
The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

A Comparative Study of Word Embedding

Techniques for SMS Spam Detection

Prashob Joseph
School Computer Science and Informatics

Faculty of Computing, Engineering and Media

De Montfort University

Leicester, United Kingdom

P2676917@my365.dmu.ac.uk

Suleiman Y. Yerima
Cyber Technology Institute

Faculty of Computing, Engineering, and Media

De Montfort University

Leicester, United Kingdom

syerima@dmu.ac.uk

training these models with datasets consisting of ham and

spam samples. Several important steps are involved in the

development of the machine learning based spam filtering solu-

tions. These include: data cleansing, text pre-processing, word

embedding, model training, fine-tuning and testing. While the

pre-processing step involves applying standard NLP techniques

to produce tokenized input, the word-embedding step is a

crucial aspect that may significantly impact the performance

of the model. Hence, it is important to choose the right

embedding technique for optimal performance of the spam

filtering solution.

Previous works that presented SMS spam detection solutions

have utilized different types of embedding techniques (such as

N-grams, TF-IDF, Bag of Words, etc.), and have applied these

with various machine learning algorithms. However, a com-

prehensive comparative study of how these techniques would

perform when used to develop filtering models with different

machine learning classifiers, is currently lacking. Hence, in

this paper, we focus on efficiency of different word-embedding

techniques used to represent the information in a message,

and their impact on accuracy of spam detection models using

various machine learning classifiers. The dataset used is an

unbalanced, publicly available SMS spam collection dataset

consisting of 747 spam messages and 4825 ham messages. We

investigate the performance of three statistical word-embedding

techniques and two techniques based on Neural Networks. The

techniques include Bag-of-words, N-grams, TF-IDF, Word2vec

and Doc2vec. The motivating research questions that underpin

this study include:

• RQ1: what is the impact of the word-embedding technique

on the performance of selected ML based models used for

building spam detection filters?

• RQ2: which combination of word-embedding and machine

learning classifiers achieves the optimal spam detection

performance?

• RQ3: what effect does augmenting the data using oversam-

pling to balance the training set, have on the performance

of the different machine learning models?

The rest of our paper is organized as follows. In section 2, we

review related work. The methodology is presented in section 3.

Abstract—E-mail and SMS are the most popular communi-
cation tools used by businesses, organizations and educational
institutions. Every day, people receive hundreds of messages
which could be either spam or ham. Spam is any form of
unsolicited, unwanted digital communication, usually sent out in
bulk. Spam emails and SMS waste resources by unnecessarily
flooding network lines and consuming storage space. Therefore, it
is important to develop high accuracy spam detection models to
effectively block spam messages, so as to optimize resources and
protect users. Various word-embedding techniques such as Bag of
Words (BOW), N-grams, TF-IDF, Word2Vec and Doc2Vec have
been widely applied to NLP problems, however a comparative
study of these techniques for SMS spam detection is currently
lacking. Hence, in this paper, we provide a comparative analysis
of these popular word embedding techniques for SMS spam
detection by evaluating their performance on a publicly available
ham and spam dataset. We investigate the performance of the
word embedding techniques using 5 different machine learning
classifiers i.e. Multinomial Naive Bayes (MNB), KNN, SVM,
Random Forest and Extra Trees. Based on the dataset employed in
the study, N-gram, BOW and TF-IDF with oversampling recorded
the highest F1 scores of 0.99 for ham and 0.94 for spam.

Index Terms—Spam detection; machine learning; word embed-
ding; bag-of-words; term frequency-inverse document frequency;
n-grams; word2vec; doc2vec

I. INTRODUCTION

SMS and email are the most commonly used means of

communication by businesses, and other institutions, hence

it is important to filter out unwanted messages called spam

which is a major concern for 52% of all internet users based

on a poll conducted in a survey [1]. Advertising emails are

the most typical spam emails, making up 36% of all spam

material globally [2]. Advertising spam can occasionally be

seen as unpleasant and inconvenient. The second-largest spam

category, including around 31.7% of all spam messages, is

adult-related content. The third-largest spam email category,

comprising 26.5% of all unsolicited emails, is financial-related

matter. The most harmful spams are scams and fraud accounts,

which make up roughly 2.5% of all spam emails. Phishing

statistics show that 73% of those spammers are after identity

theft [3].

