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Abstract: A novel meta-heuristic algorithm named Egret Swarm Optimization Algorithm (ESOA)
is proposed in this paper, which is inspired by two egret species’ hunting behavior (Great Egret
and Snowy Egret). ESOA consists of three primary components: a sit-and-wait strategy, aggressive
strategy as well as discriminant conditions. The learnable sit-and-wait strategy guides the egret to
the most probable solution by applying a pseudo gradient estimator. The aggressive strategy uses
random wandering and encirclement mechanisms to allow for optimal solution exploration. The
discriminant model is utilized to balance the two strategies. The proposed approach provides a
parallel framework and a strategy for parameter learning through historical information that can
be adapted to most scenarios and has well stability. The performance of ESOA on 36 benchmark
functions as well as 3 engineering problems are compared with Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Differential Evolution (DE), Grey Wolf Optimizer (GWO), and Harris Hawks
Optimization (HHO). The result proves the superior effectiveness and robustness of ESOA. ESOA
acquires the winner in all unimodal functions and reaches statistic scores all above 9.9, while the
scores are better in complex functions as 10.96 and 11.92.

Keywords: metaheuristic algorithm; swarm intelligence; egret swarm optimization algorithm;
constrained optimization

1. Introduction

General engineering applications involving manipulator control, path planning, and
fault diagnosis can be described as optimization problems. Since these problems are almost
non-convex, conventional gradient approaches are difficult to apply and frequently result in
local optima [1]. For this reason, meta-heuristic algorithms are being increasingly utilized
to solve such problems as they are able to find a sufficiently good solution, whilst not
relying on gradient information.

Meta-heuristic algorithms imitate natural phenomena through simulating animal and
environmental behaviours [2]. As shown in Figure 1, these algorithms are broadly inspired
by four concepts: the species evolution, the biological behavior, the human behavior as
well as the physical principles [3,4].

Evolution-based algorithms generate various solution spaces by mimicking the natu-
ral evolution of a species. Potential solutions are considered as members of a population,
which evolve over time towards better solutions through a series of cross-mutation and
Survival of the fittest. The Darwinian evolution-inspired Genetic Algorithm (GA) has
remarkable global search capabilities and has been applied in a variety of disciplines [5].
Comparable to GA, Differential Evolution (DE) has also shown to be able to adapt to a
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number of optimization problems [6]. In addition, evolutionary strategies [7] and evolution-
ary programming [8] are among some of the well-known algorithms in this classification.
Physics-based approaches apply the physical law as a way to achieve an optimal solution.
Common examples include: Simulated Annealing (SA) [9], Gravitational Search Algo-
rithm (GSA) [10], Black Hole Algorithm (BH) [11], and Multi-Verse Optimizer (MVO) [12].
Human behavior-based algorithms simulate the evolution of human society or human
intelligence. Examples include the Harmony Search Algorithm (HSA) [13], Queuing Search
Algorithm (QSA) [14], as well as the Brain Storm Optimization Algorithm (BSO) [15].

Figure 1. The taxonomy of existing meta-heuristics algorithm.

Biologically inspired algorithms mimic behaviours like hunting, pathfinding, growth,
and aggregation in order to solve numerical optimization problems. A well known example
of this is Particle Swarm Optimization (PSO), a swarm intelligence algorithm inspired by
bird flocking behavior [16]. PSO leverages information exchange among individuals in
a population to develop the population’s motion from disorder to order, resulting in the
location of an optimal solution. Alternatively, ref. [17] was inspired by the behaviour
of ant colonies, proposing the Ant Colony Optimization (ACO) algorithm. In ACO, a
feasible solution to the optimization problem is represented in terms of the ant pathways,
where a greater number of pheromone is deposited on shorter paths. The concentration of
pheromone collecting on the shorter pathways steadily rises over time, which causes the
ant colony to focus on the optimal path due to the influence of positive feedback.

With the widespread application of PSO and ACO in areas such as robot control, route
planning, artificial intelligence, and combinatorial optimization, meta-heuristic algorithms
have enabled a plethora of excellent research. Authors in [18] presented Grey Wolf Op-
timizer (GWO) based on the hierarchy and hunting mechanism of grey wolves. In [19],
authors applied GWO to restructure a maximum power extraction model for a photo-
voltaic system under a partial shading situation. GWO has also been utilized in non-linear
servo systems to tune the Takagi-Sugeno parameters of the proportional-integral-fuzzy
controller [20]. Paper [21] introduced the Sparrow Search Algorithm (SSA), inspired by the
collective foraging and anti-predation behaviours of sparrows. Authors in [22] suggested
a novel incremental generation model based on a chaotic Sparrow Search Algorithm to
handle large-scale data regression and classification challenges. An integrated optimiza-
tion model for dynamic reconfiguration of active distribution networks was built with a
multi-objective SSA by [23]. Authors in [24] constructed a tiny but efficient meta-heuristic
algorithm named Beetle Antennae Search Algorithm (BAS), through modelling the beetle’s
predatory behavior. Paper [25] integrated BAS with a recurrent neural network to create
a novel robot control framework for redundant robotic manipulator trajectory planning
and obstacle avoidance. BAS is applied in [26] to optimize the initial parameters of a
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convolutional neural network for medical imaging diagnosis, resulting in high accuracy
and a short period of tuning time.

In recent years, there has been a proliferation of swarm-based algorithms for various situ-
ations due to the massive adoption of swarm intelligence in engineering applications [27–36].
Authors in [37] proposed a novel meta-heuristic algorithm named Artificial Hummingbird
Algorithm (AHA), influenced by the flight skills and hunting strategies of hummingbirds.
In addition, paper [38] introduced the African Vultures Optimization Algorithm (AVOA)
inspired by vultures’ navigation behavior. Meanwhile, the Starling Maturation Optimizer
(SMO) and Orca Predation Algorithm (OPA) were proposed in [39,40] to suit complex opti-
mization problems by mimicking bird migration and orca hunting strategies. Other notable
examples include Aptenodytes Forsteri Optimization (AFO) inspired by penguin hugging
behaviour [41], Golden Eagle Optimizer (GEO) inspired by golden eagle feeding trails [42],
Chameleon Swarm Algorithm (CSA) inspired by Chameleon dynamic hunting routes [43],
Red Fox Optimization Algorithm (RFOA) inspired by red fox habits, and Elephant Clan
Optimization (ECO) inspired by elephant survival strategies [44,45]. Unlike most other
bio-inspired methods, authors in [46] proposed a Quantum-based Avian Navigation Opti-
mizer Algorithm (QANA) that contains a V-echelon topology to disperse information flow
and a quantum mutation strategy to enhance search efficiency. Overall, it can be observed
that swarm intelligence algorithms have gradually progressed from simply imitating the
appearance of animal behavior to modelling the behavior with a deeper understanding of
their underlying principles.

Not only that, the evolutionary algorithm performs well on some benchmark
functions [47–52]. Paper [53] introduced IPOP-CMA-ES utilizing CMA-ES [54] within a
restart method with the increasing population size for each restart. Paper [55] integrated
IPOP-CMA-ES with an iterative local search as ICMAES-ILS that generated better solution
adopted in the rest of evaluations. Authors in [56] developed DRMA that utilizing CMA-ES
as the local searcher in GA and dilivering solution space into different parts for global opti-
mization. In addition, there are a series of evolutionary algorithms such as GaAPPADE [57],
MVMO14 [58], L-SHADE [59], L-SHADE-ND [60] and SPS-L-SHADE-EIG [61].

Although meta-heuristics algorithms have shown to be well suited to various engi-
neering applications, as Wolpert analyses in [62], there is no near-perfect method that can
deal with all optimization problems. To put it another way, if an algorithm is appropriate
for one class of optimization problems, it may not be acceptable for another. Furthermore,
the search efficiency of an algorithm is inversely related to its computational complexity,
and a certain amount of computational consumption needs to be sacrificed in order to
enhance search efficiency. However, the No Free Lunch (NFL) theorem has assured that the
field has flourished, with new structures and frameworks for meta-heuristics algorithms
constantly being developed.

For instance, most metaheuristic algorithms contain just a single strategy, typically a
best solution following strategy, and without learnable parameters, which are just deforma-
tions built on stochastic optimization. Although this category of algorithms performs well
on CEC benchmark functions, they produce disappointing results in praticle application
settings because of lacking feedback and parameter-learning mechanism [63,64]. In the
field of robotics, the control of a manipulator is a continuous process. If the original meta-
heuristic algorithm is utilized, the algorithm needs to iterate and converge again at each
solution, resulting in a possible discontinuity in the solution space, which affects the control
effect [65]. In contrast, the method proposed in this paper includes a learnable tangent sur-
face estimation parameter, which makes it possible to have a base reference to assist in each
solution, reducing computational difficulty while ensuring continuity of understanding.
Despite the proliferation of studies into meta-heuristic algorithms, the balance between
exploitation and exploration has remained a significant topic of research [66,67]. The field
requires a framework that balances both, enabling algorithms to be more adaptable and
stable in a wider range of situations. This paper proposes a novel meta-heuristic algorithm
(Egret Swarm Optimization Algorithm, ESOA) to examine how to improve the balance
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between the algorithm’s exploration and exploitation. The contributions of Egret Swarm
Optimization Algorithm include:

• Proposing a parallel framework to balance exploitation and exploration with excellent
performance and stability.

• Introducing a sit-and-wait strategy guided by a pseudo-gradient estimator with learn-
able parameters.

• Introducing an aggressive strategy controlled by a random wandering and encir-
clement mechanism.

• Introducing a discriminant condition that are capable of ensembling various strategies.
• Developing a pseudo-gradient estimator referenced to historical data and swarm

information.

The rest of the paper is structured as follows: Section 2 depicts the observation of egret
migration behavior as well as the development of the ESOA framework and mathematical
model. The comparison of performance and efficiency in CEC2005 and CEC2017 between
ESOA and other algorithms is demonstrated in Section 3. The result and convergence of
two engineering optimization problems utilizing ESOA are discussed in Section 4. Section 5
represents the conclusion of this paper as well as outlines further work.

2. Egret Swarm Optimization Algorithm

This section reveals the inspiration of ESOA. Then, the mathematical model of the
proposed method is discussed.

2.1. Inspiration

The egret is the collective term for four bird species: the Great Egret, the Middle Egret,
the Little Egret, and the Yellow-billed Egret, all of which are known for their magnificent
white plumage. The majority of egrets inhabit coastal islands, coasts, estuaries, and rivers,
as well as lakes, ponds, streams, rice paddies, and marshes near their shores. Egrets are
usually observed in pairs, or in small groups, however vast flocks of tens or hundreds can
also be spotted [68–70]. Maccarone observed that Great Egret fly at an average speed of
9.2 m/s and balance their movements and energy expenditure whilst hunting [71]. Due to
the high consumption of energy when flying, the decision to prey typically necessitates
a thorough inspection of the trajectory to guarantee that more energy would be obtained
through the location of food than what would be expended through flight. Compared to
Great Egrets, Snowy Egrets tend to sample more sites, and they will observe and select
the location where other birds have already discovered food [72]. Snowy Egrets often
adopt a sit-and-wait strategy, a scheme that involves observing the behavior of prey for a
period of time and then anticipating their next move in order to hunt with the least energy
expenditure [73]. Maccarone indicated in [74] that not only do Snowy Egrets applying the
strategy consume less energy, but they are also 50% more efficient at catching prey than
other egrets. Although the Great Egret adopt a higher exertion strategy to pursue prey
aggressively, they are capable of capturing larger prey since it is rare for large prey to travel
through an identical place multiple times [75]. Overall, Great Egrets with an aggressive
search strategy balance high energy consumption for potentially greater returns, whereas
Snowy Egrets with a sit-and-wait approach, balance lower energy expenditure for smaller
but more reliable profits [74].

2.2. Mathematical Model and Algorithm

Inspired by the Snowy Egret’s sit-and-wait strategy and the Great Egret’s aggres-
sive strategy, ESOA has combined the advantages of both strategies and constructed a
corresponding mathematical model to quantify the behaviors. As shown in the Figure 2,
ESOA is a parallel algorithm with three essential components: the sit-and-wait strategy,
the aggressive strategy, and the discriminant condition. There are three Egrets in one Egret
squad, Egret A applies a guiding forward mechanism while Egret B and Egret C adopt
random walk and encircling mechanisms respectively. Each part is detailed below.
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Figure 2. The Framework Of Egret Swarm Optimization Algorithm.

