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1. Introduction and main results

A random diffusion is a Markov process consisting of two components (X (t), A(t)), where the first
component X (t) means the underlying continuous dynamics and the second one A(t) stands for a jump
process. Such diffusions have a wide range of emerging and existing applications in e.g. climate science,
material science, molecular biology, ecosystems, econometric modeling, and control and optimization of
large scale systems; see e.g. [21,29,37] and references therein. Viewing random diffusions as a number
of diffusions with random switching, they may be seemingly not much more different from the classical
diffusions. Nevertheless, the coexistence of continuous dynamics and jump processes results in challenges
in handling a random diffusion (X(t), A(¢)) under consideration, even though, in each random temporal
environment, (X (t)) is simple enough for intuitive understanding. [19] reveals that (X (t)) is exponentially
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stable in the pth moment in a random temporal environment but algebraically stable in the pth moment
in the other scenarios, whereas (X (¢)) is ultimately exponentially stable; [24,25] provide several interesting
examples to show that (X (t), A(t)) is recurrent (resp. transient) even if (X (¢)) is transient (resp. recurrent)
in each random temporal environment; Under certain ergodicity conditions, [4,7,19] show that the random
Ornstein—Uhlenbeck (OU) process (with jumps) admits the heavy tail property.

Recently, ergodicity of random diffusions with constant or non-constant jump rates has been investigated
extensively; see, for example, [4-6,27,28] for the setting of constant jump rates, [5,6] as for the setup of
bounded non-constant jump rates, [21,30] concerning the framework of unbounded and non-constant jump
rates. So far, there are several approaches to explore ergodicity for random diffusions; see, for instance,
[4,5,28] via probabilistic coupling arguments, [6,21,30] by the weak Harris’ theorem, [27] based on the theory
of M-matrix and Perron—Frobenius theorem. For ergodicity of random diffusions with infinite regimes, we
refer to [27,33] among others.

More often than not, to understand very well the behavior of numerous real-world systems, one of the
better ways is to take the influence of past events on the current and future states of the systems involved
into consideration. Such point of view is especially appropriate in the study on population biology, neural
networks, viscoelastic materials subjected to heat or mechanical stress, and financial products, to name a few,
since predictions on their evolution rely heavily on the knowledge of their past. There is a sizeable literature
concerning path-dependent stochastic differential equations (SDEs) upon e.g. wellposedness, existence and
uniqueness of stationary solutions, and ergodicity; see e.g. [11,12,14,15,17,23,26] and references therein. In
terminology, a path-dependent SDE is also called a functional SDE or an SDE with memory.

Under certain Lyapunov condition (which is not related to the stationary distribution of the Markov chain
involved), [34,35] investigate existence and uniqueness of invariant probability measures (IPMs for short) for
random diffusions without memory by exploiting the M-matrix trick, and [36] tackles the same issue but for
path-dependent random diffusions. Recently, under an ergodic condition, [3] probes deeply into existence
and uniqueness of IPMs for a kind of random diffusions by developing new analytical frameworks.

As described above, there is a natural motivation for considering stochastic dynamical systems, where all
three features (i.e., random switching, path dependence and noise) are present. In this work, we are interested
in ergodic properties for path-dependent random diffusions. More precisely, as a continuation of [3], under
ergodic conditions, we are concerned with existence and uniqueness of IPMs not only for path-dependent
random diffusions but also for their time discretization versions. In comparison with [3,34,35], the difficulties
to treat existence and uniqueness of (numerical) IPMs for path-dependent random diffusions lie in (i) the
state space of functional solutions (X;)¢>o is infinite-dimensional; (ii) The couple (X, A(t)) is discretized;
(iii) The investigation is based on certain ergodic condition. Based on the points above, it is much more
challengeable to deal with long term (numerical) behavior of path-dependent random diffusions.

Prior to the presentation of the setup for this work, we consider and introduce some notation and
terminology. For a fixed number 7 > 0, denote ¢ = C([—, 0]; R™) by the family of all continuous functions
f:[-7,0] = R", endowed with the uniform norm ||f||cc = Sup_,<p<q|f(0)|. Set S = {1,2--- N} for
some integer N € [1,00). Let (A(t)) stand for a continuous-time Markov chain with the state space S, and
the transition rules specified by

o (1.1)
1+g¢is+o(D), i=]

P(A(t+ A) = jlA(t) =1i) = {
provided A | 0, where o(A) means lima_,o00(A)/A = 0; @ = (gs5) is the Q-matrix associated with the
Markov chain (A(t)). We assume that (A(t)) is irreducible with the stationary distribution 7 = (7, ..., 7n),
which is determined by solving the algebraic equation 7Q = 0 subject to the constraint condition ), g m; =
1 with m; > 0. Let E = % x S for notation brevity. Define the metric d on E by

d((ﬁ, l)7 (77’,7)) = Hg - 77”00 + 1{275]}5 (572)? (777j) € E7
2
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where, for a set A, 14(z) = 1,2 € A, and 14(x) = 0,2 ¢ A. Let P(E) be the space of all probability
measures on E and set

Pya(B) = {v € P(B)| /Ed((g,i), (0.10))v(d€,afi}) < 00}, p>10

for some point (0,i9) € E. For v1,v0 € P, 4(E), define the Wasserstein distance W, induced by the
transportation cost function d by

1
V5
Wp,d(l/hVZ) = inf {/ d((§71)7(n»]))pﬁ((dfad{l})7(dnad{.]}))} , D> Oa
n€C(v1,v2) | JEXE
where C(u, v) denotes the collection of all probability measures on E x E with marginals p and v, respectively
(i.e., m € C(vy,v2) if and only if 7(-, E) = v1(-) and 7(E,-) = v5(-)). Let
2 = {w|w : Ry — R™ is continuous with w(0) = 0},

which is endowed with the locally uniform convergence topology and the Wiener measure P; so that the
coordinate process W (t,w) := w(t) is a standard m-dimensional Brownian motion. Let ({22, (§%),P3) be
the Poisson space with the intensity measure d¢tdu, where

n
2 = {w’w = Z‘Stiﬂw :n € NU{oo}, (t;, u;) € Ry x R+},

i=1

the space of configurations (i.e., the realizations of a random point measure). Under the probability measure
Py, N(dt,du,w) = w(dt,du) is a Poisson random measure with the intensity measure dtdu. Set

(Q,ﬂ,P) = (.Ql X .QQ,%(Ql) X :@(QQ),]P)l X ]Pg)

Then, under the probability measure P := Py x Py, for w = (w1,ws) € 2, wi(-) is an m-dimensional
Brownian motion, wy(-) is a Poisson random measure with the intensity measure dtdu, and they are mutually
independent. Throughout this paper, we shall work on the probability space (£2,.%#,P) constructed above.

Hereinafter, ¢ > 0 refers to a generic constant which might change from occurrence to occurrence. Below,
we present the framework of our work and state the main results we derive.

1.1. Ergodicity: the additive noise

In this subsection, we focus on a path-dependent random diffusion with an additive noise
dX (t) = b( Xy, A(t))dt + o (A())dW (t), t>0, (Xo,A(0))=(&,i)€E, (1.2)
where b: E — R", 0:S — R" ® R™, and, for each fixed t > 0, X; € % is defined by
X:(0)=X({t+86), 6e[-7,0]

In literature, (X;);>o is called the segment (or window) process associated with (X (¢))>_-.
Assume that for (£,75),(n,j) € E,
(A) There exist a; € R and 3; € Ry such that

2(£(0) — n(0),b(¢, ) — b(n, §)) < a;1€(0) — n(0)[* + B;]1€ — nl|%.
3
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Under (A), by following a more or less standard argument (see e.g. [22]), (1.2) admits from [32, Theorem
2.3] a unique strong solution (X%%(¢)) with the initial datum (¢,) € E. The segment process (which is also
called functional solution in terminology) associated with the solution process (X&(t)) is written as (X&)
to highlight the initial value (¢,i) € E. The pair (X%, Ai()) is a homogeneous Markov process; see, for
instance, [23, Theorem 1.1] and [26, Proposition 3.4] for more details.

Foramap x:S — Ry, let

K =mink;, K=maxes;.
j€ES JjES

For any p > 0, set
Qp = Q +pdiag(ar +e " B1,...,an +e " fy) € RY @ RN,
where @ is the @Q-matrix of the Markov chain (A(t)) and 7 > 0 is the length of time lag. Let

7, = —max Re(y), p>0; & =sup{p>0:n,>0}¢c(0,+00], (1.3)
vespec(Qp)

where spec(Q,) and Re(vy) denote the spectrum (i.e., the multiset of its eigenvalues) of @, and the real part
of v, respectively. Let
T =inf{t>0: A'(t) = A (t)}

be the coupling time of (A%(t), A7(t)). Since S is a finite set and @ is irreducible, there exists a constant
0 > 0 such that
P(T >t)<e % t>0, (1.4)

see e.g. [1] for more details. Let P:((£,4),-) be the transition kernel associated with the Markov process
(X5 Ai(t)). For v € P(E), let vP; denote the law of (X;, A(t)) when (X, A(0)) is distributed according to
vePE).

Our first main result in this paper is stated as follows.

Theorem 1.1. Assume (A) and k* > 1. Then, for any v1,vs € Py 4(E) with p € (0,1],

ponyt

Wy.a(Pr,v2Py) SC{1+[g||€||§OV1(0’£,S)+[g||§||€01/2(d€, S)}€_2<9+"’”1) (1.5)

where 1 > 0 is defined in (1.3) with p = 1 and 6 > 0 is specified in (1.4). Furthermore, (1.5) implies that
(X5 Ai(t)), determined by (1.2) and (1.1), admits a unique IPM v € Pp.a(E) such that

pényt

Wp.a(de,iyPr,v) < 0{1 + [I1€11% +/ [InlEv (dn, S)}E_Q("“”UH (,i) € E, (1.6)
€
where 0(¢ ;) means Dirac’s delta measure (or unit mass) at the point (§,1).

Below, we provide an example to demonstrate Theorem 1.1.

Example 1.2. Let (A(¢));>0 be a right-continuous Markov chain taking values in S = {0,1} with the

Q=<_1 ! ) (1.7)
Y=Y

for some constant v > 0. For 6 > 0, consider a path-dependent random diffusion on R™

generator

AX (1) = {aamy X (1) + caw| X)X () + bay X (¢ — 1) }dt + 04, dW(2), t > 0, (1.8)

4
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where ag, bg, b1 > 0,a7 < 0 with aq := 2a1 + b1 < 2a9 + by =: ag, ¢co = 0,¢1 = —1, 09,01 € R® @ R™, and
(W(t)) is an m-dimensional Brownian motion. Set a := ag + bpe™*1, b:= a1 + bje™ 1. If

b<0, a+b<l+~, v/b+1/a>1, (1.9)

then (Xf’i, A¥(t)), determined by (1.8) and (1.7), has a unique IPM, and converges exponentially to the
equilibrium under the Wasserstein distance Wy 4.

In the following, we are going to explain this example. For j = 0,1, let

b(€,5) = a;€(0) + c;[€°€(0) + bjE(~1),  €€C.

Then, (1.8) can be regarded as the interactions between the following diffusion processes with point delays
for 7 =0,1, ‘ ‘
AXD(t) = b(XD, j)dt + o;aW (1), XY =¢e .

Let f(z) = |#|’z,2 € R". A direct calculation shows
Vi) =0lz|° 22" + |2/’ Tixn, xR,

where z* is the transpose of x, and I, «, is the n x n identity matrix. Whence, the chain rule yields

(@ =@ = 1) = [ Gt £+ stz =)

- / (& — s (Vo )y + 5(z — )))ds
= /0 {ly + sz —y)°Jx —y|> + 0y + s(z — v)|* (& —y,y + s(x — y))?}ds > 0.

This, together with ¢g = 0,¢; = —1, implies that for all £,7 € €,

2(£(0) = n(0), b(&, 5) — b(n, 7))
= 2(£(0) = n(0), a;(£(0) = n(0)) + ¢; (£(£(0)) — £(n(0))) + b;(£(=1) = n(=1)))
< (205 + b)) |6(0) = (O +b;€(-1) = n(-1)*,  j=0,1.

Hence, we have a; = 2a; + b; and §; = b; in (Hy). Subsequently, it is easy to see that

—1+pa 1
Qp = 5
g -y +pb

where a == ag + bpe ™1, b := a1 + bje”*1. Observe that the determinant of @, — Al2x2 is given by
1Qp — Maxa| = A2 — (p(a+b) — 1 — )\ + p?ab — p(ay + b).
Under (1.9), we take p > 1 such that
pla+b) <1+7, pZab — play + b) > 0.

Therefore, the characteristic equation |Q, — Al2x2| = 0 has two roots with negative real parts. Moreover,
due to p > 1, we immediately obtain x* > 1.

Consequently, all the assumptions in Theorem 1.1 are satisfied so that the assertions in Example 1.2 hold
true.
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Remark 1.1. In the past few years, ergodicity for stochastic systems with non-uniformly dissipative
conditions (e.g., the drift is contractive only outside of a compact set and the drift is allowed to be repulsive
on a compact set) has been extensively investigated; see e.g. [8,10,31] and references within. In contrast
to the literature mentioned above, the condition imposed in Theorem 1.1 seems to be a little bit strong.
Whereas our conditions allow that some subsystems need not to be dissipative even outside of some compact
set. The coupling (e.g., reflection coupling and refined basic coupling) approach is one of potential ways to
study ergodic property of SDEs with non-dissipative condition, where the crucial points are to choose a
suitable coupling metric function and to solve the corresponding second order differential inequality; see,
for instance, [9,20] and references therein. Nevertheless, as for a path-dependent diffusion, it is in general a
very hard task to solve the associated path-dependent second order differential inequality. Whence, as for
path-dependent diffusion processes with non-uniformly dissipative drifts, some new approaches need to be
invoked to investigate ergodicity. Once the diffusion coefficient is elliptic, the condition imposed on the drift
term might be weaken in a certain sense, see, for example, [2] for more details.

Remark 1.2. To demonstrate that the prerequisite n; > 0 cannot be dropped, we take

b(fvz) = b(f(O),g(—T), i)’ U(Z) =0, §et

as a toy example. For such setting, for all x,7, 21,2 € R? and i € S, assume that there exist a; € R and
Bi € Ry such that
. . 2 2

<Z‘ - Y, b(xa zl?l) - b(ya 22, 7’)) < Oéi‘.f - y| + Bi‘zl - Z2| . (110)

To show the continuous dependence of initial values in the pth moment sense, it is crucial to show that

(2.1) below holds true with the power 2 therein replaced by the power p > 0. To achieve this, via It&’s

formula, one of the ingredients is to show that there exist o,; € R and §,; € R4 such that for all
x,Yy, 21,2 € RY
sy Yy <1y <2 3

p|,’1} - y|p_2<$ -y, b(SL‘, Zlvi) - b(y7 Zg,i)> S O‘P,ilaj - y‘p + ﬂp,’i"Zl - Z2|p (111)

once (1.10) is valid. It is easy to see from (1.10) that
-2 . , -2 2
ple —y["" (z — y,b(z, 21,49) — by, 22, 1)) < paile — y|” + pBile — y[P 7|21 — 22|
Whence, to ensure that (1.11) holds true, it is sufficient to verify that for all z,y, 21,20 € R? and i € S,
pailz —yP + pBilz — yP 2z — 20| < apilr — yP + Bpilz — 22 (1.12)

Note that |« — y| is not comparable with |21 — 22| totally. In particular, when |z — y| goes to zero, for the
case p € (0,2) the left hand side of (1.12) tends to infinity however the right hand side remains finite. Hence,
(1.11) is invalid for the setting p € (0,2). Thus, to guarantee that (1.11) is true, we particularly take p = 2
and therefore we need to assume the associated 7; > 0 rather than 7, > 0 for arbitrary p > 0.

For 8; = 0 (which corresponds to the SDE without memory), (1.10) implies definitely (1.11) for any p > 0.
Therefore, in this setting, we can take the power p > 0 sufficiently small.

1.2. Ergodicity: the multiplicative noise

In the previous subsection, we discuss ergodicity under the Wasserstein distance for a class of path-
dependent random diffusions with additive noises. In this subsection, we proceed to consider the same issue
under a little bit strong assumptions but for path-dependent random diffusions with multiplicative noises in
the form

dX(t) = b( Xy, A(t))dt + o (X, A(t))dW(t), t >0, (Xo,4(0)) = (&) €E, (1.13)

where b: E — R" and ¢ : E — R" @ R™.
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Assume that for (£,75),(n,j) € E,
(H;) There exist a; € R and 3; € Ry such that

0

2(¢(0) = n(0),b(&, §) — b(n, 5)) < a;[£(0) = n(0)|* + B, / 1€(s) = n(s)|*u(ds),

where p(-) is a probability measure on [—7,0].
(Hg2) There exist 6;,7; € Ry such that

0

lo(€.5) = o(n.3)llfis < 6;1€(0) = n(0)|” +’Yj/ 1€(s) = n(s)*p(ds),

where || - ||ps means the Hilbert—Schmidt norm.
For p > 0, set o .
Qp=Q +pdiag<x\1 + 41/ eMu(ds), . .. ,gN/ e’\su(ds)),

—T —

where \; == «; + 0;,(; == B; + 7i,7 € S. Define

np,= —max Re(y), p>0; k= sup{p >0:mp > 0} € (0, 4] (1.14)
VGSpeC((gp)

Under appropriate assumptions, the semigroup generated by the pair (th . A%(t)) converges exponentially
under the Wasserstein distance to the equilibrium as another main result below reads.

