the cooling process of the air in a building’s room. In fact, when the heating/cooling system
is off and there are no internal gains, the indoor temperature varies to reach the outdoor value.
This state is characterised by thermal equilibrium and facilitate the estimation of thermal mass.
They find that the time required to cool down a zone is similar to the one to cool its envelope, but
the cooling time of the room is slightly slower than the envelope. Many studies, like Nowoswiat’s,
investigate thermal mass in terms of thermal comfort in buildings. They make use of numerical
analysis and they often implement Fourier equations to represent buildings’ physical behaviour.
These information represent a powerful tool to double-check our inferring and optimisation models.
The last approach consists in inferring models and Brown et Al. offer an example of that [63].
They aim to make use of available heating demand data of a UK building stock. Specifically,
they estimate residential homes’ efficiency by inferring their thermal losses. They propose a novel
algorithm, called “SMITE”. It works in two main steps: first, it detects when the heating system
of the house is on and it assumes that, in that period, thermal equilibrium is satisfied. Second,
it computes heat losses through the envelope. Losses are measured by two parameters, which
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represent the power required to keep the house at a constant indoor temperature for a given cold
external temperature. They integrate external data of weather conditions (outdoor temperatures
and solar radiation) and they filter them, with the aim of building a steady-state study case. They
test SMITE with seven houses and compare the results to an existing model (Deconstruct) and a
analytic model. First, they find that SMITE is reliable model for gas-heating houses. Second, they
find that considering solar irradiance brings difficulties in the model, but it does not significantly
impact the output. Third, they find two main sources of uncertainty in the model: assumptions on
the heating schedule of house and indoor temperature profile. To tackle this issue, the Deconstruct
method assumes a linear relation between indoor and outdoor temperature, which may not be true.
Differently, Brown and his team consider only the steady state, so that they can bypass the need
of computing house’s thermal parameters (R, C and indoor temperature). Despite the interesting
approach, this study presents an important limit for our purposes: it can not consider periods
during which the indoor temperature is varying. Accordingly, it can not be adjusted to estimate
thermal mass, insulation and indoor profile of a house.
On the basis of these approaches, we decided to focus on the last one and work to overcome its
current limits.

6.4 Methodology
In this Section we describe the RCT model. First, we show the notation, divided per each RCT
stage. Successively, we give a overview of the RCT’s structure and finally, we discuss each of its
three stages.

6.4.1 Notation for the model
RCT Stage 1a: Input - Maker

Set

• T F Set of time frames, indexed by i

Input parameters

• h30
i : Heating demand, during time frame i [W]

• hmax : Maximum heating power demand [W]

• text 30
i : External temperature, during time frame i [◦C]

• HR30 : Time frame length of dataset [hour]

Output parameters

• hi : Heating demand, during variable time frame i [W]

• texti : External temperature, during variable time frame i [◦C]

• HRi : Adjusted time frame length [hour]

RCT Stage 1b: Penalising set - Maker

Additional input parameters

• hmax 30
i : Heating demand, during time frame i [W]

Output parameters

• T F ON Set of time frames i during which the thermostat turns on

• T F OFF Set of time frames i during which the thermostat turns off
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RCT Stage 2: Optimisation framework

Additional input parameters

• rmin : Lower bound of thermal resistance of the node [K/W]

• rmax : Upper bound of thermal resistance of the node [K/W]

• cmin : Lower bound of thermal mass of the node [Wh/K]

• tset lo min : Lower bound of minimum set point temperature of the node [◦C]

• pwind
i : Wind power in house’s location [W]

• psuni : Sun radiation in house’s location [W]

• γ : Time constant [-]

Decisional variables

• R : thermal resistance of the node [K/W]

• R̂i : hourly thermal resistance of the node, during time frame i [K/W]

• C : thermal mass of the node [Wh/K]

• T int
i : Temperature of the node, during time frame i [◦C]

• T set hi : Maximum set point temperature of the node [◦C]

• T set lo : Minimum set point temperature of the node [◦C]

• µsun : Solar radiation coefficient [-]

• µwind : Wind thermal losses coefficient [-]

• Dhi +
i : Positive deviation of the temperature of the node from the maximum set point,

during time frame i [◦C]

• Dhi −
i : Negative deviation of the temperature of the node from the maximum set point,

during time frame i [◦C]

• Dlo +
i : Positive deviation of the temperature of the node from the minimum set point, during

time frame i [◦C]

• Dlo −
i : Negative deviation of the temperature of the node from the minimum set point,

during time frame i [◦C]

• PL
i : Thermal losses from the node, during time frame i [W]

• PS
i : Power flowing to/from the node, during time frame i [W]

• Li : Level of energy stored in the node, during time frame i [Wh]

6.4.2 RCT structure
The RCT model is made of the three stages represented in Figure 6.1.
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Figure 6.1: RCT scheme

Stages 1a and 1b output all parameters needed for Stage 2, which is the optimisation framework
(OF) and the core of the RCT model. Stages 1a and 1b answer the two main challenges tackled
by our study. Stage 1a, the input - maker, adjusts the heating demand and outside temperature
so that they can be used by Stage 2. In fact, the majority of the available database gives power
heating data in half-hour time resolution (or even larger). Accordingly, each time frame has the
same length of 30 minutes. For particular time frames, the average power along 30 minutes is an
inaccurate approximation: knowing if the heating system of the house turns on/off at the beginning
or at the end of a time frame, is a sensitive information that affects the output. Stage 1a varies the
length of each time frame (HRi) and adjusts power demand (hi) and outside temperature (texti )
accordingly. It only requires data from two different days.
Stage 1b, the penalisation set - maker, builds the two sets of time frames needed in the objective
function of the OF in Stage 2. It analyses the heating dataset (h30

i ), identifies power peaks and
extrapolates the time frames needed. The first set, the T F ON , contains all time frames during
which the house’s thermostat is on and the heating system is turned on. The second set, the
T F OFF , contains all time frames during which the house’s thermostat is on and the heating
system is turned off.
The adjusted power demand, the external temperature profile and the two sets T F ON and
T F OFF are input of Stage 2, which contains the non linear optimisation framework that out-
puts the house’s thermal resistance R, thermal mass C and internal temperature profile (indoor
temperature during each time frame T int

i , maximum temperature set point T set hi and minimum
T set lo).
In the following Sections, we discuss the algorithms and in/output of each stage.

6.4.3 RCT Stage 1a: the input - maker
Stage 1a receives the following data series in half-hour time resolution: heating demand (h30

i ),
external temperature (text, 30

i ), sun radiation (psun, 30
i ), wind power (pwind, 30

i ) and time frame
length (HR30). It adjusts each data series to output: the heating demand (hi), which can be only
zero or the maximum heating power (hmax) and the external temperature (texti ), sun radiation
(psuni ), wind power (pwind

i ) and time frame length (HRi). Before the adjustment of Stage 1a,
power demand can take any value. Stage 1a simplifies and smooths the heating demand data
series for reducing the complexity of the model. The resulting data demand follows this heating
pattern: the heating system goes on when the temperature reaches the minimum set point value,
it stays at the maximum power until the temperature reaches the maximum temperature set point
and it goes off just after that. We refer to this heating pattern as on/off schedule. We choose
to model the on/off pattern after analysing heating demand data from smart meters in sample of
houses in the UK building stock. In fact, we found that the on/off schedule is the most common
thermostat setting in the UK stock. The following Table 6.1 summarises input and output of Stage
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1a.

Table 6.1: RCT Stage 1a, Input and Output:

Input Output
h30
i hi

text, 30
i texti

psun, 30
i psuni

pwind, 30
i pwind

i

HR30 HRi

The algorithm makes uses of loop and logic conditions. There are two main for-loop: the first
contains an outer and inner if-loop; the second one contains only one if-loop.