The individual roles and search preferences of the Egret Squad can be seen in Figure 3.
Egret A will estimate a descent plane and search based on the gradient of the plane param-
eters, Egret B performs a global random wander, and Egret C selectively explores based on
the location of better egrets. In this way, ESOA will be more balanced in terms of exploita-
tion and exploration and will be capable of performing fast searches for feasible solutions.
Unlike gradient descent, ESOA refers to historical information as well as stochasticity in the
gradient estimation, meaning it is less likely to fall into the saddle point of the optimization
problem. ESOA also differs from other meta-heuristic algorithms by estimating the tangent
plane of the optimization problem, enabling a rapid descent to the current optimal point.

Figure 3. The Detailed Search Behavior of ESOA.

2.2.1. Sit-and-Wait Strategy

Observation Equation: Assuming that the position of the i-th egret squad is xi ∈ Rn, n
is the dimension of problem, A(∗) is the Snowy Egret’s estimate approach of the possible
presence of prey in its own current location. ŷ is the estimation of prey in current location,
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ŷi = A(xi), (1)

then the estimate method could be parameterized as,

ŷi = wi · xi, (2)

where the wi ∈ Rn is the weight of estimate method. The error ei could be described as,

ei = ‖ŷi − yi‖2/2. (3)

Meanwhile, ĝi ∈ Rn, the practical gradient of ωi, can be retrieved by taking the partial
derivative of wi for the error Equation (3), and its direction is d̂i.

ĝi =
∂êi
∂wi

=
∂‖ŷi − yi‖2/2

∂wi

= (ŷi − yi) · xi,

d̂i = ĝi/|ĝi|.

(4)

Figure 4 demonstrates the Egret’s following behavior, where Egrets refer to better
Egrets during preying, drawing on their experience of estimating prey behavior and
incorporating their own thoughts. dh,i ∈ Rn is the directional correction of the best location
of the squad while dg,i ∈ Rn is the the directional correction of the best location of all squad.

dh,i =
xibest − xi
|xibest − xi|

· fibest − fi
|xibest − xi|

+ dibest. (5)

dg,i =
xgbest − xi∣∣∣xgbest − xi

∣∣∣ ·
fgbest − fi∣∣∣xgbest − xi

∣∣∣ + dgbest. (6)

The integrated gradient gi ∈ Rn can be represented as below, and rh ∈ [0, 0.5),
rg ∈ [0, 0.5):

gi = (1− rh − rg) · d̂i + rh · dh,i + rg · dg,i. (7)

An adaptive weight update method is applied here [76], β1 is 0.9 and β2 is 0.99:

mi = β1 ·mi + (1− β1) · gi,

vi = β1 · vi + (1− β1) · g2
i ,

wi = wi −mi/
√

vi.

(8)

According to Egret A’s judgement of the current situation, the next sampling location
xa,i can be described as,

xa,i = xi + stepa · exp(−t/(0.1 · tmax)) · hop · gi, (9)

ya,i = f (xa,i), (10)

where t and tmax is the current iteration time and the maximum iteration time, while hop is
the gap between the low bound and the up bound of solution space. stepa ∈ (0, 1] is Egret
A’s step size factor. ya,i is the fitness of xa,i.
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Figure 4. Following behaviour of Egret Swarms as an effective way of gradient estimation.

2.2.2. Aggressive Strategy

Egret B tends to randomly search prey and its behavior could be depicted as below,

xb,i = xi + stepb · tan (rb,i) · hop/(1 + t), (11)

yb,i = f (xb,i), (12)

where rb,i is a random number in (−π/2, π/2), xb,i is Egret B’s expected next location and
yb,i is the fitness.

Egret C prefers to pursue prey aggressively, so the encircling mechanism is used as
the update method of its position:

Dh = xibest − xi,

Dg = xgbest − xi,

xc,i = (1− ri − rg) · xi + rh ·Dh + rg ·Dg,

(13)

yc,i = f (xc,i). (14)

Dh is the gap matrix between current location and the best position of this Egret squad
while Dg compares with the best location of all Egret squads. xc,i is the expected location of
Egret C. stepb ∈ (0, 1] is Egret B’s step size factor. rh and rg are random numbers in [0, 0.5).

2.2.3. Discriminant Condition

After each member of the Egret squad has decided on its plan, the squad selects the
optimal option and takes the action together. xs,i is the solution matrix of i-th Egret squad:

xs,i = [xa,i xb,i xc,i], (15)

ys,i = [ya,i yb,i yc,i], (16)

ci = argmin(ys,i), (17)

xi =

{
xs,i|ci i f ys,i|ci < yi or r < 0.3,
xi else

. (18)

If the minimal value of ys,i is better than current fitness yi, the Egret squad accepts
the choice. Or if the random number r ∈ (0, 1) is less than 0.3, which means there is 30%
possibility to accept a worse plan.
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2.3. Pseudo Code

Based on the discussion above, the pseudo-code of ESOA is constructed as Algorithm 1,
which contains two main functions to retrieve the Egret squad’s expected position matrix
and a discriminant condition to choose a better scheme. ESOA requires an initial matrix
x0 ∈ RP×N of the P size Egret Swarm position as input, while it returns the optimal position
xbest and fitness ybest.

We will analyse the computational complexity of each part of ESOA in turn and
provide the final results. For sit-and-wait strategy, Equation (4) requires n + 1, Equations (5)
and (6) need the same 2n + 1 while Equation (7) require 3n + 1 floating-point operators.
Weight updating Equation (8) and position search need 2n + 4 as well as n + 1 respectively.
Then the total operators of sit-and-wait strategy is 11n + 9. As for aggressive strategy,
random wander Equation (11) and encircling mechanism require both n + 1 then in total
2n + 2 operators. Discriminant condition need n operators. So ESOA requires a total of
14n + 11 floating-point operators and then its computational complexity is O(n). Assuming
that the population size of ESOA is k, the complexity then becomes O(kn).

Algorithm 1 Egret Swarm Optimization Algorithm

Input: x0: the P size Egret Swarm position ∈ RP×N , stepa as the Egret A’s step size factor
while stepb as the Egret B’s;

Output: xbest: Optimal or approximate optimal solution; ybest: Optimal or approximate
optimal fitness;

1: function SITANDWAIT(x)
2: Update the integrated gradient g via Equations (4)–(7)
3: Update the weight of observation method ω by Equation (8)
4: Get the expected position xa of Egret A by Equation (9)
5: Retrieve the Egret A’s fitness ya
6: return xa, ya
7: end function
8: function AGGRESSIVE(x)
9: Get the expected position xb of Egret B by Equation (11)

10: Get the expected position xc of Egret C by Equation (13)
11: Retrieve the fitness of Egret B yb and Egret C yc
12: return xb, xc, ya, ya
13: end function
14: while t < tmax do
15: xt

a, yt
a ← SITANDWAIT(xt)

16: xt
b, xt

c, yt
b, yt

c ← AGGRESSIVE(xt)
17: Get next position xt+1 via Equations (15)–(18)
18: end while
19: return xbest, ybest

2.4. Parameters

The two parameters required for ESOA are the step factors stepa ∈ (0, 1] and stepb ∈
(0, 1] for Egret A and Egret B respectively. Larger step coefficients represent more aggressive
exploration behavior. Table 1 shows how the parameters required for ESOA compare to
other state-of-the-art algorithms. ESOA requires two parameters, which can be easily
adjusted to obtain better optimization results when optimizing the problem. In fact, as
ESOA’s Equation (8) in the sit-and-wait strategy contains adaptive mechanisms, it is able
to respond to different parameter changes by self-adjusting. In the general case, both
stepa and stepb can be set to 0.1 to deal with most problems. Figure 5 presents the effect
of various stepa and stepb on the step size. stepa larger a will significantly increase the
search step of Egret stepa during the original iterations, but will gradually close the gap
with a smaller stepa after many iterations. In simple applications or unimodal problems,
stepa can be appropriately tuned up for faster convergence, and in multimodal problems
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or complex applications, stepa is appropriately tuned down for scenarios that require
continuous optimization. A larger value of stepb means that Egret B will wander randomly
in larger steps, suitable for complex scenarios, to help ESOA perform a larger search and
jump out of the local optimum solution where possible.

(a) stepa (b) stepb

Figure 5. (a,b) represent the effect of different stepa and stepb on the step size, respectively.

Table 1. The Comparison of Required Parameters.

Algorithm Mechanism Parameters

PSO [16] Bird Predation w, c1, c2, vmax, vmin

GA [5] Mutation, Crossover
Selection Rate, Crossover Rate,

Mutation Rate
GSO [77] Galactic Motion Subswarm, EPmax, c1, c2, c3, c4
CSA [43] Hiding Place Awareness Probability, Flight Length
FFA [78] Multiswarm W, Q, KValue, α, β

GWO [18] Social Hierarchy, Encircling Prey a
WOA [79] Whale Predation a, b

JS [80] Active And Passive Motions β, γ
ALSO [81] Balanced Lumping r1, r2

ESOA Predation Strategy stepa, stepb

3. Experimental Results and Discussion

In this section, the quantified performance of the ESOA algorithm is evaluated by
examining 36 optimization functions. The first 7 unimodal functions are typical benchmark
optimization problems presented in [8] and the mathematical expressions, dimensions,
range of the solution space as well as the best fitness are indicated in Table 2. The final result
and partial convergence curves are shown in Tables A3 and A4 respectively. The remaining
29 test functions introduced in [82] are constructed by summarizing valid features from
other benchmark problems, such as cascade, rotation, shift as well as shuffle traps. The
overview of these functions are shown in Table 3 and the comparison is indicated in
Table A5. All of the experiments are in 30 dimensions, whilst the algorithms used have
50 population sizes and are limited to a maximum of 500 iterations.

Researchers generally classify optimization test functions as Unimodal, Simple Multi-
modal, Hybrid, and Composition Functions. A 3D visualization of several of these functions
are shown in Figure 6. As Unimodal Functions, (a) and (b) are F1 as well as F4 in CEC 2005,
which only have one global minimum value without local optima. (c) and (d), the Simple
Multimodal problems, retain numerous local optimal solution traps and multiple peaks
to impede the exploration of global optimal search. Hybrid Multimodal functions are a
series of problems adding up several different test functions with well-designed weights,
and due to the dimension restriction, these are hard to reveal in the 3D graphics. (e), (f),



Biomimetics 2022, 7, 144 10 of 34

(g) as well as (h) are Composition Functions, the non-linear combination of numerous test
functions. These functions are extremely hard to optimize because of the various local traps
and spikes, all of which are designed to impede the algorithm’s progress.

ESOA was compared with three traditional algorithms (PSO [16], GA [5], DE [6]) as
well as two novel methods (GWO [20], HHO [83]) in the 37 benchmark functions. The
numerical results from a maximum of 500 iterations is presented in Tables A3 and A5. The
initial input for each algorithm is a random matrix with 30 dimensions and 50 populations
in [−100, 100]. The specific variables w, c1, and c2 in PSO are 0.8, 0.5, and 0.5 while the
mutation value is 0.001 in GA.

(a) F1 in CEC 2005 (b) F4 in CEC 2005 (c) F6 in CEC 2017 (d) F8 in CEC 2017

(e) F22 in CEC 2017 (f) F24 in CEC 2017 (g) F26 in CEC 2017 (h) F28 in CEC 2017

Figure 6. (a,b) are Unimodal Functions, (c,d) are Simple Multimodal Functions, (e–h) are Composi-
tion Functions.

Table 2. Unimodal test function.

Function Dim Range Fmin

F1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0
F2(x) = ∑n

i=1 |xi|+ ∏n
i=1 |xi| 30 [−10, 10] 0

F3(x) = ∑n
i=1(∑

i
j=1 xj)

2 30 [−100, 100] 0
F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0
F5(x) = ∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [−30, 30] 0
F6(x) = ∑n

i=1(bxi + 0.5c2) 30 [−100, 100] 0
F7(x) = ∑n

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28] 0
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Table 3. Summary of the CEC’17 Test Functions.