Theorem 1.3. Assume (Hy), (Hz) and ** > 1. Then, for any v1,vs € Py q(E) with p € (0,1],
ponyt

W,a(1 ProvaPy) < c{l + [ lelntes)+ [ felate s>}e2<0+m> (1.15)

where 6 > 0 such that (1.4) holds and n; > 0 is defined in (1.14) with p = 1. Furthermore, (1.15) implies that
(X5, Ai(t)) solving (1.13) and (1.1) admits a unique IPM v € P, 4(E) such that

pon;t

Wyt (Se. Prr ) < c{1 el + [ |5||£Qu<ds7s>}e‘2<9+m>. (1.16)
€

1.3. FErgodicity preservation: the additive noise

In this subsection, we aim to discuss exponential ergodicity under the Wasserstein distance for the time
discretization version of (X5, Ai(t)), determined by (1.2) and (1.1).

Without loss of generality, we assume the step size 6 = 7 € (0, 1) for some integer M > 7. Consider the
following continuous-time EM scheme associated with (1.2)

dY (£) = b(YVay, A(ts))dt + o (A(ts))dW (), ¢>0 (1.17)

with the initial condition Y (0) = X (0) = £(0) for § € [—7,0] and A(0) =i € S, where, t5 := [t/0]|d with

[t/6] being the integer part of t/8, and Yis = {Vis(0) : —7 < 6 < 0} is a €-valued random variable defined

as follows: for any 0 € [j6,(j + 1)d], j = —M,...,—1,

60— 36
5

i.e., Yys is the linear interpolation of (Y'(k))r>_ s at the gridpoints. Below, please keep in mind that Y;; € ¢

Yis(0) = Y ((k +4)0) + {Y((k+j+1)8) = Y((k+5)d)}, (1.18)

above is defined in a quite different way although it shares the same extrinsic feature as X;. In order to

7
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emphasize the initial condition (¢,4), we shall write Y$?(¢) and Yéz in lieu of Y (¢) and Y;;, respectively.
The pair (Yé’i, A¥(ts)) admits the Markov property as Lemma 5.1 below shows. Let Plgg)((ﬁ, i),-) stand for
the Markov transition kernel corresponding to the Markov chain (Y,fgi, A (k6)).

To discretize (1.2), in this work we adopt the simple EM scheme (i.e., (1.17)). Since the EM scheme is
not stable whenever the drift coefficients of SDEs involved is non-globally Lipschitz (see e.g. [13]), besides
(A), we further assume that there is an Ly > 0 such that

6(¢,3) = b(m )| < Loll§ = nllo,  (£,4), (n,5) € E. (1.19)

The theorem below shows that the discrete-time semigroup generated by (Yk%’i, A% (kd)) admits a unique
IPM and is exponentially convergent to its equilibrium under the Wasserstein distance.

Theorem 1.4. Assume the assumptions of Theorem 1.1 and suppose further (1.19). Then, for vi,vy €
Pp.a(E) with p € (0,1], there exists 6y € (0,1) and o > 0 such that

Wy (1 P2, 1, PD) < c{1+ [g €Iz (de, S) + jg €l1Z, o e, s>}ea“ (1.20)

for any k > 0 and § € (0,8p). Furthermore, (1.20) implies that (Y,féi,/li(kzs)) admits a unique IPM
V9 € P, 4(E) such that for all k > 0,6 € (0,8), (£,4) € E,

Wnaen P o) < c{u+ lel + [ el g, s) oo

Remark 1.3. Recently, under the dissipative condition on the drift term, [18] investigated existence
of numerical IPMs for semigroups generated by backward EM scheme associated with path-independent
random diffusions, which improves our paper [3]. Another motivation for us to employ the EM scheme is
due to the fact that we herein show merely the idea of our work although the assumption (1.19) can be
further relaxed by making use of backward EM scheme.

Corollary 1.5. Under the assumptions of Theorem 1.4,

lim W, 4 (v, ) =0,

where v € Py, q(E) is the IPM of (X5 Ai(t)) solving (1.2) and (1.1) and v©® € Pp.a(E) is the IPM of
(Y5, Ai(k6)), determined by (1.17) and (1.1).

1.4. Ergodicity preservation: the multiplicative noise

In this subsection, we move forward to discuss the setup with multiplicative noises. As we stated, the EM
scheme is unstable provided that the drift coefficient of an SDE under consideration is locally Lipschitz (see
e.g. [13]). So, for the present setting, we further need to strengthen (Hy) as follows: there exists an Ly > 0
such that for all (§,5),(n,j) € E,

(&) = b ) < La{00) = O + [ €)= n(s) Putas) . (121)
Consider the EM scheme corresponding to (1.13):

dY (t) = b(Yy,, A(ts))dt + o(Yi,, A(ts))AW (), ¢>0 (1.22)
8
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with the initial condition Y (0) = X (0) = £(0) for 6 € [—7,0] and A(0) =i € S, where Y;; is defined as in
(5.4). Let
K" =sup{p >0:n, >0} € (0, 4],

where 7, is defined as in (1.14) by writing 4¢; instead of (;.

Concerning the multiplicative noise case, the time discretization of (X;(&,14), A%(t)), determined by (1.13)
and (1.1), also inherits the exponentially ergodic property as the step size is sufficiently small, which is
presented as below as another main result in this paper.

Theorem 1.6. Assume (Hy), (Hz), (1.21) and * > 1. Then, for vi,vy € P, q(E) with p € (0,1], there
exist 0p € (0,1) and a > 0 such that

W,.a(1 PO 1 PY)) < c{1+ [g 1€||Bo v (dE, S) + [g 1€]1B w2 (de, S)}e—“’“ (1.23)

forany k >0 andé € (0,d0). Furthermore, (1.23) implies that (Y,féi, A (kd)), determined by (1.22) and (1.1),
admits a unique IPM 19 € P, 4(E) such that

s —a )
Wpa(dicoPis vV < e {1 el + [ el e s>}e “, (i) € E.
¢
Below, an example is provided to demonstrate the application of Theorem 1.6.
Example 1.7. Assume that (A(t));>0 is a right-continuous Markov chain with the state space S = {0,1}

-y 7
Q= ( ) _1> (1.24)

for some constant v > 0. For 6 > 0, consider a scalar path-dependent random diffusion

and the generator

dX(t) = {aamy X () + bapy X (t = 1) }dt + 04, (X(t) + X (¢t — 1))dW(t), t > 0 (1.25)

where ag, by, b1,00,01 > 0,a1 < 0 with A\ = 2a; + by + 207 < 2ag + by + 202 =: Ao, and (W (t)) is a
1-dimensional Brownian motion. Set a = Ag + 4e_>‘1(0 and b .= A\ + 4e_>‘1(1 with (o = by + 203 and
Cl = bl + 20’% If

2-by+ab-—1)>0, a+b<l+v, X+4e MG+ (M +4eMG)y <0, (1.26)

then (Y,f(;’i, A¥(k6)), determined by (1.24) and (1.25), has a unique IPM v(®) € P, 4(E) for some p > 1 when
the stepsize is sufficiently small and the corresponding numerical transition kernel converges exponentially
under the Wasserstein distance to the IPM (%),

Now, we explain this example. For j € {0,1} and ¢ € %, let
b(€,j) = a;€(0) + b;8(=1),  o(&4) = 0;(£(0) + (1))
Then, direct calculations show that for j € {0,1} and ¢ € %,
2(6(0) = n(0)(b(€,5) — b(n,4)) < (2a; +b;)(£(0) = 0(0))* + b; (&(~1) — n(—1))*

and
|0(&,5) — a(n,5)1* = 207 ((€(0) = 1(0))* + (£(—1) — n(=1))?).

9
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Therefore, (Hy) holds for aij = 2a; + b; 85 = b; and p(dz) = d_1(dz) and (Hz) is valid for 6; = ~; = 207,
which obviously imply
)\j :2aj+bj—|—20]2», Cj :bj—|—20']2».
Furthermore, (1.21) holds true with L = 2((a3 V b2) + (a} V b3)).
Owing to A1 < Ag, we readily obtain that for any p > 0,

0 0

~ ~ -y + pa
Qp:Q+pdiag()\o+4C0/ ey (ds), M +4C1/ el\éél(ds)) - < ’Yl ! —11pb>

with a = Ao + 4¢pe™™ and b := \; +4(e 1. It is easy to see that the characteristic equation associated
with @) is given as below

det(Qp — AMox2) = A — (pla+b) — 1 — )X+ (2 — pb)y + pa(pb — 1) = 0. (1.27)
By taking (1.26) into consideration, there exists a constant p > 1 such that
(2 —pb)y+pa(pb—1) >0, pla+b) <14+~

so that Eq. (1.27) has two negative roots. Therefore, we reach k* > 1 by taking advantage of p > 1.
Due to ag, by, o9 > 0, the following subsystem

AXO @) = b(x?, 0)dt + o(X V), 0)dW (£)

is fully non-dissipative so the functional solution (Xt(o)) does not possess an IPM. Furthermore, a direct
calculation shows that (A(t));>o has a unique IPM 7, which is given explicitly by = = (mp,71) = (1/(1 +
),/ (14+7)). Hence, all assumptions in Theorem 1.6 are fulfilled so the assertion of Example 1.7 is followed.

With Theorems 1.3 and 1.6 at hand, by following exactly the proof of Corollary 1.5, we derive the following
corollary.

Corollary 1.8. Under the assumptions of Theorem 1.6,
%E%Wp,d(”’ V() =0,

where v € Ppq(E) is the IPM of (X5 A1) solving (1.13) and (1.1) and v®) € P, 4(B) is the IPM of
(V' A¥(Kd)), determined by (1.22) and (1.1).

The remainder of this paper is arranged as follows. Section 2 is devoted to the proof of Theorem 1.1;
Section 3 is concerned with the proofs of Theorem 1.3 and Example 1.2; In Section 4, we aim to investigate
estimate on an exponential functional of the discrete observation for the Markov chain involved and
meanwhile finish the proofs of Theorem 1.4 and Corollary 1.5; At length, we focus on the Markov property
of time discretization version of (X5, A%(t)) and complete the proof of Theorem 1.6.

2. Proof of Theorem 1.1

The lemma below shows that, under suitable assumptions, the functional solutions starting from different
initial points will be contractive to each other in the mean-square sense when the time parameter goes to
infinity.

Lemma 2.1. Under the assumptions of Theorem 1.1,
ElIX;" = X% < cllé —nle™", (€0, (1) € E, (2.1)
where 1 > 0 is defined in (1.3) with p = 1.

10
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Proof. For each fixed wy € 25, consider the following SDE
dX*2(t) = b(X; 2, A“2(t))dt + o(A“2(t))dwy (), t >0, X2 =¢€€, A“2(0)=i€S.

Since (A4*2(s))se0,q may have a finite number of jumps, ¢ — fot @ w2 (5)ds need not to be differentiable. To
overcome this drawback, let us introduce a smooth approximation of a g« () as follows

1 t+e 1
O[iwz(t) = g/ apwa (5)ds + et = /0 Qpw2(cstt)ds +et, €€ (0,1). (2.2)
t

Plainly, t — a.E/l‘*Q(t) is continuous and ain(t) — awz () as € | 0 due to the right continuity of the path
of A“2(-). As a consequence, t — fot S wy (T)dr is differentiable by the first fundamental theorem of calculus

and fot W (pydr — fot a w2 (mydr as € | 0 according to Lebesgue’s dominated convergence theorem. Let
I<2(t) = X@28H(t) — X92mi(t), >0 (2.3)

and (I;"?) be the corresponding segment process. Applying Itd’s formula and taking (A) into account ensures
that

d

t )
o Jo @2 089 Pz ()2 = | P2 (02 +/ Jo e {—aiwg(s>lf“’2(8)|2
+2(I%2(s), b(X2E0, A92(s)) — b(X¥2™T, A*2(s))) } ds (2.4)
<P (0) + w2e(t) + / Breagoe o w20V | re 2 s,
0

where
¢ —fs af dr 2
YU () ::/ e Jo T4¥2(n) \asz(s) —Ozflw2(s)| |2 (s)|"ds.
0

Due to the fact that

t . —~ S e
e oot <ot o e s (hhmetirapr)) @)

(t—7)v0<s<t

we therefore infer from (2.4) that
[ A t s e
oot re < T enp i+ w0 + [ B o o r ds),
0
Since @fjuy () = Qw2 (s) SO that W2:¢(t) — 0 as € — 0, one has

t ~ t s
o esetreE, <ot enrE v [ Bp e ot e s
0
Thus, employing Gronwall’s inequality followed by taking expectation w.r.t. P yields

) . ~ t _ar )
B XS — XPY2, < cea € — plZBedoa e ac)de
Due to x* > 1 and [4, Propositions 4.2], we have

Z(O‘j +eia‘rﬁj)7'rj < 0. (26)
Jj€es
Consequently, the desired assertion follows from [4, Propositions 4.1] and [4, Theorem 1.5]. O

11
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The lemma below reveals that the functional solution is ultimately bounded in the mean-square sense.

Lemma 2.2. Under the assumptions of Theorem 1.1,

iggEHXf’iIIQ <c(l+El%), (&) €E. (2.7)

Proof. Let ain(t) (resp. Bi“’Q(t)) be the smooth approximation of a ws () (resp. Sawz(y)) defined as in
(2.2), and write (X;) in lieu of (X&) for notation brevity. By virtue of (A), for all 4 > 0, there is a constant
¢y > 0 such that

2(6(0),b(¢, 1)) + lo(Eis < ey + (v + @) IEO) + BilI€l%:  (6,5) € E. (2.8)

Employing Ité&’s formula and taking (2.8) into consideration provides

t c t s c
e b ) < O +e, [T IO g g ) 4 areer
0

(2.9)
! =[S (y+af )dr 2
+/0 Bhwa(sye J0 T ATROT|X 25 ds,
where
w +a w T w
o2 = [ RO g~ afn o) IX2 0
+Bawz (o) = Baea sl - X212 } ds, (2.10)
t s e
M“2(t) : =2 / e o Ot ohea ) () (442 (5))don (5)).
0
Below, || - || means the operator norm. For 0 < s < ¢ with ¢t — s € [0,7] and k € (0,1), exploiting BDG’s
inequality yields
Ep, ( sup M“2%(r)) = Ep, M“2(s) + Ep, ( sup (M“2%(r) - MW(s)))
s<r<t s<r<t
_ — [ (rHawy ()AT ) 1w w
= 28y, ((sup / 12V (0 (), 0442 ) ()
s<r<t
t — a T 1/2
< B, / e 2 O lhen ) e ()2 (42 (u))HQdu) (2.11)

- bt 1/2
< eo ey, (i, [ RO )

S

_ t £ .
< ce” b Ol gy, x22)2) 2
~ ¢ . ¢ .
< Kke“Te fO (rFajwy <r))drEP1 X202 + e fo (rajwn () )dr

for some constant ¢, > 0, where the second identity holds true since (M“2:(t)) is a martingale. Then, (2.9)
and (2.11) lead to

—ar t s e _ ot €
o Ot tg ez < O {C||§||§o+cw [ R s el

1-—

- / Boa gy d0 020V, | X922 ds + B, 6427(1) } '
0

12
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Then, applying Gronwall’s inequality yields

fO ('7+OtAw2(5 1||XUJ2H2

t '
¢ { €15 + / o Jo OrHeden g | o ot )ar | Ep, 3“2 (t)
0
> [ INCERG
el [ oe(oel as
0
¢ s “ € w9 ,E
—i—/ / e Jo (7+O‘Aw2(r))drdu@w»E(S)ef: 625 (r)dr 4o
0o Jo
t N € t w £
+/ e fo (’Y-‘rocAwQ(T))dr 9w278(8)ef9 Ow2s (7')drds
0

t t Swo,e
_|_/ (EIP’l @u)Q,s(t)) @wg,s(s)efs o%2 ('r)drds }
0

(g

Jj=1

(2.12)

in which ©%2:¢(t) := e_aT/Bflw2 /(1 = K). By u-substitution and Fubini’s theorem, one has
=5wa.e (t) 4 Fbwa.e (t)
t - o . =3,wg,e 2.13
L e B e () .
Under (A), by using Holder’s inequality and BDG’s inequality, it is more or less standard to show
Ep, (sup IXe2)2%) <Ciy 120
0<s<t
for some nondecreasing function ¢ — C}. So, the dominated convergence theorem implies that
Ehwze(p) 4 5892E(1) 0, €]0. (2.14)

Whereafter, taking (2.13) and (2.14) into account and keeping o, (1)~ QA=2(1), ﬂi%(t) — Bawa(py ase L 0
in mind, we deduce from (2.12) that

t e_g
B < (14 g2 Berp( [ (1+au + S )ds)

t t o—ar
1+ el [ mes( [ (waw # g ) s
0 S — K

Accordingly, by taking v,x € (0,1) sufficiently small, [4, Theorem 1.5] and [4, Propositions 4.1 and 4.2]
imply (2.7) thanks to x* > 1 and (2.6). O

(2.15)

We are now in a position to complete the
Proof of Theorem 1.1. Recall that T' > 0 is the coupling time of (A°(t), A7(t)) defined by

=inf{t > 0: A'(t) = A7 (t)}.

13
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Below, we set p € (0,1]. For 5 € (0,1) to be fixed, by Holder’s inequality, it follows that

W, (8(e.0)Prs 5.y Pr) < BLIXE" = X718 + 1 picoy i 003 )

= ]E{(||Xt£’i — XP|Ip, + 1{Ai(t);éAj(t)})1{T§ﬁt}}
+E{(IX7" = X120+ gy pnicyy) Lirsoey |

<E{1ir<pnB(1XP - X7 |2 7))
{1+ 2@

< eE(Lirepn | X5 — X7 |2 e 7 (- T))
+e(L+ (€1, + lInlz,)e= 208

< ¢ (Lt [l + [ImlE) =207 4 o= 720,

% +E|x7|2) f/RT > 5Y)

where we used (1.4), (2.1) as well as (2.7) in the last two step, and utilized (2.7) once more in the last step.
Optimizing over § in order to guarantee 68 = pny (1 — B) (i.e., 8 =pn1 /(6 + pm1)), leads to

__pOnqt
Wy (86,0 Prr 80,y Pr) < €(1+ [IE]%, + [[nl|E)e ZEFom . (2.16)

Thus, substituting (2.16) into
Wp,a(v1 P, vaPy) < / Wh.a(0(¢.0)Ps, 0,5y Pe)m((d€, d{i}), (dn,d{j})), m € C(v1,10)
E

yields the desired assertion (1.5).
For any v € P, 4(E) and a fixed ¢, by the semigroup property of (P;);>0, we derive from (1.5) that

vad (VPnt()a Vp(n+1)t0) = Wp,d (VPnt07 (VPto)Pnto)
_ pOnintg
<cfts [ lelrtde) + [ €l wpy)@e) e T05m.
€ €

Whence, (vPpt,)n>1 is a Cauchy sequence in the Polish space (Pp q(E), W), 4) so that there exists v, €
Pp.a(E) such that vP,;, converges weakly to v as n — oo. Moreover, (P;):>¢ is a Feller process due to
Lemma 2.1. Hence, we have v Py = fioo. Now, let m = % Oto Voo Psds. Again, by the semigroup property
of (P,)¢>0, it is easy to see that m € P, 4(E) is an IPM of (P,);>¢. For any IPMs v, v € P, 4(E), we infer
from (1.5) that

Wp,a(v,v) = Wy, 4(vP;,, DP;) < ce™ ™
for some constant o > 0. Whence, the uniqueness of IPM follows by approaching ¢ 1 co. Finally, (1.6) follows
by just taking v = 6 ;) in (1.5). O

3. Proof of Theorem 1.3

Recall \; = a; +0;, ¢ = Bi + 7i,i € S, where oy, 0; were given in (Hy) and S;,7; were introduced
in (Hz). Below, Ajw, 4 (resp. Ciez () )e the smooth approximation of Aws (¢ (resp. awa(¢)), defined as in
(2.2).

The following two lemmas play a crucial role in investigating the long time behavior of (Xf"i7 Ai(t)).

Lemma 3.1. Under the assumptions of Theorem 1.3, it holds that
E|XF = X3 < ellé —nlle ™, (&), (n,1) € E, (3.1)

where 1 > 0 is defined in as (1.14) with p = 1.

14
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Proof. Fix wy € 25 and let (X“2(¢)) solve an SDE
dX“2(t) = b(X;2, A“2(¢))dt + o (X2, A“2(¢))dwy (t), ¢ >0

with the initial value (X2, 442(0)) = (&,4) € E. Let I'“2(¢) be defined as in (2.3) and set
t S e
T2 (l) = / & 0 0200 A e ) = N |- [792(5)] s,

0 t—s (¢
T2’w278 (t) L= CAWQ (t_s)ei ft )\AWQ <T (dS)

By the It6 formula, we deduce from (H;) and (Hz) that
t £
e fo Ajwg (S)dSE]Pl |Fw2 (t) ‘2

t s e
=)+ [ oo iy, { g [P0
0
+2(12(s), B(XZ2ET, A2 (5)) — (X271, 42 )
o (X2, 442 (5)) = o(Xe27, 442 (5)) s | dis (3.2)

t S e - 0
< |1“2(0)[* + Ee, Tl’“’2’€(t)+/ Crne o 220 / Ep, |12 (s + 0)|*u(d0)ds
0

-7

i s e -
< c| 15?113 + Ep, TH925(2) +/0 r3erE(s)e Jo ez Ep, |72 (s)[*ds,

where in the last step we used the fact that

t s e 0
/ Cpongpe do iemr®” / Ep, |2 (s + 0)|*1(d6)ds
0

0 _fs—é) AL, dr " 5
:/ /0 Chongope H0 120V B |12 ()P dspu(dB)

t S ,e
< e|Te2|2 + / 222 (s)e” Jo a2 0V By 192 () 2ds.

Via a standard stopping time argument, we have Ep, |I'“2 (t)|2 < 00,t > 0. Then, Gronwall’s inequality is
applicable so that

2,w9,e
EP1|Fw2 < {CHF‘QHQ +E Tl w25 }ef (/\AWQ(s) + 15525 (s))d 5’ (3.3)
where we also used ¢ — Ep, 71%2:(¢) is non-decreasing. Letting ¢ — 0 followed by taking expectation w.r.t.

Py on both sides of (3.3), together with fot Aje (rydr — fg Apwsz (ydr and Ep, T192¢(t) — 0 as e | 0, gives
for I'(t) := X&i(t) — X"(t),

t 0 s—0
E|F(t)|2 < c||F0||zoE exp (/ (/\A(s) + CA(S,g)ef fs AA(T)dT/J,(de))dS). (3.4)
0 -7

It is easy to see that

t 0 s 4
CA(s—p)€ fs A (df)ds < 9’\ (s)dsp(d6
(s—0) )
0 -7 -7

<c+/ ef ud@/CAs)dS

15
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Inserting the estimate above into (3.4), one has

t 0
EIL()P < |2 Eexp ( [ (aw+ [ ewde)g(s))ds).
0 —T

Moreover, the prerequisite £** > 1 and [4, Propositions 4.2] imply

Z(Aa‘ +Cj/

jes -

0~
e’\su(ds)>7rj < 0. (3.5)

Thus, [4, Theorem 1.5 & Propositions 4.1] yields
E[F(#) <ce ™t |l¢ —nl%, t>0. (3.6)

Next, for any 0 < s < t, applying It6’s formula and BDG’s inequality and taking advantage of (H;) and
(Hz), we find that

E( sup |F(r)|2> <]E|F(s)|2+c/: E| 1 (r)[*dr

s<r<t —r
t . . o . 1/2
n E( | PPl 4w - o(Xﬁﬂ,A%r))n%sdr)

t
1
<EIrG) +e [ Br@)Pdr+ B s 10)7).

s<r<t

which further implies

E( sup |F(7‘)\2) < C{E|F(s)|2 —l—/t E|F(r)|2dr}, 0<s<t (3.7)

s<r<t S—T

owing to E(supsgrgt \F(r)|2> < 00 by a more or less standard argument. (3.7), together with (3.6), leads
to, for t > 27,

t

BInIE =B sw_ (1)) <c{Bre-nf+ [ Bre)Pa} et le-nk. 69
t—7<s<t t—271
On the other hand, we have for ¢ € [0, 27],
EILIZ < i€ = nll +E( sup 1)) < ellé —nl% < ce?me e il (39)
_3_

As a result, (3.1) follows from (3.8) and (3.9). O

Lemma 3.2. Under the assumptions of Theorem 1.3, one has
E|X; % <c(l+él1%),  (§9) € B, (3.10)

Proof. By virtue of (H;) and (Hz), for any v > 0, there exists a constant ¢, > 0 such that for all (£, j) € E,

2(£(0),b(€, 1)) < ¢ + (7 + ) €(0)* + ﬁj[ 1€ (5)1” u(ds)

T (3.11)

lo(€. ) lfis < e + (v + 5)IEO) + (v +7j)/ €(5)[p(dls).

—T
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Next, following the argument to derive (3.2) and making use of (3.11), we infer

)dr

t e s t _ (s €
o 0T Nhen )y X2 (1) < €)% + Be, ¥4 (1) + e / e Jo Cr N ) g
0

t s €
N / y—/Q,wg,E (5)67 fO (2'y+)\Aw2 (T))dr]E]Pl |Xw2 (3)‘2(218,
0
where

t s <
prene)i= [Le DO 1) ) | X2 (0)
0

0
1w = Croagol [ 1X#2(s 4+ w)Ppu(du) | ds,

0 t—6 € r
WQ,UJQ,E(t) . :/ (7+C5]w2(t79))67L (2’Y+)\AUJ2(T))d /,L(de)

-7

Subsequently, an application of Gronwall’s inequality yields

¢ € t s c -
e_f()(2’)’+)\Aw2(3))dSEP1|Xw2(t)|2 SCHf”iO‘i’E]Pl wl,wg,a(t)+6/ e fO (2'y+>\Aw2(T))d ds
0
t s 7fu(2 Y )d
b [ (el v wrere e [ B )
0 0

¢
X W27“27E(s)exp</ W2’“2’5(r)dr)ds.

Thus, by mimicking the line to derive (2.15), we arrive at

t t t
E|X(t)‘2 <e H£||go]E efo 27+ A 4 (5)+11(5))ds +e Eefs (@A gy HI (w))du 4 o
0

(3.12)

b)
where

0 t—0
1I(t) 12/ (v+ CA(tfa))e_ft @A) qg), ¢ > 0.

—T

Plugging the fact that

t ~ t —~ 0 -
[ ey <) [+ cuan we) = [ Mo

-7

into (3.12) yields
t ~
BIX(OP < clelBesp( | (er+ A+ (e aco)ds)

t t ~
+ C/ [E exp (/ (v + Ay + M(e’\')CA(r))dT) ds
0 s

for some ¢ > 0. Thus, with the aid of [4, Theorem 1.5 & Propositions 4.1 and 4.2] and by choosing v > 0
such that ¢y = 11/2, we obtain from x** > 1 as well as (3.5) that

t
BIX(0)P < clgloe 2 e [ e Hods <ot + €], (3.13)
0
Carrying out an analogous manner to derive (3.7), we have
t
E( sup [X(r)) < cf1+ 1¢]2 + EIX(s)P +/ E|X(r)dr}, 0<s<t. (3.14)
s<r<t -

Thereby, (3.10) is now available from (3.13) and (3.14). O

Proof of Theorem 1.3. With the aid of Lemmas 3.1 and 3.2, the argument of Theorem 1.3 can be done
by repeating the proof of Theorem 1.1 so that we do not go into detail about the corresponding proof. [
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4. Proof of Theorem 1.4

For K:S — Rand p >0, set
Qp = Q +pdiag(K,...,Kn), np,:= —max Re(y),s™ =sup{p >0:1n, > 0}.
vespec(Qp)

The lemma below, which is concerned with an estimate on the exponential functional of the discrete
observation for the Markov chain involved and may be interesting by itself, plays a crucial role in the
analyzing the long-time behavior of the discretization for (Xf’z7 Ai(t)).

Lemma 4.1. Assume x** > 1. Then, there exist constants 6 € (0,1) and A > 0 such that

t
E elo Kaes)® <ce ™M t>0. (4.1)

b

Proof. By Hoélder’s inequality, it follows that

£

t e [t
E oJo Katsds < < (EG(HE) Jo Kagd )“’E( ==, (KA(55)_K/1(5))dS) ) (4.2)

From (1.1), there exists d; € (0,1) such that for any A € (0,41),

P(A(t+ A) = jlA(t) = j) = 1+ qj; 28 + o(D),

4.3
P(A(t + A) # jlA(t) = j) < koA + o(D), (4.3)
where kg = maxges(—qrx)- Utilizing Jensen’s inequality and taking advantage of (4.3), we derive
e (GADEAL
E(eli ST sy = Kag)d /1(35))
i+1)5
_ > okes L{A@s)=k} /(J+1) /\tE (elgj((j+1)6/\t—i5)(Kj—KA(s))‘A(jé) _ k)ds
G+1)6At—jo
_ LresLuagn=ry [T D .
(1 —in]4(j6) = k)d
(j+15/\t—j(5/5 (Lia(s)=k}1A4(50) )ds
Yres Lago—ky [N e (Gunanes oK L
E( = (GHD)INE=IO) (K =Ka)) g, “/1 5) = )d
G+ 1)6At—jb ¢ (A2} |A(0) = j ) ds
oL ais— (J+1)oAt
< Z]GS {A(j6)=k} E(l{A(q):k}|A(]6) _ k)ds (44)

T AHDINE =56 Js

2040083 3 pes L{aGo)=h)
G+0oAt— 46

(74+1)oAt
/5 P (1a(s)2531A(6) = k)ds
J

Yokes Liagay=ky [UTDN , .
< S S OOt [ (1t gl = 6)+ ofs — 8))ds

(F4+1)oAt

e)K§ 1 -
2040K5 3 s L{aGo)=k) (2k0(s — i6) + o(s — j6))ds

(G+DoNt—46

2(1+42)&s

<1+ kgde™ = —|—0(5), é € (0,51)
18
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By the property of conditional expectation, we deduce from (4.4) that

14¢
Ee ¢ fo Asg) ~Ea(s))ds

1+g f(t5+5>/\t

5
( 1te ZU/‘U 1 (]‘H) (KA(j§)—KA(S))dS ( (Ka(tg) =K a(s))ds

1)

o(14e)Ks 1+szwéj 1 (Hl)é(KA(jg)*KA(s))dS) (4.5)

(1+kode™ = +0(5)E (

IN

IN

2(14e)Ké§
< (14 rode =+ 5e(0,0).
For any c¢1,co > 0, by L’Hospital’s rule,
1

: - c2dy

;% 5 In(1+ ¢10e?°) = ¢;.
So, there exists d2 = da(c1) € (0,1) such that

In(1+c10e2%) <2¢18, € (0,8). (4.6)

According to (4.6), for any § € (0,01 A d2),

y e(lt/s]+1) -
2(1+)K$ ¥ e(t+1) 2(1+e)K$
G < —_— 7 G
(1+/~;()6e +0(5)) < exp(5(1+€) ln(l—i—/ﬁoée +0(5))) (47)
< emg(1+t)
with ke :== 2k0e/(1 + ¢). Taking (4.5) and (4.7) into consideration, we deduce from (4.2) that
Eef A(s(;)dé < eﬂe(1+t) (E (1+e) f KA<5)ds) 1+8 (48)

Using £** > 1 and [4, Propositions 4.2], we have
> K <. (4.9)
j€s

This, together with [4, Theorem 1.5 & Propositions 4.1], implies that there exist g9 € (0,1) sufficiently small
and A > 0 such that .
E () Jo Kads <e M £€(0,e).

Inserting this into (4.8) yields that

t
Eefo Ka(ss)ds < eﬁa(1+t)*1>jrt5'
Thus, the desired assertion follows by taking 0 < & < g9 A (2k0) "N O

Next, we provide two crucial lemmas, where one of them is concerned with the distance in L2-norm sense
of the &’-valued stochastic process Y3, starting from different points and another one is related to the uniform
boundedness in L?-norm sense.

Lemma 4.2.  Assume the assumptions of Theorem 1.1 and (1.19). Then, there exist 69 € (0,1) and o > 0
such that
BV =Y % <ce =l t=7+1, 6€(0,4). (4.10)
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Proof. Hereinafter, we assume ¢ > 7 + 1. Fix wy € {25 and let (Y“2(t)) solve the following SDE
dy<2(t) = b(Y,;?, A%2(ts))dt + o (A%2(ts))dw (t)
with the initial value Y“2(s) = £(s),s € [-7,0], and A“2(0) = ¢ € S. For notation brevity, set
T2(t) = Y920i(t) — Y2 i), (4.11)

First of all, we verify

t t s
ei fO aAw2(55)dS| Tw2 (t)‘Q _ |Tw2(0)|2 +/ e* fO Ot/lw2(r5)d7‘ { —CEAWQ(S(S)‘ Tw2 (8)‘2
o (4.12)

2 T2 (), BV, A2 (s5)) — B2, 472 (55))) | ds.
For any t € (0,6), by Itd’s formula, we have
o Jo @425 P Pz (4)2 = o T2 T2 (1) 2
= | 7°2(0)]* + /Ot e *A2(0)° { —a w2 ()| T2 (s)]*
20T (5), HYE>S, 492(0)) — (Y™, 442(0)) | ds.