First for-loop:
For i in T F

outer if-loop:
If

h30
i−1 = 0 and h30

i < h30
i+1 and h30

i > 0 or h30
i−1 = 0 and h30

i+1 = 0 and h30
i > 0

(6.1)

Then

HRi−1 = HR30 + (HR30 − hr∗)

hi−1 = 0

HRi = hr∗

hi = hmax

texti−1 =
text, 30
i−1 HR30 + text, 30

i (HR30 −HRi)

HRi−1

psuni−1 =
psun, 30
i−1 HR30 + psun, 30

i (HR30 −HRi)

HRi−1

pwind
i−1 =

pwind, 30
i−1 HR30 + pwind, 30

i (HR30 −HRi)

HRi−1

Else if

h30
i−1 > 0.90 hmax and h30

i < h30
i−1 and h30

i > 0 and h30
i+1 = 0 (6.2)

Then enter the inner if-loop:
If

HRi−1 = 0 (6.3)
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Then

HRi−1 = HR30 + hr∗

hi−1 = hmax

HRi = HR30 − hr∗

hi = 0

texti−1 =
text, 30
i−1 HR30 + text, 30

i hr∗

HRi−1

psuni−1 =
psun, 30
i−1 HR30 + psun, 30

i hr∗

HRi−1

pwind
i−1 =

pwind, 30
i−1 HR30 + pwind, 30

i hr∗

HRi−1

Else if

HRi−1 ̸= 0 (6.4)

Then

HRi−1 = HRi−1 + hr∗

hi−1 = hmax

HRi = HR30 − hr∗

hi = 0

texti−1 =
text, 30
i−1 HR30 + text, 30

i hr∗

HRi−1

psuni−1 =
psun, 30
i−1 HR30 + psun, 30

i hr∗

HRi−1

pwind
i−1 =

pwind, 30
i−1 HR30 + pwind, 30

i hr∗

HRi−1

Second for-loop:
For i in T F

if-loop:
If

HRi = 0 (6.5)

Then

HRi = HR30 (6.6)

Where:

hr∗ =
h30
i

2hmax
(6.7)

Per each time frame, the outer if-loop checks the power demand with two sets of logic conditions. If
a time frame i respects the first set of logic conditions (Equations 6.1), it is the time frame during
which the heating system is turning on. During time frame i, heating power is a value between
zero and hmax. In this case, Stage 1a extends the length of the previous time frame (HRi−1),
during which the heating is still off and it adjusts its external temperature, wind losses (pwind

i−1 ) and
solar gains (psuni−1) by computing a weighted average. In addition to that, it shortens time frame i
and sets its heating value to be hmax. The adjusted lengths of time frames i and i− 1 (HRi and
HRi−1) depend on hr∗ (Equation 6.7). It represents the ratio of the 30-minute power during time
frame i (h30

i ) over the maximum power value (hmax).
If a time frame i respects the second set of logic conditions (Equations 6.2), it is the time frame
during which the heating system is turning off. During time frame i, heating power is a value
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between zero and hmax. When the model enters the inner if-loop, it checks if the value of HRi−1

is equal or different from zero. In both the cases, Stage 1a extends the length of the previous time
frame, during which the heating is at the maximum power hmax and it adjusts its external tem-
perature, wind losses and solar gains by computing a weighted average. Furthermore, it shortens
time frame i and sets its heating demand to be zero. If HRi−1 is equal to zero, its extended length
will be the input time frame length (HR30), plus the extension given by the term hr∗. If HRi−1

is different to zero, its extended length will be its value, plus the extension given by the term hr∗.
If a time frame does not respect any of these two sets of conditions, the model enters the second
for-loop. Here, the time frame length remains the input length (Equation 6.6).
At the end of this process, heating power demand of each time frame can only be zero or hmax.
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6.4.4 RCT Stage 1b: the penalisation set - maker
Stage 1b elaborates the heating demand data series (h30

i ), the maximum heating value (hmax) and
the number of time frames (T F) for making the two sets T F ON and T F OFF . The following
Table 6.2 summarises input and output of Stage 1b.

Table 6.2: RCT Stage 1b, Input and Output:

Input Output
h30
i T F ON

hmax T F OFF
T F

Stage 1b is constituted by two user-functions, which select time frames of interest, and by loops
that build the two penalisation set.
The two functions, f left

(h30
i , hmax, T F)

and fright
(h30

i , hmax, T F)
receive the following input: h30

i and hmax

from the half-hour step database and the number of time frames (T F) within the optimisation
time window. The functions make use of logic conditions for detecting the time frames of interest.
Function f left

(h30
i , hmax, T F)

identifies time frames during which the heating system turns on. These
time frames will make up the T F ON . Equation 6.8 represents the set of logic conditions used:
if a time frame i respects this set of conditions, it is included in the T F ON .

For i in T F

h30
i−1 = 0 and h30

i > 0 and h30
i ̸= h30

i+1 (6.8)

Function fright
(h30

i , hmax, T F)
identifies time frames during which the heating system turns off. These

time frames will make up the T F OFF . Equation 6.9 represents the set of logic conditions used:
if a time frame i respects this set of conditions, it is included in the T F OFF .

For i in T F

h30
i = hmax and h30

i+1 = 0 (6.9)
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6.4.5 RCT Stage 2: optimisation framework
In this Section we discuss the OF of the RCT model, which constitutes Stage 2. The OF is non
linear in both its constraints (Equations 6.11, 6.16 and 6.17) and objective function (Equation
6.10).

Objective function

min C (
∑

i∈T F ON
(Dlo +

i +Dlo −
i ) +

∑
i∈T F OFF

(Dhi +
i +Dhi −

i )) (6.10)

The OF acts as an inferring model and its objective function consists in two heterogeneous elements.
The first one is the thermal mass of the house (C) and the other one is the indoor temperature
deviation. The objective function minimises the multiplication of these two terms because of
two reasons. First, it minimises the internal temperature deviation from the maximum/minimum
temperature set point ((

∑
i∈T F ON (Dlo +

i +Dlo −
i ) +

∑
i∈T F OFF (D

hi +
i +Dhi −

i )) to simulate
the house’s thermostat. Second, it minimises the value of C for avoiding to fall in the optimal but
unrealistic solution of infinite thermal mass.

Constraints
House’s thermal balance:

Li+1 = γ Li + (C R̂i (hi + psuni µsun) + C texti ) (1− γ) ∀i ∈ T F (6.11)

Where:

γ = e
− HRi

C R̂i ∀i ∈ T F (6.12)

Variables’ bounds:

rmin ≤ R ≤ rmax (6.13)

cmin ≤ C (6.14)

tset lo min ≤ T set lo (6.15)

House’s thermal resistance:

1

R̂i

=
1

R
+ pwind

i µwind ∀i ∈ T F (6.16)

Energy - temperature connection:

Li = C T int
i ∀i ∈ T F (6.17)

Internal temperature deviation from set point:

T int
i = T set hi +Dhi +

i −Dhi −
i ∀i ∈ T F (6.18)

T int
i = T set lo +Dlo +

i −Dlo −
i ∀i ∈ T F (6.19)

Non-negativity:

0 ≤ Dlo +
i (6.20)

0 ≤ Dlo −
i (6.21)

0 ≤ Dhi +
i (6.22)

0 ≤ Dhi −
i (6.23)
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The house (or a thermal storage) is represented as a node having a thermal mass C and a thermal
resistance R between the house and the outside. Constraint 6.11 defines the thermal dynamic
behaviour of the house. The energy stored inside the house in the following time frame (Li+1)
depends on: the energy already in the house at time frame i, the thermal fluxes flowing to/from
the house during time frame i and the capacity of the house to retain heat. This capacity is given
by the time constant of the house (γ), which is defined by Constraint 6.12 and depends on the
house’s thermal mass and thermal resistance.
Some among decisional variables have restricted bounds. These are described by Constraints 6.13,
6.14 and 6.15.
Constraint 6.16 finds the equivalent hourly thermal resistance (R̂i) between the house and the
outside. It depends on two factors: the house’s thermal resistance and wind at time frame i. The
RCT models wind losses from wind generation data (pwind

i ), by choosing the right variable µwind.
Constraint 6.17 defines the energy stored inside the house in each time frame (Li), as directly
proportional to the indoor temperature (T int

i ). The proportionality depends on the house’s thermal
mass (C).
The internal temperature of the house is defined as a fluctuation around the maximum (T set hi)
and minimum (T set lo) temperature set point (Equations 6.18 and 6.19). Deviation of the internal
temperature from the set point is defined by variables Dhi +

i , Dhi −
i , Dlo +

i and Dlo −
i , which are

required to be non-negative (Constraints 6.23).

6.5 Application and results
To test and validate the RCT model, we use a benchmark, which is an analytic model, built up on
an implicit formula that describes the thermal behaviour of a house (Equation 6.24). Differently
from the RCT model, the benchmark is not an optimisation problem and it finds the house’s
thermal mass (C), resistance (R) and the target temperature ( ˜T int) by an iterative process.
In this Section, we present the benchmark and we test the RCT model with two case studies. We
use the Benchmark to calculate C, R and target indoor temperature values. In Sections 6.5.2 and
6.5.3 we run the RCT model, aiming to find the same values of C, R and indoor temperatures of the
Benchmark. The advantages of the RCT model over the benchmark are: its automated and quicker
process, the possibility of finding both set point temperatures and actual indoor temperatures, the
capability of adjusting and smoothing the input demand data, the ability of dealing with incorrect
external data, and the capability of disentangle solar radiation and wind losses from the house’s
thermal load.
The benchmark and Case Study 1 run the same input data. On the contrary, Case Study 2
runs different external temperatures: in this experiment, we simulate the case in which external
temperatures data are missing and incorrect.
We run the two cases by Julia programming language and we use JuMP package and IpOpt non-
linear solver. The two cases solve the whole month of January.

