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Abstract: This paper presents an analysis of the temporary variation of the area-orientated annual 

maximum daily rainfall (AMDR) with respect to the three spatial properties: location, size and shape 

of the region-of-interest (ROI) in Great Britain and Australia using two century-long datasets. The 

Maximum Likelihood and Bayesian Markov-Chain-Monte-Carlo methods are employed to quantify 

the time-varying frequency of AMDR, where a large proportion of the ROIs shows a non-decreasing 

level of most frequent AMDR. While the most frequent AMDR values generally decrease with 

larger-sized ROIs, their temporal variation that can be attributed to the climate change impact does 

not show the same dependency on the size. Climate change impact on ROI-orientated extreme rain-

fall is seen higher for rounded shapes although the ROI shape is not as significant as the other two 

spatial properties. Comparison of the AMDR at different return levels shows an underestimation 

by conventionally used stationary models in regions where a nonstationary (i.e., time-varying) 

model is preferred. The findings suggest an overhaul of the current storm design procedure in view 

of the impact of not only climate change but also spatial variation in natural processes. 
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1. Introduction 

Applications of extreme value (EV) theory in modelling meteorological and environ-

mental processes have been widely practised in designing and validating many infra-

structure systems [1]. A classical analysis approach adopted in these applications is to use 

historical hydro-climatic data, such as rainfall, temperature, river flows, etc., to estimate 

the parameters of the required EV model which would offer probability distributions of 

the natural phenomenon in question, so as to address its occurrence or exceedance prob-

ability at given thresholds. Since Jenkinson [2] proposed a generalized approach to ana-

lysing the frequency distribution of annual maxima, many efforts have been made to 

quantify natural phenomena at extreme levels using the Generalized Extreme Value 

(GEV) models whose parameters are often fitted by using the Maximum Likelihood (ML) 

method and L-Moments (LM) method, especially in designing and planning water engi-

neering systems [3–7]. 

Recently, there has been a growing interest in studying natural events from a climate-

change perspective, given that the key hydroclimatic variables, such as precipitation, tem-

perature and streamflow, are indeed changing due to the impact of climate change [8,9]. 

To address the reliability of infrastructure designs based upon extreme value analysis, 

stationary risk analyses have been re-assessed from a new adaptive perspective where 

Sarhadi [10] proposed a multivariate time-varying risk framework for all stochastic mul-

tidimensional systems under the influence of a changing environment. For the commonly 

used nonstationary GEV models, this means that their scale and location parameters can 
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vary with time or other climate indices [11]. For example, Hasan [12] proposed two non-

stationary GEV models for extreme temperature with each model assuming only one pa-

rameter as nonstationary depending linearly and exponentially in time, respectively; 

Sarhadi and Soulis [13] defined both the scale and location parameters for extreme pre-

cipitation analysis using a linear, time-varying representation. Their results showed that 

stationary models tend to have underestimation of extreme precipitation when compared 

with the nonstationary ones; Panagoulia [14] generated 16 nonstationary GEV models of 

extreme precipitation with linear time dependence of location and log-linear time depend-

ence of scale, employing the Akaike Information Criterion (AIC) and the Bayesian Infor-

mation Criterion (BIC) for selecting the best model and examined confidence intervals for 

model parameters. Unlike the research listed above which assumes a constant shape pa-

rameter, Ragulina and Reitan [15] also explored the change in the shape parameter and 

found that it evidently depends on the altitude of study areas. 

Although in the last few decades there have been many studies that apply nonsta-

tionary GEV distributions to fit extreme rainfall at different scales, most of them were 

associated with a limited number of regions of interest (ROIs) within predefined bounda-

ries such as political regions and river catchments [16–19]. It is clear that extreme rainfall 

can be affected by its local features, not least the topography but also the orientation 

(shape) and size of the area [20]. However, how the area-orientated rainfall extremes vary 

with the ROIs’ geographical location, size and shape in an context of nonstationarity has 

not been fully studied; yet it is challenging as the variability of extremes can be sensitive 

to the size of the regions studied, e.g., substantial trends over smaller regions can arise 

purely from the natural variability [21–23]. Therefore, this paper presents a comparative 

study of Great Britain (GB) and Australia (AU) moving forward from our previous study 

[20], aiming to gain much-needed insights into the spatial variability of extreme rainfall 

associated with dramatically different climate and geomorphological features (GB and 

AU), as represented by the nonstationary probability distribution parameters. Not limited 

by the regional boundaries, a large number of ROIs generated by Wang and Xuan [20] by 

randomizing their locations, sizes and shapes are reused. The century-long annual maxi-

mum daily rainfall (AMDR) time series were extracted with assistance from a high-per-

formance computing (HPC) system. They were then used to fit both stationary and non-

stationary GEV models to address the impact of climate change on extreme rainfall. Fi-

nally, the patterns changing with three spatial features and the contrasting differences 

between stationary and nonstationary conditions at different return levels were analysed. 

