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Abstract

This paper reviews state‐of‐the‐art numerical tools for the operation and

maintenance (O&M) of offshore wind farms, focusing on decision support

models for maintenance scheduling and the consideration of human and

environmental uncertainty. In this review, various factors that can influence

the successful conduct of maintenance operations will be examined and

special attention will be paid to the most significant ones. Data‐driven
technologies for improved offshore asset management are also examined and

the most used data‐driven methods for modeling and optimizing turbine

operation and maintenance are presented. A focus will be placed on the choice

of maintenance strategy, which is the basis for the planning of operations and

thus the optimization problem discussed. As offshore maintenance is a

complex operation whose efficiency and safety depend on human and

environmental factors, special attention will be paid to the planning strategy

that minimizes the risks involved while maximizing efficiency by considering

these factors. The choice of planning technique for turbine maintenance and

better consideration of uncertainties are crucial areas of improvement as they

can lead to better overall efficiency, higher profit margins, better safety, and

improved sustainability of offshore wind farms. The paper covers the

application of digital technologies for offshore wind O&M planning and the

associated challenges. The paper also highlights the various environmental

and human factors to be considered for the operation and maintenance of

wind turbines.
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1 | INTRODUCTION

Today, major environmental problems are being brought
on by the unsustainable exploitation of natural resources
worldwide. Many authorities have presented plans for
lowering greenhouse gas emissions and developing
renewable energy sources to combat the deterioration
of the environment. Objectives ask for a 27% increase in
energy efficiency, a 40% decrease in CO2 emissions, and
a binding objective of 27% for renewable energy by
2030.1 The necessity of investing in renewable and clean
energy resources is evident given the growing environ-
mental and ecological issues. In recent years, renewable
energy has become a key step in the development of
natural energy goals. In many countries around the
globe, energies from natural gas, coal, and fuel oil are
being replaced by renewable energy sources including
wind, solar, and geothermal energy.2 Offshore wind
energy is essential to the transformation of the world's
energy system because it is a sustainable energy source.
In comparison to equivalent and type onshore wind
power, offshore wind farms (OWFs) produce 50% more
electricity at higher speeds and with less turbulence.3

Investment decision‐makers around the world are
extremely interested in the offshore wind because of its
enormous potential, high average power generation, no
land occupation, high level of cleanliness, and availabil-
ity.4 The current offshore wind potential is expected to
multiply in the coming years, resulting in a monumental
implementation state.5 Due to supportive policies and
increased energy production, offshore wind power
projects have been proposed quickly. However, to
compete with fossil fuels, both offshore and onshore
wind turbines need to be as cost‐effective and reliable as
possible. This requires optimizing wind turbine mainte-
nance work to avoid unnecessary costs. Operation and
maintenance (O&M) work begins with OWF commis-
sioning and continues through the final decommission-
ing phase. Costs in O&M phase are generally not as high
as in the construction phase but are still significant due
to the long operational duration during the lifecycle.
Operating and maintenance costs for a typical 500MW
OWF range from £25 to £40m.6

O&M activities are, therefore, paramount for lifetime
power generation from OWFs. Failure of any element of
the park can reduce or even stop power generation,
resulting in significant economic loss. It is important to
adopt a maintenance strategy that can reduce the
number of failures through a series of planned O&M
activities such as inspection, repair, and replacement.7

Both long‐term and short‐term scenarios must be
considered to create a reliable tool for OWF operations
and maintenance planning. Long‐term plans, generally

developed at the design stage, are those in which the
intervention is planned 1 year before or more. Short‐term
planning is for operational situations when already
planned tasks need to be done the next day, or when
an unexpected failure occurs, and repair needs to be done
in the shortest possible time. To limit operating and
maintenance costs, which typically represent 25%–30% of
the total lifetime cost of an OWF, the effectiveness and
efficiency of operating and maintenance plans should be
maximized. With the growth of the offshore wind
industry, the researcher has developed several numerical
models that enable optimized planning of his O&M
tasks.8 The growth of OWFs depends significantly on
how well offshore wind turbines (OWTs) are operated
and maintained. Given the practical restrictions placed
by offshore operations and the comparatively high
expenses, maintenance, as opposed to operations, is a
crucial component of the levelized cost of energy. An
OWF's lifecycle is particularly variable and complex as a
result of maintenance.

This study focused on how uncertainties such as
weather conditions were considered as factors affecting
the O&M plans. In fact, O&M planning relies heavily on
the evaluation of weather conditions (especially wave
height, wave period, current speed, and wind speed) and
time windows during which the O&M operator can carry
out work. Evaluation of weather windows typically
consists of a simplified analysis of sea area data of
interest using thresholds chosen for a particular task. A
weather window is a period of time during which
weather conditions do not exceed a set threshold for a
sufficient period of time to accomplish this task. The
choice of thresholds in weather window evaluation is
primarily determined by the health, safety, and environ-
mental requirements and considerations of the O&M
operator as well as the economic factors of the wind farm
operator. Met ocean conditions considered suitable for a
particular task must be such that the O&M operator can
safely perform that task. However, these thresholds
should ensure that sufficient man‐hours are available to
carry out all planned O&M activities, thereby mitigating
the risk of power generation downtime. Redesigning
long‐term planning and operations of charter vessels to
withstand more severe conditions is also an important
part of the optimization. Improving the reliability and
suitability of weather window analysis will lead to more
efficient and effective O&M planning. This means
reducing the O&M costs for the offshore wind industry
and making working conditions for O&M operators safer.
This is especially true in short‐term operational situa-
tions where the decision‐making process about perform-
ing tasks becomes more important. In reality, there is a
risk that the task will be scheduled for a particular day,
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but when the crew and technicians meet in port in the
morning, they discover that bad weather makes sailing
impractical or they may set sail and arrive at the OWF
only to find that the weather conditions make it
impossible to carry out the mission safely, or they may
get seasick on the way to the OWF. In all of these
situations, the scheduled task may not run and run on
another day that was incorrectly determined to be
inappropriate for its scope. This will eventually lead to
more outages and longer periods when turbines are not
generating power.