6.5.1 The benchmark
The analytic model In this Section, we present the benchmark to compare RCT’s output of
the two study cases discussed in the next sections. Prof. Kenneth McKinnon, with the help of one
of his students, Rodrigo Garcia Nava, formulated the problem and produced realistic data series
from UK’s available databases.
The benchmark models the house by the implicit formula in Equation 6.24. It defines the energy
stored by the house (L(t)) as a function of time t, given by the power heating the house (h(t))
minus thermal losses ( 1

R (T int
(t) − text(t) )).

dL(t)

dt
= h(t) −

1

R
(T int

(t) − text(t) ) (6.24)

Since the energy stored by the house, in each time, is proportional to the indoor temperature, we
can substitute: L(t) = C T int

(t) to obtain:

dT int
(t)

dt
=

h(t)

C
− λ(T int

(t) − text(t) ) (6.25)

If h(t) is constant over period (t), then within this period it has the general solution:

T int
(t) = text(t) + h(t) R+ ke−λt, (6.26)
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where k is an arbitrary constant.
If T int

(0) = T ini at time 0, then:

k = T ini − text(0) − h(0) R (6.27)

Also, in any period where there is no change in temperature:

dL(t)

dt
= 0 (6.28)

⇒ h(t) =
1

R
(T int

(t) − text(t) ) (6.29)

If we only know the house’s demand (h(t)), we can not disentangle R, T int
(t) and text(t) .

We assume that we know h(t) and text(t) for two times t when the temperature is constant at ˜T int.
Then:

h(1) =
1

R
( ˜T int − text(1) ) (6.30)

h(2) =
1

R
( ˜T int − text(2) ) (6.31)

⇒ 1

R
=

h(1) − h(2)

text(1) − text(2)

(6.32)

and having found R, ˜T int can be found.
To get the value of λ, we need to trace the dynamic behaviour of the house.
We assume that the heating is off overnight, then it switches on at full power, until the target
temperature ˜T int is reached.
We also assume the external temperature text(t) is constant in every time interval (500 time intervals
per hour), and hsteady

(t) is the steady state power input when the house is at the target temperature.
Then:

hsteady
(t) =

1

R
( ˜T int − text(t) ) (6.33)

When the house is in the steady state, the value of λ is uniquely determined: we can find λ without
knowing the house resistance (R), nor the house target ( ˜T int), nor the external temperatures (text(t) ).
Nevertheless, there is not a closed formula that gives λ from this heating pattern and hsteady

(t) . In

this approach, we choose any value that achieves hsteady
(t) and then we find the λ value that gives

the right timing of the house reaching target temperature.

Data series The benchmark models a house representing the UK residential building stock. Its
heating demand is the total UK stock’s demand and the external temperatures and solar radiation
are open source data for a specific location in the UK. Wind data comes from the estimated wind
power generation in the UK in 2015 and indoor temperature set point are average values in the
Country.
According to the analytic model, we find R, C and the indoor temperature profile of the house.
Figure 6.2 shows R, C and temperature set point values (Thi

(t) and T lo
(t)), and it represents the tem-

perature and heating demand profiles during the first three days of the year. Indoor temperature,
external temperature and heating demand are the red, light-blue and dark-blue curves, respec-
tively. Temperature set points are in red dashed lines and solar radiation is in purple. Black dots
represented the average heating demand during each time frame.
Heating demand and external temperatures are input parameters to the RCT. After solving, the
RCT finds R, C, indoor temperatures, temperature set point, sun radiation and wind losses. To
validate the output, we compare them to the benchmark.
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Figure 6.2: Benchmark, 1st to 3rd of January

6.5.2 Exact external temperature data: Case Study 1
In study case 1, external temperatures are the correct data for the specific location. We aim
to obtain values of R, C, T set lo, T set hi, µsun and µwind that are as close as possible to the
benchmark. The RCT’s objective value represents the error between the RCT and the benchmark:
the smallest is the objective value, the better is the performance.
The following Table 6.3 compares output from the two case studies (last two columns) to the
benchmark (second column). Per each variable, it displays the value and the percentage error (%)
over the benchmark.
the objective value of the RCT model (first row in Table 6.3) represents the overall error: the
objective function minimises the time during which the indoor temperature is above or below the
set point temperatures. Accordingly, the objective value is the sum of degrees Celsius, when the
indoor temperature is outside the set point values. Case study 1 achieves a low overall error (0.02)
and all output deviate by less than 0.20% from the benchmark. Variables describing solar gains
(µsun) and wind losses (µwind) achieve the best fit.
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Table 6.3: RCT, Study case comparison

benchmark case 1 case 2
obj. value err. - 0.02 0.67
R [K/W] 0.2083 0.2087 0.2074
err. [%] - 0.19 0.43
C [Wh/K] 139.60 139.34 138.13
err. [%] - 0.19 1.05
T set lo [◦C] 20.00 20.04 20.29
err. [%] - 0.20 1.45
T set hi [◦C] 21.50 21.54 21.81
err. [%] - 0.19 1.44
µsun [-] 30.00 30.01 28.72
err. [%] - 0.03 4.27
µwind [-] 0.03 0.03 0.01
err. [%] - 0.00 60

Figures 6.3 shows three plots. The first represents temperature profiles, where the grey line is the
external temperature data and the others are RCT’s output: indoor temperature in black, lower
set point in yellow and upper set point in green. The second plot shows the adjusted house’s
heating demand (purple line). This data series come from the RCT’s Stage 1a (the input-Maker).
The bottom plot displays the penalised time frames in the objective function. Time frames when
heating is going on are in brown line, time frames when heating goes off are in blue.
For the given house’s heating demand and external temperature, the RCT finds the best fit of the
house’s thermal features and behaviour.
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Figure 6.3: RCT, case study 1, month of January

We compare the RCT’s output to the benchmark during sample of days. Figure 6.4 shows the
three plots for the only 1st, 2nd and 3rd days of January. We compare the first of these plots to
the benchmark in Figure 6.2. We look at the indoor temperature profile, which is in purple for
the benchmark and in black for the case study, and at the temperature set point, which are in red
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dotted lines for the benchmark and in yellow and green for the case study. Days differ for number
of heating peaks, timing and magnitude.
The bottom plot in Figure 6.4 shows the work of Stage 1a. The horizontal axis is the adjusted length
of each time frame and heating demand is given in power (W) over the specific time frame length
(half an hour), so the result is the average energy. The average energy is a good approximation
if the heating system goes off near or at the end of a time frame, and when it goes on near or at
the beginning of a time frame. Nevertheless, an adjustment is necessary when the heating goes
on or off during a time frame. Because of that, Stage 1a varies the length of each time frame so
that the average power is always zero or the maximum value, and the heating goes on and off at
the beginning or at the end of time frames. As an example, we look at the second heating peak
of the first day and we notice that Stage 1a extended the last time frame of the peak when the
heating is turning off (blue line). We now look at the benchmark in Figure 6.2 and we focus on
the black dotted curve that represents the average power during half an hour - time frames. For
the second peak of the first day, there are three power data values (i.e. three black dots). The last
is at the maximum power value; the second is not at the maximum but it is still an high value.
Because of that, Stage 1a merged these two time frames into one that has an extended length and
the maximum power value. As a second example, we look at the last peak of the third day. Also
here, there are three data values (Figure 6.2): the first dot is very high and its value is close to
the maximum power value. This means that the heating system goes on just at the end of this
time frame. Stage 1a divided this time frame into two parts: a longer initial portion, during which
the heating is still off, and a shorter final portion, during which the heating goes off. After that,
Stage 1a merged the shorter portion to the following time frame, during which the heating is at
its maximum power, and it extended the length of the longer portion, setting the heat power to
be zero. The extended time frame is visible when looking at the brown curve in the last peak of
the third day (Figure 6.4).
Penalising the right time frames is necessary for finding the best fit: the model minimises the
error between the estimated indoor temperature and the benchmark’s one. To do that, it needs
to penalise the temperature when it deviates from the target value, but the indoor temperature is
unknown. Because of that, we assume the heating pattern: the heating goes on when the temper-
ature reaches the minimum set point value, it stays at the maximum power until the temperature
reaches the maximum temperature set point and it goes off just after that. Set points are unknown
for the RCT model, as the indoor temperature. Nevertheless, we know that when the heating goes
on, the indoor temperature is at the minimum set point, and that when the heating goes off, the
temperature is at the maximum set point. This is sufficient for the RCT model to find the best
fit, without knowing anything but the heating demand and the heating pattern.

