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Abstract

Important decision making problems are increasingly addressed using computer

models for complex real world systems. However, there are major limitations to their

direct use including: their complex structure; large numbers of inputs and outputs;

the presence of many sources of uncertainty; which is further compounded by their

long evaluation times. Bayesian methodology for the analysis of computer models

has been extensively developed to perform inference for the physical systems. In

this thesis, the Bayesian uncertainty analysis methodology is extended to provide

robust decision support under uncertainty.

Bayesian emulators are employed as a fast and efficient statistical approximation

for computer models. We establish a hierarchical Bayesian emulation framework

that exploits known constrained simulator behaviour in constituents of the decision



support utility function. In addition, novel Bayesian emulation methodology is

developed for computer models with structured partial discontinuities. We advance

the crucial uncertainty quantification methodology to perform a robust decision

analysis developing a technique to assess and remove linear transformations of the

utility function induced by sources of uncertainty to which conclusions are invariant,

as well as incorporating structural model discrepancy and decision implementation

error. These are encompassed within a novel iterative decision support procedure

which acknowledges utility function uncertainty resulting from the separation of

the analysts and final decision makers to deliver a robust class of decisions, along

with any additional information, for further consideration. The complete toolkit is

successfully demonstrated via an application to the problem of optimal petroleum

field development, including an international and commercially important benchmark

challenge.
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Chapter 1

Introduction

Computer models are increasingly prevalent across many scientific disciplines, in-

dustry and government, to investigate complex real world phenomena with two

primary objectives being: to improve the understanding of the behaviour of these

systems; and to guide decision making processes. Over the last 30 years, a suite

of Bayesian uncertainty analysis methodology has been developed for the study of

computer models and to make inferences about the corresponding real world system.

These have been successfully implemented across a broad spectrum of applications

with examples including: climate science [40, 66, 151, 187]; cosmology [82, 104, 170,

171]; and epidemiology [2, 3, 5, 177]. The focus of this thesis is to develop a Bayesian

framework for providing robust decision support under uncertainty using computer

models; a problem which has yet to be adequately addressed in the literature, and

to further develop the Bayesian emulation methodology.

An early adopter of computer models was the petroleum industry in the form of

ensembles of oil reservoir models where Bayesian methodology has been effectively

applied to learn about the underlying geological properties of the reservoir, for

example in [26, 27, 28, 29, 30, 128, 132]. More recently, computer models are

employed in decision making under uncertainty problems to address the challenges of

optimal field development. The aim is to devise well control and placement strategies

to maximise an objective function, often the expected Net Present Value (NPV) over
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the field lifetime, whilst accounting for the uncertainty induced by the underlying

geology. This represents a highly complex problem with the commercial significance

evidenced by the advent of the TNO OLYMPUS Field Development Optimisation

Challenge [4, 39, 93], as well as being of great interest to my iCASE PhD industry

partner, Emerson. The field development optimisation problem therefore serves as

recurring motivation for the methodological development in this thesis.

Bayesian emulators are a vital tool in the analysis of computer models [29, 129,

132, 171]. These are a type of surrogate for computer models which are constructed

given a carefully chosen set of simulator evaluations to provide a fast and efficient

statistical approximation, yielding predictions for as yet unevaluated parameter

settings, along with a corresponding statement of the uncertainty. Emulators are

typically several orders of magnitude faster to evaluate than the computer model

enabling large numbers of simulations to be performed, whilst the quantification

of the uncertainty facilitates inferences about the corresponding computer model.

Further challenges arise in the accurate emulation of computer models exhibiting

structured partial discontinuities.

Another essential component is an uncertainty analysis. This involves formulating

a structured link between the computer model and the physical system it represents,

before identifying, assessing and quantifying all major sources of uncertainty [59,

67, 107, 171]. The complete process is essential for a robust analysis and obtaining

meaningful inferences about the real world physical system. However, such a detailed

uncertainty analysis is frequently omitted from many applications, with a coherent

uncertainty analysis framework for decision making yet to be established.

Within industry and government settings, analysts or statisticians perform de-

cision analyses, exploiting computer models, and deliver results to a committee of

decision makers, who may possess further unknown judgments and risk preferences

that are inaccessible to the analysts. The actual utility function is therefore unknown.

This can only be addressed via decision support incorporating a comprehensive un-

certainty analysis along with Bayesian emulators to facilitate a full exploration of
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often high-dimensional decision parameter spaces. Decision support returns a class

of robust decisions, along with additional insights or information, for consideration

by a committee of decision makers.

The importance of providing robust decision support for real world systems via

an analysis of their representative computer models motivates the research presented

in this thesis. The major contributions are as follows:

1. Establishment of a hierarchical Bayesian emulation framework that exploits

known constrained simulator behaviour and that is adaptable to other (par-

tially) known forms of computer model output and utility functions (Chapters 3

to 5).

2. Advancement of the uncertainty quantification methodology for performing

decision support (Chapters 3 to 5).

3. Formulation of an iterative decision support procedure that addresses the

separation of analysts from the final decision makers (Chapters 3 to 5 and 7).

4. Development of Bayesian emulators for computer models with structured par-

tial discontinuities (Chapters 6 and 7).

This thesis is arranged into 8 chapters. We start in Chapter 2 with a literature

review introducing computer models and presenting the Bayes linear versus a full

Bayesian approach to belief specification. It is noted that this thesis follows the sub-

jective Bayesian approach to uncertainty quantification. The review continues with a

detailed discussion of Bayesian emulators, including a derivation of the Bayes linear

update formulae for an emulator. Uncertainty quantification methodology is then

described for linking the computer model to the real system with these techniques

combined in the history matching process for identifying a set of model parameters

that yield an acceptable match between the simulator output and observed data

with respect to an uncertainty analysis.

The aim of Chapter 3 is to develop methodology to perform decision making under

uncertainty using computer models. We begin by introducing the TNO OLYMPUS

Field Development Optimisation Challenge and critiquing its limitations. This
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motivates the development of a hierarchical Bayesian emulation framework exploiting

known constrained simulator behaviour. The uncertainty quantification literature

is then extended to performing decision support where conclusions are invariant to

linear transformations of the utility function with a novel technique devised to assess,

quantify and remove such effects. These are incorporated within a novel iterative

decision support framework that addresses the problem of the separation of analysts

from the final decision makers. This framework is flexible and adaptable to a wide

variety of applications.

The methodology is then applied in Chapter 4 to the TNO OLYMPUS Well

Control Optimisation Challenge reformulated as a decision support problem. Firstly,

methodology is devised for constructing a targetted Bayesian design based on prior

insight. It is demonstrated how exploiting known constrained simulator behaviour

within a hierarchical emulator construction yields substantially greater accuracy

compared with a Bayes linear emulator, as well as emphasising the need to remove

uncertainty linear transformation effects. The first wave of iterative decision support

is performed with an efficient assessment of alternative uncertainty specifications

highlighting the importance of a comprehensive analysis.

Chapter 5 forms the commercial client placement part of my iCASE PhD student-

ship with Emerson where the decision support methodology is applied to their Jade

model. Multiple waves of iterative decision support are performed to demonstrate

the sequential refocusing of the decision space and how the uncertainty quantifica-

tion may be revised at each iteration. The results of the hierarchical emulation and

decision support frameworks are subsequently validated. Moreover, it is concluded

that geological uncertainty constitutes the single largest source of uncertainty and

thus requires a more careful treatment across the petroleum industry to yield robust

and meaningful decision support results.

In Chapter 6 we develop novel Bayesian emulation methodology for computer

models with structured partial discontinuities. This is motivated by the TNO OLYM-

PUS Well Placement Optimisation Challenge where the expected NPV as a function
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of well location possesses partial discontinuities with respect to geological fault

boundaries. Two example scalar functions are used to explicate the methodological

development where emulators are constructed for an embedding of the input para-

meter space in higher dimensions with the embedding surface chosen to characterise

the discontinuities. The general form of the embedded parameters variance matrix

is derived and depends on the embedding surface and input settings, thus necessit-

ating the use of non-stationary emulators. These steps are to correct for an induced

warping effect. The complete framework is referred to as the Torn Embedding

Non-Stationary Emulation (TENSE) approach.

The TENSE methodology is utilised in Chapter 7 to perform a sequential well

location analysis for the TNO OLYMPUS Well Placement Optimisation Challenge.

First, an appropriate form of embedding surface is devised and justified before illus-

trating the induced prior covariance structure. Application of the TENSE framework

yields an emulator for the ensemble mean NPV which successfully encompasses the

partial discontinuities induced by the geological faults. This is employed within the

iterative decision support strategy of Chapter 3 and combined with knowledge from

an experienced oil reservoir engineer to obtain an appropriate field development

strategy.

Chapter 8 summarises this research and presents the conclusions before suggesting

a number of directions for further research. An overview of the notation and acronyms

used in this thesis is provided in the nomenclature.





Chapter 2

Bayesian Uncertainty Analysis for

Computer Models

This chapter presents a detailed review of the theory and methodology for the

Bayesian analysis of complex computer models used in the study of real world phys-

ical systems including the modelling and uncertainty quantification. In Section 2.1

we introduce computer models for physical systems describing their construction and

purpose in Section 2.1.1, associated challenges in their use in Section 2.1.2, and the

types of inputs in Section 2.1.3. A comparison of the Bayes linear and full Bayesian

framework for analyses is detailed in Section 2.2. Computer experiments require a

design of simulations over the input parameter space with a selection of methods for

construction and design optimisation discussed in Section 2.3. An integral compon-

ent in the analysis of computer models is Bayesian emulators; these are described

in Section 2.4. This includes: their structure; choice and properties of covariance

functions; and prior belief specification in Sections 2.4.1 to 2.4.3 respectively, Gaus-

sian process and Bayes linear emulation in Sections 2.4.4 and 2.4.5 respectively, and

diagnostics in Section 2.4.6. The extension of emulators to multivariate computer

model outputs is outlined in Section 2.5, as well as an introduction to multilevel emu-

lation for handling multiple computer model versions of differing levels of complexity

for the same physical system in Section 2.6. Methods of linking the computer model
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to the actual physical system and observations via an uncertainty quantification

are described in Section 2.7. Bayesian emulators and uncertainty quantification

techniques are combined in the history matching process presented in Section 2.8,

including a comparison with calibration procedures.

2.1 Computer Models of Physical Systems

In this section we introduce computer models of physical systems discussing their

formulation and purposes in Section 2.1.1, challenges associated with their use in

Section 2.1.2, and the different types of input variables in Section 2.1.3.

2.1.1 Purpose of Computer Models

The advent of increasingly powerful computers with larger memory capacity and

faster processing speeds has transformed the way in which we study complex physical

systems with mathematical models in the form of computer codes used as surrogates

[152, 153]. These are commonly referred to as computer models or simulators, which

are used interchangeably throughout this thesis. They consist of a collection of

coupled mathematical equations which describe the interacting behaviour of the

various components of the system which results in complex and non-linear dynamics

for the system output(s). Examples include coupled systems of (stochastic) ordinary

and partial differential equations. These are often solved numerically. Moreover,

simulators may be either deterministic or stochastic. Throughout this thesis we

address the analysis of deterministic computer models representing the output as

the vector-valued function f(·), whilst univariate outputs from a single simulator

may be represented as a scalar function fi(·). Different types of inputs are described

in Section 2.1.3.

It is often the case that traditional physical experiments are impossible to conduct.

This is due to them being prohibitively expensive, especially for large scale systems;

difficulties in performing measurements, potentially due to safety concerns; and
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their repeatability for one-time events. Computer models negate many of these

issues by providing a cheaper means of experimentation for which measurements

can be easily obtained, whilst also being repeatable. The increasing importance of

simulators to study real world physical systems spawned the subject of the “Design

and Analysis of Computer Experiments” (DACE) [152, 153], for which there are

three main aims. These are: to advance knowledge of the system being studied; to

perform optimisation over a set of design variables; or to provide decision support

to achieve some objective in the system [185]. The principal focus of this thesis is

decision support.

The analysis of computer models has been successfully employed in a number

of scientific areas including: climate science [40, 66, 151, 167, 168, 169, 185, 187];

petroleum reservoir engineering [26, 27, 28, 29, 30, 135]; cosmology [82, 104, 170,

171]; epidemiology [2, 3, 5, 177]; cardiac electrophysiology [20, 25, 100, 122]; systems

biology [173, 178]; volcanology [11, 78]; hydrology [65]; traffic flow modelling [10,

124]; and preparation for accidents involving the release of nuclear radiation [107].

2.1.2 Challenges in the Analysis of Computer Models

Within the subject of DACE, the systems studied have become increasingly complex

over time, both due to a desire to learn more about new systems and as a consequence

of an increased state of knowledge about those previously studied. To keep pace

with this demand, the simulator code has become increasingly long and complex.

Computer models therefore often behave like a “black-box”; for a particular input

setting, the simulator output is unknown until it has been evaluated, whilst also

possessing a high-dimensional input parameter space, and a large number of outputs.

The long evaluation times, typically ranging from several minutes to months, along

with constraints on computational resources renders the direct use of simulators

for an analysis infeasible, thus necessitating the development of techniques such

as Bayesian emulation (described in Section 2.4). Moreover, the presence of many

sources of uncertainty demands a thorough uncertainty analysis (see Section 2.7).
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Another challenge is the analysis of systems for which there exists a collection

of simulators of differing levels of complexity, for example, in petroleum reservoir

modelling [29, 30, 32, 108, 132], and in climate science [168, 169]. This is commonly

addressed using multilevel or multiscale emulation which is briefly discussed in

Section 2.6. Although not the subject of this thesis, additional challenges arise when

the computer model is stochastic. See [7] for a review of current methodology.

2.1.3 Computer Model Input Parameters

Computer models map a vector of inputs to a vector-valued output, f(·). There

are four distinct input types: model parameters; decision or control parameters;

environmental variables [153]; and tuning parameters [67].

Model parameters are the inputs which determine the behaviour of the system

due to the underlying physics and boundary conditions, and possess a physical

interpretation for the real system. A common assumption is that there exists a

setting for the model parameters which results in the model accurately portraying

the physical system, although this value may differ from the true underlying physical

constant. These are commonly denoted by the vector x with model parameter space

x ∈ X ⊂ RD̃, D̃ ∈ N, with an individual component denoted by xi, where the

subscript specifies the context.

Decision or control parameters represent inputs to the system which the analyst

can modify in order to affect the system, potentially with the aim of achieving

a certain objective. These are of primary interest within decision support and

optimisation problems where the analysis of a computer model is used to guide the

choice of decision parameter settings. Decision parameters are denoted by the vector

d, with individual input typified by the form di, where the subscript is context

specific. The decision parameter space is indicated by Ω ⊂ RD, D ∈ N.

Environmental variables are inputs which are specific to an individual user within

a system for which an example in [153] is a model for a hip prosthesis in which the

stress on the implant depends on the individual patient and their activity level.
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Tuning parameters are introduced in [67] and are inputs included for several reasons:

to ensure a good fit between the model and observed data (with error); account

for poorly understood physics; and solver deficiencies. These are not always in-

cluded with alternative approaches including: model calibration or history matching

(Section 2.8) to train a computer model using observed data; whilst the other two

considerations can be incorporated within model discrepancy in an uncertainty quan-

tification (Section 2.7). Neither of these input types are considered further within

this thesis.

Throughout this thesis computer models will be viewed as a function of model

and decision parameters, f(x,d). For clarity, this will often be abbreviated to f(x)

or f(d) in contexts where the other parameter type is implicit or unimportant.

Specifically, x and f(x) will be used when describing general methodology for the

analysis of computer models in Chapters 2, 6 and 7, whilst d and f(d) will be used

when discussing decision support in Chapters 3 to 5.

2.2 Bayes Linear and Full Bayesian Analysis

Throughout this thesis we follow a Bayesian approach to the analysis of computer

models for which there are two schools of thought: objective [13] and subjective

Bayesianism [63], which differ in their means of specifying prior beliefs about uncer-

tain quantities in a system of interest. We subscribe to the latter which provides a

coherent framework to structure and combine priors which are regarded as statements

of one’s personal and subjective beliefs about these uncertainties. Uncertainties about

these quantities may be expressed via either probability in a full Bayesian analysis, or

expectations in a Bayes linear analysis which are described in Sections 2.2.1 and 2.2.2

respectively, and compared in Section 2.2.3.
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2.2.1 Full Bayesian Analysis

A full Bayesian analysis uses probability as a primitive to convey beliefs about

uncertain quantities. Consider a collection of random quantities or parameters,

θ ∈ Θ, for which the aim is to perform statistical inference, given a vector of

observed data, D.1 In the full Bayesian paradigm, the current knowledge of θ is

used to formulate a prior probability distribution, π(θ), whilst the observed data

is treated as a random quantity sampled from a probability distribution, π(D | θ),

known as the likelihood, which contains conditional probabilistic beliefs of observing

D given θ. Bayes’ theorem is used to update the prior beliefs about θ to obtain a

posterior probability distribution with the general expression in Equation (2.2.1).

π(θ | D) = π(D | θ)π(θ)
π(D) (2.2.1)

= π(D | θ)π(θ)∫
Θ π(D | θ)π(θ) dθ (2.2.2)

Assuming that all elements of θ are continuous random variables, an explicit version

of Bayes’ theorem is shown in Equation (2.2.2). In general, the partition theorem is

used to compute π(D). For discrete random variables, π(D) = ∑
θ∈Θ π(D | θ)π(θ),

whilst for a combination of parameter types, the appropriate mix of integrals and

summations is employed.

Bayes’ theorem leads to a coherent calculation of the posterior distribution which

can be used to perform statistical inferences for θ, as well as to guide the choice of

decisions, given both the prior knowledge and information gained through the ob-

served data. There exist many bibliographic resources which provide comprehensive

coverage to the full Bayesian approach, for example [14, 112].

2.2.2 Bayes Linear Analysis

The Bayes linear approach [57, 70, 171] to statistical inference uses expectation

as a primitive following de Finetti [48, 49]. Consider the collections of random

1In the context of computer experiments, we must distinguish between observed data of the
physical system and simulator evaluation data.



2.2. Bayes Linear and Full Bayesian Analysis 13

quantities B = (B1, . . . , . . . , Bq), C = (C1, . . . , . . . , Cr) and D = (D1, . . . , . . . , Ds),

with observed data D. This is used to update prior beliefs about quantities B and

C. Within a Bayes linear analysis, a second order belief specification is based on

the expectation, variance and covariance. The Bayes linear update formulae for the

expectation and variance of B, given observations D, requires the specification of:

prior vectors of expectations, E[B], and E[D]; prior variance matrices, Var[B] and

Var[D]; and the prior covariance matrix between B and D, Cov[B,D]. These are

termed the Bayes linear or adjusted expectation and variance of B given D, and are

presented in Equations (2.2.3) and (2.2.4) respectively. Similarly, the Bayes linear

update for the covariance, termed the Bayes linear or adjusted covariance, between

B and C given observations D, is presented in Equation (2.2.5). This requires the

additional specification of the prior covariance matrices between B and C, Cov[B,C],

and between C and D, Cov[C,D]. Note that the derivation follows from considering

the corresponding off-diagonal sub-matrix of VarD [( B
C )].

ED[B] = E[B] + Cov[B,D] Var[D]−1(D− E[D]) (2.2.3)

VarD[B] = Var[B]− Cov[B,D] Var[D]−1 Cov[D,B] (2.2.4)

CovD[B,C] = Cov[B,C]− Cov[B,D] Var[D]−1 Cov[D,C] (2.2.5)

In situations where Var[D] is not invertible, the Moore-Penrose generalised inverse

is used instead [137]. Moreover, probabilities can be expressed as the expectation of

an indicator function, hence inference for probabilities of events of interest can also

be made following the Bayes linear approach.

Several observations are made for the Bayes linear update formulae. The adjusted

expectation may be viewed as an estimator for B where for each Bi it is the best linear

fit over the observed data D. Formally, this is the linear combination aT
i D which

minimises E[(Bi − aT
i D)2] over the possible choices of ai ∈ Rs for i = 1, . . . , q, as

evaluated in Equation (2.2.3), and hence may be interpreted as the linear combination

of D which is most informative for B with respect to a squared error loss function.

VarD[B] gives the expected mean square error of ED[B]. In the case where D



14 Chapter 2. Bayesian Uncertainty Analysis for Computer Models

consists of a collection of indicator functions for events which form a partition,2

the adjusted expectation is numerically equivalent to the conditional expectation.

There is a strong formal relationship between Bayes linear and a full Bayesian

analysis in which there is an assumed Gaussian structure, which is characterised

by its mean and variance. Suppose that (B,D) follows a multivariate Gaussian

distribution, the Bayesian update yields the normal conditional formulae for the

mean and variance which precisely coincide with the adjusted expectation and

variance of Equations (2.2.3) and (2.2.4) respectively. For an overview of Bayes

linear methods, see [57], whilst for a comprehensive account, see [70].

2.2.3 Comparison of the Bayes Linear and Full Bayesian

Approaches

Both the full Bayesian and Bayes linear approach provide a coherent framework in

which to combine prior judgements with observed data in order to make posterior

inferences. This section discusses their interrelationship as well as the merits and

weaknesses of each approach.

A full Bayesian analysis of a problem requires the subjective specification of

a joint prior probability distribution over all uncertainties as well as a likelihood,

both of which may be of a complex form; an issue which is further exacerbated in

high-dimensions. Constraints on time, resources and available knowledge to assess

the uncertainties within the problem, potentially requiring the elicitation of expert

judgements, makes accurate prior specification extremely challenging. Stipulating

a specific prior distribution may accurately reflect certain aspects of the current

knowledge, however the full distributional form also implicitly results in additional

prior belief statements which may be unfounded, whilst not necessarily being in

agreement with the current subjective judgements. Unless prior beliefs can be

specified with confidence, the resulting analysis may be non-robust since the posterior

2Each Di takes value zero or one, and exactly one element of D will be equal to one.
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distribution inherits any inaccuracies within the prior distribution, thus it is unclear

as to the interpretation of the posterior with regards to whose subjective views it

represents.

A related issue pertains to the introduction of likelihood hyperparameters which

in turn require a prior specification. A common approach is to fix them at their

maximum likelihood estimates given the observed data. An alternative is the use of

an objective prior distribution for any hyperparameters; a common practice in many

applications [13]. Such objective priors are designed to be minimally informative,

however this does not resolve the issue since there exist multiple forms of objective

priors (Jeffrey’s prior, reference priors, maximum entry priors, to name a few), hence

conclusions of the analysis implicitly depend on this choice. Moreover, in some

scenarios, particularly in high-dimensions, objective priors are also used for other

uncertainties within the problem and thus do not accurately represent the current

knowledge and are incompatible within a subjective analysis.

A further challenge within a full Bayesian analysis is computational tractability.

Complex posterior probability distributions require the use of computational methods

such as Markov Chain Monte Carlo (MCMC) [16] in order to make inferences. Such

methods are computationally expensive and take a long time to perform, with the

problem exacerbated with increasing dimensionality. To alleviate these issues, prior

probability and likelihood distributions may be chosen for computational convenience

such as through the use of conjugate prior families, rather than to reflect the true

prior beliefs surrounding the uncertainties.

The Bayes linear approach alleviates many of these challenges. There is no need

to specify a full probabilistic prior distribution, instead a second-order analysis re-

quires only prior expectations, variances and covariances. Although this appears to

require the specification of a larger number of quantities, it is in fact simpler than a

full probability distribution since these are its moments, each of which is simpler to

comprehend and elicit as belief statements about physical quantities. Importantly

these prior beliefs can be verified to ensure an accurate reflection of current know-
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ledge, with second-order exchangeability arguments used to transfer these beliefs to

populations of models [60, 62, 71]. There is also no requirement for the specification

of a likelihood since the Bayes linear update formulae in Equations (2.2.3) to (2.2.5)

explain how to update prior beliefs given the observed data which is computationally

tractable and is usually much simpler than full conditioning. This is particularly

useful for analyses requiring iterative belief updates, for example, history matching

[27, 29, 171] or decision support, as well as applications where answers are required

quickly. Moreover, the Bayes linear approach provides a coherent means of handling

partial prior belief specifications via the Temporal Sure Preference (TSP) principle

which is used to establish a link between judgements at different time points [57, 59,

61]. This is connected with the concepts of partial adjusted expectation and partial

resolved variance discussed in [27].

Further rationale for implementing a Bayes linear analysis stems from whether

the objectives of a study can be sufficiently achieved without the need for a full

probabilistic specification which may only lead to small improvements in terms of

the information gained, yet comes with the risk of being non-robust to potential

misspecification. Such considerations can be seen in history matching [171] compared

to a full Bayesian calibration [107]. Moreover, a Bayes linear analysis may be used

as a precursor to a full Bayesian analysis, both to ensure that prior beliefs are

accurate, but also to initially restrict to regions of the parameter spaces which are

not in conflict with the observed data. Note that if a full Bayes analysis is feasible,

more detailed inferences may be drawn because of the additional information about

all relationships contained within the posterior probability distribution versus the

relevant Bayes linear adjusted quantities.

There are several perspectives on the interpretation of a Bayes linear analysis,

as outlined in [57]. It may be viewed as a pragmatic compromise to a full Bayesian

analysis replacing a costly full probabilistic prior specification with moments of the

uncertain quantities of interest [57, 171]. Alternatively, the Bayes linear updates

for uncertain quantities can be seen as an estimator that linearly combines prior
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knowledge with observations [57, 185]. A further interpretation is a generalisation

to conditional expectation which does not require the strict condition on indicator

functions for a partition [30, 57, 70]. On a foundational level, the TSP provides a

temporal coherence condition relating actual belief revisions with a formal analysis

based on partial prior specifications which is derived through a stochastic model. This

is described in more detail in [61]. Each of these perspectives of a Bayes linear analysis

leads to interpretational differences between the updated quantities, in particular

credible intervals, and their related notion within a full Bayesian analysis. Although

there are similarities when a joint Gaussian distribution is assumed. Unsurprisingly

each approach possesses its own set of interpretive and diagnostics tools.

The full Bayesian approach is of most value when the prior probability and

likelihood distributions can be accurately specified, and when the resultant posterior

distribution provides additional information to the analysis. The author believes

that the Bayes linear approach should be adhered to whenever these conditions are

not met for the reasons outlined above, and will be used throughout this thesis.

2.3 Design of Computer Experiments

Statistical inference using computer models requires a collection of simulations from

which to learn presenting the question of how to construct designs to best achieve the

aims of a study. It must be emphasised that prior to evaluating the simulator, the

relationship between inputs and outputs is unknown. Constraints on computational

resources limits the number of simulations which may be performed for which the

design size must first be determined, whilst for sequential analyses consideration

must also be given to the allocation of this computational budget at each stage. It is

assumed that all computer model inputs are continuous and possess a fixed and finite

range, whilst it is also common to assume the input ranges are independent leading,

to a hypercube parameter space. Note that for deterministic computer models there

is no requirement for replication.
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Types of designs are discussed in Section 2.3.1 with several design generation

methods described including: factorial designs in Section 2.3.2; uniform designs in

Section 2.3.3; and Latin hypercube designs in Section 2.3.4. Other design methods

such as Sobol sequences exist. The choice of design may be optimised with respect

to design selection criteria which are presented in Section 2.3.5. A comprehensive

treatment of the design for computer experiments can be found in [153].

2.3.1 Types of Designs

There are three types of design algorithms [152]. Single-stage methods, such as

uniform and Latin hypercube designs, involve fixing the number of design points

which are simultaneously chosen before any optimisation with respect to a design

selection criterion. These are often preferred for generating an initial exploratory set

of simulations and are most useful when the computational budget is known. Note

that single-stage designs can be very computationally expensive to optimise for large

designs.

Sequential methods with or without adaptation involve successively choosing

design points. These are advantageous when the computational budget is unknown,

whilst optimisation with respect to a criterion is generally less computationally

expensive requiring a sequence of D-dimensional optimisations. The distinction

between the two forms is that adaptation permits the modification of earlier design

points as later ones are chosen. Note that without adaptation, the next simulation

may be launched whilst still choosing subsequent design points. This also permits

selecting design locations in light of the results of simulations in a myopic or one-

step-ahead design, although this does not make best use of any parallel computing

resources. A generalisation involves simultaneously selecting small batches of points.

2.3.2 Factorial Designs

Factorial designs, also known as grid designs, are a simple mechanism for sampling

over a hypercube [34]. For a D-dimensional parameter space, sample nj values for
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the jth parameter taking all possible combinations to construct an n1×n2×· · ·×nD

grid. Critically the number of simulations required grows exponentially making

factorial designs computationally infeasible, even for a modest number of dimensions

and relatively inexpensive simulators. Further disadvantages include: poor coverage

both for the full parameter space and in projection onto sub-spaces; and wasting

computational resources through unnecessary repetition when a parameter has little

effect on the simulator output, termed an inactive parameter. Consequently, factorial

designs are rarely used in practice.

2.3.3 Uniform Designs

A desirable property of a design is that points are uniformly spread over the para-

meter space. This is achieved via uniform sampling, also known as simple random

sampling, in which points are sampled from a uniform distribution over the relevant

space [121, 153]. A limitation is that points may be close to each other by chance,

thus inhibiting the potential information gain from simulations, whilst projections

onto lower-dimensional sub-spaces may also possess this undesirable property. This

issue can be addressed using a discrepancy criterion to compare the empirical dis-

tribution with the cumulative distribution function for a uniform distribution over

the parameter space, selecting a candidate design which minimises this discrepancy

[153]. An alternative is stratified random sampling which attains a smaller estimator

variance versus random sampling [121].

For situations where the shape of this space is complex, rejection sampling may

be implemented, although this method does not scale efficiently as the dimensionality

increases. This scenario arises within iterative procedures such as history matching

where methods of efficiently constructing uniform designs over spaces of unknown

shape constituting a very small fraction of their original volume are presented in

[186]. Uniform design techniques, including the use of a discrepancy criterion, can

also be extended to sampling from other distributions, although these often require

Monte Carlo methods and hence may be intractable in higher dimensions.
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2.3.4 Latin Hypercube Designs

Latin hypercube designs are a form of space filling design meaning they have no

large gaps between design points [121, 153]. An n-point Latin hypercube design is

constructed by dividing the range of each parameter into n-intervals of equal length,

uniformly sampling a single value from each. The full design is constructed by joining

random permutations of the samples for each parameter, potentially to satisfy a

design criterion, see Section 2.3.5. Consequently there are no overlaps between

points when projected onto the hypercube formed by any subset of the parameters.

This is referred to as the Latin hypercube property and leads to an approximately

orthogonal design; a desirable attribute. Note that any sub-design also satisfies this

property. Latin hypercube designs are simple to generate irrespective of dimension

and thus are a popular choice across large parts of the computer experimentation

literature, for example [2, 28, 171, 178]. Unlike uniform designs, these rely on the

parameter space being a hypercube, whilst implementation of rejection sampling

will break the Latin hypercube property.

2.3.5 Design Selection Criteria

Design selection criteria are used to select the most suitable over a potentially infinite

collection by optimising with respect to a rule [153]. Let D denote a design.

Space filling designs are often desired with several common criteria specified

with respect to a distance metric such as the p-norm or Lp-norm between two D-

dimensional inputs x,x′ ∈ X defined in Equation (2.3.1) for p ≥ 1. The case p = 2

corresponds to the Euclidean distance metric. To enable comparison of parameters

with different ranges, it is good practice to scale each parameter onto the range [0, 1].

ρp(x,x′) :=
 D∑
j=1
|xj − x′j|p

1/p

(2.3.1)

A maximin design, DMm, defined in equation (2.3.2), maximises the minimum dis-

tance between any pair of parameter vectors within the design, thus resulting in
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points which are spread out over X . This can lead to “holes” in the parameter space

as design points tend to be pushed towards the boundary. Maximin Latin hyper-

cube designs are frequently used across the computer experimentation literature, for

example in [2, 40, 107, 171, 173].

DMm := arg max
D⊂X

min
x1,x2∈D

ρp(x1,x2) (2.3.2)

An alternative approach uses the minimum distance between any x ∈ X and its

nearest neighbour in D defined in Equation (2.3.3).

ρp(x,D) := min
xi∈D

ρp(x,xi) (2.3.3)

The minimax design, DmM , defined in Equation (2.3.4), minimises the nearest neigh-

bour distance and hence reduces the possibility of “holes” in the parameter space.

This is desirable with a view to emulation. For even moderately high-dimensional

parameter spaces it is not tractable to analytically evaluate the nearest neighbour

distance for all x ∈ X . In practical implementation X is substituted for a large

uniform sample or grid of points S, which is sufficiently large to achieve adequate

coverage.

DmM := arg min
D⊂X

max
x∈X

ρp(x,D) (2.3.4)

A generalisation is to consider the average distance between design points defined in

Equation (2.3.5), where n is the size of the design and d1/p is a normalisation constant

chosen such that d1/p ≥ maxxi,xj∈D ρp(xi,xj) for all xi 6= xj, making distances

comparable for pairs of points in different dimensions.

m(p,λ)(D) :=
 1(

n
2

) ∑
xi,xj∈D

[
d

1/p

ρp(xi,xj)

]λ1/λ

, for λ ≥ 1 (2.3.5)

The minimum average distance design, Dav, defined in Equation (2.3.6), minim-

ises the average distance between design points favouring those which possess non-
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redundancy between design point locations.

Dav := min
D⊂X

m(p,λ)(D) (2.3.6)

When λ = 1, this criterion selects the design which maximises the harmonic mean

distance between all pairs of design points which avoids clustering of design points.

In the limit as λ→∞, this is equivalent to selecting the maximin design.

Beyond space filling designs, there exist many statistical criteria based on the

form of the model to be fitted [153]. Design criteria based on a function of the

covariance matrix defined over a set of outputs include: D-optimality, which min-

imises its determinant; A-optimality, which minimises its trace; and I-optimality,

which minimises the average or Integrated Mean Squared Prediction Error (MSPE)

over the input space, also known as the IMSE criterion. A variant on I-optimality

is V-optimality which minimises the MSPE over a subset of input points. Designs

may also be considered which minimise the Maximum Mean Squared Prediction

error (MMSPE). Maximum entropy designs aim to reduce unpredictability [34, 152,

153]. For sequential designs it is common to use Bayesian optimal design criteria,

for example: Probability Of Improvement (POI or PI); Expected Improvement (EI)

[102]; multi-points EI [56]; Bayesian expected loss; and Lower or Upper Confidence

Bounds (LCB or UCB) [15].

For all of the presented design selection criteria, as the input dimension and

the number of design points increase, the computational expense of optimisation

also increases rapidly whilst becoming unreliable. Consequently, practical design

selection is usually performed by comparing a large collection of candidates with

respect to a design selection criterion. Moreover, designs optimised with respect to

specific criteria will possess certain desirable properties, but also have weaknesses. A

means of averting this is to use multiple design criteria. For example, a first design

criterion is used to obtain a restricted class of candidate designs on which a second

criterion is applied to select a final design [153].
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2.4 Bayesian Emulation

An emulator is a stochastic belief specification for a deterministic function that

provides a fast and efficient statistical approximation, yielding predictions for as

yet unevaluated parameter settings, along with a corresponding statement of the

uncertainty [26, 29, 129, 132, 171]. These are also known as surrogate or meta-models.

In Bayesian emulation, this involves combining prior knowledge with information

gained from a (small) batch of simulations. Emulators are frequently employed as

an approximation to computer models for performing tasks including: calibration;

history matching; uncertainty quantifications; sensitivity analyses; and decision

support. This is due to the limitations of computer models discussed in Section 2.1.2

which makes their direct use infeasible.

The structure of an emulator is presented in Section 2.4.1, whilst the choice of

covariance function is discussed in Section 2.4.2. Before fitting a Bayesian emulator, it

is necessary to construct a prior belief specification which is explored in Section 2.4.3.

A fully Bayesian technique in the form of Gaussian process emulation and Bayes

linear emulators are described in Sections 2.4.4 and 2.4.5 respectively. Emulator

diagnostics techniques are reviewed in Section 2.4.6.

2.4.1 Emulator Structure

A Bayesian emulator for the ith output of a simulator, f(x), denoted by the function,

fi(x), takes the general form shown in Equation (2.4.1), as seen in [29, 30, 171, 178],

where x denotes a vector of input parameters. This may be either model or decision

parameters, or a combination of the two.

fi(x) = gi(xAi)Tβi + ui(xAi) + wi(x)

=
p∑
j=1

βijgij(xAi) + ui(xAi) + wi(x) (2.4.1)

The subscript Ai denotes a subset of active inputs which are the parameters deemed

to be most influential for fi(x). Within the emulator equation, the first term models
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the global behaviour of fi(x) where the gij(·) are deterministic functions of the active

inputs with unknown scalar regression coefficients, βij for j = 1, . . . , p, where p ∈ N.

Collectively, these are denoted by the vector function gi(·) =
 gi1(·)

...
gip(·)

, and the vector

βi =
 βi1

...
βip

 ∈ Rp respectively. The second term, ui(·), models the local behaviour

of fi(x) with respect to the active parameters. It is a weakly stationary stochastic

process, see Definition 2.4.1, with zero mean and a pre-specified covariance structure.

Definition 2.4.1. Let ζ(·) be a stochastic process with input vector x ∈ X , a

parameter space. ζ(x) is described as weakly stationary if E[ζ(x)] = a for all

x ∈ X where a ∈ R is a constant, and Cov[x,x′] = c(x − x′) for some function c(·)

and all x,x′ ∈ X . That is ζ(·) possesses a constant mean and a covariance function

which is invariant to translations.

Note that a process is strictly stationary if it has constant mean, with all finite

dimensional distributions also being invariant to translations of the parameters.

There exist many forms of covariance functions with a common choice being the

squared exponential covariance function, also known as the Gaussian form, for which

a general formula is shown in Equation (2.4.2), where σ2
ui

is the variance hyperpara-

meter [146, 171] and the dependency between the active inputs is encapsulated by the

variance matrix M . An alternative parameterisation involves the often reasonable

simplifying assumption that the inputs are uncorrelated, each with its own distinct

correlation length, also known as (characteristic) length scale hyperparameters, con-

tained in the D-vector θi = (θi1, . . . , θiD). This is equivalent to specifying that M

is diagonal such that M = diag{θ2
i1, . . . , θ

2
iD}. A further assumption is a common

correlation length such that θi1 = · · · = θiD. Alternative covariance functions are

explored in Section 2.4.2.

Cov[ui(xAi), ui(x′Ai)] = σ2
ui

exp
{
−
(
xAi − x′Ai

)T
M−1

(
xAi − x′Ai

)}
(2.4.2)

Cov[ui(xAi), ui(x′Ai)] = σ2
ui

exp
−

D∑
k=1

(
xAi,k − x′Ai,k

θik

)2
 (2.4.3)
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The third term in Equation (2.4.1), wi(x), is an uncorrelated, zero-mean nugget

term with covariance specified as:

Cov[wi(x,x′)] = σ2
wi
1{x=x′} (2.4.4)

This may also be thought of as a white noise process. Emulators may be construc-

ted which do not contain a nugget term, although there are strong arguments for

its inclusion discussed in [1, 75]. Two common arguments are for computational

numerical stability, as favoured in [107], as well as to account for the remaining

variability in fi(x) due to the inactive parameters, as discussed in [30, 171]. Further

arguments pertain to failures in the underlying modelling assumptions of: simulator

bias; stationarity; correct choice of covariance function; and that the simulator is

deterministic in both the non-modelable and theoretical but not numerical sense.

Inclusion of a nugget term protects against poor emulator fit compared with the real

physical process and ensures that the emulator does not interpolate any fitting data

[1, 75]. Note the similarities with model discrepancy within an uncertainty analysis

discussed in Section 2.7. Collectively the weakly stationary stochastic process and

nugget term are thought of as the residual process.

In order to fairly evaluate the effect of each parameter for each simulator output,

where possible, such as when parameters have a fixed physical or operational range,

it is good practice to linearly transform all parameters onto the range [−1, 1], hence

obtaining a parameter space X = [−1, 1]D in D-dimensions. Prior knowledge from

domain experts may be combined with information gained from an exploratory

collection of simulations through graphical investigations plotting output versus each

input along with linear regression modelling to guide the choice of active parameters,

as well as appropriate forms for the deterministic functions, gij(·). This may involve

the use of the stepwise selection method, with direction either forward, backward

or both (also known as mixed), along with a model selection criterion such as

Mallows’ Cp, AIC, BIC or adjusted R2 [98, 183]. Experience suggests both-direction

stepwise selection using the AIC criteria is a good choice for constructing emulators
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because this permits a more extensive exploration of possible models, whilst also not

penalising higher numbers of model terms compared with BIC. Further discussion

can be found in Appendix A.

A Bayesian emulator first requires a prior belief specification which is discussed

in Section 2.4.3 including a distinction between a full Bayesian and a Bayes linear

emulator. Simulator evaluations, also known as runs or data, are then necessary to

perform a Bayesian update. Consider a design of n points where x(k), k = 1, . . . , n,

represents a vector of the input settings and for a univariate output, fi(x), the

simulator evaluations are denoted by a vector Fi = (fi(x(1)), . . . , fi(x(n)))T. The

update process for a Bayesian emulator will be presented in Sections 2.4.4 and 2.4.5

for a Gaussian process and Bayes linear emulator.

There exist two approaches to fitting an emulator. The simultaneous or single-

step process involves firstly determining a suitable emulator structure, constructing

a prior belief specification and then using the simulation data to perform a Bayesian

update. This has the benefit of being quick to perform and can be completely

automated. An alternative approach is sequential fitting. First a linear regression

model is fitted using the simulator runs to estimate the regression coefficients, βij,

whilst accounting for the uncertainty. In a second order belief specification, this

includes: E[βi] and Var[βi]. Secondly, a weakly stationary stochastic process is

fitted to the residuals of the regression model using an appropriate estimate for σ2
ui

such as the fitted linear model residual variance, whilst input covariance structure

may be specified a priori. The final part is to fit the nugget term (if in use), with

the parameter σ2
wi

also either specified a priori, or obtained via suitable estimates

from the residuals of the joint linear model and weakly stationary stochastic process.

Compared with the simultaneous approach, the sequential method has the main

advantage of the interpretability of each part in accounting for the behaviour of the

function. Moreover, it avoids confounding issues between the regression terms and

the weakly stationary stochastic process that can lead to unrealistic estimates for

the regression coefficients. An example of this is seen in [153] for an emulator using
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a constant regression term only, which is estimated to be too far above or below the

data. In this thesis the simultaneous approach is used.

2.4.2 Covariance Functions

The emulator formulation in Equation (2.4.1) requires the prior specification of a

covariance function. This measures the similarity in the output of a function between

pairs of input parameter settings, x and x′. A detailed discussion of covariance

functions can be found in [146, ch. 4].

Covariance functions, also referred to as covariance kernels, commonly use the

notation κ(x,x′) with the corresponding correlation function (or kernel) written as

r(x,x′), with the relationship for a univariate output being that κ(x,x′) = σ2r(x,x′),

where σ2 > 0 is a variance hyperparameter which controls the magnitude of the

computer model output variance. For the weakly stationary stochastic process,

this is σ2 = σ2
ui
. Given a collection of n parameter vectors such as the design for

an emulator, {x(1), . . . ,x(n)}, the covariance function is evaluated for each pair of

inputs to construct a covariance matrix, Σ, where Σij = κ(x(i),x(j)) for the computer

model output. Consequently, not all functions which map two vector arguments to

a real number are valid covariance functions because the resultant covariance matrix

must be positive semi-definite. There exists many classes of covariance functions,

with the choice depending on beliefs about the function behaviour and thus what

characteristics must be reflected in the covariance function. For the purposes of

emulation a common stipulation is that both the simulator output as a function,

and the covariance function are stationary which is explained in Definition 2.4.2.

Definition 2.4.2. A (covariance or correlation) function, κ(x,x′), is weakly sta-

tionary if is invariant to translations in X , thus for all x,x′ ∈ X , it satisfies

κ(x,x′) = κ(x + h,x′ + h) for all h such that x + h,x′ + h ∈ X . Consequently

κ(x,x′) = c(x− x′) for some function c(·).

Two further properties are that covariance function is either isotropic or aniso-
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tropic which are defined in Definitions 2.4.3 and 2.4.4 respectively. Note that any

isotropic or anisotropic covariance function is also stationary. The squared exponen-

tial covariance function is a common example of a stationary covariance function

with the forms given in Equations (2.4.2) and (2.4.3) being anisotropic and isotropic

respectively. Starting from an anisotropic covariance function, it is simple to obtain

an isotropic covariance function by assuming M is diagonal with elements equal to

θ = (θ1, . . . , θD) respectively, and defining ‖ · ‖ such that ‖x− x′‖ = ∑D
k=1

(
xk−x′k
θk

)
.

In addition, it can be challenging to construct a positive semi-definite M which is

non-diagonal, particularly such that it accurately reflects prior beliefs about the

computer model inputs. Combined with the “black-box” nature of computer models,

it is common practice to assume that M is diagonal.

Definition 2.4.3. A (covariance or correlation) function, κ(x,x′), is isotropic if

it invariant to both translations and rotations of X . Consequently, for a specified

norm map ‖ · ‖, the function can be expressed in terms of ‖x − x′‖ such that

κ(x,x′) = c(‖x− x′‖) for some function c(·).

Definition 2.4.4. A (covariance or correlation) function, κ(x,x′), is anisotropic

if it can be expressed as κ(x,x′) = c((x− x′)TM−1(x− x′)) for some function c(·),

where M is a positive semi-definite matrix, such that M 6= λ2ID for some λ > 0,

which encapsulates the covariance between the individual inputs.

Examples of stationary correlation functions stated in their anisotropic form are

listed in Table 2.1 for a pair of D-dimensional parameter vectors, x,x′ ∈ X whereM

is a positive semi-definite covariance matrix for this inputs. A stationary covariance

function is obtained by the scaling κ(x,x′) = σ2r(x,x′) as above.

The choice of covariance function should depend on prior beliefs about the mean

square continuity and differentiability of the computer model output in the stochastic

emulator representation, viewed as a stochastic function. These are defined as:

Definition 2.4.5. A univariate function, f(x), is mean square continuous if for

all x∗ ∈ X , there exists a sequence of points x1,x2, . . . with ‖xi−x∗‖ → 0 as i→∞,
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Correlation Function r(x,x′)

Constant 1

Exponential exp {−ψ(x,x′)}

Squared Exponential exp {−ψ2(x,x′)}

γ-Exponential exp {−ψγ(x,x′)} for 0 < γ ≤ 2

Matérn Class 1
2ν−1Γ(ν)

(√
2ν ψ(x,x′)

)ν
Kν

(√
2ν ψ(x,x′)

)
for ν > 0

Rational Quadratic
(
1 + ψ2(x,x′)

2α

)−α
for α > 0

Table 2.1: Table of valid stationary correlation functions in the an-
isotropic form for pairs of D-dimensional input paramet-
ers, x,x′ ∈ X , where M is a positive semi-definite input
covariance matrix. In each expression,
ψ2(x,x′) = (x−x′)TM−1(x−x′). A valid stationary co-
variance function is obtained via the scaling, κ(x,x′) =
σ2r(x,x′), where σ2 > 0 is a variance hyperparameter
which controls the magnitude of the computer model
output variance. For the Matérn class of covariance
functions: ν > 0 is an additional hyperparameter which
controls the number of times which simulator output
(as a function) is mean-square differentiable; Γ(·) is the
Gamma-function; and Kν(·) denotes the modified Bessel
function of the second kind.

then E[‖f(xi)− f(x∗)‖2]→ 0 as i→∞.

Definition 2.4.6. A univariate function, f(x), is mean square differentiable if

for all x ∈ X , the mean square derivative:

∂f(x)
∂xi

= lim
h→0

E

∥∥∥∥∥f(x + hei)− f(x)
h

∥∥∥∥∥
2
 (2.4.5)

exists and is finite for all i = 1, . . . , D, where ei is the canonical basis vector in the

ith direction. This definition naturally extends to higher order derivatives if ∂kf(x)
∂xi1 ...∂xik

exist and are finite for all x ∈ X and combinations of xi1 , . . . , xik , possibly with

repeated parameters.

Mean square continuity is satisfied if and only if the covariance function κ(x,x′)

is continuous for all x = x′ with x,x′ ∈ X . The covariance of ∂f(x)
∂xi

is determined by
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∂2κ(x,x′)
∂xi∂x′i

. It is therefore required that all 2kth partial derivatives of κ(x,x′) exist and

are finite for all x = x′ in order for the f(x) to be k-times mean square differentiable.

For stationary covariance functions this reduces to an assessment at x = 0.3

In Table 2.1, the constant covariance function, κ(x,x′) = σ2, assumes that there

is equal correlation between all pairs of inputs, irrespective of their separation. This

leads to Σij = σ2 for all i, j = 1, . . . , n, hence Σ is of finite rank and so is non-

invertible. This seems to be an unrealistic choice of covariance function for almost

all computer models. Note that all other correlation functions specified in Table 2.1

are non-degenerate and hence lead to an invertible Σ.

The exponential covariance function is mean square continuous, but not mean

square differentiable. Note that a stochastic process using an exponential covariance

function corresponds to a model of the velocity of a particle under Brownian motion

and is also known as an Ornstein-Uhlenbeck process. The squared exponential

covariance function, as presented in Equation (2.4.2), is a popular choice of covariance

function which possesses the following properties: it is positive for all x,x′ ∈ X ;

it decays monotonically at an exponential rate in (x − x′)TM−1(x − x′); and it is

infinitely mean square differentiable. It is therefore well suited to capturing the

correlation between pairs of inputs for functions with derivatives of all orders. These

are generalised by the γ-exponential family covariance functions which are mean

square continuous, but only mean square differentiable for γ = 2. Note that where

M is assumed to be diagonal, these are also separable, as stated in Definition 2.4.7.

Definition 2.4.7. A covariance function, κ(x,x′), for x,x′ ∈ X ⊂ RD is described

as separable if it can be factorised into the form shown in Equation (2.4.6), where

each κi(·), i = 1, . . . , D are valid covariance functions [132].

κ(x,x′) =
D∏
i=1

κi(xi, x′i) (2.4.6)

The Matérn class of covariance functions [119] introduces greater flexibility in

3Mean square continuity or differentiability do not necessarily imply sample continuity or
differentiability of a function [146].
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the modelling assumptions through the additional hyperparameter, ν > 0. The

function f(x) is k-times mean square differentiable if and only if k < ν, hence the

roughness is controlled by ν with higher values corresponding to smoother output.

For ν = p+ 1
2 where p ∈ Z≥0, the Matérn covariance function expression simplifies to

a product of an exponential covariance function and a polynomial of order p, where

p = 0
(
ν = 1

2

)
returns an exponential covariance function. Note that a squared

exponential covariance function is recovered by taking the limit as ν → ∞. The

rational quadratic covariance function in Table 2.1 can be viewed as a scale mixture

of squared exponential covariance functions with different prior input covariance

matrix, M . Unlike the Matérn class, these are infinitely mean square differentiable

everywhere for all α > 0.

Beyond stationary covariance functions there exist various other forms. An

interesting class is dot product covariance functions which depend on x and x′ via

an inner product, x · x′, and hence are rotationally invariant, but not translational

invariant. Examples of the simple and inhomogeneous polynomial dot product

covariance functions are given as:

κ(x,x′) = (σ2 + x · x′) (2.4.7)

κ(x,x′) = (σ2 + x · x′)p, for p > 0 (2.4.8)

The neural network covariance function is defined in Equation (2.4.9) where x̃ =

(1,x), and M̃ is an extension to M . Another example is the Gibbs covariance

functions specified in Equation (2.4.10) where each `d(·) is an arbitrary positive

function which is referred to as a length-scale function. These play an analogous

role to the correlation length hyperparameters seen in Equation (2.4.3), but are free

to vary across the parameter space. This idea may be extended to the use of other

stationary covariance functions with hyperparameters that depend on input settings,

whilst another option is modelling the input variance matrix to also be a function

of input location, M(x) [148]. A full discussion along with further non-stationary
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covariance functions is found in [146].

κ(x,x′) = 2
π

sin−1

 2x̃TM̃ x̃′√
(1 + 2x̃TM̃ x̃)(1 + 2x̃′TM̃ x̃′)

 (2.4.9)

κ(x,x′) =
D∏
d=1

(
2`d(x)`d(x′))
`2
d(x) + `2

d(x′)

)1/2

exp
{
−

D∑
d=1

(xd − x′d)2

`2
d(x) + `2

d(x′)

}
(2.4.10)

A major challenge for designing a new covariance function is ensuring that it

will always yield a valid covariance matrix. New and valid covariance functions

may be constructed from existing ones: using the binary operations of addition and

multiplication; through vertical rescaling via a deterministic function, a(x), to obtain

κ̃(x,x′) = a(x)κ(x,x′)a(x′); and convolutions of covariance kernels. Moreover, in

the situation of two disjoint parameter spaces with covariance functions κ1(x1,x′1)

for x1,x′1 ∈ X1, and κ2(x2,x′2) for x2,x′2 ∈ X2, direct sums and tensor products can

be used to define a covariance function over the product space X1 ×X2.

Each of the covariance functions discussed in this section requires a set of hyper-

parameters for which their specification or elicitation is discussed in Section 2.4.3.

2.4.3 Emulator Prior Belief Specification

Before performing a Bayesian update for the emulator given simulation data, a

prior specification is required including for the deterministic functions and all of the

emulator hyperparameters. In Sections 2.4.4 and 2.4.5, a distinction will be made

between this prior specification for a full Bayesian Gaussian process [126] and a

Bayes linear emulator respectively [28].

For an emulator of the form shown in Equation (2.4.1), a collection of determin-

istic functions, {gij(·)}pj=1, must be defined and are treated as known, with a prior

over their unknown regression coefficients, βi, with Var[βi] = Σβ ∈ Rp×p. Many au-

thors prefer to select a constant mean function [87, 107, 152], whilst a more detailed

and structured form is favoured by others [29, 32, 170, 171], with the justification

of aiming to reduce the residual variance and in turn decrease the dependence on a
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well specified residual process.

The next step is to select a suitable covariance function for the weakly stationary

stochastic process, as discussed in Section 2.4.2. The two residual variance hyper-

parameters may be jointly linked, as in [30, 32, 171], by introducing the proportion

ρ ∈ [0, 1] of the residual variance attributed to the nugget term with σ2
ui

= (1− ρ)σ2
i

and σ2
wi

= ρσ2
i , where σ2

i is the residual variability after accounting for the global

mean function. Two approaches to handling hyperparameters exist: assigning probab-

ility distributions to them (which is explored further in Section 2.4.4); or plugging-in

values. For the latter approach, hyperparameters are specified a priori, possibly

using expert elicitation, and validated using emulator diagnostic techniques [8], as

was the case in [27]. For example, when a squared exponential covariance function

of the form shown in Equation (2.4.3) is used, correlation lengths are often specified

between 0.25 and 0.5 on the scale of each parameter’s range, whilst ρ is usually small

and often set to be ρ = 0.05. Alternatively, Maximum Likelihood or Restricted

Maximum Likelihood Estimation (MLE or REML) may be used to estimate any

hyperparameters, with the option to simultaneously include βi [34, 153]. Note that

issues can arise in maximum likelihood estimation when the covariance function is

misspecified [6].

Once these quantities have been specified, and combining with Equation (2.4.1),

the prior expectation and covariance for a univariate emulator is obtained from [171]:

µi(x) = E[fi(x)] =
p∑
j=1

E[βij]gij(xAi) = gi(xAi)Tµβi
(2.4.11)

κi(x,x′) = Cov[fi(x), fi(x′)]

= Cov
 p∑
j=1

βijgij(xAi),
p∑
j=1

βijgij(x′Ai)


+ Cov[ui(xAi), ui(x′Ai)] + σ2
wi
1{x=x′}

= gi(xAi)TΣβgi(x′Ai) + Cov[ui(xAi), ui(x′Ai)] + σ2
wi
1{x=x′} (2.4.12)

For practical applications following a subjective Bayesian analysis, emulator prior

belief specification requires elicitation from subject experts. This can be an extremely
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challenging process that is problem specific and involves transferring qualitative

statements to a quantitative prior specification for which computer programs may

be used to assist experts in investigating their prior beliefs [27, 28, 29]. Further

methods of prior elicitation within a Bayes linear framework are presented in [147].

Situations where there are multiple experts exhibit further complexities requiring

belief aggregation methods. The Sheffield Elicitation Framework, SHELF [72, 130],

is a form of behavioural aggregation resulting in a prior belief specification that

represents those of a “rational impartial observer”. Alternative mathematical means

of combining multiple experts’ beliefs also exist such as linear pooling in which

weights are assigned based on the importance of each expert’s opinions. These may

be equal or assigned via the classical method which uses seed questions to score

experts on their informativeness and calibration ability, although questions arise as

to whose beliefs the resulting prior actually represents [24]. Bayesian hierarchical

aggregation also uses seed questions with the additional stage of grouping experts to

obtain a prior that is designed to represent the prior beliefs of a non-expert decision

maker [80].

Within a Bayesian analysis, conclusions depend on the exact choice of both

the (likelihood) model and the prior. This is especially true of a full probabilistic

specification for which [133] introduces imprecision in the elicited prior specification

in order to address this issue. Alternatively, a partial prior specification requiring

only low-order moments of the distribution(s), as in a Bayes linear analysis, which

are easier to interpret and elicit may be preferable [28]. The robustness of Bayesian

analyses may also be investigated by treating them as computer models and using

Gaussian process emulators to assess inference sensitivity to the prior specification

and choice of likelihoods [172].

2.4.4 Gaussian Process Emulation

Full Bayesian emulation requires the specification of probability distributions for

the likelihood and prior. However, for most arbitrary choices of distributions, the
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process of updating and sampling from the emulator given simulation data becomes

extremely computationally expensive, potentially diminishing any gains made versus

the direct use of the simulator within an analysis. In contrast, this is not the case

for a Gaussian Process (GP) defined in Definition 2.4.8 as a stochastic process

generalisation of the Gaussian probability distribution to functions [107, 146], as

long as the variable of interest is also assumed to follow a Gaussian process prior.

Definition 2.4.8. An unknown function f(·) with inputs x ∈ X is aGaussian Pro-

cess (GP) if and only if for every n ∈ N, the joint distribution of (f(x1), . . . , f(xn))

is a multivariate normal distribution for all x1, . . . ,xn ∈ X .

Imposing a Gaussian process model for the simulation output leads to Gaussian

process (GP) emulation. This is a strong probabilistic assertion stating that any finite

set of simulator outputs follows a multivariate normal distribution and is frequently

not the case. These were initially used effectively within a non-Bayesian setup [34,

146, 152, 153]; but have also been heavily adopted across the Bayesian literature such

as in [107, 128, 129, 173]. Notation for a Gaussian process emulator for univariate

simulator output fi(·) is given in Equation (2.4.13), which is fully characterised by

the specification of a mean function, mi(·), and a covariance function, κi(·, ·) defined

in Equations (2.4.14) and (2.4.15) respectively.

fi(·) ∼ GP(mi(·), κi(·, ·)) (2.4.13)

mi(x) = E[fi(x)] (2.4.14)

κi(x,x′) = E[(fi(x)−mi(x))(fi(x′)−mi(x′))]

= Cov[fi(x), fi(x′)] (2.4.15)

Under the framework presented in Section 2.4.1, a consistent specification for the

mean and covariance functions is mi(x) = ∑
j βijgij(xAi) and

κi(x,x′) = Cov[ui(x), ui(x′)] + σ2
wi
1{x=x′}.

Updating a Gaussian process emulator given simulations or observations makes

use of the conditional multivariate normality result stated in Lemma 2.4.9 [146]:
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Lemma 2.4.9. Let W1 ∈ Rn1 and W2 ∈ Rn2 be random vectors and define

W =
(

W1
W2

)
∈ Rn1+n2 such that:

W =

W1

W2

 ∼ Nn1+n2


µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22


 (2.4.16)

where µ1 ∈ Rn1, µ2 ∈ Rn2, Σ11 ∈ Rn1×n1, Σ12 = ΣT
21 ∈ Rn1×n2 and Σ22 ∈ Rn2×n2.

Conditional multivariate normality [146] states that the distribution of W1

given W2 is:

W1 |W2 ∼ Nn1

(
µ1 + Σ12Σ−1

22 (W2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
(2.4.17)

Notice how the expressions for the conditional mean and variance in Equa-

tion (2.4.17) are equivalent to the Bayes linear adjusted expectation and variance in

Equations (2.2.3) and (2.2.4) respectively. Since a Gaussian process is fully character-

ised by its mean and variance, GP emulation is analogous to Bayes linear emulation

with the additional assumption of the output following a normal distribution.

Bayesian Gaussian process emulation also requires the specification of a prior dis-

tribution over any hyperparameters which are integrated over to obtain the posterior

distribution. To ensure computational tractability afforded by the use of Gaussian

processes for the prior and likelihood of the variable(s) of interest, a convenient choice

is to specify that the hyperparameters are also normally distributed. Note that this

is a fairly strong assumption; often only limited knowledge is possessed about the

hyperparameters. For the regression coefficients this may be encapsulated via an

improper prior, P [β] ∝ 1, which implies infinite prior variance in the mean function

[107, 132]. Most prior choices of covariance function, such as the squared exponential,

contain a variance hyperparameter, σ2
ui
, for which P

[
β, σ2

ui

]
may be assumed to be

the conjugate normal-inverse gamma distribution [128, 131]. The weak improper

form of this prior is P
[
β, σ2

ui

]
∝ σ−2

ui
[107, 132]. Elicitation for GP emulation is

described in [126], although it is acknowledged that a full probabilistic specification

is sometimes impractical and a compromise using the “plug-in” approach is more
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appropriate [107].

In some instances, computer simulators may output derivatives with respect

to some or all of their inputs. For statistical modelling using a Gaussian process

emulator, this additional information can be incorporated to increase the emulator

accuracy for the quantity or quantities of interest since the derivatives of a Gaussian

process are also a Gaussian process [131]. Assuming the simulator is differentiable

everywhere, then the derivatives may be modelled by a Gaussian process where

the mean and covariance function are obtained from the relevant derivatives of the

mean and covariance functions [125, 131, 162]. This can be particularly useful for

calibration, optimisation and decision support tasks.

A limitation to the use of Gaussian process emulation is its scalability as the

number of simulation data points, n, on which the Bayesian update is conditioned

increases. Computational time grows at rate O(n3), whilst memory costs are of the

order of O(n2). Further computational constraints arise for high-dimensional inputs

with p parameters, which may result in more expensive evaluations of the mean and

covariance functions. The Sherman-Morrison-Woodbury formula (see Lemma B.0.1

in Appendix B [118] for a statement and proof) can be used to reduce computational

costs associated with matrix inversion and multiplication, but these issues remain

when both n and p are relatively large.

Reviews of methodology for scalable Gaussian process inference are presented in

[81, 115], with examples including: sparse GPs [159, 166]; local approximate GPs

(laGP) [73], which uses a nearest-neighbour subset of the data to perform updates;

and On-Site Surrogates (OSS) [90]. Local GP methods such as those described in

[73] also have their disadvantages. They are based on a mixture of GPs and involve

partitioning the covariance kernel, thus they ignore covariance between different

blocks of the matrix. This can be an issue if there exists long range dependence.

Another option for reducing computational costs is treed Gaussian processes [74]

which dichotomise the input parameter space into hypercube regions using divisions

which are parallel and perpendicular to the input axes. This leads to very flexible
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models, however the averaging over the space of partitions can be slow and is not

easily parallelisable and may result in an under-reporting of the uncertainty. A

further method presented in [188] uses Importance Sampled Mixture of Experts

(IS-MOE) for Gaussian processes in which the proposals are independent ensuring

that the algorithm can be easily parallelised.

2.4.5 Bayes Linear Emulation

The Bayes linear paradigm was introduced in Section 2.2.2 and is applied to emulators

of the form presented in Section 2.4.1 leading to Bayes linear emulation. Within a

second order belief specification it is sufficient to consider how the emulator prior

expectation and covariance shown in Equations (2.4.11) and (2.4.12) respectively,

update to obtain the Bayes linear emulator adjusted expectation and variance. In

this section, these quantities are derived via the Bayes linear adjustment formulae in

Equations (2.2.3) to (2.2.5) for an emulator of the general form (including a nugget

term) shown in Equation (2.4.1) evaluated at a new parameter vector, x ∈ X ⊂ RD.

For notational clarity, we drop the subscript i and consider f(x) to be a simulator

with univariate output, with all emulator terms as defined in Section 2.4.1. Results

for an emulator without a nugget term are obtained by setting σw = 0.

Prior Specification and Simulator Evaluations

The prior specification is as follows: g : X 7→ Rp, E[β] = µβ ∈ Rp; Var[β] =

Σβ ∈ Rp×p; E[u(x)] = 0; Cov[u(x), u(x′)] = σ2
ur(x,x′), where σ2

u is the variance of

the weakly stationary stochastic process, and r(·, ·) is a correlation function; and

Cov[β, u(x)] = 0 ∈ Rp×1. In addition, define r(0) = r(x,x) noting that for many

common choices of correlation function, such as the γ-exponential family, r(0) =

1. For the nugget term, the following prior assumptions are made: E[w(x)] = 0;

Cov[β, w(x)] = 0 ∈ Rp×1; Cov[u(x), w(x)] = 0; and Cov[w(x), w(x′)] = σ2
w1{x=x′}.

A collection of simulator evaluations are used to perform the Bayes linear update

with design points x(i), i = 1, . . . , n, where F denotes the vector of simulation values
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with Fi = f(x(i)). First introduce the notation X ∈ Rn×d for the design matrix

where the ith row equals x(i) and hence for the emulator let r(x, X) ∈ Rn be a column

vector of correlations (computed using the correlation function r(·, ·)) between x and

each of the design points, where r(x, X)i = r(x,x(i)), i = 1, . . . , n. In addition, let

G ∈ Rn×p be the design matrix with Gij = gj(x(i)), u ∈ Rn be a vector of realisations

of the weakly stationary stochastic process at the design inputs, and w ∈ Rn be the

vector of realisations of the nugget term. Equations (2.4.18) and (2.4.19) illustrate

the decomposition of these simulations.

F = Gβ + u + w (2.4.18)
f(x(1))

...

f(x(n))

 =


g1(x(1)) · · · gp(x(1))

... . . . ...

g1(x(n)) · · · gp(x(n))




β1

...

βp

+


u(x(1))

...

u(x(n))

+


w(x(1))

...

w(x(n))

 (2.4.19)

Given the prior specification and the simulations, define Var[u] = Σ ∈ Rn×n, where

Σij = σ2
ur(x(i),x(j)), and Cov[β,u] = 0 ∈ Rp×n. Moreover, Var[w] = σ2

wIn where

In is the n× n identity matrix, Cov[β,w] = 0 ∈ Rp×n, and Cov[u,w] = 0 ∈ Rn×n.

These prior statements are combined to obtain E[F], Var[F], Cov[β,F], Cov[u(x),F]

and Cov[w(x),F] in eqs. (2.4.20) to (2.4.24) respectively.

E[F] = E[Gβ + u + w]

= GE[β] + E[u] + E[w]

= Gµβ (2.4.20)

Var[F] = Var[Gβ + u + w] = Cov[Gβ + u + w, Gβ + u + w]

= GCov[β,β]GT +GCov[β,u] +GCov[β,w]

+ Cov[u,β]GT + Cov[u,u] + Cov[u,w]

+ Cov[w,β]GT + Cov[w,u] + Cov[w,w]

= GVar[β]GT + Var[u] + Var[w]

= GΣβG
T + Σ + σ2

wIn (2.4.21)
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Cov[β,F] = Cov[β, Gβ + u + w]

= Cov[β,β]GT + Cov[β,u] + Cov[β,w]

= ΣβG
T (2.4.22)

Cov[u(x),F] = Cov[u(x), Gβ + u + w]

= Cov[u(x),β]GT + Cov[u(x),u] + Cov[u(x),w]

= σ2
urT(x, X) (2.4.23)

Cov[w(x),F] = Cov[w(x), Gβ + u + w]

= Cov[w(x),β]GT + Cov[w(x),u] + Cov[w(x),w]

= σ2
w

(
1{x=x(1)}, . . . ,1{x=x(n)}

)
(2.4.24)

Assuming that x /∈ {x(1), . . . ,x(n)} yields Cov[w(x),F] = 0 ∈ R1×n in Equa-

tion (2.4.24) which leads to important implications for the derivations since it asserts

that there is no correlation between the nugget term and the simulations.

We proceed to obtain the Bayes linear emulator adjustment formulae by first de-

riving EF [β], VarF [β], EF [u(x)], VarF [u(x)], EF [w(x)], VarF [w(x)], CovF [β, u(x)],

CovF [β, w(x)] and CovF [u(x), w(x)]. Throughout these derivations the Sherman-

Morrison-Woodbury formula and a related expression in Equations (B.0.1) and (B.0.3)

respectively are used for manipulating matrix inverses. For a formal statement and

proof, see Lemma B.0.1 and Corollary B.0.3 respectively in Appendix B [118]. In

order to make use of these identities, the variance matrices Σ and σ2
wIn are frequently

grouped together as:

Ω = Σ + σ2
wIn (2.4.25)

It is assumed that Ω is invertible. Moreover, at each stage the limit as Var[β]→∞

is considered. Formally, this is the limit as the eigenvalues of Σβ tend to ∞, or

equivalently the limit as the eigenvalues of Σ−1
β tend to 0. This corresponds to

infinite prior uncertainty (equivalently no prior knowledge) of β.



2.4. Bayesian Emulation 41

Derivation of EF [β]

The adjusted expectation of β is shown in Equation (2.4.26).

EF [β] = E[β] + Cov[β,F] Var[F]−1(F− E[F])

= µβ + ΣβG
T(GΣβG

T + Ω)−1(F−Gµβ)

Using Equation (2.4.25) and applying Equation (B.0.3).

= µβ + (GTΩ−1G+ Σ−1
β )−1GTΩ−1(F−Gµβ)

= (GTΩ−1G+ Σ−1
β )−1{(GTΩ−1G+ Σ−1

β )µβ +GTΩ−1(F−Gµβ)}

= (GTΩ−1G+ Σ−1
β )−1(Σ−1

β µβ +GTΩ−1F) (2.4.26)

It is observed that EF [β] may be written in terms of the Generalised Least Squares

(GLS) estimate for β in a linear regression model where u(x) + w(x) is treated

as a single residual term with variance matrix Ω. Under this setup β̂GLS =

(GTΩ−1G)−1GTΩ−1F, with EF [β] re-expressed in Equation (2.4.27).

EF [β] = (GTΩ−1G+ Σ−1
β )−1(Σ−1

β µβ +GTΩ−1Gβ̂GLS) (2.4.27)

The second part is a weighted sum of the prior expectation and the GLS estimate

with weights equal to the prior precision4 of β and the precision of the GLS estimate

respectively, hence each term is standardised. It will subsequently be shown that

the first part is equal to VarF [β] (see Equation (2.4.29)) which scales the weighted

sum. Note that this setup for GLS regression recurs throughout these derivations.

A further remark is that assuming a squared exponential covariance function as

in Equation (2.4.3) with correlation lengths that are not too long and well spaced

simulation design points, then Σ ≈ σ2
uIn. The result is that β̂GLS ≈ β̂OLS, where

β̂OLS are the Ordinary Least Squares (OLS) regression estimates for β.

The limit as Var[β] → ∞ for EF [β] is given in Equation (2.4.28) and tends

towards the classical limit of β̂GLS. It is noted that µβ is not present in this formula

4The precision (matrix) is defined as the inverse of the variance (matrix).
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and hence its specification is unnecessary if there is complete uncertainty regarding

the variability of β.

lim
Var[β]→∞

EF [β] = β̂GLS = (GTΩ−1G)−1GTΩ−1F (2.4.28)

Derivation of VarF [β]

Derivation of the adjusted variance of β is given in Equation (2.4.29).

VarF [β] = Var[β]− Cov[β,F] Var[F]−1 Cov[F,β]

= Σβ − ΣβG
T(GΣβG

T + Ω)−1GΣβ

Applying Corollary B.0.3.

= Σβ − (GTΩ−1G+ Σ−1
β )−1GTΣ−1GΣβ

= {Ip − (GTΩ−1G+ Σ−1
β )−1GTΣ−1G}Σβ

= (GTΣ−1G+ Σ−1
β )−1{(GTΣ−1G+ Σ−1

β )−GTΣ−1G}Σβ

= (GTΩ−1G+ Σ−1
β )−1 (2.4.29)

The adjusted precision of β is the inverse of Equation (2.4.29) which is observed

to be the sum of the precision matrix for β̂GLS and the prior precision matrix Σ−1
β .

Each term linearly contributes to the adjusted precision of β with no interaction

between the two. This leads to the interpretation that for large prior uncertainty, the

variance of the β̂GLS is the dominant term, whilst for very small prior uncertainty,

it is expected that Σ−1
β will dominate. This is confirmed by considering the limit as

Var[β]→∞ in Equation (2.4.30) where it is established that VarF [β] tends towards

Var
[
β̂GLS

]
under the above GLS regression setup.

lim
Var[β]→∞

VarF [β] = Var
[
β̂GLS

]
= (GTΩ−1G)−1 (2.4.30)
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Derivation of EF [u(x)]

EF [u(x)] is derived as follows, using the Bayes linear adjustment formula in Equa-

tion (2.2.3):

EF [u(x)] = E[u(x)] + Cov[u(x),F] Var[F]−1(F− E[F])

= σ2
urT(x, X)(GΣβG

T + Ω)−1(F−Gµβ)

= σ2
urT(x, X){(GΣβG

T + Ω)−1F− (GΣβG
T + Ω)−1Gµβ}

The term (GΣβG
T + Ω)−1Gµβ may be manipulated as follows to express it in terms

of EF [β] via a double application of the matrix inverse identity in Equation (B.0.3).

(GΣβG
T + Ω)−1Gµβ = (GΣβG

T + Ω)−1GΣβΣ−1
β µβ

= Ω−1G(GTΩ−1G+ Σ−1
β )−1Σ−1

β µβ

= Ω−1G(GTΩ−1G+ Σ−1
β )−1{(Σ−1

β µβ +GTΩ−1F)−GTΩ−1F}

= Ω−1G{EF [β]− (GTΩ−1G+ Σ−1
β )−1GTΩ−1F}

= Ω−1G{EF [β]− ΣβG
T(GΣβG

T + Ω)−1F}

Substituting into the equation for EF [u(x)] yields the following simplification.

EF [u(x)] = σ2
urT(x, X){(In + Ω−1GΣβG

T)(GΣβG
T + Ω)−1F− Ω−1GEF [β]}

= σ2
urT(x, X)Ω−1{(GΣβG

T + Ω)(GΣβG
T + Ω)−1F−GEF [β]}

= σ2
urT(x, X)Ω−1{F−GEF [β]} (2.4.31)

The form presented in Equation (2.4.31) may be interpreted as a weighted sum of

the adjusted standardised residuals for the regression component of the emulator

over the simulation design points. The weights, stored in the row vector σ2
urT(x, X),

are computed based on the strength of correlation between x and the design points,

scaled by σ2
u.

In the limit as Var[β]→∞, EF [β]→ β̂GLS (see Equation (2.4.28)). This yields
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the following result:

lim
Var[β]→∞

EF [u(x)] = σ2
urT(x, X)Ω−1{F−Gβ̂GLS} (2.4.32)

Derivation of VarF [u(x)]

VarF [u(x)] is derived as follows:

VarF [u(x)] = Var[u(x)]− Cov[u(x),F] Var[F]−1 Cov[F, u(x)]

= σ2
ur(0)− σ4

urT(x, X)(GΣβG
T + Ω)−1r(x, X)

Applying Equation (B.0.1).

= σ2
ur(0)− σ4

urT(x, X){Ω−1 − Ω−1G(GTΩ−1G+ Σ−1
β )−1GTΩ−1}r(x, X)

= σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X)

+ σ4
urT(x, X)Ω−1G(GTΩ−1G+ Σ−1

β )−1GTΩ−1r(x, X)

= σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X)

+ σ4
urT(x, X)Ω−1GVarF [β]GTΩ−1r(x, X) (2.4.33)

Inspection shows that the first two terms (first line of Equation (2.4.33)) represent

the direct contribution from the combined residual process, u(·) + w(·). The first

term, σ2
ur(0) is the prior variance for the weakly stationary stochastic process, whilst

the second term which is subtracted is a quantification of the information gained as

a consequence of the collection of simulator evaluations via the imposed correlation

structure. Notice that the third term (second line of Equation (2.4.33)) incorporates

the interaction between the regression part (via the deterministic function evaluation

matrix G) and the residual stochastic process part of the emulator structure, with a

standardisation by VarF [β].

The limit as Var[β]→∞ is again considered. Note that only the third term in

Equation (2.4.33) contains Σβ, whilst the first two terms are invariant to Σβ. Using
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limVar[β]→∞VarF [β] = Var
[
β̂GLS

]
, the limiting result is as follows:

lim
Var[β]→∞

VarF [u(x)] = σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X)

+ σ4
urT(x, X)Ω−1GVar

[
β̂GLS

]
GTΩ−1r(x, X) (2.4.34)

Derivation of CovF [β, u(x)]

The expression for CovF [β, u(x)] is derived in Equation (2.4.35). Note that the prior

assumption of Cov[β,u] = 0 is used.

CovF [β, u(x)] = Cov[β, u(x)]− Cov[β,F] Var[F]−1 Cov[F, u(x)]

= −σ2
uΣβG

T(GΣβG
T + Ω)−1r(x, X)

Applying Equation (B.0.3).

= −σ2
u(GTΩ−1G+ Σ−1

β )−1GTΩ−1r(x, X) (2.4.35)

Interpreting the form of CovF [β, u(x)], the first part, (GTΩ−1G + Σ−1
β )−1GT =

VarF [β]GT and represents the contribution of the β-coefficients via a scaling of the

design matrix for the simulation inputs by VarF [β]. Similarly, the second term

σ2
uΩ−1r(x, X), depicts the correlation between x and the inputs at which the sim-

ulator is evaluated, scaled by σ2
u to obtain the covariance. This is standardised by

the prior residual variance of the simulations.

The limit as Var[β] → ∞ of CovF [β, u(x)] is obtained using that VarF [β] →

Var
[
β̂GLS

]
= (GTΩ−1G)−1 as Var[β]→∞ (Equation (2.4.30)), yielding the follow-

ing expression:

lim
Var[β]→∞

CovF [β, u(x)] = −σ2
u Var

[
β̂GLS

]
GTΩ−1r(x, X) (2.4.36)

Derivation of EF [w(x)], VarF [w(x)], CovF [β, w(x)] and CovF [u(x), w(x)]

Several interesting results regarding the adjusted quantities for w(x) are presented

which occur as a result of the above stated prior specification. EF [w(x)], VarF [w(x)],

CovF [β, w(x)] and CovF [u(x), w(x)] are given in Equations (2.4.37) to (2.4.40) re-
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spectively. Comparing with the prior assumptions, there has been no change between

the prior and updated quantities. This invariance is a key property of the emulator

nugget term and characterises how its purpose is to account for the remaining vari-

ability not captured by either the global regression term or the stochastic process.

EF [w(x)] = E[w(x)] + Cov[w(x),F] Var[F]−1(F− E[F])

= 0 (2.4.37)

VarF [w(x)] = Var[w(x)]− Cov[w(x),F] Var[F]−1 Cov[F, w(x)]

= σ2
w (2.4.38)

CovF [β, w(x)] = Cov[β, w(x)]− Cov[β,F] Var[F]−1 Cov[F, w(x)]

= 0 (2.4.39)

CovF [u(x), w(x)] = Cov[u(x), w(x)]− Cov[u(x),F] Var[F]−1 Cov[F, w(x)]

= 0 (2.4.40)

Bayes Linear Adjustment Formulae for a Bayesian Emulator

The above derived quantities are combined to obtain the emulator adjusted expecta-

tion and variance in Equations (2.4.41) and (2.4.42) respectively, whilst a factorised

form of the adjusted variance is given in Equation (2.4.43). In all of these equations,

the term g(x)− σ2
uG

TΩ−1r(x, X) occurs which is the difference between the determ-

inistic regression functions evaluated at x and the adjusted effect from the residuals.

Also note that there are no interaction terms between w(x) and either β or u(x)

which is as a consequence of the nugget term prior specification and fulfils the aim of

accounting for the remaining variability beyond the regression and stochastic process

parts.

EF [f(x)] = EF [g(x)Tβ + u(x) + w(x)]

= g(x)T EF [β] + EF [u(x)] + EF [w(x)]

= g(x)T EF [β] + σ2
urT(x, X)Ω−1(F−GEF [β])

= (g(x)− σ2
uG

TΩ−1r(x, X))T EF [β] + σ2
urT(x, X)Ω−1F (2.4.41)
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VarF [f(x)] = VarF [g(x)Tβ + u(x) + w(x)]

= CovF [g(x)Tβ + u(x) + w(x),g(x)Tβ + u(x) + w(x)]

= g(x)T VarF [β]g(x) + g(x)T CovF [β, u(x)] + g(x)T CovF [β, w(x)]

+ CovF [u(x),β]g(x) + VarF [u(x)] + CovF [u(x), w(x)]

+ CovF [w(x),β]g(x) + CovF [w(x), u(x)] + VarF [w(x)]

Simplify using that CovF [u(x),β]g(x) = g(x)T CovF [β, u(x)] and the above equa-

tions for terms containing w(x).

= g(x)T VarF [β]g(x)− 2g(x)T CovF [β, u(x)]

+ VarF [u(x)] + VarF [w(x)]

= g(x)T VarF [β]g(x)− 2σ2
ug(x)T VarF [β]GTΩ−1r(x, X)

+ σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X)

+ σ4
urT(x, X)Ω−1GVarF [β]GTΩ−1r(x, X) + σ2

w (2.4.42)

This may be factorised as follows.

