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Abstract— One of the most used Position, Navigation, and 

Timing (PNT) technology of the 21st century is Global 

Navigation Satellite Systems (GNSS). GNSS signals are affected 

by urban canyons that limit Line-Of-Sight (LOS) and increase 

position ambiguity. Smart cities are expected to adopt 

autonomous Unmanned Aerial Vehicles (UAV) operations for 

critical missions such as the transportation of organs that are 

time-sensitive. Therefore, techniques to mitigate Non-Line-Of-

Sight (NLOS) interference are required for improved 

positioning accuracy. This paper proposes a Gated Recurrent 

Unit-based (GRU) multipath detection algorithm that uses 

pseudorange, ephemerides, Doppler shift, Carrier-To-Noise 

Ratio (C/N0), and elevation data from each satellite to determine 

whether multipath is present. Signals from the satellite classified 

as multipath are then flagged and ignored for Position, Velocity, 

and Timing (PVT) calculations until they are deemed as LOS. 

The classification algorithm is developed and tested on Spirent 

GSS7000 to generate GNSS Radio Frequency (RF). OKTAL-SE 

Sim3D is used to simulate urban canyon environments in which 

signals propagate from the satellite to the receiver. RF signals 

are then transmitted to a Ublox F9P GNSS receiver that can 

receive GPS and GLONASS signals which are processed to 

output PVT information. The data collected is used to train the 

GRU to classify received signals as no multipath or multipath. 

From performance evaluation, GRU outperforms decision tree, 

K-Nearest Neighbor (KNN) classifiers, and Support Vector 

Machines (SVM). Furthermore, comparing GRU with SVM, a 

50% increase in accuracy is observed with a 95% error of 0.85 

m for GRU compared to 1.78 m for SVM. 

Keywords—Multipath, GRU, GNSS, Machine Learning 

INTRODUCTION 

Global Navigation Satellite System (GNSS) is one of the 
most used Position, Navigation, and Timing (PNT) 
technology of the 21st century. Since the launch of the Global 
Positioning System (GPS) in 1983, GNSS has been used in a 
variety of applications and devices such as navigation for 
vehicles both on the ground and in the air. [1] [2] Currently, 
six GNSS systems exist. All these systems work with similar 
principles to provide positioning information to the receivers. 
Focusing on GPS, for the navigation message to travel from 
the satellite to the receiver, a carrier wave is used, and the 
messages are modulated onto those carrier waves. These 
waves have a frequency of 1575.42MHz (L1) and 
1227.60MHz (L2). Three satellites are required as a minimum 
to provide positioning information for a receiver [3]. 

Various GNSS measurement and error sources exist 
during the process of generating the signal to receiving, 

decoding, and calculating the position of a receiver. These 
include satellite ephemeris errors, clock errors (both at 
transmission and the receiver), ionospheric/tropospheric 
delay, multipath, spoofing, spamming, and receiver noise to 
mention a few [4]. The majority of these errors can be 
modeled to estimate their impact on the pseudorange and 
emitted. However, one of the biggest problems in urban 
canyons is GNSS navigation systems affected by multipath 
[5]. 

 

Figure 1. Line-of-Sight and Non-Line-Of-Sight illustration in Urban 

Canyons 

 

Multipath is a term used to describe both the issue related 

to Non-Line-of-Sight (NLOS) signals and multipath 

interference where two signals of the same satellite are 

received at the same time. One of them is the direct Line-Of-

Sight (LOS) path to the receiver whilst the other one has 

taken an indirect route [6]. This is shown in Figure 1. 

Multipath causes pseudorange measurement errors that lead 
to inaccurate positioning information provided to the 

navigation system which results in navigation errors. This is 

especially true for autonomous vehicles which rely on GNSS 

to transit through dense populations. Therefore, there is a 

need to mitigate and reduce this error wherever possible [7]. 

 

Existing techniques vary in their approach to this issue 

which can be categorized as antenna and receiver design, 

weight model, signal processing, image processing, 

consistency checking, mapping-aided, and statistical 

h.binning
Text Box
In: 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, Virginia, 18-22 September 2022
DOI: 10.1109/DASC55683.2022.9925850

h.binning
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works




approaches [6]. In this paper, we will be focusing on GNSS 

modules available to consumers and therefore limit the depth 

of this paper to methods that can be applied after signal 

processing. One of the most common techniques used to 

check on GNSS integrity is Receiver Autonomous Integrity 
Monitoring (RAIM). RAIM supplies integrity monitoring for 

GNSS Fault Detection (FD). It requires the pseudorange 

measurements of a minimum of five satellites for FD or a 

minimum of six satellites for Fault Detection and Exclusion 

(FDE). The range and position errors modeled for RAIM are 

carried out in an open sky environment. Therefore, the 

performance is degraded in urban canyons with the majority 

of pseudorange measurements either not being available or 

experiencing multipath effects [8]. 