Uncertainty is also in the selection of threshold
parameters and values that determine the feasibility of a
set of weather conditions. In fact, thresholds such as
maximum allowable significant wave height and peak
wave period are indirect parameters rather than direct
measures of the actual feasibility of the task. This
overview presents tools that OWF are currently using
to solve their O&M operations plan. For this purpose,
numerical tools to assess the existence of weather
windows for O&M tasks and maintenance planning are
considered. The main feature of this paper is the
investigation of decision‐making tools in wind turbine
maintenance planning, including uncertainties such as
weather‐related vessel movement, to determine
operability.

The rest of the paper is organized as follows. In
Section 2, we explain the overview of the wind turbine
(onshore/offshore) asset management (AM) and decision
support system. What parameters cause uncertainty to
the offshore O&M will be covered in Section 3. Section 4
discusses the data used to construct techniques for
optimizing the turbine's O&M activities, improving
uncertainty, and minimizing maintenance costs. Differ-
ent digital technologies used for wind turbine O&M are
investigated in Section 5; this includes methods currently
used in decision support models for OWF maintenance
scheduling covering regression and classification models.
Section 6 explores the challenges associated with
Offshore decision management and concludes the paper
in Section 7.

2 | OVERVIEW OF AM AND
DECISION SUPPORT SYSTEM

In the financial sector, the term AM refers to the
management of various financial tangible and
intangible assets. However, the term is being used more
and more frequently in the infrastructure industry as
well, where it has been realized that having a well‐
thought‐out management strategy in place is essential,
particularly when it comes to the management of

numerous, significant, and frequently diverse infra-
structure assets.

Asset managers are under increasing pressure to
accurately understand the condition of the power assets
in their network so they can choose the most cost‐
effective plan of action for operation, maintenance, and
replacement. But how can you tell which assets require
care while ensuring that risks are kept to a minimum and
when is the best time? Are you convinced that the rating
for your asset is based on the most recent data? Making
choices on these matters is very challenging because the
system has such a large number of valued goods.

The Institute of Asset Management, in part in
collaboration with the British Standards Institute, issued
a number of publications on AM in response to the
growing demand for a standardized framework. The AM
frameworks were released in 2006. The Publicly Accessi-
ble Standard for Asset Management, or PAS 55, was
released in 2008. ISO 55000, 55001, and 55002 were
developed by the International Organization for Stan-
dardization based on PAS 55:2008 and released in 2014.
The “Asset Management—An Anatomy,” evaluation of
the ISO 55000 series was released by the IAM in 2015. It
considers all previously published texts and provides an
explanation of AM, including why and practical applica-
tions. Assets are complex, interdependent, dynamic in
behavior, subject to rapid change, varying in a lifetime,
have to be monitored, analyzed, and diagnosed to
understand them and require technical knowledge,
according to “Asset Management—An Anatomy,” which
challenges this claim. Assets also have to be monitored,
analyzed, and diagnosed to understand them and require
technical knowledge Based on the following six princi-
ples, the ISO 55000 approaches this challenge:

• The organization's core value, which needs to be
identified

• There must be a direct link between the company plan
and the AM services provided by the team.

• To ensure that AM is nicely carried out, the organiza-
tion's objectives are met and AM thinking, and
practices overcome traditional boundaries, leadership
must bear direct responsibility for its execution. As a
result, it must be exhibited by all organizational
authorities.

• Monitoring and auditing to ensure that assets and
linked processes are used as intended to carry out AM
activities and accomplish AM objectives that will last
over time.

• An understanding of all stages and levels of the
lifecycle.

• For AM decision‐making to be successful, it must be
competent, reliable, and ideal. It also necessitates

HADJOUDJ AND PANDIT | 3
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finding the optimum compromise between AM's
competing themes.

AM is referred to be an interdisciplinary field of
study that incorporates knowledge from all areas of the
asset's lifecycle and management and requires buy‐in
from all players. To get a better understanding of the
intricacy, the AM manager may need to take a
step back.

The wind turbines and the internal grid of the farm,
which includes cables and transformers, are the major
assets in wind farm management. An asset system could
be used to characterize the wind farm itself. Wind
turbines are made up of a variety of pieces, all of which
require separate management, operation, and mainte-
nance techniques because of their vastly varying compo-
sitions, structures, and functions. The various compo-
nents are referred to as asset components in this study.
The various wind turbine asset components are as
follows:

• Foundation
• Tower
• Gearbox
• Blades
• Transformer

It is obvious that the parts of a wind turbine might be
further separated into groups, with the transformer and
gearbox, in particular, having a large number of parts.
But this would be outside the paper's purview.