Figure 6.4: RCT, case study 1, 1st to 3rd of January
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6.5.3 Noise in external temperature data: Case Study 2
In study case 2, we simulate the situation in which external temperature data are incorrect. To
do that, we add noise to the exact external temperature: during each time frame, the resulting
temperature is given by the sum of half exact value and half incorrect value. The incorrect values
come from external temperature data of a different UK location.
Table 6.3 in Section 6.5.2 compares the benchmark to the two cases and case 2 is the last column.
The overall error is larger than the case with exact external temperature. Nevertheless, depending
on the study purpose, it might be a good representation of the house.
The largest errors are in estimating wind losses and solar radiation, which are directly connected
to the external conditions. Looking at Equations 6.11 and 6.16, we see that the two variables
(µsun and µwind) are multiplied by the weather data parameter (psuni and pwind

i ). The RCT model
varies the values µsun and µwind to overcome the discrepancy among external conditions (outdoor
temperatures, sun and wind data).
Thermal resistance confirms to be the easiest value to be estimated, since it has the smallest error.
Thermal mass, which is the most challenging parameter to estimate, achieves a relatively small
error.

Figure 6.5: RCT, case study 2, 1st to 3rd of January

Figures 6.5 and 6.6 show the three plots discussed for case study 2. In case 2, the indoor tem-
perature (black line) sometimes goes above the upper set point and sometimes below the lower
set point. Looking at the whole month of January (Figure 6.6), we notice that the largest error
arises during the middle of the month. The reason might be a larger discrepancy between the two
locations’ external temperature, just around the middle of the month. We also notice that the
external temperature is generally warmer during the first half of the month, and it becomes colder
just during these days having the largest fitting-error.
Figure 6.5 shows that, despite the noise, the indoor temperature profile has the same shape of the
benchmark (Figure 6.2).
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Figure 6.6: RCT, case study 2, month of January

6.6 Conclusions and future research
In this Chapter, we presented a novel algorithm for finding thermal features and indoor tempera-
tures to simply represent a house of a building stock. The main innovation is that the algorithm
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only needs for heating demand data of the house and estimates of the external weather data, but
without using any matching internal house temperature data. Furthermore, we studied the com-
mon situation when there is noise in the external temperature data input. We discussed two study
cases, the first with exact data and the second one with noise in the external temperature data.
We compared the results to a benchmark and we commented the performance. The case that has
exact input data could estimate house’s thermal parameters with an overall error of 0.02, and the
house’s thermal mass with an error of 0.19%. The estimate in case of data with noise achieved
larger but still small errors: the overall error was 0.67 and the thermal mass’ one was 1.05%.
In this study, we presented the RCT model as a valid approach to simplify a house (or thermal
storage) by its equivalent thermal mass and thermal resistance. The RCT model could be a
powerful tool to help energy researchers. Nevertheless, the first question to answer for future
works is whether real houses can be usefully approximated with this single RC model. The answer
depends on the specific purpose (e.g. to detect problematic houses within a group, to simulate a
new policy before the implementation), level of details (e.g. a neighbourhood, a city, a country)
and requirements (e.g. short running time).
To those researchers who find that approximating the house with a single RC model is a realistic
estimation, we suggest three future works for developing the RCT algorithm. We studied the
case in which the external temperature data was incorrect; it would be interesting to consider
noise in the energy demand, indeed it often happens that open-source data are incorrect or do not
disentangle space heating from other loads, such as hot water demand. In this study, we assumed
the on/off heating pattern (i.e. the heating goes on at the maximum power when the indoor
temperature reaches the lower set point, then it turns off when the indoor temperature achieves
the higher set point). As second suggestion for future work, we propose to consider different heating
pattern. For validating the approach, it is necessary to find heating demand and corresponding
exact external temperatures, wind and sun radiation of a specific real house. The last suggestion
for future research is to implement a multi-stage solution process, similar to that used for the ORD
and ONDe models. We believe that the RCT’s continuous problem could be optimally solved by
Progressive Hedging (PH) approach. This would allow for longer optimised periods, such as the
whole year, and for more reliable parameter estimation.

126



Chapter 7

Conclusions

In this conclusive chapter, we reflect on the research purposes and contributions of our work. The
main topic of the research discussed in this manuscript is the use of mathematical optimisation
techniques for improving heating and cooling efficiency of buildings.
The main contribution of our work is to improve the current building practice, which is mainly
based on human experiences and independent simulations. We pursued a sustainable and cost-
effective methodology, with the aim of supplying a first and fast answer to the urgent needs of the
environmental cause. We focused our effort to achieve flexible approaches that can adapt to the
variety of buildings’ structures, technologies and user’s purposes. We presented five models, which
aim to provide a first tool-kit for tackling the environmental emergency. The five models cover
the whole spectrum of the energy building research: design, operations and analysis. The first
step in our work was to elaborate a thermal model to efficiently represent the energy behaviour
of a residential/institutional/industrial unit. This early stage resulted in a novel algorithm that
represented the unit as a thermal storage, and that was detailed enough to give quick but reliable
results. After this stage, we applied and integrated the thermal model of a unit to more complex
mathematical frameworks. The first application was the EMS (Chapter 2), which makes use of
the thermal model for finding the optimal heating/cooling operations of a unit. The EMS model
showed the potential and importance of ventilation and thermal design for reducing buildings’
energy consumption, cost and carbon emissions. Because of that, we started studying two research
questions: can optimal ventilation reduce the heating demand of one or more houses? Can we use
optimisation techniques to find the optimal thermal design of a house for reducing his energy cost?
The first research question resulted in the TEMS algorithm (Chapter 3), which shows the benefit
of sharing heat gains among units and expands the concept of heat-recovery to small residential
buildings. After presenting and publishing the TEMS model, we got the opportunity of a internship
with Integrated Environmental Solutions (IES), in Glasgow, UK. This working experience gave as
the possibility to use one of the most known building energy software in the market: Virtual
Environment (VE IES). The results of this collaboration is the ONDe model (Chapter 4) that
integrates the TEMS algorithm to the VE IES software, and finds not only the optimal operations
of the network, but also the optimal design of some economically affordable solutions. The second
research question (can we use optimisation techniques to find the optimal thermal design of a house
for reducing his energy cost?) resulted in the ORD model (Chapter 5), which finds the optimal
thermal mass, thermal insulation and infiltration rate to decrease the energy cost and consumption
of an existing or new house. The expertise gathered with the previous models, helped the purpose
of the research group in the University of Oxford, that we joined for an internship. Our thermal
model of the unit captured their attention because of its ability to simply represent the house’s
thermal mass. The University of Oxford group aimed to understand how to simplify and represent
a house of the UK building stock with the only information available to the public: the house’s
heating demand. Specifically, they aimed to represent any house of a building stock by only one
value of thermal mass and one of thermal resistance. In addition to that, they wanted to know
what is its indoor temperature profile. This study resulted in the RCT model (Chapter 6), which
uses optimisation techniques to infer thermal parameters to simplify an house, and to find the
indoor temperature profile.
Our contribution consists in providing new insights to following five common cases. First, at
the moment of writing, very few studies explore the use of optimisation techniques for domestic
heating and cooling operations. In Chapter 2, we presented an approach to optimise the house’s
heating/cooling operations, which is flexible and adaptable to the newest building technologies,
such as Passive house design and smart shadings, and to different users’ needs. Our work con-
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tributes to expand the knowledge about building energy management system, by merging together
the expertise of building engineers and mathematicians.
Second, the current literature misses studies that exploit the full potential of buildings’ thermal
mass. We presented a reliable approach to model the house’s mass and we also optimised its use for
lowering heating/cooling cost and consumption, and providing flexibility. In Chapter 5, we showed
an optimisation framework that finds the optimal thermal mass values that need to be refurbished
for reducing the house’s operation cost. In Chapter 6, we presented the use of mathematical
optimisation techniques to infer thermal mass of an house in a building stock. Accordingly, our
contributions are: presenting a novel and effective approach for modelling building’s thermal mass,
and showing the potential of thermal mass studies for improving heating and cooling efficiency.
Our work opens the door to new strategies and technologies that prioritise the use of existing
resources, such as building’s thermal mass, rather than investing in additional equipment.
Third, from the best of our knowledge, there are not any study that approaches flexibility provision
with heating loads, which are hardly flexible. In Chapters 3 and 4, we tackled the challenge
of making the heating demand flexible while guaranteeing indoor comfort, and we showed how
demand response with heating loads can lower operation costs and consumption. Accordingly, our
contribution to the state-of-art is presenting and testing a novel algorithm to adjust the heating
demand for providing flexibility to the power grid.
Fourth, the potential of heat-recovery in small residential buildings has not been fully exploited yet.
The current heat-recovery studies focus on heat-waste from industrial processes in large buildings.
The very few studies that look at the residential sector, only concentrate on HVAC technologies
(e.g. cross-flow heat exchangers). In Chapters 3 and 4, we introduced the importance of recovering
residential heat gains, even when HVAC system is not present. We showed that the optimal sharing
of heat-waste from internal gains can significantly lower heating cost and consumption, and increase
flexibility. Accordingly, our contribution is to broaden the field of application of heat-recovery, by
expanding its potential to the residential sector.
Last, the current building energy modelling market lacks software that implement mathematical
optimisation techniques. In Chapter 4, we presented a framework that integrates and complements
a widely used building energy software in the market. Furthermore, all the optimisation frameworks
presented in this manuscript have potential to be implemented in energy software and enreach the
current building practice by giving new perspectives to decision makers. Because of that, our
contribution is to open the way for the implementation of optimisation techniques to the current
energy software in the market.
Along the manuscript, at the end of each Chapter, we suggested specific future works to improve
each of the five models. In this conclusive Chapter, we look at the overall research contribution
and we discuss high-level future works. We identify two further works that will finally help our
main purpose of introducing optimisation techniques into the building practice. The first is to
develop the user interface to our models. It would have to be a tool that allows users without
any coding or mathematical experience, to easily use the model. The simplest example would be
to develop an excel file with macros (VBA excel: Visual Basic Analysis). Due to that, the user
would only need to fill the required cells, without worrying about understanding the optimisation
framework or the solution process. A more complex example would be to connect our mathematical
framework to an existing software that contains all the house’s information, such as a BIM model
(Building Information Modelling). This would allow users not only to navigate among a large set
of data, but also to visualise the house and its geometry by floor and elevation plans, and 3D
models. The second future work is to develop the interface between our models and the house
system. It would be essential for the actual use of the mathematical framework in a real house. It
will involve the use of sensors (e.i. thermal sensors), control panels and terminals, and hardware
platform. These two further works will finally turn our theoretical models into practical tools. To
conclude, we believe that there is still work that has to be done before integrating our models
into the building practice. This work concerns model testing and validation. In fact, we suggest
to monitor the energy performance of a real house (or a living lab) for one year. After that, the
model would be applied to the same house (or living lab) and a further year of recording would
be gathered. Finally, a comparison among the two records of data will show the goodness of the
model and eventual errors that might need to be fixed. All our models aim to reduce the house
heating/cooling consumption and cost. Accordingly, the model will be considered successful and
ready for real world uses if: first, the house’s heating/cooling consumption and costs have been
reduced, second, the model outputs the same heating/cooling demand of the real house.
Recalling Marcel Proust’s thought, we hope that our work led the Reader along a voyage of
discovery, which gave him new eyes. We aimed to direct his attention toward the environmental
emergency, but we did not want to generate a lost and hopeless feeling. On the contrary, our