No. Functions (Fi) Fmin

Unimodal
Functions

1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Zakharov Function 200

Simple
Multimodal
Functions

3 Shifted and Rotated Rosenbrock’s Function 300
4 Shifted and Rotated Rastrigin’s Function 400
5 Shifted and Rotated Expanded Scaffer’s F6 Function 500
6 Shifted and Rotated Lunacek Bi_Rastrigin Function 600
7 Shifted and Rotated Non-Continuous Rastrigin’s Function 700
8 Shifted and Rotated Levy Function 800
9 Shifted and Rotated Schwefel’s Function 900

Hybrid
Functions

10 Hybrid Function 1 (N = 3) 1000
11 Hybrid Function 2 (N = 3) 1100
12 Hybrid Function 3 (N = 3) 1200
13 Hybrid Function 4 (N = 4) 1300
14 Hybrid Function 5 (N = 4) 1400
15 Hybrid Function 6 (N = 4) 1500
16 Hybrid Function 6 (N = 5) 1600
17 Hybrid Function 6 (N = 5) 1700
18 Hybrid Function 6 (N = 5) 1800
19 Hybrid Function 6 (N = 6) 1900

Composition
Functions

20 Composition Function 1 (N = 3) 2000
21 Composition Function 2 (N = 3) 2100
22 Composition Function 3 (N = 4) 2200
23 Composition Function 4 (N = 4) 2300
24 Composition Function 5 (N = 5) 2400
25 Composition Function 6 (N = 5) 2500
26 Composition Function 7 (N = 6) 2600
27 Composition Function 8 (N = 6) 2700
28 Composition Function 9 (N = 3) 2800
29 Composition Function 10 (N = 3) 2900

3.1. Computational Complexity Analysis

The computational complexity test was performed using a laptop with windows 11,
16 GB of RAM, and an i5-10210U quad core CPU. Table 4 indicates the cost time from
100 runs between ESOA and other algorithms on the CEC05 benchmark functions in
30 dimensions. In general, ESOA is medium in terms of computational complexity, with F4
taking the shortest time of all the algorithms and F7 the longest.

Table 4. The average cost time of each algorithm for the CEC05 problem, Dimension = 30, Maximum
Iterations = 500.

ESOA PSO [16] GA [5] DE [6] GWO [18] HHO [83]

F1 0.743205 0.813564 0.932624 0.69359 0.710619 0.820192
F2 1.3374 1.0858 1.268 0.938598 0.9772 1.1564
F3 4.4884 4.35339 4.5192 4.2196 4.2218 6.98319
F4 0.577956 0.682438 0.95496 0.630826 0.580365 0.809334
F5 1.08654 0.848078 1.10613 0.822341 0.743037 1.07561
F6 0.761223 0.75511 1.01592 0.718751 0.646592 0.899095
F7 1.81767 1.05312 1.3103 1.03578 0.953007 1.32848

3.2. Evaluation of Exploitation Ability

The exploration and exploitation measurement method utilized in this paper is based
on computing the dimension-wise diversity of the meta-heuristic algorithm population in
the following way [84,85].
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Divj =
1
n

n

∑
i=1

median(xj)− xj
i ,

Div =
1
D

D

∑
j=1

Divj,
(19)

where median(xj) means the median value of algorithm swarm in dimension j, whereas xj
i

is the value of individual i in dimension j, n is the population size. Then Div presents the
average value of the whole swarm.

Moreover, the percentage of exploration and exploitation based on dimension-wise
diversity could be calculated as below,

Xpl% = (
Div

Divmax
) · 100,

Xpt% = (
|Div− Divmax|

Divmax
) · 100,

(20)

where Xpl% is the exploration value while Xpt% indicates the exploitation value. Divmax
means the maximum diversity along with the whole iteration process. The exploration,
exploitation as well as incremental-decremental are shown in Figure 7. Increment means
the increasing ability of algorithms’ exploration while decrement presents the contrary.
We can find that in most unimodal benchmark functions, due to the fast convergence
of ESOA, all agents search the optimal solution swiftly and are clustered together about
almost 10 iterations. And in complex functions, ESOA is computed after some iterations
and all agents will gradually approach the optimal solution and are distributed around the
optimal solution, which is expressed as exploitation gradually overtaking exploration.

The Unimodal Function is utilized to evaluate the convergence speed and exploitation
ability of the algorithms, as only one global optimum point is present. As shown in Table 5,
ESOA demonstrates outstanding performance from F1 to F4. ESOA trails GWO and HHO in
F5 to F7, however, the result is considerably superior to PSO, GA, as well as DE. Therefore,
the excellent exploitation ability of ESOA is evident here.

Table 5. Comparison Of Optimization Results Under The Unimodal Functions, Dimension = 30,
Maximum Iterations = 500.

F ESOA PSO [16] GA [5] DE [6] GWO [18] HHO [83]

ave std ave std ave std ave std ave std ave std

F1 0.00 0.00 1.89× 104 1.10× 104 8.87 1.69× 101 7.94× 10−5 1.99× 10−5 8.85× 10−37 5.70× 10−37 1.09× 10−74 1.89× 10−74

F2 0.00 0.00 1.12× 103 1.61× 102 1.76 9.19× 10−1 3.25× 10−2 6.06× 10−3 1.64× 10−22 2.84× 10−22 9.03× 10−43 1.56× 10−42

F3 0.00 0.00 3.72× 104 1.10× 104 1.21× 104 3.07× 103 1.88× 104 3.08× 103 2.54× 10−22 2.75× 10−22 2.58× 10−39 4.46× 10−39

F4 0.00 0.00 2.98× 101 6.32 2.80× 101 2.79 2.73 1.82× 10−1 5.16× 10−22 3.86× 10−22 2.58× 10−39 4.46× 10−39

F5 2.81× 101 3.46× 10−1 1.01× 1010 6.31× 109 2.55× 103 4.34× 103 1.75× 102 4.59× 101 1.24× 10−21 9.80× 10−22 4.96× 10−38 8.00× 10−38

F6 5.20 3.82× 10−1 2.04× 104 1.24× 104 6.25× 10−1 8.51× 10−1 1.21× 10−4 3.45× 10−5 1.14× 10−21 1.05× 10−21 5.00× 10−38 7.97× 10−38

F7 2.26× 10−5 2.25× 10−5 7.64× 108 5.48× 108 3.05× 101 3.40× 101 1.79× 10−1 2.47× 10−2 4.00× 10−10 6.93× 10−10 4.75× 10−38 8.11× 10−38
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(a) F1 dim = 30 (b) F4 dim = 30 (c) F7 dim = 30

(d) F2 dim = 100 (e) F4 dim = 100 (f) F6 dim = 100

(g) f3 dim = 30 (h) f4 dim = 30 (i) f22 dim = 30

(j) f23 dim = 30 (k) f24 dim = 30 (l) f26 dim = 30

Figure 7. The exploration and exploitation of ESOA in benchmark test.

3.3. Evaluation of Exploration Ability (F3–F19)

In the MultiModal Functions and Hybrid Functions, there are numerous local opti-
mum positions to impede the algorithm’s progress. The optimization difficulty increases
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exponentially with rising dimensions, which are useful for evaluating the exploration
capability of an algorithm. The result of F3–F19 shown in Table A5 is clear evidence of the
remarkable exploration ability of ESOA. In particular, ESOA has superior performance to
the other five algorithms for the average fitness on F18. Because of the aggressive strategy
component of ESOA, it is capable of overcoming the interference from numerous local
optimum points in the exploration of the global solution.

3.4. Comprehensive Performance Assessment (F20–F29)

Composition Functions are a difficult type of test function that require a good balance
between exploitation and exploration. They are usually employed to undertake compre-
hensive evaluations of algorithms. The performance of each algorithm in F20–F29 is shown
in Table A5, the average fitness of ESOA in each test function is extremely competitive
when compared to the other listed algorithms. Especially in F22, ESOA outperforms the
other approaches and reaches 2346 average fitness while the second method (DE) only
obtains 3129. In fact, ESOA possesses a sit-and-wait strategy for exploitation as well as an
aggressive strategy for exploration. Both features are regulated by a discriminant condition
which is fundamental to the performance of the algorithm in such scenarios.

3.5. Algorithm Stability

In general, the standard deviation of an algorithm’s outcomes when it is repeatedly
applied to a problem can reflect its stability. It can be seen that the standard deviation of
ESOA is at the top results in both tables in most situations, and much ahead of the second
position in certain test functions. The stability of ESOA is hence proven.

Tables A1 and A2 are two-sided 5% t-test results of ESOA’s performance in CEC05
and CEC17, respectively, against other algorithms. Combining this with Tables A3–A5, it
can be concluded that ESOA outperforms the other algorithms by a wide margin on the
benchmark function.

In addition, for the field of evolutionary computation, hypothesis tests with parameters
are more difficult to fully satisfy the conditions, so the Wilcoxon non-parametric test has
been added to this section [86]. The Wilcoxon test results of ESOA’s performance in CEC05
and CEC17 are indicated in Tables A6 and A7, which could be an evidence that ESOA
demonstrates sufficient superiority.

Figures 8 and 9 show box plots of the results of multiple algorithms run 30 times
on two types of test functions, respectively, where Figure 6 has been ln-processed. The
results show that ESOA outperforms the other algorithms in most cases and has a smaller
box, indicating a more stable algorithm. In the unimodal test function, ESOA’s boxes are
significantly smaller than those of the other algorithms and have narrower boxes. With
most complex test functions, e.g., F3, F14, F22 as well as F26, ESOA has a significantly
smaller box than the other algorithms and its superiority can be clearly seen.

(a) (b) (c) (d)

Figure 8. Box plots of the various algorithms’ performances for the CEC05 benchmark function. (a) F1
dim = 30, (b) F3 dim = 30, (c) F4 dim = 30, (d) F7 dim = 30.
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(a) F1 dim = 30 (b) F3 dim = 30 (c) F4 dim = 30 (d) F5 dim = 30

(e) F6 dim = 30 (f) F7 dim = 30 (g) F8 dim = 30 (h) F9 dim = 30

(i) F10 dim = 30 (j) F11 dim = 30 (k) F12 dim = 30 (l) F13 dim = 30

(m) F14 dim = 30 (n) F15 dim = 30 (o) F16 dim = 30 (p) F18 dim = 30

(q) F19 dim = 30 (r) F21 dim = 30 (s) F22 dim = 30 (t) F23 dim = 30

(u) F25 dim = 30 (v) F26 dim = 30 (w) F27 dim = 30 (x) F28 dim = 30

Figure 9. Box Plots of the Various Algorithms’ Performances for the CEC17 Benchmark Function.
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3.6. Analysis of Convergence Behavior

The partial convergence curves of each method are shown in Figure 10. In (a), (b),
and (c), the Unimodal Functions, ESOA converges to near the global optimum in less
than 10 iterations while PSO, GA as well as DE have yet to uncover the optimal path for
fitness descent. The fast convergence in unimodal tasks allows ESOA to be applied to some
online optimization problems. In (d), (e), and (f), the Multimodal and Hybrid Functions,
after a period of searching the optimization results of ESOA will surpass almost all other
algorithms in most cases and would continue to explore afterward. ESOA’s effectiveness
in Multimodal problems indicates that it has notable potential to be applied in general
engineering applications. In (g), (h) as well as (i), the Composition problems, ESOA’s
search, and estimation mechanism allow for continuous optimization in most cases, and
ultimately for excellent results. The performance in the Composition Functions is evidence
of ESOA’s applicability for use in complex engineering applications.

To complete the experiment and to provide more favorable conditions for demonstrat-
ing the superiority of ESOA, we have added a supplementary experiment to this section.
The experiment uses the 100 and 200 dimensions of the CEC2005 benchmark, with five
fixed sets of CPU runtimes present in each experiment. Figure 11 shows the optimal value
searched for by each algorithm for a fixed CPU runtime, with a subplot of the logarithm
of the fitness value to show its differentiation. The Figure 11 reveals that ESOA always
remains the best at most fixed times, for instance (a), (b) and (c) in Figure 11, while the
second place is usually taken by GWO or HHO. This experiment further justice to the
superiority of ESOA.