The recent tools created9 for the planning and
coordination of renewable energy systems are examples
of computational decision tools that can support
complicated decision‐making in the energy sector and
follows a similar kind of framework as shown in
Figure 1. Performance analysis of a renewable energy
system serves as the foundation for this type of decision‐
supporting tool. Only a small portion of the current
decision support systems in the wind energy industry are
appropriate for offshore projects,10 and the majority of

FIGURE 1 Decision support framework
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these are focused on onshore initiatives. As opposed to a
vast area like the North Sea, the technologies are more
likely to be usable offshore in a constrained geo-
graphic area.

To achieve a considerable reduction in the cost of
energy throughout the course of OWFs, cost‐effective
O&M techniques must be developed, as O&M expenses
make up about one‐third of the lifecycle cost of an OWF.
In recent years, a number of researchers have developed
decision support tools for various uses in offshore wind
production, including forecasting a wind farm's opera-
tions,11 estimating O&M costs including revenue loss,12

and simulating the operational phase of an OWF with all
maintenance activities and costs.13 Finding the best
maintenance strategy or planning for a specific OWF, as
opposed to a general strategy for several farms, is a
common goal of these tools. Levelised production cost
(LPC), which is viewed as an effective method for the
analysis and evaluation of risk and total cost across the
life of offshore turbines, may be used by the decision
tools to determine maintenance costs. In Myhr et al.,14 ex-
amined the effectiveness of the operational and mainte-
nance simulation models currently in use for OWFs; they
also identified the fundamental model premises that
influence model outcomes.

The operational phase of an OWF, including all
maintenance operations and costs, can be simulated by
the offshore wind cost and benefit model NOW‐Icob.13

Changes can be made to a number of input parameters in
the model to examine their effects on performance
parameters like O&M costs and availability. These input
parameters include both controllable options and
uncontrollable external factors. All strategic alternatives
that the owner of the wind farm can directly choose are
considered controllable options. All elements that are not
directly under the control of the operator of the wind
farm, such as the market environment and weather
patterns, are referred to as uncontrollable external
factors. Although these two factors are frequently
assumed to be deterministic, the majority of the tools
focus on modeling failures and repair. To mimic the
variability of the failure rates of wind turbine compo-
nents, stochastic modeling is recommended, however, as
a deterministic approach would not produce realistic
findings. One effective computational method used to
address stochastic data challenges is discrete‐event
simulation.15

Operational research (OR) has a long history of
helping businesses run more efficiently, especially when
it comes to cutting expenses.16 A variety of OR
techniques have been used in the planning of production
schedules, transportation routes, and maintenance sup-
ply chains in the field of renewable energy. An

optimization approach for scheduling energy production
in a wind farm, for instance,17 was provided. Connolly
et al.18 have examined related research on the scheduling
and capacity planning of renewable energy. Offshore
wind O&M has also been optimized using OR ap-
proaches. To assist in making decisions on challenges
involving the makeup of a vessel fleet, a mixed integer
programming model with binary variables is typically
used.19 To design the vessel fleet with crews for the
execution of maintenance operations in OWFs, vessel
properties, and contracts should be taken into considera-
tion. The most typical objective function is to minimize
the fixed costs of the ships and ports, the variable costs
associated with using the ships, the expected costs
associated with expected downtime associated with
delayed correct maintenance activities, as well as penalty
and/or transportation costs. The number of vessels
available, the amount of time needed to complete a
maintenance task, the locations of the resources available
for maintenance, and the sea state appropriate for O&M
activities are typical constraints on the best solutions.
The reliability of the wind turbines is an important factor
to consider when modeling O&M procedures for OWFs
because it has an impact on the project's output,
including energy output and cost per unit of produced
energy. The decision‐making process for corrective
maintenance operations is complicated by the dearth of
publicly available data on OWT failure. Several models
have been created to forecast costs20 or to calculate O&M
expenses21 by taking wind turbine reliability into
account. The failure rates of OWTs can be calculated
using reliability models, which can also be used to
determine how long it takes to fix each form of failure.
Energy losses resulting from wind turbine malfunctions,
downtime, and maintenance procedures are considered
to be a component of maintenance costs. However, a
substantial amount of failure rates utilized in earlier
studies were taken from data from onshore wind farms,
and the impact of the marine environment on the
reliability of OWTs has not been taken into account. An
examination of the decision support and optimization
models for maintenance in OWFs revealed that there has
not been much work done on integrating optimization
models into decision support systems.

3 | DECISION ‐MAKING UNDER
METEOROLOGICAL
UNCERTAINTY

It is important to consider environmental uncertainties
about factors like wave height and wind speed because
they could affect installation and maintenance activities,

HADJOUDJ AND PANDIT | 5
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thereby causing delays and financial costs. Appropriate
models should be created to replicate an installation
scenario for a large number of historical environmental
data to integrate these uncertainties in the estimation.

The offshore cons studies include a wide range of
topics, including both immediate (such as real‐time,
hourly, daily, and weekly operating decisions) and long‐
term perspectives (e.g., planning or policy making). The
decision‐making process is fed by input parameters, most
of which are unpredictable. The art of handling
uncertainty has undergone many developments and has
most recently come into focus.

Making decisions can benefit greatly from quantifying
uncertainty. It is feasible to assess various scenarios and,
with a certain degree of confidence, select the best
suitable one by accurately estimating the uncertainty.
This can be especially helpful when making decisions
about issues with significant implications. These can
range from management choices involving huge offshore
wind energy infrastructure assets to global policies. These
issues are typically complex and have a wide variety of
risk factors. Additionally, they frequently depend on one
another. Therefore, analysts and decision‐makers should
accurately depict associated uncertainties, their reliance,
as well as the combined effect of all these aspects, to
ensure that the problem under investigation is sufficiently
informed.

Offshore construction operations are exposed to a
number of unknowns, including environmental factors,
equipment and/or vessel failure, varying operation
durations, availability of necessary components, and so
on. However, underestimating environmental factors,
including wind speed and substantial wave height, which
are challenging to estimate during the planning stage, is
one of the major causes of project length underestima-
tions and delays. Due to these factors, project schedulers
may employ buffers during the planning stage, which
may result in an overestimation of the project's time and,
consequently, its installation cost. Finding a system that
would help schedulers include these uncertainties will
enable them to estimate the length of offshore installa-
tion activities with greater accuracy and reliability.

The forecasting of environmental time series has been
the subject of extensive research in the past. The
following techniques are mentioned by Zounemat‐
Kermani and Kisi22 to model the characteristics of wind
and waves: statistical techniques, discrete spectral
approach, stochastic simulation, numerical methods,
and data‐driven models (such as artificial neural net-
works, fuzzy wavelet model, genetic programming and
fuzzy logic). Furthermore, Monbet et al.23 surveys of
stochastic models for wind and wave state time
series divide these models into nonparametric models,

models based on Gaussian approximations, and other
parametric models. A chaotic theory‐based study of
wind‐wave time series is also suggested by Zounemat‐
Kermani and Kisi.22

However, these approaches do not necessarily
illuminate the underlying physical characteristics of a
joint probability distribution. In light of the fact that
environmental random variables are defined by a non‐
normal joint distribution, little or nothing has been said
about their joint probabilities. To predict the design
parameters of wind speed and wave characteristics
without taking their dependence into account, uni-
variate distributions are usually utilized. The joint
distribution of wave features such as significant wave
height and wave period should also be studied. To
identify the relationship between significant wave
height and wave time, Salvadori et al.24 employed
Copulas, Athanassoulis et al.25 applied applications of
the Placket model, and Galiatsatou and Prinos26 looked
into various bivariate distributions. Very few studies
look at how wind speed and significant wave height are
distributed together. In particular, Fouques et al.27

provide two methods based on multivariate Hermite
polynomials expansion of the multinormal distribution
and one way utilizing simply the correlation matrix to
describe the co‐occurrence of those variables including
the wave duration. Additionally, Bitner‐Gregensen and
Haver28,29 created a joint environmental model that
takes into account wind, waves, currents, and sea level
and are based on the conditional modeling approach
(CMA). The joint distribution based on parametric fits
for each one‐dimensional marginal was calculated using
this model for the design and operation of marine
constructions.30 Additionally, the Nataf model31 is
frequently applied in the literature to model cosmologi-
cal variables. The Nataf model, however, may result in
biased results when the transformation to standard
normal variates deviates from a multinormal distribu-
tion, as stated in Bitner‐Gregersen et al.32 Finally, using
Copulas to estimate the joint distribution of wind speed
and significant wave height without accounting for the
autocorrelation—which is crucial when time series are
required—Yang and Zhang33 adopted a similar strategy
to the one outlined in this article.

The perfect tool for the management of an OWF
would be one that is able to determine the right
maintenance strategy depending on the condition of
the wind farm, the type of turbine, and the potential
failures of the turbines but also to adapt its planning to
the changing weather conditions at sea. The right
strategy involves making a clear inventory of the wind
farm and putting the right sensors in the right places in
the turbine to be able to collect as much data as possible

6 | HADJOUDJ AND PANDIT
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about the health of the turbine. Regarding the weather,
several options are possible. First, it is possible to
implement a deep learning tool as presented in this part
by taking it with data from the meteorological institutes
of a region close or similar to that of the wind farm and
then using this tool in the planning operations and
planning all possible scenarios given the weather
conditions at a time t. Otherwise, set up a weather
station (wind + sea) with the prediction tools that go
with it and sensors throughout the wind farm, would be
much more expensive.

4 | DATA USED IN THE O&M OF
WIND TURBINES

To develop reliable weather window assessments, it is
crucial and vital to have access to reliable met ocean
data. Sometimes the data need to be created since they
are not readily available. To obtain numerous realistic
time series of wind speed, wave period, and significant
wave height, an alternate method to sensors is studied in
this chapter. These time series might be useful for more
effective planning and scheduling of offshore installation
activities. To identify the best vessel and equipment
combination that is needed for a certain operation and to
arrange the sequence of complicated offshore installation
procedures. As a result, a significant number of environ-
mental time series are required to account for environ-
mental condition uncertainties that restrict operations.
The collection of environmental time series is difficult,
costly, and sometimes impossible to obtain. Moreover,
even when it is possible to collect these data, there are
often missing values due to failures in the measurement
tools,34 which might affect the prediction of the duration
of offshore operations. Considering the relationship
between the environmental parameters is crucial for
creating genuine environmental time series. Data gener-
ation makes sense at that point.

The majority of the new digital solutions for offshore
wind decision management are based on machine
learning (ML) and data analysis, which both demand
a vast quantity of data. Data collection and management
are challenges that data scientists must overcome. In
fact, a lot of data is necessary for ML models to be
trained effectively. Large data sets are frequently
challenging for businesses to obtain in a timely manner
to train an effective model. It is expensive and time‐
consuming to manually classify data. But data scientists
and businesses may get over these barriers and create
trustworthy ML models more quickly by producing and
using synthetic data. These techniques need a lot of data
to be trained effectively, however, due to privacy

concerns, this data may be difficult to get or use. To
do this, numerous technologies have been created over
the past few decades to generate a significant amount of
data from a sample.

To generate those data, various tools are used. These
tools include ML techniques like GAN,35 generative
adversarial networks, and VAE,36 variational autoenco-
der, as well as approaches like SMOTE,37 synthetic
minority oversampling techniques, and the study of the
nearest neighbors. ML methods will be the ones to
examine due to the nature of our data, the issue
encountered by the OWF, and the complexity of the
distribution of our data (weather forecasting), as they are
both more efficient and more accurate than other
methods. In 85% of the scenarios studied in Xu's study,
some variation of GAN outperformed conventional
synthetic data‐generating methods.38

The GAN, one of the most current powerful ML
methods, has a lot of potential for tabular data synthesis.
A type of neural network architecture for generative
modeling is known as GANs. Goodfellow et al.35 initially
introduced GANs in 2014. Due to their superior
performance, conditional generative adversarial network
(CGAN) and CopulaGAN models are chosen over GAN
for creating tabular data.38 Traditionally, a vector
sampled from a common multivariate normal distribu-
tion is given to the generator in a GAN (MVN). One
finally achieves a deterministic transformation that
translates the standard MVN into the distribution of
the data by training alongside a discriminator neural
network. The imbalance in the categorical columns is not
taken into account by this technique for training a
generator. The generator might not be properly trained if
the training data are randomly picked since the rows that
belong to the minor category will not be adequately
represented. The generator in CGAN learns the re-
sampled distribution, which is distinct from the distribu-
tion of the training data. The objective is to efficiently
resample such that, during the training phase, all
categories from discrete characteristics are sampled
equally (but not necessarily uniformly), and to retrieve
the (nonresampled) real data distribution during the
test.39 A CGAN model variant called CopulaGAN38

makes use of Cumulative Distribution Function (CDF)‐
based modification to speed up CGAN model training.

Generally speaking, all models are capable of
accurately capturing the relationships between features.
All of the models exhibit comparable performance,
demonstrating that artificial data may be used to solve
ML issues in place of actual data. Both meteorological
and data on wind turbine failure can be generated using
these data producers. They assist in training the various
decision‐making models for managing vessels and

HADJOUDJ AND PANDIT | 7
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predicting failures, both of which are helpful for
planning maintenance.

5 | DIGITAL TECHNOLOGIES
FOR OFFSHORE WIND DECISION
MANAGEMENT

The everyday operations of OWTs require an efficient
and dependable maintenance approach. It is hard to
achieve 24‐h operations with no onsite maintenance
delays since personnel must go to the wind farm from a
port. A maintenance crew ought to go to the wind farm
periodically to prevent failures. Unnecessarily frequent
visits, on the other hand, are ineffective and costly due to
the substantial need for maintenance staff and vessels. A
decreased visit frequency, on the other hand, can lead to
a higher failure rate and, as a result, longer downtime. As

a result, the frequency of maintenance involves a trade‐
off between hazards, vessel capacity, personnel
resources, and other factors.

An effective maintenance strategy strives to maximize
financial gain, increase component lifespans, lessen the
need for emergency repairs, cut down on overtime labor
expenditures, and lessen the stress that unanticipated
equipment breakdowns cause on the job. According to
the timing of maintenance, maintenance strategies are
often divided into corrective (reactive), proactive, and
opportunistic categories.40 In Figure 2, these classes are
displayed. The following are the meanings of the color
shifts between the various lines:

• When the wind turbine changes from green to red, it
stops working.

• When the wind turbine changes from red to green, it
has been fixed and is now functional.

FIGURE 2 Diagrams of maintenance strategies41
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• Tasks are carried out by a maintenance vessel, ranging
in color from blue to orange.

• An upkeep vessel is back at the port and waiting for
new assignments as it changes from orange to blue.

A failure‐based maintenance technique known as
corrective maintenance, sometimes known as reactive
maintenance, only performs maintenance after a failure
has already happened. High availability can be effectively
attained with the corrective maintenance technique
while eliminating unnecessary maintenance visits and
inspections. As a result, it is appropriate for a system
with little downtime loss. However, because of a high
failure rate and comparatively low system reliability, the
corrective maintenance technique proves to be
unattractive and unworkable for large OWFs.42

Unexpected failures could result in higher costs than
anticipated downtime. Additionally, the marine environ-
ment makes equipment less accessible and less reliable;
for instance, a failure might only be discovered by the
maintenance team after a protracted period of downtime.