128



purpose was to open the door to a large amount of possibilities and to shift the focus from "how
to survive to the global warming" to "how to improve our lives".
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Appendix A

ORD study case of Devon, plans and
temperatures
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House location 
QTQ12 Newton Abbot 

 ASHRAE design condition from: http://ashrae-meteo.info/v2.0/index.php  

 Closest station: Exeter airport (24 km from Newton Abbot)  

 Weather data from MIDAS CEDA database of Exeter 

 

Floor plan of the house 

 

 



Elevation plans of the house 

 



 



Temperature measurements by the house owner 

 

 

House temperatures 04/12/18

Using IR thermometer morning

Overnight temperature

between 0 and 5 C All wall temperatures measured at about 1.5 m   height unless     

otherwise stated

Room temperature Room temperature

C C

Hall ceiling central 17.9 Living room ceiling central 20.1

(radiator on, and floor central 17.5 (radiator on) floor central 16.6

Honeywell sensor floor NE corner 15

reading 19 C) wall to B 1 by sensor 18 wall fireplace 18.6

wall to B 2 opposite radiator 16.8 wall to B2 near radiator 20.7

front door lower panel 15.1 wall to Annx 17.2

wall NE corner near floor 13.2

Annexe floor central 6.5 wall SE corner near floor 12

wall outer central (inner face) 6.1

wall inner by kitchen door 10.1 window mullion 16.4

Conservatory floor 9.3 Kitchen ceiling central 19.6

wall house 2 points 8.2, 7.4 (radiator on) floor central 17.5

wall to LR above sink 18.7

Sitting room ceiling central 14.6 wall to Annx 18

(radiator off) floor central 13.5 wall to SR 17.4

wall to Bathroom 14.1

wall to K 15.6 Bedroom 1 ceiling central 18.8

wall to outside NW 13.1 (radiator on) floor off centre 15.1

Fr.  window central jambs 12.4 wall to outside 15.9

wall to Hall 17

Bedroom 2 ceiling central 11.1 wall to SR 17.2

(radiator off) floor central 11.1 window mullion 16.2

wall to LR 14

wall to outside SE 11.7 Exterior walls various on each side 3 to 4

wall to Hall 13.7 ground path at rear 4

wall to outside NE

(above window) 11.2

window mullion 10.4
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Appendix B

ORD study case of Devon, data
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-------------------------------------------------------- 

This document is marked as confidential 

ORD Data TQ12     10 July 2021, D. S. 
 

Cost of electricity:     0.23 £/kWh 

Cost of gas:      0.033 £/kWh 

Refurbishment materials estimated life:  Accept example figures  

Thermal resistance of each external wall: Annex, single leaf, 0.5 m²K/W assumed. 

Main walls, measured, 1.0 m²K/W. 

Total external walls surface: Ignoring conservatory and annex: 

122 m² ground level to eaves, including 

gable ends, doors and windows; 108 m² 

floor level to eaves, including gable ends, 

doors and windows; 99 m² floor level to 

eaves, excluding gable ends, including 

doors and windows; 79.5 m² floor level to 

eaves, excluding gable ends, doors and 

windows. 

Thermal resistance of each internal wall: Single leaf walls, 0.5 m²K/W assumed. 

The two double leaf internal walls, 0.7 

m²K/W assumed 

Total internal walls surface: Total area of all internal surfaces of walls, 

ignoring annex and conservatory: 226 m² 

 Total area of all purely internal walls: 152 

m². (Note that these areas include both 

sides of the purely internal walls). 

Thermal resistance of windows (or U-value): U- values measured as 3.0 W/m²K for all 

windows except single glazed French 

windows in sitting room: assume 4.8 

W/m²K. 

Total windows surface:    14.4 m² (including frames) 

Volume of the house: Total volume within envelope ground to 

roof but excluding conservatory and 

annex: 308 m3 
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This document is marked as confidential 

Volume ground to eaves: 279 m3 

Volume floor to eaves: 242 m3 

Thermal mass of each element: Assume 1700 kJ/ m3 K throughout, as the 

type of concrete block in the walls is not 

known. The single leaf walls are 13 cm 

thick, giving 220 kJ/ m2 K. The cavity walls 

are 29 cm overall, so with a 5cm gap this 

would give ~ 410 kJ/ m2 K. 

Estimated thermal mass of the room: Calculate thermal mass of rooms from 

95% air at 1.2 kJ/m3 K and 5% wood 

furnishing at 230 kJ/m3 K, giving 12.6 

kJ/m3 K average. Then 

 Living room    521 kJ/K  

Kitchen    297 kJ/K  

Sitting room    297 kJ/K  

Bathroom    138 kJ/K 

 Bedroom 1    380kJ/K  

Hall    370 kJ/K  

Bedroom 2   391kJ/K  

Heating/cooling system technology:   Gas central heating 

Indoor temperature target:    Daytime 19° C, night 16° C 

House location:     TQ12 

Existing house’s (EX) solar gains   Summer solar radiation about 210 W/ m2 

of a typical summer day:     

    

Internal gains: Nearly all electricity input ends up as 

internal heat, 940 kWh p.a. Metabolic, 

based on 80 W and 90% occupancy, 630 

kWh p.a. 4 occupants. 
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EX’s heating/cooling demand: No cooling. Gas central heating and 

water heating, 10360 kWh p.a. 

 

Additional information  

Situation:  Level ground, edge of village, altitude 

about 70 m, exposed to prevailing 

westerly winds. Orientation shown on 

plans (4). 

Date:  Built about 1965, extended before 2000. 

Construction:  Bungalow, originally L- shaped under 

pitched tiled roof, with exterior cavity 

walls. The main extension has a flat roof. 

Walls:  As a result of building the main 

extension, two of the former exterior 

cavity walls became interior walls. These 

are thought not to have additional 

insulation, but the other cavity walls 

were filled with Rockwool insulation 

before 2000.  The cavity walls are all 29 

cm thick. A small lean-to annex and 

conservatory were both added before 

2000, and have walls 13 cm thick. The 

other single leaf interior walls are also 

about 13 cm thick. These wall thicknesses 

would be consistent with concrete block 

construction.  