 

Another existing method used includes 3D environment 

model mapping used to estimate the possible magnitude of 
pseudorange errors or to help provide alternative navigation 

routes to autonomous systems. This method requires a 3D 

map of the environment to examine the areas, depending on 

the time of day, for the number of available satellites with 

LOS access to the receiver of the vehicle. However, these 3D 

environments may be outdated when compared with the real 

world. Additionally, this may not aid in detecting NLOS 

signals when large vehicles are present on the ground, 

blocking the direct path to the receiver. Lastly, alternative 

navigation routes may not always be possible as the 

destination might be in an area where most satellites are not 
in LOS [9].  

 

Recently, statistical approaches are being researched as a 

possible solution in FDE of multipath pseudorange 

measurements. Paper [10] uses a k-means cluster approach 

for multipath detection. The algorithm uses a set of features 

such as carrier phase, pseudorange, and carrier-to-noise ratio 

to categorize into two groups. These groups are multipath and 

no multipath. From simulations, it has been shown to provide 

improvements over RAIM when multiple pseudorange 

measurements are affected by multipath. However, the author 

notes that more analysis is required on the selection of 
parameters that affect the performance of the suggested 

algorithm. Furthermore, the carrier-to-noise ratio for 

detection of LOS signals may change depending on the 

location of the receiver and the elevation of the satellite. 

 

Another recent statistical approach from the author [11] 

uses Support Vector Machines (SVM) to classify the 

pseudorange measurements into three distinct categories, 

clean, multipath, and NLOS. The classification is carried out 

using four features including received signal strength, change 

of rate of Received Signal Strength (RSS), pseudorange 
residue, and pseudorange rate. The experiment results show 

a classification accuracy of 75%. An advantage of using SVM 

is the capability to handle non-linear datasets. The 

disadvantage is those past error dependencies are not 

considered. Moreover, large datasets slow down SVM 

solutions. 

 

Author [12] proposes multipath detection by continuously 

monitoring the Carrier-To-Noise Ratio (C/N0) of incoming 

signals to detect NLOS. Using elevation to determine the 

C/N0 threshold, the author’s algorithm was able to judge 

whether the signal experienced Multipath. Furthermore, to 

overcome the issues of the signal fluctuating between the 

threshold, continuous time-series C/N0 were investigated to 

put a time requirement for the signal to be above the threshold 

before it can be used again for positioning. The test results 
show a decrease in the 90th percentile of horizontal 

positioning error from 37.8 m to 4.31 m. The tests were 

conducted in multiple different environments with different 

urban landscapes. Horizontal Root Mean Squared Errors 

(RMSE) also showed a decrease in positioning errors from 

12.47 m to 2.23 m. However, the tests conducted in this paper 

are all based on static antennas. Therefore, the thresholds are 

not re-evaluated and may not be suitable for moving vehicles. 

Furthermore, whilst it does use a continuous-time series to 

provide a minimum time required for the C/N0 to be above 

the threshold, it does not consider past error dependencies and 

therefore a minimum time that is set for all scenarios might 
not be suitable everywhere. 

 

Given all the above research, this paper proposes a 

method of detecting and excluding GNSS signals from 

multiple constellations that are affected by multipath using 

Gated Recurrent Units (GRU) that classifies those signals as 

either LOS or affected by multipath. The proposed feature set 

used consists of pseudorange, ephemeris data such as 

elevation and satellite position, Doppler shift, and C/N0.  

 

Therefore, the algorithm aims to improve GNSS 
positioning and velocity estimate by detecting and removing 

multipath signals. To achieve this aim, the features mentioned 

above are used as the input of the neural network. The data is 

then processed using various weights and biases to provide a 

link between the input features and the output decision. A 

GRU implementation provides the ability for the neural 

network to consider past information before providing an 

output. 

 

In section three, the theory and structure behind the GRU 

are discussed and explained with an overview of the proposed 

system architecture. In section four, the testing methodology 
and analysis are described. Section five is a discussion and 

evaluation of the test results. 