Accordingly, (4.12) holds with ¢ € [0, §]. Next, we assume that (4.12) is true for ¢ € [(k— 1)d, kd). Also, Itd’s
formula yields that for any ¢ € [kd, (k 4+ 1)d),

t
e—aAwQ(ké)(t—k(S” Tw2 (t)|2 — |Tw2 (k5)|2 +/ e—aAWQ(k(S)(S—k(S) { *OéAWQ(k:§)| Tw2 (S)|2d8

ko
2T (), Y2, 42 (k) — (Y2, A2 (k) } .
_ fké( T )d
Multiplying both sides by e~ Jo "T%192(s5)’ Jeads to

t kS
o fo aAWQ(Sé)ds| Tws (t)\Q — e fo (’Y+Ot/1w2(s§))ds| Tw2 (k6)|2
t s
+ [ e Jo earrpdr { —Q ez (s5)| T2 (s)"ds
ko

2T (s), BV, A (s5)) = B(Y22 M, 42 (s5)) } .
Thereby, (4.12) follows by applying (4.12) with ¢t = k0. It is easy to see from (1.19) that
| T92(8) — T92(ts)| < [BY:22S, A2 (t5)) — bV, A%2(85))]6 < Lol| 7122 |oo. (4.13)
By virtue of (4.12) and (A), it follows that
e Jo a2 o) pa g2
5

t s
w — a  wg (. A7 w w! w
<O + [ eI 200 fa g (T2 (50 = T2 ) + Baeagep | T2

T (s) = T2(s), BV, A2 (59) = (Y2, 442(s5) | ds
to_ s (4.14)
<|7°2(0 2+/ o Jo i [ C T2(s) — T92(s5)|
2O + | { 517 = 1(s9)

+ (Vo + Boay)  sup |T“’2(s)|2}ds

s—7—0<r<s
t s
<112 + [ (Vi Bpnple It sup 1o,
0 s—17—0<r<s
20
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where in the penultimate display we used (4.13). Observe that

t
2 (t):=e s aA“’Q(sa)ds( sup |12 (8)|2)

t—7—0<s<t

S e—/n.\(‘f'-i-(s) ( sup (e_ fos 04/1!-\12(7"5)(17“}/&)2 (8)‘2>)
t—T7—0<s<t

We therefore obtain from (4.14) that
N ¢
12(0) < elj€ =l + e [ (V54 Breae)) T2 (s}
0
This, together with Gronwall’s inequality, implies that
i i coma(r+é) Hlag ooy e T ds
EIVE — Y|, < eflg —nliZecs™ VI el (atp teT T b )
Owing to (2.6), we can choose some d§; € (0,1) such that

D (o +e BT <0, 5 €(0,6). (4.15)
JjES

Thus, according to Lemma 4.1, (4.15) as well as k* > 1, there exists 7; > 0 such that

) 3 —AT 8
BV = V22 < ellg = mlee T e,

Furthermore, take d2 € (0,61) such that ce_g(”‘&?)\/@ < 1. As a consequence, (4.10) follows for any
5 €(0,02). O

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists some §y € (0,1) such that
E[V5 2% <c(U+Ell%), t>7+1, 6§€(0,8), (&i)€eE. (4.16)

Proof. Below, we assume ¢ > 7 + 1 and, for notation brevity, write Y2 instead of Y“2:%%, Carrying out
the procedure to gain (4.12), we obtain from (2.8) that

o fot(v+a/1wg<56))ds|yw2(t)|2
=g+ | RO L eV () (4.17)
+2(Y92(s), b(Y{22, 42 (s6))) + [0 (A2 (55)) s } ds + 0%2(1),
where
0°2(1) = 2 /O Lo o O e () 42 (55)) o (5)).

Thanks to (1.19), it follows that

[Y2(8) = Y2 (t5) 2 < 8+ 40L3 Y2 2 + el () — wn (t5)]. (4.18)
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Thus, by combining (2.8) with (4.17), it follows that
t
e f() (’Y+01Aw2(56))d3|yw2 (t)|2
t s
< |E(O)f + / e o) Ly (o5 4 Breney)  sup V()P
0 s—1—0<r<s
V) = YR (s VIR, 42 s5)) P | s 4 €721

t s
— | (v Hafw )dr c 2
< 02+/ Jortency + —= w1 (t) — wi(t

(Vo4 Baoagsy)  sup V() }ds+ 042(2).

s—1—0<r<s

(4.19)

Following the argument to derive (2.11), for 0 < s <t with t —s € [0,7 + 6] and & € (0, 1), which is also to

be determined, we have

~ t
Ep, ( sup ©“2 (r)) < ke TH) T2 (1) 4 ce” Jo (7+a/1“2<r5>)d7’7
s<r<t

where

t
T2 (t) : = e Jo (WMA“Q(Sa))dS]EPl( sup  |Y2 (8)|2)

t—7—0<s<t

< e HIR, ( sup (e_ s (W%wz”))quW(SNZ)))'

t—T—0<s<t
Hence, we deduce from (4.19) and (4.20) that
o 8—2(T+5)
w9 t <
) = 1-kK

* /ot (V6 + Basz(sy)) T2 (5)ds } :

t ¢ s
{ cllélZ +ce Jo Crrensa rg)ar + C/ e N (r+afwn () 4
0

Thus, an application of Gronwall’s inequality enables us to get

—2(7'—!—5) t t s of ”
m2(t) < eli{cllenio+ce—fo“+ww>>d’“+c / ¢ Jo O+ eliea ) ds}
ks A
_?“\(7'4‘5) t _ s @ r s af dr
+61 /{C||£||§o+ce Jo Crte s gy +C/ e Jo () d“}
- 0 0

t
x P92 (s5) exp(/ Qw2 (m)dr)ds,

in which Sr4d)
—a(7+ ) + w
&2(t5) = - (e + Baatip),

1—=x

By an inductive argument, we derive that for all 0 < s <,

T2 (s,1) = / g (1) exp /

Subsequently, taking (4.21), (4.22) and Fubini’s theorem into account, we deduce that

t w2 (7"5)d7"> du = exp (/St P2 (r,;)d'r) -1

t t t
E( sup ‘Y<S>|2> ScE{lJrefo<v+aA(55)+q><s<s>>dsJr/ efs<w+aA(r5)+¢<r5>>drds},
0

t—7—0<s<t
22
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where

e (V5 + Bary)
D(ts) == - .

Thus, with the help of k* > 1 and (4.16) follows from Lemma 4.1 and by taking v, d, s € (0, 1) sufficiently
small. O

Proof of Theorem 1.4. With Lemmas 4.2 and 4.3 and Lemma 5.1 below at hand, we can complete the
argument of Theorem 1.4 by mimicking the proof of Theorem 1.3. O
Proof of Corollary 1.5. For any k > 1, by the triangle inequality, we have

Wy (v, ) < Wia(v, 8y Prs) + Wia(v® 8 Pi3) + W.a(Sic.y Phos de.n P )-

In terms of Theorems 1.1 and 1.4, there exist constants a > 0 and ¢1, which is independent of k and ¢, such
that

W, (v, 8.0 Prs) + Wy a(v®, 6.y PO) < e (1 + [|€]2 ). (4.23)

Moreover, by a more or less standard argument, there exists a constant co, independent of k and ¢ such that
2
Wy, (e, Prs e, Prg) ) < ez (1 + [[€][% ) e 67/2. (4.24)

In particular, in (4.23) and (4.24), taking

k= L/g&(lna—i’)éj

and approaching § — 0 yields the desired assertion. [

5. Proof of Theorem 1.6

Before we complete the proof of Theorem 1.6, let us make some preparations. For any ¢ > 0, let
Fie=o((W(u), A(u)),0 <u <t) VN, where N stands for the set of all P-null sets in .Z.

)

Lemma 5.1. (Yjs, A(k0)) is a homogeneous Markov chain, i.e., for any A € B(€) and (§,i) € E
P((Yiks1ys, A((k +1)8)) € A x {7} (Yis, A(kd)) = (€,4))
=P((Ys, 4(9)) € A x {j}(Yo, 4(0)) = (&,19))
and
P((Y(k+1)67 A((k+1)d)) € Ax {i}|fk5)

. (5.2)
= P((Yikt1)5, A((k +1)0)) € A x {i}|(Yis, A(k6))).

Proof. We shall verify (5.1) and (5.2), one-by-one. To begin, we show that (5.1) holds. It is easy to see
from (1.18) that

Yis(i0) = Y ((k +i)0), i=—M,...,—1. (5.3)
Observe from (1.22) and (5.3) that
= Y((+00) + T Y (@4 )) - Y (1 +0)0)
_ {Y( 9+5{Y (0)} 6 € [~5,0]0cv
Y((1+14)8 “5{ ((2+ Y((1+z 0)},0 € [id, (i +1)8],i # —1 (5.4)
Y (0) + 9+5{b Yo, 4(0))0 +U(Y07 (0)W(8)}, 6€[-6,0],
B {Y(( )+ S0V ((2+1)0) — Y((l —i—i)&)}ﬁ € [id, (i +1)8],i # —1
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and that
Yoprns(0) = 4 O+ T LY ((k +1)6) — Yis(0) }, 0 € [—0,0]
e Yes (1 +1)8) + 552 {Vis (2 +0)0) — Yio (1 +0)0)}, 0 € [i6, (i + 1)3],i # —1
Vis(0) + 2 { b(Yis, A(K6))6 (5.5)
= { + 0 (Yus, A(kS)) (W ((k +1)8) — W (kd)) },6 € [-0,0]
Vis (14 4)8) + 552 {Vies (2 + 8)8) — Yis (1 +14)0) }, 0 € [id, (i + 1)d],i # —1.

