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ABSTRACT
This work presents a framework to assess the robustness of manufacturing systems. Robustness, 
which is an indicator of the system’s ability to maintain its desired performance in face of 
disturbances, is quantified considering the variance of manufacturing system performance indica-
tors. According to the framework, key objectives are first explicitly defined to guide a thorough 
exploration of the manufacturing system structural and dynamic characteristics. Several simulation 
experiments, orchestrated methodically through experimental design, are run and statistically 
analysed through analysis of variance (ANOVA) tests, including also financial implications. The 
framework has been tested and validated against a case study where the robustness of the 
manufacturing system with regard to six aerospace product types is evaluated. The mentioned 
case study proved that the framework has the potential to improve the robustness of manufactur-
ing systems, identifying the most and least disruptive dispatching policies.
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1. Introduction

Typically, manufacturing systems are designed apriori 
to be able to absorb certain levels of disturbance (Klibi, 
Martel, and Guitouni 2010). The occurrence of these 
disturbances, often uncertain, could potentially entail 
adverse impact on the performance of the manufactur-
ing system. Disturbances are disruptions to plans com-
prising a cause and an effect, resulting in a significant 
deviation from the expected result (Chryssolouris  
2006). Disturbances to a manufacturing system can 
be unforeseen or unintended and have an undesirable 
impact on cost, time and quality. For a review of the 
possible disruptions, and mitigating techniques in the 
context of production systems and supply chains, 
a good overview is provided by Tobias, Lange, and 
Glock (2020).

To mitigate the potential impacts of these distur-
bances, manufacturing systems often incorporate 
measures to adapt in the face of such disturbances. 
These could be classified as internal or external, as 
illustrated in Figure 1 (Saad and Gindy 1998), but this 
categorisation can be further expanded to reflect cur-
rent trends. Internal disturbances, occurring within 
the boundaries of the manufacturing system, include 

equipment failure, faulty products, variations in pro-
cessing times and transportation network failure 
(Adenso-Díaz, Mar-Ortiz, and Lozano 2018) amongst 
others. On the other hand, external disturbances 
occur within the wider supply chains and include 
typical examples like unexpected spikes in demand 
or suppliers’ breach of agreements, amongst others.

In light of these varied sources of disturbance, 
a manufacturing system that can continue to preserve 
its performance at an acceptable level is said to be 
robust (Efthymiou et al. 2018). As disturbances have 
been classified as internal and external, robustness, 
that protects against such disturbances, has been clas-
sified as either passive or active (Telmoudi, Nabli, and 
Radhi 2008). Passive robustness is demonstrated in 
a manufacturing system’s ability to deal with distur-
bances without any modifications to the system’s con-
trol parameters (inputs). This type of robustness is 
often incorporated in a manufacturing system’s design 
phase allocating additional redundant capacities. 
Active robustness, on the other hand, is demonstrated 
when a manufacturing system responds to distur-
bances through modifications of its control para-
meters. Similar to the aforementioned classification, 

CONTACT Emanuele Pagone e.pagone@cranfield.ac.uk Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and 
Manufacturing, Cranfield University, Cranfield MK43 0AL, UK

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 
https://doi.org/10.1080/0951192X.2022.2162592

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc- 
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built 
upon in any way.

https://extranet.cranfield.ac.uk/,DanaInfo=orcid.org+0000-0002-2549-6108
https://extranet.cranfield.ac.uk/,DanaInfo=orcid.org+0000-0003-1059-364X
https://extranet.cranfield.ac.uk/,DanaInfo=www.tandfonline.com+
https://extranet.cranfield.ac.uk/dialog/,DanaInfo=crossmark.crossref.org,SSL+?doi=10.1080/0951192X.2022.2162592&domain=pdf&date_stamp=2023-01-02


manufacturing systems robustness can be achieved in 
two approaches: proactive and reactive (Colledani et al.  
2016). The proactive approach aims at establishing 
a sub-optimal configuration of the line to deal with 
future issues via overcapacity and redundancies with-
out further changes. The reactive approach, instead, 
aims at acquiring the skills to react immediately to 
changes, such as rescheduling or taking advantage of 
modularity. To explain more, in order to enhance the 
robustness of a manufacturing system, multiple mea-
sures can be taken. One approach is redundancy 
(Kamalahmadi, Shekarian, and Mellat Parast 2022), 
which implies the availability of an additional, exact 
element that fulfills the same function. Stocking raw 
material or having an additional machine tool (such as 
a lathe or a milling machine) are common examples. 
On the other hand, functional redundancy is the exis-
tence of a different element able to perform the same 
function (Meyer 2016). A computer numerical control 
machine that can perform different operations pro-
vides functional redundancy (CNC turning or machin-
ing centres), and additive manufacturing machines 
(‘3D printers’) are common examples of functional 
redundancies enablers. Both redundancies enable 
routing flexibility, providing breakdown tolerance and 
increasing robustness.

To mitigate the potential adverse impacts of dis-
turbances, measures to enhance robustness are 
usually incorporated into a manufacturing system 
prior to its establishment (i.e. at the design stage). 
This is manifest in design decisions at different 
planning horizons, such as facility layout and 

scheduling decisions. Facility layout decisions are 
considered strategic; hence, they impact the long- 
term performance of a manufacturing system and 
are often costly to reverse. Facility layout decisions 
include determining the optimal, or near optimal, 
location of resources such as machines and assem-
bly lines in a manufacturing system (Drira, Pierreval, 
and Hajri-Gabouj 2007). Papers that review the lit-
erature in facility layout problem with respect to 
robustness include the work of Kulturel-Konak 
(2007) as well as Meller and Gau (1996) where the 
authors survey the literature and classify different 
problems and solutions related to the design of 
a robust and flexible facility to cope with uncer-
tainty. Scheduling, on the other hand, falls under 
short-term, or operational decisions and, therefore, 
these decisions can be reversed relatively easily 
with less severe consequences than those of strate-
gic nature. Scheduling decisions deal with allocat-
ing resources to tasks (Pinedo 2016), such as 
allocating jobs to machines. Scheduling decisions 
in a robust manufacturing system context are also 
important as disturbances, such as machine break-
down, might require rescheduling of an entire sys-
tem’s operations to compensate for the missing 
resource. Sabuncuoglu and Goren (2009) provide 
a scheduling decision taxonomy examining the dif-
ferent approaches to achieve operational robust-
ness and stability. They start defining the 
appropriate scheduling mode and time in different 
situations, giving insights about the different dis-
turbances and respective responses.

Figure 1. Classification of disturbances. Expanded from Saad and Gindy (1998) to include current trends.
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To cope with the uncertainty that results in distur-
bances to production plans, rolling horizon practices 
are usually adopted to reduce uncertainty. Such prac-
tices include updating periodically both push-based 
supplying and production plans to guarantee compo-
nents and raw materials availability. These practices 
can stress the supply chain as scheduling is constantly 
changed. Tolio, Urgo, and Váncza (2011) propose 
a robust approach to predict and react to sudden 
events by identifying maximum lateness as an objec-
tive function to minimize. This considers not only the 
average occurrences but also the worst cases to cover 
the complete range of possibilities. The final aim is to 
keep planning simple and avoid disruption propaga-
tion, introducing the financial concept of risk. Hence, 
the authors provide the ‘Value at risk’ (VaR) and 
‘Conditional Value at Risk’ (CVaR) functions, to calcu-
late the job tardiness as a scheduling probability dis-
tribution, establishing a significance level (α) to 
determine the final loss. (Tolio, Urgo, and Váncza  
2011)

To quantify robustness in manufacturing systems, 
an evaluation framework was introduced by 
Efthymiou et al. (2018) providing a mathematical defi-
nition of robustness and identifying relevant uncer-
tain parameters. In such framework, the different 
scenarios against which the system has to be tested 
and its stability evaluated are defined based on the 
different input parameters that affect the system. 
Subsequently, simulations are run to estimate the 
manufacturing system performance in the mentioned 
scenarios. Finally, data post-processing, such as dis-
tribution fitting to identify the parameters and prob-
ability estimation to establish the robustness 
threshold, are performed. Building on this work, 
Pagone et al. (2019) evaluated robustness devising 
a Design of Experiments (DoE) of 18 scenarios based 
on a ‘one time at factor’ design of three disturbance 
elements: assembly time, rework time and rework 
occurrence, and three dispatching rules: First In First 
Out (FIFO), Shortest Processing Time (SPT) and Earliest 
Due Date (EDD). A limit is set to define the robustness 
of the system and the scenarios are listed and com-
pared to understand how the disturbances and the 
different policies affect system stability. In addition to 
the aforementioned approach, a multi-level frame-
work was developed by Stricker et al. (2015) to assess 
manufacturing system robustness in order to tackle 
its disturbances and improve capacity planning, 

scheduling and management decisions. Also, Adane 
et al. (2019) review the employment of system 
dynamics simulation tools in the modelling and deci-
sion-making in the context of robust manufacturing 
systems. A heuristic (genetic algorithm) was com-
bined with Petri Nets in decision-making with regard 
to the design of robust manufacturing systems by 
Sharda and Banerjee (2013). Petri Nets, integrated 
with agent-based modelling, have also been used by 
Blos, da Silva, and Ming Wee (2018) for the design of 
disruption management plans in the context of sup-
ply chain and production systems. Tsiamas and 
Rahimifard (2021) developed a model-based decision- 
support system that can be employed in a wide array 
of disruption scenarios but it was mainly targeted at 
external disruptions caused by factors outside 
a manufacturer’s control (e.g. political and climate 
change-related disruptions). Yuchen, Zixiang, and 
Saldanha-da-Gama (2021) developed an optimization 
model that minimises the total cost addressing the 
assembly line balancing problem in the face of dis-
ruptions. Such model includes multi-period modelling 
as well as the stochastic nature of disruption rates and 
processing times but it is limited in its applicability 
only to assembly line balancing. Furthermore, 
Zanchettin (2022) developed a robust simulation 
and control-based dispatching and scheduling 
method in a make-to-order production environment 
against production time variability. This approach 
integrates digital twin technology and minimises the 
deviation from a reference production schedule but it 
would be challenging to apply at strategic decision 
level. Chen et al. (2022) improved a method pre-
viously published by Thürer et al. (2012) to increase 
robustness against bottlenecks and variability of 
resources by developing an advanced order release. 
Traditional dispatching rules were compared to the 
advanced one using discrete-event simulations to 
show the benefits on the system robustness. 
Although valuable, the proposed approach is 
designed to work only at an operational level and 
does not provide insights into the driving factors 
that affect robustness that only a deeper statistical 
analysis (e.g. ANOVA) can provide. The ability to iden-
tify the factors at the root of disruptions is part of the 
framework proposed in this work.

In summarising the mentioned numerous 
approaches to robustness in the scientific literature, 
there is an important (and broad enough) trait that 

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 3



can be used to classify them: their applicability to 
strategic, operational level or both (Table 1). It can 
be noted that the definition used to build the frame-
work proposed in this work (i.e. the ‘stochastic’ defini-
tion) is one of the few that can be applied with 
maximum generality.

Since some types of disturbances are unavoidable 
and difficult to predict, and since hedging against all 
types of disturbances is generally deemed an impos-
sible task (Rakesh et al. 2000), manufacturing systems 
should incorporate measures to establish and main-
tain robustness. In order to achieve this, a logical 
prerequisite is to develop a thorough understanding 
of robustness, and subsequently devise methodical 
approaches to evaluate it. In the next section, several 
definitions of robustness from different perspectives 
are provided, followed by the robustness evaluation 
framework.

The main contribution to knowledge of this work 
lies in the methodology underpinning the mentioned 
framework that is able to evaluate the robustness of 
manufacturing systems against any type of distur-
bances on any chosen performance metrics, with 
a detailed, step-by-step, methodical approach. 
A collection of appropriate tools and approaches 
that span several disciplines comprising engineering, 
operational research and statistics, combined in 
a unified framework make this work unique to the 
knowledge of the authors. Finally, this paper illus-
trates the applicability and effectiveness of the frame-
work with a real-world case study applied to a UK 
aerospace manufacturing facility. Such case study 

does not aim at providing a comprehensive overview 
of disturbances in manufacturing systems, but only to 
show the efficacy and effectiveness of the framework.

2. Robustness and evaluation framework

2.1. Definition of robustness

Multiple definitions and parallelisms exist around the 
term manufacturing systems robustness while, as 
Efthymiou et al. note, a comprehensive definition is 
absent (Efthymiou et al. 2018). Multiple authors 
defined manufacturing systems robustness from dif-
ferent standpoints. Stricker and Lanza provide differ-
ent definitions and drew parallelisms between the 
concept of robustness and other similar terms, such 
as flexibility, agility, risk and resilience (Stricker and 
Lanza 2014). Furthermore, they provide a general 
definition of robustness as the system’s ability to 
maintain its desired service level in the face of distur-
bances (Stricker and Lanza 2014). Alderson and Doyle 
characterise a manufacturing system as robust if its 
performance is invariant to different sets of perturba-
tions (Alderson and Doyle 2010). Another definition 
was provided by Telmoudi et al. as the aptitude of 
a system to preserve its specified properties against 
foreseen or unforeseen disturbances (Telmoudi, Nabli, 
and Radhi 2008). Robustness has also been defined as 
the ability to reach the Key Performance Indicators 
(KPIs) levels in face of disturbances (Colledani et al.  
2016). Formally, a quantitative definition used in this 
work is obtained by establishing first a limit L for each 

Table 1. Classification of robustness approaches available in the open literature based on the extent of applicability. SD: system 
dynamics: GA: generic algorithms; PN: petri networks; AB: agent-based; MTO: Make-To-Order.

Approach to Robustness Strategic level Operational level Reference

Active x (Telmoudi, Nabli, and Radhi 2008)
Passive x (Telmoudi, Nabli, and Radhi 2008)
Pro-active x (Colledani et al. 2016)
Reactive x (Colledani et al. 2016)
Item redundancy x (Kamalahmadi, Shekarian, and Mellat Parast 2022)
Functional redundancy x (Meyer 2016)
Layout focussed x (Kulturel-Konak 2007; Meller and Gau 1996)
Scheduling x (Sabuncuoglu and Goren 2009)
Minimisation lateness x x (Tolio, Urgo, and Váncza 2011)
Stochastic x x (Efthymiou et al. 2018)
Multi-level x (Stricker et al. 2015)
SD simulation x x (Adane et al. 2019)
GA and PN simulation x (Sharda and Banerjee 2013)
AB and PN simulation x Yuchen, Zixiang, and Saldanha-da-Gama (2021)
Supply chain x (Tsiamas and Rahimifard 2021)
Assembly line balancing x Rakesh et al. (2000)
Time variability in MTO x (Zanchettin 2022)
Optimal order release x (Chen et al. 2022)
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KPI that should not be exceeded when a function 
representing the manufacturing system f is evaluated 
according to operating conditions S (Equation (1)) 
(Efthymiou et al. 2018). Thus, considering the stochas-
tic nature of real systems, the robustness function f is 
evaluated as the probability that the confidence inter-
val half-width verifies Equation (2) (Efthymiou et al.  
2018). 

f ðSÞ � L; (1) 

FðLÞ ¼ Prðf ðSÞ � LÞ; (2) 

2.2. Framework to evaluate robustness

The framework encapsulates the methods presented 
by Efthymiou et al. (2018) and Pagone et al. (2019) 
significantly widening the extent of the analysis with 
a rigorous, full factorial design of the experiment and 
a systematic data analysis (Figure 2). The aim to quan-
titatively evaluate the robustness of manufacturing 
systems against disturbances is achieved with three 
consecutive phases: manufacturing system audit, 
experimentation and data analysis.

In the audit phase, the manufacturing system is 
first defined where its entities, parameters and their 
values are identified. To achieve this aim, first the 
system is analyzed through a thorough exploration 
of its structural and dynamic characteristics. Structural 
characteristics refer to the resources that constitute 
the manufacturing system and their capacities. 
Resources include, but are not limited to, machines 
(such as lathes and milling machines), operators 
(where their skill levels are noted) and warehouses 
(and their capacities). Dynamic characteristics, on the 
other hand, are the attributes of the manufacturing 

system at product level. Such characteristics include, 
but are not limited to, product routings and cycle and 
setup times. The next step within the manufacturing 
system audit phase is the identification of the operat-
ing conditions, potential disturbances and uncertain-
ties. In general, this step could be perceived as the 
development of scenarios where different values that 
the dynamic characteristics can take are investigated 
and noted. Potential disturbances and uncertainties, 
both internal (such as probability of rework) and 
external (such as supplier delays) are also explored 
in this stage. A collection of certain values for different 
parameters (e.g. high demand, long supplier lead 
time, high probability of rework, etc.) constitute 
a scenario. The first phase of the framework is 
achieved mainly through close observation of the 
manufacturing system. In particular, field visits and 
structured interviews with stakeholders at different 
levels are required in order to develop a clear and 
thorough understanding and, subsequently, analyse 
it properly. There are, however, challenges associated 
with the successful implementation of this phase; 
mainly capturing uncertainty. To explain more, if dis-
turbances, to a certain extent, can be predicted in 
nature (e.g. fluctuating demand, machine breakdown, 
faulty products that need rework etc. . .), then it is not 
necessarily the case with regard to the magnitude, 
probability of occurrence and the impact of such 
disturbances on the system. Furthermore, metrics 
affected by the disturbances and related to quality 
or cost (for example) may be audited and considered 
in the further steps without restricting the validity of 
the analysis.

The second phase of the framework is the experi-
mentation that revolves around a Discrete Event 
Simulation (DES) model imitating the operations of 

Figure 2. Robustness evaluation framework.
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the manufacturing system. The choice of a DES model 
might seem restricting considering that there are 
other useful manufacturing systems simulation 
approaches. Broadly speaking, simulation modelling 
can be divided into two categories according to the 
time advancement mechanism: continuous and dis-
crete (Law 2015). Under these two broad categories, 
three mainstream simulation approaches lie: system 
dynamics, discrete-event and agent-based. There is 
a plethora of literature – e.g. Siebers et al. (2010); 
Maidstone (2012); Sumari et al. (2013); Kin et al. 
(2010) – that explains and compares each of these 
mainstream simulation approaches, their time 
advancement mechanisms, their capabilities of hand-
ling uncertainties, abstraction level and suitability of 
modelling different industrial settings, among other 
attributes. Therefore, considering the purpose of 
investigating through simulation the performance of 
manufacturing systems in the face of disturbances 
(robustness) under uncertainty, it is deemed that 
DES is the appropriate modelling approach to use to 
achieve this goal. However, it might be correctly 
argued that agent-based modelling can be equally 
appropriate; it should be noted that an agent-based 
approach can be considered as a special case of DES 
because it uses the same time advancement mechan-
ism (Law 2015). Therefore, agent-based modelling 
could be profitably used in this framework as 
a substitute of DES when it offers a clear advantage – 
typically, in the investigation of complex emerging 
behaviour, stemming from a distributed system 
(Borshchev and Filippov 2004).