The remainder of this paper is organised as follows: Section 2 describes the ROI-

based methods, the data and the trend analysis of extreme rainfall over the last century in 

two countries. The results are discussed in details focusing on the spatial feature of the 

stationary and nonstationary GEV models (Section 3.1); spatial changes with ROI sizes 

(Section 3.2) and shapes (Section 3.3); and the comparison (Section 3.4). The conclusions 

and recommendations are given in Section 4. 

2. Methods 

The steps below are followed in this study and the details are presented in Figure 1: 

 Generate ROIs with varying locations, sizes and shapes and extract the annual max-

imum daily rainfall (AMDR) time series with the assistance of high-performance 

computing (HPC). 

 Fit the time series obtained at every ROI with stationary and nonstationary GEV 

models with different parameter estimation methods. 

 Evaluate the performance of all models and analyse the changes of time-varying pa-

rameters with regard to the geographical locations, sizes, and shapes as well as the 

level of extremity. 
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Figure 1. The methodology of the study. 

2.1. Data, ROIs and Extreme Rainfall in Two Countries 

The two century-long datasets, i.e., the ‘Gridded Estimates of daily Areal Rainfall’ 

(GEAR) and the ‘Australian Data Archive for Meteorology’ (ADAM) are applied. The 

GEAR dataset is a grid-based (1 × 1 km�) rainfall estimation covering the mainland of 

Great Britain (GB) from 1 January 1898 to 31 December 2010 projected onto the National 

Grid Reference coordinate system [24] with the easting (�-) and northing (�-) expressed in 

linear kilometres [25]. The ADAM dataset is also a grid-based (0.05° × 0.05°, approx. 

5 × 5 km�) rainfall dataset from 1 January 1900 to 31 December 2018 over Australia (AU) 

based on the Geocentric Datum of Australia 1994 [26] with the origin of (44° S, 112° E) and 

easting (�-) and northing (�-) transformed to kilometres [27]. The daily rainfall amount of 

two datasets refers to the 24 h prior to the reporting time for the ADAM dataset and the 

24 h after for the GEAR dataset, respectively. 

To have an initial assessment of the spatio-temporal variation in the daily rainfall 

extremes, we employed the Block Bootstrapping Mann–Kendall (BBS-MK) trend analysis 

[28–30] to test whether the trend of the grid extreme rainfall is significant during the study 

periods at a significant level of 0.05. The magnitude of the trend, indicated by the Ken-

dall’s tau (see Figure 2a,b), shows that the majority of regions in the Midland of England, 

Wales and the Coastal regions of Scotland present a positive trend whilst western Aus-

tralia shows an increasing trend but eastern regions show no or decreasing trend. This 
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analysis provides the evidence for further detecting the possible nonstationarity in the 

daily rainfall and its strong association with geophysical locations, which moves forward 

from and complements our previous study [20] that focused only on the AMDR itself un-

der the stationary assumption. 

 

Figure 2. The trend of gridded AMDR over the last century in GB (a) and AU (b). 

The spatial features of the sampled ROIs (see Figure 3a,b) generated by the SRS-GDA 

toolbox [31] follow the same setups in [20], uniformly positioned across two countries 

marked by their geometric centroids, randomized with sizes (10–1050 km2 for GB case and 

125–9900 km2 for AU case) and shapes (controlled by the spatial index �� varying from 

elongated to rounded with east–west and north–south orientations). For each ROI, the 

areal daily rainfall is calculated by taking the arithmetic average before the ROI-orientated 

AMDR is generated. This procedure is carried out using the HPC-Wales resources due to 

the huge amount of data. 
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Figure 3. ROIs and their locations spatially distributed in GB (a) and AU (b) for this study: each 

subfigure can be divided into three panels where the left one demonstrates an ROI with the same 

size of 500 km2 and a relatively rounded shape for the analysis in Section 3.1; the middle demon-

strates a group of 10 ROIs which have a fixed shape but an incrementally increased size by defining 

an 20% increase in the main axis (marked as red dash line) in each iteration for the analysis in Section 

3.2; the right panel depicts a group of 7 ROIs which have fixed size but varying shape described by 

spatial index sp. “×” marks the central location of these single or group of ROI(s) which are distrib-

uted uniformly over two countries. More details for generating ROIs can be checked in [20]. 

2.2. Stationary and Nonstationary Generalised Extreme Value Models and Return Period 

The AMDR time series extracted from each ROI is then fitted by the GEV distribution 

whose cumulative distribution function (CDF) is defined as: 

�(�; �, �, �) = ��� [−(1 + �(
� − �

�
))��/�] (1)

where � is defined for 1 + �(� − �)/� > 0, −∞ < � < ∞, σ > 0 and −∞ < � < ∞; �, � 

are the location and scale parameters, � is the shape parameter controlling the three lim-

iting types of GEV: Gumbel (� = 0), Fréchet (� > 0) and the reversed Weibull (� < 0) dis-

tribution. 

In the stationary model (S), three parameters are invariable with time or other covari-

ates and estimated by the commonly used Maximum Likelihood method (ML). Several 
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widely used candidate distributions were employed to fit the AMDR series and the good-

ness of fit was tested by using the Kolmogorov–Smirnov (KS) [32,33] and Anderson-Dar-

ling (AD) tests [34,35] at a significant level of 0.05, which shows that the GEV distribution 

performs best where more details can be seen in Wang and Xuan [20]. The GEV distribu-

tion fits well with the AMDR series of all ROIs with a 100% pass rate on the KS test and 

more than 97% on the AD test. 

For nonstationary models (NS1–3), an additional subscript � is added to GEV pa-

rameters which indicates that parameters are time-dependent; and the nonstationary CDF 

is: 

��(��; ��, ��, �) = exp [−(1 + �(
�� − ��

��

))��/�] (2)

To create a stable quantile estimation consistent with the behaviour of rainfall ex-

tremes, four different GEV models are developed with different assumptions regarding 

the parameters, as listed in Table 1. 

Table 1. Stationary and nonstationary GEV models and the estimation methods used in this study. 

Description Parameters Estimation Method(s) 

Stationary model: �(�; ��, ��, �) ��, ��, � are constant ML 1 

Nonstationary model 1: 

��(��; ��, ��, �) 

�� = �� + �� × �
��, � are constant

 ML and B-MCMC 2 

Nonstationary model 2: 

��(��; ��, ��, �) 

�� = �� + �� × �
�� = �� + �� × �

� is constant
 ML and B-MCMC 

Nonstationary model 3: 

��(��; ��, ��, �) 

�� = exp (�� + �� × �)
�� = �� + �� × �

� is constant
 ML and B-MCMC 

Note: 1 short for “Maximum Likelihood” method. 2 short for “Bayesian Markov-Chain Monte-Carlo” 

method. 

Two parameter estimation methods, i.e., ML and the Bayesian Markov-Chain Monte-

Carlo (B-MCMC) methods are employed to estimate the parameters of nonstationary 

models. Instead of obtaining the parameters directly, the B-MCMC method makes use of 

the Bayesian inference to estimate the posterior distribution of parameters based on prior 

knowledge. To make full use of the knowledge, the estimated parameters of stationary 

GEV were used to define the initial priori values of the nonstationary parameters drawn 

from uniform distribution sampling by the Latin Hypercube sampler [36]. Then, we 

broadly followed the algorithm presented in Sarhadi and Soulis [13] and Sadegh, Ragno 

[37] to carry out numerical iterations to explore the posterior distribution using the 

MCMC simulation with Metropolis and Gibbs sampling [38–40]. The calculated Metrop-

olis ratio is used to accept or reject proposal status and the convergence of simulation is 

monitored by the Gelman-Rubin ��  diagnostic [41]. More details are provided in the Sup-

plementary Text S1. 

The criteria for selecting the best-fitted models include the root mean squared error 

(RMSE), the Akaike Information Criterion (AIC [42]) and the Bayesian Information Crite-

rion (BIC [43]). Small values of these indexes indicate a better performance of the model 

in question (see Text S2). 