GATED RECURRENT UNITS 

RNN, GRU & LSTM comparison 

Recurrent Neural Networks (RNN) are a class of artificial 
neural networks that are utilized for sequence prediction 

challenges. Derived from feedforward neural networks by 

David Rumelhart [13], it uses the previous state output as the 

current input and therefore determines a relationship between 

the output and the input. These neural networks have been 

used primarily in handwriting and speech recognition in the 

past with newer development in sensor fusion. The RNN 

algorithm is shown in equations 1 and 2 [14]: 

 ℎ𝑡 = 𝜎ℎ(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑋𝑡 + 𝑏ℎ), () 

 𝑦𝑡 = 𝜎𝑦
_𝑊𝑦ℎ𝑡 + 𝑏𝑦, () 



where ht is the hidden layer vector, yt is the output vector, Xt 

is the input vector, Whh, Wxh, Wy are the parameter matrices, 

bh, by are the bias terms, and σh, σy are the activation 

functions. RNNs take the information from the previous state 

ht-1 and multiply it with a weight matrix. The same is done for 
the new input Xt and is then combined with the previous state 

to create the new hidden state ht. Because of the way RNN is 

structured, it allows for information in the past to be linked 

with the information at the current timestep. 

 

 
Figure 2. Inside a Gated Recurrent Unit 

 

The activation functions (Tanh) are used to assess the sum 

weights of the input and decide which information is needed. 

However, RNNs suffer from vanishing and exploding 

gradients that may only provide a short-term memory for the 

past information being recorded. It also means that some 
information can be propagated even though the information 

is not useful. Two types that are derived from RNNs (GRU 

and LSTMs) solve these issues. 

 

LSTMs and GRUs use gates to determine whether the 

input information should be kept or should be removed. The 

GRU architecture is shown in Figure 2. In a GRU, two gates 

deal with this. An update gate is used to help the neural 

network determine how much information from the previous 

time step needs to be passed to the next timestep. The formula 

for this is presented below [15]: 

 𝑧𝑡 = 𝜎(𝑊𝑧𝑋𝑡 + 𝑈𝑧ℎ𝑡−1), () 

The reset gate is used to determine how much of the past 
information should be forgotten to improve the performance 

of the GRU. The formula is presented below: 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑋𝑡 + 𝑈𝑟ℎ𝑡−1), () 

These gates aid in removing the issues related to 

exploding and vanishing gradients. However, the additional 

gates add computational complexity to the neural network 

which may slow down the training process. LSTMs on the 

other hand use three gates to solve these issues. These are the 

input gate, output gate and a forget gate. Because LSTMs use 

three gates, they are more computationally expensive than 

GRUs but can provide more accurate information for training 

the model. 

Proposed Architecture 

 
Figure 3. High-level architecture overview 

 
This paper proposes a Gated Recurrent Unit (GRU) 

classification algorithm that employs a multi-constellation 

GNSS system using pseudorange, ephemerides, Doppler 

shift, C/N0, and elevation data from each satellite to 

determine whether multipath is present. The proposed 

architecture is shown in Figure 3. Using a GRU aids in 

finding nonlinear relationships and provides a method for 

utilizing past error dependencies for predicting multipath 

signals. The features mentioned above are used as the input 

to the neural network. The data is then processed using 

various weights, biases, and non-linear functions to provide a 

link between the input features and the output decision. The 
inputs were chosen based on current literature systems that 

were investigated as part of the state-of-the-art review. C/N0 

was effectively used in [10] to classify NLOS. Elevation-

based C/N0 was also reviewed in [12] as an influential aspect 

in deciding whether multipath was present. Furthermore, 

Doppler shift and pseudorange were also used in the paper 

[11] to improve the classification performance in SVM. Each 

satellite information that is processed by the receiver each 

second is classified. If the signal is classified as multipath, it 

is excluded from PVT calculations. To calculate PVT, a 

minimum of 4 satellites are required with the pseudorange 
and satellite positions information provided to the MATLAB 

receiverposition function to determine receiver position. 

When excluding a multipath signal, the satellite is flagged for 

a period of one second. Therefore, for one second, that 

satellite’s pseudorange measurement and position are not 

used to calculate the receiver position. 

 

 
Figure 4. Machine Learning Architecture with optimized parameters 

 

The GRU architecture is shown in Figure 4. 

Hyperparameter optimization using random search from the 



Keras library was applied to optimize learning parameters, 

number of fully connected layers, activation function, 

regularization strength, and if standardization will affect 

convergence speed. 