(a) F1 in CEC 2005 (b) F2 in CEC 2005 (c) F3 in CEC 2005

(d) F4 in CEC 2005 (e) F3 in CEC 2017 (f) F4 in CEC 2017

Figure 10. Cont.
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(g) F11 in CEC 2017 (h) F16 in CEC 2017 (i) F22 in CEC 2017

(j) F24 in CEC 2017 (k) F26 in CEC 2017 (l) F27 in CEC 2017

Figure 10. (a–d) are Unimodal Functions, (e,f) are Simple Multimodal Functions, (g,h) are Hybrid
Functions, (i–l) are Composition Functions.

(a) F1 dim = 100 (b) F2 dim = 100 (c) F3 dim = 100

(d) F4 dim = 100 (e) F6 dim = 100 (f) F7 dim = 100

Figure 11. Cont.
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(g) F1 dim = 200 (h) F2 dim = 200 (i) F3 dim = 200

(j) F4 dim = 200 (k) F6 dim = 200 (l) F7 dim = 200

Figure 11. The performance of each algorithm in given CPU run time.

3.7. Statistical Analysis

In order to clarify the results of the comparison of the algorithms, this section will
count the number of winners, losers, scores as well as rankings of each algorithm on the
different test functions. The score is calculated as below,

Si =
n

∑
j=1

f j
i − Fj

min

Fj
max − Fj

min

+ Wi, (21)

where Si presents the score of i-th algorithm, f j
i means the optimal value of i-th algorithm

in j-th problem. Fj
min is the minimal value of all algorithm in j-th problem while Fj

max is the
maximal value. And Wi is the number of winners of i-th algorithm in all problems.

As the CEC 2005 results shown in Tables 6 and 7, ESOA consistently ranked first
among all algorithms in all dimensions, with HHO in second place. ESOA performed
particularly well in the 50, 100, and 200 dimensions, all close to 12, pulling away from
second place by almost 3 scores. The results of CEC2017 are shown in Table 8, for the simple
multimodal problem, ESOA was slightly behind GWO, but the scores were very close,
at 8.99378 and 9.01376 respectively. For the hybrid functions and composition functions,
ESOA was again the winner and outperformed others. As the data indicates, ESOA is
with the capability of fast convergence in simple problems while maintaining excellent
generalization and robustness for complex problems. The beneficial properties of ESOA
stem from the algorithmic framework’s coordination, where the discrimination conditions
effectively balance the exploitation of the sit-and-wait strategy with the exploration of the
aggressive strategy.

In order to better reflect the superiority of ESOA, two generic ranking systems, ELO
and TrueSkill, are utilized in additional ranking [87]. Tables 9–11 indicate the ranking
performance of each algorithm on the CEC05 and CEC17 benchmark test sets respectively.
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In CEC05 benchmark, ESOA reached first place under both ELO rankings and maintained
scores above 1450 (ELO applies benchmark score as [1500, 1450, 1400, 1350, 1300, 1250]),
and their performance at CEC17 was consistent. ESOA continues to show leadership in
the CEC05 test set with scores of 29+ and first place in all CEC17 results under TrueSkill’s
evaluation metrics.

In conclusion, this section revealed ESOA’s properties under various test functions.
The sit-and-wait strategy in ESOA allows the algorithm to perform fast descent on de-
terministic surfaces. ESOA’s aggressive strategy ensures that the algorithm is extremely
exploratory and does not readily slip into local optima. Therefore, ESOA has shown
excellent outcomes in both exploration and exploitation.

Table 6. The overall rank in CEC 2005 test functions (a), the bold numbers means the best performance
among whole competitors.

Dim = 30 Dim = 50 Dim = 100
Winner Loser Score Rank Winner Loser Score Rank Winner Loser Score Rank

ESOA 4 0 10.9997 1 5 0 11.9991 1 5 0 11.9996 1
PSO [16] 0 7 0 6 0 1 5.73968 4 0 1 5.40695 4
GA [5] 0 0 5.73443 5 0 4 1.32583 6 0 4 1.06203 6
DE [6] 0 0 6.40334 4 0 2 4.90238 5 0 2 4.07895 5

GWO [18] 0 0 7 3 0 0 6.99967 3 0 0 6.99396 3
HHO [83] 3 0 10 2 2 0 9 2 2 0 9 2

Table 7. The overall rank in CEC 2005 test functions (b), the bold numbers means the best performance
among whole competitors.

Dim = 200 Dim = 500 Dim = 1000
Winner Loser Score Rank Winner Loser Score Rank Winner Loser Score Rank

ESOA 5 0 11.9998 1 4 0 9.99987 1 4 0 9.99989 1
PSO [16] 0 1 5.77841 4 0 1 4.6879 4 0 1 4.59214 4
GA [5] 0 4 1.01684 6 0 3 1.05412 6 0 3 1.10947 6
DE [6] 0 2 4.44476 5 0 2 2.96067 5 0 2 2.73122 5

GWO [18] 0 0 6.97992 3 0 0 5.95328 3 0 0 5.82731 3
HHO [83] 2 0 9 2 2 0 8 2 2 0 8 2

Table 8. The overall rank in CEC 2017 test functions (a), the bold numbers means the best performance
among whole competitors.

Simple Multimodal Hybrid Functions Composition Functions
Winner Loser Score Rank Winner Loser Score Rank Winner Loser Score Rank

ESOA 2 0 8.99378 2 3 0 10.9602 1 4 0 11.9205 1
PSO [16] 0 3 1.94422 5 0 3 3.85613 5 0 2 2.82345 5
GA [5] 1 1 7.23141 4 4 0 10.5838 2 1 0 8.27331 3
DE [6] 3 1 8.71516 3 0 0 7.66103 4 2 0 9.07179 2

GWO [18] 2 0 9.01376 1 1 0 8.74242 3 1 0 7.97473 4
HHO [83] 0 3 1.62757 6 0 5 2.11415 6 0 6 0.674735 6

Table 9. The ELO and TrueSkill rank in CEC 2005 test functions (a), the bold numbers means the best
performance among whole competitors.

Dim = 30 Dim = 50 Dim = 100
ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank

ESOA 1470.39 1 31.258 1 1500.9 1 33.8623 1 1493.29 1 33.2997 1
PSO [16] 1383.44 4 24.7029 4 1345.27 4 21.2705 4 1375.78 4 23.8748 4
GA [5] 1273.48 6 15.5308 6 1288.79 6 17.187 6 1281.13 6 16.3589 6
DE [6] 1308.69 5 20.0568 5 1301.03 5 19.2287 5 1293.41 5 18.6219 5

GWO [18] 1397.08 3 27.9015 3 1389.45 3 27.2946 3 1381.83 3 26.6878 3
HHO [83] 1416.93 2 30.55 2 1424.56 2 31.1569 2 1424.56 2 31.1569 2
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Table 10. The ELO and TrueSkill rank in CEC 2005 test functions (b), the bold numbers means the
best performance among whole competitors.

Dim = 30 Dim = 50 Dim = 100
ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank

ESOA 1478.01 1 31.8648 2 1455.11 1 29.8231 2 1485.62 1 32.4274 1
PSO [16] 1352.88 4 21.8331 4 1352.89 4 21.8773 4 1352.89 4 21.8773 4
GA [5] 1281.13 6 16.3589 6 1281.13 6 16.3589 6 1288.79 6 17.187 6
DE [6] 1308.69 5 20.0568 5 1316.3 5 20.6194 5 1293.41 5 18.6219 5

GWO [18] 1397.08 3 27.9015 3 1404.7 3 28.5083 3 1397.08 3 27.9015 3
HHO [83] 1432.22 2 31.9849 1 1439.87 2 32.813 1 1432.22 2 31.9849 2

Table 11. The ELO and TrueSkill rank in CEC 2017 test functions (a), the bold numbers means the
best performance among whole competitors.

Simple Multimodal Hybrid Functions Composition Functions
ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank ELO Rank TrueSkill Rank

ESOA 1452.45 1 28.8727 1 1477.02 1 29.3237 1 1481.63 1 30.4362 1
PSO [16] 1327.35 5 19.0284 6 1383.93 5 22.0796 5 1343.86 5 19.7913 5
GA [5] 1421.97 2 28.0675 2 1432.86 2 27.7156 2 1399.32 4 25.5226 4
DE [6] 1402.15 3 27.3398 4 1403.81 4 25.7017 4 1414.12 2 27.8698 3

GWO [18] 1391.4 4 27.3977 3 1406.88 3 26.9267 3 1413.57 3 28.4724 2
HHO [83] 1284.68 6 19.294 5 1295.51 6 18.2527 6 1280.83 6 17.9076 6

4. Typical Application

In this section, ESOA is utilized on three practical engineering applications to demon-
strate its competitive capabilities on optimization constraint problems. We compare not
only ESOA with the original metaheuristic algorithm used in the previous section, but also
with some improved variants, such as IWHO [88], QANA [46], L-Shade [59], iL-Shade [89]
as well as MPEDE [90]. The results show that although the improved variant of the algo-
rithm is able to achieve better optimization, it still falls short in terms of the adaptability
of the constraints, in contrast, ESOA is comfortable with all constraints. Although some
methods perform very well in CEC test functions, they may show weak results when
applied to real scenarios or applications, which is because each optimisation method has
its own aspects that are suitable and is not exhaustive.

In order to simplify the computational procedure, a penalty function is adopted to
integrate the inequality constraints into the objective function [91]. The specific form is
as below,

f̂ (x) = f (x) + φ
p

∑
j=1

g2
j (x)sgn(gj(x)), (22)

sgn(gj(x)) =
{

1, i f gj(x) > 0
0, i f gj(x) ≤ 0.

(23)

where f̂ (x) is the transformed objective function and φ is the penalty parameter while f (x)
and gj(x) is the origin objective function as well as the inequality constraints respectively,
j ∈ [1, 2, . . . , p] and p are the number of constraints. sgn(gj(x)) is used to determine
whether the independent variable violates a constraint.

4.1. Himmelblau’s Nonlinear Optimization Problem

Himmelblau introduced a nonlinear optimization problem as one of the famous
benchmark problems for meta-heuristic algorithms [92]. The problem is described below,

Minimize f (x) = 5.3578547x2
3 + 0.8356891x1x5

+ 37.293239x1 − 40,792.141
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s.t.



g1(x) = 85.334407 + 0.0056858x2x5
+0.0006262x1x4 − 0.0022053x3x5

g2(x) = 80.51249 + 0.0071317x2x5
+0.0029955x1x2 − 0.0021813x2

3
g3(x) = 9.300961 + 0.0047026x3x5

+0.0012547x1x3 − 0.0019085x3x4
0 ≤ g1(x) ≤ 92
90 ≤ g2(x) ≤ 11
20 ≤ g3(x) ≤ 25
78 ≤ x1 ≤ 102
33 ≤ x2 ≤ 45
27 ≤ x3 ≤ 45
27 ≤ x4 ≤ 45
27 ≤ x5 ≤ 45.

For this problem, the φ in Equation (22) is set to 10100, the number of search agents
used by each algorithm is set to 10, and the maximum number of iterations is set to 500.

The optimal result is presented in Table 12 while the statistic result from 30 trials for
each algorithm is shown in Table 13. PSO is the best performing algorithm in terms of opti-
mal results, with the best result reaching −30,665.5 of variables [78, 33, 29.9953, 45, 36.7758].
The second best was achieved by ESOA at−30,664.5 of variables [78, 33, 29.9984, 45, 36.7764].
The standard deviation represents the algorithm’s stability, and ESOA, although ranking
second, outperforms PSO, GA, DE, as well as HHO. The experimental results demonstrate
the engineering feasibility of the proposed method.

Table 12. The optimal result of various algorithms for Himmelblau problem, the bold numbers means
the best performance among whole competitors.

x1 x2 x3 x4 x5 g1 g2 g3 g4 g5 g6 Value Constraints

ESOA 78 33 29.9984 45 36.77 −0.00018 −91.9998 −11.16 −8.841 −4.9988 −0.00120342 −30,664.5 Yes
PSO [16] 78 33 29.9953 45 36.77 0 −92 −11.15 −8.84 −5 0 −30,665.5 Yes
GA [5] 78.047 35.02 31.81 44.81 32.57 −0.27373 −91.7263 −10.95 −9.04 −4.98832 −0.0116773 −30,333.1 Yes
DE [6] 78 33.00 30.002 44.97 36.77 −0.00107 −91.9989 −11.15 −8.84 −4.99875 −0.00124893 −30,663.2 Yes

GWO [18] 78.0031 33.00 30.0069 45 36.75 −0.00201 −91.998 −11.15 −8.84 −4.99815 −0.0018509 −30,662.7 Yes
HHO [83] 78 33 32.4546 43.68 31.56 −0.86883 −91.1312 −12.05 −7.94 −5 −9.56× 10−7 −30,182.6 Yes

L-Shade [59] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No
iL-Shade [60] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No
MPEDE [90] 78 33 27 27 27 −1.88843 −90.11157 −13.83258 −6.16742 −8.23715 3.23715 −32,217.4 No

Table 13. The statistical result of various algorithms for the Himmelblau problem, the bold numbers
means the best performance among whole competitors.

Best Worst Ave Std Time

ESOA −30,664.5 −30,422.6 −30,615.4 88.457 0.68607
PSO [16] −30,665.5 −30,186.2 −30509.8 200.628 0.64493
GA [5] −30,333.1 −29,221.1 −29,853.2 312.106 0.71309
DE [6] −30,663.2 −30,655.2 −30,658.8 2.35697 0.62209
GWO [18] −30,662.7 −30,453.7 −30,637.6 61.3822 0.615
HHO [83] −30,182.6 −29,643 −29,902.7 186.764 0.85409

4.2. Tension/Compression Spring Design

The string design problem is described by Arora and Belegundu for minimizing
spring weight under the constraints of minimum deflection, shear stress, and surge
frequency [93,94]. Figure 12 illustrates the details of the problem, P is the number of active
coils, d is the wire diameter while D represents the mean coil diameter.
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Figure 12. Tension/compression string design problem.

The mathematical modeling is given below,

Minimize f (x) = (x3 + 2)x2x2
1

s.t.



g1(x) = 1− x3
2x3

71,785x4
1
≤ 0

g2(x) =
4x2

2−x1x2
12,566(x2x3

1−x4
1)
+ 1

5108x2
1
− 1 ≤ 0

g3(x) = 1− 140.45x1
x2

2x3
≤ 0

g4(x) =
x1+x2

1.5 − 1 ≤ 0.

For this problem, the φ in Equation (22) is set to 105, the number of search agents used
by each algorithm is again set to 10, and the maximum number of iterations is set to 500.

Tables 14 and 15 show the optimal and statistic results from 30 independent runs
for the six algorithms respectively. The average fitness of DE achieves the best result at
0.0127371, whilst ESOA achieves the second best result at 0.0127839. The standard deviation
of ESOA outperforms other algorithms, which demonstrates ESOA’s exceptional stability.
The optimal result of ESOA was 0.0127434 of variables [0.05, 0.317168, 14.0715].

Table 14. The optimal result of various algorithms for the Spring problem, the bold numbers means
the best performance among whole competitors.

d D P g1 g2 g3 g4 Value Constraints

ESOA 0.05 0.317168 14.0715 −0.000684592 −0.000637523 −3.96102 −0.755221 0.01274345 Yes
PSO [16] 0.05 0.317425 14.0278 5.57× 10−8 1.31× 10−7 −3.96844 −0.75505 0.01271905 No
GA [5] 0.0534462 0.39517 9.57495 −0.00876173 −0.0108724 −4.02034 −0.700922 0.01306582 Yes
DE [6] 0.0516891 0.356718 11.289 5.38× 10−8 1.22× 10−7 −4.05379 −0.727729 0.01266523 No

GWO [18] 0.0532407 0.394828 9.37671 −0.000610472 −0.000786781 −4.11563 −0.701287 0.01273248 Yes
HHO [83] 0.0536234 0.405061 8.93075 5.28× 10−8 1.22× 10−7 −4.13981 −0.69421 0.012731469 No

IWHO [88] 0.0517 0.4155 7.1564 −0.000948687 0.132366 −4.87727 −0.688533 0.0102 No
QANA [46] 0.051926 0.362432 10.961632 4.23× 10−5 −2.82× 10−5 −4.06498 −0.72376 0.01266625 No
L-Shade [59] 0.06899394 0.93343162 2 8.19× 10−8 1.74× 10−7 −4.56081 −0.33172 0.01777 No
iL-Shade [89] 0.05573737 0.46215675 7.01862125 5.43× 10−8 1.22× 10−7 −4.22201 −0.65473 0.01295 No
MPEDE [90] 0.05956062 0.5767404 4.71717282 −0.00173 −0.00087 −4.33136 −0.5758 0.01374 Yes

Table 15. The statistical result of various algorithms for the spring problem, the bold numbers means
the best performance among whole competitors.

Best Worst Ave Std Time

ESOA 0.0127434 0.0128516 0.0127839 0.00003092 0.59006
PSO [16] 0.0127190 0.030455 0.0149345 0.00520118 0.58293
GA [5] 0.0130658 0.0180691 0.0151508 0.00186 0.623
DE [6] 0.0126652 0.0131926 0.0127371 0.000154639 0.56308
GWO [18] 0.0127324 0.0136782 0.0131852 0.000340304 0.535
HHO [83] 0.0127314 0.0145846 0.0133872 0.000615518 0.64992
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4.3. Three-Bar Truss Design

Three-bar truss design was introduced in [95], whose objective is to optimize the
weight under the constraints of stress, deflection, and buckling. Figure 13 presents the
structure of three bar truss and the parameters to be optimized. The specific mathematical
formula is as below,

Minimize f (x) = (2
√

2x1 + x2) · l

s.t.



g1(x) =
√

2x1+x2√
2x2

1+2x1x2
P− σ ≤ 0

g2(x) =
x2√

2x2
1+2x1x2

P− σ ≤ 0

g3(x) = 1√
2x2+x1

P− σ ≤ 0

0 ≤ x1, x2 ≤ 1

l = 100

P = 2

σ = 2

Figure 13. Three-Bar Truss Design Problem.

For this problem, the φ in Equation (22) is set to 1016, the number of search agents used
by each algorithm is again set to 10, and the maximum number of iterations is set to 500.

Table 16 indicates ESOA, PSO, DE as well as HHO reach the optimal result of this
problem. The optimal result achieved by ESOA is 263.896 with variables [0.788838, 0.407793].
Table 17 presents the statistic result of each algorithm and provides sufficient proof for the
excellence of ESOA. The proposed algorithm’s (ESOA) effectiveness and robustness are
hence verified.
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Table 16. The optimal result of various algorithms for Three-Bar Truss Design problem, the bold
numbers means the best performance among whole competitors.

A1 A2 g1 g2 g3 Value Constraints

ESOA 0.788192 0.409618 −1.34× 10−6 −1.46255 −0.948953 263.896 Yes
PSO [16] 0.788763 0.408 −2.29× 10−11 −1.46438 −0.949714 263.896 Yes
GA [5] 0.793214 0.395595 −2.85× 10−5 −1.47859 −0.955608 263.914 Yes
DE [6] 0.788675 0.408248 7.11× 10−15 −1.4641 −0.949596 263.896 No

GWO [18] 0.788853 0.40775 −2.27× 10−6 −1.46467 −0.949833 263.897 Yes
HHO [83] 0.788727 0.408102 5.77× 10−15 −1.46427 −0.949665 263.896 No

IWHO [88] 0.7884 0.4081 0.00070 −1.46391 −0.949229 263.8523 No
QANA [46] 0.788675 0.408248 5.09× 10−7 −1.4641 −0.94959 263.895 No
L-Shade [59] 0.78867514 0.40824829 −0.0 −1.4641 −0.9496 263.896 Yes
iL-Shade [89] 0.78867513 0.40824829 −0.0 −1.4641 −0.9496 263.896 Yes
MPEDE [90] 0.78924889 0.40662803 −0.0 −1.46595 −0.95036 263.896 Yes

Table 17. The statistical result of various algorithms for Three-Bar Truss Design problem, the bold
numbers means the best performance among whole competitors.

Best Worst Ave Std Time

ESOA 263.896 263.948 263.909 0.0146444 0.69
PSO [16] 263.896 263.905 263.897 0.00186868 0.626
GA [5] 263.914 264.522 264.084 0.158269 0.73401
DE [6] 263.896 263.896 263.896 1.14× 10−13 0.656
GWO [18] 263.897 263.921 263.904 0.00564346 0.63508
HHO [83] 263.896 268.296 264.424 0.99462 0.78

5. Conclusions

This paper introduced a novel meta-heuristic algorithm, the Egret Swarm Optimiza-
tion Algorithm, which mimics two egret species’ typical hunting behavior (Great Egret
and Snowy Egret). ESOA consists of three essential components: Snowy Egret’s sit-and-
wait strategy, Great Egret’s aggressive strategy as well as a discriminant condition. The
performance of ESOA was compared with 5 other state-of-the-art methods (PSO, GA, DE,
GWO, and HHO) on 36 test functions, including Unimodal, Multimodal, Hybrid, and
Composition Functions. The results of which demonstrate ESOA’s exploitation, explo-
ration, comprehensive performance, stability as well as convergence behavior. In addition,
two practical engineering problem instances demonstrate the excellent performance and
robustness of ESOA to typical optimization applications. The code developed in this pa-
per is available at https://github.com/Knightsll/Egret_Swarm_Optimization_Algorithm;
https://ww2.mathworks.cn/matlabcentral/fileexchange/115595-egret-swarm-optimization-
algorithm-esoa (accessed on 26 September 2022).

To accommodate more applications and optimization scenarios, other mathematical
forms of sit-and-wait strategy, aggressive strategy, and discriminant condition in ESOA are
currently under development.
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Appendix A

Table A1. The T-test Result Between ESOA And Other Algorithm On CEC05 Benchmark Functions.