Thus, comparing (5.4) with (5.5) and noting that W((k+1)d)—W (ko) and W (4) are identical in distribution,
we infer that (Y(,11)s, A((k+1)d)) and (Y5, A(9)) are equal in distribution given (Yzs, A(kd)) = (Yo, A(0)) =
(&,4). Therefore, (5.1) holds immediately.

Next, we demonstrate that (5.2) is valid. Set

€ (g €0) + EE2{b(&,5)6 + o (&, ) (W((k + 1)8) — W (kS))}, 6 € [-6,0]
X037 (14 0)0) + 952 {((2+0)8) — £((1 +4)8) ), 6 e [io, (i +1)8),i % —1.

and Ai’il =7+ A((k+ 1)d) — A(kd). Thus, it is easy to see that

A((k+1)8) = AL and Yy = x(it)s™. (5.6)
For any 0 < s < t, let G, s = o(W(u) — W(s),s < u < t) VN. Plainly, Gx11)s,ks is independent of Fys.
Moreover, Xfl’cil)é depends completely on the increment W((k + 1)0) — W (kd) so is G(jy1)s,ks-measurable.
Hence, Xflﬁi—l) s is independent of Fjs. Noting that Xzzfj_,{;((;ké) nd A(Ak(_]i(i)) 55 are conditionally independent
given (Yjs, A(kd)). Applying [16, Theorem 2.24, p.46] and taking (5.6) into consideration yields that

P(Yet1)s, A((k +1)0) € A X {7} Frs) = E(Lax (i3 (Yiet)s, Ak +1)8))[ Frs)

Y5, A(kS (ks
IAX{J}( lfil)fs ) Ak+l))|‘7:k )

A(kS )
Lax ’;kil (RO | Fios)E(I (1 (AR50 Fis)

I
g B E B H

Xirp1ys € Dle=visi=a(:0)P(Ais1 € {31 limaces)

(
(
(Ta(x¢ Uer1)s) le=Ys i= A0 By (A1) li= Ay
(
(

@
(ka+1)§’ k1) € A X {5 le=vig i=ako)
= P((Yanyar Ak +1)8)) € A x {i}](Vis, A(KD))).

So (5.2) holds. As a consequence, (Yis, A(kd)) is a homogeneous Markov chain. O

Lemma 5.2. Assume (Hy), (Hz2), (1.21) and suppose further k* > 1. Then, there exist 5o € (0,1) and
a > 0 such that

BV = Y2, < ce & —nl%,, t > 7, 6 €(0,00), (&), (n.i) € E. (5.7)

Proof. For fixed ws, let Y*2 solve the following SDE
QY2 (£) = BV, A (15))dt + 0 (Y2, 442 (t5))de ()
with the initial value Y¥2(0) = £(60),6 € [—7,0], and A“2(0) =i € S. Let 7“2(¢) be defined as in (4.11). By

(H2) and (1.19), it is easy to see that

0
Bey | 72(8) = T2(t9)” < e {Bey | T2(t)" + | B | T50) o)} (55)

-7
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Following the procedure to derive (4.12), we obtain from (Hy), (Hz), (1.21) and (5.8) that

t
e~ Jo a2 gy, e )
t s A d
< |Twz(0)|2+/ o= o Aar gy { VOB, | T2(sy)P
0

o (5.9)
C
(e Caniey) [ Bey TSRO u00) + ey [ T30 - T2(s0)" } ds
t s
< T2 (0) + V3 / oo M g | 72 05) Pds + 0420,
0
where . . 0
U () = / (VB 4 Caonegy)e o 22 p)r [ Ee, | 752 (0)(d6)ds
By virtue of (5.4), we deduce that
U2t / / C\[+CAWQ(56)) fo )‘AWZ(T6>dTEp1|TS“;2(9)|2dsu(d0)
(G+1)8 — [ X gz (g 2
=2 Z / / (V8 + Cavasg))e o 120D T BE, [ 142 (55 + j6)|*dspu(d6)
j 0
! (5.10)
- (G+De -t — [ A p gy
2y / / (V6 + Casa(spy)e Jo 1200 T Eg, | 792 (55 + (j + 1)8)|*dspa(d6)
i=—N s 0
t 5}\ d
<cllé =l [ O (s)e I M0 B | 1 ) Pdsp(a),
0
where
~ L (J+1)5
O« (t) =277 ) /5 {eV8+ Cawa i) + Caa e —(5+10) (). (5.11)
j=—N"J

Inserting (5.10) back into (5.9), we arrive at

t)\ d t S d
oo A U, T 0 < el =l + [ (VB + ©2(e)e o M0 B | 13 55) P,
0

This, together with the fact that

o~

t s
T2 (t) = o Jorzepds Ep, | T2(s)]” <e™™  sup (e—fo ’\A“’Q(r5)drIEPI|T“’2(8)|2>, (5.12)
t—0<s<t t—6<s<t

implies that ,
T2 (1) < e ||€ = |2 + e / (V3 + ©%2(s)) 1T (s)ds.

0
Thus, an application of Gronwall’s inequality leads to

7//\\6 t w
T2 (t) < c|j¢ — pl|e” " JoeVre=2(nds (5.13)

Furthermore, observe that

(G+1)6  pt—jd
/ 0“2(s)d 8_26_)‘T Z / / {c\f5+CAw2(sé)}dsu(d9)
0 N Jis
(G+1)8 (G+1)8
oA / / Caon (o ds(d) (5.14)
(i+1)8

§c+4e_>‘7/ {cﬁ-ﬁ-@xwz(%)}ds-
0
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Hence, we infer from (5.13) and (5.14) that

. . . t o~ A(T+8) s
BIYS(6) = Y (0" < c ¢ - mRE e Paeo He T
By applying Lemma 4.1 and x* > 1, there exist g € (0,1) and a > 0 such that
E[YSi(t) - YH () <ce®|l¢ —n|%, t>7, &€ (0,d)

With (Hz) and (5.15) in hand, (5.7) can be obtained via a standard procedure. O

Lemma 5.3. Under the assumptions of Lemma 5.2, there exists some 6y € (0,1) such that

BV 2 <c(l+¢%), t>7, d€(0,0), (£i)€E.

Proof. Mimicking the procedure to derive (4.17), we have
t
o Jo BTN s ) O, s ()2

t s
— O + [ I {2y + AoV
0
2V (), bV A% (59)) + o (Vi A2 59) s } s

ss ss

where v > 0 is introduced in (3.11). By (Hz) and (1.21), it follows that

Ep, V2 (£) = Y2 (t5)|* = Be, [b(Y5;2, 4% (t5))°6° + Ep, [0 (Yis?, 4°2(15)) [fis0

ts ts

0
<o ob{Ba vt + [ Bn V0 utds)}.

—T

Then, taking (5.17) and (5.18) into consideration, we deduce that
t
¢ Jo @A a2 )y, yen ()2

t s
<IEOF + [ e IoB e oy Ly jya(s) Vo)
0 1)

0
+ VOEp, [V (55)]% + (v + Can (sy)) / Eg, Y2 (0)* (d0)
VBB, [b(YV5y2, 4% (s5) } ds
t s
<€) +c / o Jo BRI 1) R [ver (ss) Py ds + E2(2),
0

where t [ N 0
Uy2 (t) :=/ (V3 + Cawa(sy))e Jo 7T (rg) / e, [Y22(0)]* u(df)ds.
0

—T

Following the argument to deduce (5.10), we find that
g2 () < cli€l%, + / %2 (s)e” Jo BTN )V (v () Pdspu(a6),
where ©“2 > 0 is defined as in (5.11). Substituting (5.20) into (5.19) leads to
e f;(MH‘AwQ (55))dSEJP1 |Y“2 () |2

t s
< el + / o Jo YR ) 1Ly (/5 4 ©92(5)) B, Y2 (s5) 2} ds.
0

26
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This, applying the Gronwall inequality and utilizing (5.12) with 7“2 being replaced by Y“2 enables us to
obtain

t s ~ t s u
sz(t) < C||£||c2>o -l-C/ e fo (27+)\Aw2(r5))drds + Ce—)\é/ {||€||c2>o +/ o fo (2’Y+)\Aw2(,«5))drdu}
0 0 0

o~

t —as w
x (V6 + 62 (5))efs e VOO ()dr g

Subsequently, the desired assertion follows from Fubini’s theorem and Lemma 4.1 and by taking 7,9 € (0,1)
sufficiently small. O

Proof of Theorem 1.6. With the help of Lemmas 5.1-5.3, we can finish the proof by following the
argument of Theorem 1.3. [
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