METHODOLOGY 

 

 
Figure 5. Data flow from simulation and GNSS Receiver to GRU ML for 

training 

 

To train the Neural Network (NN), multipath data 

generated by OKTAL-SE Sim3D is used with a 3D 

environment that resembles Toulouse, France. A drone at 

15m height with a rectangular trajectory is used to generate 

GNSS multipath data. The path used is shown in Figure 6. 

This information is then provided to the Spirent GSS7000 

simulator which generates the radio frequency (RF) signals 

that are then transmitted to the Ublox F9P GNSS receiver. 

Both GPS and GLONASS signals are then captured and the 
C/N0, elevation data, Doppler shift, and pseudorange 

measurements are stored for processing later. The GSS7000 

acquires the raw GNSS signal in a CSV format. This includes 

information such as the ephemerides and whether the GNSS 

signal is experiencing multipath. A representation of the data 

flow is shown in Figure 5. The update rate for both is set at 1 

Hz. This data is then pre-processed before being used for 

training on the NN. The input and output data are split into 

80% training data and 20% validation data. The five features 

used as the input are the pseudorange, ephemerides that 

consist of the satellite position, Doppler shift, C/N0, and 
elevation. The two outputs are whether the GNSS signal is 

experiencing multipath or not. This output is compared to the 

captured simulator data to determine if the NN was able to 

predict this correctly. After one thousand iterations, the NN 

is then tested using the testing data that was not seen before 

by the architecture. 

 

 
Figure 6. Ground Trajectory (yellow line) used for generating GNSS data 

 

To evaluate the performance of the proposed architecture, 

a comparison with existing techniques is carried out. 

Decision tree, K-Nearest Neighbor (KNN) Classifiers, and 

Support Vector Machines (SVM) are used to compare against 

the proposed GRU neural network. Confusion matrices, 

mean, standard deviation, 95% horizontal absolute error, and 

path scatters are compared. 

RESULTS 

Figure 7 shows the feature importance scores sorted using 

the Maximum Relevance – Minimum Redundancy (MRMR) 

algorithm. The highest score given to a feature was C/N0. 

From research, this was to be expected as most multipath 

mitigation approaches are based on C/N0. The second-ranked 

one was the elevation. From paper [12], C/N0 based elevation 

approach was used to predict multipath. Therefore, this also 

aligns with expectations. Pseudorange, Doppler shift, and 

ephemerides were ranked at the bottom but are still useful 

features for determining signals affected by multipath. 

 

 
Figure 7. Feature importance scores are sorted using the Maximum 

Relevance – Minimum Redundancy (MRMR) algorithm (C/N0, elevation, 

pseudorange, Doppler shift, ephemerides) 

 

Figure 8 shows the confusion matrices after processing 

the testing data from decision tree, KNN, SVM, and GRU. 

The decision tree, shown in 8 a), has the worst performance 

in comparison to the other techniques with a false negative of 

832 and a false positive of 360. This is because decision trees 

are not able to use past information to influence future 

decisions. They are also overly sensitive to small data 
changes which would influence the outcome of the output. 

Furthermore, training decision trees is not the fastest way to 

train based on the feature inputs and outputs. KNN, shown in 

8 b), has a reduced number of errors in comparison to 

decision tree with a false negative of 678 and a reduced false 

positive of 69. The main advantages of KNN are the fast 

learning time. However, with larger datasets or large 

dimensionality, this makes it difficult for KNN to be able to 

predict the outputs. SVM, shown in 8 c), further reduces the 

errors to a false positive of 563 and a false positive of 33. 

SVM works well when the margin of separation is clear 

between classes and can provide non-linear relationships. 



However, SVM is not suitable for larger datasets which may 

be required for future training and may not work well with 

noisy data which is the case with GNSS signals as noises can 

come from multiple sources from the environment and 

electrical equipment. Figure 8 d) shows the observation from 
the GRU. GRU shows a 50% reduction of false negatives in 

comparison to SVM. GRU can use past information to aid in 

predicting outputs. However, the training time required for 

GRU is the largest compared to the other three techniques. 

