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Abstract
A major part of Prognostic and Health Management of rotating machines is dedicated to diagnosis operations. This
makes early and accurate diagnosis of single and multiple faults an economically important requirement of many indus-
tries. With the well-known challenges of multiple faults, this paper proposes a new Blended Ensemble Convolutional
Neural Network – Support Vector Machine (BECNN-SVM) model for multiple and single faults diagnosis of gears. The
proposed approach is obtained by preprocessing the acquired signals using complementary signal processing techniques.
This form inputs to 2D Convolutional Neural Network base learners which are fused through a blended ensemble
model for fault detection in gears. Discriminative properties of the complementary features ensure the high capabilities
of the approach to give good results under different load, speed, and fault conditions of the gear system. The experimen-
tal results show that the proposed method can accurately detect rotating machine faults. The proposed approach com-
pared with other state-of-the-art methods indicates improved overall effectiveness for gear faults diagnosis.

Keywords
Gears, complementary, diagnosis, blending ensemble, multiple faults

Date received: 11 February 2022; accepted: 14 September 2022

Introduction

One of the key systems in the mechanical transmission
is the gearbox. Gearboxes are manufactured in different
sizes and are made up of shafts, bearings, and gears.
There are different types of gear, which includes bevel
gear, spur gear, and the helical gear. Gears find applica-
tion in various industries such as transportation, manu-
facturing, renewable energy, and aerospace.

From surveys, it is observed that gear faults can lead
to losses, increased downtime, and catastrophic failure,
for instance in a ship’s propulsion system damage in
China in 2006,1 and Turoy helicopter crash in 2016 at
the North Sea.2 Gear faults can in principle be caused
by application error, design error and manufacturing
error.3 To ensure that the huge resources expended on
these assets are preserved and that profits are maxi-
mized, condition monitoring of rotating machines is of
great importance. Condition monitoring is the process
of determining various health parameters of systems to
estimate the changes in the health status of a machine.
These tasks include fault detection, fault identification,
severity estimation, prognostics, root cause analysis,
and decision making.4,5 Condition Monitoring can be
carried out using different datasets or a combination of
datasets such as vibration, oil debris analysis, and
acoustic emission datasets.6–8

Vibration analysis is a well-established non-intrusive
method for fault diagnosis. It has been the focus of
most research in which different gear diagnostic solu-
tions have been proffered. Vibration signals are sensi-
tive to rotating machine faults,7 have ease of online
implementation,9 and give a better correlation with
gear dynamics.10 The traditional approaches of fault
diagnosis involve a good number of signal processing
techniques such as cyclo-stationary analysis,11 auto-
gram analysis,12 wavelet analysis,13 and improved vari-
able mode decomposition.14 A combination of signal
processing techniques have also been used by some
researchers for gearbox fault detection. Yu et al.15 pro-
posed an improved morphological component analysis
method with Hilbert envelope spectrum analysis for
gearbox fault detection. Zhang et al.16 proposed
improved dual-tree complex wavelet transform
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combined with minimum entropy deconvolution for
gearbox fault diagnosis. These methods require prior
knowledge of the system where the vibration signal was
obtained, deep expertise in interpreting the final results,
and in some cases trial/error methods to fix some of
the parameters. These disadvantages have put some
limitations on the use of signal processing techniques
alone for gear fault detection.