= (g(x)− σ2
uG

TΩ−1r(x, X))T VarF [β](g(x)− σ2
uG

TΩ−1r(x, X))

+ σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X) + σ2
w (2.4.43)

Limiting Results for a Bayes Linear Emulator

The limit of EF [f(x)] as Var[β] → ∞ is given in Equation (2.4.44). Note that

β̂GLS = (GTΩ−1G)−1GTΩ−1F where the variance matrix used is Ω. Consequently

the limiting case for EF [f(x)] may be viewed as a linear combination of the scaled

β̂GLS estimate and simulation residual variability.

lim
Var[β]→∞

EF [f(x)] = (g(x)− σ2
uG

TΩ−1r(x, X))Tβ̂GLS + σ2
urT(x, X)Ω−1F (2.4.44)

The limit of VarF [f(x)] as Var[β]→∞ is as follows, where Var
[
β̂GLS

]
= (GTΩ−1G)−1.

lim
Var[β]→∞

VarF [f(x)] = (g(x)− σ2
uG

TΩ−1r(x, X))T Var
[
β̂GLS

]
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· (g(x)− σ2
uG

TΩ−1r(x, X))

+ σ2
ur(0)− σ4

urT(x, X)Ω−1r(x, X) + σ2
w (2.4.45)

A similar interpretation is that the limiting case for VarF [f(x)] is a linear combina-

tion of the variance due to the scaled β̂GLS, and the variability due to the weakly

stationary stochastic process and nugget terms, which is partially resolved by the

simulations.

2.4.6 Emulator Diagnostics

Well specified Bayesian emulators provide an effective means of statistically ap-

proximating complex computer models. However, if an emulator is ill specified, it

may yield poor predictions in part or all of the input parameter space leading to

potentially problematic consequences within analyses. Issues can arise within the

emulator structure including: badly chosen deterministic functions and active input

parameters; an invalid assumption of (weak) stationarity for the emulator stochastic

process term; as well as inappropriate specification of the prior mean and covari-

ance structure including hyperparameter estimation or prior distribution. For a

full Bayesian emulator, further issues can arise due to the underlying distributional

assumptions. Even in situations where the specification is reasonable, problems

can occur in high-dimensional input parameter spaces with limited computational

resources leading to sparse simulation designs and hence limited training data on

which to update the emulator. It is therefore imperative to perform diagnostics in

order to verify that the emulator is well fitting and that inferences are trustworthy.

An emulator diagnostic technique is formally defined in Definition 2.4.10 [8]. Note

that all diagnostics are conditional on the prior specification and the simulation data

used to fit the emulator.

Definition 2.4.10. Emulator diagnostics consist of a comparison between the

output of an emulator, and the simulated response(s) of the scientific model using

a test data set, also known as validation data, in order to verify the underlying
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assumptions and fit of the emulator. A validation data set consists of samples

from the model which were not used to construct the emulator.

Diagnostics require a collection of simulation data not used in the fitting of

the emulator and should be chosen to provide coverage of the entire input para-

meter space region of interest. These can be obtained in several ways. The

simplest approach is to split the simulations into two parts with designs: X =

(x1, . . . ,xn) ∈ Rn×D, as introduced in Section 2.4.5 and used in the fitting of the

emulator; and new input design X∗ = (x∗1, . . . ,x∗m) ∈ Rm×D producing validation

data f(X∗) = (f(x∗1), . . . , f(x∗m)) ∈ Rm with which to compare to the emulator

output. This has the main advantage of generating two independent sets for fitting

and diagnostics. However, it does not optimally use the available computational

resources to construct a more accurate emulator; a limitation which is most acutely

felt when only limited simulations can be performed [8]. An alternative approach is

leave-one-out diagnostics in which predictions are made for each of the n training

points in X based on an emulator fitted using the remaining n − 1 points. Leave-

one-out diagnostics can be used to assess the effect of inclusion of each simulation

training point used to fit the emulator. In addition, this alleviates the aforemen-

tioned concerns on the number of simulations, although comes at the cost of refitting

the emulator with each of the n data points removed, which in turn can potentially

be computationally expensive, but is usually many orders of magnitude smaller than

performing extra simulations [98, 151]. Leave-k-out diagnostics extends this idea

further to all simulation subsets of size k, however this requires refitting the emulator(
n
k

)
= n!

k!(n−k)! times and so is often infeasibly expensive. A related method is k-fold

cross-validation, also known as multifold cross-validation, in which the simulation

data is randomly partitioned into k (approximately) equal size subsamples with

emulator predictions made given the data in all other folds. This greatly reduces

the computational costs versus full leave-k-out diagnostics [98].

Before commencing emulation it is useful to examine intermediate steps in the

construction. One important aspect is to assess the mean function by inspecting
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the corresponding linear regression model predictions, f̂LM(x). The standardised

residuals are defined in Equation (2.4.46), where σ̂LM is the estimated linear model

residual standard error.

ε̂LM(x) = f(x)− f̂LM(x)
σ̂LM

(2.4.46)

For a collection of simulations, plots of standardised linear model residuals versus

the simulator output, each of the inputs and any transformed inputs within the

linear model, can be used to identify any patterns. If these exist, they indicate

that the linear model, and hence the mean function, do not adequately capture all

of the available information. As with standard checks for regression models, too

many large standardised residuals; large is usually classified as greater than 2 or 3,

implies a poor fitting model. The adjusted R2 value also provides an indication of

the goodness-of-fit with values close to one preferred.

After fitting an emulator, a range of diagnostic techniques may be applied [8].

Let f ∗(·) denote the emulator representation for a simulator output f(·) and define

a general emulator diagnostic function D(·) to be a function of the validation data

from which D(f(x∗)) and D(f ∗(x∗)) can be compared based on the distribution of

D(f ∗(x∗)). Note that these diagnostic functions can also be evaluated within the

leave-one-out framework. If there are few failures of the diagnostic tests, then this

is indicative of a well specified emulator.

For the univariate simulator output, fi(x), first introduce the individual stand-

ardised prediction errors in Equation (2.4.47) [8].

Dij(fi(x∗j )) =
fi(x∗j )− EF [f ∗i (x∗j )]√

VarF [f ∗i (x∗j )]
(2.4.47)

Assessment depends on the underlying emulator assumptions. For Gaussian process

emulation, these follow a t-distribution with (n− p) degrees of freedom conditional

on the training data and the estimated parameters, with asymptotic normality

when the residual degrees of freedom is large. An alternative and more robust

method used in the Bayes linear approach employs Pukelsheim’s 3-sigma rule [142]
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(see Section 2.8.3 for a statement and discussion) to assess which validation data

points satisfy |Dij(fi(x∗j ))| ≤ 3. An equivalent technique is to test whether fi(x∗j ) is

contained in the credible interval: EF [f ∗i (x∗j )]± 3 VarF [f ∗i (x∗j )].

Standardised prediction errors are useful for assessing individual predictions, but

do not account for correlation across multiple input settings. A generalisation is

the diagnostic statistic presented in Equation (2.4.48) [8] combining the individual

prediction errors whilst standardising by their joint covariance structure. Note that

this is a Mahalanobis distance.

DMD(f(X∗) = (f(X∗)− EF [f ∗(X∗)])T VarF [f ∗(X∗)]−1(f(X∗)− EF [f ∗(X∗)])

(2.4.48)

For a Gaussian process emulator and conditional on the simulation data, DMD(f(X∗))

follows an Fisher-Snedecor distribution with m and n− p degrees of freedom. This

is given in Equation (2.4.49) [8]. For Bayes linear emulation, Equation (2.4.49) can

still be used to provide an indication of whether the diagnostics are satisfactory.

n− p
m(n− p− 2)DMD(f(X∗)) ∼ Fm,n−p (2.4.49)

A further diagnostic is the vector of transformed errors presented in Equa-

tion (2.4.50), where Γ is a standard deviation matrix such that VarF [f ∗(X∗)] = ΓΓT.

This improves the interpretability of the individual correlated prediction errors com-

pared to Equation (2.4.47).

DΓ(f(X∗)) = Γ−1(f(X∗)− EF [f ∗(X∗)]) (2.4.50)

There exist multiple choices of decomposition for Γ including the Eigen, Cholesky

and Pivoted Cholesky decompositions with further details in [8]. As for the indi-

vidual standardised prediction errors, under the Gaussian process assumption and

conditional on the fitting data, each of the individual errors follows a t-distribution

with (n− p) degrees of freedom. Moreover, DMD(f(X∗)) = DΓ(f(X∗))TDΓ(f(X∗)).
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Each of these diagnostic statistics can be used to detect problems with an emu-

lator, with both large and small values being potential causes of concern. If there

exists many large standardised prediction errors across the parameter space, this

suggests a global problem that the emulator is overconfident meaning that its ad-

justed variance is consistently too small. Similarly, large numbers of particularly

small standardised prediction errors should also be treated with caution since this

may indicate an emulator which is globally under-confident; its adjusted variance

is consistently too large. In general, under-confidence is less of a concern but can

limit the effectiveness of an analysis, whilst over-confidence should be addressed by

considering the emulator construction.

When several large prediction errors are confined to a particular region of the

parameter space, this may suggest a badly chosen mean function or an incorrect

stationarity assumption. On the other hand, several small errors within a particular

region may indicate that the emulator is too conservative in its error estimation in

this part of the space. For validation data points in close proximity to parameter

vectors used to fit the emulator, particularly large or small standardised errors can

indicate over or under estimation respectively of correlation length hyperparameters.

Graphical methods enable easier identification of patterns amongst residuals.

Examples include plots of the individual standardised prediction errors in Equa-

tions (2.4.47) and (2.4.50) versus the simulated responses, f(X∗); the emulator

expectation, EF [f ∗(X∗)]; the simulation index; and each of the input parameters

[8]. None of these plots should show any form of pattern. If one exists, it may

indicate problems with the emulator specification such as the requirement for addi-

tional deterministic functions within the mean function or non-stationarity within

the covariance function. A generalisation for the plots versus inputs beyond [8] is to

inspect contour plots of the standardised prediction errors for each pair of inputs.

Another useful plot is the credible interval versus the simulated responses, f(X∗),

which highlights whether there exists any systematic poor prediction for particular

output values. Under the Gaussian process assumption, quantile-quantile plots can
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also be a useful tool, and are required to validate the normality assumption of the

GP.

There exist many methods for performing emulator diagnostics, yet no single

diagnostic is capable of highlighting all possible issues with an emulator. It is

therefore best practice to use a combination of diagnostic techniques in order to

certify that an emulator is an adequate representation of a computer simulator.

2.5 Multivariate Emulation

Emulation of multiple computer simulator outputs of interest may be performed

using the methodology described in Section 2.4 by separately emulating each of the

scalar outputs, thus treating them as independent. However, this fails to take into

account any correlation between the outputs which may provide valuable insight of

the system behaviour leading to more accurate emulators and more robust inferences.

Multivariate emulation techniques provide a means of accounting for joint correlation

structure by imposing a covariance function over the outputs. Note that this can

be challenging to accurately specify, especially when there are a large number of

outputs.

Let f : X → Rq denote a computer simulator with q-dimensional output and input

parameter vector x ∈ X ⊂ RD. A natural extension to the univariate emulation

formulation presented in Section 2.4.1 is given by:

f(x) = BTg(xA) + u(xA) + w(x) (2.5.1)

The subscript A denotes the collection of active parameters over all simulator out-

puts and are input to the vector-valued function g(xA) ∈ Rp; a generalisation of the

deterministic functions which are shared across all outputs, and where B ∈ Rp×q

is a matrix of coefficients. The weakly stationary stochastic process term extends

to u(xA) with E[u(xA)] = 0 ∈ Rq. A common means of accounting for covari-

ance between multiple outputs is to impose a separability condition such that
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Cov[u(xA),u(x′A)] = κ(xA,x′X)ΣMV, where κ(·, ·) provides the correlation struc-

ture over the input parameter space, X , and ΣMV ∈ Rq×q is a positive-definite

matrix that describes the covariance between the simulator outputs [23]. The fi-

nal term is a generalisation of the nugget term such that E[w(x)] = 0 ∈ Rq and

Cov[wi(x),wj(x′)] = σ2
wi
1{i=j}1{x=x′}. The Bayes linear update equations follow

a natural extension to the Bayes linear adjustment formulae in Equations (2.2.3)

to (2.2.5) to vectors of outputs.

A separable multivariate Gaussian process emulator is defined in Equation (2.5.2)

[23], where m(x) ∈ Rq is a multivariate emulator mean function, with B, g(·), κ(·, ·)

and ΣMV as above.

f(·) ∼ GPq(m(·), κ(·, ·)ΣMV) (2.5.2)

m(x) = E[f(x)] = BTg(x) (2.5.3)

This includes the distributional assumption of a matrix-variate Gaussian process,

an extension of the univariate Gaussian process defined in Definition 2.5.1. The

normal conditional formulae in Equation (2.4.17) provide a means of updating given

a set of simulations. In general, it can be computationally expensive to update a

multivariate emulator, however the separability assumption helps to alleviate this

by splitting the costly matrix inversion calculations into two parts dependent on the

inputs and outputs respectively using a Kronecker product factorisation [149].

Definition 2.5.1. An unknown multivariate function f(·) with inputs x ∈ X such

that f(x) ∈ Rq is a matrix-variate Gaussian Process if and only if for every

n ∈ N, the joint distribution of (f(x1), . . . , f(xn)) ∈ Rq×n is a matrix-variate normal

distribution for all x1, . . . ,xn ∈ X .

The above multivariate emulator structure utilises separability of the input and

output spaces within the residual covariance function. This can be extended further

to form an outer-product emulator imposing a separability assumption on the re-

gression components contained in g(·) which achieves further computational savings.

Full details can be found in [149], with an application in [151]. It is also noted
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that the above multivariate emulation methodology of [23] is a special case of the

outer-product emulator.

Separability assumptions can be too restrictive and lead to poor predictive per-

formance with non-separable emulators instead providing more flexible choices for

the covariance structure. Examples include computing the covariance function via

either convolution or linear model of coregionalisation methods, as discussed in [53].

However, it is noted that non-separable emulators are not necessarily as predictable

as multiple independent univariate emulators or a separable multivariate emulator

for high-dimensional output, whilst also being much more computationally expensive

to fit and evaluate. If computational resources allow, best practice is to fit several

types of multivariate emulator using diagnostics to determine the most suitable for

use within the analysis.

Another scenario is dynamic simulators which yield time series output with

quantities of interest reported at multiple time steps. For an individual output type,

this temporal correlation may be accounted for by elevating the time variable to a

direct input to the mathematical representation of the simulator [23]. The univariate

emulation techniques of Section 2.4 may then be applied and the emulator evaluated

for time points and parameter settings of interest. Note that the above described

separable emulator framework provides greater flexibility for the choice of covariance

structure whilst also reducing computational load.

Simulators may possess an extremely high number of outputs for which it is

computationally impractical and potentially unnecessary to construct a complex

multivariate emulator over all outputs. Dimensional reduction techniques seek to

establish a lower-dimensional representation than the full set of outputs. Principal

Component Analysis (PCA) is a common technique used to identify an orthogonal

basis which correspond to the largest proportion of the total variation over the

outputs, after accounting for all previous principal components. Emulation for high-

dimensional output projected onto their principal component basis is implemented in

[87]. Another technique is principal variable selection [120]. This is used to compose
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a subset of the simulator outputs which best characterise and preserve the original

data structure and information by accounting for a large proportion of the total

variation [33]. The identified principle variables may be used within emulation [30].

2.6 Multilevel Emulation

Situations arise in which there exist a number of models for the same physical

system which act on the same input space as a function to the same set of outputs,

with the models forming a hierarchy in terms of their level of complexity. Differing

levels of simulator accuracy can occur in applications for several reasons including:

modification of the mathematical structure to either simplify or introduce additional

or more detailed equations to describe the underlying physics of the system; changing

the step size of the numerical solver; and increasing the grid or mesh resolution [32].

It is noted that the different versions of the models usually share many qualitative

features. Such practices are regularly observed within the petroleum industry in

a process known as upscaling [29, 30, 32]. In general, the ramifications of using

more complex models is longer evaluation times, but will yield more accurate results,

assuming the model is representative of the system. It is therefore desirable to

optimally combine the various models using the cheaper but less accurate models to

inform those of greater complexity, but for which only a limited number of simulations

may be performed.

Multilevel emulation, also known as multiscale or multi-fidelity emulation, in-

volves constructing a hierarchy of emulators, each of which are informed by both

simulations from the corresponding computer model, and prior information provided

by the emulator for the preceding coarser model [28, 32, 132]. The starting point

for multilevel emulation is to construct an emulator for the most coarse simulator,

usually via the standard methodology presented in Section 2.4. The next step in-

volves sequentially linking emulators for each model with one approach being to use

a first-order autoregressive type model to link each level of the hierarchy [28, 108].
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This is further developed to incorporate a parameter dependence into the autore-

gression coefficient in [143, 144]. In situations where the various simulators may be

viewed as particular cases from an overarching computer model, another approach

is the cumulative roughness model which introduces a complexity parameter [108].

An alternative means of multilevel emulation is discussed in [30, 32] which directly

uses the coarse emulator structure and introduces multilevel weight hyperparameters

for each emulator term. This is based on the prior belief that each part represents

some qualitative physical effect. Methodology has also been developed for multilevel

emulation of stochastic computer models through an adaption of the autoregressive

framework in [106].

Consideration must also be given to the design of simulations in terms of both

the number and locations for each version of the computer model. In general, there

will be a larger number of simulations conducted for the cheaper computer models

with progressively fewer for each level in the hierarchy with the exact distribution

depending on the evaluation time and available computational resources. One such

method is border-block designs discussed in [32].

2.7 Uncertainty Quantification

Computer models provide a means of studying complex real world physical systems

and often include many input parameters that specify the model, and a set of outputs

for which it may be possible to observe some or all for the real system. However,

computer models do not provide an exact representation of the phenomena for

which they describe. Robust analyses therefore require a comprehensive uncertainty

quantification in order to assess the difference between the computer model and the

real world physical system. Omission of uncertainties is a failure to acknowledge the

limitations of the modelling process, measurement errors and the natural variability

which exists within a stochastic real world system. This can lead to misleading

conclusions. Moreover, it should be noted that an uncertainty quantification is
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specific to the application and analysis in question.

In Section 2.7.1, methods of linking computer models to their corresponding phys-

ical systems are introduced, with several common types of uncertainties presented

in Section 2.7.2. Further discussion of observational error and structural model dis-

crepancy can be found in Sections 2.7.3 and 2.7.4 respectively, along with comments

on quantification methods. This is expanded within the context of decision support

in Section 3.5.

2.7.1 Linking the Computer Model to the Real Physical

System

Uncertainty quantification provides a structured link between the simulator which

maps input vector x to uncertain output f(x), and the true value for the physical

system, y, each of which may be a scalar or a vector. A common assumption is for a

general additive error structure shown in Equation (2.7.1), where εi represents each

form of uncertainty considered with a possible dependence on the location in the

input parameter space [58, 59, 170, 171, 178]. In addition, it is often assumed that

the uncertainties are mutually uncorrelated, denoted as εi ⊥⊥ εj for i 6= j, as well as

uncorrelated with the true system value, y ⊥⊥ εi for each i.

y = f(x) +
∑
i

εi(x) (2.7.1)

Computer simulator output f(x) is often approximated using an emulator represent-

ation, denoted in this section by f ∗(x), which implicitly encompasses the additional

uncertainty. The additive error structure is obtained via a substitution as:

y = f ∗(x) +
∑
i

εi(x) (2.7.2)

Following the second-order Bayes linear formulation, as in Section 2.2.2, it is sufficient

to consider the expectation, variance and covariances of each of the uncertainties. In

a full Bayesian framework, as in Section 2.2.1, it is necessary to specify probability

distributions for each of the uncertainties.
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An alternative form of link between the computer model and the physical system

is a multiplicative error structure described in Equation (2.7.3), where ε is a source

of uncertainty with mean zero. When y and f(x) are vectors, ε(x) is a vector of

multiplicative errors, “1” should be interpreted as a vector of ones, and � represents

the Hadamard product.

y = (1 + ε(x))� f(x) (2.7.3)

Note that it is possible to obtain multiplicative uncertainties using an additive error

structure by considering the logarithms of quantities of interest [178].

The relationship between the real physical system and the corresponding com-

puter model or models may be further abstracted by introducing the concepts of

direct and indirect simulators, with the distinction made depending on whether the

inputs are measurable or not respectively, and if model discrepancy (see Section 2.7.4)

is probabilistically independent of the inputs. Indirect simulators also possess a set

of tuning parameters as inputs which: ensure a good fit to the simulated or observed

data; account for poorly understood physics; and numerical solver deficiencies. A

comprehensive analysis presenting a framework for connecting these along with all

other sources of uncertainty is described in [67].

2.7.2 Types of Uncertainties

Computer models can never capture the full detailed nature of a real physical

system with commonly occurring sources of uncertainty often categorised into several

canonical forms [29, 69, 107, 170, 171, 178]. These include:

• Parameter uncertainty which pertains to a lack of knowledge of suitable

input parameter values. Where there exist several types of parameters, as

discussed in Section 2.1.3, this form of uncertainty may be decomposed further.

In addition, there is the dilemma of whether there exists model parameter

settings which yield an acceptable match between the model output and the

observed system, up to any other sources of uncertainty. This is the focus of
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history matching and calibration presented in Section 2.8.

• Simulator uncertainty relates to the fact that computer models form a func-

tion, either deterministic or stochastic, which map from the input parameter

space to a set of outputs. However, the simulator output is unknown except at

points in parameter space where the model has been evaluated. Limitations

due to the computational expense of evaluating such functions discussed in

Section 2.1.2 makes this a large problem, especially in high-dimensional para-

meter spaces. This form of uncertainty may be addressed through the use of

emulators described in Section 2.4 to statistically approximate computer mod-

els at as yet unevaluated parameter settings, whilst providing a quantification

of the induced uncertainty.

• Structural model discrepancy, also known as structural uncertainty

or model inadequacy, represents the difference between the real physical

system and the associated computer model. Further discussion is found in

Section 2.7.4 [59, 69].

• Observational or experimental error concerns inaccuracies in the process

of obtaining measurements of outputs from the real system. This can be

physical or a consequence of any processing required of the collected data.

This form of uncertainty is further described in Section 2.7.3.

• Initial conditions and forcing function uncertainty, sometimes referred

to as residual variability [107], includes any other part of the model which must

be specified before the model can be evaluated. This may be incorporated

into the structural uncertainty, as in [171], with alternative means appealing

to second-order exchangeability, as discussed in [89].

Other forms of uncertainty exist, but these are specific to each application and

analysis.

For a full analysis of any computer model, all major sources of uncertainty

should be incorporated. Where it is not possible to accurately quantify them, the

best strategy is to devise a conservative estimate for their magnitude in order to
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reduce the risk of incorrect inferences. It is always possible at a later time to reduce

the uncertainty as a greater state of knowledge becomes available, as is the case

in sequential analyses such as history matching (Section 2.8) or iterative decision

support (Section 3.6). Once uncertainties are assessed to be smaller than their true

value, it is very difficult to undo this choice without recommencing the analysis.

Note that the disadvantage of using conservative errors is a reduction in the power

to perform meaningful inferences. In history matching or iterative decision support

this manifests as an inability to discriminate between parts of the parameter space

which should be classified as implausible.

2.7.3 Observational Error

Uncertainty due to observational errors occurs whenever observed data, denoted by

either a scalar or vector z ∈ Rs, is used to aid inferences for the true state of the

system, y. Observational error is defined in Definition 2.7.1 and can be attributed to

a number of causes including: errors as a result of preprocessing based on scientific

theory which is not incorporated into the model; uncertainty introduced to the

system as a consequence of the measuring process; and the inability to measure the

quantity (or quantities) of interest directly, thus relying on the interpretation and

processing of measurements of some other quantity or quantities [171].

Definition 2.7.1. Observational error is the variability in the measured value of

a quantity compared to its true value [178]. Observational error is often denoted by

the vector e.

The additive error structure described in Equation (2.7.4) is a prevalent modelling

choice [2, 29, 107, 171, 178]. It is often assumed that the observational errors are

independent of both y and x, hence unlike in Section 2.7.1, e is not a function of

x. Further common assumptions depend on whether z is a scalar or a vector. In

the first instance, E[e] = 0 and Var[e] = σ2
e , whilst for a vector of observational

errors, it is common to assume that the errors are independent with E[e] = 0 and
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Var[e] = Σe = σ2
eIs. Quantification of this source of uncertainty is most often based

on expert knowledge from the relevant scientific field(s).

z = y + e (2.7.4)

Substituting the physical system, about which the aim is to make inferences, for a

computer model and combining Equations (2.7.1) and (2.7.4) leads to the full additive

error structure in Equation (2.7.5). The approximation of the computer model using

an emulator (as in Equation (2.7.2)) results in the additive error structure shown in

Equation (2.7.6).

z = f(x) +
∑
i

εi(x) + e (2.7.5)

z = f ∗(x) +
∑
i

εi(x) + e (2.7.6)

Note that for simulators which include model parameters, the settings which lead to

the observations is usually unknown with the problem of identifying such parameter

setting(s) corresponding to parameter uncertainty introduced in Section 2.7.2 and

can be addressed using history matching or calibration in Section 2.8.

2.7.4 Structural Model Discrepancy

A computer model is a mathematical representation of a physical system. As such,

no computer model is an exact representation of its corresponding physical system

leading to the introduction of structural model discrepancy, also known as structural

uncertainty or model inadequacy, which is defined in Definition 2.7.2 and abbreviated

to model discrepancy throughout this thesis.

Definition 2.7.2. Structural model discrepancy is the uncertainty due to the

differences between the model and the true physical system [29, 107, 171, 178]. It is

commonly denoted the vector εMD(x), allowing for the possible dependence on the

inputs x.

Causes of model discrepancy can broadly be described within two categories [65].
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Firstly, constraints on scientific knowledge lead to the omission or approximation

of certain physical processes within the model. The second cause of model discrep-

ancy arises from mathematical or numerical approximations. This includes: model

simplification in order to ensure that it is solvable; variability due to the choice of

initial conditions; numerical solver considerations; and discretisation approximations

of continuous space and time. As long as these uncertainties are acknowledged and

assessed within an analysis using the simulator, then the modelling process is valid.

Failure to incorporate the modelling limitations constitutes a “perfect model” ana-

lysis [61, 64], which can lead to false conclusions such as the belief that the future

evolution of a system may be predicted exactly.

Common assumptions for model discrepancy include that εMD(·) is independent

of y and each other source of uncertainty, with E[εMD(x)] = 0. In addition, for a

scalar εMD(·) it is assumed that Var[εMD(x)] = σ2
MD, whilst for multiple outputs

Var[εMD(x)] = ΣMD(x) [178]. The covariance structure described in ΣMD may be

complex with non-zero covariances between components of εMD(·). Probabilistic

or expectation statements about εMD can be formed and verified by performing

exploratory model evaluations for appropriate initial conditions to form a lower

bound for the variance σ2
MD. A second approach is to elicit expert judgements. It is

particularly effective to combine these two methods iteratively with experts assessing

the revised prior specifications in light of simulation data, as in [28]. Accurately

quantifying the structure of model discrepancy can be an extremely complex task,

especially in high-dimensional input settings with large numbers of outputs, or if

there is perceived to be a dependence on x.

Model discrepancy can be split into a sum of internal and external model discrep-

ancy, defined in Definitions 2.7.3 and 2.7.4 and denoted by εMD,int(·) and εMD,ext(·)

respectively. The decomposition of model discrepancy is assumed additive as follows:

εMD(x) = εMD,int(x) + εMD,ext(x) (2.7.7)
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Internal Model Discrepancy

Definition 2.7.3. Internal model discrepancy is defined to be any aspect of the

structural model discrepancy which can be assessed using experiments on the model.

This includes an assessment of the magnitude and the dependency structure [65].

An assessment of the internal model discrepancy can be performed to obtain

a lower bound for the induced uncertainty, whilst it is also possible to determine

certain structural properties. Sources of internal model discrepancy may be modelled

additively and assumed to be mutually uncorrelated with examples including [64,

65]:

• Condition uncertainty from any forcing functions, boundary and initial condi-

tions within the model.

• Stochastic uncertainty arising where the model is either stochastic, or should

be designed to be stochastic.

• Solution or numerical uncertainty as a result of numerical solver accuracy

leading to a certain level of approximation to the output.

• Parameter uncertainty within the emulator due to inactive variables.

• Population variability within the real world system where individuals exhibit

the same behaviour, but for different input parameter settings. For example,

in systems biology this manifests as biological variability across individuals

[178].

Internal model discrepancy can be assessed via experiments on the model. Let

I be the set of internal model discrepancy types being considered, denoted as

εMD,int,j(·) for j ∈ I. Under the Bayes linear approach, it is necessary and sufficient

to specify the expectation, variance and covariance structure between them. For

j ∈ I, let E[εMD,int,j(x)] and ΣMD,int,j(x) be the expectation and variance (matrix)

respectively. Within a general framework, all types of internal model discrepancy

are simultaneously assessed using a careful design. A common assumption is the

types are mutually uncorrelated, leading the internal model discrepancy expecta-
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tion and variance to decompose in Equations (2.7.8) and (2.7.9) respectively, with

Cov[εMD,int,i(x), εMD,int,j(x)] = ΣMD,int,i(x)1{i=j}.

E[εMD,int(x)] =
∑
j∈I

E[εMD,int,j(x)] (2.7.8)

Var[εMD,int(x)] = ΣMD,int(x) =
∑
j∈I

ΣMD,int,j(x) (2.7.9)

Methods for assessing internal model discrepancy involve varying certain quantities

within the model to obtain empirical estimates of the necessary expectations [65].

Depending on the speed of the model, this can be infeasible due to computational

expense. The expected internal model discrepancy is used to account for bias which

results in systematic deviations between the model output and the true system.

Moreover, in assessing the variance matrix (or matrices), the magnitude and structure

should be analysed separately by splitting the empirical variance matrix into a vector

of variances and a correlation matrix which is scale invariant.

External Model Discrepancy

Definition 2.7.4. External model discrepancy refers to all aspects of the struc-

tural model discrepancy which are not incorporated into the internal model discrep-

ancy, and specifically refers to the inherent limitations of the modelling process due

to missing or misspecified aspects of the physical model [65].

Due to the nature of external model discrepancy, it cannot be quantified by

computer experiments on the model, and as such, must be specified by expert

judgement, through careful assessment of the reasons for failure of the model to

match the observed system. A detailed accounted is provided in [171]. Note that a

common assumption is that E[εMD,ext(x)] = 0 for all parameter vectors.

Situations transpire where there is no access to expert judgement regarding

external model discrepancy. Instead, the interest lies in determining the magnitude

of the external model discrepancy beyond which no meaningful inferences can be

drawn from analyses of the model. In these situations it is sometimes reasonable to
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assume that the external model discrepancy error has the same dependency structure

as the internal model discrepancy error, and hence is treated as a scalar multiple of

the internal model discrepancy. That is ΣMD,ext(x) = λΣMD,int(x) for some λ > 0,

resulting in Equation (2.7.10) for the overall model discrepancy variance.

ΣMD(x) = (1 + λ)ΣMD,int(x) (2.7.10)

Other Approaches to Accounting for Model Discrepancy

There exist alternative approaches to assessing model discrepancy. Within a full

Bayesian analysis in [17], a GP and a constrained GP prior distribution for model

discrepancy are used which are shown to reduce the issues of bias and overconfidence.

A six-step procedure for computer model validation is presented in [9] to determ-

ine the adequacy of a computer model as a representation of a physical system

including an assessment of the accuracy in terms of potential bias and uncertainty.

Another expression for some forms of uncertainty, such as induced by variable initial

conditions, is via the creation of an ensemble of multiple versions of a computer

model. Second-order exchangeability arguments may then be used to assess the

induced model discrepancy [89]. A further approach to dealing with model discrep-

ancy described in [163] involves decomposing a computer model into subfunctions

and individually assessing the uncertainty propagation through the model. Where

such a decomposition is possible, it would be worthwhile to consider methods of

emulating networks of simulators, as discussed in [96, 111]. For a careful but complex

treatment of model discrepancy via the abstract concept of a reified model and a

reified Bayesian emulator, see [68].

2.8 History Matching

History matching concerns the problem of identifying a set of model parameter

vectors which yield acceptable matches between the computer model output and

the real physical system based on observed historical data and whilst accounting
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for model discrepancy and observational errors [27, 29, 58, 170, 171, 178]. This is a

means of addressing the statistical inverse problem and may be utilised as a precursor

to a full Bayesian model calibration [107] that does not require a full probabilistic

specification [171]. Throughout this section the focus is on model parameters, x,

since these govern the model behaviour, whilst decision parameters, d, may also be

incorporated separately if it is known that a system was controlled in a particular

manner prior to taking measurements.

History matching is an iterative procedure which works in waves to eliminate

regions of the model parameter space which do not yield satisfactory matches between

the computer model output and the observed data, up to the uncertainties present.

This requires a comprehensive exploration of the model parameter space and thus

Bayesian emulators, described in Section 2.4, are incorporated because of their speed

of evaluation, ability to accurately estimate model output, and can be substituted for

the model in lengthy calculations. Uncertainty quantification methods (Section 2.7)

are also required to link the model with the system and observations. Comparisons

are performed using an implausibility measure. Note that if no parameters are found

for which the model is compatible with the real observed system, then this may

indicate that the model is not a good representation of reality. History matching has

been successfully applied across a range of scientific disciplines including: climate

modelling [19, 40, 65, 185]; cosmology [170, 171]; epidemiology [2, 3]; systems biology

[178]; and petroleum reservoir modelling [27, 29, 30].

This section will begin by explaining the best input assumption in Section 2.8.1,

before presenting a selection of implausibility measures in Section 2.8.2, with a

means of selecting a suitable cut-off described in Section 2.8.3. The history matching

algorithm is presented in Section 2.8.4, with a discussion of methods for resampling

from the remaining model parameter space at each iteration in Section 2.8.5, and

stopping rules in Section 2.8.6. A comparison with Bayesian calibration methods is

presented in Section 2.8.7.
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2.8.1 Best Input Assumption

An assumption usually made within calibration, although not strictly necessary

in history matching, is the existence of a model parameter vector x∗ ∈ X , which

is unknown prior to analysis and contains the maximum information about the

true system state, y ∈ Rq, either a scalar or a vector. In addition, it is typically

assumed that x∗ and the simulator are uncorrelated, denoted as x∗ ⊥⊥ f , such

that f ∗ = f(x∗) is sufficient for the simulator f , as well as for the uncertainty

about y. This is termed the best input assumption [58, 66, 171, 178]. The model

output f(x∗) may not necessarily match reality y exactly due to model discrepancy

which unlike in Section 2.7 is only considered at the best input setting. For the

commonly used additive error structure this leads to the model discrepancy defined

in Equation (2.8.1), with an implication being that εMD ⊥⊥ {f,x∗}.

εMD = y− f(x∗) (2.8.1)

Assessment of the model discrepancy may follow a similar line to the ideas portrayed

in Section 2.7.4.

History matching requires system observations, z ∈ Rq, measured with errors,

e ∈ Rq. It is also typically assumed that f(x∗) ⊥⊥ εMD ⊥⊥ e. These are the two

most relevant forms of uncertainty within history matching, although others may

be incorporated if it is deemed necessary. The multivariate additive error structure

used for history matching is given by:

z = f(x∗) + εMD + e (2.8.2)

Note that it is also assumed that for each component yi of y, there exists a respective

zi from z measured with error ei, for which fi(x∗) denotes the corresponding simulator

output at x∗ with model discrepancy εMD,i. This leads to the univariate additive

error structure in Equation (2.8.3).

zi = fi(x∗) + εMD,i + ei (2.8.3)
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2.8.2 Implausibility Measures

History matching requires a method of comparing the simulator output evaluated at

a given model parameter vector x with observations of the system in order to identify

those parameter settings which may reasonably yield an acceptable match up to

the uncertainties, and those which are deemed unlikely to do so. This leads to the

development of an implausibility measure which is formally defined in Definition 2.8.1,

along with the meaning of implausible and non-implausible model parameter settings

[27, 29, 171].

Definition 2.8.1. An implausibility measure is a function I(x) defined over

X which is large at input x which are suspected to yield a poor match between

simulator output and observed data with respect to an uncertainty quantification

and a specified level of tolerance. Input settings for which I(x) is large are described

as implausible, whilst any other x are categorised as non-implausible.

It is important to stress that even if a model parameter vector x is classified

as non-implausible, it does not necessarily guarantee a close match between the

simulator output and the true system value, only that the difference is small relative

to the magnitude of the total uncertainty within the analysis. Instead, implausibility

measures are used within history matching to formulate a candidate set of values

X ∗ which should contain x∗. This is termed the non-implausible region or set.

For an individual simulator output fi(x), an implausibility measure is constructed

by assessing how much fi(x) differs from the true value yi of the system. At this stage

the only uncertainty is the model discrepancy, so the ideal measure of uncertainty

would be the square of the standardised distance (yi−fi(x))2

Var[εMD,i]
. However, yi is unknown,

thus rendering this calculation impossible, and hence it should be substituted for an

observation zi of yi. This introduces observational error ei, leading to (zi−fi(x))2

Var[εMD,i]+Var[ei] .

It has already been highlighted that simulators are often highly computationally

expensive and hence it is infeasible to evaluate for even a modest number of model

parameter vectors, let alone across the entire input space X . This is where an
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emulator is introduced as a surrogate for the computer model with the univariate

implausibility measure defined in Equation (2.8.4) in which it is assumed the model

discrepancy and observational error are uncorrelated. Recall that EFi [fi(x)] and

VarFi [fi(x)] denote the emulator adjusted expectation and variance respectively,

where the subscript Fi denotes conditioning on simulation output for fi(·) [27, 29,

171, 178].

I2
i (x) = (EFi [fi(x)]− zi)2

VarFi [fi(x)] + Var[εMD,i] + Var[ei]
(2.8.4)

Large values of I2
i (x) are a result of a large difference between the emulator adjusted

expectation and the observed data relative to the magnitude of the combined variance

of all the uncertainties. When this is the case it is unlikely that the model evaluated

at x will yield an acceptable match with the observed data, hence Equation (2.8.4)

defines an implausibility measure, thus x would be rejected as implausible. Within

the history matching algorithm, a threshold value c beyond which an implausibility

measure is considered large must be chosen. This means that if Ii(x) ≤ c, then x

is classed as non-implausible, and therefore x ∈ X ∗. Note that a popular choice

is c = 3 using Pukelsheim’s 3-sigma rule [142]. Further details can be found in

Section 2.8.3.

Many analyses use simulators which produce complex, often time-dependent,

multivariate output, with observational data available for some or all of these. In

these situations it is necessary to consider a collection Q of univariate responses

where Q does not necessarily consist of all model outputs, rather a subset of those

of interest, those which are simplest to emulate at a particular wave of the history

match, or those that are deemed to encapsulate the most information about all

responses. Note that the size of Q may increase at each wave. For multivariate

output, it is then desired to combine the implausibility measures for individual

outputs into a single implausibility measure. A simple choice is the maximum over

the univariate implausibility measures which is termed the maximum implausibility
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measure in [29, 171, 178] and is defined as:

IM(x) = max
i∈Q

Ii(x) (2.8.5)

Note that IM(x) is strict; it will only classify x as non-implausible if it yields accept-

able matches for all outputs, and hence is sensitive to inaccuracies in the individual

emulators, whilst also failing to consider any multivariate structure between the

outputs.

Alternative less sensitive implausibility measures for multivariate responses are

the second and third maximum of the univariate implausibility measures. These are

defined in Equations (2.8.6) and (2.8.7) respectively [171]. Note that this concept

can be further generalised to the m-th largest univariate implausibility measure.

I2M(x) = max
i∈Q

({Ii(x)} \ IM(x)) (2.8.6)

I3M(x) = max
i∈Q

({Ii(x)} \ {IM(x), I2M(x)}) (2.8.7)

Using a collection of univariate implausibility measures omits the correlation

structure between multiple outputs which may provide valuable additional inform-

ation. An extension is therefore the multivariate implausibility measure [29, 171]

defined as:

I2
multi(x) = (z− EF [f(x)])T(VarF [z− E[f(x)]])−1(z− EF [f(x)])

= (EF [f(x)]− z)T(VarF [f(x)] + Var[εMD] + Var[e])−1(EF [f(x)]− z)

= (EF [f(x)]− z)T(VarF [f(x)] + ΣMD + Σe)−1(EF [f(x)]− z) (2.8.8)

The notation F corresponds to simulation data for all outputs. This requires a

more careful consideration of the covariance structure via the variance matrices,

VarF [f(x)], Var[εMD] and Var[e], which are generally more difficult to accurately

specify than individual variances. The use of the multivariate implausibility measure

has the potential to greatly reduce the proportion of the model parameter space

deemed non-implausible, and as such, reduce the number of waves of history matching

required. However, this comes at the cost of requiring greater certainty about the
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multivariate structure between both the simulator outputs and each of the errors.

Irrespective of which form of the implausibility measure is used, denoted in

general by I(x), the non-implausible region is defined in Equation (2.8.9).

X ∗ := {x | I(x) ≤ c} (2.8.9)

2.8.3 Pukelsheim’s 3-sigma Rule

A method of determining an appropriate threshold value for the implausibility is via

Pukelsheim’s 3-sigma rule [142], a specific case of the more general Vysochanskij-

Petunin inequality [181].

Theorem 2.8.2. Vysochanskij-Petunin Inequality

Let X be a random variable with a continuous, unimodal distribution with mean µ

and finite, non-zero variance σ2. Then for any r >
√

8
3 ≈ 1.63,

Pr[|X − µ| ≥ r] ≤ 4σ2

9r2 (2.8.10)

Theorem 2.8.3. Pukelsheim’s 3-sigma Rule

For any continuous, unimodal distribution with mean µ and finite, non-zero variance

σ2, 95% of the probability must lie within ±3σ of µ.

Proof. The proof follows by setting r = 3σ in Theorem 2.8.2.

Pr[|X − µ| ≥ 3σ) ≤ 4σ2

9(3σ)2 = 4
81 ≈ 0.0494 < 0.05 (2.8.11)

Hence, the probability that a realisation of X falls outside the region µ± 3σ is less

than 0.05. It follows that at least 95% of the probability mass lies within plus or

minus 3 standard deviations of the mean.

The assumptions are continuity and unimodality of the probability distribu-

tion, hence these results hold regardless of any skewness or asymmetry. These

are reasonable assumptions for each of the defined implausibility measures and so
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Pukelsheim’s 3-sigma rule can be applied to suggest a cut-off of c = 3. Alternatively,

the Vysochanskij-Petunin Inequality can be used directly to obtain an upper bound

for the cut-off for a desired proportion. Moreover, Pukelsheim’s 3-sigma rule also

allows for the construction of approximate credible intervals for unimodal distribu-

tions with a specified upper bound on the probability level for a given width. This

is employed within a Bayes linear approach.

2.8.4 History Matching Algorithm

History matching that incorporates an emulator as a surrogate for a complex com-

puter model provides an efficient method of searching high-dimensional model para-

meter spaces within a formal statistical setting that incorporates all major sources

of uncertainty to identify acceptable matches between the computer model output,

approximated by an emulator, and observed data from the real physical system.

The implausibility measures described in Section 2.8.2 are used to determine what

constitutes an acceptable match. History matching is an iterative procedure in

which implausible regions of model parameter space are discarded in waves to leave

a non-implausible region. At each wave, indexed by k, define Xk be the current set of

non-implausible model parameter vectors, and Qk to be the outputs considered, and

hence emulated. History matching is initialised by defining X0 = X , the full model

parameter space, and Q0 = ∅. Let I(x) denote a chosen implausibility measure,

noting that this may change between waves. The history matching algorithm is

presented below [27, 29, 58, 170, 171, 178].

1. Generate an initial space filling design of model parameter vectors from X0

and evaluate the model at these points.

2. Determine if any new and informative outputs exist which can be accurately

emulated and were not included for the previous waves. Add them to the set

Qk−1 to define Qk.

3. For each output in Qk, devise an emulator structure. Fit using the simulations

and evaluate over Xk−1.
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4. Compute the implausibility measure(s) I(x) over Xk−1 using the emulators

formed in 3.

5. Use the threshold c to obtain an updated non-implausible region Xk := {x |

I(x) ≤ c}.

6. If any of the following occur [171]:

• Xk = ∅, meaning that the whole parameter space has been classified as

implausible.

• Computational resources are exhausted.

• The emulator adjusted variance is sufficiently less than the combined

variance of the model discrepancy and observational error. This stopping

rule is further detailed in Section 2.8.6.

Go to step 8, otherwise go to step 7.

7. Formulate a further design from Xk using methods discussed in Section 2.8.5

and evaluate the simulator. Return to 2.

8. Define X ∗ = Xk to be the final non-implausible region. If X ∗ is non-empty,

sample a large number of model parameter vectors from X ∗ depending on the

scientific need. Perform a large number of acceptable model evaluations.

The history matching process successively reduces the volume of the non-implausible

parameter space such that the intermediate non-implausible regions satisfy X ∗ ⊂

Xk+1 ⊂ Xk. If this is not the case, then it is an indicator that the emulator(s) is

poorly specified. This process is known as iterative refocusing. A major strength

of history matching is its ability to quickly dismiss a large proportion of the initial

model parameter space based on a relatively limited number of simulations and a

small set of carefully chosen simulation outputs which are simple to emulate. At

later waves, additional outputs are included which may have been initially difficult

to emulate due to their challenging behaviour within certain regions of the space.

Note that it is important to carefully consider X0 in order to avoid unnecessarily

exploring an excessively large input space. This choice should be guided by expert
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knowledge. Constructing designs for each successive non-implausible region can

present a challenging problem. This is further discussed in Section 2.8.5.

At each successive wave it is expected that superior emulator accuracy is achieved

for f(x) (or each fi(x)) due to several factors. For deterministic computer models the

behaviour will generally be smoother within smaller regions of the model parameter

space and hence better approximated by low order polynomials, as found within the

regression part of the emulator structure. After each wave, further model evaluations

are performed within the new non-implausible region which in general yields a higher

density of model parameter settings with known simulator data within this space

meaning that each new x is generally in closer proximity to the nearest design

points. In particular, this leads to a better approximation by the stochastic process

term of the emulator. As further waves of a history match are performed, the

effect of the initial set of active inputs reduces with other previously inactive model

parameters being elevated to active inputs as their effect on the simulator output(s)

becomes more apparent. In the case of stochastic computer models, smaller non-

implausible volumes permits a greater number of repetitions to drive down the

emulator uncertainty.

The final step of the history matching algorithm involves sampling from the

reported X ∗, and performing simulations for a selection of these candidates, as

permitted by the available computational resources. These should be used to assess

the quality of the history match by evaluating whether the output is a close match

to the observed data, again using an implausibility measure, but omitting emulator

variability. A history matching diagnostic technique is then obtained by comparing

the implausibility measure computed for the simulator and emulator output to ensure

that they yield a consistent result for a range of choices of x. This may be applied

both at the end of the process, but also at intermediate stages.
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2.8.5 Resampling from the Current Non-Implausible

Region

The design of simulations for a first wave is often generated using a maximin Latin

hypercube sample or other standard design method over a hypercube parameter

space discussed in Section 2.3. However, each subsequent wave of a history match

requires a design over the new smaller non-implausible parameter space, which

is generally of a complex non-analytic shape. This process becomes increasingly

difficult as the volume of this region decreases further. Moreover, as the number of

waves increases it is necessary to check that any proposed design point also satisfies

all previous wave implausibility cut-offs. For the kth wave, a membership function

is used to assess whether an input x is classified as non-implausible for all previous

k − 1 waves or not. Only points which satisfy the membership function may then

be sampled for the wave k design.

Uniform rejection sampling over Xk is a common method used to construct a

design. However, a pitfall of uniform sampling is that there is no guarantee of well

spaced design points which are required in order to construct accurate emulators

at wave k. A preferable approach is to generate a large set of points and draw

numerous subsamples of a specified size, depending on computational resources. An

approximately optimal design may then be chosen with respect to a design selection

criterion such as those detailed in Section 2.3.5. Alternatively, consider the proposed

emulator structure for the next wave and note that the Bayes linear adjustment

formula for the variance, see Equations (2.2.4) and (2.4.42), does not depend on

the actual simulator output, and hence may be evaluated with the design point

only. An approximately optimal design is then selected with respect to a monotone

increasing function of the emulator adjusted variance. This will usually resolve the

issue of poor spacing. Note that for both approaches the design optimisation is

approximate. Analytic design optimisation with respect to most criteria is only

possible for small designs in low-dimensional spaces of an analytic shape, often a
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hypercube. Whilst this approach is simple to implement, it has several disadvantages.

Firstly, it very quickly becomes computationally expensive to even identify a non-

implausible model parameter vector as the volume of the parameter space becomes

very small requiring repeated and increasingly large samples to be formed. This

problem is exacerbated at later waves due to the need to evaluate the membership

function containing an increasing number of emulators and implausibility measures to

compute. Some efficiency gains can be made by uniformly sampling from the smallest

hypercube within the initial model parameter space that contains Xk, although these

computational issues remain, especially when the non-implausible region is of a

complex geometry. Note that uniform rejection sampling also provides a means of

accurately quantifying the size of the wave k non-implausible parameter space as a

proportion of the volume at wave k − 1.

Alternative approaches have been developed for constructing designs in sub-

sequent waves of history matching that are more adept at efficiently handling very

small non-implausible volumes. One example is the Implausibility Driven Evolu-

tionary Monte Carlo (IDEMC) algorithm developed in [186] which is based on the

Evolutionary Monte Carlo (EMC) method discussed in [114]. A temperature lad-

der is defined based on the implausibility measures of successive waves of history

matching. This produces uniform samples over the current non-implausible region.

Another algorithm described in [2] is based on a set of non-implausible model

parameter vectors from the last wave of history matching, known as generating points,

which are used to estimate the hyperparameters of a D-variate normal proposal

distribution with an inflated variance matrix. An approximate q-dimensional normal

likelihood for the data is formed based on the uncertainty structure used within

the implausibility measure. Moreover, it is assumed that the model parameters

possess a flat prior within the non-implausible region. This is justifiable when

the volume is very small. This approach proceeds to generate a large collection

of proposals that are assigned weights computed as the ratio of the likelihood to

the proposal probability. Additional non-implausible posterior samples are then
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obtained from the distribution defined by these weights. This technique especially

works well in relatively low-dimensions, although the hyper-ellipses defined by the

multivariate normal proposal distribution may be particularly large encompassing

many implausible points. Another consequence of the normal proposal is that the

samples are not exactly uniformly distributed.

The methods discussed in this section were done so in the context of constructing

designs. It is also necessary to obtain a large number of uniformly distributed

model parameter vectors over the non-implausible region at which to emulate in

the subsequent wave of emulation. The uniform rejection sampling and IDEMC

algorithm presented above can also be applied to this task.

2.8.6 Stopping Rule

In the history matching algorithm it is necessary to stipulate a condition that when

satisfied the process concludes. This is in order to prevent the algorithm continuing

when there is no further information to be gained through extra waves of history

matching [178]. Several stopping rules are presented within the algorithm detailed

in Section 2.8.4. Two of these rules are incontestable. Firstly, when the entire model

parameter space has been classified as implausible there is no further parameter

settings to be investigated, instead the model should be scrutinised as to whether it

accurately represents the real world physical system, as well as assessing the accuracy

of the constructed emulators and the uncertainty quantification. A second rule is to

stop when there are insufficient computational resources to continue the analysis.

In most scenarios where a scientific model has been carefully constructed with

the uncertainties accurately quantified, this first stopping rule is unlikely to be

invoked. The second rule will eventually be achieved, although it may be inefficient

and unnecessary to wait until this point. A third and most important stopping

rule is introduced based on the total uncertainty attributed to the emulator. For a

collection of separately emulated univariate outputs in Q, a stopping rule is defined
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by the Variance Ratio (VR):

VR = max
i∈Q

{
VarFi [fi(x)]

Var[εMD,i] + Var[ei]

}
(2.8.12)

A natural extension where the multivariate implausibility measure is used is to

consider the trace of the variance matrices:

VRmulti = Tr(VarF [f(x)])
Tr(ΣMD) + Tr(Σe)

(2.8.13)

Note that other multivariate generalisations are available. This statistic is then

compared to a cut-off cstop with an appropriate value being cstop = 1
10 . If VR < cstop

(or VRmulti < cstop), then the variance due to emulation of the model is at most 1
10

of the variance due to the combination of all other uncertainties. The implication is

that very little further improvement can be made in the history match at subsequent

waves through additional simulations alone because the emulator uncertainty is not

dominant. If this condition is met, then it would seem sensible to stop the history

match.

2.8.7 Comparison with Calibration

The history matching process aims to efficiently identify model parameter settings

which yield acceptable matches between the simulator and observed data, whilst

making no probabilistic statements regarding which are likely to yield the closest

match with the true system. Major benefits include that all calculations are efficient

and simple to perform, whilst issues traditionally associated with high-dimensional

input and output spaces are mitigated through the use of subsets of the model

parameters and outputs. This latter point is a consequence of requiring parameter

settings that produce matches with the model for all observed outputs of the real

system, hence an acceptable match should be achieved for each individual output.

Moreover, the successive reduction in the non-implausible space has the added

benefit that at later waves it is often simpler to emulate outputs of interest due

to smoothness properties over small volumes of the input space. A criticism which
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may be levelled at the history matching algorithm is identifiability of the best model

parameter setting. However this is not the case since history matching goes beyond

the standard point estimator and reports a class of inputs respecting all incorporated

uncertainties, whilst possessing the ability to discard all model parameter settings in

the case of no acceptable matches with the simulator. Additional model evaluations

may then be performed over a range of non-implausible model parameter settings

to further investigate the differences (if any) in the output.

Bayesian calibration techniques share many similarities with history matching,

but are fundamentally different. They are fully probabilistic approaches (see Sec-

tion 2.2.1) which allow for more detailed analyses and yield posterior distributions

for the model parameters (as well as the system outputs) from which probabilistic

statements can be made in response to scientific questions. Calibration techniques

are based on the best input assumption described in Section 2.8.1 and require the

specification of a joint prior distribution over all parameters along with a likelihood

for the output (and hence observed data), as detailed in Sections 2.2.1 and 2.2.3.

The posterior distribution is then obtained via Bayes theorem. There exist calib-

ration techniques which are closely related to history matching using Bayes linear

emulators, such as through the use of Gaussian process emulation (as presented in

Section 2.4.4) for calibration [9, 10, 87, 107, 132].

There also exists a Bayes linear calibration approach, as presented in [66]. Other

examples of likelihood based methods include: maximum likelihood via iterated

filtering; data augmentation and/or Reversible-Jump Markov chain Monte Carlo

(RJMCMC), whilst likelihood approximation methods which directly use the simu-

lator include: particle filters; Bayesian MCMC and Approximate Bayesian Compu-

tation (ABC, which approximates full Bayesian inference) [2, 88, 178, 184].

Probabilistic inference may at first be viewed as an advantage of full Bayesian

calibration methods over history matching, however this also presents weaknesses.

With the exception of a small class of choices for the joint prior distribution and

the likelihood, the posterior distribution may be of an intractable form, requiring
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numerical techniques such as Bayesian MCMC to perform inferences and sample the

model parameters [178]. MCMC can be extremely computationally expensive and

prone to convergence issues [55], especially in high-dimensional settings where the

posterior may possess complex correlation structures and be multi-modal, potentially

limiting the ability to perform inference. Moreover, MCMC is unable to properly

exploit smoothness of the outputs. By comparison, the history matching calculations

are efficient and can exploit any smoothness properties. In addition, as discussed

in Section 2.2.3, accurate and meaningful specification of the joint prior for all of

the inputs can be challenging, raising questions regarding the robustness of such an

analysis. This issue is further exacerbated in higher-dimensional settings where all

inputs and outputs must be simultaneously incorporated from the beginning of the

analysis, unlike in the history matching procedure. See [178] for further discussion.

The aim of scientific modelling is to better understand real world physical systems,

with models containing equations which govern many underlying phenomena. Some

of the modelled processes may be unimportant in their effect on the observable data

leading to limited information gain for certain inputs which govern any such process.

The result is some model parameters having a flat marginal posterior distribution

and hence an identifiability issue. Within a full probabilistic framework this is

typically embodied by a posterior distribution with multiple modes and correlation

ridge structures which can obscure these identifiability issues, especially in methods

such as MCMC. Conversely, history matching clearly highlights such identifiability

issues, and can aid in discerning the limitations of the information contained within

the observed data as well as direct towards what additional data is required to learn

more about these non-identifiable model parameters [2].

Another scenario which can occur is where a scientific model does not match the

real world physical system for any choice of model parameter settings. Consequently

there does not exist a best input, contravening an important assumption of calib-

ration. These techniques are therefore unable to identify this non-match situation,

instead yielding a posterior distribution with the majority of the probability mass
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focused on a very small or narrow region of the model parameter space which corres-

ponds to where there is the closest, but still not acceptable, match between the model

and observed data. In contrast, history matching reports an empty non-implausible

region suggesting further examination of the model and uncertainty specification is

required.

Emulators are used within history matching in order to perform a quick and

efficient global parameter search. These can also be employed within approximate

inference methods as a surrogate for simulator evaluations where the computer model

is too computationally expensive to practically perform the large number of required

simulations. However, unlike in history matching where the focus may be limited

to a few well understood outputs and a collection of active inputs, this relies on an

accurate specification of the joint dependency structure between all system outputs.

Moreover, it requires that the emulator(s) is of a tractable form to sample from,

which in turn depends on the choice of priors and likelihood with associated issues

presented above.

Given the discussed limitations, a fully Bayesian approach should only be imple-

mented where the application warrants the time and effort required to achieve robust

conclusions. History matching is most useful to identify model parameters which

are likely to yield an acceptable match with the observed data including assessing if

such a match exists, but can also be used in more complex tasks such as forecasting

[26]. It is therefore advocated to first perform history matching as a precursor to a

full calibration in order to refocus on a (potentially very small) region of the initial

model parameter space that is expected to contain almost all of the probability mass

of the posterior distribution. Full Bayesian calibration including MCMC can then be

performed over the final wave non-implausible region at a much lower computational

cost and with greater robustness due to more accurate prior belief specifications,

modelling choices and uncertainty quantification [29, 65, 171]. Furthermore, history

matching has been shown to be effective in situations where it is not practical, and

potentially is impossible to perform full probabilistic calibration such as in [2, 3].



Chapter 3

Iterative Decision Support for

Well Control Optimisation

This chapter presents novel methodology and a framework that were developed to

address the substantial problem of decision support under uncertainty guided by

complex and computationally expensive computer models. An example of such a

problem is that of well control optimisation within the petroleum industry which

is reformulated as a decision support problem. We begin by introducing the TNO

OLYMPUS Field Development Optimisation Challenge in Section 3.1, which serves

as motivation for the developed methodology throughout this thesis and includes a

critique of the challenge and discussion of current petroleum industry methodology

and approaches, although the core ideas and techniques presented in this chapter

are adaptable and transferable across many scientific and industrial applications. In

Section 3.2 we describe several methods for identifying a representative subset of

models from an ensemble to decrease computational expense. Certain simulator out-

puts from the TNO OLYMPUS Field Development Optimisation Challenge possess

structure which can be exploited by Bayesian emulators to achieve superior accur-

acy. This methodology is presented in Section 3.3 within a hierarchical framework

for linking emulators for these quantities to obtain an emulator for the expected

NPV. Section 3.4 contains a review of various optimisation routines and decision
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theoretic approaches which may be applied to the motivating problem. Uncertainty

quantification for linking computer models to the real world physical system was

first explored in Section 2.7 and is further developed within the context of decision

support in Section 3.5. A novel iterative decision support procedure is presented

in Section 3.6 which incorporates Bayesian emulators and a comprehensive uncer-

tainty quantification whilst highlighting its advantages compared to optimisation

and decision theoretic approaches. Throughout this chapter and the subsequent

applications in Chapters 4 and 5, the notation d is used to represent a vector of

decision parameters, as discussed in Section 2.1.3.

3.1 Introduction to the TNO OLYMPUS Field

Development Optimisation Challenge

Throughout this thesis the development of methodology was motivated by problems

of interest within the petroleum industry. A major challenge is that of field develop-

ment optimisation under uncertainty during the initial planning stages for a green

field which encompasses the two important sub-problems of formulating optimal

well placement (also known as field development) and well control strategies. This

is often aided by increasingly complex computer simulator representations of real

oil fields that are used to assess the potential future effect of implementing vari-

ous strategies. The enormity and significance of this challenge is evidenced by the

establishment of the TNO OLYMPUS Field Development Optimisation Challenge

[93] (also abbreviated to TNO OLYMPUS Challenge) which has attracted much

interest from across the industry and academic institutions through the EAGE/TNO

Workshop on OLYMPUS Field Development Optimization [39].1

The TNO OLYMPUS Field Development Optimisation Challenge is formally

introduced in Section 3.1.1 including the aims of the challenge organisers, the OLYM-

PUS model ensemble and a brief description of the three parts of the challenge. In

1EAGE is the European Association of Geoscientists and Engineers.
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addition, the reformulation of the challenge within a decision support framework

and the implications are discussed. Our analysis identifies multiple deficiencies with

the challenge which potentially limits the usefulness of any methods that are shown

to be effective for the preliminary setup when transferred onto a corresponding real

world scenario. These critiques along with suggestions for improvements are de-

bated in Section 3.1.2. Current petroleum industry approaches to field development

optimisation are reviewed in Section 3.1.3.

3.1.1 Overview of the TNO OLYMPUS Field Development

Optimisation Challenge

The TNO OLYMPUS Field Development Optimisation Challenge was devised by the

Netherlands Organisation for Applied Scientific Research (TNO) as part of Integrated

Systems Approach for Petroleum Production (ISAPP) research programme which

was initiated in 2011 by TNO in collaboration with Delft University of Technology

(TU Delft), and industrial partners Eni S.p.A, Statoil (now known as Equinor ASA

as of May 15, 2018) and Petrobras.2 The aim of the ISAPP research programme

is to encourage the development of innovative methods for reservoir management

in order to improve well productivity, increase hydrocarbon recovery and field life

time. Methods include both physical hardware such as advanced sensors and smart

wells, and the handling of data and the development of software to implement closed-

loop and optimisation technologies based around simulators for oil reservoirs. The

ultimate aim being to manage oil recovery from central control rooms with mainly

automated systems used to achieve optimal daily production rates and total recovery

[93].

The TNO OLYMPUS Field Development Optimisation Challenge is based around

the fictitious oil reservoir model named OLYMPUS [4] (further details can be found

2The original ISAPP programme began in 2004 as a joint venture between TNO, TU Delft
and Royal Dutch Shell with a focus on model based optimisation workflows in a closed-loop. This
programme ended in 2009.
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below), and was devised as an interactive competition designed to achieve these aims

with a focus on oil field management, planning and development. It has attracted

much attention from industry and academia with results from the active competition

period presented and compared at the EAGE/TNO Workshop on OLYMPUS Field

Development Optimization [39]. The challenge is setup to resemble the decision

making process when presented with a surveyed green oil field.3 This is conveyed

as the formulation of optimal strategies with respect to an objective function whilst

accounting for geological uncertainty, using an ensemble of 50 computer model

realisations of the OLYMPUS oil field. The novelty and principal mathematical

and statistical component is the methodology used to perform optimisation under

uncertainty. TNO aim to investigate the following questions.

• What added value can be expected from applying optimisation techniques?

• Do there exist any good workflows?

• Which are good choices for controls?

• Are there any algorithms which perform optimisation substantially better than

other algorithms?

• Should field development and well control optimisation be considered jointly?

In order to address the research questions, the TNO OLYMPUS Field Development

Optimisation Challenge is split into three sub-challenges. These are:

• Well control optimisation (see Chapter 4);

• Well placement optimisation, also known as field development optimisation

(see Chapter 7);

• Full field development optimisation consisting of joint well placement and well

control optimisation.

The first two of these challenges are addressed in this thesis.

In each challenge participants are tasked with developing an optimal strategy with

respect to maximising the expected Net Present Value (NPV) objective function

3A green oil field is a new subsurface region believed to contain oil or gas which has yet to be
exploited meaning that no drilling, production or injection has been performed
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over the 20 year field lifetime (starting January 1, 2016) with accumulation and

discounting at 3 month intervals. The NPV for an individual OLYMPUS model is

defined in Equation (3.1.1) as a function of a vector of decision parameters, d, where

index i refers to the time interval ∆ti = ti − ti−1, Nt is the total number of time

intervals, d is the discount factor, τ = 365 days is the time interval for discounting,

and Rj(d, ti) is the difference of all revenue and expenditure during the interval

∆ti for which the exact form depends on the sub-challenge. The expected NPV is

approximated by the ensemble mean NPV defined in Equation (3.1.2), where N = 50

is the number of models in the ensemble.

NPVj(d) =
Nt∑
i=1

Rj(d, ti)
(1 + d)

ti
τ

(3.1.1)

E[NPV](d) ≈ NPV(d) = 1
N

N∑
j=1

NPVj(d) (3.1.2)

For the well control optimisation challenge a fixed well configuration is provided by

TNO based on oil reservoir engineering principles with Rj(d, ti) defined in Equa-

tion (3.1.3), whereQj,op(d, ti), Qj,wp(d, ti) andQj,wi(d, ti) are the total oil production,

water production and water injection volumes in time interval ∆ti under controls

d, and rop, rwp and rwi are the corresponding oil revenue, water production and

injection costs. Note that these are fixed at the values specified in Table 4.3 on

page 195.

Rj(d, ti) = Qj,op(d, ti) · rop −Qj,wp(d, ti) · rwp −Qj,wi(d, ti) · rwi (3.1.3)

For the well placement and the full field development optimisation challenges the

Rj(d, ti) formula is modified to that shown in Equation (3.1.4). This includes the

additional terms of Pj(d, ti) and Dj(d, ti) which account for the platform and drilling

costs in time interval ∆ti associated with the field development strategy captured in

d. Similarly, these costs are fixed at the values specified in Table 7.2 on page 361.

Rj(d, ti) = Qj,op(d, ti) · rop −Qj,wp(d, ti) · rwp −Qj,wi(d, ti) · rwi

− Pj(d, ti)−Dj(d, ti) (3.1.4)
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The OLYMPUS oil reservoir model is a fictitious oil field (inspired by a virgin

oil field in the North Sea) created by TNO and was specifically developed for the

challenge. It has a size of 9km by 3km, and a depth of 50m, split into 16 layers for

modelling purposes. The design was conceived to realistically imitate a real oil field

possessing many of the features encountered in actual oil fields including: boundary

and minor geological faults; two vertical zones separated by an impermeable shale

layer (the top layer contains fluvial channel sands embedded in floodplain shale,

whilst the bottom layer consists of alternating layers of coarse, medium and fine

sands); as well as multiple types of facies (body of rock of specified characterist-

ics) including channel sands, shale, and multiple types of sand. It is considered a

medium complexity oil reservoir model. Within the TNO OLYMPUS Field Devel-

opment Optimisation Challenge the main aim is to address geological uncertainty

(uncertain porosity, permeability, net-to-gross and initial water saturation) for which

an ensemble of 50 realisations of the OLYMPUS model are provided which were

generated from a stochastic geology model. These are labelled as OLYMPUS 1 to

50. The OLYMPUS oil reservoir model is illustrated in Figure 3.1 which shows

a three-dimensional map depicting the initial oil saturation for the OLYMPUS 28

realisation. Full details of the model can be found in [4].

The focus of this chapter and Chapters 4 and 5 will be well control optimisation,

whilst well placement optimisation will be explored further in Chapters 6 and 7.

For well control optimisation we reformulate the problem as a decision support task

treating the expected NPV as a utility function with the well controls within each

time interval as decision parameters.

3.1.2 Critique of the TNO OLYMPUS Field Development

Optimisation Challenge

The TNO OLYMPUS Field Development Optimisation Challenge has set out a clear

aim of investigating and testing methodology designed to perform optimisation un-

der uncertainty. In particular, TNO are interested in the development of effective
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Figure 3.1: Three-dimensional map of the TNO OLYMPUS oil
reservoir model depicting the initial oil saturation for
the OLYMPUS 28 geological realisation. Red and yellow
regions correspond to high and moderate oil saturation
respectively, whilst blue regions depict water and thus
possess low oil saturation. The green upward arrows
and red downward arrows represent the fixed producer
and injector well locations respectively within the TNO
OLYMPUS Well Control Optimisation Challenge. The
lines across the field depict the geological faults which
shift neighbouring layers on either side. This image was
generated using ResInsight [161].

ensemble optimisers. However, examination reveals numerous omissions and over-

simplifications to the extent that the challenge is no longer a realistic representation

of the real world process of developing green oil fields. This raises the question

as to whether any of the methodology developed to directly address the challenge

under its original guise, irrespective of how successful it is judged to be, will have

any meaningful benefits when applied to the corresponding physical system? It

appears that TNO are more interested in the mathematical methodologies versus

their implications for the real world problem. In this section we highlight the main

deficiencies with the challenge, discussing the ramifications and means of addressing

them.
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Firstly, in each of the sub-challenges there is a clear aim of searching for a single

optimal choice of well control or field development strategy which maximises the

ensemble mean NPV objective function as an approximation to the expected NPV.

This stems from the interest in ensemble optimisers. This is potentially limiting in

that it fails to recognise that multiple strategies may yield similar objective function

values when compared given a comprehensive uncertainty quantification to form

an accurate link with the real world process. Furthermore, focusing on a single

strategy which is believed to be the global optimum is potentially dangerous due

to the well-known risks associated with optimisation routines becoming trapped at

local optima, a particular issue for high-dimensional parameter spaces, as is the

case in the TNO OLYMPUS Challenge. Instead we propose identifying a class of

near-optimal decisions up to the quantified uncertainties via an iterative decision

support algorithm presented in Section 3.6.

TNO provide an ensemble of 50 geological realisations of the OLYMPUS model

from an underlying stochastic geology model for which participants have no access.

This is common practice within the petroleum industry to represent geological uncer-

tainty via an ensemble of models with different underling geologies that are obtained

from either a (calibrated) geological model or elicited from reservoir engineers. An

initial issue is whether the ensemble is a representative sample obtained via random

sampling. Within each of the field development optimisation challenges the objective

function is the ensemble mean NPV which is specified to be equal to the expected

NPV. Assuming that the geologies are randomly sampled, then the ensemble mean

NPV is an unbiased estimator of the expected NPV, however this approach fails to

account for the remaining geological uncertainty. Given the infinitely large space of

possible geologies, using an ensemble of size 50 only partially represents this geolo-

gical uncertainty. The ideal solution would be to sample a larger number of geologies

as well as obtain knowledge of the sampling distribution of the ensemble mean NPV

under a particular strategy. By the central limit theorem, this will be a normal

distribution, although the mean and variance parameters must be estimated. These
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investigations are not possible under the setup of the TNO OLYMPUS Challenge.

A potential option is bootstrapping whilst in our application to the TNO OLYM-

PUS Well Control Optimisation Challenge we incorporate geological uncertainty into

decision support as described in Section 4.6.2.

Another weakness of the TNO setup is the form of the objective function. For

decision theoretic and decision support approaches that acknowledge and incorporate

sources of uncertainty, the objective function should be re-expressed as a utility

function which also encompasses the risk preferences of the decision maker(s). Note

that directly interpreting the objective function as equal to the utility function results

in the statement that the decision maker(s) is risk neutral; an assumption which

is rarely true based on discussions with collaborators in the oil industry, with the

exact level of risk aversion often depending on the size of an oil company and their

financial status. This may be addressed via a sensitivity analysis to various forms of

the utility function that portray different risk preferences. Moreover, within all three

sub-challenges, the additional cost parameters introduced to the objective function

include: oil price; water production and injection costs; discount factor; platform

and drilling costs, are all assumed to be fixed over the 20 year field lifetime. This

is an entirely unrealistic prior belief statement which has consequences for which

strategy is identified as optimal under the original challenge formulation. Instead

we acknowledge the uncertainty induced by time variable NPV cost parameters and

demonstrate the quantification in Section 4.6.4, and highlight the implications in

Section 4.7.3.

Furthermore, there exist numerous other sources of uncertainty not considered

within the TNO OLYMPUS Challenge. At the very least these should be acknow-

ledged to highlight the potentially large and misleading consequences of their omis-

sion. The TNO OLYMPUS Challenge is designed to obtain an optimal strategy

for an ensemble of computer models rather than the real OLYMPUS oil field (if

it existed); a substantial limitation when transferring the methodology developed

and tested on the OLYMPUS ensemble to the problem of devising real world field
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development strategies. Structural model discrepancy should therefore be incorpor-

ated to link the computer model with the real world system [65, 171]. Another form

of uncertainty which is not accounted for is implementation error. This pertains

to the tolerances adhered to during the execution of a well control or placement

strategy, for example, the accuracy with which a control setting is input, as well

as its start or changeover time compared to the plan. Further discussion is found

in Section 3.5.4. Although these two forms of uncertainty are not assessed as part

of the TNO OLYMPUS Well Control Optimisation Challenge, they are incorpor-

ated for the commercial application to the Emerson Jade model; for details see

Sections 5.5.5 and 5.5.6 respectively. Such uncertainties and any others considered

relevant are simple to incorporate within our proposed iterative decision support

procedure which produces a class of decisions that are indistinguishable with respect

to these uncertainties.

In the TNO problem statement it is asserted that “history matching will not be

considered”, as such preventing the use of historic data (for which none is provided)

to learn about the underlying geology of the OLYMPUS reservoir. History matching

or calibration would allow for more accurate predictions of the expected NPV under

particular field development strategies leading to better decisions. This is in contrast

to activities within the petroleum industry where exploratory investigations are fre-

quently conducted providing a source of historical data for which it seems ill advised

to ignore. Although not implemented in this thesis, the effects of incorporating

such knowledge could be assessed by simulating a short history from the OLYMPUS

model.

A related and also unrealistic stipulation of the challenge is that a well control

or placement strategy should be devised for the full 20 year field lifetime at the

beginning. Under the “no history matching” rule it is not permitted to use the

future historical data to re-assess decisions at intermediate time points given the

improved state of knowledge, thus excluding sequential decision making and the

potential added value obtained from observed data from the challenge remit. Note
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that sequential decision making will also require the introduction of observational

errors. This is discussed further in Section 3.4.

3.1.3 Petroleum Industry Approaches to Field

Development Optimisation

Developing well control and well placement strategies which maximise the profitab-

ility over the field lifetime is a major problem for the petroleum industry. This is

highlighted by the instigation of the TNO OLYMPUS Field Development Optim-

isation Challenge [93] which has received much attention including at the dedicated

EAGE/TNO Workshop on OLYMPUS Field Development Optimization [39] as

well as beyond, for example in [135, 165]. Current research within the petroleum

industry has mainly focused on optimisation of field development plans and well

control strategies, in many cases for an ensemble of models characterising geological

uncertainty. Decisions are expressed as parameters to the simulator. This section

contains a brief discussion of ensemble methods before providing an overview of the

methodology developed for or applied to the field development optimisation problem.

Ensemble methods are commonly used within the petroleum industry to perform

history matching to past data, but also find application to production optimisa-

tion. The Ensemble Kalman Filter (EnKF) [117] is a particularly popular ensemble

method with multiple variants developed and applied to the history matching prob-

lem including: using both stochastic and deterministic updates [103]; adapted with a

variance inflation or localisation [103, 155]; the iterative EnKF for inverse problems

[92]; and the EnKF with Multiple Data Assimilations (EnKF-MDA) [43]. Other en-

semble methods for inverse problems include; the Ensemble Smoother (ES) [43]; the

Ensemble Smoother with Multiple Data Assimilations (ES-MDA) [42]; and the En-

semble Randomised Maximum Likelihood (EnRML) and batch-EnRML algorithms

[41]. The EnKF as a derivative-free optimisation technique has also been applied

to the field development optimisation problem where ensemble members represent

differing stochastic geology realisations [21, 92], as too has the iterative EnKF [21].
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The main limitations to the EnKF algorithm and its variants is the underlying

linearity assumption for the relationship between the simulator parameters and the

function output. In addition, there is the assumption of Gaussian errors whilst in

practice users often rely on the properties obtained in the large sample size limit, as

opposed to the fixed sample size [155].

Treatment of uncertainty within the petroleum industry for production optim-

isation is generally fairly limited with efforts mainly concentrated on addressing

geological uncertainty. Most often this is characterised through an ensemble of

models with differing underlying geologies, as is the case for the TNO OLYMPUS

Challenge. The advent of optimisation under uncertainty via ensemble methods has

permitted a greater exploration of the impact of uncertainties such as the geology

and is also referred to as robust optimisation. Examples include the above men-

tioned EnKF and EnRML algorithms. A popular method is the Ensemble-based

Optimisation scheme (EnOpt) of [21] which uses the EnKF within a closed-loop

framework to propagate uncertainty in time. It is empirically shown to be fairly

robust and does not require adjoint information, instead using a stochastic gradient

approximation. EnOpt was further developed into the modified EnOpt algorithm

in [36], and the Covariance-Matrix-Adaptation EnOpt (CMA-EnOpt) algorithm in

[51] which stems from the CMA evolutionary strategy, a gradient-free optimisation

method (originating within machine learning). This is an adaptive strategy in which

the modifications of the covariance matrix at each step allow for exploration in the

early stages, with smaller perturbations at later stages when the algorithm nears

convergence. It is demonstrated that CMA-EnOpt is more robust than EnOpt

to the initial choice of the covariance matrix. Moreover, [36] discuss the relation-

ship between EnOpt and the Simultaneous Perturbation Stochastic Approximation

(SPSA) algorithm. A further advancement of robust optimisation techniques is the

Stochastic Simplex Approximate Gradient (StoSAG) algorithm of [50, 52] for which

there exist several variants: unsmoothed; singly- and doubly-smoothed StoSAG; and

singly- and doubly-smoothed cross-covariance StoSAG. Each version makes efficient
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use of gradients, however this is challenging for high-dimensional parameter spaces

whilst it is shown that StoSAG does not perform well for very large ensembles. Em-

pirical results suggest that StoSAG is generally superior to EnOpt, although no one

variant consistently achieves the best outcome. It may therefore be necessary to per-

form multiple optimisations which further increases computational expense. All of

the listed optimisation algorithms yield a single vector of decision parameters which

may be non-robust to the uncertainties present; which potentially includes geological

uncertainty despite the attempts to incorporate it. This is due to a finite ensemble

size as well as underlying statistical questions regarding how the geologies have been

sampled or generated. Comparisons of such routines as in [165] also highlight how

such optimisation algorithms frequently become stuck at different local optima and

are sensitive to their starting location and tuning parameters. Consequently it is

very difficult to be certain that the global optimum strategy has been identified,

especially in high-dimensional settings. Further complications arise due to the com-

putational costs of such optimisation algorithms which directly use the computer

model ensemble, but were not designed for the increasingly expensive simulators

used within the petroleum industry.

Gradient- or adjoint-based optimisation routines have also been applied to well

control optimisation such as in [97] with examples including steepest descent, con-

jugate gradient and Sequential Quadratic Programming (SQP). However, these are

computationally expensive and limited to low-dimensional decision parameter spaces.

Moreover, derivative free stochastic algorithms find application both to well control

but also well placement optimisation. Examples include: Genetic Algorithm (GA),

Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimisation (PSO)

[165]. These approaches are implemented for both sequential and simultaneous op-

timisation, whilst robustness with respect to geological uncertainty is assessed using

what is termed the NPV S-curve; an empirical cumulative distribution function for

the NPV. The joint well placement and well control optimisation is substantially

more complex to the two separate problems which is largely due to the considerably
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higher dimensional decision parameter space making it more computationally chal-

lenging. The standard approach is to perform these tasks sequentially, first devising

a well placement strategy before formulating an optimal well control plan in what

is referred to as a nested well control optimisation routine. One of the key research

questions of the TNO OLYMPUS Challenge is to determine what additional value

can be achieved through joint optimisation [93]. An example of the sequential ap-

proach is presented in [12] where well placement optimisation is performed using a

pattern search via a combination of the Hooke-Jeeves Direct Search (HJDS), Gen-

eralised Pattern Search (GPS) and a Hybrid Optimization Parallel Search Package

(HOPSPACK), before well control optimisation via a SQP algorithm, specifically

SNOPT (Sparse Nonlinear OPTimiser), a gradient-based algorithm which are effi-

ciently computed using adjoints.

At the EAGE/TNO Workshop on OLYMPUS Field Development Optimization,

various optimisation algorithms including many of those stated above were implemen-

ted for each part of the TNO OLYMPUS Challenge [39]. For the TNO OLYMPUS

Well Control Optimisation Challenge methods in decreasing order of their reported

ensemble mean NPV included:

1. Singly-Smoothed Cross-Covariance StoSAG (ss-cc-StoSAG);

2. GA using Conditional Value at Risk (CVaR) and sequential optimisation;

3. Partitioned Global PSO using 18 partitions (one for each well) and a swarm

size of 30;

4. MATLAB Reservoir Simulation Toolbox (MRST) inbuilt function for per-

forming gradient based optimisation using adjoints applied to an ensemble of

models;

5. Steepest Ascent using StoSAG;

6. (µ+ λ) Evolutionary Strategy (ES).

Approaches to the TNO OLYMPUS Well Placement Optimisation Challenge, also

in decreasing order of the reported ensemble mean NPV included:
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1. Simultaneous optimisation using GA for Numerical Optimisation of Constraint

Problems (Genocop III);

2. Mixed-Integer GA;

3. A sequential (non-automated) approach using GA;

4. Black Hole PSO (BHPSO) with 10 particles per generation;

5. Sequential optimisation first using the Line Search Derivative-Free (LSDF)

algorithm for well location optimisation, followed by EnOpt and RMS for

joint well path and drilling order optimisation, and then Equinor’s internal

optimisation tool to optimise drilling order;

6. (µ+ λ) ES with the platform location separately optimised;

7. 3D well pattern design process via graphical methods and incorporating reser-

voir engineering principles;

8. Partitioned Global PSO using 15 partitions (up to two wells per partition), 16

variables per partition, and a swarm size of 30.

Note that some participants also incorporated techniques to obtain a reduced en-

semble size with the aim of decreasing computational expense. Due to the complexity

of the full field development optimisation challenge, few participants attempted this

with most opting for a sequential approach using their devised well placement strategy

before optimising the well controls. The only attempt at simultaneous optimisation

was via the (µ+ λ) ES. This returned a smaller ensemble mean NPV compared to

sequential application of the same algorithm, thus highlighting the non-robustness

of such approaches when applied to very high-dimensional problems.