 

 

 

 
Figure 8. Confusion Matrix for (a) decision  tree (b) KNN (c) SVM (d) 

GRU 

 

Figure 9 shows a Geo-Scatter comparison between 

decision tree, KNN, SVM, and GRU. SVM has a greater 

variance in the position estimate than GRU. GRU has more 

consistency as it can identify the majority of the NLOS 
signals compared with SVM. Since four satellites are 

required for 3D positioning, the GRU path plot has some 

patches (shown in red circles) as a majority of the signals are 

NLOS. Furthermore, the same area where there are patches 

present in the GRU path plot, also has the biggest scatter of 

position estimates for the SVM. This shows that multipath is 

having a large effect on the accuracy which may lead to 

navigation issues. This is especially important for 

autonomous vehicles that might heavily rely on GNSS 

information as their primary navigation source. Decision 

trees and KNN also exhibit issues with accuracy as there is a 

large variance in the estimate positions. Decision tree 
performs the worst in providing accurate position information 

as was also the case when comparing the observations. This 

is shown by the large scatter seen when compared to other 

techniques. Large scatter in position estimates indicate 

reduced accuracy. All three classification algorithms 

(decision tree, KNN, and SVM) struggle in areas where a 

majority of GNSS signals are experiencing multipath. GRU, 

on the other hand, is more capable of determining non-linear 

relationships between the features and using previous state 

information to provide greater accuracy. This is seen in paper 

[1], where GRU provided better correlation in cases where 
the relationship between input features and the outputs was 

highly non-linear. 

 

   

   

   

   

   



 

 

 
Figure 9. Geo-scatter plot of GNSS signals from decision tree, KNN, SVM, 

and GRU 

 

Table 1 compares the mean, standard deviation, and 95% 

between the original output (Ublox F9P), tree, KNN, SVM, 
and GRU. SVM has a mean of 0.0134 m compared to 0.0111 

m for GRU. This is to be expected as both architectures are 

mitigating some of the NLOS multipath GNSS signals. 

However, there is a larger difference between the standard 

deviation of position accuracy using SVM (circa 0.8 m) and 

GRU (circa 0.4 m). This behavior is similar to the evidence 

seen in Figure 9, where there is a large variance in position 

estimates. 95% positioning error for the GRU is more than 

50% lower at 0.85 m compared to 1.78 m for SVM. This 

shows that GRU improves multipath classification accuracy 

and therefore reduces the position estimate errors. 

Furthermore, looking at decision tree and KNN, they perform 

the worst. This is to be expected as seen from the previous 

comparison. 

 
TABLE I 

COMPARISON   OF MEAN, STANDARD DEVIATION, AND 95% ABSOLUTE 

HORIZONTAL ERROR BETWEEN UBLOX RECEIVER PVT OUTPUT, 

DECISION TREE, KNN, SVM, AND GRU 

Architecture Mean (m) 
Standard 

Deviation (m) 
95% error 

F9P  0.1 1.2 2.5 

Decision 

Tree 
0.065 0.95 1.97 

KNN 0.043 0.91 1.86 

SVM 0.013 0.85 1.71 

GRU 0.011 0.45 0.911 

 

CONCLUSION AND FUTURE WORK 

The paper aimed to reduce the position error due to 

multipath GNSS signals that are present in urban canyons. 

This is important, especially for autonomous vehicles that 

require accurate navigation in these environments to transport 

goods or provide services safely and reliably. Existing 

methods that try to mitigate multipath errors can reduce these 

effects. However, existing methods have certain limitations 
or simply do not work in urban canyons. Such systems 

include RAIM which aims to detect and exclude multipath 

signals by checking for consistency. However, these systems 

assume most signals are LOS, which is not the case in urban 

canyons. Newer systems such as SVM-based multipath 

detection work well to reduce the effects of multipath by 

correctly classifying signals that are affected and excluding 

them. However, SVM has training limitations and cannot 

utilize past error dependencies to influence current state 

outputs. Therefore, a GRU-based GNSS multipath mitigation 

approach was considered to improve positioning estimates by 

improving multipath classification. Comparing the decision 
tree, KNN, and SVM with GRU, the latter shows the best 

performance in multipath identification. Furthermore, 

comparing SVM and GRU, a 50% reduction in position error 

is observed with a 95% absolute horizontal error of 0.85 m 

for GRU compared to 1.78 m for SVM. This shows that GRU 

can be used to reduce positioning estimate errors by 

improving multipath classification. This method will aid in 

enhancing the safety and reliability of autonomous vehicles 

in urban environments which are prone to these kinds of 

issues and where safety is a paramount concern. Future work 

will be focused on implementing this system with other 
sensors and error reduction systems to improve the overall 

position estimate. Furthermore, it is of interest to consider 

evaluating each multipath signal and using a combination of 

LOS and multipath signals to provide position information in 

scenarios where there are not enough LOS signals to 

determine the location. 
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