Researchers have been developing spam filtering models for

both emails and SMS messages using machine learning, by

mailto:P2676917@my365.dmu.ac.uk
mailto:syerima@dmu.ac.uk

The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

Section 4 presents and discusses the results of our comparative

study. Section 5 outlines the conclusions and future work.

II. RELATED WORK

Sahmoud and Mikki [3] developed a Spam detection model

using BERT and trained the model on 4 different datasets

namely SMS spam collection v.1, SpamAssassin, Ling-Spam

and Enron. They utilized 90% of each of the datasets for

training and the remaining 10% for testing the BERT model.

The F1-scores for Enron, SpamAssassin, Ling-Spam, and SMS

spam collection v.1 datasets were 98.62%, 97.83%, 99.13%

and 99.28% respectively. Janez-Martino et al. [4] proposed

spam email categorization of already detected spam email. They

used a hierarchical clustering algorithm to create a multi-class

dataset, which contains three types of emails. This dataset

is used to evaluate the combination of TF-IDF and BOW

encodings with Naive Bayes, Logistic Regression and SVM.

TF-IDF with SVM had the best micro F1 score performance

of 95.39% for the task of multi-class spam classification.

Tong et al. [5] proposed a capsule network model combin-

ing the long-short attention mechanisms to achieve efficient

Chinese spam detection. Their experimental results show that

the model performed better than TextCNN, LSTM and BERT

achieving 98.72% accuracy on an an unbalanced dataset and

99.30% on a balanced dataset. Roy et al. [6], utilized deep

learning for Spam detection and compared the performance of

CNN and LSTM models to traditional machine learning classi-

fiers. The deep learning model used Glove representation, while

the ML models used several statistical features to represent

the messages. CNN and LSTM were shown to perform better

than the ML models. However, their paper did not consider

investigating different word embedding techniques.

Liu et al. [7], proposed a modified Transformer model for

SMS Spam detection and evaluated it on the SMS Spam

collection v.1 dataset. They applied TF-IDF word embedding

for the ML classifiers and used Glove representation for the

LSTM and their proposed spam Transformer model. The mod-

els were also evaluated on the UtkM1 Twitter spam dataset. The

proposed model achieved 98.92% accuracy, 97.81% precision,

94.51% recall and 96.13% F1-score on the SMS spam dataset.

Harisinghaney et al. [8], studied spam email classification based

on text and images using KNN, Naive Bayes and Reverse

DBSCAN algorithm. Their work was based on a subset of

emails from the Enron corpus dataset. The best accuracy of

87% was obtained with Naive Bayes.

Tida et al. [9], developed a universal spam detection model

using BERT base uncased models. The combined model was

trained with four datasets. An overall accuracy of 97% was

obtained with and F1-score of 0.96. Rahman et al. [10],

proposed a new spam detection using Bidirectional LSTM

and CNN and employed keras embedding layer for word

embedding. The models were trained on lingspam dataset and

spam text classification dataset. The proposed CNN-bi-LSTM

model achieved 98.25% F-measure.

Laorden et al. [11], applied Word Sense Disambiguation

(WSD) to spam filtering, which is a pre-processing procedure

capable of disambiguating confusing terms in messages to

improve filtering mechanism in spam filters. The proposed ap-

proach was applied to LingSpam dataset and TREC 2007 Public

corpus separately. Several ML classifiers were evaluated and

Random Forest showed the best results. Raj et al. [12], proposed

a robust method for spam classification using LSTM. Word2vec

was used to convert the SMS spam collection dataset to vectors.

Experimental results proved the LSTM model outperformed

Machine Learning techniques like RF, SVM, KNN and decision

tree with an accuracy of 97.5%.

Almeida et al. [13], discuss the best classification model

identified for SMS spam collection dataset, which had a total

of 81,175 tokens extracted from the corpus. In their analysis,

linear SVM outperformed all other evaluated models. It was

able to capture 83.10% of all spam with the cost of blocking

only 0.18% of legitimate messages, and an accuracy rate higher

than 97.5%. Note that they did not perform stop word removal

or word stemming as they claimed that other researchers found

them detrimental to spam filtering accuracy. Paper [14] pro-

posed a semi-supervised novelty detection approach for SMS

spam detection. They applied one-class SVM by training the

model as an anomaly detector using only ham messages. Their

technique achieved an overall accuracy of 98%, with 100%

detection rate (recall) for spam messages and 3% false positive

rate for ham.