The various optimisation techniques applied to the TNO OLYMPUS Challenge

reported distinct “optimal” solutions, yet with different ensemble mean NPVs. It

is therefore questionable whether any of these strategies are the global optimum,

although it is plausible that most are close to the true maximum expected NPV,

but are likely to be indistinguishable once uncertainty is taken into consideration,

as discussed in Section 3.1.2. In addition, it is noteworthy that the achieved en-

semble mean NPVs were not substantially better than those obtained using reservoir
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engineering insight, particularly for the more complex well placement optimisation

challenge. Moreover, in both instances the method with the highest reported en-

semble mean NPV used substantially more simulations for very little increase in the

objective function versus all other approaches. This suggests that good results when

accounting for uncertainty can be achieved for a much lower computational expense.

Across the petroleum industry a large number of optimisation procedures have

been developed and applied to the field development problem, however none of these

methods fully explore the decision parameter space and also require a large number

of often computationally expensive simulations. Numerous comparisons have shown

that different algorithms tend to perform better on certain styles or even specific

problems, hence whether one has attained a strategy close to the optimal solution

seems to be sensitive to the exact problem. Also, results may be sensitive to the

algorithm setup including any hyperparameters and conditioning. For real world

problems it is not usually practical to apply a large number of methods and select

the solution which returns the highest value of the objective function. As noted

for the TNO OLYMPUS Field Development Optimisation Challenge, comparisons

between optimisation routines show incremental improvements in the objective func-

tion raising questions as to whether any increases are substantial with respect to the

underlying uncertainties.

The above described methodology are for handling geological uncertainty which

is of principal concern in the petroleum industry, however there exist many other

sources of uncertainty for which failure to account for may have potentially large

implications. Economic uncertainty, referred to in this thesis as NPV cost parameter

uncertainty, is acknowledged in some papers, but often given an overly simplified

treatment [158] where oil price is modelled using an AutoRegressive-Moving-Average

(ARMA) model. Optimisation is performed with respect to various objective func-

tions including: Mean Optimisation (MO); Mean-Variance Optimisation (MVO);

Worst-Case Optimisation (WCO); and Conditional Value-at-Risk (CVaR) Optimisa-

tion. This is extended to the joint treatment of geological and oil price uncertainty
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(although no other forms of economic uncertainty) in [157] demonstrating two robust

optimisation strategies that balance long- and short-term economic objectives as

a form of Multi-Objective Optimisation (MOO). These are: a robust hierarchical

optimisation technique, a two stage process using a tolerance compared with the max-

imum field lifetime NPV; and a Robust Weighted-Sum approach yielding a Pareto

curve of solutions with decisions selected based on risk preferences. Another consid-

eration is the uncertainty in future development plans, for example: potential drilling

of future wells, such as in [97] where well control optimisation is performed using a

quasi-Newton method with the gradient generated with an adjoint model (approx-

imate Hessian calculated from the BFGS algorithm), and joint optimisation using

the SPSA algorithm. The concept of a quality map is used to aid the identification

of promising reservoir regions or locations at which to drill new wells. Throughout

the literature there is no comprehensive framework for performing optimisation or

decision support which simultaneously incorporates all sources of uncertainty.

3.2 Efficient Geological Ensemble Subsampling

Ensembles of computer models are frequently used throughout the petroleum in-

dustry to characterise some forms of uncertainty. A prevalent example is the un-

derlying geology of the field being modelled to reflect the views of the geologist(s).

In the TNO OLYMPUS Field Development Optimisation Challenge this consists of

50 versions of the OLYMPUS model realised from an underlying stochastic geology

model. Using every model within the ensemble to learn about the real physical

system therefore requires a greater number of simulations than for a single model,

although this does provide some insight into the effect of the uncertainty represen-

ted. However, larger ensembles place a greater strain on computational resources,

especially when simulations already take a long time to evaluate. In many analyses

the outputs over the ensemble are combined into a single output such as through

averaging and is termed the ensemble mean. Whilst such quantities are easier to
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analyse and use, the averaging process reduces the benefits of starting with an en-

semble by collapsing the uncertainty onto a single value. Consequently it is desirable

to establish a subset of the ensemble to use as a surrogate, whilst acknowledging any

reduction in information gained from the simulations.

In this section we present an approach for identifying a representative subset

of models from the ensemble that includes an initial graphical investigation in Sec-

tion 3.2.1 combined with a method of prediction and uncertainty quantification in

Section 3.2.2. Collectively these are referred to as Efficient Geological Ensemble

Subsampling (EGES) techniques which constitute a novel application within the

petroleum industry. This is useful for both decision support and optimisation since

it permits greater exploration of the decision parameter space for the same or lower

computational cost. For example, in well control optimisation a larger number of

potential future control strategies can be simulated. This is particularly important

in the high-dimensional settings in which these problems are situated.

3.2.1 Efficient Geological Ensemble Subsampling

Graphical Investigations

In the process of selecting an appropriate subset of models, and in general for the

analysis of both an individual or an ensemble of complex computer models, it is

useful to possess a small initial collection of exploratory simulations using all mod-

els in the ensemble. This is referred to as a wave 0 of simulations with designs

often constructed using a maximin Latin hypercube or other method described in

Section 2.3. Wave 0 simulations are then used to asses how well a given subset of

models represent the ensemble mean of certain outputs. For the field development

problem, a suitable choice of output may be the ensemble mean NPV, whilst other

quantities of interest may include the constituent parts of NPV formula in Equa-

tion (3.1.1) including: Field Oil Production Total (FOPT); Field Water Production

Total (FWPT); Field Water Injection Total (FWIT) within a time interval; as well

as the further decomposition into the corresponding well quantities: WOPT, WWPT
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and WWIT.

An initial graphical investigation of plots of the ensemble mean for output(s)

of interest versus that obtained for each of the individual models provides insight

into patterns between them. A strong linear correlation would suggest that an

individual model may be a good representative for the ensemble mean. Note that

these are two-dimensional plots which are unable to capture the interaction between

multiple models’ outputs, thus missing where two or more models are jointly able

to characterise the ensemble mean, often to a better extent than any one individual

model. An extension is to examine 2-dimensional contour plots. For large ensembles,

this can be used as a screening method to identify a preliminary subset of the

ensemble for further analysis and on which to perform the next step of this EGES

technique where it may be computationally impractical from both a time or memory

perspective to perform exhaustive investigations over all possible subsets.

3.2.2 Efficient Geological Ensemble Subsampling Linear

Modelling

The aim is to select a representative subset of the ensemble for which linear models

provide a fast and effective tool as well as a method for predicting the ensemble

mean from the output of individual models with a quantification of the induced

uncertainty. For an ensemble of N models the aim is to select a subset of NEGES < N

(to be determined) models which characterise output f(·), for example the NPV,

where f̄(·) and f (ik)(·) represent the output ensemble mean and model ik output

respectively. Note that we focus on the ensemble mean NPV, f̄(d) = NPV(d), as

this is the primary focus in the TNO OLYMPUS Challenge, whilst this is linked to

the expected NPV, U(d) = E[NPV](d), in Sections 3.5.3 and 3.6.2.

The ensemble mean is a linear combination of the individual models’ output,

hence an affine linear transformation of a subset of models is expected to produce

a good approximation. We therefore propose a linear model of the form in Equa-

tion (3.2.1), where αEGES and βk,EGES are unknown regression coefficients to be
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estimated.

f̄(d) = αEGES +
NEGES∑
k=1

βk,EGESf
(ik)(d) + εEGES(d)

ik ∈ {1, . . . , N} distinct, NEGES < N (3.2.1)

Model selection criteria such as those discussed in Appendix A can be used to

compare the linear models and hence choose the most appropriate value for NEGES

and the subset of models as predictors. It is found that AIC is suitable for this

task, whilst BIC often places an overly strong penalty on the number of linear model

terms. The adjusted R2 value provides a measure of the variation explained by the

regression whilst penalising using an increased number of original ensemble members

(predictors in the linear model).

In situations where N is relatively small and a prior interval for NEGES is given,

it is computationally feasible to exhaustively explore all possible models. Otherwise

stepwise selection starting from a linear model containing only an intercept (NEGES =

0) can be performed, potentially with an upper bound on NEGES, to construct a

subset of models. As discussed above in Section 3.2.1, another option is to preselect

a larger preliminary subset of models based on the graphical analysis and use only

these in forming the linear model. This process can be repeated for multiple outputs

and assessed for agreement in terms of the models identified. The final selected

linear model(s) is referred to as the EGES linear model(s), with a corresponding

subset of the ensemble.

At later stages in an analysis the choice of models (and hence EGES linear model)

may be revised or expanded if increased accuracy is required. This scenario naturally

occurs within iterative procedures such as history matching or the decision support

algorithm presented in Section 3.6, where the model or decision parameter space has

been reduced in volume at each wave. An alternative subset of the ensemble may

offer a superior characterisation over this reduced parameter space versus the initial

EGES linear model for the full parameter space.

The presented EGES linear modelling technique for identifying a representative
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subset is related to the research on second-order exchangeability of ensemble members

in [150] leading to coexchangeability between the output of individual models and

the actual system. This is used to establish a link between: the output of individual

models; a common “representative simulator”, in our formulation this is interpreted

as the ensemble mean simulator; the output for the actual system meaning the real

world expected NPV with respect to all possible geological configurations; as well

as any system observations. Note that our approach does not explicitly assume

second-order exchangeability of ensemble members.

3.3 Hierarchical Emulators Exploiting Known

Simulator Behaviour

Bayesian emulators were introduced in Section 2.4 as a means of statistically approx-

imating the output of a computer model for as yet unevaluated parameter settings

and including a statement of the uncertainty. This approach is based on the assump-

tion that simulators behave like a “black-box” for which the user possesses no insight

of the structure or links between individual processes, as well as no knowledge of

the model behaviour for specific outputs at a given parameter setting prior to its

evaluation. Whilst this makes the above described methodology generalisable, it

potentially limits the emulator accuracy in situations where the user has an under-

standing of how certain outputs are linked. If such prior information is available,

then not using it has implications within decision support where more accurate

emulators could be used to obtain a smaller decision support region for a lower

computational expense.

In this section we present a new modified form of hierarchical emulation which is

designed to open the “black-box” and exploit known structures between the simulator

outputs and any functions thereof. This is motivated by the TNO OLYMPUS Well

Control Optimisation Challenge with discussion in Section 3.3.1 with structured emu-

lation of outputs of a commonly occurring specific form described in Section 3.3.2. In
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the context of the well control optimisation problem we introduce an approximation

to the NPV for an individual model for which emulation methodology is presen-

ted in Section 3.3.3 before linking to the exact NPV in Section 3.3.4. The EGES

techniques described in Section 3.2 are used to combine the emulation output for a

subset of ensemble members to emulate the ensemble mean NPV in Section 3.3.5.

The hierarchical emulator construction is summarised in Section 3.3.6.

3.3.1 Motivation

Many scientific quantities of interest are functions of several simulator outputs.

These may be emulated directly using the aforementioned methodology, however

an alternative is to decompose the quantity into its constituent parts and emulate

these separately before combining by some means to emulate the quantity. This

has the possibility of achieving superior accuracy by exploiting structures between

the outputs. Such a scenario occurs naturally within oil field development optim-

isation where the aim is to maximise the expected NPV objective function. For

the TNO OLYMPUS Well Control Optimisation Challenge, the formulae given in

Equations (3.1.1) and (3.1.2) provide a decomposition into the FOPT, FWPT and

FWIT within each discounting time interval, which in turn may be further split by

well. Collectively these quantities will be referred to as the NPV constituents or

contributors. This suggests the development of a hierarchical emulation framework

for the purpose of emulating the ensemble mean or expected NPV.

The first step is to emulate each of the NPV constituents for each model. A

standard approach would be to construct a Bayes linear or Gaussian process emulator,

as discussed in Sections 2.4.4 and 2.4.5 respectively, however both methods ignore any

partial knowledge of a NPV constituent’s behaviour for a given decision parameter

setting prior to the evaluation of the simulator. For our motivating application using

target production and injection rates as well control decision parameters, it would

be expected that WOPT within a time interval should be equal to the product

of the corresponding target production rate and the length of the interval. It is
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observed that this behaviour occurs up to an unknown target production rate where

constraints such as Bottom Hole Pressure (BHP) come into effect and thus prevent

the assigned target rate from being achieved for the full duration of the control

interval. Moreover, there is the interaction with other wells and their target rates

within the field and the past production and injection history which makes the

point of this behavioural change difficult to exactly determine. Consequently WOPT

initially follows a linear trend up to a change point beyond which a ceiling or plateau

is reached. An illustration of such behaviour can be seen in Figure 3.2 on page 108.

Similar behaviour is also observed for WWIT within a control interval with respect

to the corresponding target injection rate for that interval. This raises the question

of how best to use this extra knowledge to improve the accuracy of an emulator for

simulator output that exhibit such behaviour and subsequently aid decision support,

and is the subject of Section 3.3.2 where change points, extrapolation cut-offs, and a

modified form of the emulator are introduced. Note that such structured behaviour

is not observed for WWPT within a control interval and hence standard emulation

methodology is applied.

Once all of the NPV constituents have been emulated for a model in the ensemble,

it is necessary to combine them to emulate the NPV. It is noted that within our

approach to decision support that the control intervals are formed by the amalgama-

tion of multiple consecutive discounting intervals with further discussion in relation

to an application in Section 4.1.1. An intermediate step to the hierarchical emulation

structure is therefore introduced in Section 3.3.3 based on the linear combination

via an approximate NPV formula of the NPV constituent emulators. To complete

the emulation of the NPV for an individual model, an intuitive method of linking

the approximate and exact NPV is then discussed in Section 3.3.4. For multiple

sub-selected models, the EGES linear model is then used in Section 3.3.5 to combine

each of the emulated NPVs by model. Note that the approach presented in this

discussion for this motivation is specific to the well control optimisation problem,

but the concept is easily adapted to other scenarios where quantities of interest can
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be expressed as functions of multiple simulator outputs, each of which potentially

exhibits some behavioural structure with respect to a or some of the (decision)

parameters.

3.3.2 Emulators Exploiting Known Simulator Behaviour

for NPV Constituents

The emulation methodology presented in this section is motivated by the behavioural

form observed for WOPT and WWIT outputs within control intervals, as observed

in Figure 3.2 and discussed in Section 3.3.1. For each output, this requires the

introduction of a change point and an extrapolation cut-off which are used within a

modified form of emulation with the decision parameter space split into three regions

based on the modes of behaviour.

Change Points

The observed structured behaviour for a particular NPV constituent is with respect

to a corresponding decision parameter which affects that particular control interval.

For example, for the WOPTPROD2_20180101 output, the corresponding target

rate is prod_2_2016_01, as illustrated in Figure 3.2. Theoretically there are two

distinct regions of behaviour termed the slope and plateau regions for an output.

Within the slope region the target rate decision parameter is adhered to for the

full duration of the control interval, whilst within the plateau region this is not the

case. The slope therefore possesses a known gradient which is equal to the length

of the control interval (in days). In Figure 3.2 the slope is equal to ∆t20180101 = 731

days. The exact decision parameter value of the transition from slope to plateau

region is designated the change point. This is unknown and is likely to depend on

all other decision parameter values. Given only a finite number of simulations it is

impossible to determine the exact location of the change point since this would require

investigations for every configuration of all other decision parameters. Consequently

in practical application there are three distinct regions of behaviour: the slope and
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plateau regions separated by an additional uncertain region believed to contain the

unknown change point. For a simulator output fi(·) which follows such behaviour

the left-hand slope is precisely known up to a tolerance δi ≥ 0; this can be used to

estimate the mean change point location given a collection of simulations from design

D. In the well control optimisation problem, let djk,ti be the decision parameter

which directly effects NPV constituent fi(·) with change point cjk,ti . The index i is

condensed notation for the indices tuple (jk, ti), where j ∈ {P, I} and k refer to the

well type (P producer, I injector) and number respectively, whilst ti is the control

interval start date. The gradient of the slope region is equal to the length of the

control interval, ∆ti.

There is an implicit dependence of cjk,ti on all other decision parameters and there-

fore we introduce methods of estimating an upper and lower bound. A conservative

estimate for the change point upper bound, cujk,ti , is defined in Equation (3.3.1),

where fi,max = maxd∈D fi(d), and δi,u ≥ 0 is a tolerance included for numerical

stability and to ensure that an upper bound is obtained.

cujk,ti = min
djk,ti

{djk,ti | djk,ti ·∆ti ≥ fi,max + δi,u} (3.3.1)

This is the smallest value of the corresponding decision parameter for which if the

target was achieved for the entire control interval, then the simulator output would

exceed the largest observed value (plus a tolerance) from the collection of simulations.

Note that the decision parameter is untransformed and so is on its original scale.

An estimate for the change point lower bound is defined in Equation (3.3.2),

where fi,diff(d) = fi,max(d) − fi(d) = djk,ti · ∆ti − fi(d), and δi,l ≥ 0 is another

tolerance, again used for numerical stability in the comparison of the simulated and

the theoretical maximum values.

cljk,t = 1
2

arg min
djk,ti |d∈D

{fi(d) < djk,ti ·∆ti − δi,l}

+ arg max
djk,ti |d∈D

djk,ti < arg min
djk,ti |d∈D

{fi(d) < djk,ti ·∆ti − δi,l}

 (3.3.2)
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Figure 3.2: OLYMPUS 25 WOPT for producer well 2 during the
first two years (ending 01/01/2018) versus the corres-
ponding target production rate, prod_2_2016_01. For
small values of prod_2_2016_01 the target is achieved
resulting in a perfectly defined linear behaviour up to
a change point due to other controls and BHP con-
straints beyond which the WOPT plateaus as a max-
imum threshold on the production rate is achieved. The
vertical blue and red lines denote the extrapolation cut-
off and change point upper bounds respectively.

This is the midpoint between the first simulation decision parameter setting which

is not on the slope and hence has fi,diff(d) > δi,l (first term in Equation (3.3.2)),

and the decision parameter setting with the largest value of djk,ti which is less than

this first departure point previously obtained (second term in Equation (3.3.2)).

This is illustrated in Figure 3.3 for the output WOPTPROD2_20180101 versus the

target rate prod_2_2016_01. The vertical blue line denotes clP2,2016 and the red line

represents the slope upper bound which is attained if prod_2_2016_01 is adhered

to for the full control interval. The first point not on the slope is coloured green and
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Figure 3.3: OLYMPUS 25 WOPT for producer well 2 during the
first two years (ending 01/01/2018) versus the corres-
ponding target production rate, prod_2_2016_01. The
plot is zoomed in to focus around the change point lower
bound, clP2,2016, computed using Equation (3.3.2), and
denoted by the vertical blue line. The red line represents
the slope upper bound which is attained if the target
production rate is adhered to for the full control inter-
val. It is shown that clP2,2016 is the midpoint of the first
point not on the slope coloured green, and preceding
point which is on the slope coloured magenta.

corresponds to the first term in Equation (3.3.2), whilst the preceding point, which

lies on the slope up to a tolerance δi,l, is coloured magenta.

Extrapolation Cut-offs

The two distinct modes of behaviour for the NPV constituents suggests that the

emulator be fitted piecewise using a combination of the more accurate knowledge

in the slope region, and the less well understood behaviour in the plateau region.
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Noting the uncertainty in the change point location, for the plateau region this leads

to the idea of fitting an emulator based only on data which is almost certainly on

plateau using the estimate of the change point upper bound. For fi(·) this is design

points with djk,ti ≥ cujk,ti . In order to connect these two regions and learn more about

the intermediate space between the slope and plateau requires an extrapolation of the

emulator for the plateau region, further described below. During the development

of the structured emulation methodology, it was observed that this extrapolation

beyond the fitting region resulted in diagnostics issues. Problems arise when there

are relatively few fitting points and the slope represents a large proportion of space

which initially necessitated large extrapolations far beyond the known plateau region,

as is often the case for WOPT during early time control intervals and WWIT during

late time control intervals.

An extrapolation cut-off is introduced in order to combat this problem, denoted

bjk,ti , beyond which the emulator should not be extrapolated, which for a simulator

output fi(d) is defined with respect to the same decision parameter djk,ti as the

change point. This leads to the decision space being split into three distinct regions

with the first being a definite slope region where djk,ti < bjk,ti whilst the plateau region

remains where djk,ti ≥ cjk,ti . The intermediate region where bjk,ti ≤ djk,ti < cjk,ti

is an uncertain region in which some points may follow the slope and others the

plateau modes of behaviour.

The estimation of an extrapolation cut-off is a trade-off between having an

excessively cautious small value which fails to alleviate some of the issues that

motivate its incorporation, whilst too large values risk points being wrongly classified

as on the slope. A suitable and sufficiently conservative approach is to select the

extrapolation cut-off to be equal to the change point lower bound, then bjk,ti = cljk,ti ,

as defined in Equation (3.3.2). Since this is based on the location of the first

point to not fall on the slope, it is guaranteed that the smallest value of djk,ti for

which the simulated data does not lie on the slope will exceed bjk,ti . Figure 3.2

illustrates the three regions obtained by splitting WOPTPROD2_20180101 versus
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prod_2_2016_01 at bP2,2016 = clP2,2016 and cuP2,2016 denoted by the vertical blue and

red lines respectively.

Structured Emulation

A method of structured emulation to accurately capture the behaviour of the NPV

constituents with respect to a corresponding decision parameter is presented here and

is based on the above justification for splitting the simulator output into three regions

using an estimate for the extrapolation cut-off and change point. In addition, it is

known that it is impossible to exceed a target rate and hence there is a theoretical

maximum which can be attained by such outputs, up to a numerical tolerance.

Truncation is therefore introduced within the emulator construction in order to

impose this constraint. Two versions have been developed and implemented with the

main distinction being how this truncation within the uncertain region between the

slope and plateau behaviour is handled. The first involves an upper truncation only

and is applied in Section 4.5 to the TNO OLYMPUS Well Control Optimisation

Challenge, whilst in the second version this is evolved to use a two-sided truncation

which is employed in Sections 5.4 and 5.8 for the Emerson Jade model application.

A structured emulator for output which exhibits this form of behaviour is con-

structed in several steps. Firstly, for (NPV constituent) simulator output fi(d) the

structured emulation approach begins by fitting a preliminary Bayes linear emulator

of the form shown in Equation (2.4.1) with the aim of representing the behaviour

in the plateau region. Traditionally all available simulations would be utilised

in the Bayes linear adjustment step; instead a sub-collection of design parameter

vectors, D′i = {d | d ∈ D, djk,ti > cujk,ti}, with corresponding simulator output

F′i = {fi(d) | d ∈ D′i} are used. Moreover, preliminary emulation is only applied

to d which satisfy djk,ti ≥ bjk,ti . By construction, all parameter settings in D′i do

not adhere to the target rate and hence are in the plateau, thus providing reliable

information on which to construct this part of the emulator. Note that there may

exist simulated parameter settings with bjk,ti ≤ djk,ti < cujk,ti which are not on the
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slope, although these are more difficult to accurately determine and less reliable for

use in fitting this preliminary emulator. The Bayes linear adjustment formulae are

then used to update this emulator.

This preliminary emulator along with bjk,ti is then used to determine the form

of the structured emulator for any new parameter setting in what is referred to as a

classification step. At this point we introduce the two versions.

Structured Emulation with Upper Truncation

The final structured emulator adjusted expectation and variance using an upper

truncation only is obtained via the following classification step:

• Slope Region: If for the preliminary emulator djk,ti < bjk,ti or

EF′i [fi(d)] − 3
√

VarF′i [fi(d)] > djk,ti · ∆ti, then collapse the emulator such

that for the structured emulator EF′i [fi(d)] = djk,ti ·∆ti with fixed maximum

absolute errors of size δi. This corresponds to when the output is strongly

believed to be in the slope region.

• Uncertain Region around Change Point: If for the preliminary emulator

EF′i [fi(d)] − 3
√

VarF′i [fi(d)] ≤ djk,ti · ∆ti < EF′i [fi(d)] + 3
√

VarF′i [fi(d)], a

truncated Gaussian process (truncated GP) emulator which is evaluated with

mean and variance determined by Equations (3.3.3) and (3.3.4) respectively

[99], where φ(·) and Φ(·) represent the probability density and cumulative dis-

tribution functions respectively of a standard normal distribution. These are

computed assuming a preliminary Gaussian process emulator with posterior

mean and variance, abbreviated to µi and σ2
i respectively, equal to the com-

puted adjusted expectation and variance. The truncation bounds are ai = −∞

and bi = djk,ti · ∆ti, with αi = ai−µi
σi

= −∞, and βi = bi−µi
σi

. This form of

emulation is used in the uncertain region around the true location of the change

point.

• Plateau Region: In all other cases where EF′i [fi(d)] + 3
√

VarF′i [fi(d)] ≤

djk,ti ·∆ti, the preliminary emulator output is used which corresponds to when
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the output is strongly believed to be in the plateau region.

EF′i [fi(d) | ai < fi(d) < bi] = µi + σ
φ(αi)− φ(βi)
Φ(βi)− Φ(αi)

(3.3.3)

VarF′i [fi(d) | ai < fi(d) < bi] = σ2
i

1 + αiφ(αi)− βiφ(βi)
Φ(βi)− Φ(αi)

−
(
φ(αi)− φ(βi)
Φ(βi)− Φ(αi)

)2


(3.3.4)

Imposing a truncation upper bound based on a comparison between the preliminary

emulator 3-sigma credible interval and the theoretical maximum due to the effective

target rate for a particular NPV constituent has the desired effect of ensuring

that this physical constraint is not violated by the emulator. This is illustrated in

Figure 3.4 for OLYMPUS 25 WOPT for producer well 2 within the first control

interval (ending 01/01/2018) versus prod_2_2016_01. First, a preliminary Bayes

linear emulator is fitted using only the subset of the wave 1 simulations for which

dP2,2016 ≥ cuP2,2016, as seen in Figure 3.4a. Note that the vertical blue and red lines are

situated at bP2,2016 and cuP2,2016 respectively, whilst the black dotted line represents

the theoretical maximum slope. It is observed that extrapolating the emulator at

d with dP2,2016 < cuP2,2016 yields increasingly wide credible intervals with distance

below cuP2,2016.

The structured emulation methodology using an upper truncation described

above is then applied to obtain Figure 3.4b. Within the slope region where the

preliminary emulator credible interval is entirely above this constraint; this is charac-

terised by a collapse onto the constraint slope. This is shown by the purple credible

intervals in Figure 3.4 and includes all parameter vectors with dP2,2016 < bP2,2016, as

well as some cases with dP2,2016 ≥ bP2,2016 in which the credible interval lower bound

exceeds the slope. In all instances, the credible interval width is very narrow char-

acterising the strong beliefs that these parameter vectors will result in simulations

that are on the slope. In the uncertain region this is handled by a truncated GP

to reflect the uncertainty in whether the model output is actually on the slope or

relatively close, potentially due to a target rate being achieved for a large proportion
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(a) Preliminary Bayes linear emulator predictive CI versus prod_2_2016_01.
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(b) Structured emulator with upper truncation predictive CI versus prod_2_2016_01.

Figure 3.4: OLYMPUS 25 wave 1 WOPT for producer well 2 during
the first two years (ending 01/01/2018) versus the cor-
responding target production rate, prod_2_2016_01.
The top plot shows the wave 1 preliminary Bayes lin-
ear emulator predictive 3-sigma credible interval (CI)
fitted using only the simulations with dP2,2016 ≥ cuP2,2016.
This is used within the structured emulation algorithm
imposing the upper truncation due to the slope (black
dotted line) with the CI shown in the bottom plot. The
vertical blue and red lines are situated at bP2,2016 and
cuP2,2016 respectively. The purple, orange and green CI
correspond to points in the slope, uncertain and plateau
regions respectively.



3.3. Hierarchical Emulators Exploiting Known Simulator Behaviour115

of the control interval. This is seen by the orange credible intervals in Figure 3.4 for

which all points lie close to the black dotted slope line with much narrower credible

intervals than the preliminary Bayes linear emulator. For the plateau region the

preliminary emulator credible interval is well below this slope and based on argu-

ments using Pukelsheim’s 3-sigma rule it is not necessary to impose a truncation

due to the very small probability that an emulator realisation actually exceeds this

physical constraint. This corresponds to the green credible intervals in Figure 3.4

which are unchanged between the two plots. Alternative width credible intervals

may be used depending on the level of conservativeness desired within an analysis

with justification based on the Vysochanskij-Petunin inequality [181].

Structured Emulation with Two-Sided Truncation

The above methodology is further developed based on observations during the applic-

ation to the Emerson Jade model in Chapter 5 to obtain a final structured emulator

with a two-sided truncation. A lower truncation ai is introduced leading to the

modified classification step as follows:

• Slope Region: If for the preliminary emulator djk,ti < bjk,ti or

EF′i [fi(d)] − 3
√

VarF′i [fi(d)] > djk,ti · ∆ti, then collapse the emulator such

that for the structured emulator EF′i [fi(d)] = djk,ti ·∆ti with fixed maximum

absolute errors of size δi. This corresponds to when the output is strongly

believed to be in the slope region.

• Uncertain Region around Change Point: As for the upper truncation

version above, if for the preliminary emulator EF′i [fi(d)] − 3
√

VarF′i [fi(d)] ≤

djk,ti · ∆ti < EF′i [fi(d)] + 3
√

VarF′i [fi(d)], or if the additional criterion of

EF′i [fi(d)]− 3
√

VarF′i [fi(d)] < ai whilst EF′i [fi(d)] + 3
√

VarF′i [fi(d)] ≤ djk,ti ·

∆ti, a truncated GP emulator is evaluated. The mean and variance are de-

termined by Equations (3.3.3) and (3.3.4) respectively and are computed as for

the upper truncation version above noting the change in the lower truncation

bound ai and hence αi. This form of emulation is used in the uncertain region
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around the true location of the change point.

• Plateau Region: In all other cases where EF′i [fi(d)] − 3
√

VarF′i [fi(d)] ≥ ai

and EF′i [fi(d)]+3
√

VarF′i [fi(d)] ≤ djk,ti ·∆ti, the preliminary emulator output

is used. This corresponds to when the output is strongly believed to be in the

plateau region.

The inclusion of a truncation lower bound ensures that other physical constraints are

adhered to. For the NPV constituents: WOPT and WWIT, ai = 0, represents that

it is not possible to produce a negative quantity of oil or inject a negative volume

of water respectively. This is particularly useful where there is large uncertainty

in the preliminary emulator for reasons including: few points on which to fit the

emulator; evaluating the preliminary emulator a reasonable distance from the points

used in the fitting; and limited information provided from the regression part of the

emulator structure.

Compared to applying standard methods such as Gaussian process or Bayes

linear emulation, the structured approach demonstrates improvements in accuracy.

Moreover, an auxiliary benefit is the increased speed of emulator evaluation and

efficiency. This is as a consequence of using fewer design points in the fitting

(only those which exceed the change point upper bound) leading to inversions and

multiplications of smaller matrices, and the restriction to only performing a full

emulator update at new decision parameter vectors which exceed the extrapolation

cut-off whilst all others are automatically collapsed onto the slope in order to satisfy

the physical constraints. The estimation processes for both the change point upper

bound and extrapolation cut-off are computationally very cheap, whilst the use of a

truncated GP helps reduce the reliance on accurate estimation of the extrapolation

cut-off.

The presented methods are also preferred over alternative approaches to emulat-

ing functions with distinct modes of behaviour in different regions of the parameter

space such as Treed Gaussian processes [74] because for each NPV constituent the

form of the behaviour within the slope region is almost exactly known up to a very
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small tolerance. This is encapsulated within the developed form of structured emula-

tion where as a Treed GP would maintain a much larger uncertainty over this region

than is necessary with potential implications during subsequent analyses. Moreover,

in later application it is highlighted how in certain instances the number of points

within these distinct regions can be relatively limited. This potentially impacts on

the accuracy of a Treed GP.

Both developed forms of the structured emulation technique allow more complex

outputs such as the NPV to be deconstructed into their constituents which exhibit

features such as slopes and plateaus. These are emulated separately before combining

in a “divide and conquer approach” to obtain an emulator of improved accuracy.

3.3.3 Emulation of the Approximate NPV

A method of accurately emulating the NPV constituents was presented in Sec-

tion 3.3.2 for which the next step towards emulating the NPV for an individual

ensemble member is to mathematically synthesise the constituent emulators. An

intuitive means of combining the NPV constituent emulators is via the NPV formula.

However, first note that it is often the case that control intervals are formed by the

amalgamation of multiple consecutive discounting intervals, hence the constituent

emulators do not exactly correspond to the terms in the NPV formula expressed in

Equations (3.1.1) and (3.1.3) for well control optimisation, labelled as the exact NPV

and denoted by NPVj(d) for the jth model evaluated at d. An approximation to the

exact NPV is obtained by applying a weighted average discounting factor, λi, to the

respective NPV constituents. For the ith interval this is defined in Equation (3.3.5)

where k indexes the exact discounting intervals contained within the longer control

(or approximation) interval, Nti is the total number of such discounting intervals,

and ti,0 = ti−1. The formula for the average discounting approximate NPV, denoted

as ÑPVj(d) and abbreviated through this thesis to the approximate NPV, is shown

in Equation (3.3.6) for well control optimisation.
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λi = 1
ti − ti−1

Nti∑
k=1

ti,k − ti,k−1

(1 + d)
ti,k
τ

(3.3.5)

ÑPVj(d) =
Nt∑
i=1

λi [Qj,op(d, ti) · rop −Qj,wp(d, ti) · rwp −Qj,wi(d, ti) · rwi] (3.3.6)

Note that using an average discounting factor yields much more accurate approxim-

ations than a variant of applying the discounting at the end of the control intervals

only.

Continuing with the approximate NPV for a fixed ensemble member, an emu-

lator is obtained by substituting the simulator for emulator output for Qj,op(d, ti),

Qj,wp(d, ti) and Qj,wi(d, ti). Under the assumption of uncorrelated NPV constitu-

ents which are emulated using a collection of univariate emulators, Equations (3.3.7)

and (3.3.8) are the formulae for the adjusted expectation and variance respectively

for the ÑPVj(d) where Fj denotes the collection of all data used to fit the NPV

constituents emulators.

EFj

[
ÑPVj(d)

]
=

Nt∑
i=1

λi
{
rop EFj [Qj,op(d, ti)]

−rwp EFj [Qj,wp(d, ti)]− rwi EFj [Qj,wi(d, ti)]
}

(3.3.7)

VarFj

[
ÑPVj(d)

]
=

Nt∑
i=1

λ2
i

{
r2
op VarFj [Qj,op(d, ti)]

+r2
wp VarFj [Qj,wp(d, ti)] + r2

wi VarFj [Qj,wi(d, ti)]
}
(3.3.8)

For each WOPT and WWIT contributor where structured emulation is applied,

for new d identified as either in the plateau region or the uncertain region around

the change point, the adjusted expectation and variance are obtained from the

preliminary Bayes linear or truncated GP emulator respectively. In the slope region

where the emulator is collapsed onto the slope, the expectation is known whilst the

adjusted variance is approximated by treating δi as equal to 3 standard deviations.

This methodology can also be extended to permit correlated NPV constituents
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via multivariate emulation, as presented in Section 2.5. The adjusted expectation

formula remains as in Equation (3.3.7), whilst the adjusted variance is extended to

include all the relevant covariance terms between the contributors to the NPV as

follows:

VarFj

[
ÑPVj(d)

]
=

Nt∑
i=1

Nt∑
l=1

λiλl
{
r2
op CovFj [Qj,op(d, ti), Qj,op(d, tl)]

−roprwp CovFj [Qj,op(d, ti), Qj,wp(d, tl)]

−roprwi CovFj [Qj,op(d, ti), Qj,wi(d, tl)]

+r2
wp CovFj [Qj,wp(d, ti), Qj,wp(d, tl)]

+rwprwi CovFj [Qj,wp(d, ti), Qj,wi(d, tl)]

+r2
wi CovFj [Qj,wi(d, ti), Qj,wi(d, tl)]

}
(3.3.9)

An alternative form of the adjusted variance is displayed in Equation (3.3.10) where:

the first summation contains all of the terms included under the uncorrelated as-

sumption; the second summation gives the temporal correlations for fixed well and

NPV contributor type; and the final summation accounts for both the spatial and

temporal correlation across contributors of different NPV constituent types.

VarFj

[
ÑPVj(d)

]
=

Nt∑
i=1

λ2
i

{
r2
op VarFj [Qj,op(d, ti)]

+r2
wp VarFj [Qj,wp(d, ti)] + r2

wi VarFj [Qj,wi(d, ti)]
}

+ 2
Nt−1∑
i=1

Nt∑
l=i+1

λiλl
{
r2
op CovFj [Qj,op(d, ti), Qj,op(d, tl)]

+r2
wp CovFj [Qj,wp(d, ti), Qj,wp(d, tl)]

+r2
wi CovFj [Qj,wi(d, ti), Qj,wi(d, tl)]

}

+ 2
Nt∑
i=1
l 6=i

λiλl
{
−roprwp CovFj [Qj,op(d, ti), Qj,wp(d, tl)]
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−roprwi CovFj [Qj,op(d, ti), Qj,wi(d, tl)]

+rwprwi CovFj [Qj,wp(d, ti), Qj,wi(d, tl)]
}

(3.3.10)

Implementing a multivariate emulator constructed with the assumption of a separable

covariance function between the input decision parameters and the NPV constituents

as outputs [23] results in an uncoupling of their correlation structures. For the NPV

constituents it is reasonable to expect: negative temporal correlations for fixed

contributor types (increased production or injection within an interval generally

results in a lower production or injection for a later control interval); and positive

spatio-temporal correlation between oil production and either water contributor type

(higher water injection is executed with the aim of achieving a higher oil production,

although with an anticipated side-effect being higher water production). From the

form of Equation (3.3.10) it is evident that this can yield a reduction in the adjusted

variance compared to that computed under the uncorrelated assumption. Note that

there is also the possibility of increased uncertainty, such as due to the expected

positive spatio-temporal correlation between water production and injection (the

final term in Equation (3.3.10), although investigations show that this is likely to

be negligible compared with other terms), however this is unlikely in this scenario

given the aforementioned physical considerations.

The primary difficulty in constructing a separable multivariate emulator over all

of the NPV constituents is accurately determining their joint correlation structure.

This is particularly challenging under the structured emulation approach where

different subsets of the output are used in the fitting of the emulator from which

to learn the correlations and obtain a valid correlation matrix. In contrast, for

Gaussian process or Bayes linear emulation, all of the data is used in the fitting and

hence learning about the multivariate correlation structure is simpler, but this is

at the cost of much less accurate individual emulators because the partially known

behaviour of the NPV constituents is not exploited.
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Another method considered was the use of a linear model to link the approximate

NPV to a subset of the NPV contributors since the NPV formula is a perfect linear

combination of its constituents. It was believed that this would provide a suitable

approximation whilst reducing computational costs by only requiring the emulation of

a subset of the NPV constituents chosen via forward stepwise selection. Evaluation of

this methodology found it to be substantially less effective versus the above approach

of directly using the NPV formula and so exact details are omitted.

The NPV constituents are obtained from a single simulator, however the way in

which they feed into the NPV calculation suggests that they may also be viewed

as from a network of computer simulators. Alternative methodology for emulating

simulator output which can be decomposed into a network of component simulators

can be seen in [96, 111]. This is best applied where the link between each of the

simulator outputs is less well understood. In this instance there is a natural means

of combining the emulators for each of the NPV constituents which is intuitive

to understand, simple to construct, and quick to evaluate as a function of the

individual contributors emulator output. The methodology for emulating networks

of component simulators is therefore not employed.

3.3.4 Linking the Exact and Approximate NPV

It is observed that there exists a very strong linear relationship between the ap-

proximate and exact NPV (introduced in Section 3.3.3). A statistical link via a

simple linear regression model of the form shown in Equation (3.3.11) is proposed to

connect them, in order to capture the uncertainties induced by the approximation.

NPVj(d) = β0,ÑPVj + β1,ÑPVj ÑPVj(d) + εÑPVj (3.3.11)

The adjusted expectation and variance are then computed using Equations (3.3.12)

and (3.3.13) respectively where the regression coefficients, their variances and co-

variance are estimated using the simulation data. In addition, they are assumed

to be mutually independent of the emulated approximate NPV. Under the linear
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model assumption, εÑPVj is treated as independent of the regression coefficients and

ÑPVj(d), with σÑPVj denoting the residual standard error.

EFj [NPVj(d)] = β̂0,ÑPVj + β̂1,ÑPVj EFj

[
ÑPVj(d)

]
(3.3.12)

VarFj [NPVj(d)] = Var
[
β̂0,ÑPVj

]
+ 2 Cov

[
β̂0,ÑPVj , β̂1,ÑPVj

]
EFj

[
ÑPVj(d)

]
+
{
β̂2

1,ÑPVj
+ Var

[
β̂1,ÑPVj

]}
VarFj

[
ÑPVj(d)

]
+ Var

[
β̂1,ÑPVj

] (
EFj

[
ÑPVj(d)

])2
+ σ2

ÑPVj
(3.3.13)

3.3.5 Emulation of the Ensemble Mean NPV

Up to this point, emulation of the NPV for individual models within an ensemble

is described. In decision support or optimisation problems the aim is frequently to

maximise the expected NPV with respect to some uncertainty, with the ensemble

mean NPV, denoted NPV, often treated as a surrogate, as in the TNO OLYMPUS

Challenge. The next step is to present a framework for combining these individual

emulators in order to obtain an emulator for the expected NPV. A reasonable

assumption is that the results for individual models are independent given the

complexity of the different underlying geologies.

Emulation of the Ensemble Mean NPV when Simulations are Available

for all Ensemble Members

First consider when simulations are performed for the entire ensemble. This is the

case when: simulations are relatively quick to evaluate; large amounts of computing

resources are available; or there is a desire to minimise the uncertainty due to the

underlying geology. This final point is particularly relevant when the ensemble mean

NPV is viewed as equal to the true expected NPV. In this situation the ensemble

mean NPV is computed as either the arithmetic mean or a weighted mean (when

there is a prior probability distribution over the geology models) of the individual

model NPVs. This provides a natural method to emulate NPV. For an ensemble

of size N , the adjusted expectation and variance are defined in Equations (3.3.14)
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and (3.3.15), where F denotes all simulation data incorporating each of the Fj, and

ωj are the mean weights with ωj = 1
N

for the arithmetic mean.

EF
[
NPV(d)

]
=

N∑
j=1

ωj EFj [NPVj(d)] (3.3.14)

VarF
[
NPV(d)

]
=

N∑
j=1

ω2
j VarFj [NPVj(d)] (3.3.15)

The variance formula is simple to adapt when it is believed that the outcome of

different models are correlated by introducing the relevant covariance terms in Equa-

tion (3.3.15).

Emulation of the Ensemble Mean NPV via the EGES Linear Model

A more realistic and practical scenario is that simulations are only performed for a

subset of the ensemble selected using the techniques described in Section 3.2. We

propose using the EGES linear model presented in Equation (3.2.1) to emulate

NPV with the emulated NPV for each of the sub-selected models as inputs, where

the estimated EGES linear model regression coefficients are denoted by α̂EGES and

β̂k,EGES. It is assumed that the individual emulator outputs and the regression

coefficients are uncorrelated. This is justifiable if two distinct simulation data sets

are used to construct the EGES linear model and to fit the emulators of the NPV

for individual models. Under this formulation the adjusted expectation is shown in

Equation (3.3.16).

EF
[
NPV(d)

]
= EF

α̂EGES +
NEGES∑
k=1

β̂k,EGESNPVjk(d) + εEGES(d)


= α̂EGES +
NEGES∑
k=1

β̂k,EGES EFjk [NPVjk(d)] (3.3.16)

Define β̂EGES = (α̂EGES, β̂1,EGES, . . . , β̂NEGES)T ∈ RNEGES+1 with Σβ,EGES = Var
[
β̂EGES

]
,

and XEGES(d) = (1,NPVj1(d), . . . ,NPVjNEGES
(d))T ∈ RNEGES+1 with uncorrelated

components. The adjusted variance is derived in Equation (3.3.17), where σ̂EGES is
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the residual standard error of the EGES linear model.

VarF
[
NPV(d)

]
= VarF

α̂EGES +
NEGES∑
k=1

β̂k,EGESNPVjk(d) + εEGES(d)


= VarF
[
XT

EGES(d)β̂EGES

]
+ CovF

[
XT

EGES(d)β̂EGES, εEGES(d)
]

+ CovF
[
εEGES(d), XT

EGES(d)β̂EGES

]
+ VarF [εEGES(d)]

Assuming that βEGES and XEGES(d) are uncorrelated, and noting that

CovF
[
XT

EGES(d)β̂EGES, εEGES(d)
]

= 0 ∈ RNEGES+1.

= EF
[
XT

EGES(d)Σβ,EGESXEGES(d)
]

+ β̂
T
EGES VarF [XEGES(d)] β̂EGES + σ̂2

EGES

Assuming that the components of XEGES(d) are uncorrelated.

= Var [α̂EGES]

+
NEGES∑
k=1

Var
[
β̂k,EGES

] (
VarFjk [NPVjk(d)] + EFjk [NPVjk(d)]2

)

+ 2
NEGES∑
k=1

Cov
[
α̂EGES, β̂k,EGES

]
EFjk [NPVjk(d)]

+
∑
k 6=l

k,l=1,...,NEGES

(
Cov

[
β̂k,EGES, β̂l,EGES

]

·EFjk [NPVjk(d)]EFjl [NPVjl(d)]
)

+
NEGES∑
k=1

β̂2
k VarFjk [NPVjk(d)] + σ̂2

EGES (3.3.17)

Note that this formula may also be applied more generally where linear models are

used to combine uncorrelated emulator output and for which it is reasonable to

assume that the estimates of the linear model coefficients are uncorrelated with the

emulator output.
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3.3.6 Summary of the Hierarchical Emulator Construction

In this section we have developed a hierarchical Bayesian emulation framework to

exploit structure within the utility function constituent parts, as motivated by the

ensemble mean NPV within the general well control optimisation problem, such as

that presented in the TNO OLYMPUS Challenge. This consists of:

• Decomposing the utility function into its constituent pieces, for example, the

components of the NPV formula in Section 3.3.1.

• Formulating structured emulators which exploit prior knowledge of constrained

behaviour for certain parts of the utility function, in particular, for the WOPT

and WWIT within each control interval, as detailed in Section 3.3.2.

• Amalgamating constituent emulators to approximate the NPV using longer

control and discounting time intervals for an individual ensemble member in

Section 3.3.3.

• Linking the emulator for the approximate with the exact NPV for an individual

ensemble member in Section 3.3.4.

• Efficiently using a small subset of the ensemble to emulate the ensemble mean

NPV in Section 3.3.5.

We will subsequently link the ensemble mean NPV to the expected NPV via ensemble

uncertainty in Section 3.5.3.

3.4 Optimisation and Decision Theoretic

Approaches

Up to this point we have presented methodology which enables more accurate emu-

lation by taking into account certain structures within the response of interest. At

this stage we move our focus to consider how to make better decisions providing an

overview in this section of optimisation, Bayesian optimisation, decision theoretic

and decision support frameworks in Sections 3.4.1 to 3.4.4 respectively.
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3.4.1 Optimisation

From an applied Mathematics perspective, the aim of optimisation for an objective

function f(d) is to identify dmax defined as follows [15]:

dmax = arg max
d∈Ω⊂RD

f(d) (3.4.1)

In the context of field development optimisation, f(d) is the expected NPV for a

particular well control and well placement strategy.

There exists large swathes of literature focusing on maximising such non-linear

functions. When f(d) possesses an explicit mathematical form it may be possible

to solve this analytically, whilst for all other situations there are a large selection

of numerical optimisation algorithms from which to choose. However, there exist

several potential limitations to these approaches since they implicitly assume that:

• The function of interest can be evaluated and has a reasonable computation

time,

• The function is either the quantity to be optimised or perfectly represents the

real world process to be maximised,

• There are no other sources of uncertainty.

Many simulators (or functions) of interest are of an unknown form and have a

long evaluation time rendering such algorithms computationally intractable, whilst

many optimisation routines exploit derivative information which is often unknown.

Moreover, simulators are used as a surrogate for the real world physical systems since

they are simpler to experiment on, however the differences between the simulator and

reality, usually in the form of structural model discrepancy, must be acknowledged for

the optimisation process to be meaningful. Perhaps most importantly, the potential

effect of other uncertainties on the optimised parameter setting is not accounted for

by these optimisation techniques.
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3.4.2 Bayesian Optimisation

A Bayesian statistical approach to optimisation is achieved through the use of emu-

lators to approximate the expensive computer simulator in order to mitigate the

computational concerns; the most common choice being Gaussian process emulators.

The Bayesian framework also permits the comprehensive treatment of the uncertain-

ties. A large proportion of the methodology focuses on sequentially selecting the

next design point at which to evaluate the simulator through the use of a Bayesian

optimisation criterion, also known as an acquisition function. This is a myopic or

one-step ahead process. Note that the introduction of such criteria shifts the often

computationally demanding optimisation problem from the original function to the

chosen criterion, many of which are either of an analytic form or are much cheaper

to evaluate; as well as satisfy conditions such as continuity enabling traditional

optimisation procedures to be applied in selecting the next design point [15, 102,

134].

Examples of Bayesian optimisation criteria which exploit the probabilistic prop-

erties of the GP to yield a closed form and cheap to evaluate expression include:

Probability Of Improvement (POI); Expected Improvement (EI) [102], with an exten-

sion being to consider the expectation of higher powers of the improvement function;

(Gaussian Process) confidence bound criteria including Lower & Upper Confidence

Bounds ((GP-) LCB & UCB respectively) [15]. Several other myopic optimisation

strategies compared in [56, 134] include: maximising uncertainty, as characterised by

standard deviation for which there is no bias towards high performance regions, al-

though is inefficient in practice; the Stepwise Uncertainty Reduction (SUR) strategy,

also known as the Informational Approach to Global Optimisation (IAGO) [54, 179];

Radial Basis Function (RBF) method [79]; and the Dividing Rectangles (DIRECT)

optimisation algorithm [101]. The Gaussian Process Global Optimisation (GPGO)

procedure [134] may also be used for myopic searches and shares similarities with

the use of the EI criterion.

The specific choice of criterion is application dependent and is selected to achieve
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a trade-off between exploration and exploitation. Exploration involves placing a

design point within a region of the decision parameter space for which there is high

function uncertainty. This is usually where there are few other design points. Ex-

ploitation selects new design points within a region where the function is expected

to be high based on the Gaussian process model. Once sufficient design points have

been explored, this is often characterised by a clustering of design points around

where the function is expected to be maximised. The EI criterion is a particularly

popular choice [15, 56, 76, 102, 113, 160], with the optimisation routine using GPs

and EI known as the Efficient Global Optimisation (EGO) algorithm [102, 134]. This

“vanilla” version of Bayesian optimisation has many advantages including: ease of

implementation; efficient single point criteria; incorporates smoothness; constructs

a surrogate representation of the objective function; and can handle multiple modes.

However, there exist several weaknesses to such an approach including: an over-

reliance on the specific form of the emulator which may also lead to boundary issues,

particularly in higher dimensions; does not incorporate derivative information or

batches of simulation output; and is designed for a myopic search [176]. Note that

these advantages and disadvantages also apply to many of the other criterion based

methods presented in this section, with the main distinction being computational

tractability, whilst one-step ahead searches remain a constant issue. An identified

limitation specific to the EI criterion is that it over-exploits the fitted GP model

resulting in an under-exploration of the parameter space, potentially with the con-

sequence that the procedure becomes stuck at local optima and thus fails to converge

to a global optimum [18, 145]. A proposed solution is the Hierarchical Expected

Improvement (HEI) acquisition function which allows for greater exploration whilst

maintaining efficiency. This is is achieved through the use of priors over the GP

hyperparameters leading to a t-distribution and a finite sample correction, as well

as a closed form expression for HEI. Further details can be found in [22].

The Bayesian optimisation methodology has been extended to account for noisy

experimental data and constraints, as reviewed in [113, 134]. Examples of information
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based acquisition functions from [113] which are designed to handle noisy data

include: Noisy Expected Improvement (NEI) [138]; entropy based methods including

entropy search [83], Predictive Entropy Search (PES) [84], and Predictive Entropy

Search with Constraints (PESC) [86], although their practical application is limited

by the intractability of calculations requiring difficult to implement approximations:

knowledge gradient [156]; and Thompson sampling for GP Bayesian optimisation [85].

Two further algorithms discussed in [134] are Implicit Filtering (IF) [105] and the

Stable Noisy Optimisation by Branch and Fit (SNOBFIT) algorithm [91]. Another

approach is quantile-based optimisation of noisy computer experiments [139, 140]

which uses an Expected Quantile Improvement (EQI) criterion. This is applicable for

optimisation of stochastic simulators, or for deterministic simulators with uncertain

model, environmental or tuning variables.

The above described Bayesian optimisation methodology is for a myopic search

to sequentially select the next individual new design point. Only evaluating the

simulator for a single parameter setting at each step is very often a sub-optimal

use of the available computational resources, especially when parallel computing

architecture is accessible. A natural extension is therefore to a non-myopic strategy in

the form of batch optimisation via the multi-points (q-points) Expected Improvement

(q-EI) criterion within the GPGO algorithm [134]. This compares favourably versus

the myopic strategies for both noise-free and noisy functions. Another option is multi-

step optimisation [94] through the use of loss functions such as: constrained quadratic

loss, constrained Laplace losses, and an extended Laplace loss, with a Forward

Filtering, Backward Smoothing (FFBS) algorithm used for Bayesian Expectation

Maximisation (EM).

Multi-Objective Optimisation occurs when there exist multiple objective func-

tions which cannot be combined into a single function. Pareto sets (or bounds or

curves) form a useful tool and are composed of decisions for which increasing one ob-

jective cannot be achieved without decreasing any one of the others. Such decisions

are labelled as non-dominated [56, 157]. An example is the trade-off between the
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updated mean and standard deviation in GP Bayesian optimisation seen in [56].

3.4.3 Decision Theoretic Approaches

Decision theory provides a coherent framework for identifying a decision strategy

which is optimal with respect to both the objectives of the user whilst incorporating

all relevant sources of uncertainty [35]. Both decision theory and decision support

approaches to the problem require the introduction of a utility function. Whilst

an objective function as discussed in the context of optimisation often represents

a specific numerical quantity which is an output of the system or simulator (for

petroleum field development optimisation this is the expected NPV), utility functions

are able to combine multiple facets that are important to decision making including

both social and economic considerations. Such quantities do not necessarily have

common units or physical interpretations; thus they are not usually comparable.

By converting onto units of utility, the decision theoretic approach permits their

comparison such that decisions which yield higher utility values are considered

preferable. Moreover, a utility function is also able to incorporate the risk preferences

of the decision maker(s). Under certain scenarios, the utility function may be

specified as equal to the original objective function and in situations where the

objective function is a monetary value, this corresponds to expected monetary value

with the decision maker being risk neutral. Similar to the optimisation setup, the

aim is to maximise the expected utility. Note that an equivalent formulation is in

terms of a loss function which is the negative of the utility function and hence should

be minimised.

Utility functions are commonly denoted by U(·). These are functions of simulator

output f(x,d) which may explicitly depend on the beliefs about the model paramet-

ers, the specified decisions encapsulated in d, and some additional utility function

cost parameters c that are not inputs to the simulator, written as U(f(x,d),d, c).

For a decision theoretic approach within a full Bayesian paradigm the expected util-

ity, written as U(d, c) where there is an explicit dependence on the utility function
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cost parameters, is computed as an integral with respect to the model parameters, as

shown in Equation (3.4.2), where πx(x) is the prior distribution for the model para-

meters. When f(·) represents a complex computer model then it is often not possible

to evaluate this integral analytically and so may be approximated by a Monte Carlo

estimate shown in Equation (3.4.3) where xi, i = 1, . . . , nx, is a sample of model

parameters. This corresponds to using the ensemble mean NPV as a surrogate for

the expected NPV within the TNO OLYMPUS Challenge, as well as more generally

within the petroleum industry, where the model parameters represent various geolo-

gical configurations and nx = N , the number of ensemble members. A weakness to

the Monte Carlo approximation is the requirement to evaluate f(·) a large number

of times in order to obtain a sufficiently small Monte Carlo estimate variance. This

is exacerbated when the simulator is highly computationally expensive.

U(d, c) = Ex[U(f(x,d),d, c)] =
∫

x∈X
U(f(x,d),d, c)πx(x) dx (3.4.2)

≈ 1
nx

nx∑
i=1

U(f(xi,d),d, c) (3.4.3)

Note that where there is no model parameter uncertainty, the explicit dependence

of U(·) on f(x,d) is omitted for notational clarity. In this situation U(d, c) =

Ex[U(d, c)]. For the petroleum industry application this corresponds to using only

one model representing a single geological realisation which is believed to be repres-

entative of the corresponding real oil field.

When the utility function cost parameters are also uncertain, a second expect-

ation is computed in Equation (3.4.4) to obtain U(d), where πc(c) is the prior

distribution for the utility function cost parameters and C is the cost parameter

space. Depending on the form of U(d, c) and the specified πc(·), this integral may be

computed analytically. Alternatively, it is similarly approximated using Monte Carlo

in Equation (3.4.5) where ci, i = 1, . . . , nc, is a sample of cost parameters. Since c

is not an input to f(·) and depending on the computational expense of evaluating

U(d, c), it is often possible to evaluate the Monte Carlo approximation using a much
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larger nc and hence achieve a substantially smaller Monte Carlo error.

U(d) = Ec[U(d, c)] =
∫

c∈C
U(d, c)πc(c) dc (3.4.4)

≈ 1
nc

nc∑
i=1

U(d, ci) (3.4.5)

An example of the cost parameters in the TNO OLYMPUS Well Control Optim-

isation Challenge is the NPV cost parameters of oil price, water production and

injection costs, and the discount factor. The notation U(d) is also used when there

are implicitly no utility function cost parameters.

The decision theoretic optimal decision d∗ is then defined in Equation (3.4.6),

although this can be challenging to solve, particularly when d is high-dimensional.

This constitutes a single node decision problem and is representative of the setup in

the TNO OLYMPUS Challenge.

d∗ = arg max
d∈Ω⊂RD

U(d) (3.4.6)

For a more complete treatment of statistical decision theory, see [154] for example.

An alternative approach which links to the idea of decision support explored in

Section 3.4.4 naturally arises when there is insufficient information to accurately

specify πc(·). Instead, we propose exploring feasible values for c encapsulated in

the finite set C ′ ⊂ C to obtain d∗(c) = arg maxd∈Ω U(d, c) for each c ∈ C ′, and

then construct a set of decision theoretic optimal decisions with respect to one of

the specified utility function cost parameters settings Ω∗ defined in Equation (3.4.7)

[175]. This is the spirit of decision support where the aim is to provide a class of

near-optimal decisions.

Ω∗ := {d∗(c) | c ∈ C ′} (3.4.7)

Each d ∈ Ω∗ is a viable optimal decision strategy under a particular utility function

cost parameter scenario. The final decision maker(s) can then examine Ω∗ and its

attributes to gain a more detailed understanding of the decision problem and is a

particularly useful approach where there is a committee of decision makers separate
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from the analysts, who may possess differing views on the expression of utility,

potentially captured via the choice of cost parametrisation.

Sequential decision making or multi-node decision problems, which are more

realistic of the actual process used within oil field development, concern devising a

decision strategy for an initial time period in the knowledge that future decisions

will then be taken at later times in light of the observed implications of all previous

actions. This sequence of decisions may be illustrated using a decision tree. The

statistically correct way to address such problems is via backwards induction starting

with the decision(s) at the final time point and working backwards to propose the

initial decision(s). For each additional layer or time step this process requires the

calculation of an integral over the potential final observed utility conditional on

selecting any future decisions which maximise this function given the proposed

current decision. Consequently backwards induction quickly becomes prohibitively

computationally expensive for all but problems of modest dimensionality due to the

complex form of the integrals and numerous optimisation sub-problems [31, 185]. A

more tractable and feasible approach is forwards induction in which decisions are

optimised at each step without fully accounting for the potential future decisions

[175]. Note that much of the existing petroleum industry literature on “closed

loop” optimisation such as [21] is actually a form of forwards induction, rather than

backwards induction implied by the title.

Both optimisation and decision theoretic approaches yield a single optimal de-

cision parameter choice with neither framework directly highlighting any sensitivity

in the objective or utility function evaluated for this decision due to uncertainties

present in the process. This can be assessed via a sensitivity analysis. Note that there

is a distinction between a traditional probabilistic sensitivity analysis which focuses

on the effects of alternative prior distributions, and a decision theoretic sensitivity

analysis. A comprehensive review of the latter can be found in [127] with details of

sensitivity measures including: Expected Value of Perfect Information (EVPI) and

Expected Value of Sample Information (EVSI), whilst further examples discussed
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in [182] include: Value at Risk (VaR, also known as Quantile-Loss); Conditional

Value at Risk (CVaR, also known as Upper-Trimmed Mean Utility); and Cumulative

Expected Loss (CEL). The use of computationally expensive computer models for

aiding decision makers requires the use of emulators in order for many of the sensit-

ivity analysis techniques to be tractable, whilst Bayesian quadrature may be used

to approximate integrals [127]. In addition, the effects of model misspecification on

the expected utility should be investigated. An example of a method within a full

Bayesian framework is the use of the Kullback-Leibler (KL) divergence to define

a neighbourhood (KL ball of given radius) around the model parameter posterior

distribution and subsequently explore to obtain a local-minimax distribution [182].

A decision analysis is said to be robust if perturbations (based on the uncertainties)

in the decision setting do not affect the optimality of the decision [182], although this

may be extended to also consider when the resultant change in the utility function

is small relative to the magnitude of its uncertainties.

3.4.4 Decision Support

Up to this point we have considered optimisation and decision theoretic techniques

which yield a single decision strategy. It is identified that the various optimisation

algorithms frequently suffer from several major limitations which include: relying on

a large number of potentially computationally intractable function evaluations; some

necessitate gradient information which may be unavailable for black-box models;

challenges in high-dimensional decision parameter spaces which lead to a tendency

for algorithms to become stuck at local-optima without first fully exploring the space;

and only yield a single “optimal” decision strategy which may be sensitive to the

uncertainties. Further challenges in decision theory include an inability to efficiently

compute (or approximate) integrals required to obtain the expected utility. We

therefore develop a decision support framework to obtain a class of decisions which are

near to the optimal decision that would be obtained via utility maximisation, whilst

respecting the various uncertainties within the analysis. The important delineation
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between decision theory and decision support is the treatment of uncertainty. In

decision theory, all uncertainties are resolved via integration. However, in decision

support the sources of uncertainty are divided into two mutually exclusive and

exhaustive sub-collections distinguished by whether the uncertainties: will never be

resolved by the decision maker(s) and so are integrated over, as in decision theory;

or can in principle be resolved by the decision maker(s) where these uncertainties

remain within the analysis and are used to define a class of acceptable decisions. A

related concept is Ω∗ defined in Equation (3.4.7) where the uncertainty in the cost

parameter scenarios is used to define a collection of potentially optimal decisions for

the decision maker to select from.

Within the decision theoretic approach it is assumed that the utility function

is known and fixed, however this is not an entirely realistic viewpoint. Firstly the

utility function must be elicited from the decision maker(s); a task which is known

to be difficult to perform accurately and subsequently leads to the criticism of the

subjective choice of utility function which may only be addressed by investigating

the consequences of alternative specifications via a form of utility function sensitivity

analysis. This is analogous to the criticism of subjective Bayesianism regarding the

specification of the prior distribution. Further challenges occur in many real-world

governmental and commercial applications where there is a committee of decision

maker(s), each of whom possesses there own individual beliefs. In order to implement

a decision theoretic approach, it is necessary for the committee to reach an agreement

and propose a single utility function, potentially via analogous methods to those of

belief aggregation discussed in Section 2.4.3. The resultant uncertainty in the utility

function must be accounted for, however it is not clear how do so robustly without

solving the problem for each individual utility function which in turn may also be

uncertain. A critically important point is that the statistician(s) or analyst(s) may

not have access to the committee of decision makers, as is the case in the petroleum

industry, leading to utility function uncertainty due to unknown judgements and

risk preferences which cannot be resolved, as required within a decision theoretic
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approach, before returning the suggested optimal decision strategy to the committee.

This is not an isolated setup pertaining to the oil industry; the separation of analysts

from the decision makers occurs in many other scientific disciplines, for example,

epidemiology and climate science. In addition, this is related to the concept of

imprecise utility discussed in [45, 46, 47], which is used to obtain Pareto optimal

choices of parameter settings (for designs) under the imprecise specification.

All of the highlighted weaknesses of the decision theoretic approach within the

context of real-world decision making problems suggest that instead of a single,

potentially non-robust decision, the analyst(s) should return a class of decisions

which respect all of the uncertainties related to the decision structure. This is a

decision support framework which is further developed in Section 3.6.

3.5 Uncertainty Quantification within Decision

Support

A comprehensive uncertainty quantification forms a vital part of any robust analysis

of computer models, as introduced in Section 2.7. This is further developed in this

section for robust decision support where the object of interest is the utility function,

U(f(x,d),d, c), U(d, c) or U(d) depending on the context, instead of the computer

model, although evaluation of the utility will often implicitly require simulation from

the model. Much of the methodology and framework presented in Section 2.7 remains

relevant including the additive structure for linking computer models to reality in

Section 2.7.1 and the various sources of uncertainty described in Section 2.7.2, whilst

in order to make meaningful inference for decisions to enact on the real physical

system, structural model discrepancy described in Section 2.7.4 plays a crucial role.

This section advances the uncertainty quantification framework for decision sup-

port. Firstly, it is important to analyse how an uncertainty affects the utility surface

and consequently whether it is important from the perspective of decision support

which is discussed in Section 3.5.1. In Section 3.5.2 an assessment of the utility func-
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tion cost parameter uncertainty is presented including a method for reducing the

effect of such uncertainties to achieve more precise decision support results. Where

ensembles of models are used, it is important to account for the induced uncertainty

due to using a sample of the possible models, as described in Section 3.5.3. Another

form of uncertainty which is relevant to decision making is implementation error

which is discussed in Section 3.5.4, whilst utility function uncertainty is considered

in Section 3.5.5. Much of this framework and methodology is first introduced in [135]

where it is applied to the TNO OLYMPUS Well Control Optimisation Challenge,

with some further developments also presented in this section.

3.5.1 Effect of Uncertainties on the Utility Surface

The aim of decision support is to identify vectors of decision parameters which yield

a utility close to the maximum value within a tolerance defined by the uncertainties

pertaining to the decision structure. Any uncertainty about the decision process

which potentially changes the location in decision space of the maximum utility (a

priori this is unknown) has the potential to redefine the decision support region,

whilst changes in the height or a positive scaling of the utility function do not

affect this region, as long as other uncertainties are also modified appropriately.

Consequently it is important to differentiate between sources of uncertainty that

result in a shift or a positive scaling of the utility surface, and those which produce

any other change of shape. A shift and positive scaling of the surface constitute a

form of linear transformation which do not affect the location of the optimal solution

assuming that the actual utility function is in use by the properties of decision

theory. Linear transformation effects should therefore be removed in order to obtain

an accurate uncertainty quantification for the purpose of decision support. Note

that the specific linear transformation becomes important when answering questions

about actual utility and hence should be stored. A method of performing such

removal of linear transformation effects is presented in the context of the utility

function cost parameters in Section 3.5.2.
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Note that this discussion is also relevant within an optimisation and decision

theoretic setup where the aim is to identify the global maximum objective or utility

in which only the shape, rather than the actual height is of relevance.

3.5.2 Utility Function Cost Parameter Uncertainty

The utility function often includes as inputs a collection of additional cost para-

meters which are not directly passed to the simulator resulting in uncertainty εC.

Often these are economic parameters which may be time variable and are frequently

fixed throughout an analysis. For example, in the TNO OLYMPUS Well Control

Optimisation Challenge with the utility function assumed to be the expected NPV,

the cost parameters of price per barrel of oil; the cost per barrel of water produced

and injected; and the discount factor over time, are the NPV and utility function

cost parameters. These are assumed to be fixed in the standard TNO OLYMPUS

Challenge setup. The expected NPV utility function is obtained by integrating out

stochastic variability. However, only a single fixed vector of cost values is provided,

yet a committee of decision makers may possess more refined beliefs; hence this

uncertainty can in principle be resolved at a later stage and so is treated as such

within decision support. The same pretence is relevant to other decision making

applications.

For decision support the treatment of this uncertainty depends on the exact

nature of the cost parameters and usually involves some element of expert elicitation.

It may be appropriate when there is a relatively limited number of cost parameters

to elicit either a prior distribution or the induced variance in the utility. In scenarios

such as for large numbers of time variable economic parameters, a simulation based

approach may be preferred drawing samples of the utility function cost parameters

from a model or probability distribution.

Since the cost parameters are not necessarily inputs to the often computationally

expensive simulator, whilst the utility function is usually much cheaper to compute,

large numbers of experiments can be performed on the utility function given a fixed
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collection of simulations over a design D. It is highlighted in the above section

that linear transformations of the utility surface do not affect the location of the

optimal decision strategy and hence the decision support region for which a method

of accounting for such effects is presented within the context of utility function cost

parameter uncertainty.

Let U(dj, ci) be the utility function evaluated for decision parameter vector

dj ∈ D, j = 1, . . . , n, for a generated cost parameter setting ci, i = 1, . . . , nc. Note

that there is an implicit dependence on the simulator. To remove the effects of

linear transformations, define a base cost parameter scenario c0 at which the utility

is also computed. A convenient choice for c0 is the fixed value used within the

analysis which may be the mean obtained from either the simulation method or the

probability distribution, or elicited from the expert(s). We employ linear regression

models of the form shown in Equation (3.5.1) as a means of removing any linear

transformation effects for arbitrary choice of d ∈ Ω. For each ci a distinct linear

model is fitted using all dj ∈ D to transform the new utility value obtained onto

that achieved using c0. Note that the magnitude of the residuals εC(d, ci) may also

depend on the location in decision space.

U(d, c0) = βC,0,i + βC,1,iU(d, ci) + εC(d, ci) i = 1, . . . , nc (3.5.1)

It is these residuals which quantify the non-linear variability in the utility function

induced by the uncertainty on c. Note that by linearly mapping U(d, ci) onto

U(d, c0), the utility function evaluated for a fixed cost parameter scenario, ensures

that the residuals are directly comparable. Estimates for the residuals over D are

denoted by ε̂C(dj, ci), j = 1, . . . , n. For each fixed dj ∈ D, the sample mean

and variance of the residuals over the linear models, and hence the different cost

parameter settings, written as mC(dj) and s2
C(dj), are computed in Equations (3.5.2)

and (3.5.3) as estimates of E[εC(dj)] and Var[εC(dj)] respectively.

E[εC(dj)] ≈ mC(dj) = 1
nc

nc∑
i=1

ε̂C(dj, ci) (3.5.2)
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Var[εC(dj)] ≈ s2
C(dj) = 1

nc − 1

nc∑
i=1

(ε̂C(dj, ci)−mC(dj))2 (3.5.3)

There remains a potential dependency on dj. For decision support a conservative

estimate of the uncertainty is given by maxdj∈D Var[εC(dj)]. Alternatively an em-

pirical quantile may be sufficient. If there is large variability in Var[εC(dj)] over

the decision space then variance emulation techniques may be applied [2, 3]. This

methodology for quantifying uncertainty after the removal of linear transformation

effects generalises to any other source of uncertainty which is easily parametrised

and for which the simulator and utility function are sufficiently quick to evaluate.

3.5.3 Ensemble Uncertainty

Many scientific disciplines and commercial applications use an ensemble of models

to characterise a particular form of uncertainty. Within the petroleum industry

and the TNO OLYMPUS Challenge it is common practice to represent geological

uncertainty via an ensemble generated from a stochastic geology model or obtained

through expert elicitation. The uncertainty in the expected NPV induced by geo-

logical uncertainty is denoted by εG. This form of uncertainty may be considered

as analogous to model parameter uncertainty where the inputs represent various

geological properties of the field and within specific regions. However, the high-

dimensionality of the model parameter space makes this challenging to handle and

hence it is difficult to accurately express a prior distribution that realistically rep-

resents the expert’s beliefs. An alternative approach is therefore to formulate an

ensemble of (geological) model parameter realisations generated from an underlying

stochastic (geology) model. This is the case in the TNO OLYMPUS Challenge. The

ensemble mean should be treated as an unbiased estimator for the true mean whilst

acknowledging the induced uncertainty. For geological uncertainty and assuming an

additive error structure, that is E[εG] = 0. The realisations may be treated as an

exchangeable sample from an infinite number of geologies for which a more complex

method of handling this form of uncertainty is discussed in [89]. We propose a simpler
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approach using an initial collection of simulations over the entire ensemble of size N

to produce a conservative estimate for Var[εG] of s2

N
, where s is the sample standard

deviation of the function of interest, such as the utility function. It is acknowledged

that the ensemble mean NPV is an unbiased estimator for the expected NPV and so

could be integrated out. Although a committee of decision makers may resolve this

uncertainty by ordering simulations to be evaluated for a larger ensemble to obtain

a substantial reduction in the uncertainty.

3.5.4 Decision Implementation Error

Decision implementation error, often abbreviated to implementation error, εI, refers

to the uncertainty induced as a consequence of the difference between the controls

suggested to the real world user and those which are actually enacted. This is often

ignored in practice [58]. For example, in well control optimisation there may be

a difference between the target production and injection rates provided and what

the corresponding controls are set to on an oil platform. This is another form of

uncertainty that can in principle be resolved through a superior understanding of the

typical implementation errors, as well as by its practical reduction in the real world.

Note that there are several similarities with observational errors for historic data. The

relationship between the proposed decisions, d, and those actually implemented, δI, is

modelled as in [31] using an additive error structure shown in Equation (3.5.4), where

eI(d) is the uncertainty in the decisions themselves. This induces the implementation

error uncertainty in the expected utility shown in Equation (3.5.5) which may depend

on the decision.

δI = d + eI(d) (3.5.4)

U(f(x, δI), δI, c) = U(f(x,d),d, c) + εI(d) (3.5.5)

Specification of eI(d) requires elicitation from the relevant experts and often takes

the form of a prior distribution, πI(eI | d), noting the possible explicit dependence

on d due to other constraints such as practical bounds on the decision parameter.
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A reasonable assumption is E[eI] = 0 representing that the users will attempt to

implement the suggested decision strategy.

Unlike the utility function cost parameters, d is an input to both the utility

function and the computer model rendering direct experimentation in the assessment

of implementation error much more computationally demanding. Assuming that

a sufficiently accurate emulator representation has been constructed for f(x,d)

or U(f(x,d),d, c), and using the notation EF [U(d)] irrespective of whether it is

the simulator or utility function that has been emulated, then a simulation based

method of approximately assessing this form of uncertainty up to a second-order

belief specification is as follows.

1. Construct a space filling design, DI, of decisions at which to assess the imple-

mentation error.

2. For each di ∈ DI, sample eI,i,j ∼ πI(eI | di) and compute δi,j = di + eI,i,j for

j = 1, . . . , nI.

3. Evaluate EF[U(δi,j)], treating this as a surrogate for the actual utility value.

4. Investigate the bias due to implementation error by computing the sample

mean and then approximating E[εI(di)] ≈ mI,i(di) = 1
nI

∑nI
j=1 EF[U(δi,j)].

5. Assess the variance of U(di) induced by implementation error via the sample

variance. This is Var[εI(di)] ≈ s2
I,i(di) = 1

nI−1
∑nI
j=1 (EF[U(δi,j)]−mI,i)2.

Graphical methods such as histograms and contour plots can be used to examine

whether there exists a dependency of E[εI] or Var[εI] on d. An assessment of mI,i can

be used to detect any systematic uncertainty, with mI,i
sI,i

useful for identifying if the

bias is of a substantial magnitude. Depending on the findings of the investigation,

summary statistics such as high-valued quantiles may be used as an approximate

upper bound on Var[εI], alternatively variance emulation may be necessary [2, 3].
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3.5.5 Utility Function Uncertainty

Utility function uncertainty concerns a lack of knowledge or understanding of the

form of the true utility function. This is discussed in Section 3.4.4 as part of the

justification for implementing a decision support framework, as opposed to an op-

timisation or decision theoretic approach. There are many reasons for the existence

of utility function uncertainty including: difficulties in its elicitation; possible undis-

closed judgements and risk preferences arising from the separation of decision makers

and the analysts leading to uncertainties which cannot be resolved by the analysts;

and the existence of numerous candidate utility functions provided by either an in-

dividual or a committee of decision makers. Note under certain formulations it may

be possible to treat utility function uncertainty within a parametrised framework, in

which case an uncertainty assessment similar to in Section 3.5.2 may be appropriate.

3.6 Iterative Decision Support Procedure

We present a novel iterative decision support procedure inspired by the history

matching process described in Section 2.8 which provides the end user with a class of

robust decisions with respect to the decision structure uncertainties included within

the analysis. This makes explicit use of Bayesian emulators (of either a standard

format discussed in Section 2.4, or of the hierarchical form exploiting known simulator

behaviour presented in Section 3.3) to efficiently search the decision parameter space,

as well as the uncertainty quantification techniques (see Sections 2.7 and 3.5) to

robustly compare different strategies. This follows the research presented in our

paper [135].

We begin by formalising the connection between decision support and real world

decision making in Section 3.6.1. In Section 3.6.2 we introduce a decision support

implausibility measure which is used within the iterative decision support algorithm

presented in Section 3.6.3. The benefits of the procedure are then discussed in-

cluding a comparison with the optimisation and decision theoretic approaches in
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Section 3.6.4.

3.6.1 Link to Real World Decision Making

Decision support is performed for real world systems guided by the use of computer

models that are encompassed within the utility function. Following the framework

presented in Section 2.8, we formally link the committee of decision makers’ actual

utility function, denoted Uy(d), an analogy of the true system state, y, discussed in

Section 2.8.1, to the analysts approximation of the utility function, U(d). This is

achieved through the introduction of the random quantity, εDS(d), which represents

the collective uncertainty on the decision making process and is defined as follows:

εDS(d) = Uy(d)− U(d) (3.6.1)

This is an amalgamation of the uncertainties regarding the decision framework and

their implementation discussed in Section 3.5, with those concerning the computer

model described in Section 2.7.

An example of the structure for εDS(d) is to assume that the various sources of

uncertainty are mutually uncorrelated and additive, as presented in Equation (3.6.2),

where model discrepancy, εMD(·), is explicitly distinguished from the uncertainties

pertaining to the decision structure.

εDS(d) = Var[εMD(d)] +
∑
i

Var[εi(d)] (3.6.2)

Each source of uncertainty must be carefully quantified following procedures such

as those discussed in Sections 2.7 and 3.5. For generality, this is presented for an

explicit dependence on d, although an uncertainty assessment may suggest a uniform

specification is sufficient. Note that it is unnecessary to consider observations of the

true utility in a similar way to system measurements in Section 2.8.1 because such

information is only available after decision support is delivered and implemented.
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3.6.2 Decision Support Implausibility Measure

In an analogous way to the history matching procedure of [29, 171], we define a

decision support implausibility measure in Equation (3.6.3) based on the formal

framework linking the analysis with the real world decision problem presented in

Section 3.6.1. This is an analogue of the univariate history matching implausibility

measure in Equation (2.8.4) and is used to facilitate decision support by eliminating

regions of the decision parameter space which are unlikely to yield high values of

U(·) within a certain tolerance. This involves comparing the adjusted expectation

of the emulator for U(d) with the maximum utility achieved across all simulations

contained in design D for fixed utility function cost parameters, denoted by Umax =

maxd∈D U(f(x,d),d, c). The indicator function, 1{·}, is incorporated so that when

the emulator adjusted expectation exceeds Umax the implausibility measure is equal

to 0. If the emulator adjusted expectation does not exceed Umax there remains the

possibility that U(d) > Umax due to the uncertainties present. The magnitude of

this deviation relative to the uncertainties is assessed by standardising with respect

to the variance of the combined uncertainty. In Equation (3.6.3) it is assumed that

the uncertainties on the decision making process and the emulator follow a mutually

uncorrelated additive error structure, as obtained by combining Equations (2.7.2)

and (3.6.2), where VarF [U(d)] is the adjusted variance of the emulator for U(d),

εMD(·) is the model discrepancy as described in Section 2.7.4, and each εi(·) represents

any further sources of uncertainty included within the analysis such as those listed

in Sections 2.7.2 and 3.5. This formula may be modified to reflect other uncertainty

modelling structures.

I2
DS(d) = (EF [U(d)]− Umax)2

VarF [U(d)] + Var[εMD(d)] +∑
i Var[εi(d)] · 1{EF [U(d)]<Umax} (3.6.3)

An alternative implausibility measure is seen in [31].
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3.6.3 Iterative Decision Support Algorithm

We develop an iterative decision support procedure utilising the implausibility meas-

ure to identify a class of decisions up to a tolerance relative to the included uncer-

tainties. At each wave a new non-implausible region is obtained as a subset of the

previous using the implausibility measure and a threshold c. This is represented by a

collection of decision parameter vectors selected using the Bayesian emulator. After

the final wave the non-implausible region is termed the decision support region and

consists of a collection of equivalent decisions up to the uncertainties present which

may be qualified by performing simulations at these decision parameter settings.

The decision maker can then apply their expert judgment to make the final selection,

potentially resolving any residual uncertainty such as those discussed in relation to

the utility function. Decisions outside this region are unlikely to be of interest to the

decision maker as they are expected to yield low utilities given all the uncertainties.

The algorithm is initialised by defining the wave 0 non-implausible decision para-

meter space Ω0 = Ω before generating an initial design D1 ⊂ Ω0 at which simulations

are performed and the utility function evaluated. In addition, a preliminary uncer-

tainty analysis is performed. Compute Umax = maxd∈D1 U(d). At each wave the

algorithm proceeds as follows:

1. Construct an emulator for the utility function using simulations over the design

Dk and evaluate over a large collection of d ∈ Ωk−1.

2. Compute the decision support implausibility measure IDS(d).

3. Use threshold c to determine a new non-implausible region Ωk = {d ∈ Ωk−1 |

IDS(d) ≤ c}.