Floors:  The conservatory and annex have 

concrete floors and the rest of the house 

has suspended wooden floors (tongue 

and groove boards, about 1.7 cm thick). 

The under-floor space is about 45 cm 

deep. 

Roofs:  The L- shaped pitched roof covers about 

73% of the main building, and is wood 

framed with roofing felt under tiles. The 

loft below it is insulated with 200 mm 

mineral wool, perhaps giving a U- value 
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of below 0.2 W/m²K. The flat roof covers 

the remaining 27%, but its construction is 

unknown though the main fabric is 

probably wood. The conservatory is 

double-glazed and both it and the annex 

have double-skinned plastic roofs. 

Doors and windows:  All exterior doors and windows are 

double-glazed, with the exception of the 

annex, which has small single-glazed 

windows and a single-glazed door. The 

kitchen door and window were exterior 

before the annex was built, and are 

double-glazed. The front door is recent, 

but all other double glazing dates from 

before 2000. The French windows 

leading from the sitting room to the 

conservatory are single-glazed. 

 

Later notes 

TQ12          14 July 2021 

Conservatory and annex: 

Thermal mass (air volume and furniture - using the same assumptions as for the interior 

rooms, i.e. 5% wooden furniture): 

Conservatory, 143 kJ/K; annex 156 kJ/K. 

(The concrete floors in these two structures might be relevant: assuming that the concrete is 

solid down to ground level, then at 2060 kJ/ m³K the values would be 3570 and 3740 kJ/K 

respectively) 

Window and door surfaces:   

Conservatory (double-glazed windows and door, probably same U-value as the double-glazed 

windows in the main building): 

Windows, total 8.9 m²; door, 1.6 m². 

Annex, two small single glazed windows and a single glazed pane in the exterior door, total 

1.4 m². 

Wall surfaces, excluding windows and doors: 
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Conservatory: 4.72 m², of which 2.67 m² is above floor level. 

Annex: 14.6 m², of which 13.1 m² is above floor level. 

Conservatory and annex plastic roof U-values are unknown. The roof areas are conservatory, 

6.1 m²; annex: 6.1 m². 

Floor plan drawings: the single leaf walls are shown as a thick dark line and the cavity walls 

are shown as two thick dark lines separated by a gap. The conservatory and annex walls are 

single leaf. 

I didn’t explain the wall area measurements very well so will mark up the floor plan with the 

surface area of each wall. For outside walls this will be from ground to eaves, not including 

doors and windows, and for inside surfaces, floor to ceiling, not including doors and windows. 

(Floor level is about 0.4 m above ground level throughout.) 

External walls, not including conservatory and annex:  

East elevation 20.8 m² not including windows 

North elevation 26.1 m² not including windows and door 

West elevation 22.9 m² not including windows and door 

South elevation 30.3 m² not including door and door panel. 

Total for the four elevations is 100.1 m². 

The total internal wall area of the main building, floor to ceiling, excluding doors and windows, 

is 204.7 m². Of this total, 66.6 m² is the inside surface of the exterior walls, which are all cavity 

walls. The remainder is the surface of the interior walls, counting both sides. The interior walls 

are all single leaf with the exception of the three marked with double lines which were 

exterior walls before the house was extended. These interior cavity walls have a total area of 

49.6 m², and would not have Rockwool insulation. The single leaf interior walls have a total 

area of 88.5 m². 

Window surface areas, m²: 

The double-glazed windows: (two in East elevation, 8.0m²; one in N., in kitchen wall, 0.84 m²; 

three in W., 3.94m²;  one next to door in S, 0.9 m²), total 13.68 m². 

The conservatory windows (all double-glazed): 7.87 m²; door (double-glazed): 1.62 m² 

The single-glazed (French) window: 3.42 m². 

The annex small windows (single-glazed) 0.8 m² total 



 
 

-------------------------------------------------------- 

This document is marked as confidential 

Efficiency of current heating system – the handbook for the boiler (Worcester Bosch 301) 

gives a range from 87.7 to 99.4% - maybe call it 94%. Working temperatures: the highest 

temperature I have measured on a radiator (using an IR monitor) is 66 °C. 

Infiltration was estimated by recording the decay of CO2 levels after vacating the house. 

Results were in the “very good” region, around 0.2 ACH. 

There is no mechanical ventilation. 
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Appendix C

Comparison of energy software in the
market

145



B
u

ild
in

g 
e

n
er

gy
 s

o
ft

w
ar

e
 |

 S
A

LE
R

N
O

 Il
ar

ia
 

 

1
 

 So
ft

w
ar

e
 

W
h

at
 it

 is
/w

h
at

 it
 d

o
es

 
P

ar
ti

cu
la

r 
st

re
n

gt
h

s 
Li

m
it

s 
Li

n
k 

SI
M

EB
 

B
u

ild
in

g 
e

n
er

gy
 s

im
u

la
to

r 
fo

r 
h

ea
ti

n
g 

an
d

 c
o

o
lin

g.
 It

 
w

o
rk

s 
w

it
h

 E
n

er
gy

 P
lu

s 
an

d
 D

O
E 

- 
P

o
ss

ib
ili

ty
 t

o
 r

u
n

 m
o

re
 

si
m

u
la

ti
o

n
s 

o
f 

th
e 

sa
m

e 
b

u
ild

in
g 

an
d

 c
o

m
p

ar
e 

th
ei

r 
b

eh
av

io
u

r 
 

- 
N

o
 o

p
ti

m
iz

at
io

n
 (

o
n

ly
 

si
m

u
la

ti
o

n
) 

- 
Sp

ec
if

ic
 f

o
r 

Q
u

eb
ec

 
(t

ar
if

f)
 

- 
So

m
e 

p
ar

am
et

er
s 

ar
e

 
fi

xe
d

 a
n

d
 it

 is
 n

o
t 

p
o

ss
ib

le
 

to
 m

o
d

if
y 

th
em

  
- 

Th
o

u
gh

t 
fo

r 
co

m
m

er
ci

al
 

an
d

 in
st

it
u

ti
o

n
al

 b
u

ild
in

gs
  

- 
Th

o
u

gh
t 

fo
r 

p
ro

fe
ss

io
n

al
s 

h
tt

p
s:

//
w

w
w

.s
im

eb
.c

a/
 

H
o

m
e

r 
P

ro
 

M
ic

ro
-g

ri
d

 o
p

ti
m

iz
er

  
 

- 
N

o
t 

fo
r 

si
n

gu
la

r 
b

u
ild

in
g 

(g
ri

d
-s

iz
e)

  
h

tt
p

s:
//

w
w

w
.h

o
m

er
en

er
gy

.c
o

m
/p

r
o

d
u

ct
s/

p
ro

/i
n

d
ex

.h
tm

l 
En

er
gy

 P
lu

s 
B

u
ild

in
g 

e
n

er
gy

 
si

m
u

la
ti

o
n

 p
ro

gr
am

 f
o

r 
h

ea
ti

n
g/

co
o

lin
g,

 
ve

n
ti

la
ti

o
n

, l
ig

h
ti

n
g,

 
w

at
er

 u
se

 

- 
D

et
ai

le
d

 d
yn

am
ic

 m
o

d
el

 o
f 

th
e 

b
u

ild
in

g 
- 

Su
b

-h
o

u
rl

y,
 u

se
r-

d
ef

in
ab

le
 

ti
m

e 
st

ep
s 

- 
A

d
va

n
ce

d
 f

e
n

es
tr

at
io

n
 m

o
d

el
s 

- 
N

o
 o

p
ti

m
iz

at
io

n
 (

o
n

ly
 

si
m

u
la

ti
o

n
) 

- 
Th

o
u

gh
t 

fo
r 

p
ro

fe
ss

io
n

al
s 

(n
ee

d
 f

o
r 

tr
ai

n
in

g 
to

 u
se

 
it

) 

h
tt

p
s:

//
en

er
gy

p
lu

s.
n

et
/ 

D
O

E-
2 

 
B

u
ild

in
g 

e
n

er
gy

 a
n

al
ys

is
 

p
ro

gr
am

 t
h

at
 p

re
d

ic
t 

en
er

gy
 u

se
 a

n
d

 c
o

st
 o

f 
a 

b
u

ild
in

g 

- 
It

 c
o

n
si

d
er

s 
o

p
er

at
in

g 
sc

h
ed

u
le

s,
 u

ti
lit

y 
ra

te
s 

an
d

 
w

e
at

h
er

 d
at

a 

- 
N

o
 o

p
ti

m
iz

at
io

n
  

- 
Th

o
u

gh
t 

fo
r 

p
ro

fe
ss

io
n

al
s 

an
d

 c
o

m
p

le
x 

to
 u

se
  

h
tt

p
:/

/w
w

w
.d

o
e2

.c
o

m
/ 

B
Eo

p
t 

 
C

o
m

p
u

te
r 

p
ro

gr
am

 
d

es
ig

n
ed

 t
o

 id
en

ti
fy

 
ef

fi
ci

en
t 

d
es

ig
n

s 
fo

r 
h

o
m

es
 a

t 
th

e 
lo

w
e

st
 c

o
st

. 
It

 r
u

n
s 

b
ef

o
re

 t
h

e 
co

n
st

ru
ct

io
n

 b
eg

in
s,

 t
o

 
h

el
p

 p
ro

fe
ss

io
n

al
s 

d
u

ri
n

g 
th

e 
d

es
ig

n
 p

ro
ce

ss
. 