Ghourabi et al. [15], proposed a hybrid deep learning model

for detecting SMS spam messages based on combining CNN

and LSTM. It aims to deal with mixed text messages writ-

ten in Arabic and English. For comparative purpose, they

implemented several models and showed that CNN-LSTM

outperformed all other models by achieving highest accuracy of

98.37%. Mishra et al. [16], proposed a model called “Smishing

detector” with reduced false positive rate to detect smishing

messages. The proposed model contains 4 modules. Using

Na¨ıve Bayes classification algorithm, first module analyzes the

content of text messages and identify malicious content. URL

contained in the message is inspected by second module. The

source code of the website linked in the messages is identified

by the third module. The last module is an APK download

detector which identifies if a malicious file is downloaded

when URL is called. The experimental test showed the model

achieved an accuracy of 96.29%. Other works that have applied

ML to the problem of SMS spam detection include [17]–[22].

Unlike previous works, this paper aims to comparatively

evaluate the performance of several word embedding techniques

using 5 machine learning classifiers and a benchmark spam

dataset that is publicly available. The objective is to answer the

research questions (RQ1-RQ3) outlined in section 1, through

an extensive empirical study. In the next section, we detail the

methodology adopted in our study.

III. METHODOLOGY

A. Dataset

The dataset used in our work is the SMS spam collection

dataset, available from [23], which consists of 5572 messages

The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

with 4825 being ham, and 747 being spam. The dataset distri-

bution is shown in Figure 1. The word embedding techniques

will be applied to the dataset after the initial pre-processing

steps have been performed.

representation. Words or phrases from a vocabulary are mapped

to a corresponding vector of real numbers, which can then

be utilized by the ML algorithms for training and prediction.

In this study, we will focus on evaluating five commonly

used approaches which are: Bag-of-words, N-grams, TF-IDF,

Doc2Vec and Word2vec.
1) Bag of Words: This is a vectorization technique which

uses a vocabulary of known words and count of occurrence

of each word in the sentence to represent the text without

considering the order or structure of the word in the document.

We implemented this by using the Count Vectorizer function

imported from SkLearn library. We have selected only max-

imum occurring features of 2500, as including more features

generally showed a decline in performance of the ML model.
2) N-Grams: This is a variant of the Bag of Words tech-

nique, where combination of words in the sentence are con-

sidered during vectorization. For example, consider the sen-

tence:[“I love this movie”]. When N=1, i.e. unigram model,

the features will be: [“I”,”love”,”this”,”movie”]. When N=2, i.e.

bi-gram model, the features will be: [“I love”,”love this”,”this

movie”]. When N=3, i.e. tri-gram model, features will be:

[“I love this”,”love this movie”]. We implemented N-grams

vectorization by combining unigram and bi-gram features, with

the maximum selected features set at 2,000. This was found

to be the optimum configuration, as other parameters showed

decline in models’ performance.
3) TF-IDF: Term Frequency-Inverse Document Frequency

is a technique that identifies the importance of a word in a

sentence by making use of statistical measures. Term Frequency

(TF) is used to calculate the frequency of words in sentence by

dividing total number of repetitions of the word in a sentence

by total number of words in the sentence. The IDF score is used

to calculate the rarity of words, as words that are less frequently

used in corpus can contain more significant information. IDF is

calculated by dividing total number of sentences by number of

sentences containing the words and computing the log of the

result. The final TF-IDF score is calculated by multiplying TF

and IDF scores.
4) Word2Vec: Word2Vec [24] is a word embedding tech-

nique published by Tomas Mikolov and his colleagues at

Google [25]. The algorithm uses a neural network model

to learn word associations from a dataset, representing each

distinct word with a vector. The vector is a list of numbers

chosen to capture semantic and syntactic meaning of words

in a sentence. Word2vec has two variants: Continuous Bag of

Words (CBOW) and Skip-gram. In CBOW, based on various

input words, the neural network predicts the target word closely

related to context of the input words; while Skip-gram takes one

word as input and predicts closely related context words. In our

implementation, we have selected CBOW, the default model for

Word2Vec. To reduce computational time, we implemented an

’average word2vec’ technique whereby the average of vectors

of all words in a sentence are taken, to generate a new set of

vectors of length 100.
5) Doc2Vec: Doc2Vec [26] is a two layered network which

accepts a sentence, paragraph or document as input and converts

Fig. 1. Distribution of ham and spam in the original dataset

B. Text Preprocessing

The data pre-processing workflow is shown in figure 2. In

the first step, all the characters in the text messages other

than ’a-z’ or ’A-Z’ were removed using regular expression.