4. If either of the following conditions are satisfied:

• Computational resources are exhausted.

• There is negligible change in the volume of the non-implausible region.

Return Ωk, otherwise go to step 5.

5. Construct the next wave design Dk+1 ⊂ Ωk. There is the option to augment
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the design with {d | d ∈ Dk ∩Ωk}. Evaluate the simulator and utility function

over Dk+1. Redefine Umax = maxd∈
⋃k+1
i=1 Di

U(d). Optionally reformulate the

uncertainty specification for the current non-implausible decision space. Return

to 1.

Note that at each iteration Umax used within IDS(d) is non-decreasing with the

threshold c often chosen by appealing to Pukelsheim’s 3-sigma rule, as discussed in

Section 2.8.3 [142].

3.6.4 Comparison with Optimisation and Decision

Theoretic Approaches

In this section we discuss the merits of the presented decision support methodology,

before comparing to optimisation and decision theoretic approaches. The presen-

ted iterative decision support procedure shares many advantages with the history

matching process and include:

• It is computationally efficient through the use of emulators and an inexpensive

decision support implausibility measure,

• Only requires a second order belief specification of the expectations, variances

and covariances within a Bayes linear framework, ensuring that this approach is

robust to the challenges encountered in accurately specifying prior probability

distributions and (conditional) likelihoods for all quantities involved, although

the algorithm may also be implemented within a full Bayesian paradigm using

the relevant summary statistics from the posterior distribution for the utility

function,

• The use of a utility function allows for the trade-off between multiple quantities

of interest which are not directly comparable whilst also incorporating the risk

preferences of the decision maker(s),

• Permits the comprehensive exploration of the entire decision parameter space,

• Scalable to high-dimensional decision parameter spaces by allowing for the
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introduction of new active decision parameters at each iteration and as a

consequence of the iterative refocusing on the current non-implausible region,

• Provides a coherent framework in which to incorporate all relevant major

sources of uncertainty, including accounting for how each uncertainty impacts

on the utility surface and hence its relevance to decision support,

• Allows for the uncertainty quantification to be revised at each wave (in an

analogous way to in the history matching process), hence it is expected that

the magnitude of the uncertainty will decrease at later waves as the volume of

the non-implausible decision space is reduced,

• Yields a class of non-implausible decision parameter vectors with respect to

all of the included uncertainties,

• The committee of decision makers, who the analyst may not have access to,

are able to incorporate and resolve any additional uncertainties at a later time

point which were either undisclosed, unobtainable or initially unknown during

the preliminary consultation phase of the analysis,

• It is quick and simple to assess the consequences of alternative uncertainty

specifications, as well as reduce the uncertainty variances at a later stage when

additional information may become available.

In contrast, optimisation techniques can be extremely computationally expensive

requiring large numbers of evaluations of the computer model, particularly as the

dimensionality of the problem increases. This is exacerbated for supposed robust op-

timisation addressed via ensemble optimisation routines, as discussed in Section 3.1.3,

for which the use of ensembles to represent certain uncertainties further increases

the number of required simulations, whilst still only providing a limited account of

such uncertainties. Furthermore, optimisation techniques generally fail to solve the

actual problem of interest by treating output of the simulator as equal to that for the

real physical system. Some of these issues are addressed in Bayesian optimisation

through the use of a surrogate model, however all of these methods are susceptible

to the problem of becoming stuck at local optima which is negated in the iterative
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decision support procedure via a comprehensive search of the decision space.

Decision theory provides a much more comprehensive treatment of uncertainty

compared with optimisation, although this is via the expected utility function

through the integration with respect to the prior uncertainty distribution(s) and so

relies on accurate specification. This may be suitable where the analyst is the decision

maker, but is inappropriate if there is a separation between the analyst and decision

maker. In addition, these integrals are often computationally expensive to evaluate,

frequently requiring approximations, whilst the maximisation of the expected utility

still necessitates the use of optimisation routines with their associated limitations.

Only decision support is able to properly handle unresolved uncertainties stemming

from the real world consultation process such as those due to the specification of

a utility function through the provision of a class of acceptable decision parameter

vectors. This ensures that any decision selected from this collection is robust both

to all of the uncertainties incorporated within the analysis, but also any additional

unknown uncertainties for which there may exist further information that is unknown

to the analyst.





Chapter 4

TNO OLYMPUS Well Control

Optimisation

In this chapter we apply the statistical methodology developed and presented in

Chapter 3 to the TNO OLYMPUS Well Control Optimisation Challenge which is

reformulated as a decision support problem. This application is based on research

presented at the 17th European Conference on the Mathematics of Oil Recovery

(ECMOR XVII) 2020 and published in [135].

The TNO OLYMPUS Well Control Optimisation Challenge is introduced in Sec-

tion 4.1 expanding on the overview provided in Section 3.1.1 as motivation for the

developed methodology and including an exploratory analysis. An implementation

of efficient geological ensemble subsampling is demonstrated in Section 4.2 with a

method for constructing a targeted Bayesian design described and used in Section 4.3.

Bayes linear emulation methodology presented in Section 2.4.5 is applied directly to

the utility function in Section 4.4 before comparing with the potential improvements

which can be achieved by exploiting known structures in the behaviour of simulator

output in Section 4.5. An uncertainty analysis combining the frameworks laid out

in Sections 2.7 and 3.5 is applied to the TNO OLYMPUS model in Section 4.6.

Both forms of emulator along with the uncertainty quantification are then incor-

porated within the novel iterative decision support framework in Section 4.7 along
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with an assessment and commentary on the consequences of alternative uncertainty

specifications. This is summarised in a conclusion in Section 4.8.

4.1 Introduction to the TNO OLYMPUS Well

Control Optimisation Challenge

The TNO OLYMPUS Field Development Optimisation Challenge [93] is first intro-

duced in Section 3.1.1 to serve as motivation for the development of an iterative

decision support procedure along with the associated uncertainty quantification

techniques, and emulation methodology exploiting known simulator behaviour in

Chapter 3. Further details of the TNO OLYMPUS Well Control Optimisation

Challenge including a setup specific to our application are provided in Section 4.1.1

with a discussion of an exploratory analysis of a preliminary batch of simulations in

Section 4.1.2.

4.1.1 TNO OLYMPUS Well Control Optimisation

Challenge

The aim of the TNO OLYMPUS Well Control Optimisation Challenge is to design

a well control strategy, represented by a vector of decision parameters, for the

fictitious TNO OLYMPUS oil reservoir model which maximises the expected NPV

objective function over the 20 year lifetime of the field (starting January 1, 2016)

with discounting applied at 3 month intervals, under the uncertainty captured by

the N = 50 geological realisations contained within the OLYMPUS ensemble. For

each ensemble member, the same fixed well configuration provided by TNO is used.

The NPV objective function with decision parameters d as inputs for each individual

model is defined in Equation (3.1.1), with Rj(d, ti) encapsulating the difference

between all revenue accrued and expenditure incurred within each discounting time

interval defined in Equation (3.1.3). Full details of the terms contained within each
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formula can be found in Section 3.1.1. Once the NPV has been computed for each

OLYMPUS model, the expected NPV is approximated by the ensemble mean NPV

defined in Equation (3.1.2).

The TNO OLYMPUS Well Control Optimisation Challenge is framed as a test

of ensemble optimisers, however for our application we reformulate the challenge as

a decision support problem aiming to address many of the criticisms discussed in

Section 3.1.2. This includes a comprehensive uncertainty quantification to highlight

the effects of omitting many of the relevant sources of uncertainty from the analysis,

as is the case in the original setup, which is then incorporated within our novel

iterative decision support procedure to identify a collection of decision parameter

vectors that are robust to the uncertainty specification. We specify our utility func-

tion as U(d) = E[NPV](d), noting that this represents a position of risk neutrality.

In addition, note that TNO do not provide access to the underlying stochastic geo-

logy model for the OLYMPUS reservoir and hence this limits our ability to perform

experiments directly on this model, as well as to validate any identified decision

strategies.

For demonstrative purposes, we focus on the control of a subset of the wells

that are contained between two partial fault boundaries and are in close proximity

consisting of two producer wells: 2 & 10, and two injector wells 2 & 3. Collectively

these wells are referred to as the Controlled Wells Group (CWG) which provides a

sub-problem of interacting wells on which to illustrate the methodology presented in

this thesis. All remaining wells within the OLYMPUS model use the fixed controls

specified in the TNO reference strategy [93]. The utility and objective functions are

both computed from contributions of wells in the CWG only.

A clear distinction should be made between discounting and control intervals

with the latter formed by amalgamating multiple consecutive discounting intervals.

For wave 1 of our application we choose to use eight control intervals of lengths 2,

2, 2, 2, 2, 2, 4 and 4 years. This corresponds to decisions starting on January 1,

2016, 2018, 2020, 2022, 2024, 2026, 2028 and 2032 respectively, resulting in a total
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of 32 decision parameters across the four wells of the CWG. Constructing control

intervals which combine several discounting intervals has the effect of reducing the

dimensionality of the original optimisation or our decision support problem. Within

our iterative decision support procedure, these control intervals may be split into

shorter intervals at later waves (if it is deemed necessary) in order to address the

full challenge.

Participants in the TNO OLYMPUS Well Control Optimisation Challenge may

also select the well control types for which we elect to use target production and

injection rates as decision parameters with daily operational rate constraints detailed

in Table 4.1.

Type Minimum Maximum Unit
Platform Liquid Production Rate 0 14000 m3/day
Well Oil Production Rate 0 900 m3/day
Well Water Injection Rate 0 1600 m3/day

Table 4.1: TNO OLYMPUS Well Control Optimisation Challenge
operational rate constraints.

Throughout this application the notation “prod_x_yyyy_mm” and

“inj_x_yyyy_mm” are used to denote the target production and injection rate

respectively for well number “x” starting on the 1st of month “mm” in year “yyyy”.

Numerous types of simulator output are introduced, discussed and modelled

throughout this thesis, particularly in relation to computing the NPV. We adopt a

simulator output naming convention which is relevant to both the TNO OLYMPUS

model and the Emerson Jade model applications where acronyms are constructed

in the form shown:

{Component}{Fluid-Type}{Attribute}

1. Component – F (field), G (group) or W (well).

2. Fluid-Type – O (oil), W (water) or G (gas).

3. Attribute – Properties reported by the simulator, for example: PR or PT for

Production Rate or Total respectively; and IR or IT for Injection Rate or Total
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respectively.

An example is FOPT for Field Oil Production Total. This is extended to specifically

refer to simulator output within a certain time (or discounting or control) interval

as follows:

{Output}{Well}{Number}_{Date}

1. Output – Simulator output type of the above specified form.

2. Well – Well type, either PROD (producer) or INJ (injector).

3. Number – Well number.

4. Date – Date of end of interval in the form “yyyymmdd” or “yyyymm” when

it is implicitly assumed that the end-date is the 1st of the month.

An example is WOPTPROD2_20180101 which refers to the WOPT for producer

well 2 in the control period ending 1st January 2018, noting that the control interval

started on 1st January 2016. Further useful acronyms in the petroleum industry are

listed in Table 4.2.

Acronym Definition
NPV Net Present Value

(W)BHP (Well) Bottom Hole Pressure
FWCT Field Water Cut
FOIP Field Oil In Place

PROD# or PROD.# Producer Well Number #
INJ# or INJ.# Injector Well Number #

Table 4.2: Acronyms used in the analysis of the TNO OLYMPUS
Field Development Optimisation Challenge.

In our analysis, all simulations of the OLYMPUS ensemble were performed

using the open source simulation software, Open Porous Media (OPM) Flow [161].

On average, each simulation takes approximately 30 minutes to complete, hence

a single decision parameter vector simulated for all 50 OLYMPUS models takes

approximately 25 hours.
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4.1.2 OLYMPUS Exploratory Analysis

In the analysis of any computer model, it is important to perform an exploratory

analysis of a small, preliminary batch of simulations, if possible, with the option to

use a shorter time horizon. This should be undertaken prior to constructing a design

for either the main collection of simulations or the wave 1 simulations within an

iterative analysis; the exploratory simulations may be considered as a wave 0. The

aim of an exploratory analysis is to identify any features of the model which may be

relevant for constructing a more informative design. Furthermore, in situations where

an ensemble of models is used, as is the case in the TNO OLYMPUS Well Control

Optimisation Challenge, a preliminary batch of simulations enables investigations

into whether there exists a representative subset of ensemble members. This leads

to a more efficient use of the available computer resources.

For reasons of available time and limits on computational resources, we restrict to

a relatively small exploratory design of 20 decision parameter vectors over a shorter

time period of the first 10 years of the OLYMPUS field lifetime. This is justifiable

within the challenge setup as TNO stipulate a high discounting rate of 8%, hence after

10 years the income accrued and expenditure incurred have already decreased in value

to only 46.32% versus present day. Consequently any gross revenue in the second half

of the OLYMPUS field lifetime accounts for less than half the value of monetary gains

and costs during the early time periods. This agrees with conventional petroleum

engineering principles where the aim is usually to extract larger volumes of oil at

early times within the field lifetime to mitigate high discounting effects. For the

exploratory simulations the decision parameters are target rates for wells in the

CWG at times of January 1, 2016, 2017, 2019, 2021 and 2023, corresponding to

control intervals of lengths 1, 2, 2, 2 and 3 years respectively. This is a total of 20

decision parameters, for which it is not reasonable to use more due to the size of the

design. Maximin Latin hypercube sampling, as discussed in Section 2.3, was used to

generate the design. Note that a larger collection of simulations would be preferable

if more computational resources were available. Simulation output for each decision
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parameter vector is labelled as SIM_1, . . . , SIM_20.

Exploratory simulations can be used to provide a better understanding of the

mechanics of the system and its computer model. Firstly, these are used to highlight

the variation over the OLYMPUS ensemble for a selection of cumulative field outputs

with time in Figure 4.1, and for WOPT for producer well 10 versus time in Figure 4.2.

In each plot the various coloured lines represent one of the 50 ensemble members

evaluated for a single choice of decision parameter vector, whilst the black dashed line

represents the ensemble mean output. It is observed that each output type diverges

from its mean at later times, although the sample standard deviation at a fixed

time point corresponds to approximately 10% of the mean value. A comparison of

Figures 4.1a and 4.1b, as well as Figures 4.2a and 4.2b, illustrate the difference in the

observed behaviour depending on the well control strategy. Moreover, it is evident

that oil production rate generally decreases with time whilst water production rate

increases, as seen in Figure 4.1c. Meanwhile, the water injection rate is approximately

constant in order to maintain the pressure in the well, as seen in Figure 4.1d.

An interesting facet with potential ramifications for emulation and decision sup-

port is the vastly different relative absolute contributions of oil and water to the

NPV objective function. An assessment of these absolute contributions approximated

within one year intervals for the OLYMPUS 25 NPV is shown in Figure 4.3 where

each of the 20 exploratory analysis decision parameter vectors are represented by

different colours. The solid lines depict the oil contribution, |Qj,op(d, ti) ·rop| in Equa-

tion (3.1.3), for which it is immediately evident that this is dominant versus both

the absolute water production contribution (dot-dashed lines), |Qj,wp(d, ti) · rwp| in

Equation (3.1.3), and injection contribution (dotted lines), |Qj,wi(d, ti) · rwi| in Equa-

tion (3.1.3), as well as their sum (dashed lines), |Qj,wp(d, ti) · rwp +Qj,wi(d, ti) · rwi|.

For earlier time intervals the magnitude of the oil contribution to the NPV is typic-

ally of the order of 100 times the combined water contribution which decays towards

10 times larger for later time intervals. Plotting on the logarithmic scale in Fig-

ure 4.3b facilitates an easier comparison of the water contributions. It is observed
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(a) FOPT for SIM_1. (b) FOPT for SIM_2.

(c) FWPT for SIM_1. (d) FWIT for SIM_1.

Figure 4.1: OLYMPUS cumulative field outputs versus time for ex-
ploratory simulations where each line shows the vari-
ation over the full ensemble of 50 geological realisations.
The black dashed line indicates the ensemble mean cu-
mulative output.

that water injection contributes a much larger amount to the NPV, particularly for

earlier time intervals. This is to be expected since production wells are drilled within

regions containing a high oil concentration, hence at initial times there should be

very little water production. At later times the contribution becomes more alike

as an increased quantity of water is produced in order to maintain oil production,
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(a) WOPTPROD10 for SIM_1. (b) WOPTPROD10 for SIM_2.

Figure 4.2: OLYMPUS WOPTPROD10 versus time for the explor-
atory simulations where each line shows the variation
over the full ensemble of 50 geological realisations. The
black dashed line indicates the ensemble mean
WOPTPROD10.

whilst also noting the higher fixed cost per barrel of water produced versus injected.

Similar observations are made for other OLYMPUS models.

Another feature which was analysed using the exploratory simulations is the

adherence of the simulator to target production and injection rates. Examples of

the plots used are shown in Figure 4.4 of the simulated rates versus time for the 50

ensemble members, with the decision targets denoted by the black dashed lines. It

is immediately evident in all plots that the input targets are not strictly adhered to;

a consequence of the underlying physics programmed into the simulator including

imposed constraints such as on BHP resulting in deviations between observed and

selected control values. For producer wells the BHP must not fall too low (minimum

of 150 bar), hence it is easier to achieve a desired target production rate at earlier

times, and whilst the injection rates are sufficiently high. This can be seen up to the

start of 2021 in Figures 4.4a and 4.4b, noting that there exists some variation due

to the differing geologies, especially when a high target production rate is requested.

In later time intervals there is a persistent struggle to maintain BHP, particularly for
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Figure 4.3: OLYMPUS 25 approximate absolute contribution to the
NPV per year for each of the exploratory simulations
represented by different coloured lines. The NPV is de-
composed into the oil production (solid line), absolute
water production (dot-dashed line) and injection (dot-
ted line), and the total water contribution (dashed line),
with each scaled by the respective fixed NPV cost para-
meter. These are |Qj,op(d, ti) · rop|, |Qj,wp(d, ti) · rwp|,
|Qj,wi(d, ti) ·rwi| and |Qj,wp(d, ti) ·rwp+Qj,wi(d, ti) ·rwi|
in Equation (3.1.3) respectively. The top and bottom
plots are on the raw and logarithmic scale respectively.
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Figure 4.4: Comparison of the target and achieved rate controls
for the OLYMPUS model using the first exploratory
simulation. Each plot shows the simulator output as
coloured lines for each ensemble member of the well
oil production rates (top) or water injection rates (bot-
tom) within the CWG versus time. This is compared
with the black dashed lines that show the correspond-
ing decision parameters of target production or injection
rates respectively over time. The differences between
the output traces and the inputs highlights the devi-
ations between the target control and what is achieved
due to physical constraints applied in the model.

producer well 10. For injector wells the BHP must not be too high (maximum of 235

bar) which would be exceeded as a result of high water injection whilst not extracting

sufficient quantities of fluid from the field. Consequently at earlier time intervals it

is harder to maintain a requested injection rate, whilst at later times this can be

achieved. Examples of this behaviour can be seen in Figures 4.4c and 4.4d. Such
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observations of two distinct modes of behaviour motivates structured emulation of

these outputs within time intervals in Section 4.5. Note that another characteristic

which is observed in these plots is an occasional apparent lag between the new target

rate and it being recorded in the simulator output. This is not actually the case and

is a consequence of the numerical solver step-sizes which is addressed prior to the

first wave of simulations for decision support.

4.2 Application of the EGES Techniques

In this section we apply the efficient geological ensemble subsampling (EGES) tech-

niques described in Section 3.2 utilising the exploratory simulations discussed in

Section 4.1.2 to identify a representative subset of the N = 50 OLYMPUS mod-

els. This is a novel application of such ensemble subsampling techniques within the

petroleum industry.

Preliminary graphical investigations utilise plots of the ensemble mean versus

the individual model outputs for which a selection are shown in Figure 4.5, where

the black line denotes equality between the ensemble mean and individual ensemble

member model output. The main outputs of interest stem from the NPV objective

function and include: the ensemble mean NPV, oil production, water production

and injection total, both for the field and for wells within the CWG.

It is not necessary to sub-select models for which each of the individual model

outputs are close to the ensemble mean, but instead identify cases where the rela-

tionship is easier to model, for example, there is a preference for linear associations.

It is also desirable that the output variation is relatively small. Note that this is

a preliminary graphical assessment which is limited to identifying one-dimensional

relationships. This is observed in Figures 4.5a to 4.5c which show strong linear

relationships with fairly limited variation providing evidence that even as individual

models, OLYMPUS 25, 33 & 45 are potentially representative for the ensemble

mean. An appropriate (linear) transformation may be applied in the cases seen in
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(d) OLYMPUS 50 WOPTPROD10.

Figure 4.5: Preliminary graphical investigations for Efficient Geolo-
gical Ensemble Subsampling consisting of plots of the
OLYMPUS ensemble mean versus individual model out-
puts. The black line denotes equality between the en-
semble mean and individual model outputs.

Figures 4.5b and 4.5c. In contrast OLYMPUS 50 does not appear to be a good rep-

resentative model, at least individually, as seen in Figure 4.5d where the relationship

is more challenging to model. This graphical investigation is also useful as a pre-

liminary screening technique to obtain a subset of models to investigate further and

is particularly useful for large ensembles, especially when there are limited distinct

decision parameter vectors, as is the case for our application to the TNO OLYMPUS

Well Control Optimisation Challenge. Based on an analysis of all outputs of interest,

this leads to the proposal of ensemble members OLYMPUS 2, 6, 11, 23, 25, 33, 35,

37 & 38 for further investigation. Note that this does not contain OLYMPUS 45
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which will be discussed below.

In order to capture the interacting effects of the different OLYMPUS models, the

efficient geological ensemble subsampling technique using the linear model described

in Section 3.2.2 is implemented. This is first applied to a proposed subset of the

OLYMPUS models, before extending to all possible models via both directions

stepwise selection starting from the full model and using AIC as the model selection

criterion, as presented in Appendix A. It is established that a subset of only NEGES =

3 models is sufficient for a large number of the investigated outputs, as demonstrated

in Figure 4.6 of the linear model adjusted R2 values for various outputs. All are

high with most greater than 0.95 which implies the majority of the variation in the

ensemble mean is explained by a small subset of the OLYMPUS models. These are

OLYMPUS 25, 33 & 45 which are subsequently used for wave 1 of iterative decision

support. It is noted that OLYMPUS 25 & 33 were identified as part of the proposed

subset of models, whilst OLYMPUS 45 was not. This is because for certain outputs

it was judged that OLYMPUS 45 was not a sufficiently good representative for the

ensemble mean, however in combination with OLYMPUS 25 & 33 via the EGES

linear models it is found that this subset characterises the ensemble mean very well,

and in particular, the ensemble mean NPV. This demonstrates the value of the

EGES linear model construction for identifying combinations of ensemble members

which together form an adequate representation of the ensemble mean. The linear

model constructed for predicting the ensemble mean NPV using the simulated NPV

for OLYMPUS 25, 33 & 45 only is referred to as the EGES linear model which is

used as an efficient method of prediction with a corresponding quantification of the

uncertainty induced by only using 3 ensemble members instead of the all 50.

4.3 Targeted Bayesian Design

In this section we present a novel Bayesian approach to constructing a design of

simulations tailored to decision support which develops on traditional space filling
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Figure 4.6: Adjusted R2 values for the OLYMPUS EGES linear
models of the form in Equation (3.2.1) for the ensemble
mean of various outputs within control intervals using
the same subset of NEGES = 3 OLYMPUS models as
predictors.

designs (see Section 2.3) to incorporate additional constraints and sample based

on prior beliefs regarding the optimal decision. This is useful but not essential for

providing decision support by reducing the number of simulations in regions which

a priori are not believed to contain the best decision, thus reducing the overall

computational expense. Two different types of constraints relevant to well control

optimisation are described in Section 4.3.1 followed by an algorithm for sampling

based on these constraints and incorporating prior beliefs. Results for the TNO

OLYMPUS Well Control Optimisation Challenge are then presented in Section 4.3.2.
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4.3.1 Prior Constraints and Targeted Bayesian Design

Methodology

Within the analysis of computer experiments, both within a Bayesian or frequentist

framework, it is common practice to specify a finite range for each input parameter.

In the context of optimisation or decision support for petroleum reservoir well

control optimisation, these take the form of operational range constraints providing a

minimum and maximum value for each decision parameter. The result is a (decision)

parameter space which is a hypercube for which there exists extensive literature for

constructing (approximately) optimal (space filling) designs, with a review found in

Section 2.3.

Traditional space filling designs are useful where parameters are considered mu-

tually independent however this is not always the case, as seen in the well control

optimisation problem where parameters are target rates or pressures for which large

temporal variation seems unphysical and is deemed poor practice by oil reservoir

engineers. In addition to operational range constraints, this introduces a difference

constraint between time consecutive control parameters where for time ordered de-

cision parameters |di − di−1| ≤ ∆i, i = 2, . . . , D. Note that the decision parameter

space is no longer a hypercube.

Adhering to such constraints motivates the use of a Bayesian design informed

by these prior stipulations involving sampling the sum of the parameters and their

consecutive differences. Since each parameter is bounded it can be linearly trans-

formed to any range, thus assume each di ∈ [0, 1]. Define t = ∑D
i=1 di ∈ [0, D] to be

the sum of the parameters and δi = di−di−1√
2 for i = 2, . . . , D. Scaling the differences

by 1√
2 is required due to the rotation of the parameter space represented by this

alternative parametrisation. Note that new parameters are mutually orthogonal with

t ∈ [0, D] and |δi| ≤ ∆′i = ∆i√
2 . This re-parametrisation is the linear transformation

(t, δ)T = Ld summarised in Equation (4.3.1) where L represents the transformation

matrix. By sampling in the re-parametrised space the difference constraints are
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automatically satisfied with a sample for d obtained via d = L−1(t, δ)T described in

Equation (4.3.1). The range constraints, di ∈ [0, 1], must also then be verified.

t

δ2

δ3

δ4

...

δD



=



1 1 1 1 · · · 1 1

− 1/
√

2 1/
√

2 0 0 · · · 0 0

0 − 1/
√

2 1/
√

2 0 · · · 0 0

0 0 − 1/
√

2 1/
√

2 · · · 0 0
... ... ... ... . . . ... ...

0 0 0 0 · · · − 1/
√

2 1/
√

2





d1

d2

d3

d4

...

dD



(4.3.1)

Application of a uniform rejection sampling algorithm for this alternative paramet-

risation, it is observed that very few samples for small or large sums of the parameters,

t, are accepted, thus failing to properly explore along the t-direction that is thought

to be important. Instead we propose preserving an initial sample of the parameter

sums, uniformly resampling a vector of the δi until both constraints are satisfied.

There is freedom to choose the sampling distribution of t with probability density

function denoted by fT (t) dependent on the aim of the analysis. Examples include:

uniform; mixture of uniforms; truncated normal; or transformed beta distributions.

Orthogonal projection of the samples onto the line d1 = d2 = · · · = dD will ap-

proximately follow this distribution. The process of generating a sample of size

n is described in the rejection style Algorithm 1 yielding matrix B in which each

column is a sampled vector of decision parameters. An efficiency improvement is

made by sampling the differences conditional on t where the rejection step can be

computationally time consuming if t is close to 0 or D. This technique may be

applied separately to independent subgroups of decision parameters for improved

efficiency and combined using random permutations to optimise the final design with

respect to a chosen design criterion such as those detailed in Section 2.3.5.
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Algorithm 1: Sampling of parameter sums and differences preserving the
initial sum of parameters sample.
Result: Matrix B of columns of sampled parameter vectors
Let t be a vector of n samples of t ∼ fT (t);
Let B be an empty matrix of D rows;
Define dimension(·) to be a function to obtain the length of a vector;
while dimension(t) > 0 do

foreach t in t do
Set εi = min{t,D − t,∆′i};
Generate δi | t ∼ U [−εi, εi], for i = 2, . . . , D;

end
Row bind t, δ2, . . . , δD to form matrix Br,prop;
Compute Bprop = L−1Br,prop;
foreach Column in Bprop do

if Range conditions of parameter vector are satisfied then
Join Column to B;
Remove corresponding t from t;

else
Discard Column;

end
end

end

4.3.2 Wave 1 Design for Simulations

In this section we present a wave 1 design for the TNO OLYMPUS Well Control

Optimisation Challenge including the two types of constraints and the design al-

gorithm introduced in Section 4.3.1. As discussed in Section 4.1.1, for wave 1 we use

a total of D = 32 decision parameters corresponding to each of the four controlled

wells with eight control intervals starting on January 1, 2016, 2018, 2020, 2022,

2024, 2026, 2028 & 2032. TNO specify the operational ranges to be [0, 900]m3/day

and [0, 1600]m3/day for production and injection rates respectively. Additionally we

impose a difference constraint between time consecutive parameters for the same

well to obtain physically realistic control strategies. A conservative choice is that

the maximum permitted change over a two year time interval is ∆ = 1
3 of the para-

meter range. Naturally this splits the design into four independent subgroups of

eight decision parameters for each well. Moreover, note that imposing the difference

constraint results in a reduction of the volume to approximately 3.4529% of the
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initial hypercube due to the range constraints only.

Algorithm 1 is implemented to generate a n = 700 point design for each of the

four subgroups of eight parameters which are approximately optimised with respect

to the minimax design selection criterion (see Equation (2.3.4)) given a large 20, 000

point uniform random sample with which to compare a large collection of candidate

designs. A priori a 700 point design is justified by the heuristic of sampling at least

10 times the dimension of the parameter space, n ≥ 10 · D [116]. The normalised

sum of parameters t is sampled from a truncated normal distribution with mean

µt = 4, standard deviation σt = 2.2, and truncation bounds of [0.5, 7.5], noting

that the maximal range is [0, 8]. Although this prevents samples within the corners

where all decision parameters are set to their minimum or maximum respectively,

this choice of truncation bound is justified via uniform sampling over the constrained

decision space yielding 99.9995% of 106 points which lie within this interval, hence

very little of the volume is contained within these two corner regions. Moreover, the

choice of an absolute distance from these corners of 0.5 is based on prior beliefs that

a reasonable correlation length for each parameter is half of its parameter range.

Note that the correlation length will be re-assessed during the construction of the

emulators once simulation data is available.

The mean hyperparameter is selected to be µt = 4 corresponding to the mid-point

of both the range of the normalised sum and the truncation interval, and matches

the expectation under uniform sampling. The standard deviation hyperparameter

σt is selected so as to ensure a reasonable number of samples are obtained for both

low and high parameter sums with an assessment performed using histograms to

achieve a desired shape for the sampling distribution. An example of this assessment

is presented in Figure 4.7a comparing to uniform sampling. It is not expected that

results of targetted sampling from fT (t) and from the uniform distribution align

with the choice of fT (t) dependent on the aims of the analysis and any prior beliefs.

We selected a value of σt = 2.2, corresponding to 0.275 per parameter, with the

corresponding samples for producer well 2 shown in Figure 4.7b. This differs from
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(a) Histogram of the sum of normalised para-
meters obtained via uniform sampling
over the constrained decision parameter
space for an individual well with the trun-
cated normal density overlaid in red.
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(b) Histogram of the sum of normalised para-
meters for producer well 2 sampled from
a truncated normal distribution.

Figure 4.7: Histograms of the wave 1 design sum of normalised
parameters. This includes a comparison of the chosen
truncated normal distribution with truncation bounds
[0.5, 7.5], mean µt = 4, and standard deviation σt = 2.2,
this is fT (t) in Algorithm 1, with the results of uniform
sampling over the constrained decision parameter space.
The nature of employing a targetted design means that
these are not expected to align.

uniform sampling over the constrained decision parameter space which tends to select

parameter sums close to the mean as a result of the central limit theorem, and thus

provides a nuanced way to sample assigning a modest preference to high and low

values of t, which a priori is thought to be a major driver of the NPV constituent

outputs. A comparison with the selected truncated normal density presented in

Figure 4.7a illustrates this point. For decision support this allows for both the quick

elimination of regions of low NPV, whilst also exploring regions that a priori are

expected to produce high NPVs.

Figure 4.8 is a pairs plot of the 2-dimensional projection of the wave 1 design

for producer well 2. The plots next to the axis labels clearly highlight the result is

imposing the difference constraint as points are clustered between two clearly defined

diagonal parallel bounds. Since the final two control intervals are of length 4 years

a greater change is permitted, hence the wider bands. The effects of imposing the
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difference constraints can also be seen between decision parameters with a larger

time separation with fewer points away from the main diagonal, although it is less

noticeable for greater time separations. Compared to uniform sampling there are

more points sampled for smaller and larger parameter values, thus there is better

exploration of the corner and edge regions of the decision space, but still sufficiently

many points near the centre for constructing Bayesian emulators. This design is

evaluated for only the subset of 3 OLYMPUS models identified in Section 4.2, with

the EGES linear model used to predicted the ensemble mean NPV.

In Figure 4.8, the points are coloured by the simulated expected NPV predicted

from EGES linear model where green, yellow and red points correspond to high,

moderate and low NPVs respectively. Observations confirm reservoir engineering

insight with high early time target production rates required to achieve a high

NPV. As time progresses, the effect of discounting results in an increasing spread of

red and yellow points across each parameters range until the final control interval,

prod_2_2032_01, which encompasses the full range and hence a high NPV may

be achieved for any control value when combined with suitable other decisions. A

similar pairs plot is generated and checked for producer well 10 which is omitted

for space, although the apparent association between high early time target rates is

less substantive. This is indicative of the behaviour for producer well 2 being more

important than producer well 10 in determining the overall NPV. Pairs plot for the

two injector wells also possess the structure induced by the difference constraints,

but with no dominant behavioural insight into which values are likely to yield a

high expected NPV. Histograms of the sampled individual parameters are presented

in Figure 4.9. Both plots are fairly uniform, although there is an apparent greater

weighting on central values for inj_2_2022_01 in Figure 4.9b. This highlights that

whilst the sampling method described in Algorithm 1 is not designed to produce

uniform marginal samples, a close approximation is obtained.

The four independent sub-designs of size 700 and each of dimension 8 are com-

bined using random permutations and approximately optimised with respect to the
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Figure 4.8: Wave 1 design pairs plots of the 702 well control
strategies for producer well 2 for a design generated
using Algorithm 1 and selected using the minimax dis-
tance criterion. A fixed initial sample of parameter sums
from a truncated normal distribution was used when
forming all candidate designs. Points are coloured ac-
cording to the simulated NPV obtained from the EGES
linear model with green, yellow and red corresponding
to high, moderate and low NPVs respectively.

minimax design selection criterion. Moreover, the final selected design of size 700 is

augmented to include two further decision parameter vectors with either all para-

meters set to their minimum or maximum values since it is of interest to observe

the model behaviour at these extremes whilst also providing some exploration of

these two extreme corner regions removed when sampling from the truncated nor-
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Figure 4.9: OLYMPUS wave 1 design marginal density histograms
for prod_2_2016_01 and inj_2_2022_01 over the 702
well control strategies generated using Algorithm 1 and
selected using the minimax distance criterion.

mal distribution, leading to a final wave 1 design of size 702 and evaluated for the

identified subset of 3 OLYMPUS models. The CWGOPT and CWGWIT simulation

outputs for OLYMPUS 33 are illustrated in Figure 4.10 for the first 52 design points,

where the results for the minimum and maximum decision parameter settings are

emphasised by the blue and red lines respectively, whilst the outcome of the next

50 simulations are represented by grey traces. These plots demonstrate the large

variation in the outputs with time as a consequence of different decision parameter

settings.

4.4 Bayes Linear Emulation of the Expected

NPV

In this section we present the direct Bayes linear emulation of the expected NPV in

order to explore the 32-dimensional wave 1 decision space following the methodology

reviewed in Section 2.4.5. This analysis makes use of the EGES linear model to

predict the expected NPV from Section 4.2 and the wave 1 design constructed

in Section 4.3.2. Results are compared to the hierarchical emulation approach
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Figure 4.10: OLYMPUS 33 CWGOPT (left) and CWGWIT (right)
versus date for the first 52 wave 1 simulations. The
blue and red lines represent the simulation output
where all decision parameters are set to the minimum
or maximum respectively. All other simulations are
represented by grey traces.

exploiting known simulator behaviour in Section 4.5.5, as well as for decision support

in Sections 4.7.1 and 4.7.2.

An emulator with a nugget term of the form shown in Equation (2.4.1) is used

where f(d) = U(d) = E[NPV](d) with decision parameters d ∈ Ω ⊂ R32 as inputs.

The choice of active decision parameters and low order polynomial terms for the gj(·)

functions are investigated using linear regression modelling and stepwise selection

techniques with the AIC criterion. Alternative model selection criteria are considered,

although AIC is found to be parsimonious in identifying a sufficiently large set of

active decision parameters and constructing a global mean function. Equation (4.4.1)

shows the form of the linear model identified where ABL = {prod_2_2016_01,

prod_2_2018_01, prod_2_2020_01, prod_2_2022_01,

prod_2_2024_01, prod_2_2026_01, prod_2_2028_01,

prod_2_2032_01, prod_10_2016_01, prod_10_2018_01, prod_10_2020_01,

prod_10_2026_01} denotes the set of active decision parameters. It is noted that

Equation (4.4.1) contains no interaction terms since investigations show negligible

improvement in the adjusted R2 value for the linear model and hence they explain

very little additional variation in the expected NPV. Let σlm be the estimate for the
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residual standard error of this linear model. All decision parameters are transformed

onto the range [−1, 1]. The unknown regression coefficients are assumed to have

prior expectation µβ = 0 and an infinite prior uncertainty, with emulator updates

exploiting the limiting results as Var[β] → ∞ in Equations (2.4.44) and (2.4.45)

derived in Section 2.4.5.

E[NPV](dABL) = β0 +
∑

di∈ABL

{βi,1di + βi,2d
2
i }+ ε (4.4.1)

For the residual process it is assumed that E[u(dABL)] = 0 and E[w(d)] = 0 with a

squared exponential covariance structure (Equation (2.4.3)) using a single common

correlation length hyperparameter. Following the substitution approach for the

hyperparameters: σ2
u = (1 − ρ)σ2

lm and σ2
w = ρσ2

lm where ρ = 0.05; whilst the

correlation length parameter is set to half of the parameter range, hence θ = 1.

These choices are validated via emulator diagnostics discussed below.

Bayes linear adjustment for the emulator expectation and variance is performed

following Equations (2.4.44) and (2.4.45) respectively. In comparison with the direct

use of the simulator we observe a substantial reduction in computation time with

over 2000 emulations for new decision parameter settings per second using a single

core compared to approximately 30 minutes per OLYMPUS model, or 25 hours using

the entire ensemble. The combination of EGES and Bayes linear emulation equates

to an efficiency gain of the order of 108, thus highlighting one of the key benefits

of emulation. Moreover the process is easily parallelisable to achieve even greater

increases in speed.

Leave-one-out diagnostics suggest that the emulator fits well across the decision

space, as shown in Figure 4.11 of the emulator adjusted expectation with credible

interval of width 3 adjusted standard deviations versus the expected NPV where

691 of the 702 (98.4%) credible intervals contain the simulated expected NPV, as

highlighted by the red dashed line representing equality. For a Bayes linear emulator

this is an approximate 95% credible interval and so the Frequentist coverage is

satisfied, thus validating the emulator. Moreover, if the additional assumption of a
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Figure 4.11: Bayes linear emulator for expected NPV leave-one-out
diagnostic plot of the emulator adjusted expectations
with 3 adjusted standard deviation credible interval
error bars versus the simulated expected NPV. The red
dashed line denotes equality of the emulator prediction
and the observed value.

Gaussian process emulator was imposed, then the 95% credible would be of width 1.96

adjusted standard deviations. It is found that 679 of the simulated expected NPVs

are contained within the respective credible intervals, corresponding to a Frequentist

coverage of 96.7%, even under these stronger assumptions. It is noted that the

few cases where these diagnostics are not satisfied tend to yield over-prediction

which is safe when we are ruling out parts of the parameter space that yield low

expected NPV. This is also less of a concern with a view to decision support where

refinement at later waves will likely correct this. Other leave-one-out diagnostics for

the emulator residuals such as those discussed in Section 2.4.6 highlight no major

issues or misspecification.
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4.5 Hierarchical Emulation Exploiting Known

Simulator Behaviour

In this section we present an application of our developed methodology for hier-

archical emulation exploiting known simulator behaviour detailed in Section 3.3 to

the TNO OLYMPUS Well Control Optimisation Challenge. As for the Bayes linear

emulation, this analysis makes use of the EGES linear model to predict the expected

NPV, using only 3 geological realisations from Section 4.2 and the wave 1 design

constructed in Section 4.3.2. In Section 4.5.1 we decompose the NPV formula by

model into its constituent parts and perform structured emulation. These are com-

bined to obtain the approximate NPV for an individual model in Section 4.5.2 before

linking to the exact NPV in Section 4.5.3. The utility function is then emulated

in Section 4.5.4. A comparison is made with the results of standard Bayes linear

emulation in Section 4.5.5.

4.5.1 Structured Emulators Exploiting Known Simulator

Behaviour for NPV Constituents

In the TNO OLYMPUS Well Control Optimisation Challenge the expected NPV

utility function can be decomposed into three parts: FOPT, FWPT and FWIT

for each control interval and may be divided further into the corresponding well

quantities. As discussed in Section 3.3.1, for each OLYMPUS model, the WOPT and

WWIT within a control interval are observed to follow structured behaviour where

the quantity is equal to the corresponding target rate decision parameter multiplied

by the length of the time interval up to an unknown change point beyond which

there is a plateau in the behaviour due to the BHP constraint. This is illustrated

for the OLYMPUS 25 WOPT for producer well 2 over the first two years of the field

lifetime (this is the first control interval) in Figure 4.12. The red points correspond

to those which exceed the change point upper bound for the target production rate

for producer well 2 during this interval, cuP2,2016, calculated using Equation (3.3.1)
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with δi,u = 10. It is also noted that such structured behaviour is not observed for

WWPT within a control interval since there is no corresponding target rate; its

behaviour is a consequence of attempting to achieve a given target production rate

subject to the BHP constraint with water present within the oil field.
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Figure 4.12: OLYMPUS 25 WOPT for producer well 2 during
the first two years (ending 01/01/2018) versus the
corresponding decision parameter, the target produc-
tion rate, prod_2_2016_01. For small values of
prod_2_2016_01 the target is achieved resulting in a
perfectly defined linear behaviour up to a change point
due to other controls and BHP constraints beyond
which the WOPT plateaus as a maximum threshold on
the production rate is achieved. The red points corres-
pond to where prod_2_2016_01 = dP2,2016 > cuP2,2016.

The structured emulation technique described in Section 3.3.2 is applied sep-

arately for each of the OLYMPUS models to the WOPT and WWIT within each

control interval for wells in the CWG. These simulator outputs will be considered as

fi(d) in the construction of the respective emulator. Firstly, for each of these NPV
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constituents, a conservative estimate for the change points is obtained via the change

point upper bounds calculated from the wave 1 simulations using Equation (3.3.1),

each time with δi,u = 10. This ensures numerical stability and that an upper bound

is obtained with all points exceeding this definitely in the plateau region. See Fig-

ure 4.12 for an example. Next the extrapolation cut-offs are estimated as the change

point lower bounds from the wave 1 simulations using Equation (3.3.2) with δi,l = 10

to account for numerical precision within the simulations. The change point upper

bounds and extrapolation cut-offs are illustrated for each of the wave 1 sub-selected

OLYMPUS models in Figure 4.13 highlighting the region in which the “true” change

point is believed to be situated.

For each NPV constituent, a preliminary Bayes linear emulator is fitted of the

form shown in Equation (2.4.1) with deterministic functions, mi(dAi), consisting of

a constant as well as all linear and quadratic terms in the active decision parameters

as follows:

mi(dAi) = gi(dAi)Tβi = βi,0 +
∑
dj∈Ai
{βi,j,1dj + βi,j,2d

2
j} (4.5.1)

It is assumed that the active decision parameters comprise all decisions which take

place in the past of the output, for example, for WOPTPROD2 these are Ai =

{prod_2_2016_01, prod_10_2016_01, inj_2_2016_01, inj_3_2016_01}. This is

a logical choice since future decisions are physically unable to impact on an output

up to the current time, however any past decisions may potentially have an effect.

The remainder of each emulator’s prior specification is obtained via the same

means as for the expected NPV Bayes linear emulator in Section 4.4 with the

distinction being that only those simulation points in D′i = {d | d ∈ D, djk,ti > cujk,ti}

with output F′i = {fi(d) | d ∈ D′i} are used. That is a linear model of the form

shown in Equation (4.5.1) is fitted using these points with all decision parameters

transformed onto [−1, 1]. An estimate of the residual standard error is denoted by

σi,lm. It is assumed that the unknown regression coefficients have prior expectation

µβ = 0 and an infinite prior uncertainty, again employing the limiting results in



180 Chapter 4. TNO OLYMPUS Well Control Optimisation
0

20
0

40
0

60
0

80
0

Change Points Intervals

Ta
rg

et
 P

ro
du

ct
io

n 
R

at
e

p2
_2

01
6

p2
_2

01
8

p2
_2

02
0

p2
_2

02
2

p2
_2

02
4

p2
_2

02
6

p2
_2

02
8

p2
_2

03
2

p1
0_

20
16

p1
0_

20
18

p1
0_

20
20

p1
0_

20
22

p1
0_

20
24

p1
0_

20
26

p1
0_

20
28

p1
0_

20
32

(a) OLYMPUS 25 WOPT

0
50

0
10

00
15

00

Change Points Intervals

Ta
rg

et
 In

je
ct

io
n 

R
at

e

i2
_2

01
6

i2
_2

01
8

i2
_2

02
0

i2
_2

02
2

i2
_2

02
4

i2
_2

02
6

i2
_2

02
8

i2
_2

03
2

i3
_2

01
6

i3
_2

01
8

i3
_2

02
0

i3
_2

02
2

i3
_2

02
4

i3
_2

02
6

i3
_2

02
8

i3
_2

03
2

(b) OLYMPUS 25 WWIT
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(c) OLYMPUS 33 WOPT
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(d) OLYMPUS 33 WWIT
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(e) OLYMPUS 45 WOPT
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Figure 4.13: OLYMPUS wave 1 change point upper bound and ex-
trapolation cut-off intervals for WOPT and WWIT
within each control interval with respect to their cor-
responding decision parameter for each of the three
sub-sampled OLYMPUS models.
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Equations (2.4.44) and (2.4.45) derived in Section 2.4.5. For the residual process

it is assumed that E[ui(dAi)] = 0 and E[wi(d)] = 0 with a squared exponential

covariance structure (Equation (2.4.3)) using a single common correlation length

hyperparameter. Following the substitution approach for the hyperparameters:

σ2
ui

= (1 − ρ)σ2
i,lm and σ2

wi
= ρσ2

i,lm where ρ = 0.05; whilst the correlation length

parameter is set to half of the parameter range, hence θ = 1.

Given this preliminary emulator and a theoretical upper bound based on the

target rate for the time interval, the emulation output type is determined with

points being classified as in the slope, plateau, or close to the change point following

the structured emulation with upper truncation method presented in Section 3.3.2.

Note that it is not necessary to use the two-sided truncation version as for each

OLYMPUS model and NPV constituent there are a sufficient number of points in D′i
which combined with the structured regression term within the preliminary Bayes

linear emulator leads to reasonable predictive performance over the extrapolation

region with low-to-moderate uncertainty.

Leave-one-out diagnostics are performed yielding plots such as those shown in

Figures 4.14 and 4.15 for OLYMPUS 25 NPV constituents where Figures 4.14a, 4.14c,

4.15a and 4.15c show the structured emulator adjusted expectation with credible

intervals of width 3 adjusted standard deviations versus the corresponding simulated

output. In each case it is observed that for smaller values of each NPV constituent

that the emulator is exceptionally accurate corresponding to where the target rate

is adhered to for the entire control interval. For larger values of the simulated

output believed to be on plateau, the credible interval is of a greater width, whilst

the implementation of a truncated GP emulator for intermediate values in the

uncertain region around the location of the change point demonstrates a reduction

in the uncertainty in these locations. The type of emulator employed within the

classification step is best observed in Figures 4.14b, 4.14d, 4.15b and 4.15d which

show the credible intervals versus each NPV constituents’ corresponding decision

parameter. Another observation is that structured emulators for a fixed output type
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are generally more accurate where the truncated GP or Bayes linear emulator is

applied for earlier time intervals. This is to be expected since there is less uncertainty

of the preceding oil field behaviour, as well as fewer decision parameters which

may affect the output. For all NPV constituents, the majority of the credible

intervals contain the simulated value and no issues are detected in other leave-one-

out diagnostic analyses. It is therefore demonstrated that it is possible to achieve

very accurate emulators for the WOPT and WWIT NPV constituents based on a

relatively small number of simulations whilst also capturing the change in behaviour.

As commented above, WWPT within a control interval does not follow the same

structured behaviour as WOPT and WWIT, hence it is emulated separately using

a Bayes linear emulator. This follows the same construction as for the preliminary

Bayes linear emulator within the structured emulation approach implemented above

with active decision parameters consisting of all those which occur in the past of the

output. The prior specification is determined as above with deterministic functions

of the same form as in Equation (4.5.1), but with all simulations in D used to fit

the respective emulators since there is no obvious and easily exploitable structure.

Within this application, for each OLYMPUS model, this requires the fitting of

48 separate emulators: 32 of the structured type; and 16 Bayes linear emulators.

This leads to a total of 144 emulators over the three sub-selected OLYMPUS models.

The next stage of this analysis is to combine these constituent structured and Bayes

linear emulators to first emulate the NPV for a particular model, before subsequently

emulating the ensemble mean NPV and linking this to the expected NPV.

4.5.2 Emulation of the Approximate NPV

The methodology presented in Section 3.3.3 is applied to combine the emulators

for the NPV constituents within the control intervals to obtain an emulator for

the average discounting approximate NPV. Decisions are implemented over time

periods constructed by amalgamating consecutive discounting intervals, as described

by Equations (3.3.5) and (3.3.6). In this application, the 80 3-month discounting
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(b) WOPTPROD2_2018_01 emulator CI
versus prod_2_2016_01.
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versus simulated output.
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(d) WOPTPROD2_2028_01 emulator CI
versus prod_2_2026_01.

Figure 4.14: Leave-one-out diagnostic plots for the structured emu-
lation of OLYMPUS 25WOPTPROD2_2018_01 (top)
and WOPTPROD2_2028_01 (bottom). The left
column shows the adjusted expectation with credible
intervals (CI) of width 3 adjusted standard deviations
error bars versus the simulated value where the red
dashed line denotes equality of the structured emulator
and simulator. The right column shows the adjusted
expectation with credible intervals of width 3 adjusted
standard deviations error bars versus the output’s cor-
responding decision parameter, the target production
rate, with red points denoting the simulated values.
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(a) WOPTPROD10_2020_01 emulator CI
versus simulated output.
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(b) WOPTPROD10_2020_01 emulator CI
versus prod_10_2018_01.
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(c) WWITINJ2_2022_01 emulator CI
versus simulated output.
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(d) WWITINJ2_2022_01 emulator CI
versus inj_2_2020_01.

Figure 4.15: Leave-one-out diagnostic plots for the structured emu-
lation of OLYMPUS 25 WOPTPROD10_2020_01
(top) and WWITINJ2_2022_01 (bottom). The left
column shows the adjusted expectation with credible
intervals (CI) of width 3 adjusted standard deviations
error bars versus the simulated value where the red
dashed line denotes equality of the structured emulator
and simulator. The right column shows the adjusted
expectation with credible intervals of width 3 adjus-
ted standard deviations error bars versus the output’s
corresponding decision parameter, the target produc-
tion or injection rate, with red points denoting the
simulated values.
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intervals are merged to form the 8 control intervals per well where the splits naturally

occur at the start times of each successive decision. The adjusted expectation and

variance of the emulator for the approximate NPV is then obtained employing

Equations (3.3.7) and (3.3.8) with the NPV cost parameters fixed at the values

specified by TNO in Table 4.3 on page 195, treating the NPV constituents as

independent. For WOPT and WWIT outputs where the structured emulator is

collapsed onto the slope with fixed maximum absolute error, the adjusted standard

deviation is approximated by treating this uncertainty interval as equivalent to a

3-sigma credible interval. Intuition and reservoir engineering insight suggest there

exists temporal (and potentially spatial) correlation between the NPV constituents.

However, a consequence of the individual emulator constructions and the differing

subsets of simulation design points on which they are fitted results in it being

challenging to meaningfully assess the correlation structure required for a separable

multivariate emulator. Realisation of a multivariate framework via Equations (3.3.7)

and (3.3.9) leads to various approximate NPV emulator variances depending on

the chosen correlation structure and hence is non-robust whilst also demonstrating

little or no improvement in uncertainty versus the implemented approach, therefore

justifying the independence assumption.

Leave-one-out diagnostics for the approximate NPV emulator for OLYMPUS 25

are shown in Figures 4.16a and 4.16c. There exists a strong linear trend between the

adjusted expectation and simulated approximate NPV with the majority of points

being situated close to the red dashed line depicting equality with the simulated

output. Moreover, the uncertainty generally increases with the approximate NPV.

This can be explained by the nature of the behaviour of the WOPT and WWIT

constituents and the imposition of an extrapolation cut-off within their structured

emulators leading to generally larger uncertainty when higher NPVs are simulated

since these generally correspond to higher oil production rates and moderate to

low water injection rates. A further observation is that it is reasonably common for

multiple (and even the majority) of the NPV constituents to fall on their slope regions
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(a) Average discounting approximate NPV
credible intervals versus simulated values.
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(b) Exact NPV credible intervals versus sim-

ulated values.
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(c) Average discounting approximate NPV
standardised residuals versus simulated
values.
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(d) Exact NPV standardised residuals versus
simulated values.

Figure 4.16: Leave-one-out diagnostics for emulators of the OLYM-
PUS 25 average discounting approximate NPV (left
column) and the exact NPV (right column) via a
simple linear model on the emulated approximate NPV.
The top row shows the emulator adjusted expectation
with 3 adjusted standard deviation credible intervals
versus simulated values where the red dashed line de-
notes when the emulator and simulator coincide. The
bottom row shows the emulator standardised residuals
versus the simulated values.

for a specified decision parameter vector leading to individually smaller structured

emulator uncertainties. These linearly combine to produce a small uncertainty for

the approximate NPV. Figure 4.16c shows the emulator standardised residuals versus

the simulated approximate NPV. There is evidence of a linearly decreasing pattern,

particularly for smaller values of the simulated approximate NPV where there exist
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a number of larger, mainly positive residuals corresponding to underprediction. For

moderate to high simulated approximate NPVs, the majority of the standardised

residuals have an acceptable magnitude less than three. Comparing Figures 4.16a

and 4.16c, it is evident that these occur for smaller simulated approximate NPVs

and hence with a view to decision support, it is expected that these will be discarded

at wave 1 and so are possibly not a concern. There are also a few cases with large

negative residuals due to overprediction. The iterative nature of decision support

enables further investigation of these parameter vectors at later waves. In addition,

the overall aim is to construct an accurate emulator for the final utility function,

where the approximate NPV for each OLYMPUS model are intermediate quantities.

Assessment of their leave-one-out diagnostics therefore provides valuable insight into

the potential sources of any failures in the leave-one-out diagnostics for U(d).

4.5.3 Linking the Exact and Approximate NPV

The next step within the hierarchical emulator construction is to link the exact and

approximate NPV in order to account for the discrepancy induced by coalescing the

discounting intervals. This follows the simple linear regression framework presented

in Section 3.3.4 with the adjusted expectation and variance computed using Equa-

tions (3.3.12) and (3.3.13) where for each OLYMPUS model, β̂0,ÑPVj , β̂1,ÑPVj and

σÑPVj are estimated using the wave 1 simulation data.

Leave-one-out diagnostics are performed for the OLYMPUS 25 NPV with plots

shown in Figures 4.16b and 4.16d. The results are extremely similar to those for

the average discounting approximate NPV in Figures 4.16a and 4.16c respectively

with commentary mirroring that in Section 4.5.2. Figure 4.16d exhibits a linearly

decreasing trend for smaller values of the simulated approximate NPV and occurs

due to underprediction highlighted by a number of larger, mainly positive residuals.

Within decision support this is potentially not a concern as it is expected that

these will be discarded at wave 1. This highlights how the simple linear regression

approach to linking the approximate and exact NPV introduces very little additional
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uncertainty compared to the initial combination of the NPV constituent emulators.

4.5.4 Emulation of the Ensemble Mean NPV

The process of building structured emulators for each of the NPV constituents, their

combination via the NPV formula to obtain the average discounting approximate

NPV, and subsequent linking to the exact NPV is repeated for each of the three

sub-selected OLYMPUS models. For both the TNO OLYMPUS Well Control Optim-

isation Challenge and our setup for decision support, the ensemble mean NPV is the

objective and utility function respectively. This is emulated using the EGES linear

model devised in Section 4.2 to combine the emulators for the OLYMPUS 25, 33 &

45 NPVs, as described in Section 3.3.5. The adjusted expectation and variance are

computed using the formulae in Equations (3.3.16) and (3.3.17) respectively which

account for the covariance structure when estimating the regression coefficients.

It is not possible to perform leave-one-out diagnostics because simulations have

only been performed for a subset of three of the OLYMPUS models, thus the true

ensemble mean NPV cannot be computed. Note that this additional uncertainty

pertaining to the EGES is already accounted for within the hierarchical emulator con-

struction. Instead we compare the hierarchical emulator output with the predicted

ensemble mean NPV, as shown in Figure 4.17. It is evident in Figure 4.17a that

the hierarchical emulator produces accurate predictions for the ensemble mean NPV.

Moreover, the increase in the uncertainty compared to individually emulating the

OLYMPUS 25 NPV in Figure 4.16b is modest; thus demonstrating that the EGES

linear model contributes relatively little additional uncertainty versus the structured

emulation of the NPV constituents for each model. This will be explored further in

Section 4.5.5 where the magnitude of the emulator uncertainty is compared to the

other sources of uncertainty. Figure 4.17b shows no distinguishable pattern in the

pseudo standardised residuals, whilst the majority are of magnitude less than three.
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(a) Hierarchical emulator adjusted expecta-
tion with 3 adjusted standard deviation
credible intervals versus the simulated
ensemble mean NPV predicted via the
EGES linear model where the red dashed
line denotes equality of the emulator and
simulator.
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(b) Hierarchical emulator standardised resid-
uals versus the simulated ensemble mean
NPV.

Figure 4.17: OLYMPUS wave 1 hierarchical emulation diagnostic
plots for the predicted ensemble mean NPV via the
EGES linear regression model combining the emulation
output for the exact NPV of the three sub-selected
OLYMPUS models.

4.5.5 Comparison of Bayes Linear and Hierarchical

Emulation for the Ensemble Mean NPV

Two approaches have been implemented for emulating the ensemble mean NPV: a

direct Bayes linear emulator; and a hierarchical emulator exploiting known simulator

behaviour. Firstly, it is observed that the hierarchical emulator achieves a discernible

reduction in the uncertainty versus the Bayes linear emulator, as characterised by

the emulator adjusted variances. This is evident in a comparison of the leave-one-out

diagnostics plots in Figures 4.11 and 4.17a which show a reduction in the credible

interval widths, and is confirmed in Figure 4.18 which highlights an average reduction

in the adjusted variance of more than a half. Note that there exist a small number

of cases where there is a moderate increase in the uncertainty, although this is

outweighed by the gains achieved across the majority of sampled locations within

the decision parameter space. For context, the seemingly large variances are inline
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(b) Hierarchical emulator.

Figure 4.18: Comparison of the wave 1 Bayes linear and hierarchical
emulators for the OLYMPUS ensemble mean NPV via
histograms of their adjusted variances. For context,
the seemingly large variances are inline with the scale
of the ensemble mean NPV which is typically of order
of 5.0× 107 $ to 6× 107 $.

with the scale of the ensemble mean NPV which is typically of order of 5.0× 107 $

to 6.0× 107 $. The implications for decision support are discussed in Sections 4.7.1

and 4.7.2.

Bayes linear emulation is known to be a very fast and efficient means of con-

structing emulators, as highlighted in 4.4 where a performance of emulating at over

2000 new decision parameter vectors per second using a single core was achieved. In

comparison, the performance for the entire process of hierarchical emulation yielded

a much more modest performance of emulating at approximately 4 new decision

parameter vectors per second using a single core. However, in comparison with

direct simulation from the OLYMPUS ensemble where a single evaluation takes

approximately 25 hours, this is still a considerable efficiency improvement of the

order of 104 which is sufficient for comprehensively exploring the decision parameter

space. Moreover, it is believed that this additional emulator computational expense

is justified by the reduction in the emulator uncertainty since it will be shown in

Section 4.6 that for wave 1 decision support the emulator is the dominant source

of uncertainty. Reducing the emulator uncertainty is therefore imperative in order

to efficiently reduce the decision support non-implausible region and hence avoid
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additional waves of extremely expensive simulations at locations that will be elimin-

ated after the construction of a more accurate emulator. As this can be achieved by

considering the known structure of simulator output, the additional computational

cost is therefore offset versus extra simulations. Note that both emulation processes

are easily parallelisable, thus permitting further efficiency gains.

4.6 Uncertainty Analysis for Well Control

Optimisation

The TNO OLYMPUS Field Development Optimisation Challenge has been formu-

lated with the main aim of addressing the problem of geological uncertainty repres-

ented via the ensemble of 50 OLYMPUS models with no other sources of uncertainty

considered. As emphasised in Section 3.1.2, we feel that this does not adequately

represent the real problem of devising optimal well control strategies and so extend

the uncertainty quantification to illustrate the importance of a comprehensive uncer-

tainty analysis. For this we work with the utility function U(d) = E[NPV](d) and

implement the techniques presented and developed in Sections 2.7 and 3.5. Assum-

ing that the OLYMPUS oil reservoir exists, the computer model is linked to reality

in Section 4.6.1. The geological uncertainty is given a more thorough treatment

in Section 4.6.2, whilst the additional uncertainty arising from efficient geological

ensemble subsampling is considered in Section 4.6.3. An assessment of the NPV cost

parameter uncertainty is presented in Section 4.6.4 demonstrating the importance

of accounting for the way the uncertainty affects the utility (or objective) function.

Comments are also made on structural model discrepancy and decision implement-

ation error in Sections 4.6.5 and 4.6.6 respectively. A summary of the uncertainty

analysis is presented in Section 4.6.7. The magnitude of the assessed uncertainties

are compared to the utility function emulator uncertainty in Section 4.6.8.
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4.6.1 Linking the OLYMPUS Model to the Real World

System

For our application we use an uncorrelated additive error structure described in

Equations (2.7.1) and (3.6.2) to link the OLYMPUS model with the real world oil

reservoir that it is designed to represent. Note that the OLYMPUS reservoir is

fictitious, thus limiting the ability to provide a meaningful uncertainty specification,

particularly for structural model discrepancy and decision implementation error, due

to the lack of a real world system with which to link the OLYMPUS model. For the

purposes of this analysis, we assume that the OLYMPUS reservoir exists in order

to demonstrate how the decision support process would be performed for a real

world system. Since the OLYMPUS ensemble is too computationally expensive to

evaluate for a large number of choices of decision parameter settings, we introduce

an emulator for the utility function extending the additive error link as shown in

Equation (2.7.2). Uncertainties included within this analysis include: geological un-

certainty; EGES uncertainty; and NPV cost parameter uncertainty, whilst comments

are also made regarding structural model discrepancy and decision implementation

error. It is believed that each of these uncertainties are mutually uncorrelated, and

have a potentially additive effect on the utility function, thus justifying the choice

of link between the model and reality whilst also permitting a dependence on the

location in the decision parameter space. Since this uncertainty quantification will

be used to perform decision support via the implausibility measure introduced in

Equation (3.6.3), we assess the variance of each source as a characterisation of the

induced uncertainty.

4.6.2 Geological Uncertainty

Geological uncertainty within the TNO OLYMPUS Field Development Optimisa-

tion Challenge is an example of ensemble uncertainty discussed in Section 3.5.3 and

concerns the lack of knowledge regarding the geology of the OLYMPUS model. Com-
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pared to the TNO OLYMPUS Challenge, the treatment of geological uncertainty, εG,

is broadened beyond the 50 models in the ensemble to consider the variability in the

utility function if an alternative sample of geologies were produced from the under-

lying stochastic geology model. Assessment of ensemble uncertainty, and specifically

geological uncertainty, requires simulations to be performed for the entire ensemble,

thus we use the preliminary exploratory collection of simulations in this analysis.

From these simulations we obtain the sample variance, s2, of the ensemble mean

NPV computed over the exploratory decisions. It is assumed that E[εG] = 0 and

Var[εG] is estimated by s2

N
= s2

50 . In our analysis at wave 1, Var[εG] = 6.381× 1011.

This may be recalculated at later waves as the size of the non-implausible decision

space decreases and thus restricts the decision parameters used in this assessment. A

geological uncertainty term is incorporated to account for that the decision makers

could in principle resolve this uncertainty by requesting a large number of geological

realisations to be evaluated over the final decision support region before committing

to a final strategy. An alternative approach not implemented in this thesis is to use

bootstrap sampling of the ensemble to estimate the utility function variance induced

by geological uncertainty.

4.6.3 Efficient Geological Ensemble Subsampling

Uncertainty

A subset of 3 of the 50 models are used for the wave 1 simulations chosen via

the EGES techniques implemented in Section 4.2. This induces some additional

uncertainty in the utility function, εEGES. Note that this differs from the geological

uncertainty which concerns the step from 50 to a potentially infinite number of

geological configurations, whilst EGES uncertainty accounts for using a subset of the

ensemble. Moreover, the exact treatment of the EGES uncertainty is distinguished

by the form of the utility function emulator.

Bayes linear emulation of the utility function is applied in Section 4.4 and requires

an explicit treatment of the EGES uncertainty. The implemented EGES technique
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uses a linear model from which it is assumed that E[εEGES] = 0 whilst Var[εEGES]

is estimated by the square of the linear model residual standard error which for

wave 1 is 1.149× 1011. This represents 18% of the magnitude of the variance due to

geological uncertainty and thus justifies the ensemble subsampling due to the greatly

reduced computational costs for only a moderate increase in uncertainty compared

to other sources.

The hierarchical emulation approach implemented in Section 4.5 directly incor-

porates the EGES uncertainty within its structure during the step between the NPV

of the three sub-selected models and the ensemble mean NPV described in Sec-

tion 4.5.4. This formulation accounts for the uncertainty in the regression coefficient

estimates whilst also adding a residual term which is assessed in the same manner

as above.

4.6.4 NPV Cost Parameter Uncertainty

For the TNO OLYMPUS Well Control Optimisation Challenge the NPV cost para-

meters consist of the oil price, water production and injection costs, and discount

factor which are required in order to compute the ensemble mean NPV. Since these

are not necessary inputs to the OLYMPUS computer model, they represent a form of

utility function cost parameter. In the TNO OLYMPUS Well Control Optimisation

Challenge these are assumed to be fixed at the values stipulated in Table 4.3. How-

ever, a more realistic scenario is to permit the NPV cost parameters to vary with

time introducing uncertainty, εC, for the utility function. Following the techniques

presented in Section 3.5.2, we demonstrate an assessment of the NPV cost parameter

uncertainty via a simulation experiment where we account for the transformation

type of the utility function.

Simulation of NPV Cost Parameters

To illustrate the effect on decision support of time variable cost parameters a sim-

ulation based approach is implemented. A stationary Gaussian process is used to
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Cost Parameter Notation Value
Oil Price rop 45 $ per bbl
Water Produced Cost rwp 6 $ per bbl
Water Injected Cost rwi 2 $ per bbl
Discount Factor d 0.08

Table 4.3: Expected NPV fixed cost parameters within the TNO
OLYMPUS Well Control Optimisation Challenge.

independently simulate the oil price, water produced and injected costs with samples

drawn at 3 month intervals. For consistency, the Gaussian process has a constant

mean equal to the respective TNO fixed cost parameter value, each using an expo-

nential covariance kernel with correlation length equal to 365 days and standard

deviation parameter taken to be
√

15, 0.12 and 0.04 respectively. This is based on

the belief that economic quantities do not vary smoothly with time. Such a model

is commonly used within financial mathematics to model commodity prices. The

described NPV cost parameter simulation model is not designed to be representative

of our true beliefs for how the actual cost parameters will vary over the 20 year

field lifetime, but is instead used for demonstrative purposes. Actual oil companies

can substitute for their own more complex, stochastic economic model for the time

evolution of the NPV cost parameters. A total of nc = 1000 NPV cost parameter

time series samples are generated with the first 10 oil price scenarios illustrated in

Figure 4.19.

NPV Cost Parameter Uncertainty Before the Removal of Linear

Transformation Effects

The ensemble mean NPV is extremely quick to evaluate given a collection of simula-

tions from the OLYMPUS models. For each of the 702 wave 1 decision parameter

vectors, the NPV is evaluated for the subset of 3 OLYMPUS models using the 1000

generated cost parameter scenarios with the EGES linear model used to predict the

ensemble mean NPV. With a view to decision support, the naïve approach would be

to then assess the variability in the expected NPV due to cost parameters. Examples
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Figure 4.19: Trace plot of 10 simulated oil prices ($ per barrel)
from a Gaussian process with constant mean of $45
per barrel and an exponential covariance kernel with
correlation length of 365 days, and standard deviation√

15. The red line denotes the sample mean over the
10 simulated scenarios.

of plots illustrating the two-dimensional projection onto the decision space coloured

by the standard deviation of εC using this approach are shown in Figures 4.20a

and 4.20b. It is observed that before the removal of the linear effects, the largest

uncertainty occurs for higher marginal parameter values and can be explained as a

priori it is anticipated that selecting higher target rates will lead to larger ensemble

mean NPVs for which the variance is also larger. This is also evident in Figure 4.21a

which shows the NPV cost parameter uncertainty versus the predicted ensemble

mean NPV for which there is a strong positive linear association. A robust choice

in the assessment of the NPV cost parameter uncertainty is therefore the maximum

variance over the decision space; Var[εC] = 3.598× 1013. Construction of an emu-
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(c) prod_2_2016_01 versus
prod_2_2018_01 after the removal
of linear effects.
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(d) prod_2_2020_01 versus
prod_2_2032_01 after the removal
of linear effects.
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Figure 4.20: OLYMPUS wave 1 uncertainty quantification two-
dimensional projections of the decision space coloured
by the standard deviations of the ensemble mean NPV
utility function due to the cost parameter variabil-
ity. The top and bottom rows illustrate the uncer-
tainty before and after the removal of linear effects
respectively. The left column shows prod_2_2016_01
versus prod_2_2018_01, and the right column is of
prod_2_2020_01 versus prod_2_2032_01. The col-
our scheme denotes the magnitude of the uncertainty
on a relative scale with light pink through to dark
purple corresponding to low through to high standard
deviations.
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lator or model for Var[εC(d)] is necessitated to achieve a reduction in this uncertainty,

whilst any uniform decrease would potentially yield non-robust conclusions. This is

problematic for decision support because it makes it difficult to distinguish between

decisions in this region where prior knowledge indicates that strategies are likely to

yield the largest values of ensemble mean NPV.
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(a) Before the removal of linear effects.
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(b) After the removal of linear effects.

Figure 4.21: OLYMPUS wave 1 ensemble mean NPV standard de-
viation induced by NPV cost parameter variability
versus the ensemble mean NPV over the wave 1 design
computed using the nc = 1000 simulated cost para-
meter scenarios.

NPV Cost Parameter Uncertainty After the Removal of Linear

Transformation Effects

For our uncertainty quantification we instead employ the more sophisticated ap-

proach detailed in Section 3.5.2 to first remove the linear transformation effects of

this uncertainty since these do not alter the location of the optimal decision. For

each of the nc simulated cost parameter scenarios, linear models of the form shown

in Equation (3.5.1) are fitted with a natural choice for c0 being the TNO fixed cost

parameter settings. Assessing the variability in the residuals for fixed decisions via

s2
C(dj) defined in Equation (3.5.3) provides a quantification of this uncertainty with

the analogous projection plots shown in Figures 4.20c and 4.20d. The same colour

scheme is used across the two versions of each plot which clearly illustrates the
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Figure 4.22: Histogram of the variances of the OLYMPUS ensemble
mean NPV over the generated cost parameter scenarios
after the linear effect is removed. For comparison, the
dashed red and dotted blue vertical lines correspond
to the assessed values for Var[εG] and Var[εEGES] re-
spectively.

reversal in the direction of the association between larger parameter values and the

level of uncertainty due to the cost parameter variation after linear effects have been

accounted for. In contrast to the first row of plots, after the removal of the linear

effects, the largest uncertainty is for smaller marginal parameter values which is a

region thought to be of less interest and is expected to be ruled out as implausible

at wave 1. An examination of the mean residuals over the cost parameters using

mC(dj) (see Equation (3.5.2)) highlights that these are typically at least an order

of magnitude smaller than sC(dj), and thus have negligible effect on the overall

analysis.

The distribution of the variances of the utility function due to NPV cost para-
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meter variation is shown in Figure 4.22 with the distribution centred at 6.639× 1010.

It is noted that this uncertainty is not insubstantial and is of comparable magnitude

to the EGES uncertainty. Since the observed pattern is that smaller uncertainties

tend to occur for larger values of the ensemble mean NPV, Var[εC] is estimated by the

median over the decision space for wave 1 decision support, so Var[εC] = 4.525× 1010.

This is reinforced by the observations in Figure 4.21b where the standard deviation

due to NPV cost parameter uncertainty is generally larger for smaller values of the

predicted ensemble mean NPV; a reversal versus the observations in Figure 4.21a.

A comparison with the results prior to removing the linear effects uses the more

conservative maximum due to the association between high uncertainty and high

ensemble mean NPV, so Var[εC] = 3.598× 1013 (the median is 2.693× 1013), thus

demonstrating a three order of magnitude reduction in this uncertainty. The implic-

ation for decision support is that a much smaller class of decisions may be obtained

that are still robust to this uncertainty.

4.6.5 Structural Model Discrepancy

The aim in the TNO OLYMPUS Challenge is to maximise the expected NPV for

the simulator rather than the actual field, hence there exists no model discrepancy

within the challenge. Whilst it is important to provide a comprehensive assessment

of the model discrepancy in order to link the computer model and the real world oil

field, we also omit this from our analysis since the OLYMPUS reservoir is fictitious

making it difficult to meaningfully assess, especially without access to the necessary

reservoir engineering experts. Future work may introduce model discrepancy to

provide a link between the modelling world and the real world physical problem and

decision making. For an illustration of the assessment of model discrepancy, this is

performed for the Emerson Jade model application in Sections 5.5.5 and 5.9.4.
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4.6.6 Decision Implementation Error

As for model discrepancy, decision implementation error is omitted from both the

TNO OLYMPUS Challenge and our analysis due to the OLYMPUS reservoir model

being fictitious. Prior expert knowledge from reservoir engineers would be required

in order to meaningfully assess the implementation error with this being an area

for future work. An uncertainty analysis for the decision implementation error [31]

following the approach described in Section 3.5.4 is presented for the Emerson Jade

model application in Sections 5.5.6 and 5.9.5.

4.6.7 Uncertainty Analysis Summary

A summary of the wave 1 uncertainty analysis is shown in Table 4.4 which includes the

variances and the proportion of the total uncertainty both including and excluding

the EGES uncertainty corresponding to the use of a Bayes linear or the novel

hierarchical emulator for the utility function in the decision support analyses in

Sections 4.7.1 and 4.7.2 respectively. The individual uncertainties, excluding that

due to the emulator, are combined following the uncorrelated additive error structure

described in Equation (2.7.1) to obtain a total uncertainty variance of 6.834× 1011.

Note that this variance should be compared to the scale of the ensemble mean NPV

which is typically of order of 5.0× 107 $ to 6× 107 $.

4.6.8 Comparison of Uncertainty Quantification with the

Utility Function Emulator Uncertainty

In this section we compare the uncertainty due to the hierarchical emulator for the

ensemble mean NPV with the assessment of each of the major sources of uncertainty

relevant to decision support. Figure 4.23a is a histogram of the hierarchical emulator

adjusted variances where red and blue lines denote the variance in the utility function

induced by the geological and NPV cost parameter uncertainty respectively. It

is observed that geological uncertainty is substantially larger than the NPV cost



202 Chapter 4. TNO OLYMPUS Well Control Optimisation

Source of
Uncertainty Variance Proportion of Total

Uncertainty (inc EGES)
Proportion of Total

Uncertainty (exc EGES)
Geological
Uncertainty 6.381× 1011 79.9% 93.4%

EGES
Uncertainty 1.15× 1011 14.4% –

NPV Cost
Parameter
Uncertainty

4.525× 1010 5.7% 6.6%

Total
Uncertainty 6.834× 1011 – –

Table 4.4: OLYMPUS wave 1 uncertainty analysis results includ-
ing the variances and proportion of total variances for
TNO OLYMPUS Well Control Optimisation Challenge
obtained using an additive error structure described in
Equation (2.7.1). Columns three and four show the pro-
portions of the total uncertainty either including or ex-
cluding the EGES uncertainty which corresponds to the
decision support analysis using the Bayes linear or hier-
archical emulator in Sections 4.7.1 and 4.7.2 respectively.
For comparison, the ensemble mean NPV is typically of
the order of 5.0× 107 $ to 6× 107 $.

parameter uncertainty, although the hierarchical emulator uncertainty for many new

decision parameter vectors is the largest source of uncertainty within the analysis.

Following on from previous discussion in Section 4.5.4, the decision scenarios which

yield higher utility function values also tend to correspond to the largest uncertainties,

hence the emulator uncertainty is expected to dominate the wave 1 analysis. Note

that there exist some scenarios where the geological uncertainty is larger or of a

comparable order of magnitude to the emulator uncertainty, thus highlighting the

need for its inclusion and rigorous treatment. In Section 4.5.5 it was identified

that the Bayes linear approach generally gave rise to larger adjusted variances than

the hierarchical emulator, hence these comments are also true when a Bayes linear

emulator is in use. Moreover, this justifies the additional effort in constructing the

hierarchical emulator in order to reduce the uncertainty to closer to the limiting

wave 1 uncertainty constituted by this analysis.

The construction of the hierarchical emulator implicitly incorporates the EGES
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(b) Hierarchical emulator adjusted variances
separating out the EGES residual uncer-
tainty, as denoted by the green line.

Figure 4.23: Histograms of the OLYMPUS wave 1 ensemble mean
NPV hierarchical emulator adjusted variances com-
pared with the variances for each assessed source of
uncertainty. The red and blue lines denote the variance
in the utility function induced by the geological and
NPV cost parameter uncertainty respectively. The ad-
ditional green line in Figure 4.23b denotes the EGES
linear model squared residual standard error.

uncertainty for linking the NPV of the three sub-selected OLYMPUS models to the

ensemble mean NPV. In order to additionally assess the relative contribution of

the EGES uncertainty, the residual error of the EGES linear model is disentangled

from the emulator formulation for which the reduced version of the hierarchical

emulator adjusted variances along with the three sources of uncertainty are illus-

trated in Figure 4.23b. This corresponds to the removal of the σ̂2
EGES term within

Equation (3.3.17) which is marked by the green line. It is observed that σ̂2
EGES is in

all cases dominated by the remaining hierarchical emulator adjusted variances; gen-

erally comprising of between 6% and 25% of the total hierarchical emulator adjusted

variance. The overall uncertainty is therefore dominated by sources pertaining to

the NPV constituents.
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4.7 Iterative Decision Support for TNO

OLYMPUS Well Control Optimisation

The TNO OLYMPUS Field Development Optimisation Challenge instructs parti-

cipants to locate the decision parameters setting which yields the maximum en-

semble mean NPV as a representative for the expected NPV. In this section we

instead address the reformulated challenge as a decision support problem where

U(d) = E[NPV](d) demonstrating the iterative decision support procedure de-

veloped in Section 3.6. This incorporates the EGES technique, construction of

a wave 1 targeted Bayesian design and the uncertainty quantification implemented

in Sections 4.2, 4.3 and 4.6 respectively. Decision support is performed using two

forms of the emulator: the Bayes linear emulator (see Section 4.4) in Section 4.7.1;

and the hierarchical emulator exploiting known simulator behaviour (see Section 4.5)

in Section 4.7.2. Results are compared under alternative uncertainty analyses in

Section 4.7.3.

4.7.1 Decision Support Using a Bayes Linear Emulator

The first wave of the iterative decision support procedure is presented for the expected

NPV using the decision support implausibility measure described in Equation (3.6.3).

In this part of the analysis we use the Bayes linear emulator constructed in Sec-

tion 4.4 for the utility function, and incorporate the geological, EGES and NPV cost

parameter uncertainties as quantified in Section 4.6. Note that it is necessary to

explicitly include the EGES uncertainty as unlike the hierarchical emulator, this is

not directly accounted for within the emulator formulation. The non-implausible

region, which would be explored further in wave 2, is defined as points satisfying

IDS(d) ≤ c = 3 for which it is found that 34.69% of the constrained decision space

is classified as non-implausible. Note that imposing the difference constraints has

already reduced the decision space volume to approximately 3.4529% of the initial

hypercube volume, hence this actually corresponds to a reduction to 1.20% of the
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full hypercube volume.

Results for wave 1 are illustrated in Figure 4.24, which presents a pairs plot for the

active decision parameters of the Bayes linear emulator displaying the wave 1 decision

support implausibility measures below the diagonal, the implausibility optical density

above the diagonal, and marginal density histograms along the diagonal. Note that

for the implausibility plots, the axes are swapped to match the corresponding optical

density plot with the colours green, yellow and red indicating where 0 < IDS(d) ≤ 2,

2 < IDS(d) ≤ 3.5 and IDS(d) > 3.5 respectively. Blue triangles denote where the

implausibility measure is zero and hence the emulator for the expected NPV adjusted

expectation exceeds the best simulated value. For the optical density plots, dark

blue through to yellow depict low to high density of points satisfying IDS(d) ≤ c.

These plots aid the visualisation of the locations of the best decisions, as well as

any relationships between the non-implausible decision parameter settings. It is

evident from the implausibility plots that early time production rates, particularly

for producer well 2 seen in the top-left block of 4 variables, are most important

for achieving a high expected NPV and so are required to take high values. This

is also supported by the marginal density histograms where the majority of the

mass is placed on higher parameter values with a decreasing trend at later times.