To define the nonstationary return period, the time-varying nature of the nonstation-

ary exceedance probabilities should be recognised, i.e., for a given threshold ��, the num-

ber of expected exceedances over � years is [44]: 

��(��) = � [1 − ��(��)]��
�

�

 (3)

For annual maxima over � years, this leads to 
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��(��) = �[1 − ��(��)] × 1

�

���

 (4)

where �� is the nonstationary CDF for the �th year. Correspondingly, the return period 

is ��(��) = �/��(��). Note that a subscript � is used here to indicate the fact that both 

the return level and the expected number of exceedances are dependent on the duration 

(the � years). 

3. Results 

3.1. Selection of Stationary and Nonstationary Models and Spatial Nonstationary Patterns 

The best-fitted model of each ROI is selected by choosing the model with the smallest 

values of the criteria (RMSE, AIC and BIC). Results show that overall: (1) around 35% of 

ROIs in GB prefer stationary model while the rest 45% select NS1 (only � is time-varying) 

and 20% select NS2 and NS3 (NS2–3; both � and � are time-varying); (2) AU has a rela-

tively lower ratio of ROIs favouring stationary model (around 20%) while 50% prefer NS1 

and 30% prefer NS2–3. As to the methods used to fit the preferred nonstationary models, 

the ML method performs better for 60% of the GB cases compared with 40% performed 

by the B-MCMC method. In the AU cases, the ML method is significantly more dominat-

ing, e.g., with a ratio of 90% vs. 10%. More details are shown in Text S3. 

The spatial distribution of model preference, i.e., stationary GEV versus nonstation-

ary GEV, is further demonstrated in Figure 4a,e where ROIs with the same size of 500 km2 

and a relatively rounded shape is used. Geographically, those ROIs in GB that prefer non-

stationary models are located along or near the coastal regions, especially in eastern and 

northern GB and the Scotland Highland. In AU, nonstationary models dominate the in-

land area and the majority of the south-western coastline while the north coastline of AU 

and the majority inland of the Northern Territory favour stationary model. 

As to the types of the selected GEV, Figure 4b,f present the spatial variation in the 

GEV types of the best-fitted models of these ROIs where the majority follows the Fréchet 

distribution. Out of all ROIs in GB, there are nearly 80% that follow the Fréchet distribu-

tion, mainly located inland; around 16% follow the Weibull distribution located on the 

western coast. In AU, around 90% of ROIs follow the Fréchet distribution and only a very 

small proportion (3%) follows the Gumbel distribution (details in Table S2). 

Figure 4c,d (UK case) and Figure 4g,h (AU case) reveal the time-varying changes of 

� and � of the ROIs with their best-selected GEV model. If the ROIs prefer the stationary 

model where all parameters are constant, the rate of change in parameters is zero and 

marked as white colour. Additionally, for the ones preferring the nonstationary model, 

we calculated the rate of the change that is the difference between the parameter values 

at the end of the study period (i.e., 2010 for GB and 2018 for AU, ���� or ����) and the 

starting times (i.e., 1898 for GB and 1990 for AU, ������ or ������) divided by the values at 

the starting times (see Equation (5)). 

����(�) = (���� − ������)/������

����(�) = (���� − ������)/������
 (5)

In GB, the changes of � are in the range of ±10% and the ROIs with a decreasing � 

are mainly located in southern Scotland and the regions between London and Birming-

ham while the majority of areas show a non-decreasing � which indicates that the level 

of most frequent AMDR is non-decreasing. However, in AU, the south-middle zone and 

the eastern coasts are dominated by an increasing � up to the rate of +20% while the north 

coast of Northern Territory and west-south coast of Western Australia are controlled by a 

decreasing � with the rate of −5%. The majority of regions of GB and AU are observed 

to have a constant � while the rest region shows a decreasing � scattering near the coasts 

of England, which somehow indicates a decreasing occurrence probability of extremes. 

These changes are consistent with the BBS-MK trend analysis as presented in Figure 2. 
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Figure 4. Spatial distribution of ROIs with the size of 500 km2 and relative rounded shape in terms 

of (1) the best-selected model type in GB (a) and AU (e); (2) the best-fitted GEV type in GB (b) and 

AU (d); (3) the changes of location (c,g) and scale parameters (d,h) in percentage within the record 

periods (113 years for GB and 129 years for AU) and please noted that white colour (“w” specified 

in the colour bar) indicates the ROI with no change in the parameters. 