This removes characters such as symbols and numbers which

do not contribute any meaning to the sentences. Next, all the

alphabets in the text were converted to lower case, to prevent

similar words with different cases from being interpreted as

unique words. The sentences were tokenized to a list of words

using Tweet Tokenizer. The NLTK library was then used to

remove ’stop words’ from the sentences i.e. words of the

English language which do not add any semantic meaning to

the sentence. Stemming of the words in the list was done using

the Snowball stemmer. Finally, the cleaned list of words were

joined to form a sentence and added to a list called ’corpus’.

C. Word embedding techniques

Since machine learning algorithms can only process numer-

ical data, words and text need to be made meaningful by

expressing them numerically. Word embedding or word vec-

torization techniques are used to convert words into numerical

Fig. 2. Overview of text preprocessing workflow

The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

it into vectors instead of converting individual word to vectors

as done in Word2Vec. In Doc2Vec, instead of using just words

to predict the next word, another feature (vector D) which

is document unique is added which represents the concept

of the document. During the training process, word vector

W and document vector D is trained as well, which holds

the numeric representation of the document. This model is

called Distributed Memory version of Paragraph Vector (PV-

DM) which remembers the topic of the paragraph. We used

the Gensim Python library [27] to implement both word2vec

and doc2vec word embeddings in our study.

IV. EXPERIMENTS AND RESULTS

In this section we describe the experiments undertaken in

our study and present the results of the comparative analysis of

the word embedding techniques, using different machine learn-

ing classifiers. The ML classifiers used include: Multinomial

Naive Bayes (MNB), K-Nearest Neighbour (KNN), Support

Vector Machine (SVM), Random Forest (RF), and Extra Trees

(ET). The performance metrics used include: Precision, Recall,

Accuracy and F1-score. In the experiments, 70% of the dataset

is used for training and the remaining 30% for testing.

A. Performance of BOW for SMS spam detection

In Table I, the results of BOW vectorization for the 5 ML

classifiers are shown. The precision for KNN is quite low for

spam (38%), which means that it has a high false positive rate

for ham prediction. Thus, KNN has the lowest F1-score of 0.55

despite having 100% recall for spam. (The dataset is highly

unbalanced with only 13% as spam). The highest F1-scores are

obtained with MNB (0.99 for ham and 0.94 for spam). MNB

has 93% recall for spam which is lower than recall for RF,

ET and KNN; however it has the best spam precision of 95%

meaning that it blocks much less ham (less ham false positives)

compared to the other classifiers.

TABLE II
PERFORMANCE OF DIFFERENT ML MODELS WITH N-GRAMS

C. Performance of TF-IDF for SMS spam detection

In Table III, TF-IDF results are presented, where ET obtained

the highest F1-scores of 0.99 and 0.93 for ham and spam

respectively. The recall rate for ham was 98% while that of

spam was 99%. Compared to BOW and N-grams, the F1-

scores for SVM and RF were better with TF-IDF. We can also

conclude based on the results, that MNB with N-grams or MNB

with BOW, outperform ET with TF-IDF.

TABLE III
PERFORMANCE OF DIFFERENT ML MODELS WITH TF-IDF

TABLE I
PERFORMANCE OF DIFFERENT ML MODELS WITH BOW

D. Performance of word2vec for SMS spam detection

The results for word2vec embedding are shown in Table IV.

The parameters used for the model were: vector size= 100;

window=45; min count =2. From the table, RF had the highest

F1-score of 0.98 for ham and 0.85 for spam. All the classifiers

had worse performance with word2vec compared to BOW, N-

grams and TF-IDF, except for KNN. Thus we can conclude

that the statistical word embedding methods were better than

word2vec based on the experiments on this dataset.

E. Performance of doc2vec for SMS spam detection

The results for doc2vec embedding are shown in Table V.

The parameters used for the model were: vector size = 750;

window = 40; min count =2. The overall performance for

the classifiers was better than word2vec. RF had the highest

F1-score of 0.99 for ham and 0.93 for spam. The results

for KNN were better than with the other word embedding

techniques. Thus, KNN and RF were the strongest classifiers

for the doc2vec embedding approach.