Moreover, the blue triangles denoting IDS(d) = 0 are mostly clustered for higher

decision parameter values.

Later time target production rates are more free to vary, at least within this

wave 1 analysis, as illustrated in the central block of variables 5–8. For example, the

value of prod_2_2032_01 seems to have little impact; there exist decision vectors

for most values of prod_2_2032_01 which are classified as non-implausible, as long

as the other decision parameters, particularly those at early times, take suitably

large values. This is apparent within its marginal density histogram which is the

closest to uniform. Note that these histograms must take into account the edge

effects due to imposing the difference constraints and so are not actually uniform

for the initial parameter space, as would usually occur for a hypercube volume. The
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Figure 4.24: OLYMPUS wave 1 decision support implausibility
measure (below the diagonal) and optical density
(above the diagonal) pairs plot, with marginal dens-
ity histograms (along the diagonal) for the active de-
cision parameters. This is for the analysis using a
Bayes linear emulator for the utility function and incor-
porating geological, EGES and NPV cost parameter
uncertainties. For the implausibility plots, the axes
are swapped to match the corresponding optical dens-
ity plot. The colours green, yellow and red indic-
ate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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unimportance of prod_2_2032_01 is likely due to the heavy effect of discounting

within the NPV calculations. In addition, it is evident that decision parameters

for the same well which are temporally close are correlated in their values which

potentially lead to high expected NPV and is best highlighted by the implausibility

plots just below the diagonal. Decision support implausibility plots can also be used

to screen for whether controls for certain wells have a stronger effect on the expected

NPV as seen by comparing variables 1–3 and 6, with 9–12 respectively in Figure 4.24

where it is evident that controls for producer well 2 have a greater effect on the

expected NPV than those producer well 10. Such patterns can also be seen in the

optical density plots which possess a higher mass of points within regions where

both decision parameters take higher values. Furthermore, the effect of imposing the

difference constraints is also visible with the narrow elliptical contours for temporally

close points, and relatively low density within the corner regions. This corroborates

reservoir engineering insight and the postulated beliefs based on Figure 4.8 that

early time production rates are dominant in determining whether a high utility is

achieved, whilst decisions for producer well 2 are of greater importance than for

producer well 10. In addition, this analysis confirms the effect of a high discount

factor.

4.7.2 Decision Support Using a Hierarchical Emulator

Exploiting Known Simulator Behaviour

The first wave of the iterative decision support procedure is performed using the

hierarchical emulator exploiting known simulator behaviour, as devised in Section 4.5

for the utility function. This version of the analysis explicitly incorporates the

geological and NPV cost parameter uncertainties as quantified in Sections 4.6.2

and 4.6.4 respectively, whilst the EGES uncertainty is encompassed within the

hierarchical emulator formulation. As in Section 4.7.1, the wave 1 non-implausible

region is defined as decision parameter vectors which satisfy IDS(d) ≤ c = 3. It

is established that 25.30% of the decision space is classified as non-implausible; a
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marked reduction on the 34.69% in the analysis using the Bayes linear emulator

and necessary alteration to the uncertainty quantification. This is a consequence

of the general decrease in the emulator uncertainty discussed in Section 4.5.5 and

thus highlights the benefits of the additional efforts and computational costs in

constructing the hierarchical emulator which mitigates the requirement for further

exploration in a wave 2 analysis via additional expensive computer simulations

within this extra volume that would otherwise have been deemed non-implausible.

Moreover, due to the difference constraint this equates to 0.87% of the full hypercube

volume remaining after wave 1, compared to 1.20% using the Bayes linear emulator.

Visualisation of the wave 1 decision support non-implausible region is conducted

in the same manner with the implausibility pairs plot for producer well 2 and for

all decision parameters starting in 2016 and 2018 shown in Figures 4.25 and 4.26

respectively, where the plot types and colour schemes are the same as in Figure 4.24.

Note that the target production rates in Figure 4.25 correspond to the first eight

active decision parameters in Figure 4.24. Examination of these plots leads to similar

conclusions including the importance of early time production rates, particularly

for producer well 2, which must be set to high values, whilst the blue triangles

designating where IDS(d) = 0 are mostly clustered where both decision parameters

have high values in each 2-dimensional plot. In Figure 4.25 it is also evident that later

time target production rates have greater flexibility in their values, again emphasising

the impact of the high assumed discount factor. This is perceivable from the close to

uniform marginal histogram for prod_2_2032_01. Exploration of the relationship

between decision parameters for different wells such as in Figure 4.26 illustrates that

target rates for producer well 2 have a dominant effect on determining whether a

high utility is achieved versus those for producer well 10. Furthermore, investigations

show that within the wave 1 decision support analysis the target injection rates are

relatively free to vary, as observed in the implausibility plots for variables 5–8 in

Figure 4.26 compared both internally and with the target production rates. From

the optical density plots and marginal density histograms, the only condition is that
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for early time their value is not too small. Moreover, the implausibility plots for

prod_2_2016_01 and prod_2_2018_01 highlight that high target production rates

are unsustainable if these are not matched by sufficiently high target injection rates,

as indicated by the red points within this region for these four decision parameters.

This is explained since low injection leads to insufficient fluid within the field at later

times to maintain a sufficiently high BHP at the producer wells. Consequently high,

and in some cases even modest assigned target production rates cannot be achieved

in much the same way as is observed in the exploratory analysis in Figure 4.4 which

severely inhibits the ability of a well control strategy to attain a high expected NPV.

This observation is also apparent for later time target injection rates, although to a

lesser extent, also a consequence of the high discount factor and the implications of

aiming for higher early production.

Application of the first wave of iterative decision support to the TNO OLYMPUS

Well Control Optimisation Challenge provides insight into which decision parameter

settings are likely to yield high expected NPV utility function values. It is identified

that target rates for producer well 2 need to be relatively high, especially for earlier

times, whilst for producer well 10, these are less important but should still not

be too low. In addition, target injection rates are permitted to vary more freely,

but must still be of sufficient value to support the stipulated target production

rates, both at the current time and in the future. This aligns with the beliefs of

reservoir engineers. Our analysis is restricted to wave 1 of the developed iterative

decision support framework because of limitations on time and access to the necessary

computing resources. The next step would be to design and evaluate a second wave of

simulations before emulating the utility function over the reduced decision parameter

space. Along with a reassessment of the uncertainties, this would be used to compute

the decision support implausibility measure in order to achieve further reductions

in the non-implausible volume and gain greater insight into this region.
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Figure 4.25: OLYMPUS wave 1 decision support implausibility
measure (below the diagonal) and optical density
(above the diagonal) pairs plot, with marginal dens-
ity histograms (along the diagonal) for the decision
parameters for producer well 2. This is for the ana-
lysis using a hierarchical emulator exploiting known
simulator behaviour for the utility function and expli-
citly incorporating the geological and NPV cost para-
meter uncertainties. For the implausibility plots, the
axes are swapped to match the corresponding optical
density plot. The colours green, yellow and red in-
dicate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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Figure 4.26: OLYMPUS wave 1 decision support implausibility
measure (below the diagonal) and optical density
(above the diagonal) pairs plot, with marginal dens-
ity histograms (along the diagonal) for all decision
parameters starting in 2016 and 2018. This is for
the analysis using a hierarchical emulator exploiting
known simulator behaviour for the utility function and
explicitly incorporating the geological and NPV cost
parameter uncertainties. For the implausibility plots,
the axes are swapped to match the corresponding op-
tical density plot. The colours green, yellow and red
indicate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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4.7.3 Decision Support Results for Alternative

Uncertainty Quantifications

The iterative decision support procedure using an implausibility measure developed in

Section 3.6 has the major advantage compared to optimisation and decision theoretic

approaches that it is computationally quick and efficient to perform a decision

support sensitivity analysis with respect to the uncertainty quantification. In this

section we highlight the importance of a comprehensive uncertainty quantification

for the TNO OLYMPUS Well Control Optimisation Challenge by repeating the

wave 1 decision support application under alternative uncertainty specifications.

The results are summarised in Table 4.5 where the hierarchical emulator exploiting

known simulator behaviour is employed for the utility function due to the established

superior decision support performance versus the implementation using the Bayes

linear emulator; this is also included for comparison. For clarity, we exhibit the

non-implausible proportion of the wave 1 decision space formed by imposing both

the range and difference constraints in the middle column, and portray the non-

implausible proportion of the entire hypercube volume prior to the inclusion of the

difference constraints in the right column. All subsequent commentary is framed in

terms of the fully constrained decision space.

In Section 4.6.4 we consider the differences before and after accounting for the

linear transformation effect of the NPV cost parameter uncertainty on the utility func-

tion obtaining an assessment of Var[εC] = 3.598× 1013 and Var[εC] = 4.525× 1010

respectively. With all other uncertainties as previously specified, it is ascertained

that prior to removing the linear effects of the NPV cost parameter uncertainty

then the non-implausible proportion is 91.60%. This makes it extremely difficult to

distinguish between almost all of the decision parameter settings, thus compromising

the ability to provide meaningful decision support. Consequently it is necessary

to consider how the uncertainty quantification is performed within the context of

the wider objective, as demonstrated by the added value to the analysis. In this
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Uncertainty
Specification

Non-Implausible
Volume

Non-Implausible
Volume of Hypercube

Bayes Linear Emulator
with All Uncertainties
(see Section 4.7.1)

34.69% 1.20%

Hierarchical Emulator
with All uncertainties
(see Section 4.7.2)

25.30% 0.87%

Before Removing NPV Cost
Parameter Uncertainty
Linear Effect

91.60% 3.16%

Emulator Uncertainty Only 16.11% 0.56%
No Emulator Uncertainty 10.68% 0.37%
No Uncertainties or
Emulator Uncertainty 0.36% 0.012%

Table 4.5: Summary of the proportion of decision space classified
as non-implausible after wave 1 decision support for
TNO OLYMPUS Well Control Optimisation Challenge
for various included uncertainties within the decision sup-
port implausibility measure using threshold value c = 3.
The first row specifies the proportion using a Bayes lin-
ear emulator. All subsequent rows use the hierarchical
emulator for the utility function. The middle column
shows the non-implausible proportion of the volume of
the decision space formed by imposing both the range
and difference constraints. The right column portrays
the non-implausible proportion of the entire hypercube
volume prior to the inclusion of the difference constraints.
Imposition of the difference constraints results in a re-
duction to 3.4529% of the initial hypercube constituted
by the range constraints only.

case uncertainties which linearly transform the utility function have no effect on the

location of the maximum and hence should be removed. This result is shown in the

third row of Table 4.5.

Omitting all uncertainty except for those due to the emulator as a surrogate

for the OLYMPUS expected NPV yields a non-implausible volume of 16.11% of

the decision space (see the fourth row of Table 4.5). This corresponds to setting

E[εi] = 0 and Var[εi] = 0 for all uncertainties representing the prior belief that up to

emulator uncertainty, there is no difference between the real world OLYMPUS field

and the model; specifically their underlying geology is known and can be represented
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by the prediction of the ensemble mean NPV obtained via the EGES linear model,

whilst the future time evolution of NPV cost parameters is also precisely known.

The results highlight a marked difference versus the 25.30% initially achieved, thus

demonstrating that it is necessary to perform a thorough uncertainty quantification

to circumvent the risks of falsely eliminating regions of the decision space which may

contain good choices of well controls. At later stages within the iterative decision

support procedure, if it is believed that these uncertainties are smaller (or negligible)

then they may be subsequently re-assessed (or removed) to obtain a reduced non-

implausible volume. Realistic and representative uncertainty quantifications should

be incorporated during earlier waves of the analysis.

If the emulator is assumed to be a perfect representation of the OLYMPUS

model but including all other analysed sources of uncertainty, then wave 1 decision

support classifies 10.68% of the decision space as non-implausible (see the fifth row

of Table 4.5). This is equivalent to treating the emulator expectation as equal to

the simulator output. Such an investigation constitutes an approximation of the

decision support analysis using the simulator directly assuming there are sufficient

computational resources available. The wave 1 decision support result provides a

theoretical lower bound on the proportion of space remaining at wave 1 given the

current uncertainty quantification and suggests that improvement in the Bayesian

emulator accuracy has the potential to greatly reduce this proportion further at wave

1 from the current 25.30% closer to the much smaller 10.68% without the use of any

additional simulations. This motivates further research to improve the accuracy of

the emulator for the expected NPV.

A final extreme situation is to suppose that there are no uncertainties present

from either the emulator or the uncertainty quantification and search for where the

emulator yields predictions that exceed the current maximum simulated expected

NPV. This is equivalent to the proportion of points with IDS(d) = 0 for which

results show only 0.36% of the decision space satisfy this condition, as seen in the

sixth row of Table 4.5. This is analogous to assuming a perfect representation of
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the real world system within the modelling framework (including the emulator),

for which the emulator matches the OLYMPUS model output and there are no

uncertainties. In this setup many potentially good decision strategies are falsely

rejected, although it also provides insight of which well control strategies may lead

to expected improvement versus the current best simulated strategy.

4.8 Decision Support Conclusion

In this chapter we have presented an analysis of the TNO OLYMPUS Well Control

Optimisation Challenge reformulated as a decision support problem to which we have

applied the methodology developed in Chapter 3. This begins with a demonstration

of the computational efficiency gains which can be achieved using the developed

efficient geological ensemble subsampling techniques, before devising and implement-

ing a method for constructing targeted Bayesian designs for decision support. Two

surrogates for the complex and computationally expensive OLYMPUS ensemble are

devised including Bayes linear emulators and a hierarchical emulation framework

which exploits known structure of the simulator outputs. An uncertainty quantific-

ation is performed within the context of decision support. This toolkit is utilised

for a first wave application of the developed iterative decision support procedure to

yield a robust class of decisions respecting all major sources of uncertainty. Much

of the methodology developed for well control optimisation as a decision support

problem including the application to the TNO OLYMPUS model was presented at

ECMOR XVII 2020 and published in the conference paper [135]. Along with sub-

sequent further research results presented in Sections 4.5, 4.7.2 and 4.7.3, a complete

application is in preparation for publication.

The TNO OLYMPUS Well Control Optimisation Challenge uses an ensemble

of models to represent geological uncertainty, a form of ensemble uncertainty and

a common practice within the petroleum industry. We highlight the limitations

of using an ensemble, particularly in terms of computational expense involved in
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exploring the decision parameter space implementing the EGES techniques described

in Section 3.2 to identify a small representative subset of three models for only a

modest increase in the uncertainty relative to other sources. A careful method

is formulated for constructing a targeted Bayesian design that incorporates prior

knowledge from oil reservoir engineers regarding feasible and physically realistic well

control strategies in the form of time consecutive difference constraints. Application

yields a decrease to approximately 3.4529% of the original hypercube volume whilst

also achieving good sampling coverage.

In the reformulation of the TNO OLYMPUSWell Control Optimisation Challenge

as a decision support problem the expected NPV objective function is treated as

a utility function. Bayesian emulators are used as fast and efficient statistical

approximations for the expected NPV enabling the full exploration of the wave 1

decision parameter space given only a collection of 702 simulations in a process that is

easy to execute in parallel. Initially Bayes linear emulators are used, however whilst

these are effective, they fail to incorporate the structure within the contributors to

the NPV formula. The Bayesian emulation framework is extended in Section 3.3 to

exploit known simulator behaviour by decomposing the utility function which yields

generally greater accuracy in Section 4.5.

Uncertainty quantification is performed for various sources relevant to decision

support. It is first highlighted that geological uncertainty is the most substan-

tial source after the emulator and thus warrants a more careful treatment than is

conventionally given within the petroleum industry, whilst the introduced EGES

uncertainty is shown to be approximately an order of magnitude smaller. Moreover,

this analysis recognises how only uncertainties which affect the location of the op-

timal decision need to be included achieving a three order of magnitude reduction

in the variance due to NPV cost parameter uncertainty after accounting for linear

transformation effects. Model discrepancy and decision implementation error are

not incorporated as the OLYMPUS model is of a fictitious reservoir, hence these are

difficult to meaningfully assess without access to a reservoir engineer.
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Implementation of the first wave of the iterative decision support procedure

detailed in Section 3.6 produced a robust class of decisions respecting all major

sources of uncertainty whilst providing insight into the structure of the region which

is believed to yield high expected NPVs. The greater accuracy of the hierarchical

versus Bayes linear emulator is mirrored in decision support by a noticeable additional

reduction in the non-implausible decision space. Furthermore, the necessity for an

accurate and comprehensive uncertainty quantification is emphasised in Section 4.7.3.

The omission of all uncertainties except the emulator leads to a drastic reduction in

the non-implausible volume, whilst accounting for linear transformation effects due to

the NPV cost parameter uncertainty is highlighted as an important step in obtaining

useable results. Emulator uncertainty is shown to be the largest uncertainty which

may be reduced in a second wave via additional simulations within the smaller non-

implausible decision space. Additional reductions to the non-implausible volume,

either in this wave 1 analysis or for a wave 2, may be achieved through a re-assessment

of the conservative upper bound estimate for the variance due to the geological

uncertainty through an application of variance emulation techniques such as in [2, 3].

The EGES uncertainty requires extra OLYMPUS models to be used for simulations

in order to reduce this uncertainty. This comes at the computational expense of

additional simulations which may inhibit the ability to simulate over a large range

of decision parameter vectors which in turn will affect the accuracy of the fitted

emulator.

The next stage of this analysis is to perform subsequent waves of decision support

to further reduce the non-implausible decision space utilising the iterative nature

of the procedure to refocus on the current non-implausible region. This was not

performed during this PhD since it requires the evaluation of additional simulations

at a large computational expense. Moreover, we used the open source simulation

software, OPM Flow [161], with limited access to technical support, exacerbated

by the Covid-19 pandemic and changing cluster facilities related to moving to a

new building for the Department of Mathematical Sciences, that would have been
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afforded by access to the expensive commercial software suggested for the TNO

OLYMPUS Challenge. Another area for future investigations is to validate the well

control strategies which lie within the decision support non-implausible region. At

this stage it is not possible because the underlying stochastic OLYMPUS geology

model has not been made available.



Chapter 5

Commercial Client Placement

Analysis: Emerson Jade Model

Well Control Optimisation

Application

We present an application of the methodology developed during this PhD for the

commercial client placement part of my iCASE PhD studentship with Emerson.

This is to demonstrate how the conducted research benefits our industry partner

by enabling further development of their software capability to incorporate novel

statistical techniques for decision support. The ability to perform such an analysis

is of increasing importance across the petroleum industry, as seen by the estab-

lishment of the TNO OLYMPUS Field Development Optimisation Challenge [93]

and participation in the EAGE/TNO Workshop on OLYMPUS Field Development

Optimization [39]. In this chapter we apply the methodology described in Chapter 3

to the Emerson Jade model [164] for decision support, and therefore serves as a com-

plete example of the iterative decision support procedure. The initial part of this

analysis follows a similar structure to that presented for the TNO OLYMPUS Well

Control Optimisation Challenge in Chapter 4 which is then extended to also include:
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the quantification of structural model discrepancy and decision implementation er-

ror; construction of a wave 2 design; a second wave of iterative decision support

which encompasses a reassessment of several of the uncertainties; and validation

of the decision support results. These supplementary parts to the application are

possible due to access to sufficient computational resources, simulation software sup-

port, reservoir engineering insight for the Jade model, and access to the underlying

stochastic geology model; all of which were missing for the TNO OLYMPUS Well

Control Optimisation Challenge application.

The Emerson Jade model is introduced in Section 5.1 including an exploratory

analysis. Efficient geological ensemble subsampling is implemented in Section 5.2

with a wave 1 targeted Bayesian design constructed in Section 5.3. Given the observed

results for the TNO OLYMPUS Well Control Optimisation Challenge, the expected

NPV utility function is emulated using the hierarchical Bayesian emulator which

exploits known structures in the behaviour of simulator output in Section 5.4. A wave

1 uncertainty analysis is performed for the Jade model in Section 5.5 which is utilised

with the hierarchical emulator in the novel iterative decision support procedure with

wave 1 results presented in Section 5.6. Extending on the TNO OLYMPUS Well

Control Optimisation Challenge application, a wave 2 design over the wave 1 non-

implausible decision space is constructed in Section 5.7 before constructing a new

Bayesian emulator over this space in Section 5.8 and reassessing the uncertainties

in Section 5.9. The results of a second and final wave of iterative decision support

are described in Section 5.10 with the identified non-implausible region validated in

Section 5.11. A comparison of the results of simulations performed at each wave of

the iterative decision support procedure is presented in Section 5.12 with a summary

and conclusion in Section 5.13.
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5.1 Introduction to the Emerson Jade Model

In this section we introduce the Emerson Jade model for which decision support

will be performed. This includes further details of the Jade model and the setup for

decision support in Section 5.1.1 with a discussion of an exploratory analysis of a

preliminary batch of simulations in Section 5.1.2.

5.1.1 Overview of the Emerson Jade Model

The Emerson Jade model is a fictitious oil reservoir model that is used by Emerson

to test their software and to demonstrate its capabilities to prospective clients. We

use the Jade model to demonstrate our developed decision support framework for

well control optimisation which may then be subsequently incorporated in Emerson’s

Tempest software packages and in demonstrations to clients. The aim is to identify a

collection of well control strategies, each represented by a vector of decision paramet-

ers, d, for the Jade model which yield near maximum values for the utility function

with respect to all major sources of uncertainty that are quantified within the ana-

lysis. For this application we specify the utility function to be the expected NPV,

U(d) = E[NPV](d), which represents a position of risk neutrality. This is calculated

by first computing the NPV for each individual Jade model using Equation (3.1.1),

with Rj(d, ti) as specified in Equation (3.1.3) with full details of these formulae in

Section 3.1.1. For the Emerson Jade model the field lifetime is 10 years starting

January 1, 2022, discounting is applied at 3 month intervals with a discounting time

period of 1 year, and the NPV cost parameters are fixed at the suggested values of

$30, $6 and $2 per barrel for oil produced, water produced and injected respectively,

with a discount factor of 10%, d = 0.10 (see Table 5.2 on page 249 for a summary).

This is a higher discount factor than in the TNO OLYMPUS Well Control Optim-

isation Challenge and thus encourages aiming for larger oil production volumes at

early times due to the higher penalty at later times. Uncertainty due to variability

in the NPV cost parameters is investigated in Section 5.5.4. Once the NPV has
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been computed for each Jade model, the expected NPV is approximated by the

ensemble mean NPV defined in Equation (3.1.2). As for the TNO OLYMPUS Field

Development Optimisation Challenge and inline with standard industry practice,

geological uncertainty is characterised by the Jade ensemble of N = 50 geological

realisations. A major difference versus the setup of TNO OLYMPUS Challenge is

that the Jade model has been history matched to simulated historical data to produce

a posterior ensemble of 50 realisations. These are labelled as Jade 1, . . . , Jade 50.

Another major difference is access to this underlying stochastic geology model that

will permit the validation of the identified decision strategies for which a further 150

Jade models have been generated; labelled Jade 51, . . . , Jade 200.

The Jade model setup used in this application is the same for each ensemble

member and is illustrated in Figure 5.1. There are four producer wells labelled A10,

B4, C5 and C6, and two injector wells named A16 and C7, which are distinguished

on the map by green and blue points respectively. The Jade model also contains

numerous full and partial faults with varying levels of fault permeability ensuring

that this is a representative problem of that faced for a real world oil field. Note

that the location of one of these faults down the centre of the field effectively splits

the reservoir into two separate regions, each containing an injector and two producer

wells. Control intervals for the decision parameters are formed by amalgamating

multiple consecutive discounting intervals. For wave 1 of our application we choose to

use six control intervals of lengths 1, 1, 2, 2, 2 and 2 years corresponding to decisions

starting on January 1, 2022, 2023, 2024, 2026, 2028 and 2030 respectively resulting

in a total of 36 decision parameters across the four wells. Note that decisions are

permitted at one year intervals, however constructing control intervals which combine

several discounting intervals has the advantage of reducing the dimensionality of the

decision support problem. The longer wave 1 intervals may be subsequently split

into the original shorter control intervals at a later wave if it is deemed necessary.

In addition, target production and injection rates are used as decision parameters

with daily operational rate constraints detailed in Table 5.1.
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Figure 5.1: Emerson Jade model map with key of decision para-
meter well IDs and types. The green points represent
the four producer wells with IDs A10, B4, C5 and C6.
The blue points represent the two injector wells with
IDs A16 and C7.

Type Minimum Maximum Unit
Well Oil Production Rate 0 10,000 m3/day
Well Water Injection Rate 0 15,000 m3/day

Table 5.1: Emerson Jade model application operational rate con-
straints.

Throughout this application the same naming conventions and notation for de-

cision parameters and various Jade computer model output will be used as in the ap-

plication to the TNO OLYMPUS Well Control Optimisation Challenge in Chapter 4.

The only modification is that a well ID instead of a well number will be used, for

example: “prod_x_yyyy_mm” and “inj_x_yyyy_mm” are used to denote the tar-
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get production and injection rate respectively for well ID “x” starting on the 1st of

month “mm” in year “yyyy”.

In our analysis, all simulations of the Jade ensemble were performed using the

Emerson Tempest ENABLE software [44]. On average, each simulation takes approx-

imately 30 minutes to complete using one cluster node, hence for a single decision

parameter vector simulated for all 50 Jade models takes approximately 25 hours.

5.1.2 Emerson Jade Model Exploratory Analysis

An exploratory analysis based on a smaller preliminary wave 0 batch of simulations

is conducted prior to decision support. The aim is to identify any interesting features

of the model which may aid the construction of informative designs as well as to

facilitate the establishment of a representative subset of the ensemble allowing for

greater exploration of the decision parameter space and more efficient use of the

available computing resources. Exploratory simulations are performed for the full

10 year Jade field lifetime. A design for this preliminary batch of simulations is

constructed for all 36 decision parameters specified in Section 5.1.1 using maximin

Latin hypercube sampling described in Section 2.3 to generate 50 decision parameter

vectors from the hypercube volume defined by the operational range constraints.

This is a larger than the exploratory design used in the TNO OLYMPUS Well

Control Optimisation Challenge application due to access to additional computing

resources and technical support for evaluating them. Furthermore, the constructed

50-point maximin Latin hypercube design was formulated such that it contains a

smaller 25-point maximin Latin hypercube design. This enables the later testing

on whether similar decision support results can be achieved using fewer exploratory

simulations when fitting the EGES linear model in Section 5.2 and thus induces

additional uncertainty. The simulation output for each decision parameter vector is

labelled as SIM_1, . . . , SIM_50.

The spread of Jade exploratory analysis NPV over the 50 Jade model realisations

for each of the exploratory simulations are illustrated by the boxplots in Figure 5.2.
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Figure 5.2: Boxplots of the Jade exploratory analysis simulated
NPV illustrating the spread over the 50 Jade model
realisations. These are ordered from smallest to largest
ensemble mean NPV, where the horizontal black dashed
line represents the maximum simulated ensemble mean
NPV from the exploratory simulations.

These are ordered from the smallest to the largest ensemble mean NPV, and the

horizontal black dashed line represents the maximum simulated ensemble mean NPV

from the exploratory simulations. It is observed that there is a large spectrum of

NPVs for the different decision parameter vectors, but there are also numerous cases

which yield similar ensemble mean NPVs with largely overlapping boxplots, therefore

exemplifying their similarity when compared with respect to the uncertainty captured

by the geological ensemble. Moreover, 33 of the 50 decision parameters vectors

possess a maximum NPV over the ensemble which exceeds the largest ensemble

mean NPV. This highlights how a large range of decisions could potentially lead

to a good expected NPV on actual implementation once all uncertainties have
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been realised. A decision support approach is thus justified since it permits such

uncertainties to be resolved at a later time.

5.2 Application of the EGES Techniques

In this section we apply the efficient geological ensemble subsampling (EGES) tech-

niques described in Section 3.2 utilising the exploratory simulations discussed in

Section 5.1.2 to identify a representative subset of the N = 50 Jade models. This is

a novel application of such ensemble subsampling techniques within the petroleum

industry.

Preliminary graphical investigations are performed using plots of the ensemble

mean versus the individual model outputs for which a selection are shown in Fig-

ure 5.3, where the black line denotes equality between the ensemble mean and

individual model output. The focus is on the ensemble mean NPV and any simu-

lator outputs which are inputs to the NPV formula including: oil production, water

production and injection total, both for the field and individually by well. It is

desirable that the chosen Jade models possess a relationship with the ensemble mean

output (or NPV) that is easy to model, has minimal uncertainty, and with a pref-

erence for linear associations. Note that this is a preliminary graphical assessment

which is limited to identifying one-dimensional relationships. A strong linear rela-

tionship between the individual model output and the ensemble mean with limited

variation is observed in Figures 5.3a to 5.3c indicating that Jade 13, 30 & 33 are

potentially representative for the ensemble mean, at least as individual models. In

contrast, Jade 18 does not appear to be representative as seen in Figure 5.3d which

depicts a non-linear relationship with large residual variation in the ensemble mean

versus the output of Jade 18. Using this graphical assessment as a preliminary

screening technique leads to a proposed subset of models for further investigations

and is particularly useful for large ensemble. These are Jade 1, 2, 3, 6, 7, 10, 11,

12, 14, 15, 17, 23, 24, 27, 30, 31, 37, 40, 44, 47 & 50. Note that this does not
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(b) Jade 33 WOPTPRODA10.
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Figure 5.3: Preliminary graphical investigations for Efficient Geolo-
gical Ensemble Subsampling consisting of plots of the
Jade ensemble mean versus individual model outputs.
The black line denotes equality between the ensemble
mean and individual model outputs.

contain Jade 13 or 33 introduced above as good representatives for certain outputs

of interest. More detail on their consideration will be presented below.

Linear models are used to encapsulate the interactions between different Jade

models in the efficient geological ensemble subsampling technique presented in Sec-

tion 3.2.2. An initial investigation using the above proposed Jade model subset

suggests that either NEGES = 3 or NEGES = 4 is sufficient to accurately capture the

relationship between the ensemble mean NPV and the NPV for individual models,

with very little improvement in the adjusted R2 for larger values of NEGES. The

search is expanded to consider all Jade models and fit linear models to all subsets of
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Figure 5.4: Histograms of linear models ensemble mean NPV ad-
justed R2 values over all subsets of Jade models of size
NEGES.

each size, noting that this is a relatively lengthy but worthwhile calculation in order

to obtain a suitable EGES linear model and subset of Jade models. Histograms of

the adjusted R2 values obtained over these linear models for the ensemble mean

NPV are shown in Figure 5.4. Both show similarly high adjusted R2 values and that

for most subsets of the respective size, a high value is attained.

Selecting the candidate EGES linear model with the maximum adjusted R2 for

NEGES = 3 and NEGES = 4; leave-one-out diagnostics are performed with plots shown

in Figure 5.5. It is evident in Figures 5.5a and 5.5b that both linear models possess

good predictive performance, as indicated by their high adjusted R2 values, with

slightly tighter predictive intervals in Figure 5.5b. Comparison of the standardised

residuals in Figures 5.5c and 5.5d highlights that whilst the candidate linear model

for NEGES = 4 produces excellent predictions, the uncertainty is potentially too small

with some standardised residuals of magnitude greater than 3 reflecting that this

linear model may not perform so well for new NPVs for the four Jade models. In

contrast, for NEGES = 3 all standardised residuals are less than 3, with most less

than 2, hence this is the EGES linear model which will be used in this application

containing Jade 13, 30 & 33 as predictors. This comes with the additional benefit of

one less Jade model at which to perform simulations, thus reducing the computational

expense. It is noted above that both Jade 13 & 33 were not part of the proposed
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(a) NEGES = 3 linear model with three stand-
ard error predictive interval versus simu-
lated ensemble mean NPV.
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(b) NEGES = 4 linear model with three stand-
ard error predictive interval versus simu-
lated ensemble mean NPV.
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predictive residuals versus simulated en-
semble mean NPV.
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(d) NEGES = 4 linear model standardised
predictive residuals versus simulated en-
semble mean NPV.

Figure 5.5: Leave-one-out diagnostics plots for the candidate en-
semble mean NPV EGES linear models with NEGES = 3
(left) and NEGES = 4 (right). The top row shows plots
of the linear model three standard error predictive in-
tervals versus the simulated ensemble mean NPV. The
bottom row shows plots of the linear model standard-
ised predictive residuals versus the simulated ensemble
mean NPV.

subset of models since it was judged that for certain outputs these were not as

good representatives for the ensemble mean as some of the other suggested models.

However, in combination with Jade 30 via the EGES linear models it is found that

this subset characterises the ensemble mean NPV best with respect to the adjusted

R2 with NEGES = 3. This serves as a warning for placing too much emphasis on
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one dimensional plots for a multivariate analysis and demonstrates the value of the

EGES linear model construction. The EGES linear model is used as an efficient

method of prediction whilst providing a quantification of the induced uncertainty.

5.3 Targeted Bayesian Design Wave 1

The first wave of iterative decision support requires a space filling design in order to

construct an accurate emulator representation for the utility function. This follows

the approach described in Section 4.3.1 first imposing two types of constraints on

the decision parameters with the wave 1 targetted Bayesian design constructed using

Algorithm 1. For the wave 1 design we use the setup described in Section 5.1.1

with D = 36 decision parameters corresponding to six control intervals starting on

January 1, 2022, 2023, 2024, 2026, 2028 & 2030 for each of the six wells.

An initial hypercube decision parameter space is formed by imposing finite ranges

for each well control in the form of operational range constraints. These are stated in

Table 5.1. A priori reservoir engineering insight suggests that the decision parameters

should not be treated as mutually independent, with large temporal variations being

unphysical and unlikely to lead to good reservoir production performance. In order to

account for these beliefs and restrict our attention to the meaningful part of the initial

decision parameter space, we impose difference constraints between time consecutive

control parameters where for time ordered decision parameters |di − di−1| ≤ ∆i for

i = 2, . . . , D′ resulting in a non-hypercube decision parameter space. A conservative

choice for the maximum permitted change per year is ∆ = 1
6 of the parameter range

with the design divided into six independent subgroups of D′ = 6 decision parameters

by well. This reduces the volume of the decision space to approximately 1.8895% of

the initial hypercube volume due to the range constraints only with the auxiliary

benefit of reducing the computational expense.

For each of the six subgroups of six decision parameters a wave 1 targeted

Bayesian design of n = 700 points is constructed using Algorithm 1. These are
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(a) Empirical Cumulative Distribution Func-
tion (ECDF) for the normalised para-
meter sum for an individual well based
on uniform random sampling.
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(b) Proportion of constrained wave 1 decision
parameter space contained within the
truncation bounds defined by an inset.
The vertical red line corresponds to the
chosen case of 0.25.

Figure 5.6: Visualisation tools in selecting the truncation bounds
for sampling the normalised sum of parameters from a
truncated normal distribution within the construction
of the wave 1 targetted Bayesian design via Algorithm 1
for the Emerson Jade model.

approximately optimised with respect to the minimax design selection criterion (see

Equation (2.3.4)) compared to a large 20, 000 point uniform random reference sample

with which to compare a large collection of candidate designs. Note that a 700 point

design is justified by the heuristic of sampling such that n ≥ 10 ·D [116]. Within

Algorithm 1 the normalised sums of parameters are sampled from a truncated normal

distribution with mean µt = 3, standard deviation σt = 2.2, and truncation bounds

of [0.25, 5.75], whilst the maximal range is [0, 6]. This restriction is validated since

99.9960% of the normalised parameter sums for uniform samples over the decision

space lie within this interval. Visualisation tools shown in Figure 5.6 are useful for

selecting an appropriate truncation interval. The empirical cumulative distribution

function (ECDF) for the normalised sum of parameters for an individual well is shown

in Figure 5.6a highlighting very little tail probability mass, whilst the proportion of

the decision parameter space between two bounds of equal absolute inset is shown

in Figure 5.6b where the chosen case of 0.25 is depicted by the red line.

The truncated normal distribution mean hyperparameter is specified to be µt = 3
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corresponding to the mid-point of both the range of the normalised sum and the

truncation interval. This matches the expectation under uniform sampling. The

standard deviation hyperparameter is selected in order to achieve a trade-off between

the results of uniform sampling where the majority of the probability mass is centred

close to the sum of parameters mean, and increased exploration of the two extreme

corners that give rise to smaller and larger normalised sums of parameters. This

assessment is conducted through the use of histograms to compare a proposed

truncated normal density with the results of uniform sampling. An example is

shown in Figure 5.7a for the selected value of σt = 2.2, corresponding to 0.367 per

parameter. Note that it is not expected that results of targetted sampling from

fT (t) and from the uniform distribution align with the choice of fT (t) dependent

on the aims of the analysis and any prior beliefs. The corresponding samples for

producer well A10 are shown in Figure 5.7b. The benefit of targetted sampling for

decision support is that it enables regions of low utility function values to be quickly

eliminated, whilst providing greater coverage of regions where reservoir engineering

insight suggests high NPVs are likely to occur.

Figure 5.8 is a pairs plot of the 2-dimensional projection of the wave 1 design for

producer well B4. The clustering of points between two diagonal parallel bands for

the plots next to the axis labels illustrates the effect of the difference constraint, with

longer control intervals resulting in wider bands. This effect is also evident at larger

time separations with fewer points away from the main diagonal, although it is less

noticeable as the time lag increases. As expected given the above comments, there

are more points sampled for smaller and larger parameter values compared to uniform

sampling achieving better exploration of the corner and edge regions of the decision

space whilst maintaining sufficient coverage of the central region with a view to

constructing Bayesian emulators. Moreover, the points are coloured by the simulated

expected NPV predicted from the EGES linear model where green, yellow and red

points correspond to high, moderate and low NPVs respectively. Observations

confirm reservoir engineering insight with high early time target production rates are
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Histogram of Parameter Sums
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(a) Histogram of the sum of normalised para-
meters obtained via uniform sampling
over the constrained decision parameter
space for an individual well with the trun-
cated normal density overlaid in red.
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(b) Histogram of sum of normalised paramet-
ers for producer well A10 sampled from
a truncated normal distribution.

Figure 5.7: Histograms of wave 1 design sum of normalised paramet-
ers. This includes a comparison of the chosen truncated
normal distribution with truncation bounds [0.25, 5.75],
mean µt = 3, and standard deviation σt = 2.2, this
is fT (t) in Algorithm 1, with the results of uniform
sampling over the constrained decision parameter space.
The nature of employing a targetted design means that
these are not expected to align.

required to achieve a high NPV whilst at later times the effect of the high discount

factor results in greater spread of red and yellow points, although small values still

generally correspond to a low expected NPV. Similar patterns are observed for the

other producer wells, whilst for the injector wells, the association is reversed but

less pronounced. These plots are omitted for space. The sampling marginal density

of the individual parameters are illustrated by the histograms in Figure 5.9. Both

appear to have a slightly higher density in the central region, but are still relatively

close to uniform. Note that Algorithm 1 is not designed to produce uniform marginal

samples, but does yield a close approximation for this choice of fT (t).

The six independent sub-designs of size 700 and each of dimension 6 are com-

bined using random permutations and approximately optimised with respect to the

minimax design selection criterion. Two further points of interest not explored by

the constructed design are when all parameters are set to either their minimum
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Figure 5.8: Wave 1 design pairs plots of the 702 well control
strategies for producer well B4 for a design generated us-
ing Algorithm 1 and selected using the minimax distance
criterion. A fixed initial sample of parameter sums from
a truncated normal distribution was used when forming
all candidate designs. Points are coloured according
to the simulated NPV obtained from the EGES linear
model with green, yellow and red corresponding to high,
moderate and low NPVs respectively.

or maximum values which lie within the two extreme corner regions removed dur-

ing sampling from the truncated normal distribution. The final selected design is

augmented to include these two decision parameter vectors.
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Figure 5.9: Jade wave 1 design marginal density histograms for
prod_C6_2028_01 and inj_A16_2024_01 over the 702
well control strategies generated using Algorithm 1 and
selected using the minimax distance criterion.

5.4 Hierarchical Emulation Exploiting Known

Simulator Behaviour Wave 1

In this section we fit a hierarchical emulator exploiting known simulator behaviour

as described in Section 3.3 to the Jade model utility function in order to explore the

36-dimensional decision space. The EGES linear model constructed in Section 5.2 is

used to predict the expected NPV with the emulator fitted using the wave 1 design

constructed in Section 5.3. We begin by decomposing the NPV formula for each

model into its constituents and fit emulators which incorporate their structure in

Section 5.4.1 which are combined to obtain the approximate NPV for an individual

model in Section 5.4.2. This is linked to the exact NPV in Section 5.4.3. The final

step is to emulate the utility function in Section 5.4.4.

5.4.1 Structured Emulators Exploiting Known Simulator

Behaviour for NPV Constituents

The expected NPV utility function can be decomposed into contributions from oil

production, water production and injection by well and control interval, each of
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(a) WOPTPRODB4_2023_01 versus
prod_B4_2022_01.
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(b) WOPTPRODB4_2028_01 versus
prod_B4_2026_01.

Figure 5.10: Jade 30 wave 1 WOPT for producer well B4 dur-
ing the intervals January 1, 2022 – 2023 and 2026 –
2028 versus prod_B4_2022_01 and prod_2026_01
respectively. The red points correspond to where
dPB4,2022 > cuPB4,2022 and dPB4,2026 > cuPB4,2026 respect-
ively. In the left plot all values of prod_B4_2022_01
are achieved for the full control interval. In the right
plot prod_B4_2026_01 is achieved for small values
yielding perfectly defined linear behaviour up to an
unknown change point beyond which there is plateau
region due to BHP constraints.

which can be extracted as simulation output from the Jade model. As was the case

for the OLYMPUS model, WOPT and WWIT within a control interval adhere to a

known and constrained structural form of behaviour where the quantity is equal to

the corresponding target rate multiplied by the length of the control interval up to

an unknown change point, beyond which there is a plateau due to BHP constraints.

Two variants are shown for Jade 30 in Figure 5.10 for producer well B4 in the control

intervals where the red points indicate those which exceed the estimate of the change

point upper bound for the respective input. This is calculated using Equation (3.3.1)

with δi,u = 10. For some wells during the first few control intervals where all values

of a target rate are achieved for the full time period, as seen in Figure 5.10a. This

structure should be exploited to obtain extremely accurate emulators. The slope-

plateau structure is illustrated for a later control interval in Figure 5.10b. Note that

structured behaviour is not observed for WWPT within a control interval.
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Structured emulation is applied separately for each Jade model with estimates of

the change point upper bounds using Equation (3.3.1) with δi,u = 10 and the wave 1

simulations for each WOPT and WWIT by well and control interval. An example of

the result is displayed in Figure 5.10b. The extrapolation cut-offs are estimated as

the change point lower bounds from the wave 1 simulations using Equation (3.3.2)

with δi,l = 10 to account for numerical precision within the simulations. These are

illustrated for each of the wave 1 sub-selected Jade models in Figure 5.11 highlighting

the region in which the “true” change point is believed to be situated. Compared

with the TNO OLYMPUS Well Control Optimisation Challenge, there exist nu-

merous constituents for which the estimate of the change point upper bound and

extrapolation cut-off coincide, as is the case for Jade 30 WOPTPRODB4_2023_01

shown in Figure 5.10a. In addition, it is established that there are many cases where

the change point upper bound estimate is close to the maximum of the operational

range and hence there are relatively few design points for which djk,ti > cujk,ti . These

observations have implications for the preliminary Bayes linear emulator.

A modified setup compared to in the TNO OLYMPUS Well Control Optimisation

Challenge is used to perform preliminary Bayes linear emulation for each WOPT and

WWIT constituent, represented by fi(d), and still assuming the structure shown in

Equation (2.4.1). Firstly, for constituents where cujk,ti = bcp
l

jk,ti
corresponding to belief

that all points lie on the slope, we impose that the emulator should collapse onto the

slope for all new decision parameter vectors, thus skipping the preliminary Bayes

linear emulation step and jumping straight to the classification. It is acknowledged

that simulations have only been performed for a sample of possible scenarios, hence

there is the potential that a new simulation may yield output which is not on the

slope. This is deemed unlikely given the relatively large size of the wave 1 design.

In all other situations a preliminary emulator is fitted, however the form of the

deterministic functions, mi(dAi), depends on the number of points in D′i = {d |

d ∈ D, djk,ti > cujk,ti}. Let Ai be the set of active decision parameters for the ith

constituent which is assumed to consist of all decisions which take place in the past
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(a) Jade 13 WOPT
0

50
00

10
00

0
15

00
0

Change Points Intervals

Ta
rg

et
 In

je
ct

io
n 

R
at

e

iA
16

_2
02

2

iA
16

_2
02

3

iA
16

_2
02

4

iA
16

_2
02

6

iA
16

_2
02

8

iA
16

_2
03

0

iC
7_

20
22

iC
7_

20
23

iC
7_

20
24

iC
7_

20
26

iC
7_

20
28

iC
7_

20
30

(b) Jade 13 WWIT

0
20

00
40

00
60

00
80

00
10

00
0

Change Points Intervals

Ta
rg

et
 P

ro
du

ct
io

n 
R

at
e

pA
10

_2
02

2

pA
10

_2
02

3

pA
10

_2
02

4

pA
10

_2
02

6

pA
10

_2
02

8

pA
10

_2
03

0

pB
4_

20
22

pB
4_

20
23

pB
4_

20
24

pB
4_

20
26

pB
4_

20
28

pB
4_

20
30

pC
5_

20
22

pC
5_

20
23

pC
5_

20
24

pC
5_

20
26

pC
5_

20
28

pC
5_

20
30

pC
6_

20
22

pC
6_

20
23

pC
6_

20
24

pC
6_

20
26

pC
6_

20
28

pC
6_

20
30

● ● ●

(c) Jade 30 WOPT
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(e) Jade 33 WOPT
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Figure 5.11: Jade wave 1 change point upper bound and extrapol-
ation cut-off intervals for WOPT and WWIT within
each control interval with respect to their correspond-
ing decision parameter for each of the three sub-
sampled Jade models. Black points correspond to
where the change point upper bound and extrapol-
ation cut-off coincide for a particular NPV constituent
and occurs for the maximum value of the target rate.
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of the output, and |Ai| denote its cardinality. If |D′i| ≤ max{40, 1 + 2|Ai|}, then

the deterministic function is specified to be a constant mean in order to reduce the

number of emulator hyperparameters to fit. Otherwise the deterministic functions

are of the following form:

mi(dAi) = gi(dAi)Tβi = βi,0 +
∑
dj∈Ai
{βi,j,1dj + βi,j,2d

2
j} (5.4.1)

The remainder of the emulator structure consisting of the weakly stationary stochastic

process and nugget terms remain unaltered. This construction ensures that the fit-

ting process can be automated. Note that the limited number of fitting points issue

for particular constituents was not observed for the OLYMPUS model and hence

this approach was not necessary in that application.

The rest of each preliminary emulator’s prior specification is obtained via linear

models fitted only using simulation points in D′i with output F′i = {fi(d) | d ∈ D′i}.

The form of the linear model is either a constant or as shown in Equation (5.4.1)

given the above considerations with all decision parameters transformed onto [−1, 1].

An estimate of the residual standard error is denoted by σi,lm. It is assumed that the

unknown regression coefficients have prior expectation µβ = 0 and an infinite prior

uncertainty, again employing the limiting results in Equations (2.4.44) and (2.4.45)

derived in Section 2.4.5. For the residual process it is assumed that E[ui(dAi)] = 0

and E[wi(d)] = 0 with squared exponential covariance structure (Equation (2.4.3))

with a single common correlation length hyperparameter. Following the substitution

approach for the hyperparameters: σ2
ui

= (1−ρ)σ2
i,lm and σ2

wi
= ρσ2

i,lm where ρ = 0.05;

whilst the correlation length is set to half of the parameter range, hence θ = 1.

Given this preliminary emulator and a theoretical upper bound based on the

target rate for the time interval, the emulation output type is determined with

points classified as in the slope, plateau, or close to the change point following the

structured emulation with two-sided truncation method presented in Section 3.3.2.

The use of the two-sided truncation is necessitated by the limited number of points

in D′i for some constituents combined with the extrapolation due to higher estimates
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of cujk,ti , both of which results in greater additional uncertainty.

Examples of the leave-one-out diagnostics plots are shown in Figure 5.12 for Jade

30 NPV constituents. Figures 5.12a and 5.12c show the structured emulator adjusted

expectation with credible intervals of width 3 adjusted standard deviations versus

the corresponding simulated output. These are plotted versus the corresponding

target rate in Figures 5.12b and 5.12d respectively. It is observed that the structured

emulation approach is exceptionally accurate for smaller response values where the

target rate is adhered to for the entire control interval. For larger values believed to

be on plateau the credible interval is of a greater width. The two-sided truncated

GP emulator is employed for intermediate values in the uncertain region around the

change point location. The benefits are best observed in Figure 5.12b for Jade 30

WOPTPRODC5_20280101_01. There exist some cases close to the extrapolation

cut-off where the emulator under-predicts, but the credible interval is sufficiently

wide to account for this lack of knowledge. This arises as there is a noticeable

difference between cuPC5,2028 and bcp
l

PC5,2028 in Figure 5.11c leading to a relatively large

extrapolation. A potential means of addressing this is to impose a smaller credible

interval width in the truncation classification step detailed in Section 3.3.2. It is

established that for all NPV constituents, the majority of the credible intervals

contain the simulated value with no further issues detected in other leave-one-out

diagnostic analyses. Highly accurate emulators for the WOPT and WWIT NPV

constituents have been constructed based on a relatively small number of simulations

by exploiting the known structure of their behaviour.

WWPT within a control interval does not follow the same structured behaviour

as WOPT and WWIT and is emulated separately using a Bayes linear emulator.

This follows the same construction as the above preliminary Bayes linear emulator

with deterministic functions of the form specified in Equation (5.4.1). The rest of

the prior specification is obtained via linear models fitted using all simulations in D.

For each Jade model, this structured approach requires the fitting of 60 separate

emulators: 36 of the structured type for WOPT and WWIT; and 24 Bayes linear
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(b) WOPTPRODC5_2028_01 emulator CI
versus prod_C5_2026_01.
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(c) WOPTPRODC6_2024_01 emulator CI
versus simulated output.
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(d) WOPTPRODC6_2024_01 emulator CI
versus prod_C6_2023_01.

Figure 5.12: Leave-one-out diagnostic plots for the wave 1 struc-
tured emulation of Jade 30 WOPTPRODC5_2028_01
(top) and WOPTPRODC6_2024_01 (bottom). The
left column shows the adjusted expectation with cred-
ible intervals (CI) of width 3 adjusted standard de-
viations error bars versus the simulated value where
the red dashed line denotes equality of the structured
emulator and simulator. The right column shows the
adjusted expectation with credible intervals of width
3 adjusted standard deviations error bars versus the
output’s corresponding target production rate with red
points denoting the simulated values.

emulators for WWPT, and a total of 180 emulators over the three sub-selected Jade

models. The next stage of this analysis is to combine these constituent structured and

Bayes linear emulators to first emulate the NPV for each model, before subsequently

emulating the ensemble mean NPV and linking this to the expected NPV.
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5.4.2 Emulation of the Approximate NPV

The six control intervals used in this application are formed by merging multiple

of the consecutive discounting intervals. An emulator for the average discounting

approximate NPV computed via Equations (3.3.5) and (3.3.6) is constructed follow-

ing the methodology in Section 3.3.3 using the adjusted expectation and variance

formulae in Equations (3.3.7) and (3.3.8) respectively. These are evaluated with

respect to the suggested fixed NPV cost parameters in Table 5.2 on page 249 with

the NPV constituents regarded as independent. As for the TNO OLYMPUS Well

Control Optimisation Challenge, when a structured emulator is collapsed onto its

slope, the fixed maximum absolute error is treated as equivalent to a 3-sigma credible

interval. Multivariate emulators for the NPV constituents are not employed for the

same reasons as outlined in Section 4.5.2.

Leave-one-out diagnostics for the approximate NPV emulator for Jade 30 are

shown in Figures 5.13a and 5.13c. It is observed that the majority of the credible

intervals contain the simulated value of the approximate NPV, as illustrated by

the red dashed line which passes through most of the intervals in Figure 5.13a.

An analysis of the standardised residuals in Figure 5.13c highlights that there is

a slight tendency for under-prediction for smaller approximate NPVs shown by

the positive residuals and decreasing pattern. This is explained by the greater

uncertainty within this intermediate region for certain NPV constituents arising

from the previously highlighted issues regarding change point and extrapolation

cut-off estimation. Classification for the preliminary Bayes linear emulator most

often leads to two-sided truncation resulting in adjusted expectations pulled below

the slope values. Where the simulated output also lies on the slope, it is shown that

the credible interval is sufficiently wide leading to few or no violations of emulator

diagnostics. Another observation for the magnitude of the standardised residuals is

that whilst many are less than three, there exist larger cases. These tend to occur

for smaller approximate NPVs; a priori these are unlikely to correspond to well

control strategies that will yield near optimal expected NPV. Consequently this is
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(a) Average discounting approximate NPV
credible intervals versus simulated values.
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(b) Exact NPV credible intervals versus sim-
ulated values.
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(c) Average discounting approximate NPV
standardised residuals versus simulated
values.
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(d) Exact NPV standardised residuals versus
simulated values.

Figure 5.13: Leave-one-out diagnostics for wave 1 emulators of the
Jade 30 average discounting approximate NPV (left
column) and the exact NPV (right column) via a
simple linear model on the emulated approximate NPV.
The top row shows the emulator adjusted expectation
with 3 adjusted standard deviation credible intervals
versus simulated values where the red dashed line de-
notes when the emulator and simulator coincide. The
bottom row shows the emulator standardised residuals
versus the simulated values.

not an issue with a view to decision support, particularly given that this is wave

1 of the analysis. In addition, where multiple (and in some cases the majority) of

the NPV constituents have their emulators collapsed onto the slope region yields

tighter credible intervals for the approximate NPV. This highlights the benefits of

the hierarchical construction.
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5.4.3 Linking the Exact and Approximate NPV

An emulator for exact NPV, as defined in Section 3.3.3, is obtained following the

simple linear regression framework described in Section 3.3.4 on the approximate

NPV which accounts for the uncertainty induced by amalgamating discounting inter-

vals. The adjusted expectation and variance are computed using Equations (3.3.12)

and (3.3.13) respectively where for each Jade model, β̂0,ÑPVj , β̂1,ÑPVj and σÑPVj are

estimated using the wave 1 simulation data.

Leave-one-out diagnostics plots for the Jade 30 NPV are shown in Figures 5.13b

and 5.13d with similar results and appraisal to those for the average discounting

approximate NPV in Figures 5.13a and 5.13c. This shows that very little additional

uncertainty is introduced by the link model.

5.4.4 Emulation of the Ensemble Mean NPV

An emulator for the Jade ensemble mean NPV is constructed using the EGES

linear model formulated in Section 5.2 to combine the emulators for the Jade 13,

30 & 33 NPV. This follows the methodology described in Section 3.3.5 with the

adjusted expectation and variance computed using the formulae in Equations (3.3.16)

and (3.3.17) respectively. This accounts for the covariance structure when estimating

the regression coefficients.

True leave-one-out diagnostics cannot be performed as simulations have only been

evaluated for a subset of three of the Jade models. It is believed that an accurate

emulator with a reasonable magnitude of uncertainty has been constructed since the

leave-one-out diagnostics for each sub-selected Jade model NPV emulator and EGES

linear model diagnostics support a well fitted hierarchical emulator. The adjusted

expectations and standard deviations evaluated over the space are illustrated by the

histograms in Figures 5.14a and 5.14b respectively from which it is evident that the

standard deviations are at least an order of magnitude smaller than the expectations,

with a reasonable spread of both emulator outputs.
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(a) Histogram of the adjusted expectations.
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(c) Hierarchical emulator for the Jade ensemble mean NPV pairs plot for producer well
B4. The plots above the diagonal are coloured by the adjusted expectation with green,
yellow and red corresponding to high, moderate and low values respectively. The plots
below the diagonal are coloured by the adjusted standard deviation with light pink,
purple and blue corresponding to low, moderate and high values respectively.

Figure 5.14: Jade ensemble mean NPV wave 1 hierarchical emulator
output plots.
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Figure 5.14c shows a pairs plot for the decision parameters associated with

producer well B4. Above diagonal plots are coloured by the emulator adjusted

expectation where green, yellow and red correspond to high, moderate and low values

respectively. This is in agreement with Figure 5.8 with high adjusted expectations

for the ensemble mean NPV corresponding to larger decision parameter values, as

advocated by reservoir engineers. The below diagonal plots are coloured by the

emulator adjusted standard deviation where light pink, purple and blue correspond

to low, moderate and high values respectively. For each pair of decision parameters,

the observed pattern is very similar to that in the corresponding above diagonal plot

suggesting that the largest uncertainty occurs for the highest ensemble mean NPVs.

The fitting and evaluation of a hierarchical emulator for the ensemble mean NPV

delivers noticeable computational performance gains versus the direct simulation

from the Jade model achieving approximately 4 new decision parameter vector

emulator evaluations per second using a single core, compared to the 25 hours for

the Jade model. This result is comparable to that for the TNO OLYMPUS Well

Control Optimisation Challenge, despite the construction of additional structured

emulators for the NPV constituents from 144 to 180.

5.5 Wave 1 Uncertainty Analysis for Well

Control Optimisation

A comprehensive uncertainty quantification linking the computer model and the

corresponding real world physical system forms a vital part of any decision support

analysis, as illustrated for the TNO OLYMPUS Well Control Optimisation Challenge

in Section 4.7.3. For this application we assume the computer model represents

an actual Jade oil reservoir and that the utility function is U(d) = E[NPV](d).

Following the techniques discussed in Sections 2.7 and 3.5 we implement a thorough

wave 1 uncertainty quantification noting that this may be revised in later waves of

iterative decision support, as is the case in Section 5.9.
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The Jade computer model is first linked to reality in Section 5.5.1. Geological

uncertainty is assessed in Section 5.5.2 which is extended to include the additional

uncertainty arising from efficient geological ensemble subsampling in Section 5.5.3,

with NPV cost parameter uncertainty quantified in Section 5.5.4 including the im-

portant step of handling linear transformation effects. The uncertainty quantification

is extended beyond that seen for the TNO OLYMPUS Well Control Optimisation

Challenge to incorporate structural model discrepancy and decision implementation

error in Sections 5.5.5 and 5.5.6 respectively. This is made possible by insight from

product specialists and users at Emerson. A summary of the wave 1 uncertainty

analysis is presented in Section 5.5.7.

5.5.1 Linking the Jade Model to the Real World System

For the purpose of demonstrating a complete uncertainty analysis it is assumed

that the fictitious Jade model represents an actual real world oil reservoir. We link

these using an uncorrelated additive error structure detailed in Equations (2.7.1)

and (3.6.2). Due to the computational expense of evaluating the Jade ensemble,

emulators are used as a surrogate for both the model and the utility function with

the additive error structure extended as described in Equation (2.7.2). Uncertainties

included within this analysis include: geological uncertainty; EGES uncertainty;

NPV cost parameter uncertainty; structural model discrepancy; and decision imple-

mentation error. The choice of uncertainty model is justified as the uncertainties

are perceived to be mutually uncorrelated with an additive effect on the utility func-

tion. Decision support using an implausibility measure proposed in Equation (3.6.3)

requires that we assess the variance of the decision maker’s utility function induced

by each of the uncertainties.

5.5.2 Geological Uncertainty

Geological uncertainty, εG, is partially represented through the Jade model ensemble,

however this is limited to the sample of N = 50 geological realisations. Our treatment
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extends from these 50 models to consider the utility function uncertainty arising from

possible alternative posterior samples from the underlying history matched stochastic

geology model. This may be thought of as stepping between the finite sample of

50 geologies and the potentially infinite collection of valid geological configurations.

Quantification of ensemble uncertainty requires simulations for all ensemble members

for which we use the collection of exploratory simulations described in Section 5.1.2

to compute the sample variance, s2, of the ensemble mean NPV over the exploratory

decisions. It is assumed that E[εG] = 0, whilst Var[εG] is estimated by s2

N
= s2

50 .

Wave 1 results convey Var[εG] = 1.555× 1014 as a reasonable assessment.

5.5.3 Efficient Geological Ensemble Subsampling

Uncertainty

A subset of 3 of the 50 Jade models are used for the wave 1 simulations chosen

via the EGES techniques implemented in Section 5.2 in order to achieve simulation

computational savings. A consequence of EGES is that it induces some additional

uncertainty in the utility function, denoted as εEGES, and pertains to the use of a

subset of the Jade model ensemble. EGES uncertainty is explicitly handled within

the hierarchical emulation formulation in linking the emulators for the NPV for each

sub-selected Jade model to the ensemble mean NPV in Section 5.4.4 which accounts

for both the correlated uncertainties in the regression coefficient estimates and the re-

sidual uncertainty. For this residual uncertainty we assume that E[εEGES] = 0 whilst

Var[εEGES] is estimated by the square of the EGES linear model residual standard

error which for wave 1 is 5.046× 1012. This represents 3.24% of the magnitude of

the geological uncertainty variance and hence is a relatively small contributor to the

overall uncertainty implying that the computational savings achieved by EGES are

justified by the small increase in the uncertainty.
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5.5.4 NPV Cost Parameter Uncertainty

As for the TNO OLYMPUS Well Control Optimisation Challenge, fixed NPV cost

parameters are suggested for the oil price, water production and injection costs, and

discount factor which are summarised in Table 5.2. These are used to compute the

ensemble mean NPV, however they are not inputs to the Jade model so constitute

a form of utility function cost parameter. In this section we investigate the more

realistic scenario of time variable NPV cost parameters introducing NPV (or utility

function) cost parameter uncertainty, εC. This is illustrated via a simulation study

which follows the techniques presented in Section 3.5.2 that accounts for the linear

transformation effects on the utility function.

Cost Parameter Notation Value
Oil Price rop 30 $ per bbl
Water Produced Cost rwp 6 $ per bbl
Water Injected Cost rwi 2 $ per bbl
Discount Factor d 0.10

Table 5.2: Expected NPV fixed cost parameters within the Emerson
Jade model application.

Simulation of NPV Cost Parameters

We introduce a stochastic economic model for time variable NPV cost parameters in

the form of a stationary Gaussian process which is used to independently simulate

the oil price, water produced and injected costs, and the discount factor (an extension

on the TNO OLYMPUS Well Control Optimisation Challenge), with samples at 3

month intervals. In an alternative approach breaking with the TNO OLYMPUS

Well Control Optimisation Challenge application and in a scenario which is more

befitting of the realistic situation whereby a committee of decision makers may

possess differing views on the long term average oil price depending on their level of

optimism, we simulate multiple scenarios with fixed mean oil prices of $20, $25, $30,

$35 and $40 per barrel, noting that these values are chosen such that their average

is the proposed fixed value of $30 per barrel. This extra layer of the uncertainty
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quantification is only performed for the oil price due to the previously highlighted

importance of the contribution of oil to the expected NPV compared with water

contributions. For all other NPV cost parameters the mean hyperparameter is

fixed at their suggested values given in Table 5.2. Each simulation model uses

an exponential covariance kernel with correlation length equal to 365 days and

standard deviation parameter of 0.75, 0.12, 0.04 and 0.002 respectively. Compared

to the TNO OLYMPUS Well Control Optimisation Challenge the choice of standard

deviation hyperparameter for the time variable oil price of 0.75 is much smaller. This

represents the greater certainty which members of a decision making committee may

hold regarding their beliefs on the mean parameter. Moreover, the choice of NPV

cost parameter simulation model is based on the belief that economic quantities do

not vary smoothly with time. Note that this is an illustration and the described

model is not designed to be representative of our true beliefs for how the actual cost

parameters will vary over the field lifetime, but instead highlight the importance of

including NPV cost parameter uncertainty by demonstrating its effect on decision

support. This may be substituted for any other stochastic economic model. A

total of nc = 1000 NPV cost parameter time series samples are generated which

is split into 200 for each mean oil price. The simulated oil price scenarios are

illustrated in Figure 5.15 which shows time evolving traces for each of the fixed mean

hyperparameter values.

NPV Cost Parameter Uncertainty Before the Removal of Linear

Transformation Effects

The ensemble mean NPV is extremely quick to evaluate for a collection of Jade

model simulations. For each of the 702 wave 1 decision parameter vectors, the NPV

is evaluated for the subset of 3 Jade models using the 1000 generated cost parameter

scenarios with the EGES linear model used to predict the ensemble mean NPV.

As for the TNO OLYMPUS Well Control Optimisation Challenge, we illustrate

the differing uncertainty quantification results before and after the removal of the
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Figure 5.15: Trace plot of 10 simulated oil prices ($ per barrel) from
a Gaussian process for each constant mean of $20, $25,
$30, $35 and $40 per barrel, using an exponential cov-
ariance kernel with correlation length of 365 days, and
standard deviation 0.75. The red, green, dark blue,
light blue and pink lines denote the sample mean over
the 10 simulated scenarios for each mean hyperpara-
meter respectively.

linear transformation effects. The direct approach yields pairs plots such as those

shown in Figure 5.16 for producer well B4 coloured by the standard deviation of

εC where the largest uncertainty occurs for higher marginal parameter values. This

is also evident in Figure 5.18a which shows the NPV cost parameter uncertainty

versus the predicted ensemble mean NPV for which there is a strong positive linear

association. A robust choice in the assessment of the NPV cost parameter uncertainty

is therefore the maximum variance over the decision space; Var[εC] = 7.879× 1016.

This is problematic for decision support since this region is anticipated to contain

good decision strategies whilst large uncertainties create difficulties in distinguishing
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Figure 5.16: Jade wave 1 uncertainty quantification two-
dimensional projections of the decision space for
producer well B4 coloured by the standard deviations
of the ensemble mean NPV utility function due to the
cost parameter variability before the removal of linear
effects. The colour scheme denotes the magnitude
of the uncertainty on a relative scale with light pink
through to dark purple corresponding to low through
to high standard deviations.

between such decisions.

NPV Cost Parameter Uncertainty After the Removal of Linear

Transformation Effects

Removal of the linear transformation effects is performed following the procedure

described in Section 3.5.2 since these do not alter the location of the optimal decision.
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For each of the nc simulated cost parameter scenarios, linear models of the form

shown in Equation (3.5.1) are fitted with a natural choice for c0 being the suggested

fixed cost parameter settings listed in Table 5.2. The residual variability, estimated by

s2
C(dj) (see Equation (3.5.3)), is illustrated with a projection pairs plot for producer

well B4 shown in Figure 5.17. The same colour scheme is used in Figures 5.16

and 5.17 to highlight the differences. Unlike for the TNO OLYMPUS Well Control

Optimisation Challenge where there was a reversal in the direction of the association

between larger decision parameter values and the magnitude of the uncertainty due to

the cost parameter variability after linear effects have been accounted for, we observe

a breaking of the association with a spread of standard deviation values across the

entire parameter range. This is confirmed by the lack of association in Figure 5.18b

of the NPV cost parameter uncertainty versus the predicted ensemble mean NPV,

although it is noted that there is evidence of negative correlation indicating that

the uncertainty has been reduced for the region that a priori is of most interest for

optimal well control. The differences with the TNO OLYMPUS Challenge analysis

can be explained by the alternative method of simulating the NPV cost parameter

scenarios where the oil price is the main driver for high NPVs, however this leads to

output which is more challenging to model via linear regression and hence the change

in the pattern. Note that the mean residuals over the cost parameter scenarios are

also examined using mC(dj) defined in Equation (3.5.2). As in the TNO OLYMPUS

Challenge these are typically at least an order of magnitude smaller than sC(dj),

and thus have negligible effect on the decision analysis.

Figure 5.19 shows a histogram of the variances of the utility function induced by

NPV cost parameter uncertainty with the distribution centred at 1.152× 1014. This

remains a substantial source of uncertainty that is generally of a larger magnitude

than the EGES uncertainty. Based on the observations in Figure 5.18b, a suitable

estimate for Var[εC] is the median over the initial decision parameter space, leading

to Var[εC] = 6.465× 1013 as a robust choice. The magnitude of the uncertainty

for many instances of large Jade ensemble mean NPV is comparable with this
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Figure 5.17: Jade wave 1 uncertainty quantification two-
dimensional projections of the decision space for
producer well B4 coloured by the standard deviations
of the ensemble mean NPV utility function due to the
cost parameter variability after the removal of linear
effects. The colour scheme denotes the magnitude
of the uncertainty on a relative scale with light pink
through to dark purple corresponding to low through
to high standard deviations.

uniform estimate. Prior to removing the linear effects this estimate is given by

Var[εC] = 7.879× 1016 (note that the median is 4.976× 1016), thus demonstrating

a three order of magnitude reduction in this uncertainty. In addition, note that

the maximum uncertainty after the removal of the linear transformation effects

is 9.260× 1014, which still represents a two order of magnitude reduction. The

implication for decision support is that a much smaller class of decisions may be
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(a) Before the removal of linear effects.
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(b) After the removal of linear effects.

Figure 5.18: Jade wave 1 ensemble mean NPV standard deviation
induced by NPV cost parameter variability versus the
ensemble mean NPV over the wave 1 design computed
using the nc = 1000 simulated cost parameter scen-
arios.

obtained that are still robust to this uncertainty.

5.5.5 Structural Model Discrepancy

Model discrepancy provides a structured link between the computer model output

and the real-world physical system. Whilst the Jade model is fictitious and is used

to test and demonstrate Emerson’s software, we introduce a model discrepancy term,

εMD, as part of a comprehensive and realistic analysis guided by expert input. In our

approach we represent model discrepancy as a proportion of the simulated ensemble

mean NPV based on the intuition that this is: unrelated to the NPV distribution

due to different geological ensembles (as characterised by geological uncertainty

in Section 5.5.2); and that model discrepancy is expected to be proportional to

the size of the expected NPV obtained for the Jade model due to the differences

between the model and reality. A conservative estimate is obtained by considering

the maximum simulated Jade ensemble mean NPV with a suitable proportion for

the difference between model and reality being 0.1% representing one standard

deviation. This assumes that: the ensemble mean NPV is a good representative

for the expected NPV (see geological uncertainty in Section 5.5.2); and that the
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Figure 5.19: Histogram of the wave 1 variances of the Jade ensemble
mean NPV over the generated cost parameter scenarios
after the linear effect is removed. For comparison, the
red dashed and blue dotted vertical lines correspond
to the assessed values for Var[εG] and Var[εEGES] re-
spectively.

specified decisions are executed precisely with any variation in the controls accounted

for via the decision implementation error in Section 5.5.6. Note that whilst there

is uncertainty in the predicted Jade ensemble mean NPV, this is already accounted

for by the EGES uncertainty in Section 5.5.3. Under this setup we specify that

E[εMD] = 0, since a reasonable prior belief is that the Jade model was constructed to

accurately represent the corresponding real world NPV under a particular decision

strategy, and Var[εMD] = 1.076× 1012, commenting that this is of comparable size

to the EGES uncertainty, but smaller than the geological and NPV cost parameter

uncertainties. For real world analyses we may be guided by the knowledge of experts

including the model developers such as regarding the important approximations
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and differences with the physical system. In cases where the prior belief is that

E[εMD] 6= 0 two modifications to the decision support implausibility measure in

Equation (3.6.3) are necessary. Firstly, the numerator becomes (EF [U(d)]− (Umax +

E[εMD]))2, whilst the indicator function is modified to 1{EF [U(d)]<Umax+E[εMD]}. A more

thorough analysis would involve emulating the model discrepancy based on this setup.

An alternative formulation would be to use a multiplicative error structure utilising

the emulator expectation to obtain an approximation for the model discrepancy at

different decision parameter settings.

5.5.6 Decision Implementation Error

Decision implementation error occurs due to the difference between the prescribed

controls and those which are implemented for the real-world oil field. As for the model

discrepancy we note that the Jade model is fictitious, although we include decision

implementation error, εI, in order to illustrate its quantification and the effects on

a comprehensive and realistic analysis. There exists two forms of implementation

error: discrepancies in the values of the enacted controls, as described in Section 3.5.4;

and uncertainty in the time of decision execution, often in the form of a delay. An

assessment of the implementation error requires the evaluation of the computer model

for a large number of decision parameter settings rendering such experimentation

computationally infeasible, even for the Jade model which is of modest complexity

and moderate run-time. Instead we propose using the fitted hierarchical emulator

for the utility function as a substitute within these investigations to mitigate such

computational concerns. This can be used to analyse the effects of the first form

of decision implementation error, however it is not possible to assess the effect of

time variable decisions since the emulator possesses decision parameters at a fixed

time as inputs. If it was believed that this was important then this should also

be assessed via direct experimentation using the Jade model, although real-world

protocol should also be considered to mitigate this form of decision implementation

uncertainty. An assessment of the first form is sufficient to demonstrate the inclusion
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of implementation error and to provide a meaningful assessment for decision support.

The methodology described in Section 3.5.4 is used to assess decision implement-

ation error using the hierarchical emulator constructed in Section 5.4 to first assess

the variability in the NPV for each of the three sub-selected Jade models, before

combining to emulate the Jade ensemble mean NPV. This begins by generating an

initial 200 point space-filling design over the wave 1 decision parameter space. For

each point, 100 decision parameter vectors are obtained via perturbations centred at

the proposed d with each individual implementation error eI,i independently sampled

conditional on the respective proposed di from πI,i(eI,i | di) ∼ T N (0, σ2
eI,i
,−aI,i, aI,i),

a truncated normal distribution, where σeI,i = Mi−mi
300 , and truncation bounds given

by aI,i = min{Mi−mi
100 , di −mi,Mi − di}, with mi and Mi denoting the minimum and

maximum of the ith parameter range respectively. The choice of a truncated normal

distribution represents that operatives will attempt to achieve the stipulated control

value, but with some potential for error with decreasing probability as the magnitude

increases. The hyper-parametrisation represents a permitted tolerance of 1% of each

parameter’s range which is treated as a three standard deviation credible interval in

specifying σeI,i. In cases where an individual decision parameter is within 1% of its

respective minimum or maximum, the truncation bounds are contracted to the differ-

ence with the nearest range end-point in the second or third terms for aI,i, although

there is no change to σeI,i. This is to ensure consistency with the mean equal to the

proposed decision parameter for both the joint and marginal distributions. A total

of 2× 104 emulator evaluations are performed. Preliminary investigations show that

100 perturbations for each initial d are sufficient to obtain an accurate characterisa-

tion of the εI with additional hierarchical emulator evaluations not merited as they

only yield a minor decrease in the induced variance. This enables exploration of a

greater number of proposed decision parameter settings. Assessment of the mean

emulator adjusted expectation for each fixed decision parameter location provides

no evidence against the assumption that E[εI(d)] = 0 for all d ∈ Ω0, whilst a conser-

vative assessment of the variance due to decision implementation error as the 95th
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percentile yields Var[εI] = 6.821× 1012. This is justified based on the histogram of

the variances over the initial 200 sampled decision parameter vectors in Figure 5.20.
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Figure 5.20: Histogram of the wave 1 variances of the Jade ensemble
mean NPV due to decision implementation error.

5.5.7 Uncertainty Analysis Summary

A summary of the wave 1 uncertainty analysis is presented in Table 5.3 which

shows the variances and the proportion of the total wave 1 uncertainty variance. A

comparison with the wave 2 uncertainty analysis is given in Table 5.5 on page 291.

The individual uncertainties, excluding that due to the emulator, are combined

following the uncorrelated additive error structure described in Equation (2.7.1)

to obtain a total uncertainty variance of 2.281× 1014. Moreover, note that this

excludes the EGES uncertainty which is encompassed within the novel hierarchical

emulator for the utility function during the decision support analysis. It is observed
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Source of Uncertainty Variance Proportion of Total Uncertainty
Geological Uncertainty 1.555× 1014 68.2%
EGES Uncertainty 5.046× 1012 –
NPV Cost Parameter
Uncertainty 6.465× 1013 28.3%

Structural Model
Discrepancy 1.076× 1012 0.5%

Decision
Implementation Error 6.821× 1012 3.0%

Total Uncertainty 2.281× 1014 –

Table 5.3: Emerson Jade model application wave 1 uncertainty ana-
lysis results including the variances and proportion of
total variances for the Emerson Jade model application
obtained using an additive error structure described in
Equation (2.7.1). Note that the hierarchical emulator
construction implicitly encompasses the EGES uncer-
tainty to predict the ensemble mean NPV, hence it is
omitted from the total uncertainty. A comparison with
the wave 2 uncertainty analysis is given in Table 5.5 on
page 291.

that geological uncertainty is the largest contributor to the overall uncertainty,

and NPV cost parameter uncertainty represents a reasonable amount. In contrast,

structural model discrepancy and decision implementation error are relatively minor

contributors within wave 1 of our analysis. A decision support sensitivity analysis

may be performed to assess whether this conclusion is a result of the modelling

choices. For the structural model discrepancy, under the same framework as used

in Section 5.5.5, it would be necessary to inflate the proportion of the maximum

simulated Jade ensemble mean NPV by a factor of 60 and 144 in order to obtain an

uncertainty of comparable size to that induced by the NPV cost parameters or the

underlying geology respectively. This corresponds to proportions of 6% and 14.4%

respectively as representing one standard deviation of structural model discrepancy;

both of which seem excessively large given the efforts which go into accurately

constructing such models.
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5.6 Decision Support Wave 1 for Well Control

Optimisation

The first wave of iterative decision support for well control optimisation applied to

the Emerson Jade model is performed in this section using U(d) = E[NPV](d) within

the procedure formulated in Section 3.6. This incorporates the EGES technique,

construction of a wave 1 targeted Bayesian design, the hierarchical emulator exploit-

ing known simulator behaviour and the wave 1 uncertainty analysis implemented

in Sections 5.2 to 5.5 respectively. Results are presented in Section 5.6.1 with a

comparison under alternative uncertainty analyses discussed in Section 5.6.2.

5.6.1 Results

Wave 1 of iterative decision support is performed using the hierarchical emulator

exploiting known simulator behaviour devised in Section 5.4 for the utility function

incorporating all uncertainties discussed in Section 5.5. Note that the EGES un-

certainty is encompassed within the hierarchical emulator formulation. The wave

1 non-implausible region is defined as decision parameter vectors which satisfy

IDS(d) ≤ c = 3 for which it is established that 3.72% of the decision space ob-

tained by imposing both the operational range and difference constraints is classified

as non-implausible, thus highlighting the immense benefits of using an emulator to

focus in on a small region that contains potentially good control strategies. Moreover,

this equates to 7.029× 10−2% of the full hypercube volume formed by the opera-

tional range constraints only. Compared to the analysis of the TNO OLYMPUS

Well Control Optimisation Challenge, this demonstrates how the incorporation of

structure into the emulator can yield vast improvements for decision support.

An example of the visualisation of the wave 1 decision support non-implausible

region is seen in the implausibility pairs plot for the decision parameters for pro-

ducer well B4 in Figure 5.21. This includes implausibility measure plots below the

diagonal, the implausibility optical density above the diagonal, and marginal density
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histograms along the diagonal. Note that for the implausibility plots, the axes are

swapped to match the corresponding optical density plot whilst the colours green,

yellow and red convey where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and IDS(d) > 3.5

respectively. Blue triangles denote where the implausibility measure is zero and

hence the emulator for the expected NPV adjusted expectation exceeds the current

maximum simulated NPV. For the optical density plots, dark blue through to yellow

depict low to high density of points satisfying IDS(d) ≤ c. Examination of these plots

already emphasises the importance of setting very high early time target production

rates, whilst unlike in the TNO OLYMPUS Well Control Optimisation Challenge,

the middle and later time rates must also be relatively high. Similar patterns are

observed for the other producer wells with a reversal seen for the injector wells where

lower target rates are favoured at earlier times with increasing values at later times

to sustain the desired production rates. This is explained by the effect of a high

discounting factor.

These results are corroborated by decision support directly using the simulation

output in which the emulator uncertainty is omitted from the implausibility meas-

ure formula. Figure 5.22 shows plots of the wave 1 simulations for the predicted

ensemble mean NPV computed using the EGES linear model versus several decision

parameters. The horizontal blue line denotes the fixed threshold with any decision

parameter vectors classified as non-implausible if its simulated ensemble mean NPV

exceeds this line, as is the case for the red points. It is evident in Figure 5.22a for

prod_C5_2024_01 that a relatively high target rate is preferred for this middle-time

target production rate, whilst in Figure 5.22b there is less restriction over the exact

value of the target injection rate, although there is a slightly higher concentration

for smaller values which lead to lower injection costs. The height of the blue line

is computed as Umax − c
√

Var[εMD] +∑
i Var[εi], where c = 3. This provides an

illustration of how iterative decision support proceeds to identify decision parameter

vectors which yield a utility function value that exceeds a threshold defined with

respect to the incorporated uncertainties related to the unknown decision maker’s
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Figure 5.21: Jade wave 1 decision support implausibility measure
(below the diagonal) and optical density (above the
diagonal) pairs plot, with marginal density histograms
(along the diagonal) for the decision parameters for
producer well B4. In the implausibility plots, the axes
are swapped to match the corresponding optical dens-
ity plot in which the colours green, yellow and red
indicate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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utility. It is the magnitude of these uncertainties which thus determines the size of

the non-implausible region. Any changes to their assessment results in a shift of

this threshold where the utility is a function of the decision parameters. Further

exploration of the non-implausible decision space is conducted for the wave 2 analysis

in Section 5.10.1.
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(a) Predicted ensemble mean NPV versus
prod_C5_2024_01.
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(b) Predicted ensemble mean NPV versus
inj_A16_2028_01.

Figure 5.22: Jade wave 1 simulations predicted ensemble mean NPV
via the EGES linear model versus decision parameters.
The horizontal blue line denotes the fixed threshold
defined with respect to the wave 1 uncertainty analysis
at height Umax−c

√
Var[εMD] +∑

i Var[εi], where c = 3,
above which decision parameter vectors are classified
as non-implausible. These are highlighted by the red
points

5.6.2 Decision Support Wave 1 Results for Alternative

Uncertainty Quantifications

A decision support sensitivity analysis is performed in this section to assess the

effect of various uncertainty specifications exploiting the computational efficiency

of the developed iterative decision support procedure. The first wave of decision

support is repeated for several alternative uncertainty specifications with the results

summarised in Table 5.4. A comparison with the wave 2 results is shown in Table 5.6

on page 298. For clarity, column two shows the non-implausible volume of the wave 1
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decision space obtained by imposing both the range and difference constraints, whilst

column three depicts the non-implausible volume of the entire hypercube formed by

the range constraints only. All comments are with respect to the fully constrained

decision space.