3.2. Spatial Variation in Nonstationary Patterns over ROI Size 

In GB, the proportion of ROIs that prefer a stationary model gradually increases as 

the ROI size increases (60% for ROI size < 100 km� ; 65% for ROI size in 

100 km�~500 km� and 67% for ROI size > 500 km�). However, such proportion in AU is 

relatively stable and stays around 25% for stationary model and 75% nonstationary mod-

els, regardless of the ROI size (see Table S1). 
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To help the discussion, we introduce the rate of the change in GEV parameters asso-

ciated with the incremental change in ROI size (i.e., +20% each), denoted as Δ. Δ is the 

Sen ‘slope [45] of the BBS-MK test applied to detect the changes of parameters over region 

size at the significant level of 0.05 and the white colour (Δ = 0) in Figure 5 indicates the 

insignificant change. With the increase in ROI size, the reddish colour represents a posi-

tive Δ which means the parameter increases as well, while the bluish indicates the nega-

tive case. Four parameters for analysis are �� and �� which indicate the baselines, i.e., 

the estimation of the baseline climate without taking climate change impact into consid-

eration, referring to the level of most frequent AMDR and the occurrence probability of 

extremes; and �� and �� which are the time-varying changes from such baselines due to 

climate change while equal to zero if the best-selected model is stationary. 

In both countries (Figure 5a,c,e,g), most regions show decreasing baselines (�� and 

��) with the increase in ROI size, especially in AU. Such a decrease can be attributed to 

the areal average when involving more grids in the sampled ROI. However, near the 

coastal regions of GB and the boundary of the south-middle dry zone of AU, some ROIs 

have an increased baseline because the increasing size will involve more grids of higher 

rainfall which may overcompensate the reduction caused by the areal average. 

In addition, the time-varying terms (�� and ��, see Figure 5b,d) are insignificant in 

most of GB while very few with significant change locate near the coasts and have a de-

creasing ��. In AU (Figure 5f), regions with a decreased �� are mainly located in the mid-

dle-south zone while the others with an increased �� are closer to the coasts. However, 

the spatial distribution of the changes of �� is more random than �� and most regions 

present an insignificant trend of �� in both countries. 

The time-varying terms �� and �� can reflect how the most frequent AMDR and the 

occurrence probability of extremes change over time affected by climate change in the last 

century. Interestingly, such impact is not always coincident with the decreased average 

baseline climate estimation (�� and ��) due to the statistical average of larger ROI sizes 

but influenced more by the geographical locations. For example, for the ROIs near the 

coasts in both countries, increasing their size can lead to an amplification of climate 

change impact on the most frequent AMDR and a higher probability for extremes to occur. 

However, in general, increasing region size will decrease both the average status of cli-

mate and climate change impact. 
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Figure 5. Spatial distribution of ROI groups whose parameters (��, ��, ��, ��) change with the in-

crease in ROI size in GB (a–d) and AU (e–h). Please noted that the white colour indicates the ROI 

with an insignificant change in the parameters. Noted that “w” shown in the colour bar indicates 

the colour white which means the changes of the parameter is zero. 

3.3. Spatial Variation in Nonstationary Patterns over ROI Shape 

Figure 6 presents the changes in baselines (��, ��) and time-varying terms (��, ��) of 

the ROIs in GB and AU, parameterised by the ROI shape (��) varying from an elongated 

west–east orientated (�� = 0.2, 0.5), gradually to more rounded (�� = 0.8, 1.0, 1.25), then 

to an elongated but north–south orientated (�� = 2.0, 5.0). A small difference is observed 

between the baseline parameters of ROIs with reciprocal shape indexes especially in AU, 

regarding a symmetric pattern around �� = 1.0. Additionally, in both countries, most 

ROIs with a relatively rounded shape have higher values of the most frequent AMDR and 
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the occurrence probability of extremes than those of elongated ones, referring to the dis-

tribution parameters � and �. In other words, compared with the analysis of temporal 

changes in extreme daily rainfall in the study areas with a more elongated shape in these 

two countries, the area with a relatively rounded shape is more likely to capture the tem-

poral variation in extremes. However, it should be noted that the temporal variability in 

these parameters with different shapes of ROIs is insignificant compared with the changes 

with locations and ROIs’ sizes. 