Advancement in science and technology birthed the
concept of Intelligent Fault Diagnosis (IFD). Basic
IFD system involves data acquisition, feature extrac-
tion/selection and decision making. Intelligent diagnos-
tic methods can be created by employing machine
learning and deep learning algorithms. Various health
condition indicators in the time domain, frequency
domain, and time-frequency domain have been utilized
with shallow machine learning, and in some cases deep
learning algorithms to detect gear faults. Statistical fea-
tures based on vibration signal fused with those from
acoustic emission signal were exploited in Support
Vector Machine (SVM) and Proximal Support Vector
Machine (PSVM) for detection of gear tooth breakage,
gear with face wear, gear with a crack at the root, and
good gear conditions.17 Rafiee et al.,18 developed an
artificial neural network gear fault detection and identi-
fication system by exploiting fault features extracted
from the standard deviation of wavelet packet coeffi-
cients. They also performed a comparative study for
fault detection of bevel gear, utilizing predominantly
statistical features from the morlet wavelet coeffi-
cient.18 Wang19 showed that five different levels of gear
cracks can be identified using Daubechies 44 binary
wavelet packet transform at various wavelet decompo-
sition levels, ranging from zero to four and advanced
K-nearest Neighbor technique. Hybrid gear faults were
also identified by Li et al.20 using Variational Mode
Decomposition (VMD) and spectral regression-
optimized kernel fisher discrimination through features
obtained from all the resultant modes of the VMD.
The multi-layer neural network with deep belief net-
work, time domain and frequency domain statistical
features were deployed by Chen et al.21 in gearbox fault
identification. Han et al.22 showed that comprehensive
neural network outperformed the wavelet convolu-
tional neural network, Fast Fourier transform deep
belief network and Hilbert–Huang transform convolu-
tional neural network when trained on vibrational sig-
nal involving tooth pitting, gear crack, broken tooth,
normal gear and tooth wear.22 Another approach for
detecting eight conditions of a gearbox was developed
by Chen et al.23 through the fusion of CNN and
autoencoder.

Since gear damage may exhibit one or more failure
modes: pitting,24 breakage and wear,25 single and multi-
ple faults can coexist in rotating machines. Multiple
faults are the simultaneous existence of more than one
fault in one or more than one rotating component.1

Amongst other reasons, multiple faults are more chal-
lenging to diagnose because the vibration

characteristics of such faults overlap with each other.
To address these challenges, a selection of some signal
processing techniques with particular attention to com-
plementarity can be beneficial to gearbox multiple fault
detection.

Bicoherence analysis and its modified versions have
been successful in the detection of non-linear interac-
tions between frequency components of the gear vibra-
tion signal.26,27 It has unique capabilities in noise
suppression, and there is a requirement that the ana-
lyzed spectral components must be amplitude and
phase coupled. However, with the use of quadratic
phase coupling as an indicator of non-linearity in a sys-
tem, the conventional bicoherence in some cases may
show spurious peaks even when no quadratic phase
coupling is present.28 This can occur in scenarios where
the available total length of the data record is short,
such that the main frequencies are not independent
over each segment in the estimation process. Hence,
bicoherence may not always provide a reliable measure
of quadric phase coupling.29

The spectral kurtosis has also been effective in gear
fault diagnosis.30 The frequency band in which gear
fault information reside, can be identified through spec-
tral kurtosis. Spectral kurtosis is sensitive to non-
stationary changes in a signal.31,32 However, when gear
faults are masked by high non-gaussian noise and the
machine’s natural frequencies, spectral kurtosis encoun-
ters problems because as the transient’s recurrence rate
increases, the kurtosis value will decrease.12

Cyclic spectral coherence has been explored by dif-
ferent researchers for gearbox fault detection.11,33

Cyclic spectral coherence can reveal hidden periodici-
ties of second-order cyclostationarity.34 It is effective
even under non-gaussian noise applications. However,
in variable speed conditions, the cyclic spectral coher-
ence may still require extra preprocessing steps for the
vibration dataset. This is because this technique is
known to produce smeared plots as a result of the cyc-
lic modulation frequencies.

Machine health monitoring data are sometimes
known to be non-gaussian, non-linear, and multimodal.
Hence, in some cases, single models do not perform
well.35 This challenge can be overcome through the use
of ensemble learning. Ensemble learning is a group of
strategies where instead of building a single model, mul-
tiple base learners are combined to decide the outcome
of machine learning operation.36 Ensemble learning has
been successful in providing improved results and has
found applications in different subjects including fault
diagnosis of rotating machines.

An ensemble of 1D convolutional neural network
was exploited in worn gearbox fault diagnosis based on
raw X, Y, Z-axis vibration dataset by Hsiao et al.37

Yu38 relied on a Selective Stacked Denoising
Autoencoders (SSDAE) with Negative Correlation
Learning (NCL) for gearbox diagnosis. To obtain good
results under varying operating conditions, and limited
data conditions, Han et al.39 developed a
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Convolutional Neural Network (CNN) known as
dynamic ensemble convolutional neural network for
the fusion of multi-level wavelet packet for gearbox
diagnosis. To further improve accuracy, Hu15 proposed
an ensemble of an ensemble for rotating machine fault
diagnosis. Hu et al.40 applied improved wavelet pack-
age transform (IWPT) with SVM ensemble for rotating
machine diagnosis. Senanayaka et al.41 proposed a
hybrid learning algorithm consisting of multilayer per-
ceptron and CNN for mixed gear fault diagnosis.
Other researchers also proposed various ensemble
architectures for gearbox diagnosis under noisy condi-
tions, online, and varying working conditions.7,35,42–44

A key drawback in all of these has been the overall
effectiveness of these ensemble models.

Therefore, the novelty of this article is to implement
and experimentally validate for the first time the combi-
nation of three preprocessing methods of cyclic spectral
coherence, spectral kurtosis and bicoherence analysis
on gear residual signal using blending ensemble learn-
ing for intelligent diagnosis of gear multiple faults.
Hence, a blended ensemble based on convolutional
neural network is proposed. While being computation-
ally less expensive,45 the blended ensemble system can
improve the gear fault diagnosis accuracy. The remain-
der of the paper is organized as follows: the materials
and methods, signal processing techniques, ensemble
learning methods used are highlighted in Section 2. The
experimental setup is described in Section 3. Results
and discussions form Section 4 of this article, and
Section 5 highlights the conclusions of this work.

Materials and methods

In this section, we introduce the proposed diagnostic
architecture for gear fault diagnosis. We also provide
an overview of the key elements of the method for
improved gear multiple fault diagnosis. Figure 1 shows
the elements in the diagnostic process. This includes
vibration data acquisition, data-processing with Time
Synchronous Averaging (TSA) and residual signal
extraction, data processing using complementary signal
processing techniques, base learners, and meta-learner.

One of the key preprocessing steps here is the TSA46

to remove periodic wave-form from non-periodic wave-
forms in the vibration dataset. This is achieved by aver-
aging the vibration signal over each revolution.47 TSA
can be implemented through an algorithmic proposi-
tion by Bechhoefer and Kingsley46 Mathematically, the
TSA can be estimated using equation (1)

TSA=
1

N

XN
i

xi (1)

Where in equation (1), xi is the resampled vibration sig-
nal, N is the total number of segments of the signal, i is
the index of the resampled signal segment. Residual sig-
nal is then obtained by removing the shaft frequency,
gear mesh frequency and their harmonics.4 The learn-
ing techniques can be grouped into the base learners
and the meta learner. The base learners are individual
learners that learn directly from the preprocessed input
dataset. The meta-learner on the other hand learns

Figure 1. Proposed architecture for gear diagnosis.
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from the predictions of the base learners. Test is carried
out with test dataset to ascertain the condition of the
gear. Other elements of the proposed method include
the various signal processing transform inputs on which
the base learners are trained. As discussed in section 1
of this article, the selected signal processing transforms
include cyclic spectral coherence, spectral kurtosis and
bicoherence analysis.

Bicoherence

One of the Higher-Order Spectral Analysis methods is
the bispectrum analysis, and its normalized version, the
bicoherence analysis. They are an extension of the
power spectrum. The bispectrum is related to the skew-
ness of a signal and can be used to detect the asym-
metric nonlinearities in a signal.48 Bispectrum analysis
provides a frequency domain measurement of the
degree of coupling between three frequencies such as f1,
f2 and f1+ f2 components in a non-linearly interacting
system.49 The bispectrum estimation method can be
obtained using the direct and indirect methods.
However, the direct method is preferred because it is
computationally less expensive.50 Hence, the bispec-
trum of a signal can be estimated using equation (2):

B f1, f2ð Þ=E X f1ð ÞX f2ð ÞX� f1 + f2ð Þ½ � (2)

Where E[.] is the expectation operation, * is the com-
plex conjugate.

The variance of the bispectrum estimate is propor-
tional to the triple product of the power spectrum. This
results in a situation that can cause a misinterpretation
of the results since the second-order properties of the
vibration signal can dominate the bispectrum esti-
mate.48 Hence, this issue can be resolved by normaliz-
ing the bispectral estimate to obtain the bicoherence, as
given by equation (3):

b2 f1, f2ð Þ= B f1, f2ð Þj j2

E jX f1ð Þ f2ð Þj2
h i

E jX f1 + f2ð Þj2
h i (3)

Cyclic spectral coherence

The vibration signal of a rotating machine operates in
a way that will produce periodic signals under normal
working conditions.9 A cyclostationary process is a sto-
chastic process that exhibits hidden periodicity. There
are different orders of cyclostationarity that can be
defined based on the order of the moments. Hence an
nth order cyclostationary signal is a signal whose nth-
order statistic is periodic. These include first order, sec-
ond order and third order.

The autocorrelation function of a second-order
cyclostationary signal is periodic, and this conforms to
equation (4):

R2x t, tð Þ=R2x t+T, tð Þ =Efx(t) x(t� t)�g (4)

where t is the time lag, T is the period, E[.] is the expec-
tation operation and � is the complex conjugate.

The cyclic spectral correlation provides a tool for the
description of the first order and second-order cyclosta-
tionary signals in the frequency-frequency domain,51

which can be expressed as equation (4).

C a, fð Þ= lim
n!‘

1

w
E X fð Þd x(t)½ � X fð Þd x(t+ t)½ ��
� �

(5)

To minimize uneven distributions, a normalization of
the Cyclic Spectral Correlation C a, fð Þ gives a computa-
tion of the Cyclic Spectral Coherence (CSCoh) in equa-
tion (6).

CSCoh a, fð Þ= C a, fð Þ
C 0, fð ÞC 0, f� að Þ½ �

1
2

(6)

where f is the spectral frequency which can be linked to
the carrier component, and a is the cyclic frequency
related to modulation.

Spectral kurtosis

Antoni52 described spectral kurtosis based on the
Wold-Cramer decomposition. It defines a non-
stationary stochastic process as the output of a linear,
causal, and time-varying system:

x tð Þ=
ð+‘

�‘

ej2pftH t, fð ÞdX fð Þ (7)

where H(t,f) is the time-varying function interpreted as
the complex envelope of the process x(t) at a frequency
‘‘f,’’ and ‘‘dX(f)’’ is the unit variance of an orthogonal
spectral process. The fourth-order normalized cumu-
lant for a conditionally non-stationary process can be
expressed by equation (8):

Kx fð Þ=
jH(t, f)j4

D E

jH(t, f)j2
D E2

� 2 (8)

In equation (8), H(t, f) is complex envelope at fre-
quency f, and \�. is the temporal average operator.
However, when stationary additive noise is present,
spectral kurtosis of the vibration signal can be com-
puted through equation (9), where r(f) is the noise to
signal ratio at frequency f.

Kx fð Þ= Kx fð Þ
½1 + r(f)�2

(9)
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Convolutional neural network

CNN is a feed-forward model for processing grid-
patterned data and is designed to automatically learn
spatial hierarchies of features.53 Generally, some layers
of the CNN are the convolutional layer, pooling layer,
and fully connected layer. The CNN has been useful in
some diagnostic architecture for gear, bearing, and
drive train faults.54–56

The convolutional layer is important in CNN. It is
made up of multiple learnable kernels or convolutional
filters where the input image is convolved with the fil-
ters in that layer to give output feature maps.57 The ker-
nel is a grid of discrete numbers with each value known
as the kernel weight. The results at the end of the con-
volution operation become input to the activation func-
tion to give the final output of the convolution layer.

Given an input to a CNN with size a 3 a 3 c, where
a is the height and width of the image, and c represents
the dept of the image or the channel. Let the convolu-
tional filter be expressed as l 3 l 3 m where l is less
than a, and m is less than or equal to the size of c. With
the weight, w

0
, and bias terms, b

0
of the kernel, feature

maps h
0
are generated. This is achieved at the convolu-

tional layer by calculating the dot product between the
weight of the kernel and the input data with the bias
term added. The operation is expressed in equation (10)
below:

h
0
=ReLU w

0 � x + b
0

� �
(10)

where ReLU is the activation function known as
Rectified Linear Unit.

The pooling layer is the next layer of the CNN. This
is where sub-sampling or down-sampling operation is
carried out to shrink large size feature maps into
smaller feature maps while upholding dominant fea-
tures. Due to this operation, the network parameters
are reduced and overfitting can be minimized.57

Different types of pooling operation can be implemen-
ted such as maximum pooling layer, average pooling,
and gated pooling.

The fully connected layer is found toward the end of
the CNN model. Each of the neurons in this layer is
connected to all neurons of the preceding layer.57 High
order abstractions obtained from features produced at
other layers are used in this layer for decision making.

Ensemble model

The stack generalization approach was introduced by
Wolpert.58 It is an ensemble learning strategy in which
many base models are trained, and combined through
the use of a meta-learner to enhance the predictive
strength of the models.45 Stack generalization helps to
reduce bias as well as the variance of the machine learn-
ing task. The meta-learner is trained based on input
obtained by k-fold cross-validation. However, in cases

where the value of k is large, a lot of resources are
expended in the training process.45

To overcome this challenge, a variation of stack gen-
eralization known as blending is used in this article.
Amongst other advantages, blending ensemble is sim-
ple. A typical blending ensemble does not involve k-
fold cross-validation. In blending, the predictions from
different base models are used as training data for the
meta-learner to approximate the target value.59 In our
proposed approach, the meta-learner is the multiclass
Support Vector Machine (SVM). Regression and classi-
fication problems can be addressed with SVMs. The
SVM works by making an optimal hyperplane to sepa-
rate between the datasets, with the minimum distance
between the data points described as support vector.
Constrained quadratic optimization is used to achieve
this objective by using structural risk minimization.
Directed acyclic graphs, one versus one, and one versus
all, are the techniques by which a multiclass SVM can
be developed. One versus one coding design for eight
classes is applied in this study through the Error-
Correcting Output Code (ECOC) algorithm.60

Experiment

Experimental setup

The Prognostic Health Management Society 2009
labeled gear dataset61 is used in this article. Figure 2(a)
and (b) show the details of the experimental setup.

The experimental setup comprises four bearings,
gears, input shaft, idler shaft, output shaft, and two
accelerometers which are mounted on the input and
output shaft retaining plates to measure the vibration
signal. The two accelerometers are Endevco 6259M31
accelerometers having a sensitivity of 10mV/g, with an
error of 61%, and mounted resonance frequency of
. 45kHz. Additionally, an attached tachometer pro-
duces 10 pulses per revolution, thus providing accurate
zero-crossing information. The gear types include spur
gear and the helical gear. The dataset acquired for the
spur gear was different from that collected for the heli-
cal gear conditions.

In this article, only the signal representing the spur
gear is used. In Figure 2(b), T denotes the number of
teeth. The number of teeth on the spur gear mounted
on the input shaft is 32. The idle shaft has two spur
gears mounted on it. Hence, the spur gear has 96 teeth
which meshes with the spur gear having 32 teeth on the
input shaft. Similarly, the spur gear having 48 teeth
meshes with spur gear having 80 teeth, which is
mounted on the output shaft. Since the gear faults
information are mostly hidden in the high-frequency
band,62 this dataset was collected at a sampling fre-
quency of 66.67 kHz for 4 s.

The spur gear dataset was collected at low and high
load conditions at rotating speed conditions of 30, 35,
40, 45, and 50Hz. Each of the data files is made up of
three columns where column one is the input voltage,
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column two is the output voltage, and column three is
the tachometer. There are eight labeled signals of the
gearbox namely: spur 1, spur 2, spur 3, spur 4, spur 5,
spur 6, spur 7, and spur 8. Some of the gear faults
include chipped tooth, eccentric gear, and broken
tooth. In Table 1, the spur 2 signal shows a case of
multiple faults in the gear. Here, chipped tooth fault
and eccentric gear fault are present in that signal. The
gear chipped tooth and broken can be caused by initial
fatigue damage, and progressing fatigue crack, respec-
tively. The eccentric gear can be attributed to assembly
and manufacturer errors. Also in Table 1, more details
of the signal types and their labels are shown, IS:IS
represents Input Shaft : Input Slide, ID:OS is the Idler
Shaft : Output Slide and OS is the Output Shaft.