Uncertainty Specification Non-Implausible
Volume

Non-Implausible Volume
of Hypercube

Hierarchical Emulator with
All Uncertainties 3.72% 7.03× 10−2%

Omitting Geological Uncertainty 2.80% 5.29× 10−2%
Before Removing
NPV Cost Parameter
Uncertainty Linear Effect

99.86% 1.89%

Emulator Uncertainty Only 2.33% 4.40× 10−2%
No Emulator Uncertainty 0.99% 1.87× 10−2%
No Uncertainties
or Emulator Uncertainty 0.04% 7.56× 10−4%

Table 5.4: Summary of the proportion of decision space classified
as non-implausible after wave 1 decision support for the
Emerson Jade model for various included uncertainties
within the decision support implausibility measure using
threshold value c = 3. The first row displays the results
using the hierarchical emulator for the utility function
and a comprehensive uncertainty quantification with all
subsequent rows omitting various forms of uncertainty.
The second and third columns show the non-implausible
proportion of the initial decision space formed by im-
posing both the range and difference constraints, and
the hypercube formed by only the range constraints re-
spectively. Note that imposition of the difference con-
straints before the wave 1 analysis results in a reduction
to 1.8895% of the initial hypercube volume due to the
range constraints only. A comparison with the wave 2
results is shown in Table 5.6 on page 298.

Geological uncertainty is of principal concern within the oil industry, as evidenced

by the TNO OLYMPUS Field Development Optimisation Challenge and general

petroleum reservoir engineering practice in generating ensembles with differing un-

derlying geologies. Our more comprehensive treatment beyond a fixed ensemble of

finite size linking to the potentially infinite number of geological configurations in

Section 5.5.2 yields a wave 1 assessment of Var[εG] = 1.555× 1014. This is an uncer-
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tainty of a substantial magnitude, as highlighted in Table 5.3 (page 260). Omission

from the decision support analysis results in a non-implausible proportion of 2.80%,

as seen in the second row of Table 5.4 representing approximately a one-quarter

decrease in the volume compared with when geological uncertainty is fully incor-

porated. Consequently, some decision parameter settings which may be deemed

of interest were the decision makers to order the evaluation of further geological

ensemble members, could be falsely eliminated at wave 1.

In Section 5.5.4 we consider the differences before and after accounting for the

linear transformation effect of the NPV cost parameter uncertainty on the utility

function obtaining a wave 1 assessment of Var[εC] = 7.879× 1016 and Var[εC] =

6.465× 1013 respectively. The uninformed version dominates the uncertainty quan-

tification leading to a non-implausible proportion of 99.86%. It is almost impossible

to distinguish between the decision parameter settings with such a large source of

uncertainty and hence meaningful decision support cannot be provided. As for the

TNO OLYMPUS Well Control Optimisation Challenge, the importance of perform-

ing an uncertainty quantification whilst taking into account the wider objective of

the analysis is emphasised, with linear transforms of the utility function presenting

no change to the decision support analysis in terms of the location of good decisions.

This result is shown in the third row of Table 5.4.

Omitting all uncertainty except for those due to the emulator as a surrogate

for the Jade expected NPV, as represented by specifying E[εi] = 0 and Var[εi] =

0 for all uncertainties, yields a wave 1 non-implausible volume of 2.33% of the

decision space (see the fourth row of Table 5.4). This corresponds to the prior belief

that up to emulator uncertainty, there is no difference between the Jade model

and the real world field. As in the case of omitting the geological uncertainty,

there is a considerable decrease from the initial 3.72% non-implausible volume, thus

accentuating the need for a realistic and comprehensive uncertainty quantification to

avoid falsely eliminating decision settings which may produce high expected NPVs.

These uncertainties may be re-assessed and subsequently potentially decreased in
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later waves of iterative decision support.

The assumption that the emulator is a perfect representation of the Jade model

is characterised by omitting the emulator uncertainty, whilst retaining the rest of the

uncertainty quantification. This results in a wave 1 decision support non-implausible

volume of 0.99% in the fifth row of Table 5.4. This investigation is equivalent to

treating the emulator expectation as equal to the simulator output, and approx-

imates decision support directly using the Jade model if sufficient computational

resources were available. The wave 1 result provides a theoretical lower bound on the

proportion of space remaining after wave 1 for the current uncertainty quantification

suggesting that further refinement of the emulator is capable of a further reduc-

tion from 3.72% to close to 0.99% without any additional simulations. In addition,

this non-implausible volume is smaller than that achieved by omitting the uncer-

tainty quantification whilst retaining the emulator uncertainty. This implies that at

wave 1 the emulator represents the largest single source of uncertainty, and hence a

wave 2 analysis is necessary to further reduce the non-implausible space. Note that

for the majority of decision parameter vectors the wave 1 emulator uncertainty is

greater than the largest resolvable uncertainty, geological uncertainty, from the wave

1 uncertainty quantification (see Table 5.3).

Neglecting all sources of uncertainty including both the emulator and all of those

detailed in Section 5.5 and identifying cases where IDS(d) = 0 results in a non-

implausible volume of 0.04%. This is shown in the sixth row of Table 5.4. This

analysis represents the situation where it is assumed that the Jade model is a perfect

representation of the corresponding real world oil field, and that the emulator is

an exact portrayal of the model, with no other sources of uncertainty. This is

unrealistic and thus highlights the dangers of inadequately linking the various layers

of the modelling framework with the real world physical system. Within decision

support this leads to many potentially good decision strategies being falsely rejected,

although it also provides insight of which well control strategies are expected to yield

improvements versus the current best simulated strategy.



268 Chapter 5. Emerson Jade Model Well Control Optimisation

5.7 Wave 2 Design of Simulations

Wave 1 of the iterative decision support procedure has substantially reduced the

decision parameter space which is classified as non-implausible to only 3.72% of the

initial decision space formed by imposing both constraint types. A second design over

this smaller space must be constructed in order to perform a second wave of decision

support. A method of constructing a design for wave 2 is described in Section 5.7.1

with the results of its application to the Jade model presented in Section 5.7.2.

5.7.1 Wave 2 Design Methodology

Iterative decision support provides an insight into the size, shape and location of

the non-implausible region, however it does not yield a probability distribution over

the parameters, as would be the case within a full Bayesian analysis. It is therefore

desirable to construct a uniform design over the wave 1 non-implausible decision

space, which may be of a complex shape, in order to achieve good exploration and

coverage. The following algorithm is used to generate a design of size n which is

approximately optimised with respect to a design selection criterion such as the

minimax criterion (see Equation (2.3.4)) via a comparison with a reference design

of at least nref points, where nref � n.

1. Uniformly sample batches of nprop decision parameter vectors over the initial

decision space, d ∈ Ω0. Use the wave 1 hierarchical emulator and uncertainty

analysis to obtain a collection which are in the wave 1 non-implausible region.

This is any d satisfying IDS(d) ≤ c, where c is the threshold value used within

the iterative decision support procedure. Repeat this process until at least 10n

non-implausible decision parameter vectors are obtained.

2. Formulate a second uniform sample of at least nref points following the same

procedure as for the proposal points in step 1.

3. Identify any additional decision parameter vectors from the wave 1 analysis

that are of interest for evaluating the simulator and with which to augment
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the wave 2 design. Examples may include:

• dmax,exp = arg maxd∈Ω EF [U(d)], the decision parameter vector which

maximises the utility function emulator adjusted expectation and hence

is expected to yield simulator output with a utility function value that

exceeds the current highest utility function evaluation.

• dmax,3CIupr = arg maxd∈Ω EF [f(d)] + 3
√

VarF [U(d)], the decision para-

meter vector which maximises the 3 adjusted standard deviation credible

interval upper bound where there is a possibility of a high utility func-

tion value taking into consideration both the adjusted expectation and

the emulator uncertainty. Credible interval upper bounds of alternative

widths may also be considered.

Note that this step is optional. Also, it is possible that multiple of these

augmentation decision parameter vectors may coincide.

4. Formulate ngen candidate designs by randomly selecting n points from those

generated in step 1 and augment to include any additional decision parameter

vectors from step 3.

5. Approximately optimise the design with respect to the minimax design selection

criterion by comparing to the reference design formulated in step 2.

The algorithm naturally extends to designs for later waves by sequentially evaluating

the decision support implausibility measure and checking the cut-off criterion for each

wave in steps 1 and 2. In situations where either the current non-implausible region

represents a very small volume of the initial decision parameter space, or many waves

of decision support have already been performed, this can become computationally

challenging. Solutions to this include the techniques discussed in Section 2.8.5.

Another use for the algorithm is to assess the proportion of the decision space

classified as non-implausible at wave 1 by exploiting the recursive structure of gen-

erating batches of points to test versus the decision support implausibility criterion

cut-off in both steps 1 and 2. The large number of sampled points produces an

accurate estimate for the non-implausible proportion summary statistics. Moreover,
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each batch can be viewed as an individual estimate of this statistic and hence used

to measure its variability resulting from alternative proposed uniform samples.

5.7.2 Wave 2 Design

In this section we present the construction of a wave 2 design for the Jade model

application following the algorithm described in Section 5.7.1. This is the first step

in a second wave of iterative decision support for which certain aspects of the setup

may be reviewed including: the sub-selected Jade models from the EGES analysis;

and the choice of decision parameters.

The same three Jade models as in wave 1 identified using the EGES techniques

are used for wave 2 simulations. This is justified since the EGES uncertainty was

comparatively small versus all other sources of uncertainty in the wave 1 analysis;

noticeably it is two orders of magnitude smaller than the geological uncertainty, and

hence the additional computational costs of simulations for additional ensemble mem-

bers is not warranted. Moreover, a re-assessment over the wave 1 non-implausible

decision space to identify a new and potentially larger representative subset would

require an additional collection of simulations for all 50 Jade models. Similarly, the

additional computational expense is not believed to be of sufficient benefit.

For the wave 2 decision support analysis the same D = 36 decision parameters as

for wave 1 are used, namely six control intervals starting on January 1, 2022, 2023,

2024, 2026, 2028 & 2030 for each of the six wells. In addition, there are no changes

to the operational range or difference constraints defined for wave 1 in Section 5.3.

Given this setup, the aim is to formulate a wave 2 design of size n = 700 by

applying the algorithm in Section 5.7.1. In step 1 we uniformly sample d ∈ Ω0 in

batches of size nprop = 104 until we possess at least 10n = 7000 decision parameter

vectors satisfying IDS(d) ≤ 3. The choice of nprop = 104 is justified based on the

wave 1 analysis where 3.72% of the decision space was classified as non-implausible

and for reasons of emulator computational efficiency and memory. A total of 18

iterations were necessary to yield 7283 proposal points in Ω1. The same process was
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repeated in step 2 to construct a reference design containing nref ≥ 104 points in Ω1

requiring 26 batches yielding nref = 10405. Note that this analysis indicates that the

actual non-implausible volume is approximately 4.02% with an estimated standard

error for batches of nprop = 104 points of 0.22. Note that the initial wave 1 estimate

of 3.72% therefore lies within two standard deviations of this value.

Design augmentation is considered as in step 3 for dmax,exp and dmax,3CIupr, with

the maximisation performed approximately with respect to a large number of d ∈ Ω0.

It is discovered that dmax,exp and dmax,3CIupr (approximately) coincide, hence the

wave 2 design is augmented to include only one extra decision parameter vector. A

collection of ngen = 104 candidate designs are constructed by randomly selecting

n = 700 of the proposed non-implausible d, with each design augmented to also

include dmax,exp, as in step 4. Approximate design optimisation is then performed

with respect to the minimax design selection criterion through a comparison with

the large reference design to conclude step 5.

The wave 2 design is illustrated and compared with the wave 1 design in Fig-

ures 5.23 and 5.24. These are pairs plots for the decision parameters for producer

well B4 and injector well A16 respectively where the above diagonal plots encompass

both the wave 1 and 2 designs which are denoted by grey and red points respectively.

The below diagonal plots show the wave 1 design only. In all plots the blue points

indicate the wave 1 design points that are classified as non-implausible for decision

support directly using the simulation output along with the wave 1 uncertainty quan-

tification. For producer well B4 the pattern closely resembles the non-implausible

region in Figure 5.21 corresponding to generally high target production rates, es-

pecially for earlier time control intervals. Moreover, it is evident that this covers a

much smaller region than the wave 1 design whilst noting that the red points are

situated in similar locations to the blue wave 1 design points, although with slightly

greater spread arising due to the targeted sampling of a larger number of points

classified as non-implausible in wave 1. The pattern is less well defined for injector

well A16, although it remains the case that lower target injection rates are favoured
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Figure 5.23: Comparison of the designs for Jade wave 1 and 2 pairs
plot for producer well B4 decision parameters. The
wave 2 design consists of 701 points generated using the
algorithm presented in Section 5.7.1 with the minimax
distance criterion. The above diagonal plots show the
wave 1 and 2 design points in grey and red respectively,
whilst the below diagonal plots show the wave 1 design
only. In all plots the blue points indicate the wave 1
design points that are classified as non-implausible for
decision support directly using the simulation output
along with the wave 1 uncertainty quantification.

in order to attain higher expected NPVs. As for producer well B4, the red wave 2

design points are in close proximity to the blue wave 1 design points.
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Figure 5.24: Comparison of the designs for Jade wave 1 and 2 pairs
plot for injector well A16 decision parameters. The
wave 2 design consists of 701 points generated using the
algorithm presented in Section 5.7.1 with the minimax
distance criterion. The above diagonal plots show the
wave 1 and 2 design points in grey and red respectively,
whilst the below diagonal plots show the wave 1 design
only. In all plots the blue points indicate the wave 1
design points that are classified as non-implausible for
decision support directly using the simulation output
along with the wave 1 uncertainty quantification.
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5.8 Hierarchical Emulation Exploiting Known

Simulator Behaviour Wave 2

At each iteration of the decision support procedure it is necessary to re-fit the utility

function emulator using the simulations evaluated over the wave 2 design constructed

in Section 5.7.2 which is defined and valid for the substantially smaller wave 1 non-

implausible decision space. A wave 2 hierarchical emulator which exploits known

simulator behaviour is constructed following the methodology in Section 3.3 in the

same manner as in wave 1, again utilising the EGES linear model constructed in

Section 5.2 to predict the expected NPV. This process is sequentially examined

by first decomposing the NPV formula for each Jade model into its constituent

parts with emulators fitted that account for the known behavioural structure in

Section 5.8.1. For each individual model, these are combined to form an emulator

for the approximate NPV in Section 5.8.2 and then linked to the exact NPV in

Section 5.8.3. The EGES linear model is then used to obtain an emulator for the

utility function in Section 5.8.4.

5.8.1 Structured Emulators Exploiting Known Simulator

Behaviour for NPV Constituents

The first step is to decompose the expected NPV utility function into contributions

from oil production, water production and injection by well and control interval, for

which it is known that WOPT and WWIT outputs within a control interval follow

the same structured behavioural form of slopes and plateaus as in wave 1. This

will be exploited to construct accurate emulators. This structure is not observed for

WWPT within a control interval.

Structured emulation for each Jade model is performed in the same manner as

in wave 1. Estimates of the change point upper bounds using Equation (3.3.1) with

δi,u = 10 and the extrapolation cut-offs using Equation (3.3.2) with δi,l = 10 given

the wave 2 simulations for each WOPT and WWIT by well and control interval
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are displayed in Figure 5.25. The plots highlight the region in which the “true”

change point is believed to be situated. A comparison with the wave 1 estimates in

Figure 5.11 shows that this interval between the extrapolation cut-off and change

point upper bound is generally tighter and is always contained by the wave 1 interval.

Moreover, there are a greater number of instances where the two estimates coincide,

particularly for the WWIT constituents. This is a consequence of the refocussing

on a smaller non-implausible region in which the target production and injection

rates are generally specified to be of moderate-to-high or moderate-to-low values

respectively. The result is a reduction in the uncertainty surrounding the “true”

change point location due to fewer instances of large variation between parameters

of the same type for different wells.

Preliminary Bayes linear emulation proceeds for each WOPT and WWIT con-

stituent, represented by fi(d), as described in Section 5.4.1. Note that for constitu-

ents where cujk,ti = bcp
l

jk,ti
, this stage is skipped and the output is directly collapsed

onto the slope given the corresponding decision parameter value and length of

the control interval. In all other cases, a Bayes linear emulator of the structure

shown in Equation (2.4.1) is fitted given D′i = {d | d ∈ D, djk,ti > cujk,ti} and

F′i = {fi(d) | d ∈ D′i}, with Ai consisting of all decisions which take place in the

past of the output. The deterministic functions consist of either a constant or the

form presented in Equation (5.4.1) depending on |Ai|. The remainder of the pre-

liminary emulator specification is as discussed for wave 1. In summary: µβ = 0;

Var[β] = ∞; E[ui(dAi)] = 0; and E[wi(d)] = 0; whilst ui(·) possesses a squared

exponential covariance structure defined in Equation (2.4.3) with hyperparameters

specified by the substitution approach. These are σ2
ui

= (1−ρ)σ2
i,lm and σ2

wi
= ρσ2

i,lm,

where ρ = 0.05, whilst σi,lm is obtained from a linear model of the relevant form. The

correlation length hyperparameter is stipulated to be θ = 1, noting that all decision

parameters are transformed to [−1, 1]. The final step is to classify points as either

in the slope, plateau, or close to the change point using the two-sided truncation

method presented in Section 3.3.2.
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(b) Jade 13 WWIT
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(c) Jade 30 WOPT
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(d) Jade 30 WWIT
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(e) Jade 33 WOPT
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(f) Jade 33 WWIT

Figure 5.25: Jade wave 2 change point upper bound and extrapol-
ation cut-off intervals for WOPT and WWIT within
each control interval with respect to their correspond-
ing decision parameter for each of the three sub-
sampled Jade models. Black points correspond to
where the change point upper bound and extrapol-
ation cut-off coincide for a particular NPV constituent
and occurs for the maximum value of the target rate.
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Leave-one-out diagnostics plots are illustrated for the same Jade 30 NPV con-

stituents as for wave 1 in Figure 5.26 in order to portray the development from

waves 1 (see Figure 5.12) to 2. For a direct comparison, note that the range of the

simulated expected NPVs in Figures 5.26a and 5.26c are smaller and shifted to higher

values than for the corresponding wave 1 plots in Figures 5.12a and 5.12c respectively.

Similarly, note that the decision parameter range is also restricted in Figures 5.26b

and 5.26d versus Figures 5.12b and 5.12d respectively. This is a result of the iterative

refocussing to a smaller region of the decision parameter space which is anticipated

to yield higher expected NPVs. For all plots in Figure 5.26 it is observed that

the credible intervals are narrower representing a reduction in the wave 2 emulator

uncertainty versus wave 1. Moreover, for WOPTPRODC5_2028_01 the remaining

space mainly consists of the plateau region, whilst for WOPTPRODC6_2024_01

there is also a reduction in the number of points classified as on-slope with small

expected NPVs. Another distinguishing feature between waves 1 and 2 for WOPT-

PRODC6_2024_01 is observed in a comparison of Figures 5.12d and 5.26d; the wave

2 emulator is more accurately able to capture the shape of the behaviour and reveals

a peak utility function for prod_C6_2023_01 in the range of [2500, 4000]m3/day

followed by a gradual decay. Such observations demonstrate the power of emulators

to provide insight into the behaviour of the response with respect to the decision

parameters that would otherwise be unattainable through direct use of the simulator

alone.

The WWPT within a control interval constituents are emulated separately using

a Bayes linear emulator following the same approach as for the preliminary Bayes

linear emulator with deterministic functions of the form specified in Equation (5.4.1).

The rest of the prior specification is obtained via linear models fitted using all

simulations in D.
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(a) WOPTPRODC5_2028_01 emulator CI
versus simulator.
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(b) WOPTPRODC5_2028_01 emulator CI
versus prod_C5_2026_01.
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(c) WOPTPRODC6_2024_01 emulator CI
versus simulated output.
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(d) WOPTPRODC6_2024_01 emulator CI
versus prod_C6_2023_01.

Figure 5.26: Leave-one-out diagnostic plots for the wave 2 struc-
tured emulation of Jade 30 WOPTPRODC5_2028_01
(top) and WOPTPRODC6_2024_01 (bottom). The
left column shows the adjusted expectation with cred-
ible intervals (CI) of width 3 adjusted standard de-
viations error bars versus the simulated value where
the red dashed line denotes equality of the structured
emulator and simulator. The right column shows the
adjusted expectation with credible intervals of width
3 adjusted standard deviations error bars versus the
output’s corresponding target production rate with red
points denoting the simulated values.

5.8.2 Emulation of the Approximate NPV

For each Jade model the emulators for the NPV constituents are first combined to

obtain an emulator for the average discounting approximate NPV of the form shown

in Equations (3.3.5) and (3.3.6) following the methodology in Section 3.3.3. This
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involves the same process as for wave 1 where the six control intervals are formed by

merging multiple consecutive discounting intervals. The adjusted expectation and

variance formulae are displayed in Equations (3.3.7) and (3.3.8) respectively.

A comparison of the leave-one-out diagnostics for the approximate NPV emulator

for Jade 30 for wave 2 in Figures 5.27a and 5.27c with wave 1 in Figures 5.13a

and 5.13c respectively highlights similar features as for the NPV constituents. The

results in Figure 5.27a concentrates on a much smaller region corresponding to the

top-right corner of Figure 5.13a for which it is observed that there is a reduction

in the uncertainty. Comparing Figure 5.27c with Figure 5.13c we note that there

is a reduction in the magnitude of the standardised residuals indicating a better

emulator fit. Moreover, for wave 2 there is no evidence against homoscedasticity as

well as no visible pattern, unlike in wave 1 where the pattern was caused by the

enormous variation in the approximate NPV over the decision space. This has been

rectified by focusing only on the non-implausible region demonstrating the benefit

of an iterative approach to emulation and decision support.

5.8.3 Linking the Exact and Approximate NPV

The exact NPV defined in Section 3.3.3 is emulated using a simple linear regression

model on the approximate NPV described in Section 3.3.4 to handle the uncertainty

due to amalgamating discounting intervals. The adjusted expectation and variance

are computed using Equations (3.3.12) and (3.3.13) respectively where for each Jade

model, β̂0,ÑPVj , β̂1,ÑPVj and σÑPVj are estimated using the wave 2 simulation data.

Leave-one-out diagnostics plots for the Jade 30 NPV are shown in Figures 5.27b

and 5.27d. The results are similar to those for the average discounting approximate

NPV in Figures 5.27a and 5.27c respectively showing how little additional uncertainty

is introduced by the link model. A comparison with the wave 1 emulation of the Jade

30 NPV in Figures 5.13b and 5.13d leads to the same remarks as for the approximate

NPV in Section 5.8.2.
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(a) Average discounting approximate NPV
credible intervals versus simulated values.
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(b) Exact NPV credible intervals versus sim-

ulated values.
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(c) Average discounting approximate NPV
standardised residuals versus simulated
values.
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(d) Exact NPV standardised residuals versus
simulated values.

Figure 5.27: Leave-one-out diagnostics for wave 2 emulators of the
Jade 30 average discounting approximate NPV (left
column) and the exact NPV (right column) via a
simple linear model on the emulated approximate NPV.
The top row shows the emulator adjusted expectation
with 3 adjusted standard deviation credible intervals
versus simulated values where the red dashed line de-
notes when the emulator and simulator coincide. The
bottom row shows the emulator standardised residuals
versus the simulated values.

5.8.4 Emulation of the Ensemble Mean NPV

The final stage is to construct an emulator for the Jade ensemble mean NPV using

the EGES linear model formulated in Section 5.2 to combine the wave 2 emulators

for the Jade 13, 30 & 33 NPV. This follows the methodology described in Sec-
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tion 3.3.5 with the adjusted expectation and variance computed using the formulae

in Equations (3.3.16) and (3.3.17) respectively.

As was the case in wave 1, true leave-one-out diagnostics cannot be performed

because this would require simulations for the entire ensemble. The use of the

Jade ensemble mean NPV is justified since the leave-one-out emulator diagnostics

for each sub-selected Jade model NPV show no problems, whilst the EGES linear

model diagnostics also provide no evidence against a well fitted hierarchical emulator.

Histograms in Figures 5.28a and 5.28b show the adjusted expectations and standard

deviations respectively over the wave 1 non-implausible decision space. A comparison

with Figures 5.14a and 5.14b respectively for wave 1 shows an increase in the adjusted

expectations to new higher values as well as a general reduction in the uncertainty

along with a shift in the distribution to positive skew. Both features are beneficial

from the perspective of decision support.

Figure 5.28c shows a pairs plot evaluated at wave 1 non-implausible decision

parameters associated with producer well B4. The above diagonal plots are coloured

by the emulator adjusted expectation where green, yellow and red correspond to

high, moderate and low values respectively. Unlike in wave 1 (see Figure 5.14c)

the association is less apparent between the control values and high ensemble mean

NPVs. This is a consequence of producer well B4 being identified as the most

dominant for determining the utility function value. The wave 1 analysis has already

focused in on the region of good producer well B4 decision parameter settings, hence

these induce much less variability in the ensemble mean NPV over the remaining

non-implausible space. In contrast, an assessment of the corresponding pairs plots of

the decision parameters for the other wells now illustrate stronger relationships and

are thus more active in determining the utility function value. An example is shown

in Figure 5.29 for producer well C5. The below diagonal plots are coloured by the

emulator adjusted standard deviation where light pink, purple and blue correspond

to low, moderate and high values respectively. A similar pattern between control

values and the uncertainty is observed as for the emulator adjusted expectation.
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(a) Histogram of the adjusted expectations.

Histogram of Adjusted Standard Deviations
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(b) Histogram of the adjusted standard devi-
ations.

(c) Hierarchical emulator for the Jade ensemble mean NPV pairs plot for producer well
B4. The plots above the diagonal are coloured by the adjusted expectation with green,
yellow and red corresponding to high, moderate and low values respectively. The plots
below the diagonal are coloured by the adjusted standard deviation with light pink,
purple and blue corresponding to low, moderate and high values respectively.

Figure 5.28: Jade ensemble mean NPV wave 2 hierarchical emulator
output plots.
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Figure 5.29: Jade ensemble mean NPV wave 2 hierarchical emulator
pairs plot of the decision parameters for producer well
C5. The plots above the diagonal are coloured by the
adjusted expectation with green, yellow and red corres-
ponding to high, moderate and low values respectively.
The plots below the diagonal are coloured by the ad-
justed standard deviation with light pink, purple and
blue corresponding to low, moderate and high values
respectively.

Note that both colour schemes are defined with respect to the emulator output and

are not directly comparable with the wave 1 colours. The process of fitting and

evaluation of the hierarchical emulator for the ensemble mean NPV achieved similar

performance in terms of computational efficiency to wave 1 delivering large savings

versus direct Jade model simulations.
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5.9 Wave 2 Uncertainty Analysis for Well

Control Optimisation

Iterative decision support allows for a reassessment of the uncertainties at each

wave. In this section we update the uncertainty quantification over the wave 1

non-implausible decision parameter space using the same uncorrelated additive error

structure to link between the Jade model and the corresponding real world phys-

ical system, as in Section 5.5.1. Geological and the efficient geological ensemble

subsampling uncertainties remain unchanged from wave 1 for the reasons discussed

in Sections 5.9.1 and 5.9.2. All other sources are revised including the: NPV cost

parameter uncertainty in Section 5.9.3; structural model discrepancy quantified in

Section 5.9.4; and decision implementation error in Section 5.9.5. A summary of

the waves 1 and 2 uncertainty analyses is presented in Section 5.9.6. This analysis

makes use of the techniques described in Sections 2.7 and 3.5.

5.9.1 Geological Uncertainty

The wave 2 assessment of geological uncertainty is the same as in wave 1 (see

Section 5.5.2 for details) where it is assumed that E[εG] = 0 and Var[εG] ≈ s2

N
=

s2

50 = 1.555× 1014. This is as the assessment of the geological uncertainty requires

simulations for the entire ensemble for which only the exploratory set exists. If it

was deemed necessary, then additional simulations for all 50 Jade models may be

performed for decision parameter vectors in the wave 1 non-implausible space with

the calculations repeated over this region of the decision space.

5.9.2 Efficient Geological Ensemble Subsampling

Uncertainty

The EGES linear model fitted in Section 5.2 and subsequently used within the hier-

archical emulator structure in Sections 5.4.4 and 5.8.4 was formulated based on an
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analysis of the exploratory simulations using all 50 Jade models. Consequently it

is not possible to revise the uncertainty quantification at wave 2 without further

simulations. It is expected that the EGES uncertainty will reduce between waves

as the volume of the non-implausible decision space reduces. Due to constraints on

computational resources, it is impractical to re-evaluate this uncertainty. In addition,

since the EGES uncertainty represented only a small proportion of the total uncer-

tainty and was of a substantially smaller magnitude than the emulator uncertainty, it

is deemed unnecessary to expend computational resources on its reassessment. The

wave 2 analysis uses the wave 1 setup: E[εEGES] = 0 and Var[εEGES] ≈ 5.046× 1012.

5.9.3 NPV Cost Parameter Uncertainty

The NPV cost parameter uncertainty is examined over the wave 1 decision support

non-implausible region following the methodology presented for utility function un-

certainty quantification detailed in Section 3.5.2. For consistency, the same collection

of nc = 1000 simulated cost parameter scenarios are used as in Section 5.5.4 with the

ensemble mean NPV evaluated via the EGES linear model for d ∈ Ω1. As in wave 1

results are presented both before and after the removal of the linear transformation

effect.

NPV Cost Parameter Uncertainty Before the Removal of Linear

Transformation Effects

The wave 2 uncertainty induced by NPV cost parameter uncertainty is illustrated in

Figure 5.31a which shows the NPV cost parameter uncertainty versus the predicted

ensemble mean NPV over the wave 1 non-implausible space. There is evidence

of positive correlation and hence a robust assessment of the NPV cost parameter

uncertainty is the maximum variance for d ∈ Ω1; Var[εC] = 7.725× 1016. This is

marginally smaller than in wave 1, however remains the dominant source of uncer-

tainty with large implications for decision support due to difficulties in distinguishing

between the ensemble mean NPV for various decision parameter vectors.
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NPV Cost Parameter Uncertainty After the Removal of Linear

Transformation Effects

The linear transformation effects are removed using the procedure described in Sec-

tion 3.5.2 with c0 equal to the suggested fixed cost parameter settings listed in

Table 5.2. The residual variability, estimated by s2
C(dj) (see Equation (3.5.3)), is

illustrated with a projection pairs plot for producer well B4 in Figure 5.30 where

there is no evidence of association between the standard deviations and decision

parameter values. Figure 5.31b shows the standard deviations due to NPV cost para-

meter uncertainty versus the predicted ensemble mean NPV which initially exhibits

decreasing uncertainty for larger NPVs before a slight increase. This is indicative of

some non-linearity in the utility function due to changes in the cost parameters which

occurs for the very highest values and may be explained by the subtle differences in

the well control strategies required to achieve these such as possessing high decision

parameter values for all control intervals, rather than only the first few prior to the

heavy discounting coming into full effect. An investigation of the mean residuals over

the cost parameter scenarios using mC(dj) (see Equation (3.5.2)) again shows these

are at least an order of magnitude smaller than sC(dj), and thus have negligible

effect on the decision analysis.

Figure 5.32 shows a histogram of the wave 2 variances of the utility func-

tion induced by NPV cost parameter uncertainty with the distribution centred at

3.296× 1013. A comparison with the results of wave 1 in Figure 5.19 highlights a gen-

eral shift of the entire uncertainty distribution to the left, with a higher density placed

on smaller uncertainties. It is also noted that the NPV cost parameter uncertainty

remains larger than the EGES uncertainty. Given these observations and those for

Figure 5.31b, Var[εC] is estimated by the median over d ∈ Ω1: Var[εC] = 1.731× 1013.

This represents a 73.2% decrease compared with wave 1 due to refocusing on a smal-

ler non-implausible region of the decision space. Moreover, there is a three order of

magnitude reduction versus prior to removing the linear transformation effects where

Var[εC] = 7.725× 1016 (note that the median is 6.877× 1016). In addition, note that
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Figure 5.30: Jade wave 2 uncertainty quantification two-
dimensional projections of the decision space for
producer well B4 coloured by the standard deviations
of the ensemble mean NPV utility function due to the
cost parameter variability after the removal of linear
effects respectively. The colour scheme denotes the
magnitude of the uncertainty on a relative scale with
light pink through to dark purple corresponding to
low through to high standard deviations.

the maximum uncertainty after the removal of the linear transformation effects is

4.867× 1014, a decrease of two orders of magnitude. As was the case for wave 1,

this will have major benefits for wave 2 decision support by enabling the effective

comparison of the emulator (or simulator) output for different decision parameter

vectors in an analysis which is robust to this uncertainty.
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(a) Before the removal of linear effects.
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(b) After the removal of linear effects.

Figure 5.31: Jade wave 2 ensemble mean NPV standard deviation
induced by NPV cost parameter variability versus the
ensemble mean NPV over the wave 2 design computed
using the nc = 1000 simulated cost parameter scenarios
from wave 1.

5.9.4 Structural Model Discrepancy

Structural model discrepancy forms an integral part of a comprehensive uncertainty

analysis. With the caveat that the Jade model is artificial, model discrepancy is

represented as a proportion of the simulated ensemble mean NPV with the intuition

discussed in Section 5.5.5. A conservative estimate is obtained by considering the

maximum simulated Jade ensemble mean NPV within the current non-implausible

region over both waves of simulations. For consistency with the wave 1 analysis, the

proportion is stipulated to be 0.1% as representative of a variation of one standard

deviation due to model discrepancy. This assumes: the ensemble mean NPV is a

good representative for the expected NPV; and the specified decisions are executed

without error with this potential uncertainty treated in Section 5.9.5. Note that the

uncertainty due to prediction of the Jade ensemble mean NPV via the EGES linear

model is handled in Section 5.9.2. We specify that E[εMD] = 0 whilst the wave 2

assessment of the model discrepancy yields Var[εMD] = 1.109× 1012. This is very

similar to the wave 1 assessment. Furthermore, model discrepancy remains much

smaller than both the geological or NPV cost parameter uncertainties.
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Figure 5.32: Histogram of the wave 2 variances of the Jade ensemble
mean NPV over the generated cost parameter scenarios
after the linear effect is removed. For comparison, the
red dashed and blue dotted vertical lines correspond
to the assessed values for Var[εG] and Var[εEGES] re-
spectively.

5.9.5 Decision Implementation Error

Decision implementation error due to deviations from the stipulated well controls is

addressed in the wave 2 analysis using the methodology presented in Section 3.5.4

along with the hierarchical emulator constructed in Section 5.8. As in wave 1,

the first step is to generate a 200 point space-filling design over the wave 1 non-

implausible region with 100 decision parameter vectors sampled according to the

same perturbation distribution as proposed in Section 5.5.6. Note that it is possible

that some of these decision parameter vectors may be outside the wave 1 non-

implausible region, although this is representative of the real world scenario where

such constraints may not be properly adhered to. Moreover, the final decision
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Figure 5.33: Histogram of the wave 2 variances of the Jade ensemble
mean NPV due to decision implementation error.

support region may be obtained using stricter threshold values, and hence any such

cases will still lie within the more conservative region. An assessment of the mean

emulator adjusted expectation for each fixed decision parameter location provides

no evidence against the assumption that E[εI(d)] = 0 for all d ∈ Ω1. A conservative

assessment of the variance due to decision implementation error as the 95th percentile

yields Var[εI] = 6.464× 1011 and is justified by the histogram of the variances over

the initial 200 sampled decision parameter vectors in Figure 5.33. Compared with

wave 1 this constitutes an order of magnitude reduction in the uncertainty.

5.9.6 Uncertainty Analysis Summary

A summary of the wave 1 and wave 2 uncertainty analyses is presented in Table 5.5

including the variances and the proportion of the total uncertainty variances for

each wave. For both wave 1 and 2, the individual uncertainties, excluding that due
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to the emulator, are combined following the uncorrelated additive error structure

described in Equation (3.6.2) to obtain a total uncertainty variance of 2.281× 1014

and 1.746× 1014 respectively. Moreover, the EGES uncertainty is encompassed

within the hierarchical emulator structure for the utility function. In both waves the

geological uncertainty is the largest source of uncertainty, and is especially dominant

at wave 2. The re-assessment of the NPV cost parameter uncertainty at wave 2

yields a substantial reduction and hence a decrease in the percentage of the overall

uncertainty. Both structural model discrepancy and decision implementation error

remain small sources of uncertainty in wave 2 of the analysis.

Source of
Uncertainty

Wave 1
Variance

Proportion of
Total Wave 1
Uncertainty

Wave 2
Variance

Proportion of
Total Wave 2
Uncertainty

Geological
Uncertainty 1.555× 1014 68.2% 1.555× 1014 89.1%

EGES
Uncertainty 5.046× 1012 – 5.046× 1012 –

NPV Cost
Parameter
Uncertainty

6.465× 1013 28.3% 1.731× 1013 9.9%

Structural Model
Discrepancy 1.076× 1012 0.5% 1.109× 1012 0.6%

Decision
Implementation
Error

6.821× 1012 3.0% 6.464× 1011 0.4%

Total Uncertainty 2.281× 1014 – 1.746× 1014 –

Table 5.5: Emerson Jade model application wave 1 and 2 uncer-
tainty analysis results including the variances and pro-
portion of total variances for the Emerson Jade model
application obtained using an additive error structure
described in Equation (2.7.1). Note that the hierarchical
emulator construction implicitly encompasses the EGES
uncertainty to predict the ensemble mean NPV, hence it
is omitted from the total uncertainty.
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5.10 Decision Support Wave 2 for Well Control

Optimisation

In this section we perform the second wave of iterative decision support for well con-

trol optimisation applied to the Emerson Jade model. This incorporates the EGES

technique detailed in Section 5.2, as well as the wave 2 design; hierarchical emu-

lator exploiting known simulator behaviour; and revised uncertainty quantification

described in Sections 5.7 to 5.9 respectively. Results are presented in Section 5.10.1

with a comparison under alternative uncertainty analyses discussed in Section 5.10.2.

5.10.1 Results

The second wave of iterative decision support is performed using the hierarchical

emulator exploiting known simulator behaviour for the utility function devised in

Section 5.8 and incorporates the wave 2 uncertainty analysis described in Section 5.9.

As in wave 1, the EGES uncertainty is encompassed within the hierarchical emulator

formulation. In order to evaluate the decision support implausibility measure it is

necessary to recompute Umax where for the second wave Umax = maxd∈D1∪D2 U(d).

The result is Umax = 1.053× 109 at wave 2, compared with Umax = 1.037× 109 in

wave 1; hence it is a wave 2 simulation that leads to this increase. This illustrates how

the refocusing on the wave 1 non-implausible region leads to a higher concentration

of simulations using decision parameter vectors that are judged to be more likely to

produce higher expected NPVs.

The wave 2 non-implausible region is defined as decision parameter vectors which

satisfy IDS(d) ≤ c = 3 resulting in a further decrease to 15.87% of the wave 1

non-implausible region. Moreover, this corresponds to 0.567% of the initial decision

space formed by imposing the operational range and difference constraints, whilst

also equating to 0.0112% of the full hypercube volume formed by the operational

range constraints only. This emphasises how the iterative approach to decision

support is capable of sequentially refocusing on smaller regions of the decision space
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which contain potentially good control strategies through the exploitation of a higher

concentration of simulation output information at each wave.

Implausibility pairs plots are used to visualise the wave 2 decision support non-

implausible region with results shown for the decision parameters for producer well

B4 and for all decision parameters in the first two control intervals starting in 2022

and 2023 shown in Figures 5.34 and 5.35 respectively. The plot types and colour

schemes are the same as in Figure 5.21. The evolution from Figure 5.21 to Figure 5.34

further emphasises the importance of high early and mid-time target production

rates, as evidenced by the general shift to higher values observed in the marginal

distribution in the histograms and the contraction of the non-implausible region in

the below diagonal implausibility plots. Moreover, there exists a more prominent

peak for the later time (last three) controls which is situated slightly below the

maximum of the parameter range. This implies that to achieve a high expected NPV

does not necessarily require maximum target production rates for all time intervals;

as explained by the increasing costs due to water production incurred by attempting

to sustain such an oil production rate. These observations are mirrored in Figure 5.35

which also illustrates a strong dependency between production targets across wells

and time points within the optical density plots. The decision parameters for certain

producer wells such as B4 and C5 are more constrained by the non-implausible region

and are thus perceived to have a greater influence on achieving a high expected NPV.

In contrast, the pattern between target injection rates is less well defined showing

the dominance of target production rates in determining the utility function value,

although there is a tendency to favour lower injection rates to avoid the associated

water costs. It is also noted that the controls for injector well A16 appear to play

a more significant role than those for injector C7. Similar developments between

waves 1 and 2 are also observed for the other wells and subsets of control intervals

across wells, with the plots omitted for space.

Results for a decision support analysis directly using the wave 2 simulation output

omitting emulator uncertainty are shown in Figure 5.36. The red points highlight
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Figure 5.34: Jade wave 2 decision support implausibility measure
(below the diagonal) and optical density (above the
diagonal) pairs plot, with marginal density histograms
(along the diagonal) for the decision parameters for
producer well B4. In the implausibility plots, the axes
are swapped to match the corresponding optical dens-
ity plot in which the colours green, yellow and red
indicate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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Figure 5.35: Jade wave 2 decision support implausibility measure
(below the diagonal) and optical density (above the
diagonal) pairs plot, with marginal density histograms
(along the diagonal) for all decision parameters starting
in 2022 and 2023. In the implausibility plots, the
axes are swapped to match the corresponding optical
density plot in which the colours green, yellow and red
indicate where 0 < IDS(d) ≤ 2, 2 < IDS(d) ≤ 3.5 and
IDS(d) > 3.5 respectively, whilst blue triangles denote
where IDS(d) = 0 which occurs when EF [U(d)] ≥ Umax.
For the optical density plots, dark blue through to
yellow depict low to high density of points satisfying
IDS(d) ≤ c.
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(b) Predicted ensemble mean NPV versus

inj_A16_2028_01.

Figure 5.36: Jade wave 2 simulations predicted ensemble mean NPV
via the EGES linear model versus decision parameters.
The horizontal blue line denotes the fixed threshold
defined with respect to the wave 2 uncertainty analysis
at height Umax−c

√
Var[εMD] +∑

i Var[εi], where c = 3,
above which decision parameter vectors are classified
as non-implausible. These are highlighted by the red
points

non-implausible decision parameter vectors which exceed the horizontal blue line de-

noting the fixed uncertainty threshold computed as Umax− c
√

Var[εMD] +∑
i Var[εi],

where c = 3. This supports the above results and developments from wave 1. Fig-

ure 5.36a for prod_C5_2024_01 confirms that a relatively high target production

rate is necessary, even for intermediate control periods, whilst Figure 5.36b for

inj_A16_2028_01 shows the greater restriction of target injection rates compared

with the first wave analysis. It is evident that wave 1 is necessary to restrict the

more dominant target production rates, with the second wave used to refine the

target injection rates.

The iterative decision support procedure stopping rule in step 5 of the algorithm

presented in Section 3.6.3 is based on either: the exhaustion of computational re-

sources; or negligible change in the volume of the non-implausible region between

waves. An equivalent expression for the latter is negligible decrease in the overall

uncertainty. It is observed in Figure 5.28b that the emulator adjusted standard de-

viation is generally much smaller than the geological uncertainty standard deviation
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of sd[εG] = 1.247× 107 which is fixed between waves. Reformulation of the emulator

over the wave 2 non-implausible region given further simulations will only result in

further decreases in the emulator uncertainty. Consequently, a third wave of decision

support is unlikely to yield a substantially smaller non-implausible region with the

additional computational expense being unjustified. Instead a non-implausible de-

cision space defined by the stricter criterion of IDS(d) ≤ c = 2 is returned to the

committee of decision makers with a volume of 3.94% of the wave 1 non-implausible

region, which corresponds to 0.147% of the initial decision space and 2.77× 10−5%

of the full hypercube volume. It is then the decision of this committee to select their

preferred well control strategy given any additional knowledge or preferences that

the analysts are not informed of.

5.10.2 Decision Support Wave 2 Results for Alternative

Uncertainty Quantifications

The second wave of iterative decision support is repeated in order to perform a

sensitivity analysis for the effects of various uncertainty specifications starting from

the wave 2 uncertainty analysis in Section 5.9. A summary of the results detailed in

columns four and five of Table 5.6 which also illustrates the progression from wave

1. For clarity, column four shows the non-implausible volume of the wave 1 non-

implausible decision space, whilst column five depicts the non-implausible proportion

of the entire hypercube and is directly comparable to the wave 1 results in column

three. This exploits the computational efficiency of the developed procedure. All

comments in this discussion are with respect to the proportion of the wave 1 non-

implausible decision space.

The detailed treatment of geological uncertainty yields Var[εG] = 1.555× 1014

and is shown to be the largest single source of uncertainty in Table 5.5 on page 291.

Omission of geological uncertainty results in a non-implausible volume of 1.96%,

as seen in the second row of Table 5.6 representing a substantial decrease in the

proportion compared with the analysis using the full uncertainty quantification. It
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Uncertainty
Specification

Wave 1 Non-
Implausible
Volume

Wave 1 Non-
Implausible
Volume of
Hypercube

Wave 2 Non-
Implausible
Volume of

Wave 1 Space

Wave 2 Non-
Implausible
Volume of
Hypercube

Hierarchical
Emulator with
All Uncertainties

3.72% 7.03× 10−2% 15.87% 1.12× 10−2%

Omitting
Geological
Uncertainty

2.80% 5.29× 10−2% 1.96% 1.04× 10−3%

Before Removing
NPV Cost
Parameter
Uncertainty
Linear Effect

99.86% 1.89% 100% 1.89%

Emulator
Uncertainty
Only

2.33% 4.40× 10−2% 1.17% 5.16× 10−4%

No Emulator
Uncertainty 0.99% 1.87× 10−2% 10.75% 2.01× 10−3%

No Uncertainties
or Emulator
Uncertainty

0.04% 7.56× 10−4% ∼0% ∼0%

Table 5.6: Summary of the proportion of decision space classified
as non-implausible after wave 1 and wave 2 of decision
support for the Emerson Jade model for various included
uncertainties within the decision support implausibility
measure using threshold value c = 3. The first row dis-
plays the results using the hierarchical emulator for the
utility function and a comprehensive uncertainty quanti-
fication with all subsequent rows omitting various forms
of uncertainty. Wave 1 results are presented in the second
and third columns showing the non-implausible propor-
tion of the initial decision space formed by imposing both
the range and difference constraints and the hypercube
due to only the range constraints respectively. Wave
2 results are exhibited in the fourth and fifth columns
for the non-implausible proportion of the wave 1 de-
cision space and of the initial hypercube decision space
respectively. Note that imposition of the difference con-
straints before the wave 1 analysis results in a reduction
to 1.8895% of the initial hypercube volume due to the
range constraints only.

is perceived that many decision parameter vectors may be falsely discarded.

In the wave 1 analysis the importance of considering the context of the uncer-
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tainty quantification was demonstrated; for decision support this entails accounting

for linear transformation effects. The wave 2 before and after assessments of the

NPV cost parameter uncertainty in Section 5.9.3 of Var[εC] = 7.725× 1016 and

Var[εC] = 3.296× 1013 respectively illustrates this substantial difference with the

former being much larger than any other source of uncertainty, including the emulator.

Consequently, decision support using the initial assessment yields no further reduc-

tion in the non-implausible decision space: it is impossible to distinguish between any

of the decision parameter settings rendering this wave of decision support ineffective.

This result is shown in the third row of Table 5.6.

Failure to perform an uncertainty quantification beyond the emulator yields a

wave 2 non-implausible volume of 1.17% of the wave 1 non-implausible decision

space, as seen in the fourth row of Table 5.6. This characterises the belief that the

modelling framework is an exact representation of the real world physical system

and any interactions that the user has with it; the only uncertainty pertains to the

statistical construction of the emulator as a surrogate for the Jade model ensemble

mean NPV. The result of this inaccurate belief is a considerable difference versus

the 15.87% obtained using a full uncertainty quantification, hence it is believed that

many reasonable choices for d are erroneously rejected.

Retaining the uncertainty analysis but omitting the emulator uncertainty yields a

reduction to 10.75% of the wave 1 non-implausible region in the fifth row of Table 5.6;

much closer to the 15.87% using the full uncertainty quantification. This constitutes

treating the emulator expectation as equal to the Jade model output and provides a

theoretical lower bound on the proportion of space remaining after wave 2 given the

current uncertainty analysis. This suggests that there is some improvements which

may be achieved, however it is fairly limited compared with resolving geological

uncertainty; the dominant wave 2 source of uncertainty. This justifies the decision

to end the algorithm after two iterations.

A final consideration is the consequence of excluding all sources of uncertainty

both from the emulator and those detailed in Section 5.9. This is equivalent to
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identifying d for which IDS(d) = 0 which results in a non-implausible volume of

effectively 0%, as shown in the sixth row of Table 5.6. This assumption is unrealistic

with the sensitivity analysis emphasising the complications of inadequately linking

the model to the real world physical system through a comprehensive network of

uncertainties. For decision support this has resulted in the omission of effectively all

well control strategies with a very small focus only around the current best simulated

utility function, as represented by Umax.

5.11 Validation of the Decision Support

Non-Implausible Region

The purpose of this section is to validate the results of emulation and iterative

decision support applied to the Emerson Jade model. Access to the underlying

Jade geology model enables such a validation and evaluation of the decision support

non-implausible region identified after two iterations of the procedure through the

use of previously unseen realisations.

A design for this analysis is constructed and discussed in Section 5.11.1 differ-

entiating between simulations for the initial Jade ensemble of 50 models and for

an extra 150 geological realisations, explaining how these are necessary for the sub-

sequent validation analyses. Simulations for the initial ensemble are first used to

assess the efficient geological ensemble subsampling linear model in Section 5.11.2

before validating the performance of the emulator for the Jade ensemble mean NPV

in Section 5.11.3. The results of decision support are analysed in Section 5.11.4 for

the Jade expected NPV utility function which requires simulations from previously

unseen realisations.

5.11.1 Design of Validation Simulations

A validation wave of simulations may be performed using either the initial ensemble

of 50 models, or for a larger collection which also incorporates say an extra 150
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previously unseen geological realisations, termed the full ensemble which consists

of 200 models. The type of assessments and validations which are subsequently

performed depends on the ensemble used. Within this analysis, simulations for the

initial ensemble are used to assess the EGES linear model and emulator for the Jade

ensemble mean NPV in Sections 5.11.2 and 5.11.3, whilst the full ensemble is used to

validate the decision support non-implausible region in Section 5.11.4. The number

of simulations using each ensemble depends on constraints on the computational

budget. Simulations for the full and initial ensemble are evaluated for 10 and 40

decision parameter vectors respectively, constituting 2000 simulations each, and a

total of 4000. Note that as the full ensemble contains the initial ensemble, all 50

decision parameter vectors are evaluated for the initial ensemble. A large collection

of candidate decision parameter vectors are uniformly sampled from the wave 2

non-implausible region satisfying IDS(d) ≤ c = 2 from which to formulate the design

for this third wave of simulations.

It is of interest to investigate decision parameter settings which (approximately)

maximise EF [U(d)], EF [U(d)] + 2
√

VarF [U(d)] and EF [U(d)] + 3
√

VarF [U(d)] for

the wave 2 emulator for U(d). Note that these may coincide, although for this

analysis the identified decision parameter vectors are distinct and denoted as d′max,exp,

d′max,2CIupr, and d′max,3CIupr respectively. The design for the full ensemble includes

8 distinct decision parameter vectors which are randomly chosen from the above

collection of candidate decision strategies. This is augmented to include d′max,exp

and d′max,2CIupr as these are where the emulator indicates that a higher ensemble

mean NPV is likely to be achieved, with the latter also accounting for some emulator

uncertainty. Similarly, the design of simulations for the initial ensemble only consists

of a further 39 distinct randomly selected decision parameter vectors from this

collection which is augmented to include d′max,3CIupr since this corresponds to greater

emulator uncertainty.

The validation design is illustrated and compared with the wave 2 design in

Figure 5.37 which displays a pairs plot for decision parameters for producer well
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Figure 5.37: Comparison of the designs for Jade wave 2 and val-
idation pairs plot for producer well B4 decision para-
meters. The validation design consists of 50 points
split into groups of 10 and 40 using the full and initial
ensemble respectively, as presented in Section 5.11.1.
The above diagonal plots show the wave 2 and valida-
tion design points in grey and red respectively, whilst
the below diagonal plots show the wave 2 design only.
In all plots the blue points indicate the wave 2 design
points that are classified as non-implausible for de-
cision support directly using the simulation output
along with the wave 2 uncertainty quantification.

B4. The above diagonal plots encompass both the wave 2 and validation designs

which are denoted by grey and red points respectively with the below diagonal plots

illustrating the wave 2 design only. In all plots the blue points indicate the wave 2
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design points that are classified as non-implausible based on the simulation output

and the wave 2 uncertainty quantification. The pattern closely resembles the non-

implausible region in Figure 5.34 corresponding to very high target production rates

for the first four control intervals, and fairly high for the last two control intervals.

Compared with the wave 2 design, these cover a much smaller region, as expected

due to the further decrease in the non-implausible volume between waves 1 and 2

of decision support. It is observed that the blue wave 2 simulations non-implausible

points are also situated in similar locations to the validation results that are sampled

from the non-implausible space devised using the wave 2 hierarchical emulator and

uncertainty analysis, but with threshold c = 2.

5.11.2 Validation of EGES Linear Model for the Ensemble

Mean NPV

In Section 5.2 the efficient geological ensemble subsampling techniques presented in

Section 3.2 are applied to an exploratory batch of 50 Jade model simulations yielding

a reduction from the initial ensemble of 50 geological realisations to a subset of 3

models. This includes the construction of an EGES linear model to efficiently predict

the ensemble mean NPV given the NPV for these 3 models. It is used throughout

the wave 1 and 2 analyses via the hierarchical emulator construction in Sections 5.4.4

and 5.8.4 respectively, which benefits from the substantial computational savings for

only a modest increase in the uncertainty.

The third wave of simulations uses all of the initial ensemble which are employed

to validate the EGES linear model over the non-implausible region with the Jade

ensemble mean NPV predicted given the Jade 13, 30 and 33 NPV. Validation

diagnostic plots are shown in Figure 5.38 including: the three standard deviation

prediction interval versus the simulated ensemble mean NPV in Figure 5.38a; and

the standardised prediction residuals versus the simulated and predicted ensemble

mean NPV in Figures 5.38b and 5.38d respectively, and the simulation indices in

Figure 5.38c. The EGES linear model has a tendency to over-predict the Jade
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ensemble mean NPV, although many of the prediction intervals do still contain

the simulated values. This behaviour is most noticeable for smaller NPVs whilst

there are no other patterns evident in the residuals plots. This is explained as the

EGES linear model was originally fitted using the 50 decision parameters distributed

over the full 36-dimensional hypercube decision parameter space; hence they are

very sparse, particularly within the non-implausible region which represents a tiny

proportion of this space from which these diagnostic runs are drawn. Consequently

prediction is achieved by some degree of extrapolation. Furthermore, there exists

variability in the fitting of the linear model due to the choice of design and subsequent

simulation output, although it is noted in Section 5.2 that a very high adjusted R2

is obtained for regression on almost all subsets of three Jade model NPVs. The

over-prediction is consistent and not of a substantial size and so for the reasons

highlighted when considering utility function parameter uncertainty in the form of

NPV cost parameter uncertainty in Sections 5.5.4 and 5.9.3, this does not affect the

validity of the EGES linear model, or the results of decision support.

An assessment of the results of decision support based on the wave 2 uncertainty

analysis and directly using the validation simulation output is performed with ex-

amples of the results exhibited in Figure 5.39. Outcomes using the EGES linear

model with the NPV for the three sub-selected Jade models and the actual initial

ensemble mean NPV are shown in the top and bottom rows respectively. The blue

point denotes d from wave 2 that yields Umax = maxd∈D2 U(d). A fixed decision sup-

port threshold (from wave 2) is used because there is no emulator uncertainty and the

uncertainty analysis does not encompass variability for different choices of d. This is

represented by the horizontal red line and is calculated as Umax−3
√∑

i Var[εi] where

each Var[εi] is the variances of the sources of uncertainty assessed in Section 5.9. Note

that the additional uncertainty induced by the EGES linear model is handled via the

inclusion of Var[εEGES] in the top row only. The ramifications of the EGES linear

model over-prediction are observed in Figures 5.39a and 5.39b where all decision

strategies are classified as non-implausible and are well above the fixed threshold.
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(a) Prediction interval versus simulated en-
semble mean NPV.
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(b) Standardised residuals versus the simu-
lated ensemble mean NPV.
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(c) Standardised residuals versus index.
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(d) Standardised residuals versus the pre-
dicted ensemble mean NPV.

Figure 5.38: Validation diagnostics for Jade EGES linear model
over the decision support non-implausible space. Fig-
ure 5.38a shows the three standard deviation predic-
tion intervals versus the simulated ensemble mean NPV
where the red dashed line denotes when the emulator
and simulator coincide. The standardised prediction
residuals are plotted versus the simulated and pre-
dicted ensemble mean NPV in Figures 5.38b and 5.38d
respectively, and versus the simulation index in Fig-
ure 5.38c.

Performing decision support using the Jade ensemble mean NPV in Figures 5.39c

and 5.39d results in 47 out of 50 cases being classified as non-implausible. These

results are unsurprising since the validation simulations design is constructed over

the wave 2 non-implausible region identified using emulators but with the stricter

cut-off of c = 2. A further point is that the maximum wave 2 EGES linear model
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prediction for the ensemble mean NPV exceeds all wave 3 ensemble mean NPVs.

This is again due to a tendency of the EGES linear model to over-predict. However,

this is used consistently throughout the analysis and within the hierarchical emulator

structure and so does not invalidate the results of decision support.

5.11.3 Validation of the Emulator for the Ensemble Mean

NPV

At each wave of iterative decision support a hierarchical emulator is constructed for

the Jade ensemble mean NPV where validation requires simulations for the entire

initial ensemble. Focusing on the wave 2 hierarchical emulator which is used to

identify the final decision support non-implausible region, validation diagnostics

are performed by evaluating the emulator adjusted expectation and variance for

the wave 3 simulations with the results exhibited in Figure 5.40. The hierarchical

emulator three adjusted standard deviation credible intervals (an approximate 95%

credible interval) versus the simulated Jade ensemble mean NPV is illustrated in

Figure 5.40a where the red dashed line corresponds to where the emulator prediction

and Jade ensemble mean NPV coincide. It displays that there exist only 2 cases

(out of 50, thus this represents 4% of points) where the simulated value does not lie

within the credible interval. Similarly, this is evident in the standardised residuals

versus the simulated ensemble mean plot in Figure 5.40b where the majority of

the residuals have magnitude less than three. Note that the residuals tend to be

large and negative for smaller values of the Jade ensemble mean NPV seen in the

bottom-left corner; this is where the two cases of diagnostics failure are situated.

This suggests some difficulties in the emulator accurately portraying smaller values

of the utility function and is potentially a consequence of the smaller uncertainty for

some of the NPV constituents where truncation is imposed within the structured

emulators exploiting known simulator behaviour. There is also evidence of a positive

linear trend, although this is strongly influenced by the aforementioned points in the

bottom-left corner. Excluding these points and focusing on the region of greatest
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(a) EGES linear model predicted ensemble
mean NPV versus prod_B4_2024_01.
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(b) EGES linear model predicted ensemble
mean NPV versus inj_A16_2028_01.
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(c) Simulated ensemble mean NPV versus
prod_B4_2024_01.
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(d) Simulated ensemble mean NPV versus
inj_A16_2028_01.

Figure 5.39: Decision support for the Jade initial ensemble mean
NPV validation simulations. Results are shown in the
top row using the EGES linear model predicted en-
semble mean NPV, whilst in the bottom row using the
simulated ensemble mean NPV directly. The left and
right columns display plots versus prod_B4_2024_01
and inj_A16_2028_01 respectively. In each plot the
blue point corresponds to the decision parameter vec-
tor that gives rise to Umax = maxd∈D2 U(d) from the
wave 2 simulations. The horizontal red line represents
the wave 2 fixed threshold above which a decision para-
meter vector is classified as non-implausible. This is
calculated as Umax−3

√∑
i Var[εi] where each εi corres-

ponds to a source of uncertainty. For the top row, this
encompasses EGES uncertainty via Var[εEGES], whilst
this is omitted in the bottom row.
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(a) Ensemble Mean NPV credible intervals
versus simulated values.
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(b) Ensemble Mean NPV standardised resid-
uals versus simulated values.

Figure 5.40: Validation diagnostics for the wave 2 hierarchical emu-
lators for the Jade ensemble mean NPV over the de-
cision support non-implausible space. The left plot
shows the emulator adjusted expectation with 3 adjus-
ted standard deviation credible intervals versus simu-
lated values where the red dashed line denotes when
the emulator and simulator coincide. The right plot
shows the emulator standardised residuals versus the
simulated values.

interest where the highest ensemble mean NPVs are returned, this pattern is greatly

weakened, but not eliminated, whilst most of the standardised residuals are within

[−2, 2]. These observations highlight that the emulator performs well over most of

the non-implausible region, hence the results of decision support are valid.

The potential concerns raised in Section 5.11.2 regarding the tendency of the

EGES linear model to over-predict are alleviated since its incorporation within the

hierarchical emulator does not exhibit such effects in the validation diagnostics,

partly due to the inflation of the uncertainty by emulating the NPV for a subset of

ensemble members. This is evident in decision support where all cases are classified

as non-implausible using the emulator which is to be expected by the nature of the

design of validation simulations.
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5.11.4 Validation of the Emulator for the Expected NPV

Practical application of decision support is performed for the real world Jade oil

field (if it existed) rather than for the model, as is the aim in the TNO OLYMPUS

Challenge. Throughout the analysis emulators are constructed for the ensemble mean

NPV which is linked to the expected NPV via geological uncertainty, as discussed in

Sections 5.5.2 and 5.9.1. It is not feasible to compute the true Jade expected NPV

because of the large number of underlying geological model parameters which lead

to an intractable integral. Instead, validation is performed using simulations for the

larger full ensemble of 200 models which serves as a proxy for the Jade expected

NPV. This consists of the 50 models from the initial ensemble, plus an extra 150

previously unseen geological realisations, with 10 simulations evaluated from the

design described in Section 5.11.1.

The wave 2 hierarchical emulator is extended to represent the Jade expected NPV

through the addition of geological uncertainty which is judged to be independent

of the existing emulator uncertainty with no change to the adjusted expectation.

Validation diagnostic plots are displayed in Figure 5.41. It is evident in Figure 5.41a

that the three adjusted standard deviation credible intervals are all sufficiently wide

to contain the approximation to the expected NPV, as portrayed by the containment

of the red dashed line and hence no failures of validation diagnostics. Note also

that the emulator adjusted expectation remains relatively close to the simulated

value. These observations are confirmed in Figure 5.41b where almost all of the

standardised residuals have magnitude less than one. Compared to emulating the

Jade (initial) ensemble mean NPV, there is a marked increase in the overall emulator

uncertainty due to the underlying geology. This is shown to be the largest source

of uncertainty and is the reason for stopping iterative decision support after two

waves, although we could continue with more geological realisations and greater

computational resources as discussed below. The validation results highlight that

both the emulator is sufficiently accurate whilst the quantification of the geological

uncertainty is adequately able to capture the magnitude of the potential variability.
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(a) Ensemble Mean NPV credible intervals
versus simulated values.
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(b) Ensemble Mean NPV standardised resid-
uals versus simulated values.

Figure 5.41: Validation diagnostics for the wave 2 hierarchical emu-
lators for the Jade expected NPV over the decision
support non-implausible space. The Jade full ensemble
mean NPV over the 200 Jade models including the pre-
viously unseen realisations are used as a proxy for the
Jade expected NPV. The left plot shows the emulator
adjusted expectation with 3 adjusted standard devi-
ation credible intervals versus simulated values where
the red dashed line denotes when the emulator and
simulator coincide. The right plot shows the emulator
standardised residuals versus the simulated values.

However, more sophisticated uncertainty quantification techniques are required to

further reduce the geological uncertainty and enable subsequent refinement of the

decision support non-implausible region.

Decision support is performed for the full ensemble mean NPV as a surrogate

for the true expected NPV with results illustrated in Figure 5.42 where the top

row includes a revised assessment of the geological uncertainty to account for this

approximation, whilst the bottom row demonstrates the consequences of omitting

geological uncertainty. The blue point denotes d from wave 2 that yields Umax =

maxd∈D2 U(d); noting that this uses the EGES linear model prediction for the

initial ensemble mean NPV, with the fixed decision support threshold (from wave 2)

represented by the horizontal red line and computed as Umax − 3
√∑

i Var[εi]. Note

that for the full ensemble, Var[εG] = 8.605× 1011, a 99.4% reduction versus the

original assessment using the exploratory batch of simulations. This highlights the
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(a) Simulated full ensemble mean NPV
versus prod_B4_2024_01.
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(b) Simulated full ensemble mean NPV
versus inj_A16_2028_01.
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(c) Simulated full ensemble mean NPV versus
prod_B4_2024_01 omitting geological
uncertainty from the decision support
threshold.
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(d) Simulated full ensemble mean NPV
versus inj_A16_2028_01 omitting geo-
logical uncertainty from the decision sup-
port threshold.

Figure 5.42: Decision support for the Jade full ensemble mean NPV
validation simulations. In the top row a revised assess-
ment of the geological uncertainty that accounts for
the larger ensemble size as a representative for the
Jade expected NPV is used, whilst the bottom row
highlights the consequences of omitting geological un-
certainty. The left and right columns display plots
versus prod_B4_2024_01 and inj_A16_2028_01 re-
spectively. In each plot the blue point corresponds
to the decision parameter vector that gives rise to
Umax = maxd∈D2 U(d) from the wave 2 simulations
using the EGES linear model to predict the initial en-
semble mean NPV. The horizontal red line represents
the wave 2 fixed threshold above which a decision para-
meter vector is classified as non-implausible. This is
calculated as Umax − 3

√∑
i Var[εi] where each εi cor-

responds to a source of uncertainty.
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benefit of a larger ensemble size as well as revising the uncertainty assessment using

simulations over the substantially smaller non-implausible region at later waves.

Furthermore, an assessment based on the initial ensemble only over the wave 2

non-implausible region yields Var[εG] = 1.971× 1012, a 98.7% reduction, and hence

is no longer dominant versus emulator uncertainty. Consequently, if further waves of

decision support were performed using this revised geological uncertainty it would be

expected that additional parts of the decision parameter space would be eliminated

as implausible.

Extension of decision support to the full ensemble mean NPV in Figures 5.42a

and 5.42b illustrates the limitations of using a relatively small and fixed ensemble size,

as is the case in the TNO OLYMPUS Field Development Optimisation Challenge.

Only 3 of the 10 simulations are classified as non-implausible. In addition, the

omission of geological uncertainty from the uncertainty assessment in Figures 5.42c

and 5.42d raises the height of the threshold (red line). No further d are rejected as

implausible, however, 10 is a small sample size and it would be expected that further

decision strategies would be incorrectly classified as implausible at this stage of the

analysis. The results exhibited in Figure 5.42 therefore highlight the risks of using a

fixed and small ensemble as representative for the expected NPV.

5.12 Comparison of the Waves of Simulations

The decision support analysis for well control optimisation applied to the Emerson

Jade model has been performed in three waves: the first two for decision support;

and the third for validation of the emulators and the suggested decision support

non-plausible region. The aim of this section is to both illustrate the output of the

Jade simulations, and to demonstrate how the model behaviour and outputs vary

across the waves as the region of decision space in which simulations are evaluated

is iteratively refocused. Progression of the EGES linear model predictions for the

ensemble mean NPV over the three waves is discussed in Section 5.12.1 and the
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variation for important simulator output is detailed in Section 5.12.2.

5.12.1 Progression of the Ensemble Mean NPV

The aim of decision support is to identify a class of well control strategies that

yield high expected NPV with respect to the uncertainty analysis. In this section

we consider the EGES linear model prediction for the ensemble mean NPV as a

surrogate for the expected NPV which is computationally intractable to evaluate,

whilst a subset of three of the Jade models were used for simulations in the two

waves of iterative decision support, hence it is not possible to calculate the ensemble

mean NPV.

The progression of the NPV is illustrated over the three waves in Figure 5.43.

Note that for consistency, the same EGES linear model constructed in Section 5.2

is used throughout. Moreover, as discussed in Section 5.9.2, each reformulation of

the EGES linear model requires simulations over all 50 Jade models and is thus

computationally infeasible within this analysis. For wave 1, simulations are per-

formed across the full range of decision parameter values yielding a large spread of

NPVs with high variability, some of which are high by chance. Wave 2 simulations

are performed within the wave 1 decision support non-implausible region with the

iterative refocusing restricting the permitted individual decision parameter values

to scenarios that are more likely to yield a high NPV. This is evident with the green

points corresponding to generally higher NPVs with a much smaller spread than the

blue wave 1 points, although there remain some cases which are not as high. After

further refinement in wave 2 decision support, the wave 3 validation simulations

occupy a greatly constrained region of the decision space and produce very high

NPVs. These appear to be close to the maximum attainable value. Moreover, there

is a further reduction in the variability. It is expected that similar patterns would

be observed for both the expected NPV and the initial ensemble mean NPV. The

generally increasing NPV between waves is a consequence of the decision support

algorithm and the elimination of well control strategies that are not expected to
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Figure 5.43: Progression of the EGES linear model predictions for
the Jade ensemble mean NPV over the three waves.
Blue, green and red points denote simulations from
waves 1, 2 and 3 respectively.

deliver a high NPV.

5.12.2 Evolution of Simulator Outputs

This section provides an illustration of the Jade model outputs and their evolution

over the waves of simulations to highlight the effect of restricting to increasingly

small regions of the decision parameter space. Time series plots for Jade 30 FOPT,

FWPT, FWIT and WOPT for producer well B4 in Figure 5.44 display the form

of several important simulation outputs as contributors to the NPV formula with

similar behaviour also observed for Jade 13 and 33. Firstly, it is noted that for all

four outputs there is increasing variability with time. Another distinguishing feature

in all four plots is the decreasing variability in successive waves following the same

trend as the NPV in Section 5.12.1. Similarly, this is a consequence of the refocusing

on decision parameter vectors that are expected to result in a high NPV.

Figure 5.44a shows the time evolution of FOPT where it is observed that simu-

lations in later waves tend to cluster on strategies that consistently produce larger

volumes of oil at early time points with decreasing variability at each fixed time

point between waves 1, 2 and 3. This is to be expected as the contribution of oil

is viewed as the main driver in achieving a high expected NPV. Decomposition of
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Figure 5.44: Evolution of Jade 30 simulation outputs versus dates
for a subset of wave 1, 2 and 3 simulations, denoted
by blue, green and red lines respectively.

the FOPT by well in Figure 5.44b similarly shows a decreasing spread. However,

there also exist strategies in wave 1 and 2 that yield a higher WOPT at later time

points than in wave 3, although these strategies routinely deliver a higher return at

early times prior to the impact of the high discounting factor. Also, there are four

producer wells in the Jade field, hence FOPT must be distributed between these

wells for which the optimal split is not necessarily even: it depends on the interaction

between all of the wells.

Analysis of FWPT in Figure 5.44c reveals that the best well control strategies

from wave 3 generally do not yield the smallest water production at any time point.

The only condition being that FWPT is not too high. Similarly, in Figure 5.44d, the

wave 3 simulations return FWIT that are not necessarily minimal across all waves,
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but are also not too high. Both instances are explained by the preference to achieve

a high FOPT, especially at earlier time steps, which may require increased water

production or injection with the incurred costs offset by the increase in revenue

due to the higher oil price. Moreover, at later time points the high discount factor

further exacerbates the situation leading to the observed moderately high FWPT

and FWIT in the final few years.

5.13 Decision Support Conclusion

The purpose of this chapter is to demonstrate the commercial value for my industry

partner, Emerson, of the Bayesian emulation, uncertainty quantification and decision

support methodology developed throughout this PhD and presented in Chapter 3.

This is fulfilled via an application to their Jade model for the well control optimisation

problem construed as a decision support task. Greater access to computing resources,

technical support, and domain expert knowledge enables a more comprehensive

analysis compared with the TNO OLYMPUS Well Control Optimisation Challenge

in Chapter 4, including a demonstration of multiple waves of iterative decision

support with a refinement of the uncertainty quantification, and a validation of the

results using previously unseen geological realisations of the Emerson Jade model.

The first step in the analysis involves an implementation of the efficient geological

ensemble subsampling techniques to achieve computational savings by sub-selecting 3

of the 50 ensemble members utilising a collection of exploratory simulations. A wave

1 targeted Bayesian design is constructed following the same methodology presented

for the TNO OLYMPUS Well Control Optimisation Challenge. In preparation for

the first wave of iterative decision support, the hierarchical emulation framework

exploiting known forms of simulator output behaviour is applied to the complex and

computationally expensive Jade ensemble for the ensemble mean NPV. An uncer-

tainty quantification is performed for all major sources including structural model

discrepancy and decision implementation error. These results are utilised for a first
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wave of the iterative decision support procedure to obtain a robust class of decisions

respecting all major sources of uncertainty. Extending on the application to the

TNO OLYMPUS Well Control Optimisation Challenge, methodology for the design

of subsequent waves of simulations is presented and applied to the Jade model before

reformulating the emulators and revising the uncertainty quantification over the sub-

stantially smaller wave 1 decision support non-implausible region. These are used

to perform a second wave of decision support at which point the stopping criterion

indicates that no distinguishable improvements can be achieved by further iterations.

Validation diagnostics are performed for the: EGES linear model; emulators for the

ensemble mean and expected NPV; and the decision support non-implausible region

identified in each case. The progression of the ensemble mean NPV results and the

Jade simulation output are also illustrated.

A routine convention in the petroleum industry is to use an ensemble of models to

represent geological uncertainty; a practice adhered to in this application by initially

devising a posterior sample of Jade models. In order to address the computational

expense of evaluating the full ensemble, we implement the EGES techniques de-

scribed in Section 3.2. Investigations reveal that either three or four models form

an adequate representative subset, with linear model diagnostics used to show that

superior extrapolation predictions are achieved using three models. This results in

only a modest increase in the uncertainty relative to other sources; in particular, the

geological uncertainty. A wave 1 targeted Bayesian design is constructed that incor-

porates prior knowledge from oil reservoir engineers regarding feasible and physically

realistic well control strategies in the form of time consecutive difference constraints.

This yields a decrease to approximately 1.8895% of the original hypercube volume

whilst also achieving good sampling coverage.

In the reformulation of the well control optimisation problem as a decision support

task, the utility function is specified to be the expected NPV. Bayesian emulators are

used as fast and efficient statistical approximations for the expected NPV enabling

the full exploration of the decision parameter space given only a small collection of
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simulations in a process that is easy to execute in parallel. For this application, the

hierarchical Bayesian emulation framework which exploits known simulator behaviour

by decomposing the utility function into its constituent pieces detailed in Section 3.3

is implemented in Section 5.4. This achieves highly accurate results. Moreover,

this utilises the extension of the structured emulation technique to incorporate the

two-sided truncation. This is to handle the limited number of fitting points for some

NPV constituents as well as issues arising from extrapolation due to higher estimates

of the change point upper bound between the two modes of behaviour.

An uncertainty quantification is performed for wave 1 decision support. It is

first highlighted that geological uncertainty is the largest single source after the

emulator, whilst the EGES uncertainty is shown to be approximately two orders

of magnitude smaller. Moreover, it is vital that the analysis recognises how only

uncertainties which affect the location of optimal decisions in the form of non-linear

transformations of the utility surface need to be included in order to achieve useful

and meaningful results. Application of the detailed methodology to identify and

quantify such non-linear transformation effects results in a three order of magnitude

reduction in the variance induced by NPV cost parameter uncertainty. This uses

an alternative simulation strategy based on differing views of mean oil price over

the field lifetime for members of the committee of decision makers. Although the

Jade model is fictitious, for completeness an upper bound for structural model

discrepancy is estimated utilising the wave 1 simulations whilst commenting on some

of the assumptions regarding geological ensemble and EGES uncertainty. Similarly,

decision implementation error is assessed via the fast Bayesian emulators. These are

both of a similar magnitude to the EGES uncertainty.

The hierarchical emulator and uncertainty quantification are combined within

the first wave of the iterative decision support procedure detailed in Section 3.6

to produce a robust class of decisions respecting all major sources of uncertainty

whilst providing insight into the structure of the region which is believed to yield

high expected NPVs. This constitutes a volume of 3.72% of the initial decision
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parameter space and 7.03× 10−2% of the full hypercube. The necessity for an ac-

curate and comprehensive uncertainty quantification is emphasised in Section 5.6.2.

Failure to account for geological uncertainty yields a discernible reduction in the

non-implausible volume, with a small further decrease after omitting all other un-

certainties. This is explained as the geological uncertainty is the dominant form

within the wave 1 uncertainty analysis. A much larger reduction is observed after

omitting the emulator uncertainty only, thus indicating that another wave is neces-

sary to further reduce the non-implausible region. These investigations highlight the

potential for decision strategies to be falsely rejected in the first wave. Meanwhile,

not accounting for linear transformation effects due to the NPV cost parameter

uncertainty produces unusable results.

Wave 2 of iterative decision support firstly requires a collection of simulations

covering the wave 1 non-implausible region. A method is presented and applied to

uniformly sample from this region with the option to augment the design with wave

1 decision parameter vectors of interest. These are used to fit a hierarchical emulator

to the ensemble mean NPV which yields generally higher adjusted expectations than

in wave 1 along with a reduction in the uncertainty. The developed iterative decision

support framework enables the continual refinement of the uncertainty quantification

as new information becomes available and the volume of the decision support non-

implausible region decreases. For wave 2, the geological and EGES uncertainty

analyses remain unchanged since the necessary simulations for the entire ensemble

are not performed. Re-assessment of the NPV cost parameter uncertainty using

the same simulated cost parameter scenarios yields a considerable 73.2% reduction

versus wave 1, whilst there is negligible change in the magnitude of uncertainty due

to structural model discrepancy and decision implementation error.

Performing a wave 2 decision support analysis incorporating the reformulated

emulator and refined uncertainty quantification yields a further reduction in the non-

implausible region to 15.87% of the wave 1 volume, corresponding to 1.12× 10−2% of

the full hypercube. The decision support sensitivity analysis is repeated which again
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highlights the importance of a comprehensive uncertainty quantification to avoid

incorrectly eliminating decision parameter vectors. At this stage it is identified that

geological uncertainty is the largest single source of uncertainty. It is approximately

one order of magnitude larger than the emulator uncertainty, thus instigating the

algorithm stopping rule because very little further improvement can be achieved by

constructing more accurate emulator representations without first addressing the

geological uncertainty.

Access to the underlying stochastic geology model and additional computing

resources enables the validation of decision support outcomes for the well control

optimisation problem applied to the Emerson Jade model. This uses a new collection

of simulations over the wave 2 non-implausible region for both the initial Jade en-

semble of 50 models, and an extra 150 geological realisations. Validation diagnostics

for the EGES linear model shows a tendency to over-predict, although this does

not appear to be a cause for concern when incorporated within the hierarchical

emulator for the Jade ensemble mean or expected NPV. Similarly, validation of the

decision support region using the unseen realisations confirms that the emulator,

uncertainty quantification and decision support algorithm are capable of delivering

robust results. Examination of the progression of the ensemble mean NPV over the

three waves of simulations illustrates the iterative refocusing as consistently higher

ensemble mean NPVs are returned across the waves. Moreover, the evolution of

key simulator outputs such as FOPT, FWPT and FWIT are investigated with a

decrease in the variability for each output over the waves. In general, field and well

oil production totals increase, whilst water production and water injection totals

decrease, however, these do not necessarily attain their lowest simulated values. This

is in order to sustain higher oil production rates which yield a greater contribution

towards profitability.

A robust and comprehensive decision support analysis including validation of the

results is achieved for the Emerson Jade model application utilising the developed

iterative decision support procedure incorporating Bayesian emulators and an uncer-
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tainty quantification. After two waves the largest source of uncertainty is due to the

underlying geology and thus warrants a more careful treatment than is convention-

ally given within the petroleum industry if further reductions in the non-implausible

volume are to be achieved. This can only be resolved using a larger ensemble with

simulations performed in the current non-implausible region, as evidenced during

the validation diagnostics for the expected NPV. Note that this does not necessarily

reduce the EGES uncertainty. The iterative framework enables such an investigation

and refinement of the uncertainty quantification in response to the improvements

in emulator accuracy and a decreasing non-implausible volume. In addition, more

sophisticated uncertainty representation techniques including variance emulation are

required if decision dependent uncertainties are to be quantified. In a real-world

application, the next stage would be to communicate these results to the committee

of decision makers.





Chapter 6

Bayesian Emulation of Computer

Models with Known Structured

Partial Discontinuities

This chapter presents novel methodology for the Bayesian emulation of computer

models possessing general forms of structured partial discontinuities with endpoints

which may lie within the input parameter space and of varying strength along them.

It is assumed that the discontinuity locations and form are known and fixed. Mo-

tivation stems from the well placement optimisation problem within the petroleum

industry where geological fault boundaries induce structured partial discontinuities

in the expected NPV objective function with respect to well locations. This methodo-

logy is fully generalisable and applicable across a multitude of applications employing

complex and computationally expensive computer models that possess such struc-

tured discontinuities and includes embedding within the iterative decision support

procedure described in Section 3.6. The research discussed in this chapter along with

the application to the TNO OLYMPUS Well Placement Optimisation Challenge in

Chapter 7 are presented in our paper [174] which is currently in submission to a

journal.