- 
It

 r
u

n
s 

se
q

u
en

ti
al

 s
e

ar
ch

 
te

ch
n

iq
u

e 
w

it
h

 r
ea

lis
ti

c 
d

es
ig

n
 

o
p

ti
o

n
s 

an
d

 a
va

ila
b

le
 b

u
ild

in
g 

p
ro

d
u

ct
s 

- 
N

o
 “

re
al

 t
im

e 
o

p
ti

m
iz

at
io

n
”:

 B
Eo

p
t 

fi
n

d
s 

d
if

fe
re

n
t 

n
ea

r-
o

p
ti

m
a 

d
es

ig
n

s 
o

f 
th

e 
b

u
ild

in
g 

to
 m

in
im

iz
e 

it
s 

fu
tu

re
 e

n
er

gy
 c

o
st

. I
t 

h
el

p
s 

d
es

ig
n

er
s 

an
d

 
o

w
n

er
s 

d
u

ri
n

g 
th

e 
d

es
ig

n
-p

h
as

e,
 b

ef
o

re
 t

h
e 

b
u

ild
 is

 c
o

n
st

ru
ct

e
d

 

h
tt

p
s:

//
w

w
w

.e
n

er
gy

.g
o

v/
ee

re
/b

u
il

d
in

gs
/b

u
ild

in
g-

en
er

gy
-

o
p

ti
m

iz
at

io
n

-b
eo

p
t-

so
ft

w
ar

e
 



B
u

ild
in

g 
e

n
er

gy
 s

o
ft

w
ar

e
 |

 S
A

LE
R

N
O

 Il
ar

ia
 

 

2
 

 

- 
D

is
cr

et
e

, l
im

it
ed

, b
u

ild
in

g 
d

es
ig

n
 o

p
ti

o
n

s 
IE

S 
V

ir
tu

al
 

En
vi

ro
n

m
e

n
t 

En
er

gy
 a

n
al

ys
is

 a
n

d
 

si
m

u
la

ti
o

n
s 

to
 e

va
lu

at
e 

o
ve

ra
ll 

b
u

ild
in

g 
p

er
fo

rm
an

ce
s 

- 
D

et
ai

le
d

 d
yn

am
ic

 a
n

al
ys

is
 o

f 
th

e 
b

u
ild

in
g 

- 
It

 a
llo

w
s 

th
e 

u
se

r,
 w

it
h

in
 

ce
rt

ai
n

 li
m

it
s,

  t
o

 m
o

d
el

 
ve

n
ti

la
ti

o
n

, s
h

ad
in

gs
 

- 
It

 e
st

im
at

es
 C

O
2

 e
m

is
si

o
n

s 

- 
N

o
 o

p
ti

m
iz

at
io

n
 (

o
n

ly
 

si
m

u
la

ti
o

n
) 

- 
Th

o
u

gh
t 

fo
r 

en
gi

n
ee

rs
/a

n
al

ys
ts

 (
n

ee
d

 
fo

r 
tr

ai
n

in
g 

to
 u

se
 it

) 

h
tt

p
s:

//
w

w
w

.v
ec

to
rw

o
rk

s.
n

et
/c

o
m

m
u

n
it

y/
p

ar
tn

er
-

co
m

m
u

n
it

y/
in

d
u

st
ry

-
p

ar
tn

er
s/

ie
s/

fa
q

 

P
ro

.E
n

er
gy

, 
b

y 
P

ro
ge

a 
It

 m
o

n
it

o
rs

 a
n

d
 c

o
lle

ct
s 

re
al

 t
im

e 
d

at
a,

 w
it

h
 t

h
e 

ai
m

 o
f 

ca
lc

u
la

ti
n

g 
an

d
 

an
al

ys
in

g 
en

er
gy

 k
ey

 
p

er
fo

rm
an

ce
 in

d
ic

at
o

rs
 

- 
It

 c
o

lle
ct

s 
re

al
 d

at
a 

an
d

 t
h

is
 

al
lo

w
s 

th
e 

co
m

p
an

y 
to

 
id

en
ti

fy
 a

 s
tr

at
eg

y 
to

 im
p

ro
ve

 
th

e 
e

n
e

rg
y 

p
er

fo
rm

an
ce

 o
f 

th
e 

b
u

ild
in

g 

- 
N

o
 o

p
ti

m
iz

at
io

n
 

h
tt

p
s:

//
w

w
w

.p
ro

ge
a.

co
m

/e
n

/m
o

n
i

to
ra

gg
io

-e
ff

ic
ie

n
za

-e
n

er
ge

ti
ca

/ 

En
er

gi
s.

C
lo

u
d

, b
y 

En
er

gi
s 

C
lo

u
d

-b
as

ed
 e

n
er

gy
 

m
an

ag
em

en
t 

so
ft

w
ar

e 
co

n
tr

o
l s

ys
te

m
 

- 
A

rt
if

ic
ia

l i
n

te
lli

ge
n

ce
 t

o
 m

ak
e

 
fo

re
ca

st
 a

n
d

 “
m

ea
su

re
 

sa
vi

n
gs

” 
- 

It
 c

o
lle

ct
s 

d
at

a 
fr

o
m

 d
if

fe
re

d
 

re
so

u
rc

es
, i

n
cl

u
d

in
g 

u
ti

lit
y 

in
vo

ic
e 

- 
C

lo
u

d
 b

as
ed

: r
em

o
te

 c
o

n
tr

o
l 

o
f 

sy
st

em
s 

o
n

 s
it

e 

- 
N

o
 o

p
ti

m
iz

at
io

n
: i

t 
si

m
u

la
te

s 
so

m
e 

sc
en

ar
io

s 
an

d
 h

el
p

 t
h

e 
o

w
n

er
 t

o
 

d
ec

id
e 

th
e 

“o
p

ti
m

al
” 

o
n

e 
- 

N
o

t 
o

p
en

 s
o

u
rc

e 
- 

Th
o

u
gh

 f
o

r 
co

n
su

lt
an

cy
 

co
m

p
an

ie
s 

to
 h

el
p

 t
h

em
 

in
 a

d
vi

si
n

g 
th

ei
r 

cl
ie

n
t 

h
tt

p
s:

//
so

ft
w

ar
e

-
in

fo
.g

ar
tn

er
d

ig
it

al
m

ar
ke

ts
.c

o
m

/e
n

er
gi

s-
en

er
gy

-m
an

ag
em

en
t-

gd
m

/?
u

tm
_s

o
u

rc
e=

C
ap

te
rr

a&
u

tm
_

m
ed

iu
m

=c
p

c&
u

tm
_c

am
p

ai
gn

=p
ro

d
u

ct
&

u
tm

_t
er

m
=e

n
er

gy
+m

an
ag

em
e

n
t+

so
ft

w
ar

e&
u

tm
_c

h
an

n
el

=c
ap

te
rr

a 
ET

A
P

 E
M

S,
 

b
y 

ET
A

P
 

En
er

gy
 m

an
ag

em
en

t 
so

ft
w

ar
e 

co
n

tr
o

l s
ys

te
m

 
- 

A
u

to
m

at
ic

 U
n

it
 C

o
m

m
it

m
en

t 
- 

Lo
ad

 c
o

n
tr

o
l a

n
d

 f
o

re
ca

st
 

- 
Th

o
u

gh
t 

fo
r 

th
e 

u
ti

lit
y,

 
tr

an
sm

is
si

o
n

 a
n

d
 

d
is

tr
ib

u
ti

o
n

 in
d

u
st

ry
 

h
tt

p
s:

//
w

w
w

.c
ap

te
rr

a.
co

m
/p

/1
9

2
6

1
8

/E
TA

P
-E

M
S/

 