ESOA vs. PSO ESOA vs. GA ESOA vs. DE ESOA vs. GWO ESOA vs. HHO

F1

30 1.96× 10−1 2.74× 10−4 3.36× 10−4 1.56× 10−1 3.40× 10−1

50 5.54× 10−3 1.08× 10−7 4.20× 10−4 3.29× 10−1 3.39× 10−1

100 1.52× 10−4 3.99× 10−10 5.46× 10−6 2.40× 10−1 3.43× 10−1

200 3.19× 10−8 3.20× 10−11 8.71× 10−8 1.46× 10−2 3.13× 10−1

500 8.22× 10−9 2.06× 10−11 3.65× 10−10 7.16× 10−2 3.46× 10−1

1000 4.91× 10−13 9.90× 10−15 4.77× 10−13 1.69× 10−1 3.00× 10−1

F2

30 3.44× 10−1 8.45× 10−8 4.66× 10−4 8.41× 10−3 3.27× 10−1

50 1.99× 10−2 1.00× 10−9 3.41× 10−3 3.61× 10−2 1.37× 10−1

100 9.30× 10−6 4.49× 10−10 2.75× 10−9 2.98× 10−5 3.16× 10−1

200 1.88× 10−5 3.40× 10−1 2.86× 10−10 2.52× 10−2 3.45× 10−1

500 N/A N/A N/A N/A N/A
1000 N/A N/A N/A N/A N/A

F3

30 1.59× 10−4 2.30× 10−5 2.09× 10−6 1.50× 10−1 3.45× 10−1

50 1.34× 10−5 9.79× 10−8 1.46× 10−8 1.94× 10−1 3.46× 10−1

100 3.82× 10−6 5.29× 10−8 9.15× 10−9 7.49× 10−2 3.46× 10−1

200 6.62× 10−7 3.49× 10−9 1.62× 10−10 5.60× 10−2 3.45× 10−1

500 1.00× 10−6 5.56× 10−7 2.67× 10−8 2.08× 10−4 3.46× 10−1

1000 1.70× 10−4 1.15× 10−9 5.79× 10−12 3.84× 10−5 3.46× 10−1

F4

30 2.83× 10−4 5.77× 10−7 5.42× 10−7 1.31× 10−1 1.70× 10−1

50 3.16× 10−9 6.08× 10−10 4.45× 10−14 1.56× 10−1 3.44× 10−1

100 7.53× 10−10 1.00× 10−11 7.05× 10−17 5.18× 10−2 1.49× 10−1

200 2.74× 10−11 1.42× 10−14 8.74× 10−19 2.53× 10−1 3.45× 10−1

500 1.62× 10−18 2.12× 10−19 1.43× 10−18 1.02× 10−2 3.43× 10−1

1000 2.35× 10−14 1.99× 10−20 1.25× 10−23 1.54× 10−1 3.38× 10−1

F5

30 3.04× 10−1 5.37× 10−4 1.49× 10−2 2.45× 10−3 4.84× 10−15

50 3.48× 10−3 8.27× 10−6 2.24× 10−7 1.56× 10−2 3.27× 10−18

100 2.02× 10−5 7.37× 10−6 9.74× 10−5 2.36× 10−4 6.96× 10−26

200 9.17× 10−7 1.81× 10−7 8.59× 10−7 8.25× 10−3 2.39× 10−28

500 8.30× 10−10 1.21× 10−13 8.00× 10−7 3.30× 10−6 4.42× 10−28

1000 2.83× 10−7 2.94× 10−12 1.16× 10−9 1.98× 10−10 2.11× 10−32

F6

30 8.30× 10−11 1.30× 10−5 8.35× 10−11 4.62× 10−8 8.30× 10−11

50 2.54× 10−12 4.36× 10−7 2.18× 10−1 9.58× 10−10 2.36× 10−12

100 1.86× 10−3 7.20× 10−8 5.20× 10−6 5.17× 10−10 5.57× 10−14

200 3.51× 10−5 2.68× 10−11 6.50× 10−7 2.78× 10−13 2.95× 10−17

500 9.92× 10−12 3.78× 10−12 8.12× 10−14 1.57× 10−11 6.46× 10−18

1000 2.94× 10−12 5.14× 10−16 6.98× 10−12 2.94× 10−12 5.02× 10−25

F7

30 2.69× 10−2 8.32× 10−6 4.97× 10−5 5.94× 10−5 9.44× 10−2

50 1.56× 10−2 1.51× 10−4 2.20× 10−8 4.37× 10−2 7.51× 10−1

100 6.15× 10−3 4.18× 10−6 4.96× 10−3 1.31× 10−3 2.04× 10−2

200 1.44× 10−6 7.58× 10−7 5.34× 10−8 1.13× 10−2 5.03× 10−2

500 1.20× 10−7 1.20× 10−8 5.49× 10−9 2.02× 10−4 1.14× 10−1

1000 1.12× 10−15 9.85× 10−14 2.03× 10−8 2.02× 10−3 2.19× 10−1
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Table A2. The T-test Result Between ESOA And Other Algorithm On CEC17 Benchmark Functions.

ESOA vs. PSO ESOA vs. GA ESOA vs. DE ESOA vs. GWO ESOA vs. HHO

F1 30 3.67× 10−5 5.62× 10−6 5.10× 10−6 2.43× 10−2 3.74× 10−12

F2 30 3.00× 101 N/A N/A N/A N/A
F3 30 6.70× 10−3 1.36× 10−3 3.59× 10−7 5.66× 10−2 3.95× 10−6

F4 30 1.84× 10−2 1.37× 10−2 1.24× 10−2 5.99× 10−2 1.11× 10−5

F5 30 1.24× 10−5 7.94× 10−1 4.51× 10−4 9.45× 10−1 2.22× 10−7

F6 30 7.26× 10−6 9.66× 10−1 9.61× 10−6 5.74× 10−3 1.50× 10−5

F7 30 2.71× 10−3 1.24× 10−1 2.25× 10−2 4.34× 10−1 1.83× 10−9

F8 30 2.57× 10−6 3.17× 10−1 4.07× 10−4 5.53× 10−1 1.08× 10−6

F9 30 1.42× 10−3 4.00× 10−1 1.77× 10−3 8.00× 10−1 7.60× 10−4

F10 30 1.35× 10−2 1.12× 10−1 1.24× 10−7 4.59× 10−1 2.35× 10−7

F11 30 4.22× 10−3 1.02× 10−1 5.09× 10−3 3.09× 10−1 8.77× 10−6

F12 30 6.83× 10−4 2.42× 10−3 7.10× 10−1 1.69× 10−1 3.89× 10−3

F13 30 4.45× 10−2 8.06× 10−5 1.30× 10−1 9.86× 10−1 1.64× 10−2

F14 30 3.80× 10−1 3.71× 10−2 2.80× 10−3 2.09× 10−1 2.47× 10−2

F15 30 8.83× 10−3 7.38× 10−3 6.95× 10−3 9.96× 10−1 3.15× 10−1

F16 30 3.68× 10−3 4.48× 10−2 1.60× 10−4 5.30× 10−1 3.42× 10−4

F17 30 N/A N/A N/A N/A N/A
F18 30 2.51× 10−1 3.69× 10−2 2.13× 10−5 7.57× 10−2 5.29× 10−2

F19 30 2.88× 10−1 1.99× 10−3 2.64× 10−1 5.94× 10−1 4.46× 10−2

F20 30 N/A N/A N/A N/A N/A
F21 30 1.87× 10−3 9.39× 10−1 3.49× 10−5 4.91× 10−1 4.34× 10−8

F22 30 1.47× 10−6 1.55× 10−1 7.08× 10−2 7.70× 10−4 2.22× 10−6

F23 30 2.25× 10−3 5.58× 10−1 8.23× 10−3 9.60× 10−1 1.76× 10−6

F24 30 3.39× 10−5 5.48× 10−1 9.30× 10−4 5.54× 10−1 1.12× 10−4

F25 30 9.93× 10−3 6.24× 10−1 1.63× 10−3 8.30× 10−3 2.24× 10−4

F26 30 5.41× 10−7 1.90× 10−7 1.33× 10−9 1.22× 10−6 1.33× 10−6

F27 30 7.35× 10−3 2.10× 10−1 2.43× 10−3 5.00× 10−1 1.19× 10−4

F28 30 2.77× 10−4 8.84× 10−1 4.03× 10−2 1.54× 10−3 5.86× 10−8

F29 30 N/A N/A N/A N/A N/A
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Table A3. The Detailed Comparison of Various Algorithms on Various Dimensions of CEC05 Benchmark Functions(a).

ESOA PSO [16] GA [5]
ave best worst std ave best worst std ave best worst std

F1

50 0.00 0.00 0.00 0.00 3.22× 10−2 1.17× 10−2 5.14× 10−2 1.71× 10−2 9.31× 103 8.31× 103 1.13× 104 1.05× 103

100 0.00 0.00 0.00 0.00 1.19× 101 7.48 1.59× 101 3.58 6.01× 104 5.39× 104 6.34× 104 3.35× 103

200 0.00 0.00 0.00 0.00 2.14× 102 1.83× 102 2.48× 102 2.08× 101 2.34× 105 2.26× 105 2.48× 105 9.51× 103

500 0.00 0.00 0.00 0.00 4.41× 103 4.13× 103 5.11× 103 3.60× 102 9.52× 105 8.86× 105 9.95× 105 3.66× 104

1000 0.00 0.00 0.00 0.00 3.14× 104 2.99× 104 3.20× 104 7.56× 102 2.38× 106 2.33× 106 2.42× 106 3.52× 104

F2

50 0.00 0.00 0.00 0.00 1.48× 101 3.54× 10−1 3.08× 101 1.02× 101 6.79× 101 6.20× 101 7.47× 101 4.25
100 0.00 0.00 0.00 0.00 1.02× 102 7.85× 101 1.39× 102 2.07× 101 2.14× 102 1.93× 102 2.30× 102 1.21× 101

200 0.00 0.00 0.00 0.00 3.85× 102 2.78× 102 5.13× 102 8.59× 101 4.56× 1033 3.02× 1024 2.25× 1034 9.00× 1033

500 N/A N/A N/A N/A 2.58× 1040 1.73× 103 1.29× 1041 5.17× 1040 N/A N/A N/A N/A
1000 N/A N/A N/A N/A 1.33× 103 1.26× 103 1.37× 103 3.83× 101 N/A N/A N/A N/A

F3

50 0.00 0.00 0.00 0.00 1.03× 103 7.13× 102 1.30× 103 2.19× 102 4.84× 104 4.01× 104 5.71× 104 5.41× 103

100 0.00 0.00 0.00 0.00 1.22× 104 9.63× 103 1.52× 104 2.20× 103 1.59× 105 1.43× 105 1.87× 105 1.64× 104

200 0.00 0.00 0.00 0.00 7.73× 104 6.22× 104 9.23× 104 1.10× 104 6.69× 105 6.28× 105 7.56× 105 4.90× 104

500 0.00 0.00 0.00 0.00 4.28× 105 3.43× 105 5.37× 105 6.46× 104 3.57× 106 2.87× 106 4.21× 106 5.00× 105

1000 0.00 0.00 0.00 0.00 1.97× 106 1.34× 106 2.94× 106 6.00× 105 1.38× 107 1.27× 107 1.50× 107 8.83× 105

F4

50 0.00 0.00 0.00 0.00 2.84 2.49 3.14 2.05× 10−1 5.70× 101 5.22× 101 6.20× 101 3.35
100 0.00 0.00 0.00 0.00 8.52 7.75 9.19 5.14× 10−1 7.43× 101 7.05× 101 7.79× 101 2.61
200 0.00 0.00 0.00 0.00 1.71× 101 1.59× 101 1.77× 101 6.81× 10−1 8.72× 101 8.47× 101 8.83× 101 1.34
500 0.00 0.00 0.00 0.00 2.53× 101 2.52× 101 2.55× 101 1.26× 10−1 9.52× 101 9.48× 101 9.58× 101 3.66× 10−1

1000 0.00 0.00 0.00 0.00 3.09× 101 2.99× 101 3.13× 101 5.10× 10−1 9.75× 101 9.71× 101 9.78× 101 2.79× 10−1

F5

50 4.82× 101 4.79× 101 4.85× 101 2.60× 10−1 2.98× 102 1.79× 102 4.55× 102 1.22× 102 1.17× 107 7.47× 106 1.46× 107 2.34× 106

100 9.84× 101 9.83× 101 9.85× 101 5.77× 10−2 7.26× 103 5.64× 103 1.02× 104 1.61× 103 9.76× 107 7.39× 107 1.30× 108 1.91× 107

200 1.98× 102 1.98× 102 1.98× 102 5.26× 10−2 3.69× 105 2.80× 105 4.53× 105 5.51× 104 5.91× 108 5.22× 108 7.19× 108 7.15× 107

500 4.98× 102 4.98× 102 4.98× 102 1.00× 10−1 1.90× 107 1.70× 107 2.03× 107 1.16× 106 3.25× 109 3.18× 109 3.33× 109 6.59× 107

1000 9.98× 102 9.98× 102 9.98× 102 6.05× 10−2 2.22× 108 1.91× 108 2.61× 108 2.84× 107 9.20× 109 8.90× 109 9.62× 109 2.77× 108

F6

50 1.07× 101 1.03× 101 1.11× 101 3.16× 10−1 4.50× 10−2 2.39× 10−2 1.08× 10−1 3.22× 10−2 1.27× 104 1.07× 104 1.52× 104 1.72× 103

100 2.31× 101 2.25× 101 2.36× 101 4.24× 10−1 1.05× 101 4.15 1.89× 101 5.51 6.26× 104 5.48× 104 7.30× 104 6.73× 103

200 4.84× 101 4.80× 101 4.89× 101 3.46× 10−1 2.09× 102 1.46× 102 2.51× 102 3.91× 101 2.26× 105 2.19× 105 2.43× 105 8.97× 103

500 1.23× 102 1.22× 102 1.24× 102 7.27× 10−1 4.18× 103 4.07× 103 4.46× 103 1.42× 102 9.29× 105 8.92× 105 9.58× 105 2.88× 104

1000 2.48× 102 2.48× 102 2.48× 102 1.89× 10−1 3.09× 104 2.92× 104 3.17× 104 9.23× 102 2.32× 106 2.29× 106 2.35× 106 2.36× 104

F7

50 3.23× 10−5 8.69× 10−6 6.41× 10−5 1.93× 10−5 2.24× 101 6.00 4.62× 101 1.47× 101 1.26× 101 7.68 1.88× 101 3.76
100 2.49× 10−5 1.20× 10−5 5.01× 10−5 1.34× 10−5 1.99× 102 1.08× 102 4.10× 102 1.08× 102 1.64× 102 1.14× 102 1.91× 102 2.99× 101

200 1.91× 10−5 2.88× 10−6 4.90× 10−5 1.61× 10−5 2.45× 103 1.94× 103 2.96× 103 3.88× 102 1.74× 103 1.46× 103 2.20× 103 2.53× 102

500 2.42× 10−5 5.43× 10−6 5.10× 10−5 1.59× 10−5 4.12× 104 3.66× 104 4.95× 104 4.73× 103 2.65× 104 2.42× 104 3.02× 104 2.27× 103

1000 2.21× 10−5 4.51× 10−6 4.16× 10−5 1.22× 10−5 2.39× 105 2.34× 105 2.42× 105 2.69× 103 1.41× 105 1.38× 105 1.46× 105 2.78× 103
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Table A4. The Detailed Comparison Of Various Algorithms On Various Dimensions Of CEC05 Benchmark Functions(b).