 

Figure 6. Both baseline and time-varying parameters (��, ��, ��, ��) change over the ROI shape indi-

cated by the shape index of �� in GB (a,b) and AU (c,d). The vertical axis indicates the location of 

the groups of ROIs (e.g., in Figure 6a, 10 groups (those at 240 km, 280 km, 320 km, 360 km, 400 km, 

440 km, 480 km, 520 km, 560 km and 600 km) are presented from west to east while in each group, 

ROIs are presented from south to north (e.g., 5 ROIs presented between 240 km and 280 km are all 

geographically located at 240 km Easting from 580 km Northing to 900 km Northing)) and the colour 

bar shows the values of parameters. Due to the limited length of figures, the completed AU case 

with 2646 ROIs is shown in Supplementary Figure S1. 
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3.4. Implication of Return Period 

To demonstrate the difference between the nonstationary and stationary models, 6 

reference return levels of ��  are selected, i.e., AMDR���� , AMDR���� , AMDR����� , 

AMDR�����, AMDR����� and AMDR������ corresponding to the return periods of 2, 5, 10, 25, 

50 and 100 years, and calculated from the stationary model. Then, these stationary return 

levels are applied to calculate their corresponding return periods under the nonstationary 

condition (Equations (3) and (4)). The difference is then quantified between the nonsta-

tionary return periods (NS-RP) and the referenced stationary return periods (S-RP) for the 

same given reference return levels. 

Figure 7a,b present the NS-RP estimated by their best-selected nonstationary model 

for the three return levels �� from low to high (i.e., AMDR���� , AMDR�����  and 

AMDR�����) in GB and AU. In both countries, the difference between NS-RP and S-RP can 

be ignored (marked as white colour) at the lower return level (e.g., AMDR����). It means 

that for estimating rainfall at a lower return level, the stationary model is able to capture 

the magnitude of rainstorms. However, at higher return levels, the percentage of ROIs 

with almost zero difference (marked as white) is decreased. In GB, higher return levels 

(e.g., AMDR����� and AMDR�����) in North Wales, middle Scottish Highland and eastern 

and southern England (shown by blueish symbols) are underestimated by the stationary 

model while the coastal regions of Scotland and Wales witness an overestimation. In AU, 

the middle region of New South Wales and the coastal region of North Territory are 

shown an underestimation of higher return levels by the stationary model while the 

coastal area of Queensland and most regions of western Australia show an overestima-

tion. 

 

Figure 7. Nonstationary return periods corresponding to the return levels estimated by the station-

ary model and the spatial distribution referring to 1-in-5 years, 1-in-25 years and 1-in-50 years in GB 
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(a) and AU (b). An overall comparison between the nonstationary and stationary return levels cor-

responding to the same return year is presented as a boxplot in (c) where the upper panel shows the 

GB case and the lower shows the AU case. Noted that “w” in the colour bar indicates the colour 

white which means there is no difference between stationary and nonstationary return periods. 

Generally, with an increase in the return periods, the uncertainty that arises from the 

difference between the return levels calculated by the nonstationary and stationary model 

grows larger (see the length of the body and whiskers of each boxplot in Figure 7c). In GB, 

a left-skewed boxplot is observed at the higher return periods, which means that the re-

turn levels in most ROIs estimated by a stationary model are higher than the correspond-

ing nonstationary model estimate; while in AU, the difference is small and randomly dis-

tributed around zero and a half for overestimation and half for underestimation. 

Combining the results with the best-selected models presented in Section 3.1, we can 

see that in GB, the AMDR in coastal regions, most parts of Scotland and the east–south of 

England, the nonstationary condition is preferred and underestimated by the stationary 

model, e.g., 1-in-50-year rainfall becomes 1-in-30 year estimated by the best-fitted nonsta-

tionary model. In AU the same situation happens in the inland areas which are fitted bet-

ter by the nonstationary model, such as the middle region of New South Wales and the 

boundary area with Queensland, north coastal regions of North Territory, but the under-

estimation is small, e.g., 1-in-50 years becomes 1-in-45 years. This demonstrates that the 

currently used stationary model can result in high uncertainty and miss rare but high-risk 

extreme event occurrences, especially for the regions where the nonstationary condition 

is preferred, which leads to infrastructure damage. 