B. Performance of N-grams for SMS spam detection

In Table II, N-grams results are presented. With this tech-

nique, MNB also showed the highest F1-scores of 0.99 and

0.94, but tied with ET. However, we consider MNB as the

better option due to its higher ham recall (99%) compared to

ET ham recall (98%), which implies that MNB blocks less ham

messages than ET model.

 Class Precision Recall F1-score Accuracy

MNB ham
spam

0.99
0.95

0.99
0.93

0.99
0.94

0.98

ET ham
spam

1.00
0.87

0.98
0.98

0.99
0.92

0.98

RF ham
spam

1.00
0.83

0.97
0.99

0.99
0.90

0.97

KNN ham
spam

1.00
0.38

0.91
1.00

0.95
0.55

0.91

SVM

ham
spam

0.96
0.66

0.94
0.72

0.95
0.69

0.92

 Class Precision Recall F1-score Accuracy

ET ham
spam

1.00
0.88

0.98
0.99

0.99
0.93

0.98

MNB ham
spam

1.00
0.84

0.97
0.99

0.99
0.91

0.98

RF ham
spam

1.00
0.85

0.98
0.99

0.99
0.92

0.98

KNN ham
spam

1.00
0.39

0.91
0.99

0.95
0.56

0.91

SVM

ham
spam

1.00
0.87

0.98
0.97

0.99
0.92

0.98

 Class Precision Recall F1-score Accuracy

MNB ham
spam

0.99
0.92

0.99
0.96

0.99
0.94

0.98

ET ham
spam

1.00
0.89

0.98
0.99

0.99
0.94

0.98

RF ham
spam

1.00
0.84

0.97
1.00

0.99
0.91

0.98

KNN ham
spam

1.00
0.42

0.91
1.00

0.95
0.60

0.92

SVM

ham
spam

0.96
0.69

0.95
0.74

0.95
0.72

0.92

The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

TABLE IV
PERFORMANCE OF DIFFERENT ML MODELS WITH AVERAGE WORD2VEC

TABLE VI
PERFORMANCE OF DIFFERENT ML MODELS WITH TF-IDF

(OVERSAMPLING)

TABLE V
PERFORMANCE OF DIFFERENT ML MODELS WITH DOC2VEC

TABLE VII
PERFORMANCE OF BEST ML MODEL WITH VARIOUS WORD-EMBEDDINGS

To evaluate the effect of oversampling, due to having an

unbalanced dataset, we applied SMOTE to the training sets

prior to training the classifiers. The testing sets (30% of the

total) were left untouched so as to enable direct comparison

with the unbalanced dataset scenarios. It was observed that

BOW and N-grams did not achieve better performance for

the ML classifiers with the introduction of the over-sampled

training set. However, there was noticeable improvement with

TF-IDF for ET, RF, KNN and SVM. This can be seen by

comparing results of Table VI with Table III.

Table VII depicts the best classifiers from each of the word

embedding techniques. From the Table, we can deduce that RF

is a good choice for doc2vec and word2vec, while MNB should

be considered for use with BOW or N-grams. In the case of

TF-IDF, ET was the best before oversampling, while SVM was

the best classifier after applying the SMOTE oversampling.

In Figure 3, average F1-scores are shown for the embedding

techniques using RF. Doc2Vec had the highest average F1-

score (0.96), while word2vect had the lowest (0.915). In Figure

4, average F1-scores are shown for the embedding techniques

using Extra Trees. N-grams had the highest average F1-score

(0.965), while word2vect had the lowest (0.855). In Figure

5, average F1-scores are shown for the embedding techniques

using MNB. N-grams and BOW had the highest average F1-

score (0.965), while word2vect had the lowest (0.52).

V. CONCLUSION AND FUTURE WORK

In this paper we presented a comparative analysis of popular

word embedding techniques using KNN, RF, MNB, ET and

SVM classifiers. We considered three statistical embedding

Fig. 3. Average F1-scores for different embedding techniques with RF classifier

approaches i.e. TF-IDF, BOW and N-grams as well as two

Neural Network-based techniques i.e. word2vec and doc2vec.