Figure 2 illustrates the maintenance strategies where
the usually operating OWT, the stopped OWT due to
failures, and the halted wind turbine owing to mainte-
nance are each represented by the colors green, red, and
yellow. The waiting maintenance vessel is represented by
the color blue, while the task‐performing vessel is
represented by the color orange. Proposed in the early
1970s, proactive maintenance is a more sophisticated
strategy41 that involves routine examination and replace-
ment before failure to stop minor faults from becoming
significant failures. Only 25% of failures are major, while
major failures account for 95% of downtime.43 A practice
that is still in its infancy, proactive maintenance
primarily consists of preventive and condition‐based
maintenance strategies.

Typically, a preventive strategy refers to planned
maintenance that happens at (i) a predetermined time or
(ii) a specific level of power generation. Optimizing the
production plan and the economical maintenance plan is
the aim of the preventive maintenance strategy. The
benefits of this strategy over corrective maintenance
include: (1) eliminating unplanned maintenance; (2)
having a good maintenance weather window; (3)
minimizing the impact of unpredictable weather; (4)
making reasonable use of service vessels; (5) avoiding
having an excessive number of spare parts; (6) combining
maintenance and repairs; (7) optimizing maintenance
tasks; and (8) making a contribution to a successful asset
maintenance plan.

Optimized maintenance scheduling has been imple-
mented using data‐driven methodologies, such as ML,
which has gained popularity in recent years.44 The most

popular method is supervised learning. The tagged data
is used to train a black‐box neural network model, which
may then be used for a variety of analysis, monitoring,
and prediction tasks.44 This strategy is particularly well
suited for scenarios that are challenging to model
because of their great complexity and ambiguity.
However, there are several drawbacks to learning
strategies. The procedure first heavily depends on the
caliber and volume of measured data. The neural
network deteriorates when the required measurements
are missing. It is very challenging to demonstrate
stability. The network architecture affects the robustness
and speed of computation. Failure can rarely be detected
if the failure scenarios are not included in the trained
data. Therefore, the ability to represent the entire data
sample and educate our decision tool to consider all
options makes data generation helpful.

5.1 | ML models

This section examines the current applications of ML in
reliability engineering and safety. When doing such an
endeavor, it is impossible to claim to be thorough, but we
have made an effort to sample important articles from
each of the ML categories and subcategories mentioned
above. A ML algorithm's fundamental components are as
follows: Datasets for testing and training, an objective
function or loss function to optimize, such as a sum of
squared errors or a likelihood function, plus an
optimization technique and a model for the data are all
required (e.g., linear, nonlinear, nonparametric). It is
simple to imagine the extremely broad range of ML
applications for reliability and safety applications by
changing any one of these components, such as by
looking at various datasets in various industries, applying
various ML models to various systems or components, or
changing some models and algorithms to better suit the
task at hand. In general, the goal is to bring new, more
precise findings from datasets for improved dependabil-
ity, safety‐informed decision‐making, and more success-
ful accident prevention. For the estimation of an asset's
remaining usable life (RUL), anomaly and fault detec-
tion, health monitoring, maintenance planning, and
deterioration evaluation, ML models are utilized.

5.1.1 | Regression models

For estimating RUL and forecasting degradation, super-
vised regression is frequently utilized. Applications of
ML to various technical products are discussed in the
literature in this field, including Li‐ion batteries,45

HADJOUDJ AND PANDIT | 9
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railroad tracks,46 turbine‐cutting tools,47 rolling bear-
ings,48 and aviation engines.49 For a safety‐critical
system, an accurate prediction of an equipment RUL
and degradation level is crucial, and condition‐based
maintenance is crucial to reduce system downtime and
other negative effects of a run‐to‐failure strategy. The
desire for better prognostics and health management
(PHM) necessitates, among other things, a more precise
calculation of the RUL. RUL prediction is a key
component of PHM. Two major categories can be used
to categorize approaches to RUL and deterioration level
predictions, with a third hybrid category straddling the
first two: (i) model‐based techniques, which develop
failure models based on a thorough examination of the
physical characteristics of the failure mechanism in
question.50 These models need in‐depth prior knowledge
and subject‐matter experience; (ii) data‐driven techniques,

which construct degradation models from old sensor data
and hence do not need system‐specific prior knowledge
see Table 1, for example. Given the quality and quantity
of the available data, these models can be created using
a variety of ML techniques, and their accuracy and
computing requirements can vary. The identification
and diagnosis of faults frequently utilize supervised
categorization.

5.1.2 | Classification models

This entails both online monitoring of equipment
deterioration stages and diagnosing various failure
kinds (binary and multiclass). In this context, classifi-
cation sits at the crossroads of two more general issues,
predictive maintenance, and PHM, and it offers vital

TABLE 1 ML regression models in reliability and safety applications51

ML model Advantages Disadvantages Applications

SVR 1. Superior prediction accuracy as
compared to traditional
techniques.

2. Robust to data noise.
3. Superior efficiency than

traditional methods.

1. Not suitable for sparse and high‐
dimensional data.

2. Require prior knowledge for
kernel selection.

1. Failure and reliability
prediction of time‐
series data.

2. RUL estimation.
3. Prognostic and Diagnostic

RVM 1. Superior prognostic accuracy than
traditional methods.

1. Not suitable for sparse and high‐
dimensional data.

1. System degradation
prognostic.

DNN 1. Excellent prediction accuracy and
training efficiency.