4. Conclusions 

This paper presents an analysis of the spatial variation in both the stationary and 

nonstationary GEV modelling of annual maximum daily rainfall (AMDR) extracted from 

over 11,010 regions of interest (ROI) with different spatial properties (location, size and 

shape) in Great Britain (GB) and Australia (AU) using two century-long grid-based da-

tasets. Three nonstationary models with different time-varying GEV parameters (� and 

�) schemes are proposed and fitted using both the Maximum Likelihood (ML) and the 

Bayesian Markov-Chain Monte-Carlo (B-MCMC) methods, before being compared with 

the stationary model. Finally, the spatial patterns of the AMDR in both countries are ana-

lysed and quantified, with respect to the ROI’s location, size and shape as well as the time-

varying changes due to climate change. The following conclusions can be drawn: 

(1) In general, the majority of the ROIs in both countries favour the nonstationary GEV 

model (NS-GEV) and most of them prefer the condition that only � assumed to be 

linearly changing with time; most NS-GEV applications show the ML method per-

forms better than the B-MCMC method (60% and 90% in GB and AU). AMDR of over 

80% ROIs in both countries follows Fréchet distribution. 

(2) Geographic location is the most significant factor that affects not only the average 

status of the baseline climate (with respect to �� and ��) but also the time-varying 

changes due to climate change (with respect to �� and ��). During the last century 

in GB, the changes in the level of the most frequent AMDR (with respect to �) are in 

the range of ±10% and the majority of areas show a non-decreasing trend. How-

ever, in AU, the south-middle zone and the eastern coasts are dominated by an in-

creasing � up to the rate of +20% while the north coast of Northern Territory and 

west-south coast of Western Australia are controlled by a decreasing � with the rate 

of −5%. The majority of regions of GB and AU are observed to a still � while some 

specific regions with a decreasing � scattering near the coasts of England indicate a 

decreasing occurrence probability of extremes. 

(3) Region size is shown to be a secondary factor. Generally, the two countries show a 

decreased average status of climate with an increase in size because of the statistical 

average. However, near the coastal regions of GB and the boundary of the south-
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middle dry zone of AU, some ROIs have an increasing status. Although the effect of 

region size on time-varying changes is insignificant, the climate change impact is not 

always decreased with the increase in region size but is influenced by geographical 

locations. 

(4) Region shape does not significantly affect either the average climate status or time-

varying changes; however, a symmetric pattern of average climate status is found for 

regions with reciprocal spatial indexes and the average climate status in ROIs with a 

relatively rounded shape is usually higher than the elongated ones 

(5) The stationary GEV models underestimate the risk in several specific regions such as 

the coastal regions in both countries where the nonstationary model is preferred. It 

may inspire a re-consideration of the current design storm determination procedure. 

We trust that the findings from this study are valuable for the civil engineering com-

munity in a way that not only do they further corroborate other research findings on ex-

treme rainfall, e.g., extremes are likely to become more frequent due to climate change 

impact, but they also quantitatively address how such changes over not only climate but 

also the geographical location, size and shape may affect the prevailing engineering de-

sign standard. 

Further work is recommended to investigate closely the underlying datasets with 

respect to potential inconsistency in the resolution of the data observed near the West 

coast of Scotland and the AU coasts. In addition, a comparative study with long-term, 

single gauge observations, as well as catchment-orientated sampling is likely to make 

more robust conclusions. As the changes of rainfall extremes are very likely to be affected 

by many other climate indices such as temperature, pressure, El Niño-Southern Oscilla-

tion (ENSO), etc., further work is recommended to also include these related indices as 

covariates and to explore more possible covariate-varying patterns where the distribution 

parameters may follow. 
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Carlo (BMCMC) Method; Text S2: Criteria for selecting best-fitted models; Text S3: Selection of sta-

tionary and nonstationary models and spatial patterns; Figure S1: Both baseline and time-varying 

parameters (��, ��, ��, ��) change over the ROI shape indicated by the index of �� in AU. The hori-

zontal axis indicates the location index the ROIs and colour bar shows the values of parameters; 

Table S1: the number of ROIs with their best-fitted model varying with regional sizes and shapes in 

GB and AU; Table S2: the number of ROIs with their best-fitted model varying with regional sizes 

and shapes in GB and AU. 
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