DE [6] GWO [18] HHO [83]
ave best worst std ave best worst std ave best worst std

F1

50 1.72× 101 9.23 2.65× 101 5.98 1.36× 10−43 7.04× 10−46 6.63× 10−43 2.63× 10−43 5.35× 10−76 3.87× 10−86 2.64× 10−75 1.05× 10−75

100 3.35× 103 2.85× 103 4.58× 103 6.33× 102 1.37× 10−40 6.06× 10−42 5.70× 10−40 2.17× 10−40 6.46× 10−74 1.16× 10−77 3.21× 10−73 1.28× 10−73

200 4.44× 104 3.81× 104 5.24× 104 4.89× 103 2.66× 10−39 2.64× 10−40 4.90× 10−39 1.71× 10−39 1.77× 10−73 3.81× 10−89 8.38× 10−73 3.31× 10−73

500 3.32× 105 3.12× 105 3.62× 105 1.83× 104 9.00× 10−37 1.61× 10−38 2.35× 10−36 8.68× 10−37 5.92× 10−71 6.29× 10−80 2.96× 10−70 1.18× 10−70

1000 9.89× 105 9.61× 105 1.03× 106 2.37× 104 7.99× 10−36 1.28× 10−37 2.89× 10−35 1.05× 10−35 1.73× 10−69 1.61× 10−79 7.96× 10−69 3.12× 10−69

F2

50 5.86 2.43 1.02× 101 2.85 6.47× 10−28 1.69× 10−28 1.56× 10−27 5.14× 10−28 3.71× 10−37 1.93× 10−39 1.13× 10−36 4.49× 10−37

100 1.64× 102 1.42× 102 1.75× 102 1.16× 101 6.78× 10−26 5.15× 10−26 9.05× 10−26 1.60× 10−26 7.65× 10−39 3.14× 10−43 3.62× 10−38 1.43× 10−38

200 4.61× 102 4.34× 102 4.98× 102 2.47× 101 3.59× 10−24 6.36× 10−25 7.94× 10−24 2.62× 10−24 1.33× 10−36 4.44× 10−42 6.65× 10−36 2.66× 10−36

500 1.44× 103 1.37× 103 1.50× 103 5.27× 101 3.02× 10−23 2.07× 10−23 3.84× 10−23 6.20× 10−24 1.00× 10−38 1.25× 10−42 4.96× 10−38 1.97× 10−38

1000 N/A N/A N/A N/A 5.10× 10−23 3.14× 10−23 7.40× 10−23 1.37× 10−23 3.14× 10−36 2.63× 10−46 1.55× 10−35 6.21× 10−36

F3

50 9.96× 104 8.80× 104 1.13× 105 8.75× 103 1.49× 101 7.67× 10−1 5.56× 101 2.11× 101 3.82× 10−49 2.22× 10−74 1.91× 10−48 7.65× 10−49

100 4.75× 105 4.27× 105 5.38× 105 3.93× 104 2.83× 103 2.90× 102 8.03× 103 2.77× 103 1.49× 10−52 8.99× 10−61 7.48× 10−52 2.99× 10−52

200 1.76× 106 1.64× 106 1.87× 106 8.77× 104 3.52× 104 1.20× 104 9.74× 104 3.15× 104 2.95× 10−50 1.61× 10−60 1.47× 10−49 5.89× 10−50

500 1.05× 107 8.72× 106 1.15× 107 1.00× 106 4.49× 105 2.48× 105 6.42× 105 1.40× 105 1.78× 10−45 2.04× 10−57 8.92× 10−45 3.57× 10−45

1000 4.31× 107 4.12× 107 4.54× 107 1.41× 106 4.04× 106 2.77× 106 5.44× 106 9.94× 105 1.57× 10−19 2.63× 10−60 7.87× 10−19 3.15× 10−19

F4

50 9.11× 101 8.85× 101 9.35× 101 1.62 8.10× 10−8 9.67× 10−9 2.83× 10−7 1.03× 10−7 5.25× 10−36 1.20× 10−41 2.62× 10−35 1.04× 10−35

100 9.56× 101 9.46× 101 9.68× 101 7.61× 10−1 2.21× 10−6 1.22× 10−7 5.87× 10−6 1.94× 10−6 4.69× 10−38 1.96× 10−40 1.54× 10−37 5.89× 10−38

200 9.76× 101 9.71× 101 9.84× 101 4.48× 10−1 8.10× 10−4 1.42× 10−5 3.43× 10−3 1.31× 10−3 9.14× 10−34 1.20× 10−43 4.55× 10−33 1.82× 10−33

500 9.88× 101 9.80× 101 9.93× 101 4.83× 10−1 4.07× 10−1 8.65× 10−2 6.77× 10−1 2.44× 10−1 1.19× 10−37 8.57× 10−44 5.93× 10−37 2.37× 10−37

1000 9.95× 101 9.93× 101 9.97× 101 1.13× 10−1 7.84 1.37 2.75× 101 9.97 8.51× 10−38 9.46× 10−42 4.19× 10−37 1.67× 10−37

F5

50 3.65× 103 2.82× 103 4.09× 103 4.48× 102 4.67× 101 4.55× 101 4.83× 101 9.89× 10−1 1.94× 10−2 2.66× 10−3 6.93× 10−2 2.50× 10−2

100 2.76× 106 1.24× 106 3.38× 106 7.74× 105 9.76× 101 9.73× 101 9.81× 101 2.66× 10−1 1.01× 10−2 2.34× 10−3 2.94× 10−2 1.02× 10−2

200 5.41× 107 4.13× 107 6.31× 107 8.00× 106 1.96× 102 1.95× 102 1.97× 102 9.89× 10−1 3.27× 10−2 3.09× 10−3 7.82× 10−2 2.47× 10−2

500 6.95× 108 5.87× 108 8.68× 108 1.01× 108 4.95× 102 4.95× 102 4.96× 102 4.04× 10−1 1.01× 10−1 8.89× 10−3 3.33× 10−1 1.21× 10−1

1000 2.44× 109 2.17× 109 2.63× 109 1.56× 108 9.94× 102 9.94× 102 9.94× 102 1.76× 10−1 8.92× 10−2 2.61× 10−2 2.16× 10−1 6.81× 10−2

F6

50 1.44× 101 8.31 2.42× 101 5.49 1.10 5.12× 10−1 2.01 5.13× 10−1 1.80× 10−4 5.87× 10−6 5.09× 10−4 2.06× 10−4

100 3.04× 103 1.96× 103 3.50× 103 5.65× 102 4.47 3.52 6.26 9.89× 10−1 4.52× 10−5 1.81× 10−5 9.08× 10−5 2.46× 10−5

200 4.80× 104 3.98× 104 5.98× 104 6.85× 103 1.25× 101 1.12× 101 1.35× 101 7.27× 10−1 2.28× 10−4 2.05× 10−5 5.23× 10−4 2.18× 10−4

500 3.24× 105 3.16× 105 3.30× 105 6.24× 103 4.89× 101 4.45× 101 5.23× 101 2.65 6.46× 10−4 1.08× 10−4 1.25× 10−3 4.79× 10−4

1000 1.01× 106 9.75× 105 1.07× 106 3.42× 104 1.27× 102 1.22× 102 1.31× 102 3.64 2.59× 10−3 3.34× 10−5 5.59× 10−3 2.16× 10−3

F7

50 1.82× 10−1 1.66× 10−1 2.13× 10−1 1.68× 10−2 1.94× 10−3 4.96× 10−4 4.81× 10−3 1.60× 10−3 3.66× 10−5 9.47× 10−6 5.53× 10−5 1.80× 10−5

100 4.65 1.75 8.58 2.42 2.16× 10−3 9.59× 10−4 3.69× 10−3 8.86× 10−4 5.71× 10−5 4.17× 10−5 8.90× 10−5 1.78× 10−5

200 1.51× 102 1.23× 102 1.68× 102 1.56× 101 1.27× 10−3 4.17× 10−4 2.46× 10−3 7.70× 10−4 1.26× 10−4 1.28× 10−5 2.46× 10−4 9.17× 10−5

500 5.26× 103 4.66× 103 5.85× 103 4.08× 102 3.81× 10−3 1.78× 10−3 5.06× 10−3 1.17× 10−3 3.05× 10−4 2.18× 10−5 8.95× 10−4 3.16× 10−4

1000 3.57× 104 3.11× 104 3.91× 104 3.26× 103 2.75× 10−3 1.28× 10−3 4.36× 10−3 1.21× 10−3 1.44× 10−4 4.37× 10−5 5.09× 10−4 1.82× 10−4
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Table A5. Comparison of optimization results under CEC17 test functions, dimension = 30, maximum iterations = 500.

F ESOA PSO [16] GA [5] DE [6] GWO [18] HHO [83]
ave std ave std ave std ave std ave std ave std

1 1.11× 109 2.07× 108 5.80× 1011 1.41× 1011 1.50× 107 2.10× 107 6.51× 106 3.90× 106 2.20× 1010 1.51× 1010 4.25× 1011 1.31× 1010

2 inf inf inf inf inf inf inf inf inf inf inf inf
3 3.72× 104 6.90× 103 8.35× 104 2.45× 104 1.58× 105 4.99× 104 1.20× 105 8.52× 103 5.03× 104 9.53× 103 8.62× 104 5.54× 103

4 5.15× 102 1.79× 101 5.63× 103 3.47× 103 5.83× 102 3.98× 101 5.46× 102 7.83 6.19× 102 9.33× 101 9.69× 103 1.90× 103

5 6.24× 102 1.11× 101 8.06× 102 3.65× 101 6.28× 102 3.11× 101 6.82× 102 1.71× 101 6.22× 102 4.49× 101 8.57× 102 2.66× 101

6 6.42× 102 6.02 6.80× 102 4.24 6.42× 102 5.96 6.12× 102 1.47 6.24× 102 7.32 6.91× 102 8.59
7 9.63× 102 2.03× 101 1.97× 103 4.73× 102 1.04× 103 9.48× 101 9.25× 102 1.72× 101 9.75× 102 2.10× 101 1.35× 103 1.68× 101

8 9.42× 102 1.47× 101 1.12× 103 2.79× 101 9.22× 102 3.39× 101 9.91× 102 8.15 9.21× 102 6.61× 101 1.10× 103 2.01× 101

9 3.42× 103 1.02× 103 8.88× 103 2.05× 103 2.87× 103 7.05× 102 1.06× 103 6.84× 101 3.22× 103 1.12× 103 6.68× 103 6.98× 102

10 5.01× 103 2.31× 102 6.07× 103 6.30× 102 4.39× 103 6.59× 102 7.95× 103 2.48× 102 5.75× 103 1.88× 103 7.75× 103 2.53× 102