In the simulation model development step of the 
experimentation phase, the model’s aim, contents, 
inputs, outputs and assumptions are prepared. This 
is a particularly subtle task as a balance has to be 
carefully established between complexity (i.e. model-
ling many processes and accounting for a large num-
ber of disturbances) and simplicity (modelling and 
accounting for only key processes and disturbances 
with minimal impact on the model’s accuracy). In this 
step, data collected in the previous phase of the 
framework will be used to feed the simulation 
model. Deterministic data (e.g. layout parameters, 
product types, etc. . .) and stochastic data (probability 
distributions for cycle and setup times, demand pro-
files, etc. . .) will be used to build and experiment with 
the model. In order to effectively examine the robust-
ness of the manufacturing system, multiple scenarios 

have to be investigated through simulation (e.g. high 
probability of product failure coupled with high cycle 
time and high demand). This step is different from the 
‘Operating conditions, potential disturbances and 
uncertainties identification’ in the first phase. The 
difference is that in this step, an assortment of scenar-
ios is selected to be simulated in order to reflect 
possible disturbances and subsequently evaluate 
robustness, while in the first phase a comprehensive 
list of scenarios is developed and are not necessarily 
all included in the experimentation. The selection of 
the assortment of scenarios is a step referred to as the 
Design of Experiments (DoE). The DoE for the evalua-
tion framework is factorial DoE; meaning that, unlike 
the ‘one at a time’ DoE approach, the impact of the 
interaction between different factors is investigated 
through the experiments. To accomplish this step, the 
factors that their variation impacts the outcome of the 
system and the levels, which are the values that these 
factors can take in the experiments have to be identi-
fied. Identifying the experimental factors and the 
levels will then determine the number of scenarios 
to be examined.

Since the simulation model is stochastic, one simu-
lation run does not provide statistical representative-
ness and, in turn, meaningful insight about the 
modelled manufacturing system. Therefore, multiple 
simulation replications (each containing independent 
random values for the stochastic parameters) drawn 
from probability distributions have to be performed. 
These simulation replications constitute samples from 
all possible scenarios (i.e. the entire population of 
scenarios). Then, after performing a number of simu-
lation replications, the mean values for the desired 
outcome can provide a more representative insight 
into the performance of the system. To determine the 
minimum required number of simulation replication, 
the confidence interval method is employed in the 
robustness evaluation framework (Montgomery  
2017). The confidence interval method provides 
a statistical means to indicate how accurate the 
mean of the required performance metric is being 
estimated (Robinson 2004). To explain more, the con-
fidence interval (CI) is calculated as 

CI ¼ FðLÞ � tn�1;α=2
σ
ffiffiffi
n

p ; (3) 

FðLÞ is the mean of the simulation output, tn�1;σ=2 is 
the Student’s t-distribution with a degree of freedom 
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n � 1 and significance level α=2, σ is the standard 
deviation and n is a sufficiently large number of repli-
cations. The significance level (α) refers to the prob-
ability that the true mean (the output of the 
simulation model for the desired performance metric 
if the simulation is run for an infinite number of 
replications) falls outside the desired confidence 
interval (1 � α). The application of the confidence 
interval analysis serves not only with the determina-
tion of the number of simulation replications but also 
provides an indication about the degree of variance 
within the manufacturing system. To explain more, if 
the output of the simulation model is relatively stable 
(i.e. low variance observed among replications), then 
the number of simulation replications determined by 
applying the confidence interval method will be low. 
Alternatively, if the outcome is unstable (i.e. high 
variance observed among replications), then this is 
an indication that the manufacturing system is 
prone to disturbances and subsequently a higher 
number of simulation replications will be required to 
level out the cumulative mean within a sufficiently 
narrow confidence bounds.

The final phase of the framework, i.e. the data 
analysis phase, takes place after the discrete-event 
simulation model is developed, the scenarios to be 
investigated identified and several simulation replica-
tions are performed. The data analysis phase consists 
of two distinct steps: analysis of variance (ANOVA) and 
the financial performance estimation. The former, 
which is twofold (within individual scenarios and 
among different scenarios), provides a means to 
quantitatively examine the variance in the obtained 
sample means through different statistical tests. The 
latter provides a means to estimate the impact of 
different disturbances on financial metrics. Such 
metrics could be different economic indicators like 

inventory operators’ costs, among others. Similar to 
the simulation model, the nature of the data analysis 
phase depends on the nature of the manufacturing 
system and the disturbances being investigated. 
Therefore, due to the models being relatively context- 
dependent, each application of the framework will 
have its own unique features, operating inside 
a context-independent framework.

Finally, it should be noted that the framework can 
work effectively with re-entrant data flows (i.e. itera-
tively) at any stage of its execution providing closed- 
loop optimisation opportunities to the user (e.g. re- 
evaluation after improvement).

3. Case study

3.1. Specifications and manufacturing system audit

To validate and test the robustness evaluation frame-
work, it has been applied to a case study with the 
production of six different aircraft’s heat exchangers. 
The presented case study does not aim at showing 
a complete picture of disturbances in manufacturing 
systems, but only illustrate the validity and usefulness 
of the framework in a real-world scenario.

The product routing, which is shared among the six 
part types, is depicted in Figure 3 showing ‘high-level’, 
key production steps.

The production process begins when an order is 
released followed by kitting and assembly (performed 
by kitters and assemblers, respectively). The next 
stage is machining, which consists of three consecu-
tive steps: turning with lathe one, turning with lathe 
two and milling. These processes are conducted by 
several machinists with different skill levels, which 
increases the variability of the process in terms of 
cycle time and the probability of the need to rework. 

Figure 3. High-level product routing.
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After milling is completed, an inspection at an Air- 
Under-Water (AUW) station is conducted to test the 
quality of the produced part and determine whether 
any rework is required. If a part fails the AUW inspec-
tion, a rework is conducted until it passes the 
inspection.

Following the framework depicted in Figure 2, the 
structural characteristics of the framework can be 
identified as the resources used in the production of 
parts, which are the lathes and milling machines and 
the operators performing various production activ-
ities. The dynamic characteristics, however, contain 
the products routing, which are depicted in Figure 3 
and cycle and setup times. The next step in the first 
phase is to identify the operating conditions, distur-
bances and uncertainties. The operating conditions 
that will be investigated are the dispatching rules 
which could be First In First Out (FIFO), Earliest Due 
Date (EDD) and Shortest Processing Time (SPT). 
External factors, such as demand profiles and suppli-
ers lead time will be incorporated into the simulation 
model along with the uncertainties associated with 
their values. After examining the manufacturing sys-
tem, through field visits and interviews with stake-
holders of different levels directly involved in the 
production processes, the following key disturbances 
(and the uncertainties associated with them) were 
determined: assembly time variability, rework time 
variability and probability of rework.

3.2. Virtual experimentation

3.2.1. Discrete-event simulation model
During this phase of the framework, the discrete- 
event model is developed to create a virtual environ-
ment, representing the manufacturing system, to 
investigate different scenarios with. The simulation 
model, which was developed in Tecnomatix Plant 
Simulation (a commercial discrete-event simulation 
platform), runs the production process depicted in 
Figure 3. During each simulation replication, the varia-
bility of disturbances is calculated rescaling probabil-
ity distributions by the solution of small systems of 
equations calling an external numerical tool coded in 
Modern Fortran (Pagone et al. 2019). Figure 4 below 
depicts a snapshot of the simulation model’s 
Assembly processes.

To incorporate the stochastic nature of the manu-
facturing system into the simulation model, past data 

(identifying uncertainties in phase 1) of processing 
times and probability of reworks was analysed and 
fitted to triangular probability distributions deemed 
the most suitable to the nature of the processes mod-
elled and the relevant data available. The three para-
meters that the triangular distribution takes are: 
minimum, maximum and most likely (i.e. the mode).

3.2.2. Design of experiments
After the simulation model has been developed and 
validated, the next step in the experimentation 
phase is to systematically devise scenarios to inves-
tigate through DES based on Design of Experiments 
(DoE). These scenarios typically represent different 
operating conditions (factors) which, for the pur-
poses of this case study, were determined to be 
dispatching rules. The selection of dispatching rules 
is case specific, meaning that any other operating 
conditions could be investigated. Typically, what 
dictates the nature of factors in a DoE experiment 
is the overall aim of the framework’s application, 
which in this case is the evaluation of the robustness 
of the manufacturing system under different dis-
patching rules. The dispatching rules included in 
the DoE are, as stated earlier, FIFO, EDD and SPT. 
The levels of disturbances that are included in the 
DoE are twofold: low (which reflects the normal 
operations with slight expected variations) and 
high (which reflect potential disruptive high varia-
tion). These levels of disturbances were devised 
based on the data collected, and close interaction 
with stakeholders directly involved in operating the 
manufacturing system. To represent these two levels 
of disturbances in the DoE, the low level of distur-
bance is represented by the mode (most likely) 
values observed from the collected data. The high 
disturbance level is determined, after observing all 
extreme data points and soliciting the opinions of 
those operating the manufacturing system, to be 
represented by increasing the coefficient of variation 
(standard deviation to mean ratio) by 20% of its 
original value. Due to the small number of levels 
(low and high disturbances) and factors (FIFO, EDD 
and SPT), a full factorial DoE is possible for this case 
study. The number 2 represents the level of distur-
bances (low and high), while the exponent 
k represents the factors (i.e. 3). Therefore, a total of 
8 scenarios will be run in the simulation model as 
shown in Table 2 below where Scenario A refers to 
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the ‘as-is’ scenario. Each of these eight scenarios will 
be run for a number replications determined 
through confidence interval analysis.

3.2.3. Confidence interval analysis
The aim of the confidence interval analysis is to deter-
mine the minimum number of simulation replications 
for each of the scenarios presented in Table 2. Several 
simulation replications are required, as stated earlier, 
to produce meaningful output as the simulation 
model is stochastic and therefore the mean of several 
replications is more representative of the actual 

system. The desired confidence interval has been set 
at 95% since increasing it further will require many 

Figure 4. Snapshot from the simulation model depicting the Assembly processes, one part of the entire discrete simulation model.

Table 2. Case specifications of full factorial design of 
experiments.

Scenario Assembly time Rework time Rework
identifier variability factor variability factor probability factor

A 1 1 1
B 1.2 1 1
C 1 1.2 1
D 1.2 1.2 1
E 1 1 1.2
F 1.2 1 1.2
G 1 1.2 1.2
H 1.2 1.2 1.2
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more replications and will contribute to only marginal 
increases (i.e. slight tightening to the confidence 
bounds). The KPIs of choice, as advised by managers, 
are related to lead times and average tardiness.

After observing the confidence bounds for the 
selected KPIs over several simulation replications 
(exemplified by Figure 5 for Scenario B, i.e. distur-
bance in assembly time variability under EDD dis-
patching rule), the number of replications has been 
set at 300. This is because, although the set signifi-
cance level is often met well before 300 replications, it 
has been observed that this value offers enough mar-
gin to cover also the occurrence with more extreme 
output (Robinson 2004). Therefore, as a general state-
ment, it is advised to continue performing several 
more replications after the desired significance level 
has been met. This reasoning will be further clarified 
with numerical evidence in Section 4 (i.e. Results and 
discussion).

3.3. Data analysis

3.3.1. ANOVA analyses
To analyze the system variability and provide reli-
able statistics to improve robustness, two different 
ANOVA have been conducted. The first one, 
between scenarios evaluates the effects of distur-
bances onto the system, while the latter, within 
each scenario, aims at determining the best dis-
patching rule to cope with the disturbances them-
selves. Generally speaking, ANOVA provides a more 
detailed understanding of a phenomenon under-
lying variance by decomposing the observed over-
all variance into contributions by sources of 
variation (i.e. ad-hoc defined groups) (Zhao, Shifu, 

and Yoshikawa 2013; Barbé, Van Moer, and Rolain  
2009).

The ANOVA between scenarios grouped data 
according to each scenario and run a series of 
tests. Firstly, a normality test of groups using quan-
tile-quantile (qq) plots was performed, followed by 
the fit of an ANOVA model on the data and the 
analysis of the residuals obtained (calculation of 
their skewness and kurtosis and Cook’s distance to 
detect possible outliers). Then, the homogeneity of 
variances was checked by Bartlett’s test and, since 
the homogeneity was never observed, Welch’s t-test 
(particularly reliable for unequal variances) was per-
formed. A final, pairwise comparison of group means 
was performed by Games-Howell post-hoc test that 
does not assume equal variances. The subsequent 
ANOVA within each scenario grouped data for each 
KPI according to the dispatching rules, i.e. the same 
disturbances were dictated for the same KPI. For this 
reason, the previously observed problem homoge-
neity of variances is not present in this analysis 
(when performing Bartlett’s test) that followed the 
same procedure previously described where (appro-
priately) Turkey’s test substituted Games-Howell 
one.

Both ANOVA were implemented in R programming 
language.

3.3.2. Financial implication estimate
An estimate of financial implications was devised to 
further compare different dispatching rules (i.e. FIFO, 
EDD and SPT) from an economic standpoint. The most 
turbulent conditions (those in Scenario H) were 
assumed as benchmark where rework likelihood dis-
turbance was set at maximum level over the 

Figure 5. Sample significant level for Scenario B under EDD dispatching rule with the increase of number of simulation replications.
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replications (set at 300) per policy to get a robust 
system. The model assumptions are:

● The system is labour intensive; hence, the focus 
will be the reduction of working hours and their 
translation in monetary or alternative resources.

● The comparison is between the current system 
(using FIFO) and the overall most robust solution 
(it will be shown that it is EDD). Hence, the focus 
will be on comparative costs and benefits, sunk 
costs such fixed costs are not considered.

● Real data concerning product, production prices 
and costs are not available (for confidentiality 
reasons) so considerate assumptions are made.

● One year of production is assessed, percentages 
of part types produced, and part types delivered 
late proved to be constant across the different 
scenarios and can be used in the calculations.

To thoroughly compare the policies, all part types 
were considered with respect to tardiness and lead 
times, apart from average indicators. As mentioned, 
the analysis is comparative between the ‘as-is’ (con-
sidered as the benchmark) and the overall most 
robust option and it is structured on five basic 
elements:

(1) Manual work and electric power costs;
(2) Material holding costs;
(3) Penalty opportunity costs advantage;
(4) Cost to implement the new, more robust 

option;
(5) Potential throughput increase and, in turn, 

capacity increase.

To estimate inventory costs, the economic order 
quantity and the economic order period model were 

compared (Hopp and Spearman 2008). The demand is 
assumed stable from the simulation model but to 
cope with the implemented disturbances, the fixed- 
order quantity model is considered more suitable for 
higher value items, difficult to supply and kept in low 
volumes in the warehouse while fixed-time period for 
low value items, kept in higher quantities. The com-
bination of the two techniques enables to deal with 
storage capacity constraints avoiding extra-holding 
cost and additional storage space.

Data representing raw material types and costs 
were not used in the model due to confidentiality 
reasons, hence appropriate assumptions were made.

4. Results and discussion

4.1. Disturbances analysis and design of 
experiments

Disturbance analysis was carried out for the case 
study through collecting relevant information, select-
ing the disturbances and devising the experimental 
design to use in the DES model. The main distur-
bances affecting the system are internal and can be 
summarised in:

● Assembly time variability: variability of process 
times being the process an assembly one;

● Rework time variability: variability of process 
time to rework a product;

● Rework likelihood: variability of occurrence of 
a rework to happen.

This disturbance analysis was embedded in the pro-
posed methodology to determine the analysis level of 
detail. The coefficients of variation were then multi-
plied for a factor to scale the distributions and depict 

Table 3. Case specifications of ‘one-at-a-time’ design of experiments.
Scenario Dispatching Assembly time Rework time Rework probability Number of
name rule variability factor variability factor factor replications

FIFO 1 1 1 300
Scenario A SPT 1 1 1 300

EDD 1 1 1 300
FIFO 1.2 1 1 300

Scenario B SPT 1.2 1 1 300
EDD 1.2 1 1 300
FIFO 1 1.2 1 300

Scenario C SPT 1 1.2 1 300
EDD 1 1.2 1 300
FIFO 1.2 1.2 1 300

Scenario D SPT 1.2 1.2 1 300
EDD 1.2 1.2 1 300

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 11



new possible scenarios, devising a one-at-a-time fac-
tor design on two levels, the normal value of 1 (low 
disturbance) and the scaled value of 1.2 (high distur-
bance) as depicted in Table 3.

Since the simulation model is stochastic, several 
replications for each dispatching rule in each scenario 
are required to produce indicative results. Each repli-
cation corresponds to a working year and the inde-
pendence among replications is guaranteed through 
the selection of different random number seeds in 
each replication to generate process times and set 
up times. The maximum number of replications was 
initially set at 300 replications per policy to get 
a sample big enough to carry out the analysis con-
sidering the simulation time constraints.

4.2. Determining the number of replications

For all the lead time indicators the threshold was set 
to 0.01 of the confidence interval relative half-width 
while for the tardiness it was decided that 0.02 was 
enough to meet the due dates. Figure 6 below depict 
the minimum number of simulation replications 
required for each KPI to achieve the aforementioned 
thresholds for each of the dispatching rules.

4.2.1. KPIs analysis
It is evident from Figure 6(a,b) how the benchmark 
Scenario A, without any disturbance, reports a lower 
number of observations compared to Scenario D and 
Scenario C with respect to lead times, highlighting an 
effect of these scenarios disturbances, rework time 
variability and rework likelihood, respectively. On the 
other hand, concerning tardiness KPIs, Scenario 
C seems to be the best one comparing the number 
of observations to all the others, even to the undis-
turbed scenario. Such result is obtained considering 
the confidence interval (Equation (3)). For each 
sampled data, the respective confidence interval is 
calculated and divided for the sample mean, hence 
in Scenario C the standard deviation is higher com-
pared to the basic scenario because of the distur-
bance (meaning wider confidence intervals) but the 
mean is higher as well, resulting in a tighter relative 
robustness. This finding indicates that this condition 
could be the most turbulent one and necessitates 
further investigation in the following analysis.

Considering, Scenario B, the number of observa-
tions for both lead times and tardiness KPIs is very 

similar to the basic operating conditions, stressing 
that assembly time variability does not have a great 
impact in robustness terms. To be robust against the 
different set of disturbances, the system has to be run 
for at least 280 observations with the set thresholds of 
0.01 for the lead times KPIs and 0.02 for the tardiness 
ones. This observation number is γ and was used in 
the ANOVA analyses to set the replications per policy 
and scenario. The indicators gathering more variabil-
ity are the annual lead times as they demand more 
observations compared to the weekly ones across all 
the scenarios. Consequently, the KPIs reductions in 
the ANOVA analyses regarded the weekly lead times, 
focusing only on the annual ones for part types 1,2 
and 3, overall annual LT and average tardiness.

In general, the increase in the assembly time has 
little impact on system tardiness but not on the dif-
ferent lead times consistently, while rework likelihood 
affects lead times robustness. The increase in the 
rework time variability affects on a medium scale 
lead times robustness compared to the assembly 
time increase and mostly tardiness indicators deter-
mining their higher values. The maximum number of 
observations to reach the threshold of 0.01 for the 
lead times and 0.02 for tardiness are 280 and is deter-
mined in the rework time variability scenario, this 
number is set as the basis to assume the system to 
be robust.

4.3. Full factorial design of experiments

Following the DoE analysis, an experimental design 
was devised to estimate the disturbances effects on 
the system. Considering 300 replications per policy 
averaged every 7 samples (k set to 7), 120 points were 
obtained. The final dataset to perform the analysis, 
consequently, comprised 960 point per KPI, consider-
ing the 8 scenarios, enabling the disturbances main 
effects and disturbances interactions effects on the 
single KPI assessment. The experiments comprised 
the three disturbance factors on the same two levels 
of the experimental design, for a total of eight experi-
ments, reported in Table 2.

The disturbances evaluated were listed along with 
the respective p-value and the percentage effect cal-
culated according to Equation (4), where KPItot is the 
total effect on the KPI and KPI is the mean value of the 
KPI across all scenarios. 
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Figure 6. Number of replications necessary to reach the target confidence interval.
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Δ ¼
KPItot

KPI
(4) 

The significance level for the p-value and the thresh-
old to establish if an effect or an interaction was 
consistent were set to 0.05 and 5%, respectively, as 
shown in Table 4.

To examine the effects of different types of 
disturbances on the chosen KPIs, Table 5 sum-
marises the effects on KPIs and the reported p- 
values.

Rework likelihood resulted to have the main 
effect on the KPIs, rework time variability a little 
one while assembly time variability a negligible 
one. To improve robustness, the rework occur-
rence has to be tackled first to get the biggest 
advantage then the rework time variability could 
be object of intervention to foster performances 
even more.

4.4. ANOVA tests

4.4.1. ANOVA between scenarios
The proposed scenarios analysis is performed using 
the post-hoc results for each KPI, reporting the differ-
ences between the respective KPI means and the p- 
value as shown in Figure 7, where the first three part 

variants were reported as they are overwhelmingly 
the most frequently produced. The significance level 
(α) was set to 0.05.

In Table 6, for each KPI and comparison the relative 
error was calculated to get a quantitative measure-
ment of the detachment from the starting scenario 
using Equation (5) where Δs is the difference between 
scenarios, and μbs is the mean of the KPI base 
scenario. 

KPIre ¼
Δs

μbs
(5) 

In Figure 7, it is noticeable that Scenario B and 
Scenario A are the same as the p-value is far higher 
than the significance set and the difference between 
the KPIs means is negligible. It can be stated that 
assembly time variability does not have any effect 
on the system. As a consequence, comparisons with 
Scenario B do not bring any information.

From the second row of Table 6, it is clear that 
Scenario C is the most turbulent as comparison 
against the basic operating conditions shows the 
highest difference concerning all the KPIs.

As far as Scenario D is concerned, from the third set 
of columns of Figure 7 and from Table 6 it can be 
observed that little changes occur compared to 
Scenario A for all the KPIs. Furthermore, rework time 
variability has little effect compared to the means of 
the KPIs themselves looking at Table 6 with 
a maximum of 2.71% and 6.34% concerning the lead 
times and the tardiness KPIs, respectively.

This analysis enabled a ranking of the disturbances 
based on their effect on the system. It could be 

Table 4. 5% threshold values for the evaluated KPIs.
KPI Mean across all scenarios 5% effect

Annual lead time part 1 227.20 11.36
Annual lead time part 2 194.40 9.72
Annual lead time part 3 229.10 11.46
Average lead time 211.40 10.57
Average tardiness 0.97 0.05

Table 5. The effects of different types of disturbances on KPIs. When multiple disturbances are listed, their combination is 
considered.

Disturbance KPI LT1 LT2 LT3 Average Average
Annual Annual Annual lead-time tardiness

Assembly time p-value 0.67 0.32 0.18 0.92 0.03
variability Effect 0.11% 0.27% −0.34% 0.02% 0.67%
Rework time p-value 0% 0% 0% 0% 0%
variability Effect 2.49% 2.51% 2.02% 2.39% 5.72%
Rework p-value 0% 0% 0% 0% 0%
likelihood Effect 16.79% 17.75% 14.12% 16.68% 38.31%
Assembly time variability p-value 0.74 0.75 0.74 0.86 0.95
Rework likelihood Effect 0.09% −0.09% −0.08% −0.04% −0.02%
Assembly time variability p-value 0.98 0.95 0.95 1 0.98
Rework time variability Effect 0.01% 0.02% −0.02% 0% 0.01%
Rework time variability p-value 0.04 0.73 0.15 0.09 0.01
Rework likelihood Effect 0.54% 0.09% 0.36% 0.36% 0.75%
Assembly time variability p-value 0.97 0.94 0.99 0.99 0.96
Rework time variability Effect −0.01% 0.02% 0% 0% −0.02%
Rework likelihood
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noticed that Scenario C is the one causing the system 
to vary the most, therefore rework likelihood is the 
factor to focus on to improve robustness, system 
efficiency and enable the line to meet due dates 
promptly. From Table 6 is clear that it affects strongly 
all the KPIs compared to the starting scenario, espe-
cially tardiness with a 48% error.

On a second step rework time variability could be 
reduced as well, being related to rework occurrence 
and having some effect on system performances. 
A combined action would improve dramatically tardi-
ness robustness and foster main lead times perfor-
mances. Finally, assembly time variability resulted to 
have no significant effect on the KPIs.

4.4.2. ANOVA within each scenario
The presented policies analysis is performed using the 
post-hoc results for each KPI per scenario, reporting 
the differences between the respective KPI means per 
policy and the p-value. The significance level (α) was 
set to 0.05. In the following sections the dispatching 
rules are compared, using two different types of 
tables, the first one reports the difference between 
the means for each KPI and the relevant p-value to 

give a general overview of the indicator’s behaviour. 
The second lists the relative errors per KPI and dis-
patching rule comparison with the FIFO rule, the 
benchmark one that is currently used. The formula 
used for the error is reported in Equation (6) where 
ΔFIFO is the difference between the selected policy 
and FIFO, while μFIFO is the KPI mean according to 
FIFO policy. Only the results concerning the most 
turbulent condition, i.e. Scenario C, are reported. 

εr ¼
ΔFIFO

μFIFO
(6) 

If the error is higher than +5% the policy is 
assumed not to be able to cope with variability for 
the highlighted KPI. In Table 7 two examples are given 
per KPI type to give an estimate of the chosen thresh-
old. If the error is negative, it means that the policy 
performs better than FIFO.

Table 6. KPI relative error between scenarios.
Scenario LT1 LT2 LT3 Average Average
comparison Annual Annual Annual lead-time tardiness

B - A 0.01% 0.4% −0.27% 0.06% 0.85%
C - A 17.82% 19.84% 15.03% 18.01% 48.14%
D - A 2.14% 2.71% 1.81% 2.23% 6.34%

Table 7. Example of relative error per KPI type between the SPT 
and FIFO policies.

KPI Difference Mean Relative error

LT2 Annual 10.38 208 4.99%
Average tardiness 0.04 0.79 4.86%

Figure 7. Differences between mean and p-value of KPIs as a comparison of scenarios.
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From Figure 8 and Table 8, it is noticeable that SPT 
performs worse than FIFO, going very close or 
exceeding the threshold for all the KPIs, except for 
average tardiness. On the other hand, EDD is better 
than FIFO for all the indicators except the annual lead- 
time of Part 3 (increase of 1.60%), returning good 
improvements of 2.28% and 3.01% for annual lead- 
time of Part 1 and annual lead-time for part 2 respec-
tively. Similar results concerning the policies compar-
ison were obtained for the remaining scenarios.

Comparing the dispatching rules across the differ-
ent scenarios, it can be stated that SPT is not the 
policy to adopt as it usually returns worse results 
compared to FIFO for all the KPIs. On the other 
hand, EDD results to be always the best policy for 
the lead time for Part 1 and annual lead time for 
Part 2 and returns similar values in all the scenarios 
concerning average lead-time and average tardiness 
compared to FIFO as the p-values are high. Ultimately 
EDD performs worse than FIFO in each situation with 
a percentage ranging from 1.60% to almost 3%, not 
very high for annual lead-time of part 3, considering 
the share of part type 3 produced out of the total 
compared to part type 1, 2 and the fact that the 
average lead time gives good results as well showing 

a tendency to increase that has to be confirmed. In 
conclusion, EDD seems the policy to implement to 
foster the performances and improve the system 
robustness but a more detailed analysis is required 
to confirm the statement.

4.5. Financial implication estimate

Four main contributors were considered to esti-
mate the financial implication of adopting the 
most robust dispatching policy (i.e. EDD): labour 
and electric power savings, material-holding sav-
ings, tardiness-related costs, cost to implement 
the new policy. Values were estimated on a yearly 
basis. Considering a labour cost of a machine 
operator of 9 GBP/hr and a cost of electric power 
of 0.13 GBP/kWh, the relevant savings were about 
GBP 49,816, when factoring-in relevant lead time 
and tardiness benefits. About GBP 950 were esti-
mated to be saved in material-holding costs. 
Tardiness-related savings were estimated around 
GBP 50,000 multiplying the number of additional 
products delivered late by continuing to use FIFO 
and a penalty cost of GBP 1000 per part (consider-
ing not only customer charges but also overtime). 

Figure 8. Comparison of release policy for Scenario A.

Table 8. KPI relative error of scenario C.
Policies LT1 LT2 LT3 Average Average
comparison Annual Annual Annual lead-time tardiness

SPT - FIFO 5.26% 4.99% 7.96% 4.91% 2.44%
EDD - FIFO 2.28% −3.01% 1.60% −0.62% 1.11%

16 E. PAGONE ET AL.



Finally, although the implementation of EDD would 
not require changes on the shop-floor, 5 full days 
of an engineer were estimated for collecting the 
data, validate and verify the new policy (consider-
ing that the baseline DES model has been already 
implemented). Assuming a wage of 18 GBP/hr and 
8 h a day of work, the cost is estimated to be 
GBP 720.

Combining the previously presented figures, it can 
be estimated that about GBP 100k can be saved in 
one year by switching from FIFO to the most robust 
policy (i.e. EDD).

5. Conclusion

A robustness evaluation framework has been devel-
oped and applied on a case study from the aerospace 
manufacturing sector. The application of the frame-
work starts with a thorough definition of the manufac-
turing system, including the identification of the 
specific area of robustness that is to be evaluated. 
A simulation model, run methodically by experimental 
design is then developed and run for several replica-
tions. The outcome of the simulation model runs are 
then simultaneously analysed economically through 
a cost model and statistically through ANOVA tests.

The results, when the case study was applied to the 
framework, provided, with regard to operating condi-
tions and dispatching rules, valuable practical 
insights. The results indicated, with regard to the 
impact of disturbances on the performance of the 
system, that assembly time variability has very little 
impact on performance, while rework likelihood hav-
ing the most disruptive consequences on perfor-
mance. On the dispatching rules side, the results 
demonstrated acceptable performance generated 
from adopting either FIFO or EDD rules, while the 
performance was significantly worse when an SPT 
rule was adopted.

Such illustrative case exemplified the usefulness of 
the framework to evaluate, analyze and recommend 
robustness improvements in manufacturing systems. 
The framework contributes to the scientific literature 
and, to the knowledge of the authors, is unique in 
being applicable to any type of disturbance described 
by any metrics using a multi-disciplinary collection of 
methods that formulate a detailed, pragmatic, meth-
odical approach.

More in detail, existing, similar approaches do not 
address both strategic and operational disturbances 
or are limited to simplified representations of the 
manufacturing system to reduce the complexity of 
the mathematical problem (based on systems of dif-
ferential equations) to enable the numerical solution 
and optimisation of the model. The proposed 
approach based on discrete event simulations solves 
this issue allowing the modeller to choose the pre-
ferred level of detail and capture the complexity of 
real manufacturing systems as much as desired. 
Although in the literature other simulation 
approaches can be found that avoid the mentioned 
numerical complexity with system dynamics, agent- 
based models or discrete event simulations, such 
methods do not present the detailed, methodical, 
multi-disciplinary process proposed in this work able 
to identify the deeper root causes of disruptions.

Further developments of the framework can be 
directed towards the implementation of the mentioned 
alternative simulation approaches (e.g. agent-based or 
system dynamics) that could be more suitable for pecu-
liar manufacturing systems or robustness analyses. 
Furthermore, the financial implications could be further 
expanded and enriched with more comprehensive indi-
cators that go beyond the computation of costs.
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