In general, we observed the best overall performance in spam

detection with the statistical word embedding methods paired

with MNB, RF or ET. While doc2vec appeared promising,

based on the dataset employed in the study, word2vec did

not perform well compared to the other methods. Nevertheless,

we envisage that the Neural Network based techniques could

achieve improved performance with a larger dataset. This will

be further explored in our future work. From our study, TF-

 Best Class Precision Recall F1 Acc

BOW MNB ham
spam

0.99
0.95

0.99
0.93

0.99
0.94

0.98

N-gram MNB ham
spam

0.99
0.92

0.99
0.96

0.99
0.94

0.98

TF-IDF ET ham
spam

1.00
0.88

0.98
0.99

0.99
0.93

0.98

TF-IDF
oversampled

SVM ham
spam

0.99
0.95

0.99
0.93

0.99
0.94

0.98

AVg. W2V RF ham
spam

0.99
0.79

0.97
0.92

0.98
0.85

0.96

Doc2Vec

RF

ham
spam

1.00
0.89

0.98
0.97

0.99
0.93

0.98

 Class Precision Recall F1-score Accuracy

RF ham
spam

1.00
0.89

0.98
0.97

0.99
0.93

0.98

KNN ham
spam

0.99
0.86

0.98
0.96

0.99
0.91

0.96

SVM ham
spam

1.00
0.71

0.95
0.99

0.98
0.83

0.96

ET ham
spam

0.99
0.85

0.98
0.91

0.98
0.88

0.97

MNB

ham
spam

0.99
0.87

0.98
0.92

0.98
0.89

0.97

 Class Precision Recall F1-score Accuracy

ET ham
spam

1.00
0.90

0.98
0.98

0.99
0.94

0.98

MNB ham
spam

0.97
0.95

0.99
0.85

0.98
0.90

0.97

RF ham
spam

1.00
0.86

0.98
1.00

0.99
0.92

0.98

KNN ham
spam

0.99
0.72

0.96
0.94

0.97
0.81

0.95

SVM

ham
spam

0.99
0.95

0.99
0.93

0.99
0.94

0.98

 Class Precision Recall F1-score Accuracy

RF ham
spam

0.99
0.79

0.97
0.92

0.98
0.85

0.96

KNN ham
spam

0.97
0.77

0.96
0.82

0.97
0.80

0.94

SVM ham
spam

0.89
0.03

0.85
0.04

0.87
0.03

0.76

ET ham
spam

0.99
0.62

0.94
0.93

0.97
0.74

0.94

MNB

ham
spam

0.69
0.43

0.88
0.19

0.78
0.26

0.66

The 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar, Saudi Arabia, 4-6 Dec. 2022

(Accepted version)

[6] K. R. Pradeep, J. P. Singh, and S. Banerjee, “Deep learning to filter SMS
Spam,” Future Generation Computer Systems, vol. 102, pp. 524–533, Jan.
2020.
X. Liu, H. Lu, and A. Nayak, “A Spam Transformer Model for SMS
Spam Detection,” IEEE Access, vol. 9, pp. 80 253 – 80 263, May 2020.
A. Harisinghaney, A. Dixit, S. Gupta, and A. Arora, “Text and image
based spam email classification using knn, na¨ıve bayes and reverse dbscan
algorithm,” in 2014 International Conference on Reliability Optimization
and Information Technology (ICROIT), February 2014.
V. S. Tida and S. Hsu, “Universal Spam Detection using Transfer Learning
of BERT Model,” Computation and Language (cs.CL); Machine Learning
(cs.LG) arXiv:2202.03480 [cs.CL], 2022.
S. E. Rahman and S. Ullah, “Email spam detection using bidirectional
long short term memory with convolutional neural network,” in 2020
IEEE Region 10 Symposium (TENSYMP), 2020, 2020, pp. 1307–1311.
C. Laorden, I. Santos, B. Sanz, G. Alvarez, and P. G. Bringas, “ Word
sense disambiguation for spam filtering ,” Electronic Commerce Research
and Applications, vol. 11, no. 3, pp. 290–298, May–June 2012.
H. Raj, Y. Weihong, S. K. Banbhrani, and S. P. Dino, “Lstm based
short message service modelling for spam classification,” in ICMLT ’18:
Proceedings of the 2018 International Conference on Machine Learning
Technologies, 2018, pp. 76–80.
T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, “Contributions to the
study of sms spam filtering: New collection and results,” in Proceedings
of the 11th ACM Symposium on Document Engineering in DocEng‘11,
New York, 2011, 2011, pp. 259–262.
S. Y. Yerima and A. Bashar, “Semi-supervised novelty detection with
one class svm for sms spam detection,” in Proceedings of the 2022
29th International Conference on Systems, Signals and Image Processing
(IWSSIP ’22), 01-03 June 2022.
A. Ghourabi, M. Mahmood, and Q. Alzubi, “ A hybrid CNN-LSTM
model for SMS spam detection in arabic and english messages ,” Future
Internet, vol. 12, no. 9, 2020.
S. Mishra and D. Soni, “Smishing Detector: A security model to detect
smishing through SMS content analysis and URL behavior analysis ,”
Future Generation Computer Systems, vol. 108, pp. 803–815, July 2020.
N. Choudhary and A. K. Jain, “Towards Filtering of SMS Spam Messages
Using Machine Learning Based Technique,” Advanced Informatics for
Computing Research, vol. 712, pp. 18–30, 2017.
E. M. El-Alfy and A. A. AlHassan, “Spam filtering framework for
multimodal mobile communication based on dendritic cell algorithm,”
Future Gen. Comput. Syst, vol. 64, pp. 98–107, 2016.
P. Poomka, W. Pongsena, N. Kerdprasop, and K. Kerdprasop, “SMS
Spam Detection Based on Long Short-Term Memory and Gated Recurrent
Unit,” International Journal of Future Computer and Communication,
vol. 8, no. 1, pp. 11–15, 2019.
L. GuangJun, S. Nazir, H. U. Khan, and A. Ul Haq, “Spam Detection
Approach for Secure Mobile Message Communication Using Machine
Learning Algorithms,” Security and Communication Networks, 2020.
T. Huang, “A cnn model for sms spam detection,” in 4th International
Conference on Mechanical Control and Computer Engineering (ICM-
CCE), 2019.
S. Gadde, A. Lakshmanarao, and S. Satyanarayana, “Sms spam detection
using machine learning and deep learning techniques,” in 7th Interna-
tional Conference on Advanced Computing and Communication Systems
(ICACCS), 2021, pp. 358–362.