11 1.36× 103 2.26× 101 2.03× 103 3.40× 102 8.53× 103 7.78× 103 1.45× 103 4.09× 101 1.80× 103 8.27× 102 9.61× 103 1.65× 103

12 3.65× 107 9.99× 106 1.98× 1010 7.39× 109 1.08× 107 6.31× 106 3.99× 107 1.41× 107 9.09× 108 1.15× 109 4.28× 1010 2.13× 1010

13 3.72× 106 9.00× 105 3.51× 1010 2.95× 1010 1.89× 105 3.41× 105 1.16× 107 9.35× 106 3.76× 106 4.83× 106 1.85× 1010 1.22× 1010

14 4.34× 104 4.59× 104 7.38× 104 4.67× 104 1.31× 106 1.02× 106 1.73× 105 4.02× 104 9.28× 105 1.29× 106 6.44× 106 4.64× 106

15 2.19× 105 1.13× 105 1.05× 1010 6.13× 109 1.59× 104 9.15× 103 9.86× 105 4.10× 105 2.18× 105 2.24× 105 9.19× 108 1.71× 109

16 2.59× 103 9.49× 101 3.76× 103 5.73× 102 3.01× 103 3.48× 102 3.16× 103 1.42× 102 2.47× 103 3.26× 102 5.35× 103 9.24× 102

17 inf inf inf inf inf inf inf inf inf inf inf inf
18 1.88× 105 6.05× 104 4.02× 106 6.21× 106 4.40× 106 3.37× 106 2.00× 106 4.06× 105 1.32× 106 1.11× 106 2.64× 107 2.31× 107

19 1.21× 106 5.37× 105 3.96× 109 6.97× 109 2.81× 103 7.51× 102 1.90× 106 1.01× 106 1.69× 106 1.64× 106 1.06× 109 8.97× 108

20 inf inf inf inf inf inf inf inf inf inf inf inf
21 2.42× 103 1.13× 101 2.57× 103 6.65× 101 2.42× 103 4.06× 101 2.48× 103 1.01× 101 2.40× 103 3.21× 101 2.67× 103 2.29× 101

22 2.34× 103 4.65 7.28× 103 7.83× 102 3.99× 103 2.10× 103 3.12× 103 7.51× 102 6.66× 103 1.64× 103 8.69× 103 1.06× 103

23 2.81× 103 1.30× 101 3.05× 103 1.08× 102 2.80× 103 2.66× 101 2.83× 103 8.08 2.80× 103 6.46× 101 3.40× 103 9.57× 101

24 2.97× 103 1.96× 101 3.19× 103 4.96× 101 2.98× 103 3.35× 101 3.02× 103 7.32 2.99× 103 5.33× 101 3.47× 103 1.42× 102

25 2.92× 103 1.61× 101 5.81× 103 1.71× 103 2.93× 103 3.34× 101 2.89× 103 3.17 2.98× 103 2.69× 101 4.30× 103 4.33× 102

26 3.10× 103 6.47× 101 8.42× 103 7.39× 102 5.72× 103 3.13× 102 5.48× 103 1.40× 102 4.66× 103 2.34× 102 1.06× 104 1.17× 103

27 3.23× 103 1.15× 101 3.39× 103 8.99× 101 3.25× 103 1.70× 101 3.26× 103 7.45 3.24× 103 9.68 3.99× 103 2.17× 102

28 3.31× 103 1.09× 101 6.75× 103 1.12× 103 3.31× 103 2.93× 101 3.29× 103 9.66 3.46× 103 6.61× 101 6.21× 103 3.03× 102

29 inf inf inf inf inf inf inf inf inf inf inf inf
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Table A6. The Wilcoxon Test Result Between ESOA And Other Algorithm On CEC05 Bench-
mark Functions.

ESOA vs. PSO ESOA vs. GA ESOA vs. DE ESOA vs. GWO ESOA vs. HHO

F1

30 1.25× 10−83 1.08× 10−83 1.25× 10−83 1.26× 10−83 1.24× 10−78

50 1.25× 10−83 1.19× 10−83 1.24× 10−83 1.26× 10−83 7.18× 10−84

100 1.25× 10−83 1.19× 10−83 1.19× 10−83 1.26× 10−83 1.79× 10−72

200 1.26× 10−83 1.20× 10−83 1.17× 10−83 1.26× 10−83 1.14× 10−83

500 1.26× 10−83 1.23× 10−83 1.11× 10−83 1.26× 10−83 2.46× 10−71

1000 1.26× 10−83 1.18× 10−83 1.14× 10−83 1.26× 10−83 7.92× 10−80

F2

30 1.24× 10−83 5.74× 10−84 1.24× 10−83 1.26× 10−83 3.95× 10−81

50 1.21× 10−83 1.16× 10−83 1.20× 10−83 1.26× 10−83 3.95× 10−76

100 1.17× 10−83 1.18× 10−83 9.69× 10−84 1.26× 10−83 1.17× 10−83

200 1.17× 10−83 1.19× 10−83 9.72× 10−84 1.26× 10−83 1.17× 10−83

500 N/A N/A N/A N/A N/A
1000 N/A N/A N/A N/A N/A

F3

30 1.25× 10−83 9.83× 10−84 4.34× 10−84 1.26× 10−83 9.33× 10−84

50 1.25× 10−83 4.89× 10−84 1.60× 10−85 1.26× 10−83 1.17× 10−83

100 1.25× 10−83 9.60× 10−84 1.22× 10−84 1.24× 10−83 1.22× 10−83

200 1.24× 10−83 8.98× 10−84 7.49× 10−87 1.20× 10−83 1.20× 10−83

500 1.25× 10−83 1.12× 10−83 3.23× 10−93 1.21× 10−83 1.18× 10−83

1000 1.24× 10−83 9.83× 10−84 2.23× 10−86 1.12× 10−83 1.20× 10−83

F4

30 1.25× 10−83 2.89× 10−84 7.11× 10−84 1.26× 10−83 1.03× 10−83

50 1.25× 10−83 4.69× 10−84 0.00 1.26× 10−83 1.01× 10−83

100 1.25× 10−83 5.11× 10−84 0.00 1.26× 10−83 1.88× 10−77

200 1.24× 10−83 3.31× 10−84 0.00 1.26× 10−83 9.45× 10−84

500 1.24× 10−83 6.96× 10−84 0.00 1.23× 10−83 1.73× 10−82

1000 1.24× 10−83 2.32× 10−84 0.00 1.21× 10−83 3.58× 10−68

F5

30 1.24× 10−83 1.25× 10−83 1.25× 10−83 3.32× 10−45 5.66× 10−76

50 1.25× 10−83 1.25× 10−83 1.23× 10−83 1.70× 10−42 1.43× 10−73

100 1.26× 10−83 1.25× 10−83 1.24× 10−83 2.07× 10−32 2.28× 10−72

200 1.26× 10−83 1.25× 10−83 1.24× 10−83 4.61× 10−27 1.46× 10−73

500 1.25× 10−83 1.25× 10−83 1.22× 10−83 1.23× 10−21 3.57× 10−71

1000 1.23× 10−83 1.25× 10−83 1.24× 10−83 1.58× 10−20 4.94× 10−81

F6

30 1.09× 10−5 1.11× 10−83 1.32× 10−35 6.84× 10−57 1.90× 10−71

50 3.27× 10−37 8.32× 10−84 1.24× 10−83 1.16× 10−52 2.15× 10−75

100 4.56× 10−70 1.14× 10−83 1.22× 10−83 1.21× 10−48 1.28× 10−81

200 1.26× 10−83 1.23× 10−83 1.19× 10−83 7.08× 10−45 1.31× 10−76

500 1.26× 10−83 1.24× 10−83 1.15× 10−83 2.79× 10−42 1.84× 10−80

1000 1.26× 10−83 1.19× 10−83 1.05× 10−83 9.72× 10−41 6.36× 10−78

F7

30 1.18× 10−83 1.26× 10−83 5.19× 10−84 5.01× 10−84 5.62× 10−48

50 1.20× 10−83 1.26× 10−83 7.70× 10−84 4.89× 10−84 1.76× 10−84

100 1.06× 10−83 1.26× 10−83 1.15× 10−83 5.07× 10−86 2.27× 10−85

200 8.37× 10−84 1.26× 10−83 1.16× 10−83 2.79× 10−85 2.21× 10−84

500 7.59× 10−84 1.26× 10−83 1.12× 10−83 4.72× 10−84 6.32× 10−85

1000 6.86× 10−95 1.26× 10−83 1.05× 10−83 4.75× 10−84 1.44× 10−81
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Table A7. The Wilcoxon Test Result Between ESOA And Other Algorithm On CEC17 Bench-
mark Functions.

ESOA vs. PSO ESOA vs. GA ESOA vs. DE ESOA vs. GWO ESOA vs. HHO

F1 30 1.15× 10−83 1.49× 10−64 7.73× 10−47 7.59× 10−14 1.26× 10−83

F2 30 N/A N/A N/A N/A N/A
F3 30 4.87× 10−81 1.26× 10−83 1.12× 10−83 2.50× 10−82 1.26× 10−83

F4 30 1.26× 10−83 5.97× 10−4 1.44× 10−26 1.81× 10−57 1.26× 10−83

F5 30 1.26× 10−83 3.35× 10−40 2.64× 10−83 7.09× 10−10 1.26× 10−83

F6 30 1.26× 10−83 2.73× 10−71 3.23× 10−50 1.44× 10−23 1.26× 10−83

F7 30 1.26× 10−83 1.26× 10−83 1.63× 10−30 2.45× 10−13 1.26× 10−83

F8 30 1.03× 10−83 2.68× 10−80 6.81× 10−11 3.17× 10−22 2.62× 10−83

F9 30 3.82× 10−82 2.80× 10−74 4.34× 10−51 8.96× 10−80 9.99× 10−56

F10 30 3.69× 10−45 1.87× 10−83 7.29× 10−84 1.93× 10−81 1.33× 10−83

F11 30 2.74× 10−82 1.26× 10−83 2.13× 10−54 4.73× 10−72 1.25× 10−83

F12 30 1.26× 10−83 3.69× 10−35 1.16× 10−6 2.29× 10−62 1.26× 10−83

F13 30 1.27× 10−83 3.06× 10−22 6.17× 10−33 3.57× 10−46 1.26× 10−83

F14 30 8.57× 10−66 1.87× 10−63 1.90× 10−37 1.18× 10−83 1.26× 10−83

F15 30 1.97× 10−46 1.49× 10−20 1.20× 10−83 5.85× 10−73 1.26× 10−83

F16 30 2.53× 10−76 1.08× 10−1 1.74× 10−76 1.21× 10−82 2.87× 10−76

F17 30 N/A N/A N/A N/A N/A
F18 30 2.76× 10−14 1.26× 10−83 9.89× 10−84 1.94× 10−17 1.26× 10−83

F19 30 3.27× 10−18 4.91× 10−13 2.83× 10−37 1.15× 10−72 1.26× 10−83

F20 30 N/A N/A N/A N/A N/A
F21 30 3.91× 10−79 7.58× 10−74 2.81× 10−62 3.86× 10−6 1.26× 10−83

F22 30 1.26× 10−83 1.46× 10−4 2.08× 10−81 1.24× 10−83 4.64× 10−83

F23 30 1.21× 10−83 3.94× 10−82 2.41× 10−20 1.46× 10−75 1.49× 10−83

F24 30 3.27× 10−54 7.40× 10−79 8.32× 10−19 2.84× 10−30 1.45× 10−83

F25 30 1.26× 10−83 3.93× 10−6 2.23× 10−17 1.76× 10−4 1.26× 10−83

F26 30 1.32× 10−83 1.63× 10−54 1.11× 10−72 1.33× 10−44 1.26× 10−83

F27 30 5.37× 10−67 1.81× 10−75 4.86× 10−79 1.97× 10−4 1.26× 10−83

F28 30 1.25× 10−83 1.26× 10−83 6.87× 10−10 6.62× 10−4 1.37× 10−83

F29 30 N/A N/A N/A N/A N/A
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