En
er

gy
 

El
ep

h
an

t 
 

It
 a

u
to

m
at

es
 a

ll 
th

e 
d

ay
 

to
 d

ay
 e

n
er

gy
 d

at
a 

p
ro

ce
ss

in
g 

to
 h

el
p

 t
h

e 
co

m
p

an
y 

in
 d

ec
is

io
n

 
m

ak
in

g 

- 
M

o
n

it
o

ri
n

g 
o

f 
co

st
, u

se
 a

n
d

 
em

is
si

o
n

s 
- 

N
o

 o
p

ti
m

iz
at

io
n

  
- 

Th
o

u
gh

t 
fo

r 
m

an
ag

er
s 

w
it

h
 r

es
p

o
n

si
b

ili
ty

 f
o

r 
en

er
gy

 a
n

d
 f

in
an

ce
 

 

h
tt

p
s:

//
w

w
w

.c
ap

te
rr

a.
co

m
/p

/1
5

0
2

7
2

/E
n

er
gy

-E
le

p
h

an
t/

 

 



148



Appendix D

Lagrangian relaxation of the ORD
problem

The Lagrangian Relaxation
Prof. Kenneth McKinnon

Assume there are n scenarios and scenario i has probability pi, so
∑

i pi = 1. Variable x is
common to all scenarios and variable yi occurs in scenatio i only. The feasible regions are of the
form x, yi ∈ Fi. We wish to minimize V given by

V = min
x,y1..yn

f(x) +
∑
i

pigi(x, yi)

s.t. x, yi ∈ Fi ∀i = 1..n

To shorten the presentation we’ll omit writing the constraints and define hi(x, yi) = f(x)+gi(x, yi)
so

V = min
x,y1..yn

f(x) +
∑
i

pigi(x, yi)

= min
x,y1..yn

∑
i

pi(f(x) + gi(x, yi))

= min
x,y1..yn

∑
i

pihi(x, yi) (D.1)

= min
x1..xn,y1..yn

∑
i

pihi(xi, yi)

s.t. xi =
∑
j

pjxj ∀i = 1..n.

This follows because the RHS is independent of i, so all xi are equal taking the value x say, and
so

∑
i pix = x since

∑
i pi = 1. Hence the constraint is feasible with the unique solution where all

xi are equal.
The Lagrangian L(w1..wn) with multipliers piwi is defined as

L(w1..wn) = min
x1..xn,y1..yn

∑
i

pihi(xi, yi) +
∑
i

piwi

xi −
∑
j

pjxj

 .

We know that xi =
∑

j pjxj is feasible for the original problem and if we make this restriction we
get back to the original problem. Hence the Lagrangian is a relaxation of the original problem and
so it follows that

V ≥ L(w1..wn) (D.2)

N.B. This result can only be guaranteed if the minimum is a global minimum.
Our goal is to find the maximum valid bounds so we wish to find the maximum value of L(w1..wn),
i.e. L where

L = max
w1..wn

L(w1..wn) (D.3)
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and from this and (D.2) it follows that

V ≥ L. (D.4)

L(w1..wn) can be rearranged as follows:

L(w1..wn) = min
x1..xn,y1..yn

∑
i

pi(hi(xi, yi) + wixi)−
∑
i

wipi
∑
j

pjxj

= min
x1..xn,y1..yn

∑
i

pi(hi(xi, yi) + wixi)− w̃
∑
j

pjxj ,

where w̃ =
∑

i piwi, i.e. the average of the wi. Now replacing the index j in the second sum by i
we get

L(w1..wn) = min
x1..xn,y1..yn

∑
i

pi(hi(xi, yi) + wixi)− w̃
∑
i

pixi

= min
x1..xn,y1..yn

∑
i

pi(hi(xi, yi) + (wi − w̃)xi)

=
∑
i

pi min
xi,yi

(hi(xi, yi) + (wi − w̃)xi)

=
∑
i

piLi(wi), (D.5)

where

Li(wi) = min
xi,yi

hi(xi, yi) + (wi − w̃)xi (D.6)

We can swap the sum and min above since the pi ≥ 0. To ensure that Li(w1..wn) is a global
minimum we have to ensure that all the Li(wi) for all i are global minima. If we use a multi-start
method to find the global minimun of each Li(wi) (and assuming this is always successful), then
we can get the global minimum for L(w1..wn) by just selecting and taking the weighted sum of the
lowest value of each (weighted by the pi).
Combining (D.3), (D.4)and (D.5) we get finally

V ≥ max
w1..wn

∑
i

piLi(wi) (D.7)

The above is our v2 formula for the bound.

Steepest ascent for v2 formulation
We now find the gradient of L with respect to w. Assume the optimal solution of (D.6) for current
value of wi is x∗

i with x̃∗ =
∑

j pjx
∗
j .

∂Li

∂wi
= (1− pi)x

∗
i

∂Lj

∂wi
= −pix

∗
j for j ̸= i

∂L

∂wi
=

∑
j

pj
∂Lj

∂wi
= pi

x∗
i −

∑
j

pjx
∗
j

 = pi(x
∗
i − x̃∗) (D.8)

Steepest ascent then will update w with

wi := wi + γpi(x
∗
i − x̃∗) (D.9)

where γ is a parameter controlling the step size.
From (D.9) we see that the change in wi value is γpi(x

∗
i − x̃∗) = ∆wi say. Using (D.8) the change

in L, ∆L say, to first order is

∆L =
∑
i

∂L

∂wi
∆wi

=
∑
i

pi(x
∗
i − x̃∗)γpi(x

∗
i − x̃∗)

= γ
∑
i

(pi(x
∗
i − x̃∗))

2
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Appendix E

The heat pump function

This document shows the novel function El used in the optimisation framework of Chapters 2, 3
and 5. Function El is how we model the efficiency of a heat pump and its innovative shape comes
from the need to overcome the following issue. Producers describe heat pumps’ efficiency (COP)
as a function of the temperature lift D, which is the difference between the hot and the cold ends of
the heat pump (D = TH −TC). The COP-function is usually plotted with the temperature lift on
the x-axe and the function value on the y-axe. The COP-function decreases for large temperature
lift values, and increases for small values. Nevertheless, these very large COP values that incur
when D ≤ 10K are not realistic. Because of that, we model the El as parametrised function, whose
left hand side (LHS) is a linear function and the right hand side (RHS) is the COP function. We
merge the RHS and LHS by smoothing technique.
The formula for the El at the hot end of the pump (i.e. the compression end) follows. There are
two equivalent forms: one parametrised by TH and TC , and one parametrised by TH and D.

Notation
TC = Temperature at cold side (i.e. expansion side)
TH = Temperature at hot side (i.e. compression side)
D = TH − TC : Temperature lift
THfit = 294.0K: Temperature where the curve was fitted
α = 0.8 ∗ 0.63: Fitted parameter at THfit

β = 7.0 Fitted parameter at THfit

T split = 297.5K: Temperature where tangent starts in fit curve with THfit

Dsplit = THfit − T split

s = 0.5: Smooth parameter in joining sections
PH = Heating power output at the hot side
PC = Heating power input at the cold side
PE = Electric power input

For high temperature lifts, the El function is the first form below (RHS) and for low lifts, it is the
second (LHS). The LHS is the tangent to the RHS at the split point Dsplit.

El(T
H , D) = αTH

(D+β) for D ≥ Dsplit

= αTH
(

1
Dsplit+β

− D−Dsplit

(Dsplit+β)2

)
for D ≤ Dsplit

Smoothly joining the RHS and LHS gives:

EH
l (TH , D)

= αTH

[(
1

(D + β)

)
1

1.0 + exp(s(Dsplit −D))

+

(
1

Dsplit + β
− D −Dsplit

(Dsplit + β)2

)
1

1.0 + exp(s(D −Dsplit))

]
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Replacing D with TH − TC gives:

EH
l (TH , TC) (E.1)

= αTH

[(
1

(TH − TC + β)

)
1

1.0 + exp(s(Dsplit − (TH − TC)))

+

(
1

Dsplit + β
− (TH − TC)−Dsplit

(Dsplit + β)2

)
1

1.0 + exp(s((TH − TC)−Dsplit))

]

The above assumes TH is in Kelvin. If it is in Celsius, then the αTH term needs to be replaced
by α(273.15 + TH).

We model the hot side in the form:

PH = EH
l (TH , TC)PE (E.2)

and the cold side by:
PC = PH − PE (E.3)

Substituting (E.1) in (E.2) gives:

PH = αTHPE

[(
1

(TH − TC + β)

)
1

1.0 + exp(s(Dsplit − (TH − TC)))
(E.4)

+

(
1

Dsplit + β
− (TH − TC)−Dsplit

(Dsplit + β)2

)
1

1.0 + exp(s((TH − TC)−Dsplit))

]

Equations (E.4) and (E.3) are the relation needed in the optimisation framework.
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