2. Excellent long‐term and short‐
term predictions.

1. Computationally expensive.
2. Hard to interpret the ‘black box'

model.

1. RUL of aircraft
degradation.

2. Human error prediction
3. Component reliability and

degradation level
estimation.

CNN 1. Provides excellent prediction
accuracy to a highly nonlinear and
complex system.

1. Computationally expensive. 1. RUL estimation

Recurrent neural
network

1. Prior knowledge is not required. 1. Suffer from the vanishing
gradient problem.

1. RUL estimation.

LSTM 1. No prior knowledge is required.
2. Higher prediction accuracy as

compared to traditional
techniques.

1. Computationally expensive. 1. RUL estimation
2. Time‐series forecasting

CNN‐
based LSTM

1. Suitable for more complex
engineering systems and high‐
dimensional inputs.

1. Computationally expensive.
2. Prone to overfitting

1. Multi‐scale feature
selection and RUL
prediction

GPR 1. Better accuracy than traditional
models

2. Suitable for nonlinear high
dimensional system analysis

1. Require prior knowledge for
kernel selection.

2. Inferior computational scalability
with training data set size.

1. Time‐dependent
probability failure
prediction.

2. System reliability analysis

Abbreviations: CNN, convolutional neural network; DNN, deep neural network; GPR, Gaussian process regression; LSTM, long short‐term memory; ML,
machine learning; RVM, relevance vector machine; RUL, remaining usable life; SVR, support vector machines.
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information that supports both practices. In a variety
of reliability and safety applications, such as those
involving aircraft engines and electric power trans-
formers,52 water distribution and pipe failures,53

bearings or rotary machines,54 wind turbine blades,55

software reliability,56 and forest fires,57 classification
ML tools are used to detect and identify faults.

A variety of models, ranging from the straightfor-
ward k‐nearest neighbor (k‐NN) and logistic regres-
sion to more complex decision trees (DT), linear
discriminant analysis (LDA), and support vector

classification, enable ML classification (SVC). In
addition to these single‐classifier techniques, ensem-
ble classifiers that combine numerous single classifi-
ers for improved performance have been created.
Examples of this are AdaBoost and random forest
(RF) (AB). Similar to regression models, it is crucial
for research in reliability and safety applications
to benchmark and evaluate the performance of
many classifiers before choosing the most appropriate
one given the datasets employed, details are in
Table 2.

TABLE 2 ML classification models in reliability and safety applications51

Techniques Advantages Disadvantages Applications

DT 1. Excellent prediction accuracy and
training efficiency.

1. Not robust to data noise 1. Assessing stakeholders'
corporate governance.

2. Dirt and mud detection on
the wind turbine blade.

RF 1. Suitable for discrete classification.
2. Excellent prediction accuracy.

1. More complex than DT.
2. Hard to interpret the “black

box” model.

1. Rank the importance of each
component of an engineering
system.

k‐NN 1. Excellent accuracy and efficiency 1. Not robust to data noise.
2. Not suitable for high‐

dimensional datasets.

1. Risked‐based inspection
screening assessment.

2. Dirt and mud detection on
the wind turbine blade.

SVC 1. Highly efficient with up to two orders
of magnitude time saving compared
with traditional methods.

1. Not suitable for sparse and
high‐dimensional data

2. Require Prior knowledge for
kernel selection.

1. Risked‐based inspection
screening assessment.

2. Structural health monitoring.
3. Reliability analysis of

network connectivity.

RVM 1. High classification accuracy 1. Not robust to data noise. 1. Dynamic predictive
maintenance framework for
failure prognostic.

LDA 1. Excellent prediction accuracy. 1. Not suitable for nonlinear
system applications.

1. Risked‐based inspection
screening assessment.

2. Rank the importance of each
component of an engineering
system.

GPC 1. Suitable for the complex system.
2. Excellent computational efficiency.

1. Require Prior knowledge for
kernel selection.

2. Inferior computational
scalability with training data
set size.

1. Reliability evaluation of the
complex system.

DNN 1. Excellent classification accuracy in
high‐dimensional problem

1. Computationally expensive for
training the datasets.

1. Structural reliability analysis
and failure probability
estimation.

LSTM 1. Capable of the safety analysis of the
time‐varying system.

2. No need for prior assumption and
knowledge.

1. Computationally expensive.
2. Prone to overfitting.

1. Time‐dependent probability

Abbreviations: DNN, deep neural network; DT, decision tree; GPC, Gaussian process classification; k‐NN, k‐nearest neighbor; LDA, linear discriminant
analysis; LSTM, long short‐term memory; ML, machine learning; RF, random forest; RVM, relevance vector machine; SVC, support vector classification.
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6 | CHALLENGES ASSOCIATED
WITH OFFSHORE DECISION
MANAGEMENT

The difficulties involved with maintenance jobs, which
are among the most important responsibilities for OWTs,
stem from a variety of factors. In the first place, the
separation between an OWF and a port or beach restricts
accessibility and lengthens downtime. The ownership or
employment of a maintenance fleet and an increased
number of technicians is costly. The incorporation of
bottom‐fixed and floating foundations has also increased
the complexity of OWTs. Additionally, the accessibility of
OWTs for service vessels and personnel transfers from
the vessel to the OWT is constrained by weather
conditions, particularly substantial wave heights and
wind speeds. Although such equipment is still bulky and
expensive, motion‐compensated gangways for offshore
access systems have been regularly used in conjunction
with service operation vessels during the past 10 years.58