[7]

[8]

[9]

[10]

[11]

[12]

Fig. 4. Average F1-scores for different embedding techniques with Extra Trees
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Fig. 5. Average F1-scores for different embedding techniques with MNB

[20]

IDF derived performance gain from employing oversampling

to balance out the training sets using SMOTE, while N-grams

and BOW did not. However, other forms of data augmentation

techniques could be explored in future work.

REFERENCES

[21]

[22]

[1] G. Shanmugasundaram, S. Preethi, and I. Nivedha, “Investigation on
social media spam detection,” in Proceedings of 2017 International Con-
ference on Innovations in Information, Embedded and Communication
Systems (ICIIECS), 2017, pp. 1–8.
SpamLaws. Spam Statistics and Facts. [Online]. Available:
https://www.spamlaws.com/spam-stats.html/ [Last accessed: 25 Sept.,
2022]

T. Sahmoud and M. Mikki, “Spam detection using BERT,” Cryptogra-
phy and Security (cs.CR); Machine Learning (cs.LG) arXiv:2206.02443
[cs.CR], 2022.
F. Ja´n˜ez-Martino, E. Fidalgo, S. Gonza´lez-Mart´ınez, and J. Velasco-
Mata, “Classification of spam emails through hierarchical clustering
and supervised learning,” Computation and Language (cs.CL); Machine
Learning (cs.LG) arXiv:2005.08773 [cs.CL], 2020.
X. Tong, J. Wang, C. Zhang, R. Wang, Z. Ge, W. Liu, and Z. Zhao,
“A Content-Based Chinese Spam Detection Method Using a Capsule
Network With Long-Short Attention,” IEEE Sensors Journal, vol. 21,
no. 22, pp. 25 409–25 420, Nov. 2021.

[23] Kaggle. SMS Spam collection dataset. [Online]. Avail-
able: https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
[Last accessed: 29 Sept., 2022]
Y. Goldberg and O. Levy, “word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method,” Computation and Lan-
guage (cs.CL); Machine Learning (cs.LG); Machine Learning (stat.ML)
arXiv:1402.3722 [cs.CL], 2014.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” Computation and Language
(cs.CL); arXiv:1301.3781 [cs.CL], 2013.
Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on
Machine Learning, 2014.

[24]
[2]

[3] [25]

[4] [26]

[27] Gensim Python Library. [Online]. Available:
[5] https://radimrehurek.com/gensim/index.html/ [Last accessed: 25

Sept., 2022]

http://www.spamlaws.com/spam-stats.html/
http://www.spamlaws.com/spam-stats.html/
http://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset

