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training these models with datasets consisting of ham and 

spam samples. Several important steps are involved in the 

development of the machine learning based spam filtering solu- 

tions. These include: data cleansing, text pre-processing, word 

embedding, model training, fine-tuning and testing. While the 

pre-processing step involves applying standard NLP techniques 

to produce tokenized input, the word-embedding step is a 

crucial aspect that may significantly impact the performance 

of the model. Hence, it is important to choose the right 

embedding technique for optimal performance of the spam 

filtering solution. 

Previous works that presented SMS spam detection solutions 

have utilized different types of embedding techniques (such as 

N-grams, TF-IDF, Bag of Words, etc.), and have applied these 

with various machine learning algorithms. However, a com- 

prehensive comparative study of how these techniques would 

perform when used to develop filtering models with different 

machine learning classifiers, is currently lacking. Hence, in 

this paper, we focus on efficiency of different word-embedding 

techniques used to represent the information in a message, 

and their impact on accuracy of spam detection models using 

various machine learning classifiers. The dataset used is an 

unbalanced, publicly available SMS spam collection dataset 

consisting of 747 spam messages and 4825 ham messages. We 

investigate the performance of three statistical word-embedding 

techniques and two techniques based on Neural Networks. The 

techniques include Bag-of-words, N-grams, TF-IDF, Word2vec 

and Doc2vec. The motivating research questions that underpin 

this study include: 

• RQ1: what is the impact of the word-embedding technique 

on the performance of selected ML based models used for 

building spam detection filters? 

• RQ2: which combination of word-embedding and machine 

learning classifiers achieves the optimal spam detection 

performance? 

• RQ3: what effect does augmenting the data using oversam- 

pling to balance the training set, have on the performance 

of the different machine learning models? 

The rest of our paper is organized as follows. In section 2, we 

review related work. The methodology is presented in section 3. 

Abstract—E-mail and SMS are the most popular communi- 
cation tools used by businesses, organizations and educational 
institutions. Every day, people receive hundreds of messages 
which could be either spam or ham. Spam is any form of 
unsolicited, unwanted digital communication, usually sent out in 
bulk. Spam emails and SMS waste resources by unnecessarily 
flooding network lines and consuming storage space. Therefore, it 
is important to develop high accuracy spam detection models to 
effectively block spam messages, so as to optimize resources and 
protect users. Various word-embedding techniques such as Bag of 
Words (BOW), N-grams, TF-IDF, Word2Vec and Doc2Vec have 
been widely applied to NLP problems, however a comparative 
study of these techniques for SMS spam detection is currently 
lacking. Hence, in this paper, we provide a comparative analysis 
of these popular word embedding techniques for SMS spam 
detection by evaluating their performance on a publicly available 
ham and spam dataset. We investigate the performance of the 
word embedding techniques using 5 different machine learning 
classifiers i.e. Multinomial Naive Bayes (MNB), KNN, SVM, 
Random Forest and Extra Trees. Based on the dataset employed in 
the study, N-gram, BOW and TF-IDF with oversampling recorded 
the highest F1 scores of 0.99 for ham and 0.94 for spam. 

Index Terms—Spam detection; machine learning; word embed- 
ding; bag-of-words; term frequency-inverse document frequency; 
n-grams; word2vec; doc2vec 

I.  INTRODUCTION 

SMS and email are the most commonly used means of 

communication by businesses, and other institutions, hence 

it is important to filter out unwanted messages called spam 

which is a major concern for 52% of all internet users based 

on a poll conducted in a survey [1]. Advertising emails are 

the most typical spam emails, making up 36% of all spam 

material globally [2]. Advertising spam can occasionally be 

seen as unpleasant and inconvenient. The second-largest spam 

category, including around 31.7% of all spam messages, is 

adult-related content. The third-largest spam email category, 

comprising 26.5% of all unsolicited emails, is financial-related 

matter. The most harmful spams are scams and fraud accounts, 

which make up roughly 2.5% of all spam emails. Phishing 

statistics show that 73% of those spammers are after identity 

theft [3]. 

Researchers have been developing spam filtering models for 

both emails and SMS messages using machine learning, by 
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Section 4 presents and discusses the results of our comparative 

study. Section 5 outlines the conclusions and future work. 

II.  RELATED WORK 

Sahmoud and Mikki [3] developed a Spam detection model 

using BERT and trained the model on 4 different datasets 

namely SMS spam collection v.1, SpamAssassin, Ling-Spam 

and Enron. They utilized 90% of each of the datasets for 

training and the remaining 10% for testing the BERT model. 

The F1-scores for Enron, SpamAssassin, Ling-Spam, and SMS 

spam collection v.1 datasets were 98.62%, 97.83%, 99.13% 

and 99.28% respectively. Janez-Martino et al. [4] proposed 

spam email categorization of already detected spam email. They 

used a hierarchical clustering algorithm to create a multi-class 

dataset, which contains three types of emails. This dataset 

is used to evaluate the combination of TF-IDF and BOW 

encodings with Naive Bayes, Logistic Regression and SVM. 

TF-IDF with SVM had the best micro F1 score performance 

of 95.39% for the task of multi-class spam classification. 

Tong et al. [5] proposed a capsule network model combin- 

ing the long-short attention mechanisms to achieve efficient 

Chinese spam detection. Their experimental results show that 

the model performed better than TextCNN, LSTM and BERT 

achieving 98.72% accuracy on an an unbalanced dataset and 

99.30% on a balanced dataset. Roy et al. [6], utilized deep 

learning for Spam detection and compared the performance of 

CNN and LSTM models to traditional machine learning classi- 

fiers. The deep learning model used Glove representation, while 

the ML models used several statistical features to represent 

the messages. CNN and LSTM were shown to perform better 

than the ML models. However, their paper did not consider 

investigating different word embedding techniques. 

Liu et al. [7], proposed a modified Transformer model for 

SMS Spam detection and evaluated it on the SMS Spam 

collection v.1 dataset. They applied TF-IDF word embedding 

for the ML classifiers and used Glove representation for the 

LSTM and their proposed spam Transformer model. The mod- 

els were also evaluated on the UtkM1 Twitter spam dataset. The 

proposed model achieved 98.92% accuracy, 97.81% precision, 

94.51% recall and 96.13% F1-score on the SMS spam dataset. 

Harisinghaney et al. [8], studied spam email classification based 

on text and images using KNN, Naive Bayes and Reverse 

DBSCAN algorithm. Their work was based on a subset of 

emails from the Enron corpus dataset. The best accuracy of 

87% was obtained with Naive Bayes. 

Tida et al. [9], developed a universal spam detection model 

using BERT base uncased models. The combined model was 

trained with four datasets. An overall accuracy of 97% was 

obtained with and F1-score of 0.96. Rahman et al. [10], 

proposed a new spam detection using Bidirectional LSTM 

and CNN and employed keras embedding layer for word 

embedding. The models were trained on lingspam dataset and 

spam text classification dataset. The proposed CNN-bi-LSTM 

model achieved 98.25% F-measure. 

Laorden et al. [11], applied Word Sense Disambiguation 

(WSD) to spam filtering, which is a pre-processing procedure 

capable of disambiguating confusing terms in messages to 

improve filtering mechanism in spam filters. The proposed ap- 

proach was applied to LingSpam dataset and TREC 2007 Public 

corpus separately. Several ML classifiers were evaluated and 

Random Forest showed the best results. Raj et al. [12], proposed 

a robust method for spam classification using LSTM. Word2vec 

was used to convert the SMS spam collection dataset to vectors. 

Experimental results proved the LSTM model outperformed 

Machine Learning techniques like RF, SVM, KNN and decision 

tree with an accuracy of 97.5%. 

Almeida et al. [13], discuss the best classification model 

identified for SMS spam collection dataset, which had a total 

of 81,175 tokens extracted from the corpus. In their analysis, 

linear SVM outperformed all other evaluated models. It was 

able to capture 83.10% of all spam with the cost of blocking 

only 0.18% of legitimate messages, and an accuracy rate higher 

than 97.5%. Note that they did not perform stop word removal 

or word stemming as they claimed that other researchers found 

them detrimental to spam filtering accuracy. Paper [14] pro- 

posed a semi-supervised novelty detection approach for SMS 

spam detection. They applied one-class SVM by training the 

model as an anomaly detector using only ham messages. Their 

technique achieved an overall accuracy of 98%, with 100% 

detection rate (recall) for spam messages and 3% false positive 

rate for ham. 

Ghourabi et al. [15], proposed a hybrid deep learning model 

for detecting SMS spam messages based on combining CNN 

and LSTM. It aims to deal with mixed text messages writ- 

ten in Arabic and English. For comparative purpose, they 

implemented several models and showed that CNN-LSTM 

outperformed all other models by achieving highest accuracy of 

98.37%. Mishra et al. [16], proposed a model called “Smishing 

detector” with reduced false positive rate to detect smishing 

messages. The proposed model contains 4 modules. Using 

Na¨ıve Bayes classification algorithm, first module analyzes the 

content of text messages and identify malicious content. URL 

contained in the message is inspected by second module. The 

source code of the website linked in the messages is identified 

by the third module. The last module is an APK download 

detector which identifies if a malicious file is downloaded 

when URL is called. The experimental test showed the model 

achieved an accuracy of 96.29%. Other works that have applied 

ML to the problem of SMS spam detection include [17]–[22]. 

Unlike previous works, this paper aims to comparatively 

evaluate the performance of several word embedding techniques 

using 5 machine learning classifiers and a benchmark spam 

dataset that is publicly available. The objective is to answer the 

research questions (RQ1-RQ3) outlined in section 1, through 

an extensive empirical study. In the next section, we detail the 

methodology adopted in our study. 

III.  METHODOLOGY 

A. Dataset 

The dataset used in our work is the SMS spam collection 

dataset, available from [23], which consists of 5572 messages 

 



The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022 

(Accepted version) 

 

with 4825 being ham, and 747 being spam. The dataset distri- 

bution is shown in Figure 1. The word embedding techniques 

will be applied to the dataset after the initial pre-processing 

steps have been performed. 

representation. Words or phrases from a vocabulary are mapped 

to a corresponding vector of real numbers, which can then 

be utilized by the ML algorithms for training and prediction. 

In this study, we will focus on evaluating five commonly 

used approaches which are: Bag-of-words, N-grams, TF-IDF, 

Doc2Vec and Word2vec. 
1) Bag of Words: This is a vectorization technique which 

uses a vocabulary of known words and count of occurrence 

of each word in the sentence to represent the text without 

considering the order or structure of the word in the document. 

We implemented this by using the Count Vectorizer function 

imported from SkLearn library. We have selected only max- 

imum occurring features of 2500, as including more features 

generally showed a decline in performance of the ML model. 
2) N-Grams: This is a variant of the Bag of Words tech- 

nique, where combination of words in the sentence are con- 

sidered during vectorization. For example, consider the sen- 

tence:[“I love this movie”]. When N=1, i.e. unigram model, 

the features will be: [“I”,”love”,”this”,”movie”]. When N=2, i.e. 

bi-gram model, the features will be: [“I love”,”love this”,”this 

movie”]. When N=3, i.e. tri-gram model, features will be: 

[“I love this”,”love this movie”]. We implemented N-grams 

vectorization by combining unigram and bi-gram features, with 

the maximum selected features set at 2,000. This was found 

to be the optimum configuration, as other parameters showed 

decline in models’ performance. 
3) TF-IDF: Term Frequency-Inverse Document Frequency 

is a technique that identifies the importance of a word in a 

sentence by making use of statistical measures. Term Frequency 

(TF) is used to calculate the frequency of words in sentence by 

dividing total number of repetitions of the word in a sentence 

by total number of words in the sentence. The IDF score is used 

to calculate the rarity of words, as words that are less frequently 

used in corpus can contain more significant information. IDF is 

calculated by dividing total number of sentences by number of 

sentences containing the words and computing the log of the 

result. The final TF-IDF score is calculated by multiplying TF 

and IDF scores. 
4) Word2Vec: Word2Vec [24] is a word embedding tech- 

nique published by Tomas Mikolov and his colleagues at 

Google [25]. The algorithm uses a neural network model 

to learn word associations from a dataset, representing each 

distinct word with a vector. The vector is a list of numbers 

chosen to capture semantic and syntactic meaning of words 

in a sentence. Word2vec has two variants: Continuous Bag of 

Words (CBOW) and Skip-gram. In CBOW, based on various 

input words, the neural network predicts the target word closely 

related to context of the input words; while Skip-gram takes one 

word as input and predicts closely related context words. In our 

implementation, we have selected CBOW, the default model for 

Word2Vec. To reduce computational time, we implemented an 

’average word2vec’ technique whereby the average of vectors 

of all words in a sentence are taken, to generate a new set of 

vectors of length 100. 
5) Doc2Vec: Doc2Vec [26] is a two layered network which 

accepts a sentence, paragraph or document as input and converts 

Fig. 1. Distribution of ham and spam in the original dataset 

B. Text Preprocessing 

The data pre-processing workflow is shown in figure 2. In 

the first step, all the characters in the text messages other 

than ’a-z’ or ’A-Z’ were removed using regular expression. 

This removes characters such as symbols and numbers which 

do not contribute any meaning to the sentences. Next, all the 

alphabets in the text were converted to lower case, to prevent 

similar words with different cases from being interpreted as 

unique words. The sentences were tokenized to a list of words 

using Tweet Tokenizer. The NLTK library was then used to 

remove ’stop words’ from the sentences i.e. words of the 

English language which do not add any semantic meaning to 

the sentence. Stemming of the words in the list was done using 

the Snowball stemmer. Finally, the cleaned list of words were 

joined to form a sentence and added to a list called ’corpus’. 

C. Word embedding techniques 

Since machine learning algorithms can only process numer- 

ical data, words and text need to be made meaningful by 

expressing them numerically. Word embedding or word vec- 

torization techniques are used to convert words into numerical 

Fig. 2. Overview of text preprocessing workflow 
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it into vectors instead of converting individual word to vectors 

as done in Word2Vec. In Doc2Vec, instead of using just words 

to predict the next word, another feature (vector D) which 

is document unique is added which represents the concept 

of the document. During the training process, word vector 

W and document vector D is trained as well, which holds 

the numeric representation of the document. This model is 

called Distributed Memory version of Paragraph Vector (PV- 

DM) which remembers the topic of the paragraph. We used 

the Gensim Python library [27] to implement both word2vec 

and doc2vec word embeddings in our study. 

IV.  EXPERIMENTS AND RESULTS 

In this section we describe the experiments undertaken in 

our study and present the results of the comparative analysis of 

the word embedding techniques, using different machine learn- 

ing classifiers. The ML classifiers used include: Multinomial 

Naive Bayes (MNB), K-Nearest Neighbour (KNN), Support 

Vector Machine (SVM), Random Forest (RF), and Extra Trees 

(ET). The performance metrics used include: Precision, Recall, 

Accuracy and F1-score. In the experiments, 70% of the dataset 

is used for training and the remaining 30% for testing. 

A. Performance of BOW for SMS spam detection 

In Table I, the results of BOW vectorization for the 5 ML 

classifiers are shown. The precision for KNN is quite low for 

spam (38%), which means that it has a high false positive rate 

for ham prediction. Thus, KNN has the lowest F1-score of 0.55 

despite having 100% recall for spam. (The dataset is highly 

unbalanced with only 13% as spam). The highest F1-scores are 

obtained with MNB (0.99 for ham and 0.94 for spam). MNB 

has 93% recall for spam which is lower than recall for RF, 

ET and KNN; however it has the best spam precision of 95% 

meaning that it blocks much less ham (less ham false positives) 

compared to the other classifiers. 

TABLE II 
PERFORMANCE OF DIFFERENT ML MODELS WITH N-GRAMS 

C. Performance of TF-IDF for SMS spam detection 

In Table III, TF-IDF results are presented, where ET obtained 

the highest F1-scores of 0.99 and 0.93 for ham and spam 

respectively. The recall rate for ham was 98% while that of 

spam was 99%. Compared to BOW and N-grams, the F1- 

scores for SVM and RF were better with TF-IDF. We can also 

conclude based on the results, that MNB with N-grams or MNB 

with BOW, outperform ET with TF-IDF. 

TABLE III 
PERFORMANCE OF DIFFERENT ML MODELS WITH TF-IDF 

TABLE I 
PERFORMANCE OF DIFFERENT ML MODELS WITH BOW 

D. Performance of word2vec for SMS spam detection 

The results for word2vec embedding are shown in Table IV. 

The parameters used for the model were: vector size= 100; 

window=45; min count =2. From the table, RF had the highest 

F1-score of 0.98 for ham and 0.85 for spam. All the classifiers 

had worse performance with word2vec compared to BOW, N- 

grams and TF-IDF, except for KNN. Thus we can conclude 

that the statistical word embedding methods were better than 

word2vec based on the experiments on this dataset. 

E. Performance of doc2vec for SMS spam detection 

The results for doc2vec embedding are shown in Table V. 

The parameters used for the model were: vector size = 750; 

window = 40; min count =2. The overall performance for 

the classifiers was better than word2vec. RF had the highest 

F1-score of 0.99 for ham and 0.93 for spam. The results 

for KNN were better than with the other word embedding 

techniques. Thus, KNN and RF were the strongest classifiers 

for the doc2vec embedding approach. 

B. Performance of N-grams for SMS spam detection 

In Table II, N-grams results are presented. With this tech- 

nique, MNB also showed the highest F1-scores of 0.99 and 

0.94, but tied with ET. However, we consider MNB as the 

better option due to its higher ham recall (99%) compared to 

ET ham recall (98%), which implies that MNB blocks less ham 

messages than ET model. 

 Class Precision Recall F1-score Accuracy 

MNB ham 
spam 

0.99 
0.95 

0.99 
0.93 

0.99 
0.94 

0.98 

ET ham 
spam 

1.00 
0.87 

0.98 
0.98 

0.99 
0.92 

0.98 

RF ham 
spam 

1.00 
0.83 

0.97 
0.99 

0.99 
0.90 

0.97 

KNN ham 
spam 

1.00 
0.38 

0.91 
1.00 

0.95 
0.55 

0.91 

SVM 

 

ham 
spam 

0.96 
0.66 

0.94 
0.72 

0.95 
0.69 

0.92 

 

 Class Precision Recall F1-score Accuracy 

ET ham 
spam 

1.00 
0.88 

0.98 
0.99 

0.99 
0.93 

0.98 

MNB ham 
spam 

1.00 
0.84 

0.97 
0.99 

0.99 
0.91 

0.98 

RF ham 
spam 

1.00 
0.85 

0.98 
0.99 

0.99 
0.92 

0.98 

KNN ham 
spam 

1.00 
0.39 

0.91 
0.99 

0.95 
0.56 

0.91 

SVM 

 

ham 
spam 

1.00 
0.87 

0.98 
0.97 

0.99 
0.92 

0.98 

 

 Class Precision Recall F1-score Accuracy 

MNB ham 
spam 

0.99 
0.92 

0.99 
0.96 

0.99 
0.94 

0.98 

ET ham 
spam 

1.00 
0.89 

0.98 
0.99 

0.99 
0.94 

0.98 

RF ham 
spam 

1.00 
0.84 

0.97 
1.00 

0.99 
0.91 

0.98 

KNN ham 
spam 

1.00 
0.42 

0.91 
1.00 

0.95 
0.60 

0.92 

SVM 

 

ham 
spam 

0.96 
0.69 

0.95 
0.74 

0.95 
0.72 

0.92 
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TABLE IV 
PERFORMANCE OF DIFFERENT ML MODELS WITH AVERAGE WORD2VEC 

TABLE VI 
PERFORMANCE OF DIFFERENT ML MODELS WITH TF-IDF 

(OVERSAMPLING) 

TABLE V 
PERFORMANCE OF DIFFERENT ML MODELS WITH DOC2VEC 

TABLE VII 
PERFORMANCE OF BEST ML MODEL WITH VARIOUS WORD-EMBEDDINGS 

To evaluate the effect of oversampling, due to having an 

unbalanced dataset, we applied SMOTE to the training sets 

prior to training the classifiers. The testing sets (30% of the 

total) were left untouched so as to enable direct comparison 

with the unbalanced dataset scenarios. It was observed that 

BOW and N-grams did not achieve better performance for 

the ML classifiers with the introduction of the over-sampled 

training set. However, there was noticeable improvement with 

TF-IDF for ET, RF, KNN and SVM. This can be seen by 

comparing results of Table VI with Table III. 

Table VII depicts the best classifiers from each of the word 

embedding techniques. From the Table, we can deduce that RF 

is a good choice for doc2vec and word2vec, while MNB should 

be considered for use with BOW or N-grams. In the case of 

TF-IDF, ET was the best before oversampling, while SVM was 

the best classifier after applying the SMOTE oversampling. 

In Figure 3, average F1-scores are shown for the embedding 

techniques using RF. Doc2Vec had the highest average F1- 

score (0.96), while word2vect had the lowest (0.915). In Figure 

4, average F1-scores are shown for the embedding techniques 

using Extra Trees. N-grams had the highest average F1-score 

(0.965), while word2vect had the lowest (0.855). In Figure 

5, average F1-scores are shown for the embedding techniques 

using MNB. N-grams and BOW had the highest average F1- 

score (0.965), while word2vect had the lowest (0.52). 

V.  CONCLUSION AND FUTURE WORK 

In this paper we presented a comparative analysis of popular 

word embedding techniques using KNN, RF, MNB, ET and 

SVM classifiers. We considered three statistical embedding 

Fig. 3. Average F1-scores for different embedding techniques with RF classifier 

approaches i.e. TF-IDF, BOW and N-grams as well as two 

Neural Network-based techniques i.e. word2vec and doc2vec. 

In general, we observed the best overall performance in spam 

detection with the statistical word embedding methods paired 

with MNB, RF or ET. While doc2vec appeared promising, 

based on the dataset employed in the study, word2vec did 

not perform well compared to the other methods. Nevertheless, 

we envisage that the Neural Network based techniques could 

achieve improved performance with a larger dataset. This will 

be further explored in our future work. From our study, TF- 

 Best Class Precision Recall F1 Acc 

BOW MNB ham 
spam 

0.99 
0.95 

0.99 
0.93 

0.99 
0.94 

0.98 

N-gram MNB ham 
spam 

0.99 
0.92 

0.99 
0.96 

0.99 
0.94 

0.98 

TF-IDF ET ham 
spam 

1.00 
0.88 

0.98 
0.99 

0.99 
0.93 

0.98 

TF-IDF 
oversampled 

SVM ham 
spam 

0.99 
0.95 

0.99 
0.93 

0.99 
0.94 

0.98 

AVg. W2V RF ham 
spam 

0.99 
0.79 

0.97 
0.92 

0.98 
0.85 

0.96 

Doc2Vec 

 

RF 

 

ham 
spam 

1.00 
0.89 

0.98 
0.97 

0.99 
0.93 

0.98 

 

 Class Precision Recall F1-score Accuracy 

RF ham 
spam 

1.00 
0.89 

0.98 
0.97 

0.99 
0.93 

0.98 

KNN ham 
spam 

0.99 
0.86 

0.98 
0.96 

0.99 
0.91 

0.96 

SVM ham 
spam 

1.00 
0.71 

0.95 
0.99 

0.98 
0.83 

0.96 

ET ham 
spam 

0.99 
0.85 

0.98 
0.91 

0.98 
0.88 

0.97 

MNB 

 

ham 
spam 

0.99 
0.87 

0.98 
0.92 

0.98 
0.89 

0.97 

 

 Class Precision Recall F1-score Accuracy 

ET ham 
spam 

1.00 
0.90 

0.98 
0.98 

0.99 
0.94 

0.98 

MNB ham 
spam 

0.97 
0.95 

0.99 
0.85 

0.98 
0.90 

0.97 

RF ham 
spam 

1.00 
0.86 

0.98 
1.00 

0.99 
0.92 

0.98 

KNN ham 
spam 

0.99 
0.72 

0.96 
0.94 

0.97 
0.81 

0.95 

SVM 

 

ham 
spam 

0.99 
0.95 

0.99 
0.93 

0.99 
0.94 

0.98 

 

 Class Precision Recall F1-score Accuracy 

RF ham 
spam 

0.99 
0.79 

0.97 
0.92 

0.98 
0.85 

0.96 

KNN ham 
spam 

0.97 
0.77 

0.96 
0.82 

0.97 
0.80 

0.94 

SVM ham 
spam 

0.89 
0.03 

0.85 
0.04 

0.87 
0.03 

0.76 

ET ham 
spam 

0.99 
0.62 

0.94 
0.93 

0.97 
0.74 

0.94 

MNB 

 

ham 
spam 

0.69 
0.43 

0.88 
0.19 

0.78 
0.26 

0.66 
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