There will likely be a lengthier wait time and a bigger
loss of power generation during downtime if mainte-
nance work needs to be delayed because of weather
conditions. Due to the specialized equipment needed,
even without taking the effects of weather into account,
OWT maintenance costs are higher than those of
identical jobs performed on land. Furthermore, OWT
component failure rates are increased by a harsh offshore
working environment, increased wind speed, wave‐
induced motions, and structural vibrations. Additionally,
larger and more specialized devices are needed for
offshore maintenance and repairs because of the recent
growth in OWT size, which aims to increase power‐
generating efficiency.

Given that it is anticipated that wind energy will
supply 50% of the world's electricity consumption by
2050, extensive maintenance and repair work will be
necessary for the coming decades.59,60 Therefore, it is
equally crucial to investigate how OWT maintenance
affects the ecosystem. Hence, the overall purpose of a
proper repair and maintenance strategy must balance
maximizing profitability and minimizing environmental
consequences, so contributing to the sustainable devel-
opment of offshore wind energy over the long run.
According to the discussion above, it is evident that OWT
maintenance is difficult, and good maintenance will
guarantee a decrease in downtime while minimizing
energy production losses. The broad subject of OWT
O&M can be split into a number of unconnected research
problems, including overall cost management and
logistical planning, on‐site operations and mechanical
designs for particular operations, and forward‐looking
evaluation of prospective consequences. Even though

researchers and engineers from related fields have
researched each subproblem, an amalgamation of these
technologies is still in its early stages. To make
computations and analyses more closely approximate
reality, research in OWT maintenance entails a higher
level of complexity and ambiguity. Every area of OWT
maintenance has recently improved due to significant
theoretical and technological improvements. A corrective
maintenance method is no longer appropriate as OWFs
grow in size quickly, and proactive maintenance strate-
gies are gradually taking their place.

Maintenance jobs must be scheduled based on
straightforward route planning and more complex
scenarios to be carried out efficiently. By taking into
account the capacity of the mode of transportation, as
well as the availability of workers and parts, route
planning for OWT maintenance, has been accomplished
using one or more O&M bases. The goal of choosing the
best route is to reduce greenhouse gas emissions while
maintaining the highest level of efficiency. Additional
factors that should be taken into account by ideal
scheduling include reducing downtime, increasing reve-
nue, enhancing system reliability, and fostering coopera-
tion amongst maintenance teams.

After scheduling, the next phase is on‐site mainte-
nance, which is very different from on‐shore turbine
maintenance. First, erratic weather restricts the move-
ment of employees and equipment and places stricter
demands on the modes of transportation. Additionally, a
second docking action is necessary. In this study, docking
devices including active motion‐compensated access
devices and basic fenders have been studied. While
weighing the significance of many crucial collision‐
related elements, the possibility of collision between
service vessels and the turbine should be considered. Due
to the unpredictable wave heights, the criteria for lifting
operations are stiffer for OWTs. Specialized and expen-
sive lifting equipment are often required, whose daily
rates are higher than for onshore equivalent. To decrease
the height that external cranes must lift heavy compo-
nents from, it has been suggested that built‐in lifting
equipment be installed on OWT towers. Rombouts61

proposed a decision‐support tool to optimize the second
half of the “Saint‐Brieuc project” during the operational
phase of the OWF located near the French coast. Their
proposed tool is able to incorporate the actual status of
the project and the most recent weather forecast,
including its uncertainty and results suggesting that
tools achieve high accuracy. In recent years, a variety of
O&M simulation tools has been developed, including
Shoreline O&M Design,62 ForeCoast Marine Gamer
Mode,63 Offshore TIMES,64 DNVGL O2M,65 and ECN
O&M Calculator66 to support the modeling, project
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planning, and decision‐making services. However, these
are commercial products that require annual license fees,
technical support, and user inputs.

7 | CONCLUSION

An offshore wind project's maintenance covers a lot of
ground. Compared to onshore wind power, the cost of
maintenance represents a greater portion of the overall
cost of energy production. Long distances from the coast,
the unpredictability of the weather (including wind and
wave conditions), a lack of information from remote
monitoring, unexpected malfunctions, aging, and subjec-
tive considerations are the main obstacles to OWT
maintenance. Every area of OWT maintenance has
recently been improved by a significant quantity of
theoretical and technological breakthroughs.

It is possible to optimize OWT maintenance in two
ways. Increased weather forecasting skills, which are
essential for scheduling onsite maintenance, are one way
to improve onsite maintenance. The alternative strategy
is to use robots deployed inside the tower to do simple
maintenance chores remotely or to take use of system
redundancies to keep the wind turbine operating, even at
a reduced capacity, and so decrease maintenance
frequency. The ability to acquire data must be improved
for both perspectives.

Recent advancements in computational power have
created prospects for integrated and in‐depth CM analy-
tics, where many data types can be leveraged to support
robust decision‐making that is based on actionable
knowledge of emerging dangers. Utilizing ML approaches
to improve monitoring procedures can help plan ahead
and reduce the need for maintenance visits to OWFs.
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