We begin by introducing the TNO OLYMPUS Well Placement Optimisation
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Challenge in Section 6.1 as an example of a commercially important industry chal-

lenge that motivates the development of methodology for Bayesian emulation with

structured discontinuities. In Section 6.2 we review the existing methodology for

Bayesian emulation of computer models possessing discontinuities. The formulation

and mathematical derivation of the novel emulation with structured discontinuit-

ies methodology is presented in Section 6.3 utilising two examples to elucidate the

steps. We name this the Torn Embedding Non-Stationary Emulation (TENSE) ap-

proach. The generality and flexibility of this methodology is further demonstrated

in Section 6.4 for a known scalar function possessing a complex collection of non-

linear partial discontinuities with respect to a 2-dimensional input parameter space.

Throughout this chapter and the subsequent application in Chapter 7, the notation

x is used to represent a vector of (decision) parameters, as discussed in Section 2.1.3.

6.1 Motivation of the TNO OLYMPUS Well

Placement Optimisation Challenge

The TNO OLYMPUS Field Development Optimisation Challenge [93] was first

introduced in Section 3.1 as motivation for the development of methodology for

decision making under uncertainty. An overview of the challenge aims and setup

are presented in Section 3.1.1 as a representation of the commercially important

problem exhibiting substantial difficulties in field development optimisation within

the petroleum industry. This includes a description of the fictitious OLYMPUS

model ensemble which is computationally expensive to evaluate and possesses many

of the features encountered for real-world oil reservoirs. Results of industry and

academic research to address these challenges were presented at the EAGE/TNO

Workshop on OLYMPUS Field Development Optimization [39].

The aim of the TNO OLYMPUS Well Placement Optimisation Challenge is to

design a well placement strategy which includes the: location; trajectory; and type of

each well, along with the number of wells, drilling sequence and oil platform location,
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for the TNO OLYMPUS oil reservoir model which maximises the expected NPV over

the field lifetime under the uncertainty captured by the 50 geological realisations.

A reactive well control strategy is implemented. For each OLYMPUS model, the

NPV with respect to decision parameters d is defined in Equation (3.1.1), where

Rj(d, ti) encapsulates the difference between all revenue accrued and expenditure

incurred within each discounting time interval, and is defined in Equation (3.1.4).

The expected NPV objective function is approximated by the ensemble mean NPV

defined in Equation (3.1.2). We reformulate this challenge as a decision support

problem and focus on the important problem of maximising the ensemble mean

NPV as a function of well location. Bayesian emulators are employed in order to

mitigate the computational expense of evaluating the OLYMPUS ensemble during

the iterative exploration of the high-dimensional location parameter space.

An important feature of the OLYMPUS model is the existence of geological fault

boundaries. These inhibit the flow of oil and water across them with potentially

variable levels of fluid transmissibility at different locations. This is a common

occurrence in real oil fields presenting difficulties in petroleum reservoir engineering

(as well as for other geological modelling applications). Within the TNO OLYMPUS

Challenge the location of these fault boundaries are treated as known and fixed for

the entire OLYMPUS ensemble. An illustration of the physical OLYMPUS map is

shown in Figure 6.1 where the five black lines depict the fault boundaries. There

are four faults with an endpoint within the location parameter space, whilst one is a

sealing fault (furthest left in the plot) that acts as a full discontinuity dividing the

reservoir into two distinct regions. The map is coloured by mean oil concentration

over the ensemble with dark blue corresponding to the highest concentration. An

alternative parameterisation of the OLYMPUS reservoir map is used in the analysis

of the TNO OLYMPUS Well Placement Optimisation Challenge which is illustrated

in Figure 6.2. This is obtained via a bijective transformation defined by TNO and

involves a reflection in the vertical axis, rotation through 90◦ anti-clockwise, and

then a non-linear transformation is applied to produce straight, parallel, partial fault
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Figure 6.1: Physical map of the TNO OLYMPUS oil reservoir
model coloured by mean oil concentration. Dark blue
through to green represents high to low oil concentra-
tion respectively. The black lines depict the partial fault
boundaries.

boundaries. The map is also coloured by mean oil concentration over the ensemble

where orange through to black represents high to low mean oil concentration, whilst

blue corresponds to no oil; these are regions of water only.

For the TNO OLYMPUS Well Placement Optimisation Challenge, the ensemble

mean NPV objective as a function of well location possesses a form of structured

partial discontinuity at known locations induced by the partial geological fault

boundaries within the reservoir. Consequently, standard emulator constructions

as discussed in Section 2.4 should not be applied because these assume that the

function is at least continuous, and often possesses several continuous derivatives.

Implementation will potentially yield an inaccurate emulator, particularly near to

the discontinuities. This motivates the development of methodology for the Bayesian

emulation of computer models possessing general forms of structured discontinuities

with known endpoints which lie within the input parameter space and of varying

strength along them. Whilst motivated by the TNO OLYMPUS Well Placement

Optimisation Challenge, this methodology is fully generalisable to a multitude of

applications where computer models possess such structured discontinuities.
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Figure 6.2: Transformed map of the TNO OLYMPUS oil reservoir
model coloured by mean oil content over the ensemble.
Orange through to black represents high to low mean oil
concentration, whilst blue corresponds to no oil. Com-
pared to Figure 6.1 the map is reflected in the ver-
tical axis, rotated through 90◦ anti-clockwise, and a
non-linear transformation applied to produce straight,
parallel, partial fault boundaries.

6.2 Current Approaches to Bayesian Emulation

of Computer Models with Discontinuities

In this section we review existing methodology for the Bayesian emulation of com-

puter models possessing discontinuities and highlight their limitations. In particular,

more general forms of structured partial discontinuities that occur when one or both
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ends of the discontinuity lie within the parameter space with potentially variable

levels of discontinuity along them necessitate the development of emulators presen-

ted in Section 6.3. An example of a function exhibiting a partial discontinuity is

introduced in Equation (6.2.1), where 1{A} is an indicator function that takes value

1 when statement A is true, and 0 otherwise.

f(x, y) := 0.4 sin(5x) + 0.4 cos(5y) + 0.8(x− 0.75)2 sign(y − 1)1{x>0.75} (6.2.1)

This is illustrated in Figure 6.3a for the parameter space X = {(x, y) | 0 < x <

2, 0 < y < 2}. It possesses a discontinuity across the line y = 1, for x > 0.75,

as shown by the black horizontal line. The discontinuity begins in the interior of

X at the point (x, y) = (0.75, 1), and ends on the boundary at (x, y) = (2, 1). In

addition, the function is smooth everywhere else apart from this partial discontinuity,

an attribute that should be exploited by an emulator. This is used to highlight the

failures of existing methodology.

A naïve approach is to apply the standard Gaussian process (GP) or Bayes linear

emulation procedures detailed in Sections 2.4.4 and 2.4.5 respectively. These fail for

functions possessing discontinuities as they attempt to smooth over any discontinuity

resulting in two problems:

1. Emulator predictions close to the discontinuity will be highly inaccurate leading

to poor emulator diagnostics,

2. Estimation of global emulator hyperparameters, for example, covariance func-

tion variance and correlation lengths, may produce results that are very sens-

itive to the design, invoking potential global prediction and diagnostics issues

with the emulator.

For f(x, y) in Equation (6.2.1), if the design does not contain points close to the

discontinuity, its effect may be unnoticed, whilst also leading to moderately sized

estimates of the correlations lengths. Alternatively, if the design contains points

either side and close to the discontinuity, it would be detected. Moreover, very small

estimates of the correlation lengths may occur depending on the rest of the design
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(a) True 2-dimensional function, f(x, y).
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(b) Embedding surface, v(x, y).
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(c) The emulator adjusted expectation,
ED[f(x, y)], before controlling for the
warping effects.
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(d) The emulator adjusted standard devi-
ation,

√
VarD[f(x, y)], before controlling

for the warping effects.

Figure 6.3: Emulation of a 2D function f(x, y) with a single par-
tial discontinuity presented in Equation (6.2.1). This
is illustrated in Figure 6.3a with the partial discontinu-
ity located along the black horizontal line. The em-
bedding surface v(x, y) defined in Equation (6.3.6) is
torn along the location of this discontinuity, as seen
in Figure 6.3b. The emulator adjusted expectation
ED[f(x, y)] and standard deviation

√
VarD[f(x, y)] with

the induced partial discontinuity are shown in Fig-
ures 6.3c and 6.3d respectively, where black points rep-
resent the 16 point grid design. Note the horizontal
compression for larger values of x.

as an example of the second problem. In either scenario, the emulator would be

non-robust and inaccurate for prediction. The main issue is that discontinuities

severely violate the stationarity assumption and some degree of smoothness which
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are implicit within the standard emulator covariance structure.

An option is to relax the stationarity assumption, as in [123], where a transforma-

tion of the input parameter space, termed warping, is applied, as well as the use of the

non-stationary neural network and Gibbs covariance functions (see Equations (2.4.9)

and (2.4.10) respectively [146]). The latter allows for input dependant correlation

lengths. For f(x, y) in Equation (6.2.1), this leads to high frequency fluctuations

in f(x, y) close to the discontinuity. This is only partially successful because the

correlation lengths must change rapidly when approaching the discontinuity. Similar

issues occur for the various methods of modelling non-stationary covariance functions

in GP emulation reviewed in [148]. This includes the use of stationary covariance

functions with input dependent hyperparameters, as well as the direct modelling of

the input parameter variance matrix via matrix-valued anisotropy processes. In ad-

dition, several methods to approximate non-stationary GP emulators in applications

with high-dimensional data are considered including: the Sparse General Vecchia

(SGV); and nearest neighbour Gaussian process techniques.

Treed Gaussian processes developed in [74] are a popular approach to emulating

functions that exhibit distinct modes of behaviour within different regions of the

parameter space, as is the case across discontinuities. This is achieved by first

recursively partitioning the parameter space perpendicular to single inputs to form

non-overlapping (hyper-) rectangular subregions, known as the leaves of the tree.

At each iteration, a new leaf is formed by splitting an existing leaf. Secondly,

independent stationary GP emulators are fitted for each leaf. A major disadvantage

is the requirement for a large number of simulations, especially if the parameter

space is partitioned into many subregions so as to obtain sufficiently many points

to accurately fit each GP emulator. This is of particular concern if the computer

model is computationally expensive. Moreover, treed GPs fail to fully exploit any

global behaviour of the function. In the context of functions with discontinuities,

implementing a treed GP proxy assumes that the discontinuities are parallel and/or

perpendicular to the defined input axes. This is not necessarily true, as discussed
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for the example in Section 6.4 where the function exhibits non-linear discontinuities.

A similar approach to treed GPs is the application of Voronoi tessellations to

partition the parameter space with independent GP emulators fitted within each

polygonal cell, as presented in [141]. Compared with treed GPs, the Voronoi tes-

sellation structure enables more complex forms of discontinuities to be modelled,

although still not as general as observed for f(x, y) in Equation (6.2.1) and in the

TNO OLYMPUS model discussed in Section 6.1. Furthermore, Reversible Jump

Markov Chain Monte Carlo (RJMCMC) [77] is used to update the Voronoi tessel-

lation, however, this is a computationally expensive process, before fitting separate

GP emulators to model the function in the partitioned parameter space.

Local Gaussian process emulators discussed in [73] is another related methodology

where for new input points, a local approximate GP is fitted using a nearest-neighbour

subset of the data to perform Bayesian updates. This is designed to reduce the

computational costs associated with GP emulation, but also captures the local

behaviour of the function. As for treed GPs, local GP emulation has the limitation

that it models the function on a local scale and thus fails to utilise knowledge of

global behaviour, whilst there are also difficulties in defining a nearest-neighbour

subset of the data in the presence of discontinuities.

Further approaches employing a classification step to separate the parameter

space into regions by identifying different modes of function behaviour, potentially

due to discontinuities, include the use of: latent GPs in [110]; and through a

diagnostic-led approach to fitting non-stationary GP emulators using region-specific

covariance kernel mixture models (note that the resulting emulator is continuous) in

[180]. However, these methods assume a particular form of discontinuity resulting

in regions that are completely separated, hence they are unable to handle the more

general forms of discontinuities such as those exhibited by f(x, y) in Equation (6.2.1).

Likewise, GP emulation with tipping points employed in [19] seek to first identify the

location of the discontinuities before fitting separate GP emulators within each re-

gion of the partition. The process of locating the boundaries of any discontinuities is
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computationally expensive and scales poorly to high-dimensions. Most importantly,

this structure is unable to handle partial discontinuities.

Another option is to consider a deep Gaussian process, for example [37], with

multiple layers, whereby either the correlation lengths or inputs are modelled by a

second layer GP with inputs or dependant parameters in turn modelled by the next

layer GP within a neural network structure. Compared with the above approaches,

deep GPs possess the flexibility to achieve a given accuracy tolerance for representing

functions close to discontinuities. However, there is a penalty of the additional

emulator structure which is not easy to update, to estimate, or to formally incorporate

the corresponding uncertainties induced by such a structure. Moreover, a deep

GP constructed where smoothness is assumed for all layers may still fail emulator

diagnostics. This is due to the impact of the discontinuity percolating down the

layers with the potential to remain evident at each level. As an illustration, to permit

a rapid change in f(x) due to a discontinuity on the top layer requires rapid, also

discontinuous, change of the inputs or correlation lengths on the second layer. This

pattern continues for all subsequent layers, however it is not achievable due to the

smoothness assumptions.

A further approach to examine is the direct modification of the correlation

structure for the emulator to reduce the correlation between outputs on either side

of a discontinuity. For example, a common suggestion is to use the geodesic distance

between pairs of input parameter points in the correlation function. This is computed

as the minimum for a distance metric which does not cross the discontinuity, hence

it must go around it. However, this fails as it does not provide a valid covariance

structure. This is demonstrated by constructing the 4×4 covariance matrix for f(x, y)

in Equation (6.2.1) evaluated at the four input points (0.5, 1), (0.75, 1), (1, 1+), (1, 1−)

(where the superscripts + and − denote the point above and below the discontinuity

respectively) using a geodesic distance within a squared exponential covariance

function shown in Equation (2.4.3), with σ2 = 1 and θ = 0.5. The resulting

covariance matrix given in Equation (6.2.2) is not positive semi-definite; it possesses
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a negative eigenvalue.

Σ =



1 0.779 0.368 0.368

0.779 1 0.779 0.779

0.368 0.779 1 0.368

0.368 0.779 0.368 1


(6.2.2)

This exemplifies the dangers associated with altering the covariance structure of an

emulator to incorporate a discontinuity which are further exacerbated for multiple

discontinuities of possibly complex shape.

We instead propose a parsimonious emulation structure that addresses the prob-

lem of the discontinuity directly and is described in Section 6.3. This approach will

guarantee the validity of the emulator’s covariance structure, even in the presence

of multiple discontinuities of arbitrary shape, while also providing flexible emulator

forms to deal with a wide class of computer models.

6.3 Methodology for Bayesian Emulation of

Computer Models with Structured Partial

Discontinuities

Bayesian emulation of computer models with structured partial discontinuities is a

complex task which is inadequately handled by current methodology discussed in

Section 6.2. Novel Bayesian emulators are presented to address this problem and

are designated the Torn Embedding Non-Stationary Emulation (TENSE) approach.

The derivation begins in Section 6.3.1 by embedding the parameter space on a

hypersurface in higher dimensions using an embedding function to characterise the

structured discontinuities. A consequence of the embedding function is an induced

warping effect with the general form of the covariance matrix derived in Section 6.3.2

to control for the local effect. Non-stationary Gaussian process emulators are then

used to obtain a global emulator in Section 6.3.3. For clarity, the derivation for our
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novel approach is performed for a computer model with a 2-dimensional parameter

space embedded in 3-dimensions, noting that the methodology generalises to higher

dimensions.

6.3.1 Torn Embedding Surfaces in Higher Dimensions

In Section 6.2 it is emphasised that partial discontinuities present a fundamental

challenge to the emulation process. This is overcome by employing the following

procedure:

1. Embed the emulator’s (and computer model’s or function’s) 2-dimensional

input parameter space x ∈ X ⊂ R2 into a higher 3-dimensional input space

v(x) ∈ V ⊂ R3 using the embedding surface v(x, y) such that:

x =

x
y

 and v(x) =


x

y

v(x, y)

 (6.3.1)

The embedding v(x) describes a hypersurface in 3-dimensions.

2. In order to induce the discontinuities, the otherwise smooth 2-dimensional

embedding surface v(x, y) is torn along the known locations of the (partial)

discontinuities.

3. An emulator is constructed following the methodology in Section 2.4 but in the

3-dimensional space with input v(x). The design is constructed in 2-dimensions

and then raised into 3-dimensions via an application of v(·).

4. The emulator’s adjusted expectation and variance evaluated at a new point

x are obtained from the emulator on the projection of x onto the embedding

surface; that is evaluate ED[f(v(x))] and VarD[f(v(x))].

The tears in the embedding surface will induce discontinuities, of as yet uncertain

sizes, in the output f(x), as required.

The covariance structure for the embedded emulator is obtained from the desired

covariance structure for the original 2-dimensional emulator. This is shown for
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the squared exponential covariance function where it is assumed that the original

2-dimensional emulator possesses no regression terms. Firstly, using an isotropic

distance metric with a single common correlation length hyperparameter θ2D (see

Equation (2.4.3)), the resulting covariance structure is:

Cov[f(x), f(x′)] = σ2 exp
{
−‖x− x′‖2

θ2
2D

}
(6.3.2)

After embedding in 3-dimensions, the covariance structure naturally extends to that

shown in Equation (6.3.3). This depends on the Euclidean distance in the new

3-dimensional parameter space via v(x) ∈ V .

Cov[f(v(x)), f(v(x′))] = σ2 exp
{
−‖v(x)− v(x′)‖2

θ2
3D

}
(6.3.3)

For a general anisotropic squared exponential covariance function, the covariance of

the 2-dimensional emulator (with no regression terms) is defined in Equation (6.3.4)

where Σ−1
2D governs the Mahalanobis distance between input points x and x′.

Cov[f(x), f(x′)] = σ2 exp
{
−(x− x′)TΣ−1

2D(x− x′)
}

(6.3.4)

Similarly, after embedding, the 3-dimensional version is stated in Equation (6.3.5)

where Σ−1
3D governs the Mahalanobis distance in 3-dimensions.

Cov[f(v(x)), f(v(x′))] = σ2 exp
{
−(v(x)− v(x′))TΣ−1

3D(v(x)− v(x′))
}

(6.3.5)

There is freedom to choose from various permitted forms for Σ3D. This is an im-

portant part in the full TENSE emulator development with further discussion in

Section 6.3.2.

This procedure is illustrated for the example function introduced in Equation (6.2.1)

in Section 6.2, and displayed in Figure 6.3a. We specify the embedding function in

Equation (6.3.6) which is shown in Figure 6.3b.

v(x, y) = −0.4(x− 0.75)2 sign(y − 1)1{x>0.75} (6.3.6)

The main requirement of the embedding surface is that it is locally smooth, whilst
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also being torn along the discontinuity such that the regions above and below the

discontinuity are sufficiently different in height in the third dimension to decorrel-

ate outputs on either side. It is unnecessary for v(x, y) to track the form of the

actual computer model function f(x, y): in this example v(x, y) above and below

the discontinuity goes low and high respectively, whilst the function f(x, y) does

the opposite. The tears in the embedding surface are only present to induce the

discontinuities within the embedded emulator structure.

In order to train the emulator whilst illustrating the features of its construction, a

grid design of 16 runs x(i), i = 1, . . . , 16, in the 2-dimensional region X is constructed

at which f(x, y) is evaluated.1 These are shown as the black points in Figures 6.3c

and 6.3d, which are raised into 3-dimensions using v(i) = v(x(i)). In this example

it is assumed that there is only a constant regression term and the isotropic form

of the squared exponential covariance function shown in Equation (6.3.2) is used.

Emulator updates over the embedded 3-dimensional parameter space are performed

using Equations (2.4.41) and (2.4.42), with σ = 0.7, θ = 0.5, ρ = 10−5, and

D = {f(x(1)), . . . , f(x(16))}, with Σ3D = diag{θ, θ, θ}.

The emulator adjusted expectation, ED[f(x)] ≡ ED[f(v(x))], evaluated over an

80×80 grid of points in X , is shown in Figure 6.3c. It is evident that the emulator ad-

justed expectation is smooth away from the discontinuity and displays a suitable jump

across the discontinuity, hence mimicking f(x, y) shown in Figure 6.3a reasonably

well. The emulator adjusted standard deviation,
√

VarD[f(x)] ≡
√

VarD[f(v(x))],

is shown in Figure 6.3d. Similarly, this shows the desired behaviour with the fur-

ther along the discontinuity (in the positive x direction), the more uncorrelated the

two regions (above and below the discontinuity) become. For example, the point

(1.75, 1−) just below the discontinuity has a similarly high emulator adjusted stand-

ard deviation as the point (1.75, 0) on the lower boundary. The emulator is therefore

as uninformed at both locations, hence almost no information is passed from the

1For general applications the choice of a grid design is not optimal or appropriate. This is used
to highlight the features induced by this emulator construction and illustrate why the subsequent
derivation steps are necessary.
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runs above the discontinuity and so the emulator output is almost independent of

them. A more detailed discussion of this can be found in Section 7.3. However, the

naïve embedding has induced a slight compression in the x-direction for the emulator

adjusted standard deviation (and expectation) evaluated at larger values of x.

For the purpose of further explicating this issue, a second example function

is introduced in Equation (6.3.7) and shown in Figure 6.4a. It is defined over

X = {(x, y) | 0 < x < 2, 0 < y < 2}. This function possesses two parallel partial

discontinuities of different lengths, each with one endpoint on the right boundary of

the input space.

f(x, y) := 0.4 sin(5x) + 0.4 cos(5y) + 1.2(x− 1)2
1{x>1}1{y>1.25}

− 0.6(x− 0.6)2
1{x>0.6}1{y<0.75} (6.3.7)

This requires a more complex embedding function to accommodate the discontinuities

of differing lengths defined in Equation (6.3.8), where b(y) represents the x-coordinate

of the line that interpolates the two interior end points, (0.6, 0.75) and (1, 1.25), of

the partial discontinuities, as defined in Equation (6.3.9).

v(x, y) = 0.6(x− b(y))2
1{x>b(y)}1{y<1.25}1{y>0.75}

− 0.6(x− 0.6)2
1{x>0.6}1{y<0.75} (6.3.8)

where

b(y) = 0.6 + (1− 0.6)(y − 0.75)
(1.25− 0.75) (6.3.9)

This is illustrated in Figure 6.4b. The use of a piecewise quadratic form for the

embedding surface will become evident following the explication of the TENSE

methodology with an explanation provided along with general advice on specifying

the form of the embedding surface in Section 7.2.

A 12 point grid design is used. An emulator is constructed with a constant mean

function using the isotropic form of the squared exponential covariance function

shown in Equation (6.3.2) with hyperparameters specified as σ = 0.7, θ = 0.5,
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ρ = 10−5, and D = {f(x(1)), . . . , f(x(12))}, with Σ3D = diag{θ, θ, θ}. The emulator

adjusted standard deviation,
√

VarD[f(x)], is shown in Figure 6.4d and displays clear

compression and warping effects in the middle and lower regions; a direct consequence

of the chosen form of v(x, y) shown in Figure 6.4b. This compression arises due to

the use of a stretched embedding surface for which arc length is not conserved, as

well as using a stationary 3-dimensional covariance structure. Consequently, paths

on steep regions of v(x, y) move “too quickly” into the third dimension leading to

an induced compression on projection into 2-dimensions. Equivalently, for two pairs

of points that are equidistant apart in 2-dimensions, the distance in 3-dimensions

increases for regions where the embedding surface possesses larger derivatives; hence

a decrease in the correlation leading to the warping effect.

It is desired that the choice of embedding surface is sufficiently flexible to permit

such stretches of the inter-point distance to enable sufficient jumps across the discon-

tinuities, as well as to handle more complex forms of discontinuities. This includes:

discontinuities with endpoints that both begin and end within the input space; and

finite collections of discontinuities of a non-linear form. Neither of these cases can

be addressed using an arc-length conserving embedding which would mitigate such

compression effects, although not remove them entirely. The warping effect therefore

constitutes a substantial problem which is resolved in Sections 6.3.2 and 6.3.3.

6.3.2 Controlling for the Warping Effect Induced by the

Embedding – Local Effect

Embedding the input parameter space in higher dimensions enables the characterisa-

tion of structured partial discontinuities. However, it is shown in Section 6.3.1 that

general forms of stretched embedding functions v(x, y) result in a warped emulator

on projection back onto the original parameter space by inducing x dependent correl-

ation lengths. Consequently, these emulators are inefficient and do not reflect actual

prior beliefs about the computer model. This issue is addressed using a carefully con-

structed non-stationary Gaussian process emulator over the 3-dimensional parameter
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Figure 6.4: Emulation of a 2D function f(x, y) with two parallel
partial discontinuities of different lengths presented in
Equation (6.3.7). In each plot the partial discontinuities
are located along the black horizontal lines. The black
points represent the 12 point grid design.
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space. First, we detail a proposed form of the 3-dimensional correlation matrix, Σ3D,

that is guaranteed to reverse the local effect of the embedding. This is to handle

the situation where input points are close together compared to the curvature of the

embedding surface. This is extended to general choices of parameter vectors over

the whole input space using necessarily non-stationary GPs in Section 6.3.3. This

will ensure the freedom to choose from a wide variety of embedding surfaces v(x, y)

by removing the induced warping effect.

The derivation is performed for a reference parameter vector, x0, at which the

aim is to specify the form of Σ3D such that it induces the desired covariance structure

locally around this point on projection onto the original parameter space. For the

squared exponential covariance function, this is to ensure that Cov[f(x), f(x0)]

approximately has the form displayed in Equation (6.3.4) for parameters x that are

close to x0.

Cov[f(x), f(x0)] ' σ2 exp
{
−(x− x0)TΣ−1

2D(x− x0)
}

(6.3.10)

This is illustrated for the commonly chosen form for Σ2D given in Equation (6.3.11)

where it is assumed that the 2-dimensional inputs are uncorrelated with common

correlation length θ.

Σ2D '

θ2 0

0 θ2

 (6.3.11)

Note that the derivation also applies to general Σ2D, as outlined at the end of this

section.

The actual covariance structure is calculated from the embedded emulator via

v(x), hence the condition given in Equation (6.3.12) for the squared exponential

covariance function must be satisfied.

Cov[f(v(x)), f(v(x0))] ' Cov[f(x), f(x0)]

⇐⇒ σ2 exp
{
−(v(x)− v(x0))TΣ−1

3D(v(x)− v(x0))
}
'

σ2 exp
{
−(x− x0)TΣ−1

2D(x− x0)
}
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⇐⇒ (v(x)− v(x0))TΣ−1
3D(v(x)− v(x0)) ' (x− x0)TΣ−1

2D(x− x0)

(6.3.12)

The next step is to approximate v(x) by its linear Taylor expansion around the

point x0, as presented in Equation (6.3.13), where vx = ∂v(x,y)
∂x

and vy = ∂v(x,y)
∂y

are

the partial derivatives of v(x, y) evaluated at x0. This is equivalent to approximating

the embedding surface v(x, y) by the tangent plane to v(x, y) at the point x0 and is

required to construct Σ−1
3D.

v(x, y)− v(x0, y0) = vx(x− x0) + vy(y − y0) +O(x2) (6.3.13)

For the embedding vector function v(x) this is described in Equation (6.3.14). Since

v(x) − v(x0) lies on the tangent plane, the third component can be re-expressed

as a linear combination of the 2-dimensional inputs, as shown in Equation (6.3.15).

The matrix A represents the linear embedding operator for raising the 2-dimensional

position vector x onto the corresponding location on the 3-dimensional tangent plane

given by Ax.

v(x)− v(x0) =


x− x0

y − y0

v(x, y)− v(x0, y0)



=


x− x0

y − y0

vx(x− x0) + vy(y − y0) +O(x2)

 (6.3.14)

=


1 0

0 1

vx vy


x− x0

y − y0

+O(x2)

= A(x− x0) +O(x2), where A =


1 0

0 1

vx vy

 (6.3.15)

Substituting Equation (6.3.15) into the exponent in Equation (6.3.12), and omitting
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the second order terms which are of negligible magnitude for x close to x0, yields

the equality shown in Equation (6.3.16). This constitutes a preservation of the

Mahalanobis distance when mapping from the original to the higher-dimensional

parameter space. Note that whilst this derivation is for the squared exponential cov-

ariance function, the same results are valid for other stationary isotropic covariance

functions.

(x− x0)TATΣ−1
3DA(x− x0) ' (x− x0)TΣ−1

2D(x− x0) (6.3.16)

⇐⇒ ATΣ−1
3DA ' Σ−1

2D (6.3.17)

It is evident that in order to counteract the linear effects of the embedding surface

in the vicinity of x0, it is sufficient to construct Σ3D such that it satisfies Equa-

tion (6.3.17).

Constructing Σ3D for diagonal Σ2D

There are several available forms for Σ3D, however many of these will not facilitate

sufficient decorrelation of the emulator across discontinuities in the embedding surface

v(x, y). The chosen form for Σ3D is aligned with the tangent plane to v(x, y) at

the point x0 and is specifically selected to provide the desired behaviour across

discontinuities.

In order to derive Σ3D, it is necessary to establish an orthonormal basis, {w1,w2,

w3}. This will be referred to as the w-basis and is contrived by stipulating g(x, y, z) =

z − v(x, y), noting that the level set g(x, y, z) = 0 defines the embedding surface

z = v(x, y). Application of standard vector calculus shows that ∇g(x, y, z) evaluated

at x0 results in a vector that is normal to the embedding surface, and hence is

also normal to the tangent plane. This is selected to be the unit vector w3 in

Equation (6.3.18), where vx = ∂v(x,y)
∂x

and vy = ∂v(x,y)
∂y

are again the partial derivatives

of v(x, y) evaluated at x0. Throughout ex, ey and ez are the canonical basis in R3.

w3 ∝ ∇g(x, y, z) = −vxex − vyey + ez (6.3.18)
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The unit basis vector w1 is chosen to lie in the tangent plane, but pointing in the

direction of steepest increase of v(x, y). This dictates that the first two components

of w1 must be parallel to ∇v(x, y) = vxex + vyey leading to the following form:

w1 ∝ vxex + vyey + γez (6.3.19)

The setup of the w-basis where w1 lies on the tangent plane whilst w3 is normal

leads to the condition w1 ·w3 = 0, from which it is determined that γ = v2
x + v2

y . It

is then necessary for w2 to be orthogonal to both w1 and w3. Since w1 is chosen to

be in the direction of maximally increasing v(x, y), this implies that w2 must have

zero component in the 3rd dimension, hence is of the form:

w2 ∝ βex + δey (6.3.20)

A second application of the orthogonality relation w2 ·w1 = 0 implies that

βvx + δvy = 0 which is satisfied by the choice of β = −vy and δ = vx up to an

overall normalising constant. A summary of the orthonormal w-basis, {w1,w2,w3},

is presented in Equations (6.3.21) to (6.3.23) respectively.

w1 = 1
c1

[
vxex + vyey + (v2

x + v2
y)ez

]
, where c2

1 = v2
x + v2

y + (v2
x + v2

y)2 (6.3.21)

w2 = 1
c2

[−vyex + vxey] , where c2
2 = v2

x + v2
y (6.3.22)

w3 = 1
c3

[−vxex − vyey + ez] , where c2
3 = v2

x + v2
y + 1 (6.3.23)

Proposition 6.3.1. If Σ3D is specified to be diagonal in the w-basis, then it will

satisfy the desired projection constraint given by Equation (6.3.17).

Proof. We proceed to certify this proposition subject to some additional conditions.

Suppose that Σ3D is diagonal with respect to the {w1,w2,w3} basis with eigen-

values {α2
1, α

2
2, α

2
3} respectively, then the eigendecomposition of Σ3D is presented in

Equation (6.3.24) where W ∈ R3×3 is such that the ith column contains basis vector

wi, and Λ ∈ R3×3 is a diagonal matrix with Λii = α2
i . Since {w1,w2,w3} form an
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orthonormal basis, W−1 = WT in the eigendecomposition.

Σ3D = WΛWT = α2
1w1wT

1 + α2
2w2wT

2 + α2
3w3wT

3 (6.3.24)

This is used to obtain Σ−1
3D in Equation (6.3.25).

Σ−1
3D = WΛ−1WT = 1

α2
1
w1wT

1 + 1
α2

2
w2wT

2 + 1
α2

3
w3wT

3 (6.3.25)

To determine the form of Σ3D such that Equation (6.3.17) is satisfied, it is

necessary to evaluate ATΣ−1
3DA. This is performed in stages by considering the result

of wT
i A for i = 1, 2, 3, where it is first noted that wT

3A =
(

0 0
)
in Equation (6.3.26).

wT
3A = 1

c3

(
−vx −vy 1

)


1 0

0 1

vx vy

 =
(

0 0
)

(6.3.26)

Substituting Equation (6.3.26) into ATΣ−1
3DA yields the following result:

ATΣ−1
3DA = AT

(
1
α2

1
w1wT

1 + 1
α2

2
w2wT

2 + 1
α2

3
w3wT

3

)
A

= 1
α2

1
ATw1wT

1A+ 1
α2

2
ATw2wT

2A (6.3.27)

It is evident that ATΣ−1
3DA is independent of α3 for which the interpretation and

implications are further discussed after this proof.

Completing the derivation of Σ3D requires the remaining terms in Equation (6.3.27)

to be evaluated. The results for the w2 component is derived in Equations (6.3.28)

and (6.3.29), introducing the notation r2 = v2
x + v2

y = c2
2.

wT
2A = 1

c2

(
−vy vx 0

)


1 0

0 1

vx vy

 = 1
c2

(
−vy vx

)
(6.3.28)

=⇒ 1
α2

2
ATw2wT

2A = 1
α2

2c
2
2

−vy
vx

(−vy vx

)
= 1
α2

2r
2

 v2
y −vxvy

−vxvy v2
x

 (6.3.29)

The results for the w1 component are presented in Equations (6.3.30) and (6.3.31)
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where c2
1 = r2 + r4 = r2(1 + r2).

wT
1A = 1

c1

(
vx vy v2

x + v2
y

)


1 0

0 1

vx vy


= 1
c1

(
vx(1 + r2) vy(1 + r2)

)
= 1 + r2

c1

(
vx vy

)
(6.3.30)

=⇒ 1
α2

1
ATw1wT

1A = (1 + r2)2

α2
1c

2
1

vx
vy

(vx vy

)
= (1 + r2)

α2
1r

2

 v2
x vxvy

vxvy v2
y

 (6.3.31)

Combining Equations (6.3.27), (6.3.29) and (6.3.31) and substituting into the

projection constraint in Equation (6.3.17) yields the result in Equation (6.3.32).

Σ2D = ATΣ−1
3DA

⇐⇒

 1
θ2 0

0 1
θ2

 = (1 + r2)
α2

1r
2

 v2
x vxvy

vxvy v2
y

+ 1
α2

2r
2

 v2
y −vxvy

−vxvy v2
x



⇐⇒

 1
θ2 0

0 1
θ2

 = 1
r2


v2
y

α2
2

+ (1+r2)v2
x

α2
1

(
(1+r2)
α2

1
− 1

α2
2

)
vxvy(

(1+r2)
α2

1
− 1

α2
2

)
vxvy

v2
x

α2
2

+ (1+r2)v2
y

α2
1

 (6.3.32)

Equation (6.3.33) shows the results of equating the off-diagonal terms in order to

determine α1 and α2.(
(1 + r2)
α2

1
− 1
α2

2

)
vxvy = 0 (6.3.33)

⇐⇒ Case 1: α2
1 = α2

2(1 + r2), or Case 2: vx = 0, or Case 3: vy = 0

For Case 1, inserting α2
1 = α2

2(1+r2) into Equation (6.3.32) yields Equation (6.3.34)

where α2
2 = θ2. 1

θ2 0

0 1
θ2

 = 1
r2


v2
y

α2
2

+ (1+r2)v2
x

α2
2(1+r2) 0

0 v2
x

α2
2

+ (1+r2)v2
y

α2
2(1+r2)

 =

 1
α2

2
0

0 1
α2

2

 ⇐⇒ α2
2 = θ2

(6.3.34)

For Case 2, vx = 0 implies r2 = v2
y and inserting into Equation (6.3.32) yields

Equation (6.3.35) which is satisfied by choosing α2
2 = θ2 and α2

1 = α2
2(1 + r2). This
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is the same result as for Case 1. 1
θ2 0

0 1
θ2

 =

 1
α2

2
0

0 (1+r2)
α2

1

 ⇐⇒ α2
2 = θ2 and α2

1 = α2
2(1 + r2) (6.3.35)

For Case 3 the same answer is obtained due to the symmetry between x and y, but

with r2 = v2
x. The projection constraint is therefore adhered to by specifying the

first two eigenvalues α2
1 and α2

2 of Σ3D as in Equation (6.3.36), with r2 = v2
x + v2

y.

α2
1 = θ2(1 + r2) and α2

2 = θ2 (6.3.36)

This demonstrates that the postulated form of Σ3D in Equation (6.3.24) is valid.

The proposed form of Σ3D has a geometric interpretation with respect to the

w-basis. Firstly, since w2 points in the direction for which the embedding surface

v(x, y) is not locally increasing at x0, there will be no warping or compression of the

emulator along this direction and hence α2
2 must equal the desired 2D correlation

length, θ2. Conversely, w1 is defined to point in the direction of steepest increase of

v(x, y) at x0 where the gradient in this direction is ‖∇v(x, y)‖ = r. This induces a

warping along w1 due to the use of a stretched embedding surface and is annulled

by increasing α2
1 accordingly. Only points that lie on the surface described by v(x, y)

are of interest for the embedded emulator. As w3 is stipulated to be orthogonal to

v(x, y) at x0, there must be no constraint imposed on α2
3 by this construction, as

confirmed in Equation (6.3.26). It is therefore a free parameter which can be chosen

or inferred to govern the decorrelation of the emulator across the discontinuities.

Note that this is a major motivation for choosing the proposed form of Σ3D given in

Equation (6.3.24).

Proposition 6.3.2. The form of Σ3D for the embedded emulator close to x0 in the

standard Cartesian basis which induces the desired projected covariance is:

Σ3D(x0) =


θ2 + α2

3v
2
x

r2+1
α2

3vxvy
r2+1 vx

(
θ2 − α2

3
r2+1

)
α2

3vxvy
r2+1 θ2 + α2

3v
2
x

r2+1 vy
(
θ2 − α2

3
r2+1

)
vx
(
θ2 − α2

3
r2+1

)
vy
(
θ2 − α2

3
r2+1

)
θ2r2 + α2

3
r2+1

 (6.3.37)



6.3. Methodology for Bayesian Emulation of Computer Models with
Structured Partial Discontinuities 347

Proof. The components of the Σ3D eigendecomposition in Equation (6.3.24) are

computed in Equations (6.3.38) to (6.3.40) respectively, using the defined w-basis

in Equations (6.3.21) to (6.3.23), along with the constrained eigenvalues in Equa-

tion (6.3.36).

α2
1w1wT

1 = α2
1
c2

1


vx

vy

v2
x + v2

y


(
vx vy v2

x + v2
y

)
= θ2

r2


v2
x vxvy vxr

2

vxvy v2
y vyr

2

vxr
2 vyr

2 r4


(6.3.38)

α2
2w2wT

2 = α2
2
c2

2


−vy

vx

0


(
−vy vx 0

)
= θ2

r2


v2
y −vxvy 0

−vxvy v2
x 0

0 0 0


(6.3.39)

α2
3w3wT

3 = α2
3
c2

3


−vx

−vy

1


(
−vx vy 1

)
= α2

3
r2 + 1


v2
x vxvy −vx

vxvy v2
y −vy

−vx −vy 1


(6.3.40)

Substitution into Equation (6.3.24) yields the expression for Σ3D(x0) in Equa-

tion (6.3.37).

The expression for Σ3D(x0) possesses an explicit dependence on x0 and the

chosen embedding surface, v(x, y), via its partial derivatives. This expression is

substituted into the covariance structure of the embedded emulator, for example,

the squared exponential covariance function in Equation (6.3.5). For a specified

embedding function and any x close to x0, Equation (6.3.37) induces the desired

covariance structure, Σ2D, in Equation (6.3.11). Note that for embeddings with zero

curvature, this correction is exact. In Section 6.3.3 Σ3D(x0) is incorporated within

non-stationary emulators to obtain a global emulator.
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Constructing Σ3D for general Σ2D

The framework of constructing emulators over a higher-dimensional embedded para-

meter space is derived above for the common scenario where Σ2D is of the form

specified in Equation (6.3.11); that is diagonal with eigenvalue θ2 of multiplicity

two. We now extend this to general choices of Σ2D via a transformation of the 2-

dimensional parameter space to which the above derivation is applied, thus obtaining

the corresponding Σ3D.

First, define a rotated t-basis in Equations (6.3.41) and (6.3.42), where the angle

φ ∈ [0, π) is chosen such that the transformed parameters are uncorrelated.

t1 = cos(φ)ex + sin(φ)ey (6.3.41)

t2 = − sin(φ)ex + cos(φ)ey (6.3.42)

The rotation from the standard basis to the t-basis is described in Equation (6.3.43),

where p = ( p1
p2 ) and x = ( xy ) denote the same parameter vector expressed in the t-

and standard basis respectively.p1

p2

 =

 cos(φ) sin(φ)

− sin(φ) cos(φ)


x
y

 (6.3.43)

Similarly, this rotational transformation is reversed using Equation (6.3.44).x
y

 =

cos(φ) − sin(φ)

sin(φ) cos(φ)


p1

p2

 (6.3.44)

Operating in the t-basis decorrelates the parameters, hence the corresponding

covariance matrix, denoted by Σt
2D, is of the following form:

Σt
2D =

θ2
1 0

0 θ2
2

 (6.3.45)

The form of Σt
2D is diagonal, but has eigenvalues θ2

1 and θ2
2, which are potentially

distinct. This is not yet in the required setup described above for which the derived

embedding correction applies.



6.3. Methodology for Bayesian Emulation of Computer Models with
Structured Partial Discontinuities 349

In order to obtain a Σ2D variance matrix of the form presented in Equation (6.3.11),

it is also necessary to perform a scaling to attain two equal eigenvalues. For this

purpose, define the scaled h-basis by multiplying the t-basis by their respective

eigenvalues in Equation (6.3.46).

h1 = θ1t1 and h2 = θ2t2 (6.3.46)

A vector, p, in the t-basis may then be expressed as q = ( q1
q2 ) in the h-basis as

follows: p1

p2

 = p1t1 + p2t2 = p1

θ1
h1 + p2

θ2
h2 =


p1
θ1

p2
θ2

 =

q1

q2

 (6.3.47)

The transformation between the t- and h-bases is described in Equation (6.3.48).

Combining with Equation (6.3.43) yields a transformation between the standard and

h-bases presented in Equation (6.3.49).q1

q2

 =

 1
θ1

0

0 1
θ2


p1

p2

 (6.3.48)

=

 1
θ1

0

0 1
θ2


 cos(φ) sin(φ)

− sin(φ) cos(φ)


x
y

 (6.3.49)

The complete transformation incorporates a rotation followed by a scaling of the

parameter space when starting from the standard basis. These facets are encapsu-

lated by the scaling and rotation matrices in 2-dimensions, denoted S2D and R2D

respectively, which are defined in Equation (6.3.50). Any transformation is then

uniquely defined by the appropriate choices of φ, θ1 and θ2.

S2D =

 1
θ1

0

0 1
θ2

 and R2D =

 cos(φ) sin(φ)

− sin(φ) cos(φ)

 (6.3.50)

Transforming to the h-basis has the desired effect of obtaining a parameterisation

where the variance matrix, denoted Σh
2D, is both diagonal and has a single eigenvalue

with multiplicity two. This is given in Equation (6.3.51), where Σh
2D has a repeated
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eigenvalue 1.

Σh
2D =

1 0

0 1

 (6.3.51)

In the h-basis we can embed in 3-dimensions and obtain the variance matrix, Σh
3D,

that induces Σh
2D = I2. This is achieved by applying the above methodology to

q using Equation (6.3.37), but using v(q1, q2) instead of v(x, y), and substituting

vx and vy for vq1 and vq2 respectively. Computation of these partial derivatives

will be addressed below in Equation (6.3.57). Also note that since Σh
2D = I2, this

corresponds to θ = 1.

Elevating from 2-dimensions to 3-dimensions is achieved via q 7→ u =
( q1
q2
z

)
, where

z = v(q1, q2), whilst in the corresponding standard basis representation, x 7→ v =( x
y
z

)
. Note that z = v(q1, q2) = v(x, y) signifying that the embedding surface remains

the same irrespective of which 2-dimensional basis is used to evaluate v(·). This

setup leads to the scaling and rotation transformation matrices for the embedded

space shown in Equation (6.3.52).

S3D =


1
θ1

0 0

0 1
θ2

0

0 0 1

 and R3D =


cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1

 (6.3.52)

Note that the upper-left 2× 2 sub-matrices correspond to S2D and R2D respectively,

as defined in Equation (6.3.50). The final row and column represents that there is

no change to the third dimension to respect that the embedding surface is the same

for both parameterisations.

Proposition 6.3.3. The variance matrix inverse, Σ−1
3D, for the embedding of the

parameter representation in the standard basis is:

Σ−1
3D = RT

3DS
T
3DΣh−1

3D S3DR3D (6.3.53)

where Σh
3D is the variance matrix in the h-basis representation obtained above.

Proof. Rotation and scaling transformations of the 2-dimensional parameter space
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must yield the same covariance structure for the embedded emulator. As in Equa-

tion (6.3.17), this constitutes a requirement on the Mahalanobis distance relating

Σ3D and Σh
3D for the embedding of the standard and h-basis representations. This is

presented in Equation (6.3.54).

uTΣh−1

3D u = vTΣ−1
3Dv (6.3.54)

Substituting u = S3DR3Dv into Equation (6.3.54) yields the requirement shown in

Equation (6.3.55).

⇐⇒ vTRT
3DS

T
3DΣh−1

3D S3DR3Dv = vTΣ−1
3Dv (6.3.55)

=⇒ Σ−1
3D = RT

3DS
T
3DΣh−1

3D S3DR3D (6.3.56)

This is the form presented in Equation (6.3.53).

The final step in evaluating Σh
3D via Equation (6.3.37) in the h-basis is to compute

vq1 and vq2 . This is presented in the following proposition.

Proposition 6.3.4. The partial derivatives vq1 = ∂v
∂q1

and vq2 = ∂v
∂q2

in the h-basis

representation are obtained via:vq1

vq2

 =

 θ1 cos(φ) θ1 sin(φ)

−θ2 sin(φ) θ2 cos(φ)


vx
vy

 (6.3.57)

Proof. The partial derivatives vq1 and vq2 are computed in Equations (6.3.58) and (6.3.59)

respectively, with an equivalent matrix representation in Equation (6.3.60).

vq1 = ∂v

∂q1
= ∂v(x, y)

∂x

∂x

∂q1
+ ∂v(x, y)

∂y

∂y

∂q1
(6.3.58)

vq2 = ∂v

∂q2
= ∂v(x, y)

∂x

∂x

∂q2
+ ∂v(x, y)

∂y

∂y

∂q2
(6.3.59)

⇐⇒

vq1

vq2

 =

 ∂x
∂q1

∂y
∂q1

∂x
∂q2

∂y
∂q2


vx
vy

 (6.3.60)

Define M to be to be a 2-dimensional Jacobian matrix which characterises the

transformation between the partial derivatives of v(·) with respect to the two basis
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representations:

M =

 ∂x
∂q1

∂y
∂q1

∂x
∂q2

∂y
∂q2

 (6.3.61)

The construction q = S2DR2Dx is inverted to obtain x = R−1
2DS

−1
2Dq and is used to

evaluate the partial derivatives and derive a general expression for M for transform-

ations composed of a scaling and rotation. This is given in Equation (6.3.62).

M =


(
∂x
∂q1

)T

(
∂x
∂q2

)T

 =
(
R−1

2DS
−1
2D

)T
= S−1

2D

(
R−1

2D

)T

=

θ1 0

0 θ2


cos(φ) − sin(φ)

sin(φ) cos(φ)


T

=

θ1 0

0 θ2


 cos(φ) sin(φ)

− sin(φ) cos(φ)



=

 θ1 cos(φ) θ1 sin(φ)

−θ2 sin(φ) θ2 cos(φ)

 (6.3.62)

Combining Equations (6.3.60) and (6.3.62) yields the formula for vq1 and vq2 in

Equation (6.3.57), and thus completes the computation of Σh
3D.

The above derivation, summarised in Propositions 6.3.3 and 6.3.4, shows how to

obtain Σ3D for a general choice of Σ2D by first implementing rotation and scaling

transformations to decorrelate the parameters and rescale to a common correlation

length, as in Equation (6.3.49). The previously described methodology yielding

Equation (6.3.37) is then directly applicable utilising Equation (6.3.57) to evaluate

the partial derivatives, before substituting into Equation (6.3.53) to construct the

general Σ3D.

6.3.3 Controlling for the Global Impact of the Embedding

Using Non-Stationary Emulation

In Section 6.3.2 we derived the general form of Σ3D(x0) (see Equation (6.3.37))

to correct for the impact of the embedding surface on the emulator’s covariance

structure. However, this is a local correction for x near to x0, as vx, vy and r2 are
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all evaluated at x0. This is insufficient for computing covariances between pairs of

input parameter settings and is thus extended to a global emulator by employing a

non-stationary covariance structure.

For generality, define Σ3D(x) to be an x dependent covariance matrix of the form

given in Equation (6.3.37) with x0 = x. This will vary over the parameter space

for general embeddings v(x, y), except for a linear embedding. The non-stationary

apparatus presented in [37, 136] are employed to define a valid covariance struc-

ture. These are defined via a non-stationary extension to valid isotropic covariance

functions in a form of averaging of the x dependent covariance matrix Σ(x),2 whilst

guaranteeing a valid covariance structure over the entire parameter space. In general,

let Σ: Rd → Rd×d such that Σ(x) is symmetric and positive definite for all x ∈ Rd.

First introduce the quadratic form Q(x,x′) in Equation (6.3.63).

Q(x,x′) = (x− x′)T
(

Σ(x) + Σ(x′)
2

)−1

(x− x′) , x,x′ ∈ Rd (6.3.63)

Let κS(·, ·) be a valid stationary isotropic covariance function corresponding to Σ(·).

The non-stationary analogue, denoted by κNS(·, ·), is then defined in Equation (6.3.64)

which is positive definite on Rd×d and thus establishes a valid covariance function.

κNS(x,x′) = 2 d
2 |Σ(x)| 14 |Σ(x′)| 14
|Σ(x) + Σ(x′)| 12

κS(x,x′) (6.3.64)

For example, the corresponding non-stationary squared exponential covariance func-

tion for x ∈ R3 is:

Cov[f(x), f(x′)] = σ2 2 3
2 |Σ(x)| 14 |Σ(x′)| 14
|Σ(x) + Σ(x′)| 12

exp {−Q(x,x′)} (6.3.65)

Within the TENSE methodology, this non-stationary structure is used to evaluate

the covariance on the embedding surface v(x, y) in the 3-dimensional space, hence

the quadratic form is defined in terms of the position vector on the embedding

2Σ(x) corresponds to Σ3D(x) in the TENSE approach derivation.
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surface, v(x), as follows:

Q(v(x),v(x′)) = (v(x)− v(x′))T
(

Σ3D(v(x)) + Σ3D(v(x′))
2

)−1

(v(x)− v(x′))

(6.3.66)

The corresponding non-stationary squared exponential covariance function over the

embedded 3-dimensional parameter space is described in Equation (6.3.67) where

Σ3D(v(x)) = Σ3D(x) is given by Equation (6.3.37), with x0 = x.

Cov[f(v(x)), f(v(x′))] = σ2 2 3
2 |Σ3D(v(x))| 14 |Σ3D(v(x′))| 14
|Σ3D(v(x)) + Σ3D(v(x′))| 12

exp {−Q(v(x),v(x′))}

(6.3.67)

This guarantees a valid covariance structure throughout both the 3-dimensional

embedded and the induced 2-dimensional parameter spaces.

For any pair of input points x and x′ that are close together relative to the

curvature of the embedding surface, the non-stationary covariance structure in Equa-

tion (6.3.67) yields a first order correction to the local warping effect of the chosen

embedding surface. It is possible that for pairs of input points with a greater separa-

tion that the non-linear effects may become noticeable. However, for modest choices

of correlation length, θ, these effects will typically be suppressed as the covariance

tends towards zero for separations greater than θ, thus in practical application this is

unlikely to be an issue. This complete framework using the non-stationary covariance

structure in Equation (6.3.67) is referred to as the Torn Embedding Non-Stationary

Emulator (TENSE) approach. It enables the flexible choice from a wide class of torn

embedding surfaces v(x, y) to handle finite collections of structured partial discon-

tinuities that ensure the emulator is decorrelated across them. Moreover, a TENSE

emulator approximately induces the desired stationary 2-dimensional covariance

structure across local regions that do not contain discontinuities, and guarantees a

valid covariance structure everywhere.

In Figures 6.4e and 6.4f the TENSE framework is applied to the second example

function in Equation (6.3.7) and discussed in Section 6.3.1. Comparing with the
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uncorrected version, as seen in Figures 6.4c and 6.4d respectively, it is evident that

the emulator adjusted standard deviation now exhibits no perceivable warping effects

and maintains the expected symmetry close to each design point (denoted by the

black points), whilst also displaying suitable behaviour across the discontinuities.

Furthermore, in locations such as the top-left corner where there are no discontinuit-

ies, it is observed that neighbouring design points are informative between them. In

contrast, along the partial discontinuities the influence of design points decreases as

the distance from the discontinuity endpoint increases. Similar behaviour is observed

for the emulator adjusted expectation in Figure 6.4e which exhibits no apparent dis-

tortion or warping, whilst the magnitude of discontinuity increases with the distance

to the right starting from the left-endpoint of each of the discontinuities.

The framework developed in Section 6.3 is demonstrated for a 2-dimensional

parameter space embedded in 3-dimensions. The methodology can be extended to

handle various scenarios. For example, if a non-stationary induced 2-dimensional

covariance structure is desired, this can be achieved using a similar strategy. Likewise,

the torn embedding strategy generalises to higher-dimensional parameter spaces

possessing more complex discontinuities by embedding a d-dimensional parameter

space in which discontinuities reside on (d − 1)-dimensional hypersurfaces, in to

(d+ 1)-dimensions. For more complex networks of discontinuities, this may require

embedding in a higher (d+m)-dimensional space to avoid unwanted effects across

neighbouring discontinuities. Note that as extra dimensions are used locally, this

does not create computational issues from working in high-dimensional spaces.

6.4 2-Dimensional Example with Non-Linear

Partial Discontinuities

Two examples of known scalar functions with 2-dimensional input spaces possessing

partial discontinuities are introduced in Equations (6.2.1) and (6.3.7), with results

illustrated in Figures 6.3 and 6.4 respectively, in order to motivate and explicate the
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development of the TENSE approach. In both instances the partial discontinuities

are straight lines that are parallel to the x-axis. The flexibility and generality of this

methodology is emphasised in this section for a substantially more complex function

possessing a collection of four non-linear partial discontinuities. These are described

using a region identifier function m(x) in Equation (6.4.1) via the intersection of

several circles centred on the points a, b, c, d, and the origin.

m(x) =



0 if |x| < 0.4

1 if |x| > 0.4 ∩ |x− a|2 < 1 ∩ |x− b|2 > 1

2 if |x| > 0.4 ∩ |x− b|2 < 1 ∩ |x− c|2 > 1

3 if |x| > 0.4 ∩ |x− c|2 < 1 ∩ |x− d|2 > 1

4 if |x| > 0.4 ∩ |x− d|2 < 1 ∩ |x− a|2 > 1

(6.4.1)

with a = (1, 0), b = (0, 1), c = (−1, 0), d = (0,−1)

The scalar function is defined in Equation (6.4.2) for x ∈ X = {(x, y) | −1 < x <

1, −1 < y < 1} and is illustrated in Figure 6.5a.

f(x, y) :=
0.5(sin(3x) + cos(3.5y)) if m(x) = 0

0.5(sin(3x) + cos(3.5y)) + (−1)m(x)+1(|x| − 0.4)2 if m(x) > 0
(6.4.2)

An embedding surface v(x, y) is specified in Equation (6.4.3) to ensure suitable

jumps over the locations of the discontinuities. This is shown in Figure 6.5b.

v(x, y) =


0 if m(x) = 0, 2 or 4

1
2(m(x)− 2)(|x| − 0.4)2 if m(x) = 1 or 3

(6.4.3)

General advice on specifying the form of the embedding surface and the suitability

of a piecewise quadratic function is provided in Section 7.2.

The TENSE emulation approach is implemented using the non-stationary squared

exponential covariance function in Equation (6.3.67), where Σ3D(x) is derived us-

ing Equation (6.3.37) for the specified embedding function with the desired Σ2D =

diag{θ, θ}. This is fitted based on a 16 point grid design to highlight the effects
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of the discontinuities, where D = {f(x(1)), . . . , f(x(16))}. The TENSE emulator

adjusted expectation, ED[f(x)], and standard deviation,
√

VarD[f(x)], are shown in

Figures 6.5c and 6.5d respectively. Both plots show an emulator that is continuous

everywhere except across the discontinuities where the magnitude of the discontinu-

ities increases with the distance from the interior-endpoint towards the corners of

X . Moreover, there is no perceivable warping effect that was previously observed

for a naïve embedding approach. A comparison of Figures 6.5a and 6.5c illustrates

that the TENSE approach has delivered an accurate emulator based on a small

(and non-optimal) design. It is therefore emphasised how the TENSE approach is

successfully able to encapsulate complex and non-linear forms of the discontinuities.

In contrast, an application of existing methodologies such as treed GPs [74] to f(x, y)

would perform poorly due to the inefficiencies in representing curved discontinuities

via rectangular regions. To achieve sufficient levels of accuracy would require a large

number of simulations rendering this approach computationally intractable, even for

functions of modest computation time.
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(a) True 2-dimensional function, f(x, y).
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(c) The TENSE emulator adjusted expecta-
tion, ED[f(x, y)].
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(d) The TENSE emulator adjusted standard
deviation,

√
VarD[f(x, y)].

Figure 6.5: Emulation of a 2D function f(x, y) with four curved
partial discontinuities presented in Equation (6.4.2)
and illustrated in Figure 6.5a. In each plot the par-
tial discontinuities are located along the curved black
lines. The embedding surface v(x, y) defined in Equa-
tion (6.4.3) is torn along the location of these discon-
tinuities, as seen in Figure 6.5b. The TENSE emu-
lator adjusted expectation, ED[f(x, y)], and standard
deviation,

√
VarD[f(x, y)], with the warping induced by

v(x, y) corrected using NS-GP are shown in Figures 6.5c
and 6.5d respectively, where the black points represent
the 16 point grid design.



Chapter 7

TNO OLYMPUS Well Placement

Optimisation

In this chapter we apply the novel Bayesian emulation of computer models possessing

general forms of structured discontinuities methodology developed and presented in

Chapter 6 and [174] to the TNO OLYMPUS Well Placement Optimisation Challenge

which is reformulated as a decision support problem. A general overview of the TNO

OLYMPUS Field Development Optimisation Challenge is provided in Section 3.1.1

for which the TNO OLYMPUS Well Placement Optimisation Challenge is introduced

in Section 6.1 as an illustration of a substantial commercial problem requiring such

emulation methodology. Further details of the challenge and the exact setup used

in this application are presented in Section 7.1. The choice of embedding surface is

described in Section 7.2 with the prior covariance structure discussed in Section 7.3.

Bayesian emulators that respect the structured partial discontinuities are then im-

plemented to sequentially choose the location of each well in a forwards induction

decision analysis. The results for wells 1 to 3 are presented in Sections 7.4 to 7.7,

which includes an application of iterative decision support (see Section 3.6) for well

1 and the formulation of sequential designs. This is summarised in a conclusion in

Section 7.8. This research is in collaboration with Prof Jonathan Carter, University

of Coventry, who has provided petroleum reservoir engineering insight and facilit-
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ated the evaluation of simulations for the OLYMPUS ensemble. The problem setup,

choice of embedding surface, prior covariance structure, and the results for the first

well are also presented in [174].

7.1 Introduction to the TNO OLYMPUS Well

Placement Optimisation Challenge

The TNO OLYMPUS Well Placement Optimisation Challenge [93] is formally in-

troduced in Section 6.1 as motivation for the development of Bayesian emulation

of computer models with structured discontinuities methodology. This is due to

the existence of five geological fault boundaries with potentially variable levels of

fluid transmissibility across them at different locations, as illustrated in Figures 6.1

and 6.2, where the endpoint locations are specified in Table 7.1.

Fault Index Interior Endpoint Location Boundary Endpoint Location
x y x y

1 94 73.5 118 73.5
2 52 85.5 118 85.5
3 64 99.5 118 99.5
4 87 103.5 118 103.5
5 25 123.5 118 123.5

Table 7.1: OLYMPUS geological fault boundary locations used in
the TNO OLYMPUS Well Placement Optimisation Chal-
lenge corresponding to the transformed map in Figure 6.2
(page 327). The faults are ordered in terms of increasing
y-coordinate from the bottom to top of the map. These
are expressed in terms of the endpoint coordinates where
the interior and boundary endpoints correspond to the
left and right endpoints respectively. Note that the 5th

geological fault is a sealing fault which divides the entire
oil containing region of the OLYMPUS oil field.

The aim is to design a well placement strategy starting from a green oil field

which includes the: location; trajectory; and type of each well, along with the number

of wells, drilling order of completion and oil platform location, for the fictitious TNO

OLYMPUS oil reservoir model which maximises the expected NPV over the 20
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year field lifetime (starting January 1, 2016) with discounting applied at 3 month

intervals, under the uncertainty captured by the N = 50 geological realisations

contained within the OLYMPUS ensemble. In order to compare different well

placement strategies, a reactive well control strategy is implemented. This consists

of maximum production and injection from all wells with shut-in of each producer

well connection occurring when the water-cut for that well is breached, and hence

it becomes uneconomical. The economic water cut is calculated given the fixed oil

production price, water production and injection costs listed in Table 7.2, and is

specified to be 88%. If the water as a proportion of total fluid production for a given

producer well exceeds 88%, then the well is deactivated and cannot resume operations.

Once all producer wells are shut-in, all water injection also stops. This constitutes a

complex optimisation problem with a large number of potential decisions represented

by parameters to the computer model.

Contribution Notation Value
Platform Investment – 5× 108 $
Drilling and Completion – 5000 · |∆Z|+ 1000 · |∆XY |$
Oil Price rop 45 $ per bbl
Water Produced Cost rwp 6 $ per bbl
Water Injected Cost rwi 2 $ per bbl
Discount Factor d 0.08

Table 7.2: Expected NPV fixed contribution costs within the TNO
OLYMPUSWell Placement Optimisation Challenge. For
the drilling and completion contribution to the expected
NPV, |∆Z| is the change in vertical drilling depth, whilst
|∆XY | is the lateral drilling length, both measured in
metres.

The NPV with decision parameters d as inputs is computed separately for each

OLYMPUS model via the formula in Equation (3.1.1), where Rj(d, ti) computes the

difference between the revenue accrued from oil production, and the expenditure

incurred due to: water production and injection; platform costs; and drilling costs,

within each discounting time interval, as defined in Equation (3.1.4). Full details

of the terms contained within each formula can be found in Section 3.1.1. Once

the NPV has been computed for each OLYMPUS model, the expected NPV is
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approximated by the ensemble mean NPV defined in Equation (3.1.2).

The TNO OLYMPUS Well Placement Optimisation Challenge is devised as a test

of ensemble optimisers for which we highlight numerous criticisms in Section 3.1.2.

As for the TNO OLYMPUS Well Control Optimisation Challenge application in

Chapter 4, we believe that this challenge should be reformulated as a decision

support problem in terms of a utility function which contains both the financial gains

and costs, as well as the decision maker’s risk preferences. For the purpose of this

application we treat the objective function as equal to the utility function representing

a position of risk neutrality. Note that TNO do not provide access to the underlying

stochastic OLYMPUS geology model, thus preventing more accurate validation of

any well placement strategies. For consistency with the notation introduced for

the general TENSE methodology in Chapter 6, a drilling time ordered vector of

well locations are denoted by x, where the 2-dimensional location of each well

i is such that (xi, yi) ∈ X = {(x, y) | 0 < x < 118, 0 < y < 181}, and the

utility function by f(x) = E[NPV](x) ≈ NPV(x). The geological fault boundaries

described in Table 7.1 induce discontinuities in f(x) where the first four represent

partial discontinuities with an endpoint situated in the interior of the location

parameter space, whilst the 5th fault boundary is a sealing fault that divides the

OLYMPUS oil field into two separate regions.

Our primary goal in this chapter is to demonstrate the application of the TENSE

methodology to the OLYMPUS model to help address the decision support problem.

We employ forwards induction for the decision problem which involves selecting

successive well locations. This approach is exercised because there exists a very

large number of decision parameters, hence it is not computationally feasible to

attempt the full backwards induction problem. Moreover, a benefit of the forwards

induction approach is that it permits experts to intervene and perturb the locations

of previously selected groups of wells in order to obtain a superior solution within

the iterative decision support framework. It is acknowledged that this approach is

not expected to identify the optimal solution, if this can be properly defined with
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respect to the uncertainties present, but will yield a good solution that is close by

due to the heavy discounting. Note that in the limit as the discount factor tends to

infinity, d → ∞, the forwards induction approach will yield the optimum solution.

The TENSE methodology is employed for the ensemble mean NPV as a function

of well location which possesses structured partial discontinuities induced by the

geological fault boundaries, with potentially variable levels of fluid transmissibility

across them at different locations. This is in order to achieve accurate and robust

emulation output which respects the structured partial discontinuities across the

geological fault boundaries, whilst providing insight into the optimal well locations.

The full decision support problem is left to future work, with the focus of this chapter

being to sequentially select the first three well locations and types.

7.2 Choice of the Embedding Surface

The first stage of the application of the TENSE framework to the TNO OLYMPUS

Well Placement Optimisation Challenge is to embed the 2-dimensional well location

parameter vector x = ( xy ) in 3-dimensions, as in Equation (6.3.1), necessitating

the specification of an embedding surface, v(x) = v(x, y). This is achieved by

tearing along the five partial discontinuities, shown in Figure 6.2 and described in

Table 7.1, and curving alternate regions higher and lower into the 3rd dimension using

quadratic forms, exploiting a similar strategy to that employed in Section 6.3.1 for

the second example function (see Equation (6.3.7) with embedding surface defined

in Equations (6.3.8) and (6.3.9)). There is the option is to use information on the

fault transmissibilities, obtained via expert elicitation or performing simulations, to

guide the specification of the magnitude of the tearing along each discontinuity.

There are several considerations when specifying an embedding surface which

are satisfied by the choice of a piecewise quadratic form for v(x, y), which may be

curved between the partial discontinuities and flat everywhere else. Firstly, constant

shifts are irrelevant as the non-stationary covariance function is expressed in terms
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of Q(v(x),v(x′)) (see Equation (6.3.66)) which is invariant to such transformations.

Secondly, v(x, y) must contain no linear terms since the derivative must exist at the

joining edge (this is the left edge for the OLYMPUS reservoir) of each curved region,

beyond which the embedding surface is flat. Any function which includes a linear

term will possess a non-zero derivative along this edge when approached along the

curved region, however, v(x, y) has zero derivative when approached along the flat

region. This is satisfied by the choice of a quadratic polynomial term. Moreover, this

ensures that v(x, y) has a locally linear derivative which is desirable for the TENSE

framework, where the non-stationary covariance function employed accounts for the

use of an embedding and is a good approximation up to first order. Functions beyond

polynomials may be considered, although these must also satisfy the conditions on

the derivative. For a general function, the Taylor expansion near to any point along

the joining (left) edge of a region will therefore have a quadratic leading order term,

since the constant and linear polynomial terms are zero for the above described

reasons. The use of a quadratic thus serves as an adequate approximation for a

general function for the purpose of embedding. In addition, for the desired stationary

squared exponential covariance function induced by the corresponding non-stationary

form (see Equation (6.3.67)), the covariance structure must rapidly tend towards

zero as the separation between parameter vectors increases. This is achieved using

a piecewise quadratic form of embedding surface.

The embedding surface is displayed in Figure 7.1, with the full definition in

Equation (7.2.1).
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v(x, y) =



(
x− 94

118− 94

)2
1{x>94}, for 0 ≤ y < 73.5

−1.2
(
x− b1(y)

118− b1(y)

)2

1{x>b1(y)}, for 73.5 ≤ y < 85.5

3
(
x− b2(y)

118− b2(y)

)2

1{x>b2(y)}, for 85.5 ≤ y < 99.5

0, for 99.5 ≤ y < 103.5

−2
(
x− 87

118− 87

)2
1{x>87}, for 103.5 ≤ y < 123.5

1, for 123.5 ≤ y ≤ 181

(7.2.1)

where

b1(y) = 94 + y − 73.5(
85.5−73.5

52−94

) for 73.5 ≤ y < 85.5

and

b2(y) = 52 + y − 85.5(
99.5−85.5

64−52

) for 85.5 ≤ y < 99.5

The fault locations are used to define six regions bordered by either two neighbouring

faults, or a fault and the y-parameter lower or upper limit, yielding a piecewise

function, as seen in Figure 7.1a. Between partial faults (lines 1 to 5), the function is

of a quadratic form and curves towards a pre-specified height on the right-boundary

with an alternating sign. The nature of the quadratic curvature depends on the

lengths of two neighbouring faults and handled by the linear interpolation of the

x-coordinate in b1(y) and b2(y). Consequently, v(x, y) is of a complex form and is a

twisted quadratic within these regions. To the left of the fault boundaries, v(x, y) is

flat with height 0. Note that the fourth region is defined to be of height 0 and hence

is also flat. Above the sealing fault, v(x, y) is fixed at a greater constant height of 1.

This is to ensure that it is sufficiently distant from the rest of the embedding surface

and thus induces the full discontinuity, as evidenced in Figure 7.1c.
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(a) 2D projection of the embedding surface.

(b) Embedding surface 3D view 1. (c) Embedding surface 3D view 2.

Figure 7.1: Plots of the embedding surface, v(x, y), defined in Equa-
tion (7.2.1), and used in the TENSE emulator for the
TNO OLYMPUS Well Placement Optimisation Chal-
lenge. The surface is torn along the location of each of
the geological fault boundaries, depicted by the black
lines in Figure 7.1a, where various regions of the sur-
face are curled up or down to induce the partial discon-
tinuities. Figure 7.1a shows a 2-dimensional projection
onto the location parameter space, whilst Figures 7.1b
and 7.1c provide a 3-dimensional visualisation.
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7.3 Prior Covariance Structure

In this section we validate the proposed form of embedding surface from Section 7.2

by demonstrating that the emulator exhibits discontinuous jumps across each of the

fault boundaries with minimal warping, as addressed in Sections 6.3.1 and 6.3.2, by

examining the induced prior covariance structure. This is illustrated along multiple

green vertical strips of points that cross (a subset of) the partial discontinuities

in Figure 7.2. The left column shows a zoomed in section of the v(x, y) surface

projection onto 2-dimensions with the discontinuities represented by horizontal black

lines (as in Figures 6.2 and 7.1a), whilst the right column provides a visualisation

of the corresponding induced correlation matrix along the green strip on projec-

tion back to the original 2-dimensional parameter space. This is computed as

Cov[f(x), f(x′)] ≡ Cov[f(v(x)), f(v(x′))], using a non-stationary version of the

squared exponential covariance function defined in Equations (6.3.66) and (6.3.67),

also utilising Equation (6.3.37), which is used through the analysis of the OLYMPUS

model. Scaling by a variance hyperparameter yields the covariance matrix.

First consider the induced correlation matrix along a vertical strip at x = 42 which

is to the left of all the partial fault boundaries, as shown in Figures 7.2a and 7.2b.

This crosses the sealing fault only at y = 123.5 dividing the parameter space into two

regions with the output for y > 123.5 and y < 123.5 being uncorrelated as desired.

Moreover, the squared exponential covariance function defines the correlation within

each region, whilst the partial faults are yet to affect the prior correlation matrix.

Figures 7.2c and 7.2d are defined as above for the line x = 64 which crosses

the longest partial discontinuity (the 2nd fault in Table 7.1) and is situated close

to the interior endpoint. In the induced correlation matrix plot this manifests as a

pinching at the fault location, y = 85.5, depicting a decrease in the correlation across

the fault, but not a full separation of the regions, as is observed for the top sealing

fault. This is enabled by the embedding framework and thus accurately portrays the

diminished correlation around the fault interior endpoint achieved via the increased

separation in the 3rd dimension.
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(c) v(x, y) with vertical line at x = 64.
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(e) v(x, y) with vertical line at x = 96.
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(g) v(x, y) with vertical line at x = 116.
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Figure 7.2: Prior correlation structure along vertical strips for the
TNO OLYMPUS Well Placement Optimisation Chal-
lenge. The left plots show the embedding surface,
v(x, y), whilst the right plots show the corresponding in-
duced emulator correlation matrix along the green line,
at locations x = 42, 64, 96 and 116 respectively.
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The plots in Figures 7.2e and 7.2f illustrates the correlation structure for x = 96

where the green line crosses all of the fault boundaries. Within the region bounded

above and below by the two longest partial faults (the 2nd and 3rd faults in Table 7.1)

there is negligible correlation with points in the neighbouring regions due to the long

distance from the fault interior endpoints, as illustrated by the square sub-matrix

between y = 85.5 and y = 99.5. For the two shortest partial faults (the 1st and 4th

faults in Table 7.1) there exists a suppressed correlation across the fault boundaries

due to the proximity to their interior endpoints, shown by a pinching, as described

for the vertical strip at x = 64.

In Figures 7.2g and 7.2h the case of x = 116 is examined where the correlation

matrix plot depicts six uncorrelated regions separated by the five faults. This

arises due to the distance from the interior endpoints and thus portrays the desired

behaviour. Moreover, the construction of the TENSE approach of embedding in

higher dimensions guarantees that all of the visualised correlation matrices are valid.

7.4 Well 1 Wave 1 Analysis

We proceed to perform a wave 1 analysis for the first well location within the

sequential drilling strategy using the embedding surface v(x, y) defined in Section 7.2

and constructing an emulator for the expected NPV utility function, as represented

by f(x), in the presence of the discontinuities caused by the geological faults. An

initial design is formulated in Section 7.4.1 with the results of emulation presented

in Section 7.4.2.

7.4.1 Well 1 Wave 1 Design for Simulations

A necessary first step is to determine the first well type prior to evaluating simulations

where reservoir engineering insight suggests this should be a producer. This is to

relieve the reservoir pressure and thus avoid an excessive build-up that would occur

for a first injector well without any producers present, whilst also ensuring an income
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at earlier times to mitigate the high discounting effects.

In Figure 6.2 it is observed that there are regions of the OLYMPUS field that

contain no oil, as shown in blue, constituting additional prior information which

should be exploited. It is known, without performing any model evaluations, that

any producer well placed outside of the oil containing region of the reservoir will

yield no oil production and hence contribute zero to the NPV. For the first well

analysis this implies that the NPV will be zero. For information along straight

boundaries in 2-dimensions, or more generally on hyperplanes in higher dimensions,

such known model behaviour can be incorporated analytically within the emulator

construction as described in [95, 173]. However, this methodology is inapplicable

for the OLYMPUS model as the boundary surrounding the oil containing part of

the reservoir is of a complex shape. Instead, a set of 36 manually chosen “ghost

points” just outside the oil containing region are added, with the NPV of each set to

f(x) = 0. The effect of this prior information is illustrated in Figures 7.3a and 7.4a

which displays the emulator prior expectation, E[f(x)], and standard deviation,√
Var[f(x)], respectively over X , and where the ghost point locations are shown

in red. It is evident that the ghost runs provide important information about the

location of the oil containing section of the reservoir and thus regulate the expectation

and uncertainty accordingly.

A wave 1 space filling design was generated respecting the following consider-

ations. The OLYMPUS model is computationally intensive, and when planning

the design of simulations, our collaborator informed us that there was uncertainty

on the availability of computational resources, implying potential early termina-

tion of the design. Design strategies such as those discussed in Section 2.3, for

example, Latin hypercube designs, are therefore unsuitable. Instead, a sequential

design strategy was employed with each point chosen to minimise the mean TENSE

emulator variance over X . This calculation utilises the TENSE emulator correl-

ation structure, thus it respects the discontinuities; specifically the uncorrelated

regions as highlighted in Figure 7.2. Due to the sequential design construction early
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(b) Wave 1 emulator expectation, ED1 [f(x)].
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(c) Wave 2 emulator expectation,
ED1∪D2 [f(x)].
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(d) Wave 2 regions of high expected NPV.

Figure 7.3: TENSE emulator adjusted expectation for the OLYM-
PUS expected NPV as a function of the location of well
1. Figure 7.3a shows the prior emulator expectation,
E[f(x)], trained only on the ghost runs (red points) situ-
ated in the none oil producing region. Figure 7.3b shows
the wave 1 TENSE emulator expectation, ED1 [f(x)],
which is trained on the 47 wave 1 design points (green),
and the ghost runs. Figures 7.3c and 7.3d show the wave
2 TENSE emulator expectation, ED1∪D2 [f(x)], trained
on an additional set of 48 wave 2 simulations (cyan),
with the latter highlighting the regions corresponding
to a high expected NPV.

termination would still yield an optimised collection of simulations. For practical

application X is substituted for a sufficiently dense grid of points S ⊂ X to aid

computational tractability. Each design point, x(i), i = 1, . . . , n, is selected using
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(c) Wave 2 emulator standard deviation,√
VarD1∪D2 [f(x)].

Figure 7.4: TENSE emulator adjusted standard deviation for the
OLYMPUS expected NPV as a function of the location
of well 1. Figure 7.4a shows the prior emulator standard
deviation,

√
Var[f(x)], trained only on the ghost runs

(red points). Figure 7.4b shows the wave 1 TENSE
emulator standard deviation,

√
VarD1 [f(x)], which is

trained on the 47 wave 1 design points (green), and the
ghost runs, whilst Figure 7.4c shows the wave 2 TENSE
emulator standard deviation,

√
VarD1∪D2 [f(x)], trained

on an additional set of 48 wave 2 simulations (cyan).

the criterion in Equation (7.4.1), where the adjusted variance is computed with

respect to D(i)
1 = {f(x(1)), . . . , f(x(i−1)), f(x)}, for i > 1, with D(1)

1 = {f(x)}. The

notation meanA(g(·)) represents the arithmetic sample mean of the function g(·)
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over the set A.

x(i) := arg min
x∈S

{
mean
x′∈S

(
Var

D
(i)
1

[f(v(x′))]
)}

(7.4.1)

Note that the emulator adjusted variance calculations using Equation (2.2.4) do not

require the simulation evaluations; hence the full design can be constructed prior to

launching any simulations.

The above sequential design strategy was applied to the first well within the

TNO OLYMPUS Well Placement Optimisation Challenge to construct a 41 point

design. An approximation to the full mean calculation uses S = {(x, y) | x ∈

[30, 118] ∩ Z, y ∈ [25, 158] ∩ Z} ⊂ X , the smallest rectangle of integer grid points

which encompass the oil containing region. For the TENSE emulator, a squared

exponential covariance function over the 2-dimensional location parameter space was

assumed, with a single fixed correlation length hyperparameter, θ = 12. This choice

is informed by the local correlation seen in the vertical oil content of the geological

realisations in Figure 6.2, whilst also noting that both coordinate parameters are on

the same scale. Moreover, it is unnecessary to stipulate a variance hyperparameter

at this stage as it factors out of the design calculation. In addition, a nearest

neighbour approximation to the emulator variance calculation was employed to

improve computational efficiency. This was especially relevant when selecting later

design points. An extra three pairs of points on either side of three of the major

faults were manually added to yield direct information regarding the discontinuities

in these regions. The resulting 47 point wave 1 design, denoted D1, is shown in

Figure 7.3b as the green points, and given in Table 7.3. It displays good space filling

properties, whilst adequately exploring each of the uncorrelated regions between the

faults. At each design point, x(i), i = 1, . . . , 47, all 50 of the geological realisations

were evaluated with vertical well trajectories, with the ensemble mean calculated to

obtain f(x(i)) and D′1 = {f(x(1)), . . . , f(x(47))}. This is augmented to include the

36 ghost runs with D1 = {D′1, 0 . . . , 0} ∈ R(47+36) for use in the emulator equations.

Note that the full TNO OLYMPUS Well Placement Optimisation Challenge also
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Simulation Index x y Simulation Index x y
Run 1 61 76 Run 25 50 67
Run 2 92 63 Run 26 91 117
Run 3 82 110 Run 27 64 127
Run 4 106 141 Run 28 109 49
Run 5 102 41 Run 29 95 77
Run 6 65 96 Run 30 94 50
Run 7 44 79 Run 31 103 32
Run 8 102 112 Run 32 74 68
Run 9 82 78 Run 33 97 103
Run 10 80 131 Run 34 93 129
Run 11 50 118 Run 35 114 132
Run 12 108 63 Run 36 70 83
Run 13 96 92 Run 37 71 104
Run 14 62 62 Run 38 42 116
Run 15 106 80 Run 39 114 80
Run 16 111 92 Run 40 111 101
Run 17 105 129 Run 41 37 84
Run 18 82 57 Run 42 89 85
Run 19 113 114 Run 43 89 86
Run 20 80 93 Run 44 104 99
Run 21 70 117 Run 45 104 100
Run 22 95 146 Run 46 99 123
Run 23 112 151 Run 47 99 124
Run 24 54 89 Run 48 85 78

Table 7.3: Locations of the 47 design points for the TNO OLYM-
PUS Well Placement Optimisation Challenge well 1,
wave 1 analysis. The additional run 48 was performed
after the wave 1 analysis for the purpose of investigating
well trajectories with the vertical well trajectory used in
formulating the wave 2 design.

includes well trajectory; an extra problem that is not considered in this thesis.

7.4.2 Well 1 Wave 1 Emulation Results

The TENSE framework presented in Section 6.3 is applied to the expected NPV

utility function employing the embedding surface v(x, y) (see Section 7.2) using a

constant mean function with prior µβ = meanx∈D1 (f(x)) = 9.753× 106. A squared

exponential covariance function is assumed, as described in Equations (6.3.66)

and (6.3.67) with the embedded input variance matrix defined in Equation (6.3.37).

The hyperparameters are estimated via maximum likelihood under a Gaussian as-
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sumption for D′1 resulting in σ = 6.080× 106 and θ = 12. A nugget term is included

with ρ = 0.00001.

A Bayes linear update is performed for the embedded emulator via Equations (2.2.3)

to (2.2.5) given D1 discussed in Section 7.4.1, yielding the adjusted expectation

ED1 [f(x)] shown in Figure 7.3b by the coloured contours. It is observed how the

emulator incorporates jumps in f(x) due to the discontinuities induced by the faults,

whist remaining smooth in all other parts of X , thus exhibiting the desired behaviour.

The OLYMPUS map coloured by the emulator adjusted standard deviation shown

in Figure 7.4b demonstrates similar desirable characteristics. Neither plot exhibits

any warping effect that was previously observed for the naïve embedding approach,

thus demonstrating the success of the correction in Sections 6.3.2 and 6.3.3. Im-

plementation of the TENSE framework has successfully achieved the first aim of

this analysis to provide a clear visualisation of the expected NPV surface across the

oil reservoir along with a quantification of the uncertainty, highlighting regions of

suspected high NPV for further investigation.

The second aim is to identify and examine regions corresponding to high expected

NPV for consideration by the relevant expert(s) or decision maker(s). This is

achieved following the iterative decision support procedure presented in Section 3.6

to identify candidate regions of the parameter space instead of a single maximum

[135]. A modified form of the decision support implausibility measure defined in

Equation (7.4.2) is employed, where ED[f(x)] and VarD[f(x)] are the (TENSE)

emulator adjusted expectation and variance, f+ = maxx∈D f(x), the current highest

simulated expected NPV, σ2
MD is structural model discrepancy variance (for further

details, see Section 2.7.4), and δ is a tolerance parameter enabling the user to

specify the exploration distance below the maximum. The tolerance parameter

represents the main difference versus the decision support implausibility measure in

Equation (3.6.3).

I ′DS(x) = |(f
+ − δ)− ED[f(x)]|√
VarD[f(x)] + σ2

MD

· 1{ED[f(x)]<f+−δ} (7.4.2)
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As in Section 3.6.3, the modified implausibility measure, I ′DS(x), is used to exclude

regions of X that are highly unlikely to yield values of f(x) greater than f+ − δ, by

imposing the following constraint:

I ′DS(x) ≤ c (7.4.3)

The threshold is typically chosen to be c = 3 based on Pukelsheim’s 3-sigma rule for

arbitrary continuous unimodal distributions [142]. A new non-implausible region,

X1, of well locations that will potentially yield a high expected NPV is defined in

Equation (7.4.4) for further exploration.

X1 ≡ {x ∈ X | ED[f(x)] + c
√

VarD[f(x)] + σ2
MD ≥ f+ − δ} (7.4.4)

Figures 7.5a and 7.5b show the credible interval upper bound:

E[f(x)] + c
√

Var[f(x)] for the prior; and ED1 [f(x)] + c
√

VarD1 [f(x)] after wave 1

where the emulator has been adjusted by D1, respectively, for c = 2. The latter

is used in the first wave of iterative decision support compared to f+ − δ with the

brightest yellow contours identified as well 1 locations most likely to yield a high

expected NPV. The wave 1 non-implausible region, X1, is defined using the standard

choice of c = 3, along with f+ − δ ≡ 0.95 · f+ = 2.0× 107, representing a 5%

reduction from the maximum simulated expected NPV. This constitutes a volume

of 24.14% of the oil containing region, or equivalently, 7.97% of the full OLYMPUS

location parameter space, and defines the search region for wave 2. Note that a 48th

simulation was performed at (x, y) = (85, 78) for the purpose of investigating well

trajectory (not addressed in this thesis). The wave 1 design is augmented to include

this 48th simulation with vertical well trajectory for the wave 2 analysis.

During the wave 1 design phase in Section 7.4.1, a collection of 36 ghost runs were

introduced to pin down the boundary of the oil containing region of the OLYMPUS

reservoir. These are of vital importance for updating the emulator, as seen in

Figure 7.6 where only the 47 point wave 1 design is used with simulation output

in D′1. Comparing Figures 7.3b and 7.6a, it is evident that omission of the ghost
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(d) Emulator expectation for the NPV stand-
ard deviation over the OLYMPUS en-
semble.

Figure 7.5: TENSE emulator credible interval (CI) upper bound
for the OLYMPUS expected NPV as a function of the
location of well 1. Figure 7.5a shows the prior emulator
upper CI, E[f(x)] + 2

√
Var[f(x)], trained only on the

ghost runs (red points). Figure 7.5b shows the wave 1
TENSE emulator upper CI, ED1 [f(x)]+2

√
VarD1 [f(x)],

which is trained on the 47 wave 1 design points (green),
and the ghost runs. Figure 7.5c show the wave 2 TENSE
emulator upper CI, ED1∪D2 [f(x)] + 2

√
VarD1∪D2 [f(x)],

trained on an additional set of 48 wave 2 simulations
(cyan). The TENSE emulator expectation applied to
the NPV standard deviation over the 50 OLYMPUS
ensemble geological realisations, depicted in Figure 7.5d.
This displays lower variation in most of the regions of
interest highlighted by the contours in Figure 7.3d.
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runs yields an excessively high emulator adjusted expectation close to the edge of

the oil containing region where the mean oil concentration is much lower, as seen in

Figure 6.2. This is reflected by the larger emulator adjusted standard deviation in

Figure 7.6b near the edge, in contrast with Figure 7.4b where the uncertainty tends

towards zero on the boundary.
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(a) Wave 1 emulator expectation, ED′1 [f(x)].
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(b) Wave 1 emulator standard deviation,√
VarD′1 [f(x)].

Figure 7.6: TENSE emulator adjusted expectation (left) and stand-
ard deviation (right) trained without the ghost runs for
the OLYMPUS expected NPV as a function of the loc-
ation of well 1 and corresponds to an emulator update
with respect to the simulated expected NPV in D′1 only.
These should be compared to Figures 7.3b and 7.4b
respectively. Note that the ghost runs are situated in
none oil producing regions and so provide zero contri-
bution to the NPV, hence they can be evaluated at no
extra computational cost.

7.5 Well 1 Wave 2 Analysis

Following the iterative decision support procedure, a second wave analysis is per-

formed for the location of the first well in the TNO OLYMPUS Well Placement

Optimisation Challenge in this section. Firstly, a wave 2 design over the wave 1

non-implausible region is formulated in Section 7.5.1. This is used in conjunction

with the wave 1 simulations to update a TENSE emulator for the expected NPV
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utility function in Section 7.5.2, whilst risk preference considerations are addressed

via emulation of the quantiles from the OLYMPUS ensemble in Section 7.5.3.

7.5.1 Well 1 Wave 2 Design for Simulations

In this section a second wave of space-filling simulations is designed over the X1

region identified in Section 7.4.2. There remains uncertainty regarding the available

computing resources implying potential early termination of the design, as was the

case in wave 1. A sequential design procedure was thus employed to minimise the

mean TENSE emulator variance over X1 through an adaptation of the criterion in

Equation (7.4.1) to amalgamate any previously selected wave 2 design points with

the entire wave 1 design with the dense sample of points S ⊂ X1. In addition, a split

strategy is exercised for the specification of c in defining X1 via Equation (7.4.4),

before augmenting to include four points of interest.

First, a 36 point sequential design is formulated over X1,A ≡ X1 defined by

c = 3 and f+ − δ ≡ 0.95 · f+ = 2.0× 107, and corresponds to the non-implausible

region discussed in Section 7.4.2. This is with the aim of further shrinking the

non-implausible region as X1 contains both locations which are believed to yield

a high expected NPV, as well as parameter settings for which the uncertainty is

sufficiently high that it is not possible to conclude either way after wave 1. These

are denoted in Table 7.4 by the first 36 runs.

A further 7 point sequential design is generated, given the combined wave 1 and

the above 36 point designs, over the region X1,B ≡ {x | ED1 [f(x)] ≥ f+ − δ =

2.0× 107}, corresponding to c = 0. Within X1,B the TENSE emulator adjusted

expectation exceeds the current highest expected NPV, minus a tolerance, with the

purpose being to better assess the maximum possible NPV and the corresponding

well locations. Note that X1,B ⊂ X1,A, therefore designs are formulated over X1,A and

then X1,B. For iterative decision support a greater emphasis is placed on contracting

X1, hence a larger sample is drawn from X1,A. A 7 point design over X1,B represents

a sufficient number of additional runs given the five fault boundaries which divide
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the location space into 6 regions, as in v(x, y), with the aim of placing at least one

point within each region. Without the discontinuities, a smaller design of 2 or 3

points would suffice. These correspond to runs 37 to 43 in Table 7.4.

After sampling from X1,A and X1,B, the design is augmented with an extra four

points. Firstly, runs 44 and 45 in Table 7.4 are selected as x which maximise

ED1 [f(x)] within the two main targeted regions of the OLYMPUS map after wave 1

situated between the 2nd & 3rd, and 4th & 5th faults respectively. In addition, runs

46 and 47 are added for the purpose of obtaining more detailed information on the

right and left boundary of X1 between the 2nd and 3rd faults. Note that run 46 is

also situated near to the x-coordinate upper limit. It is necessary to manually add

these final two points as the design criterion initially focuses on parameter settings

located in central regions of the space as these have a greater impact on minimising

the mean emulator adjusted variance.

These are coalesced to form the full 47 point wave 2 design in Table 7.4 which

is depicted by the cyan points in Figure 7.3c. Evaluation of this design using the

OLYMPUS model yields a second output vector, D2, with the TENSE emulator

adjustment now performed with respect to D1 ∪D2.

7.5.2 Well 1 Wave 2 Emulation Results

The expected NPV utility function is emulated at wave 2 using the TENSE framework

employing v(x, y), as in Section 7.2, and a constant mean function with prior µβ =

meanx∈D2 (f(x)) = 1.795× 107; note that this is much greater than in wave 1 where

µβ = 9.753× 106. A squared exponential covariance function is assumed where

the hyperparameters are estimated via maximum likelihood estimation under a

Gaussian assumption for D2 resulting in σ = 6.197× 106 and θ = 12. A nugget term

is included with ρ = 0.0001.

The Bayes linear emulator adjusted expectation, ED1∪D2 [f(x)], for the expected

NPV if a producer well was located at x is shown in Figure 7.3c by the coloured

contours, providing a detailed representation of the areas of high expected NPV in



7.5. Well 1 Wave 2 Analysis 381

Simulation Index x y Simulation Index x y
Run 1 104 70 Run 25 98 88
Run 2 113 107 Run 26 102 63
Run 3 116 93 Run 27 104 119
Run 4 108 119 Run 28 112 121
Run 5 87 99 Run 29 91 73
Run 6 104 90 Run 30 116 87
Run 7 116 118 Run 31 113 75
Run 8 102 56 Run 32 116 101
Run 9 86 71 Run 33 101 106
Run 10 106 108 Run 34 109 88
Run 11 88 103 Run 35 109 112
Run 12 99 81 Run 36 106 84
Run 13 110 71 Run 37 84 83
Run 14 98 69 Run 38 92 82
Run 15 117 109 Run 39 93 88
Run 16 96 109 Run 40 103 94
Run 17 91 95 Run 41 110 107
Run 18 78 81 Run 42 89 79
Run 19 106 75 Run 43 106 114
Run 20 110 97 Run 44 101 99
Run 21 79 73 Run 45 107 102
Run 22 81 123 Run 46 117 98
Run 23 98 96 Run 47 86 89
Run 24 116 124

Table 7.4: Locations of the 47 wave 2 design points used in the TNO
OLYMPUS Well Placement Optimisation Challenge well
1, wave 2 analysis. The first 36 points are in X1,A, with
points 37 to 43 in X1,B. This is augmented to include
runs 44 and 45 which maximise ED1 [f(x)] within the two
main targeted regions after wave 1 between the 2nd &
3rd, and 4th & 5th faults respectively. In addition, runs
46 and 47 are added for the purpose of obtaining more
detailed information on the right and left boundary of
X1 between the 2nd and 3rd faults. Note that run 46 is
also situated near to the x-coordinate upper limit. Fault
indices are given in Table 7.1.

X , whilst naturally incorporating the fault discontinuities. Moreover, Figure 7.4c

depicts
√

VarD1∪D2 [f(x)] which emphasises that the emulator uncertainty is low

throughout X1. Examination of the credible interval upper bound after the wave

2 runs, ED1∪D2 [f(x)] + 2
√

VarD1∪D2 [f(x)], in Figure 7.5c shows that there is little

additional information to be obtained about this region by performing further sim-
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ulations. The final region of candidate well locations is highlighted in Figure 7.3d

where the solid contours corresponding to thresholds of f+ − δ = 2.2× 107 and

2.3× 107 respectively, where f+ = maxd∈D1∪D2 f(x).

Information gained from the emulator, including the quantile emulators discussed

in Section 7.5.3 and illustrated in Figure 7.8 (page 385), is combined with reservoir

engineering insight to select the optimal location for the first producer well. This

acknowledges a tendency in the petroleum industry for risk averse decisions. Four

candidate locations are proposed based on the emulator and explored using the

tNavigator software [38] to highlight the advantages and disadvantages associated

with each location. It was determined that three of the locations were unsuitable

due to porosity, as well as fault location and transmissibility considerations. For

example, high porosity may result in nearby water being drawn by the producer

well at early times rendering them uneconomical. High fault transmissibility may

permit fluids to pass through the fault with the potential for water on the opposite

side to then be extracted by the producer well. In contrast, intransmissible faults

can limit the potential oil reserves being accessed by a producer well. To confirm

this insight, an additional simulation over the OLYMPUS ensemble was performed

at each proposed producer well location with the results being comparable to the

current f+. The selected location is depicted by the yellow square in Figure 7.9

(page 387) with (x, y) = (111, 109).

Full optimisation of the OLYMPUS model expected NPV with respect to multiple

well configurations is not the focus of this work, although the following observations

are made. As discussed in Section 3.1.2 and in [135], the notion of finding a single

optimum decision (in this case well placement) is somewhat misleading due to the

model imperfection. Instead, when providing decision support it is more informative

to provide classes of good decisions, such as shown in Figure 7.5c, for further consid-

eration by the decision maker who may, as is common in the oil industry, have a set

of additional preferences unknown to the reservoir analyst. Examples of these may

include unknown risk preferences, political, financial or environmental considerations,
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or other corporate logistical issues. This is demonstrated above by working with our

collaborator. Furthermore, anticipation of these issues by the analyst can partially

inform the choice of the δ tolerance parameter used in the definition of X1.

7.5.3 Well 1 Wave 2 Quantile Emulation Results

Risk preferences form an important consideration in any decision analysis and are

addressed for the well 1 location. Figure 7.7 displays boxplots of the NPV over

the 50 OLYMPUS geological realisations for the 95 simulations performed for the

analysis. Ordering by the ensemble mean NPV in Figure 7.7b, it is evident that

simulations with higher ensemble mean NPV exhibit a smaller spread over the 50

realisations compared to those with intermediate ensemble mean NPVs. This is

further emphasised in Figure 7.5d which depicts the TENSE emulator adjusted

expectation for the standard deviation of the NPV over the OLYMPUS ensemble,

instead of the ensemble mean NPV, where the smallest uncertainty occurs for the

regions of interest in Figure 7.3d.

The TENSE framework is also applied to quantile emulation for the NPV over

the OLYMPUS ensemble in order to investigate differing risk levels. Results are

shown for the 10%, 25%, 50%, 75% and 90% quantiles in Figure 7.8 where updates

are performed with respect to the wave 1 and 2 simulated quantiles. In all instances,

the region identified in Section 7.5.2 also yields the highest emulator expectation for

the respective NPV quantile, thus validating the conclusions for the well 1 location,

with the choice being perceived to be robust to geological uncertainty, assuming that

the OLYMPUS ensemble is representative.

7.6 Well 2 Analysis

The next stage of the analysis is to select the second well location, conditional on the

first producer well location. In Section 7.6.1 discussion of the well type is presented

before constructing a pair of well 2 designs. These are used in Section 7.6.2 within
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(a) Boxplot of the NPV in order of simulation evaluations.
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Figure 7.7: Boxplots of the NPV over the 50 OLYMPUS geological
realisations for the 95 well 1, waves 1 and 2 simulations.
Note that simulations with higher ensemble mean NPV
exhibit smaller spread over the 50 realisations compared
to simulations with intermediate ensemble mean NPV.
This is in accordance with Figure 7.5d.
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(c) TENSE expectation for 50% NPV
quantile.
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(d) TENSE expectation for 75% NPV
quantile.
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Figure 7.8: Quantile emulation using the TENSE framework ap-
plied to the NPV over the 50 OLYMPUS geological
realisations for well 1 location.
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the TENSE framework to first determine the well type and then subsequently fix its

location.

7.6.1 Well 2 Design for Simulations

Unlike for the first well where reservoir engineering knowledge unanimously favoured

a producer, the choice of second well type is much more ambiguous with decisions

dependent on the exact composition of the oil reservoir; information that is vastly

uncertain due to the black-box nature of the model. It is therefore decided that two

parallel analyses should be performed positioning both a producer and an injector

well. In both cases, the same design as for the well 1, wave 1 analysis shown in

Table 7.3 is used, although the ghost runs are included and excluded for the producer

and injector respectively. This again enforces the prior constraint that a producer

well should not be drilled into non-oil containing regions of the reservoir. In contrast,

injector wells can be drilled anywhere in the field, including in regions containing

only water, since they aim to sweep oil towards the producer wells. The re-use of

the well 1, wave 1 design is justified for both cases because it was formulated as a

sequentially optimal design with respect to minimising the mean emulator adjusted

variance criterion over X without consideration for the oil-water boundary, that is

omitting the ghost well locations. Simulations are performed over the full OLYMPUS

ensemble, but also incorporating the first producer well.

7.6.2 Well 2 Emulation Results

Continuing the parallel analyses, the TENSE framework is applied to both the

expected NPV as a function of the location of a producer and an injector well, with

the formulation and prior specification of each as described for well 1 in Sections 7.4.2

and 7.5.2. Plots for a producer and an injector are shown in Figures 7.9a and 7.9b

respectively, with contours coloured by the emulator adjusted expectation. Both

respect the discontinuities induced by the faults. A red square and blue triangle are

used respectively to denote the candidate well locations that maximise the expected
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(a) Emulator adjusted expectation for well 2
as a producer.
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as an injector.

Figure 7.9: TENSE emulator adjusted expectation for the OLYM-
PUS expected NPV as a function of the location of well
2 providing a comparison between a producer (left) or
an injector (right), given the confirmed location of the
first producer well depicted by a yellow square. The can-
didate location for well 2 which maximises the emulator
expectation is shown by the red square for a producer
in 7.9a, and by a blue triangle in Figure 7.9b. Note the
much higher NPVs are achieved by selecting an injector
compared to a second producer well.

NPV. It is immediately evident that the choice of a second producer well results

in substantially smaller emulator adjusted expectations than for an injector well,

therefore determining that the second well is to be an injector positioned at the blue

triangle. This is located at (x, y) = (73, 110). Note that this does not violate reservoir

engineering principles, whilst its location is consistent with expert insight. It is a

suitable distance from the first producer well such that water flooding does not occur

that would render the producer well uneconomical; the cause of the low purple region

around the first producer well in Figure 7.9b, whilst also inducing a sufficiently high

pressure gradient to sweep oil towards the producer well resulting in substantial oil

production at earlier times, thus mitigating the high discounting effect, as depicted by

the bright yellow region in the plot. The combination of drilling a producer followed

by an injector well yields a substantial increase in the expected NPV, approximately

9.8× 107 $, versus a single producer only, approximately 2.3× 107 $.
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7.7 Well 3 Analysis

This section presents an analysis for the third well location, given the first two

well positions shown in Figure 7.9b. In Section 7.7.1 the well type and design are

discussed, with the results of emulation presented in Section 7.7.2.

7.7.1 Well 3 Design for Simulations

Well 3 is suggested to be a second producer well. This is based on insight from

oil reservoir engineers concerning pressure constraints having already positioned a

producer and an injector. The design given in Table 7.3 is again used, plus the

ghost wells, and is justified for the reasons outlined in Section 7.6.1. Simulations

are evaluated for the 50 OLYMPUS geological realisations and include the two

previously positioned wells. Note that if domain expert knowledge did not provide

adequate certainty of the well type choice, a parallel analysis as in Section 7.6 could

be performed, assuming sufficient computational resource availability. A parallel

analysis is unnecessary here.

7.7.2 Well 3 Emulation Results

The TENSE framework is applied to the expected NPV as a function of the third

well location, a producer, given the locations of the first two wells. The emulator

formulation and prior specification is derived following the same approach as for the

first well in Sections 7.4.2 and 7.5.2. Figure 7.10 shows the OLYMPUS map with

contours coloured by the emulator adjusted expectation. The yellow square and cyan

triangle depict the locations of the first producer and injector wells respectively, whilst

the red square denotes the candidate second producer well location corresponding to x

which maximises the expected NPV. This is located at (x, y) = (85, 79), with the field

development strategy for the first three wells described in Table 7.5. A comparison

with Figures 7.3c and 7.3d for the well 1, wave 2 TENSE adjusted expectation

illustrates broadly similar shaped contours, except for in the region between the
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Figure 7.10: TENSE emulator adjusted expectation for the OLYM-
PUS expected NPV as a function of the location of
well 3, a second producer well, given the confirmed
locations of a first producer (yellow square) and in-
jector wells (cyan triangle). The candidate location
for well 3 as a producer which maximises the emulator
expectation is shown by the red square.

faults 4 and 5 close to the already placed producer well where it would not be rational

to position a second producer in adherence with oil reservoir engineering principles.

Moreover, the relative position to the injector well is consistent maintaining a suitable

distance to avoid water flooding, but with the potential for the water injection to

sweep oil towards the well depending on the fault transmissibility. The result of

adding a third well to the field development strategy is a further substantial increase

in the expected NPV to approximately 1.6× 108 $, compared with 9.8× 107 $ for

two wells.
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Drilling Order Well Type x y Expected NPV
Well 1 Producer 111 109 2.3× 107 $
Well 2 Injector 73 110 9.8× 107 $
Well 3 Producer 85 79 1.6× 108 $

Table 7.5: TNO OLYMPUS Well Placement Optimisation Chal-
lenge field development strategy for the first three wells
including drilling order, well type and placement, as well
as the expected NPV after each well is positioned.

7.8 Well Placement Optimisation Conclusion

In this chapter we have presented an analysis of the TNO OLYMPUS Well Placement

Optimisation Challenge demonstrating the novel TENSE methodology developed in

Chapter 6 for the Bayesian emulation of computer models possessing general forms of

structured discontinuities, motivated by this problem. Subsequently, this is used to

provide decision support for the well placement strategy. First, an embedding surface

is formulated encompassing the discontinuities induced by the partial geological fault

boundaries, before discussing the resultant prior covariance structure. The TENSE

framework is then applied to the expected NPV for the complex and computationally

expensive OLYMPUS ensemble to sequentially select the location of the first three

wells. This includes an application of the iterative decision support procedure

developed in Section 3.6 to identify regions of good candidate well locations working

with an experienced oil reservoir engineer to ultimately select the first well position.

Moreover, the TENSE framework is employed to select the well 2 type. The TENSE

methodology and derivation presented in Chapter 6, along with this application to

the TNO OLYMPUS Well Placement Optimisation Challenge, is presented in [174]

which is currently in submission to a journal.

A key part of the TENSE framework is the formulation of an embedding surface

which captures the location, shape and magnitude of the discontinuities for the

function of interest. In the TNO OLYMPUS Well Placement Optimisation Challenge

these are induced by the geological fault boundaries. These possess a complex

form with an endpoint that lies within the interior of the well location parameter
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space; thus they cannot be handled by existing emulation methodology for computer

models with discontinuities. The faults are of a known location and shape and

are incorporated by the piecewise definition of the embedding surface, v(x, y), for

which the choice of a quadratic form is justified. A priori the magnitude of the

discontinuities is approximated by the choice of the region boundary endpoint height

combined with the quadratic structure of v(x, y). This is subsequently validated

by positioning pairs of simulations either side of several of the faults. The prior

covariance structure is illustrated along vertical strips which emphasises how the

choice of v(x, y) within the TENSE framework is successfully able to handle the

partial discontinuities.

For the well 1, wave 1 analysis a sequential design strategy was employed that

successfully guards against potential early design termination resulting from uncer-

tainty of the available computational resources to always deliver an optimal design.

In addition, a collection of ghost well locations were chosen in the non-oil containing

region of the OLYMPUS reservoir to exploit the prior knowledge that if a producer

well is situated in a region of no oil, then its contribution to the expected NPV utility

function will be zero. For this application it was also necessary to augment the design

with an additional six points arranged in three pairs on either side of the faults. This

was for the purpose of learning about the magnitude of the discontinuities.

Decision support is then performed sequentially for the first three well locations

employing the TENSE approach. For each well and wave of the analysis, the fitted

emulator is shown to respect the partial discontinuities whilst being continuous every-

where else, thus accurately and efficiently capturing the behaviour of the expected

NPV utility function given only a limited collection of simulations. The iterative

decision support procedure is employed for the well 1 location where extra simula-

tions in the wave 1 non-implausible region, also designed via a sequential strategy,

yields further emulator refinement with negligible uncertainty within multiple regions

separated by partial discontinuities. Working with our collaborator, an expert in

the petroleum industry, the information gained from the emulators for the expected
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NPV and the quantiles is combined with insight and risk preferences to suggest a

first producer well location. This provides a successful demonstration of how the

iterative decision support framework incorporating (TENSE) emulators may be used

in practice to guide real-world decision making processes.

Subsequent analysis utilising the TENSE methodology is performed for the second

well location and is shown to be capable of efficiently assessing the optimal well type.

This is achieved through a parallel analysis of optimally positioning a producer

and an injector well, given the first producer well location, with results emphatically

indicating that the second well should be an injector. The effectiveness of the TENSE

approach is further corroborated in the well 3 analysis yielding a well configuration

that is consistent with the prior beliefs of an experienced oil reservoir engineer. The

field development strategy for the first three wells is summarised in Table 7.5.

The next stage of this analysis is to select the locations of subsequent wells,

although the application presented in this chapter serves as a demonstration of the

procedure, as well as the effectiveness of the TENSE framework for computer models

with a finite collection of structured partial discontinuities. In addition, the full well

placement strategy incorporates well trajectories; a problem not yet addressed with

all wells using a vertical trajectory. An initial approach is to use emulators with a

hemispherical parameter space describing the well endpoints. Other avenues to this

research include consideration of the interaction between multiple wells. For example,

after sequentially positioning wells there is the option to return and perturb the

locations of all wells in order to further increase the expected NPV utility function.

Alternatively, a more complex strategy that is anticipated to yield greater returns is

to simultaneously position groups of k wells by extending the TENSE methodology

for embedding a 2k-dimensional location parameter space in 3k-dimensions.
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Conclusion

The aim of this thesis was to develop Bayesian emulation, uncertainty quantification

and robust decision support methodology for use with complex computer models

in order to provide guidance for real world decision making problems. The major

contributions from this research included:

1. Establishment of a hierarchical Bayesian emulation framework that exploits

known constrained simulator behaviour.

2. Advancement of the uncertainty quantification methodology for performing

decision support, specifically where there is a separation between the analysts

and decision makers.

3. Formulation of an iterative decision support procedure.

4. Development of Bayesian emulators for computer models with structured par-

tial discontinuities.

This was motivated by and demonstrated on the TNO OLYMPUS Field Development

Optimisation Challenge from the petroleum industry, although the methodology is

generalisable, and easily transferred and adapted to many other applications.

In Chapter 2 we reviewed existing methodology for the Bayesian uncertainty

analysis of computer models with a focus on performing inferences about the cor-

responding real world physical systems. We began by comparing the full Bayesian

and Bayes linear approaches to such analyses; our preference being the Bayes linear
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framework for reasons of robustness and computational tractability. An extensive

discussion was presented of Bayesian emulators as a stochastic belief specification

for deterministic computer models. This included a comprehensive derivation of the

Bayes linear update formulae for an emulator which were compared with the com-

monly used Gaussian process emulation methodology, whilst examining techniques

for the prior specification of the mean function and residual process hyperparameters.

Multilevel and multivariate emulators were also introduced, although not explicitly

used in this thesis. An uncertainty quantification is of critical importance for linking

the computer model to reality and thus making inferences about the real world

system through the incorporation of terms such as structural model discrepancy. Fi-

nally, we introduced the history matching process as a powerful tool for identifying

a set of model parameters that yield an acceptable match between the simulator

output and observed data with respect to an uncertainty analysis.

The principal aim of this thesis is to develop methodology for decision support un-

der uncertainty which is discussed in Chapter 3. We introduce the TNO OLYMPUS

Field Development Optimisation Challenge as motivation and application for the

subsequently developed methodology. A critique highlights how this is a synthetic

challenge which inadequately represents the real world problem of devising optimal

field development strategies; it is designed to stimulate research of ensemble optim-

isers, and instead we reformulate as a decision support problem for the expected

NPV utility function. Notably, the particular stipulations of the TNO OLYMPUS

Challenge ruled out using a sequential decision theory approach.

Ensembles of models are frequently used to portray forms of uncertainty, for

example, geological uncertainty, however, their use greatly increases the computing

times of already expensive analyses. We devised an Efficient Geological Ensemble

Subsampling (EGES) technique to identify a representative subset of models that

provides an effective mechanism for predicting the ensemble mean of quantities of

interest, although it is acknowledged that there is room for further development.

Emulation plays a vital role in such decision analyses with a hierarchical Bayesian
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emulation framework constructed for the expected NPV utility function. Of partic-

ular importance is the decomposition into NPV constituents by model for which an

emulator structure is conceived that exploits this known constrained behaviour lead-

ing to superior accuracy. Another benefit is the ability to step inside the hierarchy

and investigate the behaviour of individual aspects of the utility function providing

insight into the computer model behaviour and the quantities of greatest import-

ance to achieve a high NPV. Further improvements to the hierarchical emulation

framework could be realised such as by revising the structured emulators methods of

change point estimation, classification and truncation, as well as via the refinement

of the hierarchy uncertainty propagation.

Decision problems are traditionally addressed via either optimisation or decision

theoretic approaches. These are contrasted with our preferred decision support

that explicitly incorporates a separation between the analysts and decision makers,

and hence acknowledges the induced uncertainty on the decision makers’ utility by

delivering a class of decisions that is robust to all major sources of such uncertainties.

Furthermore, our decision support approach encompasses uncertainties that are

challenging to elicit or quantify. A central part of this framework is the formulation

of an uncertainty analysis to perform decision support, thus linking the utility

function with the uncertainties. It is remarked that linear transformations of the

utility function do not change the ranking of decisions; hence the conclusions of

decision support are unaffected, with a technique developed to assess and remove such

effects for cost parameters to achieve meaningful decision support. Future research

may extend this to non-parametric forms of uncertainty, as well as the interaction

between multiple types. Decision implementation error is frequently overlooked.

We address this by combining expert knowledge with a fast approximation using

Bayesian emulators with a natural extension encompassing targetted simulations

anticipated to improve the accuracy.

The main goal is achieved through the development of an iterative decision sup-

port procedure, analogous to the history matching process, using an implausibility
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measure to identify a class of decisions with respect to the uncertainty analysis. This

addresses the problem of the separation of the analysts from the end decision makers

and the resulting utility function uncertainty. A further important consideration is a

framework for delivering this class (or classes) of decisions to the (committee of) de-

cision maker(s), along with communicating any assumptions, insights or judgements

used. There exist many directions for future research on decision support including:

• Handling multiple utility functions such as where these cannot be amalgamated

into a single utility function; a potentially natural extension for multivariate

implausibility measures. This may also be applicable to situations of multiple

competing but known utility functions for a committee of decision makers.

The returned decisions should satisfy all concerns where decision support can

distinguish if any solutions exist.

• Techniques for the analyst or statistician to assess reasonable decision maker

utility preferences, as well as communicating the results for each instance.

• An extension of decision support to mixed parameter types, such as categorical

and ordinal parameters. The current procedure is designed for continuous

numerical parameters, although this is likely to also require advancements to

the emulation and uncertainty quantification methodology.

• The more complex challenge of sequential decision support; where interventions

at future times are adjusted in light of new observations that are conditional

on the original decisions. These must be chosen to both optimise the utility

function, but also provide useful but uncertain future observation data designed

to enhance the later decisions. This is far more representative of real world

decision making problems where all decisions are not made before the initial

time point. Further challenges arise when the intervention times are unknown.

In Chapter 4 we apply the methodology developed in Chapter 3 to the TNO

OLYMPUS Well Control Optimisation Challenge. Implementation of the EGES tech-

nique efficiently reduces total simulator evaluation time. A method of formulating

a targetted Bayesian design is devised using prior insight of physically realistic con-
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trol strategies to reduce the volume of the decision parameter space, with sampling

distributions chosen to target regions of interest whilst ensuring samples across the

entire space. This may be adapted for use in other applications. A comparison of

the Bayes linear and developed hierarchical emulation frameworks demonstrates the

superior accuracy for relatively little additional computational costs, particularly

versus the cost of evaluating the OLYMPUS ensemble. In the uncertainty quanti-

fication we provide a more in depth treatment of geological uncertainty than in the

TNO OLYMPUS Well Control Optimisation Challenge, extending from 50 to the

potentially infinite number of compatible underlying geologies. The first wave of it-

erative decision support is performed including an efficient comparison of alternative

uncertainty specifications. This highlights the importance of a comprehensive uncer-

tainty analysis whilst emphasising the enormous implications of accounting for linear

transformations due to the utility function cost parameter uncertainty. Moreover,

consideration of the treatment of geological uncertainty shows that the TNO ap-

proach is insufficient. Visualisation techniques from the history matching literature

have been adapted to provide a graphical representation of decisions, enabling easier

interpretation by the end decision makers.

Future work, not performed in this thesis due to constraints on time and comput-

ing resources, is to execute additional waves of iterative decision support. Another

direction is to provide a more rigorous treatment of geological uncertainty via the un-

derlying stochastic OLYMPUS geology model, if it were accessible. This represents

the natural generalisation of the decision support procedure for use with stochastic

simulators, and would likely incorporate the emulation of stochastic computer models

methodology such as discussed in [2, 3, 7, 106].

Chapter 5 forms the commercial client placement part of my iCASE PhD student-

ship with Emerson. The purpose was to demonstrate the benefits of this research to

enhance Emerson’s software capability. An analysis of the well control problem is

performed for their Jade model beginning in a similar vein as for the TNO OLYM-

PUS Well Control Optimisation Challenge application with important extensions to
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the uncertainty quantification to assess structural model discrepancy and decision

implementation error, before conducting multiple waves of iterative decision sup-

port encompassing a revision of the uncertainty analysis. A validation of the final

non-implausible decision support region is performed demonstrating: the accuracy

and effectiveness of the EGES technique as a representation for the ensemble mean

NPV; the successful emulation of the ensemble mean NPV; and the accurate link

between the expected and ensemble mean NPV. In both this and the OLYMPUS

analysis, conservative uniform estimates are used for each of the uncertainties. An

area of future work is to construct more sophisticated uncertainty representations

using variance emulation techniques to obtain parameter dependent uncertainties

and attain superior decision support results. Moreover, a notable conclusion from

both analyses is the dominance of geological uncertainty: further decreases to the

non-implausible decision volume are only achievable using a larger initial ensemble

than 50 models. This suggests that more serious care is required in the treatment

of geological uncertainty in the petroleum industry, although the EGES technique

can alleviate some of the additional computational burden.

We develop novel methodology for the Bayesian emulation of computer mod-

els with structured partial discontinuities in Chapter 6 , an extremely challenging

problem, motivated by the TNO OLYMPUS Well Placement Optimisation Chal-

lenge. This is accomplished by constructing emulators for an embedding of the

input parameter space in higher dimensions where the embedding surface is chosen

to characterise the known locations and shape of the (partial) discontinuities, with

the separation reflecting the magnitude of each discontinuity. Derivation of the

embedded parameter variance matrix shows that this depends on the choice of em-

bedding surface and the parameters, necessitating that non-stationary emulators are

employed. Taken together, these steps correct for an induced warping effect whilst

leading to global emulators that are correct up to first-order, which is sufficient for

most reasonable choices of the embedding function. The complete framework is

referred to as the Torn Embedding Non-Stationary Emulation (TENSE) approach.
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Applications to known examples demonstrates its effectiveness, as well as flexibility

to functions possessing complex non-linear forms of partial discontinuities. There

remains many potential areas for future research including:

• A natural extension of the derivation to handle different embedding dimensions,

for example, d in d + 1, or d in d + m to address multiple hypersurfaces of

partial discontinuities.

• Methods to learn the optimal embedding surface, for example, via maximum

likelihood estimation (MLE).

• Formulation of the embedding surface when the location and/or shape of the

discontinuities are unknown, potentially also via MLE.

• Generalisation of the TENSE framework beyond univariate emulators to handle

such facets as multivariate outputs or known boundary information.

• Further address the design problem in the presence of partial discontinuities

where standard design methodology over parameter hypercubes is no longer

applicable. This may take the form of a design criterion to optimise given a

choice of embedding.

The TENSE methodology is applied to the TNO OLYMPUS Well Placement

Optimisation Challenge in Chapter 7 where a sequential well location analysis is

performed with the aim of devising a good solution, although it is acknowledged that

this will be sub-optimal compared to full backwards induction. A quadratic form for

the embedding surface is chosen and justified, with the prior covariance structure

graphically illustrated to demonstrate how the embedding successfully induces the

desired partial discontinuity structure. Consideration is also given to sequential

design methodology to address uncertainty in the available computing resources,

whilst also incorporating additional knowledge of model output at no extra cost

through the use of ghost runs. The TENSE methodology is applied and successfully

captures the structure of the expected NPV utility surface as a function of well

location, whilst also suggesting classes of well placements that are consistent with oil

reservoir engineering theory. Iterative decision support is performed demonstrating
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how to synthesise this insight with expert knowledge and experience to obtain a well

configuration. The next step is to select the locations of subsequent wells.

There exist numerous extensions and improvements to our analysis of the TNO

OLYMPUS Well Placement Optimisation Challenge. Firstly, it is anticipated that

accounting for the interaction between multiple wells will yield a superior solution.

This may be addressed through the perturbation of already selected well locations to

yield an increase in the expected NPV utility function. Alternatively, the placement

of groups of k wells through the TENSE approach by embedding the 2k-dimensional

location parameter space in 3k-dimensions. Another direction is to examine the

full field development optimisation problem which also incorporates well trajectories.

An initial approach is to combine the existing strategy with emulators possessing a

hemispherical parameter space describing the well endpoints.

The TNO OLYMPUS Joint Field Development and Well Placement Optimisation

Challenge has not been addressed in this thesis and remains a complex problem with

limited progress to date. Current industry approaches generally use a two stage

optimisation procedure to first design a field development plan, before formulating

a well control strategy [12, 109]. This is likely to be suboptimal. An interesting area

of future work is to combine the methodology of Chapters 3 and 6 to devise joint

well placement and control strategies within the decision support framework.

Computer models are increasingly prevalent across science, industry and gov-

ernment, to represent complex real world systems, and inform our future actions

through decision making processes. The research presented in this thesis represents

a substantial contribution to the Bayesian emulation and uncertainty analysis of

computer models for decision support literature. We have advanced uncertainty rep-

resentation and quantification techniques in the context of decision support, which

are encompassed within a formal iterative decision support framework to deliver a

robust class of decisions, along with accompanying information, to a committee of

decision makers, in a setup that accurately portrays real world decision making pro-

cesses. The developed methodology thus forms an important toolkit for addressing
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the substantial problems of providing robust decision support using computer simu-

lators across a broad spectrum of applications, extending far beyond the petroleum

industry.





Nomenclature

(µ+ λ) ES (µ+ λ) Evolutionary Strategy, page 96

αEGES Regression intercept coefficient in EGES linear model, see Equation (3.2.1),

page 102

αi Standardised truncation lower bound for a truncated Gaussian process within

a structured emulator for computer model output i, page 112

α2
i Eigenvalues of Σ3D with respect to the w-basis, page 343

ÑPVj(·) Average discounting approximate NPV for model j, defined in Equation (3.3.6),

page 118

f̄(·) Ensemble mean of a computer model output, page 101

βi Standardised truncation upper bound for a truncated Gaussian process within

a structured emulator for computer model output i, page 112

β0,ÑPVj Intercept in simple linear model linking the exact and approximate NPV for

model j, see Equation (3.3.11), page 121

β1,ÑPVj Slope coefficient in simple linear model linking the exact and approximate

NPV for model j, see Equation (3.3.11), page 121

βC,0,i Intercept in the uncertainty quantification linear model for the ith sampled

utility function cost parameter setting, see Equation (3.5.1), page 139

βC,0,i Slope coefficient in the uncertainty quantification linear model for the ith

sampled utility function cost parameter setting, see Equation (3.5.1), page 139
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βij Unknown scalar regression coefficient for the jth deterministic regression func-

tion in an emulator for computer model output i, see Equation (2.4.1), page 23

βk,EGES Regression coefficient of the kth selected individual model output in EGES

linear model, page 102

β̂EGES Vector of estimates of EGES linear model coefficients, page 123

β̂GLS Generalised Least Squares estimate for regression parameters, β, page 41

β̂OLS Ordinary Least Squares estimate for the regression parameters, β, page 41

O(·) Big “O” notation describing the limiting behaviour of computation time,

page 37

B Collection of randon quantities in Section 2.2.2, page 13

βi Vector of unknown regression coefficients for computer model output i in an

emulator, see Equation (2.4.1), page 23

C Collection of randon quantities in Section 2.2.2, page 13

c Vector of utility function cost parameters, page 130

c0 Base utility function cost parameter scenario, page 139

ci The ith sampled utility function cost parameter vector, page 131

D Collection of randon quantities in Section 2.2.2, page 13

D Vector of observation data for full Bayesian posterior computation in Sec-

tion 2.2.1, page 12

d Vector of decision parameters, page 10

d∗ Vector of decision parameters which maximises the expected utility function,

defined in Equation (3.4.6), page 132
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d∗(c) Vector of decision parameters which maximises the expected utility function

for a fixed vector of cost parameters, page 132

dmax,3CIupr Decision parameter vector which maximises the 3 adjusted standard

deviation credible interval upper bound, page 269

dmax,exp Decision parameter vector which maximises the utility function emulator

adjusted expectation, page 269

dmax Vector of decision parameters which maximises an objective function, defined

in Equation (3.4.1), page 126

δI Vector of implemented decisions, see Equation (3.5.4), page 141

e Vector of observation errors, see in Definition 2.7.1, page 61

ei Canonical basis vector in the ith direction in RD, page 29

eI(·) Random quantity representing the implementation uncertainty in the de-

cisions, page 141

F Vector of computer model evaluations in Section 2.4.5, page 38

Fi Vector of computer model evaluations for output i, page 26

F′i Subset of simulated output satisfying a constraint on the change point upper

bound for computer model output i, page 111

g(x) Deterministic regression vector function evaluated at parameter vector x,

page 46

g(·) Vector valued deterministic global mean function used in multivariate emula-

tion, g : X → Rp, see Equation (2.5.1), page 53

gi(xAi) Vector function of known deterministic regression or global mean functions

of the active parameters, gij(xAi), in an emulator for computer model output

i, see Equation (2.4.1), page 23
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hi Rotated and scaled basis vector in R2, defined in Equation (6.3.46), page 349

m(·) Multivariate emulator mean function, m : X → Rq, defined in Equation (2.5.3),

page 54

p Parameter vector in the rotated t-basis, see Equation (6.3.43), page 348

q Parameter vector in the rotated and scaled h-basis, see Equations (6.3.48)

and (6.3.49), page 349

r(x, X) Column vector of correlations in Rn between x and each design point in X

used in Section 2.4.5, r(x, X) ∈ Rn, page 39

ti Rotated basis vector in R2 by angle φ, defined in Equations (6.3.41) and (6.3.42),

page 348

θ Vector of random quantities or parameters in Section 2.2.1, page 12

θi Vector of correlation length hyperparameters for computer model output i,

page 24

u Vector in Rn of realisations of the emulator weakly stationary stochastic

process at the design inputs in Section 2.4.5, page 39

u Vector of q ∈ R2 in h-basis embedded in R3 in Chapter 6, page 350

v Vector of x ∈ R2 embedded in R3 in Chapter 6, page 350

v(·) Embedding function from a 2- to 3-dimensional parameter space, page 334

v(i) Design point parameter vector in the embedded parameter space, page 336

w Vector in Rn of realisations of the emulator nugget term in Section 2.4.5,

page 39

wi Orthonormal basis vector in R3, defined with respect to the tangent plane of

v(x, y) at x0, page 342
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x Vector of model parameters in Chapters 2 to 6, page 10

x Vector of well location parameters in the TNO OLYMPUS Well Placement

Optimisation Challenge in Chapter 7, page 362

x∗ “Best” input parameter vector to a computer model, meaning that x∗ best

represents the system properties that result in system behaviour y, page 68

x(k) Design point parameter vector, page 26

xI Sub-vector of linear model predictors in I in Appendix A, page 432

xAi Sub-vector of the parameters in x deemed to be active inputs for computer

model output i, see Equation (2.4.1), page 23

x0 Reference parameter vector, page 340

y Vector of the true values of quantities of interest for a physical system, y ∈ Rs,

page 61

z Scalar or vector of observation data, z ∈ Rs, page 61

0 Zero vector, page 38

Cov[·, ·] Covariance between two random quantities, as defined in the Bayes linear

paradigm, page 13

CovD[·, ·] Bayes linear adjusted covariance between two random quantities given

data D, either a scalar or a matrix, see Equation (2.2.5), page 13

CovF [·, ·] Bayes linear emulator adjusted covariance given computer model evalu-

ations, F, page 40

cljk,ti Change point lower bound for an NPV constituent, where j and k represent

the well type and number, and ti is a control interval start date, defined in

Equation (3.3.2), page 108
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cujk,ti Change point upper bound for an NPV constituent, where j and k represent

the well type and number, and ti is a control interval start date, defined in

Equation (3.3.1), page 107

cjk,ti Change point parameter for an NPV constituent, where j and k represent the

well type and number, and ti is a control interval start date, page 107

djk,ti Scalar decision parameter corresponding to an NPV constituent, where j and

k represent the well type and number, and ti is a control interval start date,

page 107

∆ti Time interval in NPV calculations, page 87

δ Tolerance parameter specifying the exploration distance below the maximum

in decision support in Chapter 7, page 375

∆i Difference constraint between time consecutive control parameters, page 166

δi Maximum absolute error in slope region within emulators exploiting known

simulator behaviour for NPV constituents, page 112

δi Tolerance parameter in change point estimation for computer model output

i, page 107

∆′i Rescaled difference constraint between time consecutive control parameters,

page 166

δi,l Tolerance parameter in change point lower bound estimation for computer

model output i, page 107

δi,u Tolerance parameter in change point upper bound estimation for computer

model output i, page 107

π(D | θ) Likelihood for data D given random quantities or parameters θ, page 12

diag{·} Diagonal matrix with the specified arguments, page 24
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Ω Decision parameter space, page 10

Ω∗ Class of decision theoretic optimal decisions for a finite set of cost parameter

settings, defined in Equation (3.4.7), page 132

Ω0 Initial decision parameter space in iterative decision support, page 146

Ωk Non-implausible decision parameter space after wave k of iterative decision

support, page 146

E[·] Expectation of a random quantity, as defined in the Bayes linear paradigm,

page 13

ED[·] Bayes linear adjusted expectation of a random quantity given data D, either

a scalar or vector, see Equation (2.2.3), page 13

EF [·] Bayes linear emulator adjusted expectation given computer model evaluations,

F, page 40

`d(·) Arbitrary positive length-scale function used in the Gibbs covariance function,

see Equation (2.4.10), page 32

∅ The empty set, page 73

E[NPV](·) Expected NPV, defined in Equation (3.1.2), page 87

εC(·) Random quantity or residual representing the utility function cost parameter

uncertainty, page 139

ε̂C(d, ci) Utility function cost parameter uncertainty linear model residual, page 139

εDS(·) Random quantity representing the collective uncertainty on the decision mak-

ing process, defined in Equation (3.6.1), page 144

εG Random quantity representing the induced geological uncertainty, page 140

εI(·) Random quantity representing the induced decision implementation error,

page 141
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εMD(·) Random quantity representing structural model discrepancy, with a potential

parameter dependency, see Definition 2.7.2, page 62

εMD,ext(·) Random quantity representing external structural model discrepancy, with

a potential parameter dependency, see Equation (2.7.7), page 63

εMD,i Structural model discrepancy for computer model output i, page 68

εMD,int(·) Random quantity representing internal structural model discrepancy, with

a potential parameter dependency, see Equation (2.7.7), page 63

bjk,ti Extrapolation cut-off for an NPV constituent, where j and k represent the

well type and number, and ti is a control interval start date, page 110

f̂LM(x) Linear regression model prediction at parameter vector x, page 50

f+ Current highest simulated expected NPV, page 375

Γ Standard deviation matrix in Section 2.4.6, page 51

Γ(·) Gamma function, see Table 2.1, page 28

GP(mi(·), κi(·, ·)) Gaussian process emulator with mean function mi(·) and covari-

ance function κi(·, ·), see Equation (2.4.13), page 35

GPq(m(·), κ(·, ·)ΣMV) Multivariate Gaussian process for a q-dimensional random

quantity with specified mean function and a separable covariance structure,

defined in Equation (2.5.2), page 54

α̂EGES Estimate of EGES linear model intercept coefficient, page 123

β̂k,EGES Estimate of EGES linear model kth selected individual model coefficient,

page 123

ε̂LM(x) Standardised linear regression residuals at parameter vector x, page 50

In n× n identity matrix, page 41
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IDS(·) Decision support implausibility measure, defined in Equation (3.6.3), page 145

I ′DS(·) Alternative form of the decision support implausibility measure, defined in

Equation (7.4.2), page 376

⊥⊥ Independent, page 58

1{·} Indicator function, see Equation (2.4.4), page 25

κi(x,x′) Prior covariance for a univariate Bayes linear emulator for computer model

output i, defined in Equation (2.4.12), page 33

κ(·, ·) Covariance function or kernel, page 27

κNS(·, ·) Non-stationary covariance function, defined in Equation (6.3.64), page 353

κS(·, ·) Stationary isotropic covariance function, page 353

λi Weighted average discounting factor, defined in Equation (3.3.5), page 118

Λ Diagonal matrix in R3×3 where Λii = α2
i , page 343

|·| Absolute value, page 51

x̃ Extension of a parameter vector x to include a constant, x̃ = (1,x), page 31

ai Vector of coefficients for the linear combination of data which minimise the

expected squared error for the ith random quantity, page 13

S Collection of parameter vectors used as a substitute to the full parameter

space in evaluating a minimax design, defined in Equation (2.3.2), page 21

U [·, ·] Uniform distribution, page 168

C Cost parameter space, page 131

C ′ Finite set of cost parameters vectors, page 132

D Computer model design of experiments, page 20
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D′i Subset of design satisfying constraint on the change point upper bound for

computer model output i, page 111

Dk Design for wave k of iterative decision support, page 146

DI Design to assess decision implementation error, page 142

Dav Minimum average distance design, defined in Equation (2.3.6), page 22

DMm Maximin design, defined in Equation (2.3.2), page 21

DmM Minimax design, defined in Equation (2.3.4), page 21

Fm,n−p Fisher-Snedecor distribution with m and n − p degrees of freedom, see

Equation (2.4.49), page 51

I Set of internal structural model discrepancy types in Section 2.7.4, page 64

I Subset of linear model predictors in Appendix A, page 431

T N (µ, σ2, a, b) Truncated normal distribution with mean µ, variance σ2, lower and

upper truncation bounds a and b respectively, page 258

X Model parameter space in Chapters 2 to 6, page 10

X Well location parameter space in the TNO OLYMPUS Well Placement Op-

timisation Challenge in Chapter 7, page 362

X ∗ History matching non-implausible region, defined in Equation (2.8.9), page 72

X0 Initial parameter space in history matching, page 73

X1 ×X2 Tensor product of two parameter spaces, page 32

Xk Non-implausible parameter space after wave k of history matching in Sec-

tion 2.8, page 73

Xk Non-implausible well location parameter space after wave k of iterative de-

cision support in Chapter 7, page 376
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X1,A Well 1 sequential design region defined as the iterative decision support non-

implausible region in Section 7.5, page 379

X1,B Well 1 sequential design region defined using the emulator adjusted expecta-

tion in Section 7.5, page 379

VR Variance ratio history matching stopping rule for a univariate computer model

output, defined in Equation (2.8.12), page 79

VRmulti Variance ratio history matching stopping rule for multivariate computer

model output, defined in Equation (2.8.13), page 79

meanA(g(·)) Arithmetic sample mean of the function g(·) over the set A, page 372

NPV(·) Ensemble mean NPV, defined in Equation (3.1.2), page 87

µi(x) Prior expectation for a univariate Bayes linear emulator for computer model

output i, defined in Equation (2.4.11), page 33

µβ Prior mean for the regression coefficients in an emulator, µβ ∈ Rp, page 38

∇ Gradient operator in vector calculus, page 342

Nn1 Multivariate normal distribution for an n1-dimensional random quantity, see

Lemma 2.4.9, page 36

NPVj(·) NPV for model j in an ensemble, defined in Equation (3.1.1), page 87

ωj Ensemble mean NPV weight for model j, page 123

δi Scaled difference between normalised parameters in Section 4.3, page 166

δ Vector of scaled differences between normalised parameters in Section 4.3,

page 167

vq1 Partial derivative of two-dimensional embedding surface with respect to q1

and evaluated at q0, defined in Equation (6.3.58), page 351
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vq2 Partial derivative of two-dimensional embedding surface with respect to q2

and evaluated at q0, defined in Equation (6.3.59), page 351

vx Partial derivative of two-dimensional embedding surface with respect to x

and evaluated at x0, page 341

vy Partial derivative of two-dimensional embedding surface with respect to y and

evaluated at x0, page 341

φ Rotation angle used to define the t-basis in R2, φ ∈ [0, π), page 348

Φ(·) Standard normal cumulative distribution function, page 112

φ(·) Standard normal distribution probability density function, page 112

πc(c) Prior distribution for the utility function cost parameters, page 131

πx(x) Prior distribution for the model parameters, page 131

πI(· | ·) Prior distribution for the uncertainty in the implemented decisions, page 141

ρ Proportion of the residual variance attributed to the emulator nugget term,

ρ ∈ [0, 1], page 33

ρp(x,D) Minimum p-norm distance between parameter vector x and its nearest

neighbour in the design D, defined in Equation (2.3.3), page 21

ρp(·, ·) p-norm between two vectors of random quantities, defined in Equation (2.3.1),

page 20

RSSI Residual Sum of Squares for a linear model containing predictors in the set I

in Appendix A, page 431

R3D Rotation matrix between the standard and t-bases embedded in R3, defined

in Equation (6.3.52), page 350

R2D Rotation matrix between the standard and t-bases in R2, defined in Equa-

tion (6.3.50), page 349
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sd[·] Standard deviation of a random quantity, page 297

Σ Covariance matrix, page 27

σ2 Variance hyperparameter, page 27

σ2
e Observation error variance, page 61

σ2
i Residual variability after accounting for the global mean function of an emu-

lator for computer model output i, page 33

σÑPVj Residual standard error of the linear model linking the exact and approximate

NPV for model j, page 122

ΣMD,int,j(·) Internal structural model discrepancy of type j variance matrix, with a

potential parameter dependency, page 64

σlm Estimate of the residual standard error of a linear model, page 174

σ2
ui

Variance hyperparameter in the covariance function used in the emulator for

computer model output i, page 24

σ2
wi

Variance hyperparameter for the nugget term in an emulator for computer

model output i, see Equation (2.4.4), page 25

Σβ Prior variance matrix of the regression coefficients in an emulator, Σβ ∈ Rp×p,

page 32

Σβ,EGES Variance matrix of EGES linear model coefficient estimates, page 123

Σe Observation error variance matrix, page 62

σeI,i Standard deviation for sampling the ith decision parameter for an assessment

of decision implementation error, page 258

σ̂EGES Estimate of EGES linear model residual standard error, page 123

σ̂LM Estimated linear model standard error, page 50
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ΣMD(·) Structural model discrepancy variance matrix, with a potential parameter

dependency, page 63

σ2
MD Structural model discrepancy variance, page 63

ΣMD,ext(·) External structural model discrepancy variance matrix, with a potential

parameter dependency, page 66

ΣMV Covariance matrix for multivariate computer model outputs, ΣMV ∈ Rq×q,

page 54

Ω Short notation for Σ+σ2
wIn, defined in Equation (2.4.25), used in Section 2.4.5,

page 40

Σ3D Covariance matrix for the 3-dimensional embedded input parameters, page 335

Σh
3D Covariance matrix for the 3-dimensional embedded input parameters with

respect to the h-basis, page 350

Σ2D Covariance matrix for the 2-dimensional input parameters, page 335

Σh
2D Covariance matrix for the 2-dimensional input parameters with respect to the

h-basis, page 349

Σt
2D Covariance matrix for the 2-dimensional input parameters with respect to the

t-basis, page 348

sign(·) Sign function taking values 1 or -1 when the argument is positive or negative

respectively, page 328

S3D Scaling matrix between the t- and h-bases embedded in R3, defined in Equa-

tion (6.3.52), page 350

S2D Scaling matrix between the t- and h-bases in R2, defined in Equation (6.3.50),

page 349

τ Discounting time interval in NPV calculations, page 87



Nomenclature 417

Θ Space of random quantities or parameters, page 12

θ2
i Correlation lengths in the directions of the t-basis vectors for i = 1, 2 in

Chapter 6, page 348

θik Correlation length hyperparameter for the kth parameter and computer model

output i, page 24

π(θ | D) Posterior probability distribution for random quantities or parameters θ

given data D, page 12

π(θ) Prior probability distribution for random quantities or parameters θ, page 12

D̃ Dimension of model parameter space in Section 2.1.3, D̃ ∈ N, page 10

Tr(·) Trace of a matrix, page 79

Umax Maximum utility achieved across all simulations within a design, page 145

Var[·] Variance of a random quantity, as defined in the Bayes linear paradigm,

page 13

VarD[·] Bayes linear adjusted variance of a random quantity given data D, either a

scalar or a matrix, see Equation (2.2.4), page 13

VarF [·] Bayes linear emulator adjusted variance given computer model evaluations,

F, page 40

εi Random quantity representing a form of uncertainty determined by subscript

i, page 58

εÑPVj Residual in simple linear model linking the exact and approximate NPV for

model j, see Equation (3.3.11), page 121

εEGES(·) Residual of EGES linear model, page 102

εMD,int,j(·) Random quantity representing internal structural model discrepancy of

type j, with a potential parameter dependency, page 64



418 Nomenclature

V Embedded parameter space, page 334

XEGES(d) Input vector to EGES linear model, page 123

ζ(·) Stochastic process, defined in Definition 2.4.1, page 24

A Linear embedding operator for raising the 2-dimensional position vector x

onto the corresponding location on the 3-dimensional tangent plane of the

embedding surface at x0, see Equation (6.3.15), page 341

ABL Set of active decision parameters for a Bayes linear emulator, page 174

ai Truncation lower bound for a truncated Gaussian process for computer model

output i, page 112

B Matrix of regression coefficients in multivariate emulation, B ∈ Rp×q, see

Equation (2.5.1), page 53

b(y) Function which linearly interpolates between the interior end points of two

neighbouring parallel partial discontinuities, see Equation (6.3.9), page 337

Bi Scalar random quantity for index i in Section 2.2.2, page 13

bi Truncation upper bound for a truncated Gaussian process for computer model

output i, page 112

bi(y) Functions which linearly interpolates between the interior end points of

two neighbouring parallel partial faults indexed by i, see Equations (6.3.9)

and (7.2.1), page 365

c Implausibility cut-off used in history matching and iterative decision support,

page 70

c(x− x′) Function of the difference between two parameter vectors, see Defini-

tion 2.4.2, page 27

Ci Scalar random quantity for index i in Section 2.2.2, page 13
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ci Normalising constant for basis vector wi, see Equations (6.3.21) to (6.3.23),

page 343

CI Mallows’ Cp, defined in Equation (A.0.1), page 431

cstop History matching stopping rule cut-off, page 79

D Dimension of (decision) parameter space, D ∈ N, page 10

d Discount factor in NPV calculations, page 87

D(·) General emulator diagnostic function, page 50

D
(i)
1 In the sequential design of computer experiments, a vector of function evalu-

ations including for the first (i− 1) selected design points, and a proposed ith

design point, page 372

Di Scalar random quantity for index i in Section 2.2.2, page 13

di Scalar decision parameter determined by the subscript i, page 10

Dj(d, ti) Drilling costs in time interval ∆ti under field development strategy d for

model j, page 87

D′k Wave k vector of simulated expected NPV over the design without the ghost

runs in Chapter 7, page 373

DΓ(·) Individual correlated prediction errors emulator diagnostic, defined in Equa-

tion (2.4.50), page 51

DMD(·) Mahalanobis distance emulator diagnostic, defined in Equation (2.4.48),

page 51

Dij(·) The jth univariate standardised prediction error for an emulator of computer

model output i, defined in Equation (2.4.47), page 50
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f(·) Computer model or simulator which takes inputs x ∈ RD̃, d ∈ RD, or (x,d) ∈

R(D̃+D), and returns an output vector f(x), f(d) or f(x,d) ∈ Rq respectively,

page 8

f(X∗) Vector of simulated computer model output for emulator diagnostics in Sec-

tion 2.4.6, page 49

f ∗(·) Emulator representation for a computer model output f(·), used in Sec-

tions 2.4.6 and 2.7, page 50

f (ik)(·) Output for computer model ik, page 101

fi(·) Univariate computer model or simulator output corresponding to component

i, page 8

fT (t) Sampling distribution for sum of normalised parameters in targetted Bayesian

design, page 167

fi,diff(d) Difference between fi,max(d) = djk,ti ·∆ti and fi(d), page 107

fi,max Maximum over a design for a computer model output i, page 107

G Design matrix obtained by evaluating the mean functions over the design in

Section 2.4.5, G ∈ Rn×p, page 39

g(x, y, z) Function used in the derivation of the w-basis to define a level set, page 342

gij(xAi) Known deterministic regression or global mean function of the active para-

meters in an emulator for computer model output i, see Equation (2.4.1),

page 23

I(·) General implausibility measure, see Definition 2.8.1, page 69

Ii(·) History matching univariate implausibility measure, defined in Equation (2.8.4),

page 70
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IM(·) History matching maximum implausibility measure, defined in Equation (2.8.5),

page 71

I2M(·) History matching second maximum implausibility measure, defined in Equa-

tion (2.8.6), page 71

I3M(·) History matching third maximum implausibility measure, defined in Equa-

tion (2.8.7), page 71

Imulti(·) History matching multivariate implausibility measure, defined in Equa-

tion (2.8.8), page 71

Kν(·) Modified Bessel function of the second kind, ν > 0, see Table 2.1, page 28

L Transformation matrix used in targetted Bayesian design, see Section 4.3.1,

page 166

LI Log-likelihood of data for a linear model containing predictors in the set I in

Appendix A, page 431

M Jacobian matrix in R2×2 of partial derivatives for the transformation between

the standard and h-bases in Section 6.3, defined in Equation (6.3.61), page 352

M Variance matrix of the input parameters used within covariance functions in

Chapter 2, page 24

Mi Maximum of the ith parameter range, page 258

mi Minimum of the ith parameter range, page 258

mi(x) Emulator mean function for computer model output i, defined in Equa-

tion (2.4.14), page 35

m(p,λ)(D) Average distance between design points in D, defined in Equation (2.3.5),

page 21
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mC(dj) Sample mean of the residuals over the utility function cost parameter un-

certainty linear models for each simulated cost parameter scenario, defined in

Equation (3.5.2), page 139

mI,i(di) Sample mean for decision implementation error about di, page 142

N Number of models in an ensemble, page 87

n Number of design points, page 20

NEGES Number of models identified via the EGES techniques, page 101

nc Number of sampled cost parameter vectors, page 131

Nt Number of discounting time intervals in NPV calculations, page 87

nx Number of sampled model parameter vectors, page 131

ngen Number of candidate designs, page 269

nprop Number of design proposal points, page 268

nref Number of points in a reference design, page 268

Nti Number of NPV discounting time intervals in control interval ending at ti,

page 117

p Number of parameters in the emulator mean function, see Equation (2.4.1),

page 23

p Real number with p ≥ 1 which defines the p-norm or Lp-norm in Section 2.3.5,

page 20

Pj(d, ti) Platform costs in time interval ∆ti under field development strategy d for

model j, page 87

pI Number of linear model predictors in set I in Appendix A, page 431

Q Set of univariate computer model outputs used in history matching, page 70
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q Computer model output dimension in Section 2.5, q ∈ N, page 53

q-EI q-points Expected Improvement, page 129

Q(·, ·) Quadratic form used in non-stationary emulation, defined in Equation (6.3.63),

page 353

Q0 Initial collection of computer model outputs in history matching, page 73

Qk Collection of computer model outputs considered at wave k of history match-

ing, page 73

Qj,op(d, ti) Total oil production in time interval ∆ti under controls d for model j,

page 87

Qj,wi(d, ti) Total water injection in time interval ∆ti under controls d for model j,

page 87

Qj,wp(d, ti) Total water production in time interval ∆ti under controls d for model

j, page 87

r(·, ·) Correlation function or kernel, page 27

r2 Sum of squared first partial derivatives of v(x, y) evaluated at x0 in Section 6.3,

page 344

Rj(d, ti) Function of the difference of all revenue and expenditure in the time interval

∆ti under controls d for model j, page 87

rop Oil revenue per barrel, page 87

rwi Water injection cost per barrel, page 87

rwp Water production cost per barrel, page 87

s Dimension of observation data, s ∈ N, page 61

s Sample standard deviation of a function, page 141
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s2
C(dj) Sample variance of the residuals over the utility function cost parameter

uncertainty linear models for each simulated cost parameter scenario, defined

in Equation (3.5.3), page 140

sI,i(di) Sample standard deviation for decision implementation error about di, page 142

t Sum of normalised parameters in Section 4.3.1, page 166

U(·) Utility function, page 130

ui(xAi) Weakly stationary stochastic process term as a function of the active para-

meters in an emulator for computer model output i, see Equation (2.4.1),

page 23

v(·) Function for the embedding surface, page 334

VI Arbitrary model selection criterion for a linear model containing predictors

in the set I in Appendix A, page 432

W Matrix in R3×3 such that column i is wi, page 343

wi(xAi) Nugget term in an emulator for computer model output i, see Equation (2.4.1),

page 23

X Design matrix of parameter vectors as rows in Section 2.4.5, X ∈ Rn×D,

page 39

X∗ New parameter design for emulator diagnostics in Section 2.4.6, X∗ ∈ Rm×D,

page 49

xi Scalar model parameter determined by the subscript i in Chapters 2 to 6,

page 10

xAi,k The kth active parameter for computer model output i, page 25

y Scalar or vector of the true values of quantities of interest for a physical

system, page 58
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ABC Approximate Bayesian Computation, page 80

AIC Akaike Information Criterion, defined in Equation (A.0.2), page 432

ARMA AutoRegressive-Moving-Average model, page 98

BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm, page 99

BHP Bottom Hole Pressure, page 105

BHPSO Black Hole Particle Swarm Optimisation, page 97

BIC Bayesian Information Criterion, defined in Equation (A.0.3), page 432

CEL Cumulative Expected Loss, page 134

CMA Covariance-Matrix-Adaptation, page 94

CMA-EnOpt Covariance-Matrix-Adaptation Ensemble Optimiser, page 94

CVaR Conditional Value at Risk, page 96

CWG Controlled Wells Group, used in TNO OLYMPUS Well Control Optimisation

Challenge in Chapter 4, page 153

DACE Design and Analysis of Computer Experiments, page 9

DIRECT Dividing Rectangles optimisation algorithm, page 127

EAGE European Association of Geoscientists and Engineers, page 84

ECMOR European Conference on the Mathematics of Oil Recovery, page 151

EGES Efficient Geological Ensemble Subsampling, see Section 3.2, page 100

EGO Efficient Global Optimisation algorithm, page 128

EI Expected Improvement Bayesian optimal design criterion, page 22

EM (Bayesian) Expectation Maximisation, page 129
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EMC Evolutionary Monte Carlo, page 77

EnKF Ensemble Kalman Filter, page 93

EnKF-MDA Ensemble Kalman Filter with Multiple Data Assimilations, page 93

EnOpt Ensemble-based Optimisation scheme, page 94

EnRML Ensemble Randomised Maximum Likelihood, page 93

EQI Expected Quantile Improvement, page 129

ES Ensemble Smoother, page 93

ES-MDA Ensemble Smoother with Multiple Data Assimilations, page 93

EVPI Expected Value of Perfect Information, page 133

EVSI Expected Value of Sample Information, page 133

FFBS Forward Filtering, Backward Smoothing algorithm, page 129

FOIP Field Oil In Place, see Table 4.2, page 155

FOPT Field Oil Production Total, page 100

FWCT Field Water Cut, see Table 4.2, page 155

FWIT Field Water Injection Total, page 100

FWPT Field Water Production Total, page 100

GA Genetic Algorithm, page 95

GLS Generalised Least Squares, page 41

GP Gaussian Process, page 35

GPGO Gaussian Process Global Optimisation procedure, page 127

GPS Generalised Pattern Search, page 96
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HEI Hierarchical Expected Improvement, page 128

HJDS Hooke-Jeeves Direct Search, page 96

HOPSPACK Hybrid Optimization Parallel Search Package, page 96

IAGO Informational Approach to Global Optimisation, page 127

IDEMC Implausibility Driven Evolutionary Monte Carlo, page 77

IF Implicit Filtering, page 129

IMSE Integrated Mean Squared Error, also known as Mean Squared Prediction

Error (MSPE), page 22

INJ# or INJ.# Injector well number #, see Table 4.2, page 155

inj_x_yyyy_mm Target injection rate for well number “x” starting on the 1st of

month “mm” in year “yyyy”, page 154

IS-MOE Importance Sampled Mixture of Experts for Gaussian processes, page 38

ISAPP Integrated Systems Approach for Petroleum Production, page 85

Jade Emerson’s oil reservoir model for a fictitious oil field, page 219

KL Kullback-Leibler Divergence, page 134

laGP Local approximate Gaussian Process, page 37

LCB Lower Confidence Bound Bayesian optimal design criterion, page 22

LSDF Line Search Derivative-Free, page 97

MCMC Markov Chain Monte Carlo, page 15

MLE Maximum Likelihood Estimation, page 33

MMSPE Maximum Mean Squared Prediction Error, page 22

MO Mean Optimisation, page 98
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MOO Multi-Objective Optimisation, page 99

MRST MATLAB Reservoir Simulation Toolbox, page 96

MSPE Mean Squared Prediction Error, also known as Integrated Mean Squared

Error (IMSE), page 22

MVO Mean-Variance Optimisation, page 98

NEI Noisy Expected Improvement, page 129

NPV Net Presented Value, page 86

OLS Ordinary Least Squares, page 41

OLYMPUS TNO developed oil reservoir model for a fictitious oil field, page 88

OPM Open Porous Media Flow simulator, page 155

OSS On-Site Surrogate Gaussian processes, page 37

PCA Principal Component Analysis, page 55

PES Predictive Entropy Search, page 129

PESC Predictive Entropy Search with Constraints, page 129

POI or PI Probability Of Improvement Bayesian optimal design criterion, page 22

PROD# or PROD.# Producer well number #, see Table 4.2, page 155

prod_x_yyyy_mm Target production rate for well number “x” starting on the 1st

of month “mm” in year “yyyy”, page 154

PSO Particle Swarm Optimisation, page 95

RBF Radial Basis Function method, page 127

REML Restricted Maximum Likelihood Estimation, page 33

RJMCMC Reversible-Jump Markov Chain Monte Carlo, page 80
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SGV Sparse General Vecchia, page 330

SHELF Sheffield Elicitation Framework [72, 130], page 34

SNOBFIT Stable Noisy Optimisation by Branch and Fit algorithm, page 129

SNOPT Sparse Nonlinear OPTimiser, page 96

SPSA Simultaneous Perturbation Stochastic Approximation, page 94

SQP Sequential Quadratic Programming, page 95

ss-cc-StoSAG Singly-Smoothed Cross-Covariance Stochastic Simplex Approximate

Gradient, page 96

StoSAG Stochastic Simplex Approximate Gradient, page 94

SUR Stepwise Uncertainty Reduction strategy, page 127

TENSE Torn Embedding Non-Stationary Emulation, page 324

TNO Netherlands Organisation for Applied Scientific Research, page 85

TSP Temporal Sure Preference principle, page 16

UCB Upper Confidence Bound Bayesian optimal design criterion, page 22

VaR Value at Risk, page 134

VFSA Very Fast Simulated Annealing, page 95

WCO Worst-Case Optimisation, page 98

WOPT Well Oil Production Total, page 101

WWIT Well Water Injection Total, page 101

WWPT Well Water Production Total, page 101





Appendix A

Linear Regression Stepwise

Selection

In the construction of a Bayesian emulator, linear regression modelling along with

stepwise selection methods and model selection criteria can be used as tools to aid

the choice of active inputs and the known deterministic functions, gij(·), as discussed

in Section 2.4.1. This appendix details the Mallows’ Cp, AIC, BIC and adjusted R2

model selection criteria, as well as both directions (also known as mixed), forwards

and backwards linear model stepwise selection algorithms, as presented in [98, 183].

The notation yk, k = 1, . . . , n, is used to denote the (simulation) data sample to

which the linear model is fitted with sample mean ȳ = 1
n

∑n
k=1 yk.

Given a full model with all p considered terms, often designated the full model;

the model selection criteria Mallows’ Cp, AIC, BIC and the adjusted R2 for a

candidate (or fitted) linear model containing the pI terms in the subset I are defined

in Equations (A.0.1) to (A.0.4) respectively. In each of the equations: n is the

number of data points; s2 is an estimate for the response variance for the full model;

RSSI = 1
n−pI

∑n
k=1(yk − ŷI,k)2 denotes the residual sum of squares for the fitted

model with ŷI,k being the fitted linear model prediction for each yk, k = 1, . . . , n;

and LI is the log-likelihood for the fitted model.

CI = RSSI
s2 + 2pI − n (A.0.1)
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AICI = −2LI + 2pI (A.0.2)

BICI = −2LI + pI log(n) (A.0.3)(
Adjusted R2

)
I

= 1−
RSSI/(n− pI − 1)∑n

k=1(yk − ȳ)2/(n− 1)
(A.0.4)

Each model selection criterion includes a trade-off between the goodness-of-fit of

the fitted linear model to the data, versus a penalisation for large numbers of linear

model predictors. In the case of the Mallows’ Cp and adjusted R2 criteria, the

goodness-of-fit is captured by the residual sum of squares for which smaller values

indicate a better model fit. For the AIC and BIC criteria this is encompassed by the

log-likelihood which in turn also contains the residual sum of squares, in addition to

an estimate for the linear model residual standard error. Similarly, a small value of

the negative log-likelihood is preferred. The over-fitting penalisation comes via the

inclusion of pI in each of the expressions. Note that BIC is a variant on AIC obtained

by substituting 2 for log(n) and thus constitutes a heavier over-fitting penalty for

n ≥ 8. This trade-off is achieved for small values of Mallows’ Cp, AIC and BIC,

whilst larger values are preferred for the adjusted R2.

Let VI denote a model selection criterion evaluated for the candidate linear

model. Stepwise selection routines aim to minimise VI . We introduce an alternative

adjusted R2 criterion in Equation (A.0.5) for which minimisation is equivalent to

maximisation of the adjusted R2 as stated in Equation (A.0.4).

˜(
Adjusted R2

)
I

= RSSI
(n− pI − 1) (A.0.5)

Stepwise selection methods consider candidate linear models in the scope between the

model containing an intercept only, through to a full model. Let x denote the vector

of all linear model predictors whilst xI be a sub-vector of predictors contained in I. In

the context of emulation, these are candidates for the deterministic function gij(xAi)

described in Section 2.4.1. Note that each sub-model must contain an intercept term,

whilst before any interaction terms can be included, each of the corresponding main

effect linear predictors must be included within the candidate linear model. The
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both directions, forwards and backwards stepwise selection algorithms are presented

in Algorithms 2 to 4 respectively where “compute” is used to implicitly mean fit

the linear model and evaluate the model selection criterion. The notation I ∪ {j}

denotes the addition of a new predictor j /∈ I, and I \ {j} denotes the removal of a

predictor j from I.

Model selection is a challenging and potentially computationally demanding task.

In order to fully evaluate all possible models using every combination of predictors

from a collection would require the fitting of 2|x| models, a time consuming task,

even for a modest number of predictors. Stepwise selection methods alleviate these

difficulties by only considering a subset of these potential models based on the current

state of the identified set of predictors at each iteration of the algorithm. Whilst

this is computationally advantageous, this has the drawback that it is possible to

fail to identify the best model with respect to the model selection criterion, although

experience suggests that an adequately good model close to the optimal is often

returned.

Algorithm 2: Both Directions Stepwise Selection
Result: Stepwise selected linear model containing predictors in I which

approximately minimises VI .
Select an initial subset I0 of predictors from x, including an intercept;
Fit a linear model and compute V0 = VI0 ;
Let I = I0 and VI = V0;
repeat

Compute V f = minj /∈I VI∪{j} and set jf = arg minj /∈I VI∪{j};
Compute V b = minj∈I VI\{j} and set jb = arg minj∈I VI\{j};
Let V ′ = min{V f , V b};
if V ′ = V f then

Let I ′ = I ∪ {jf};
else

Let I ′ = I \ {jb};
end
if V ′ ≤ VI then

Update VI = V ′;
Update I = I ′;

end
until V ′ > VI ;
return I
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Algorithm 3: Forward Selection
Result: Forward selected linear model containing predictors in I which

approximately minimises VI .
Let the initial subset of predictors I0 contain an intercept only;
Fit a linear model and compute V0 = VI0 ;
Let I = I0 and VI = V0;
repeat

Compute V ′ = minj /∈I VI∪{j};
Set j′ = arg minj /∈I VI∪{j};
Let I ′ = I ∪ {j′};
if V ′ ≤ VI then

Update VI = V ′;
Update I = I ′;

end
until V ′ > VI ;
return I

Algorithm 4: Backward Elimination
Result: Backward selected linear model containing predictors in I which

approximately minimises VI .
Let the initial subset I0 contain all predictors in x;
Fit a linear model and compute V0 = VI0 ;
Let I = I0 and VI = V0;
repeat

Compute V ′ = minj∈I VI\{j};
Set j′ = arg minj∈I VI\{j};
Let I ′ = I \ {j′};
if V ′ ≤ VI then

Update VI = V ′;
Update I = I ′;

end
until V ′ > VI ;
return I



Appendix B

Matrix Identities

In the derivation of the Bayes linear emulator adjustment formulae in Section 2.4.5,

two matrix identities for the inverse of sums of matrices are utilised. These are

the Sherman-Morrison-Woodbury formula in Lemma B.0.1 [118], and an alternat-

ive expression in Corollary B.0.3. In addition, a further identity is introduced in

Lemma B.0.2 which is used in the proof of Corollary B.0.3.

Lemma B.0.1 (Sherman-Morrison-Woodbury Formula). Let A ∈ Rp×p, B ∈

Rp×n, C ∈ Rn×n and D ∈ Rn×p be matrices for which A−1 and C−1 exist. Then the

following identity holds:

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 (B.0.1)

Proof. Equation (B.0.1) holds if the right-hand side is both a left- and a right-inverse

of A+BCD. Define Ik to be the k × k identity matrix.

It is first shown that it is a right-inverse.

(A+BCD)(A−1 − A−1B(C−1 +DA−1B)−1DA−1)

= Ip −B(C−1 +DA−1B)−1DA−1

+BCDA−1 −BCDA−1B(C−1 +DA−1B)−1DA−1

= Ip −B{(In + CDA−1B)(C−1 +DA−1B)−1 − C}DA−1

= Ip −B{C(C−1 +DA−1B)(C−1 +DA−1B)−1 − C}DA−1
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= Ip −B{C − C}DA−1

= Ip

Next, it is shown to be a left-inverse.

(A−1 − A−1B(C−1 +DA−1B)−1DA−1)(A+BCD)

= Ip + A−1BCD − A−1B(C−1 +DA−1B)−1D

− A−1B(C−1 +DA−1B)−1DA−1BCD

= Ip − A−1B{(C−1 +DA−1B)−1(In +DA−1BC)− C}D

= Ip − A−1B{C − C}D

= Ip

Hence the Sherman-Morrison-Woodbury formula holds.

Lemma B.0.2. Let U ∈ Rp×n and V ∈ Rn×p. Assuming that (Ip + UV )−1 and

(In + V U)−1 exist, then the following identity holds:

(Ip + UV )−1U = U(In + V U)−1 (B.0.2)

Proof. Start from the equality:

U + UV U = U(In + V U) = (Ip + UV )−1U

Applying (In + V U)−1 on the right and (Ip + UV )−1 on the left:

⇐⇒ (Ip + UV )−1U = U(In + V U)−1

This proves the identity in Equation (B.0.2).

Corollary B.0.3. Let A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×n and D ∈ Rn×p be matrices

for which A−1 and C−1 exist. Then the following identity holds:

A−1B(DA−1B + C−1)−1 = (BCD + A)−1BC (B.0.3)
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Proof.

A−1B(DA−1B + C−1)−1 = A−1B(CDA−1B + In)−1C

Applying Lemma B.0.2 with U = B and V = CDA−1.

= A−1(BCDA−1 + Ip)−1BC

= (BCDA−1 + Ip)BC

= (BCD + A)−1BC

Hence this proves Corollary B.0.3.
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