Application of the proposed method

Data preprocessing and data split

The data processing step starts with performing TSA
on the entire dataset. The TSA and all other processing
were performed using MATLAB�. Residual signal
extraction was performed on the result of the TSA
operation to remove the shaft frequency, gear mesh fre-
quency and their harmonics. Figure 3 shows the time
domain plots of the residual signal for one rotation of

the shaft. Three complimentary signal processing tech-
niques were selected and used to obtain an extended
feature set with spectral kurtosis, cyclic spectral coher-
ence, and bicoherence analysis.

The spectral kurtosis plots or kurtogram were
obtained using a maximum decomposition level for the
chosen length of signal. The kurtogram is indicated in a
combination of frequency (f, Df) plane as shown in
Figure 4. In this article, 400kurtogram of size 224 3 224
3 3pixels were created as inputs to the CNN-2 which
constituted the 280kurtogram for training, 60kurtogram
for validation, and 60kurtogram for testing.

One of the key considerations when generating the
cyclic spectral coherence maps was the computational
cost. Hence, a frame size that could allow for fast com-
putations as well as obtaining good plots were used.
Here, 12,925 data points were utilized in the creation of
each of the cyclic spectral coherence maps. The window
length chosen was 256, with the highest cyclic frequency
to be scanned as 300Hz. These parameters are different
from the example shown in Figure 5. Figure 6 shows
the Cyclic Spectral Coherence maps for spur 1, spur 2,
and spur 3. Hence, cyclic spectral coherence compo-
nents defined in terms of cyclic and linear frequency
form the maps, which constitute inputs to CNN-1.

Similar to the kurtogram, and cyclic spectral coher-
ence maps, the bicoherence maps were composed of a

Figure 2. (a) Experimental setup61 and (b) Plan view of the gearbox.61

Table 1. Details of the dataset.

Gear Bearing Shaft

Label 32T 96T 48T 80T IS: IS ID: IS OS: IS IS: OS ID: OS OS: OS Input Output

Spur 1 Good Good Good Good Good Good Good Good Good Good Good Good
Spur 2 Chipped Good Eccentric Good Good Good Good Good Good Good Good Good
Spur 3 Good Good Eccentric Good Good Good Good Good Good Good Good Good
Spur 4 Good Good Eccentric Broken Ball Good Good Good Good Good Good Good
Spur 5 Chipped Good Eccentric Broken Inner Ball Outer Good Good Good Good Good
Spur 6 Good Good Good Broken Inner Ball Outer Good Good Good Imbalance Good
Spur 7 Good Good Good Good Inner Good Good Good Good Good Good Keyway

Sheared
Spur 8 Good Good Good Good Good Ball Outer Good Good Good Imbalance Good
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training set of 280 images for each signal transform.
Figure 6 represents bicoherence maps which indicate
interactions between spectral components at

frequencies component f1 and f2. These maps form
inputs to the CNN-3. The validation set for each trans-
form was made of 60 images, and the testing set for

Figure 3. Residual signal of: (a) Spur 1, (b) Spur 2, and (c) Spur 3.

Figure 6. Bicoherence map of: (a) Spur 1, (b) Spur 2, and (c) Spur 3.

Figure 4. Kurtogram of: (a) Spur 1, (b) Spur 2, and (c) Spur 3.

Figure 5. Cyclic spectral coherence map of: (a) Spur 1, (b) Spur 2, and (c) Spur 3.

Inyang et al. 7



each transform was made of 60 images. In Table 2, the
detailed specifications of the training, validation, and
testing datasets for each of the machine signals
described in Table 1 are provided.

Where in Table 2, S, LL, and HL represent the speed,
low load, and high load conditions of the machine, ‘‘run
one’’ refers to data collected during the first operation of
the test rig, ‘‘run two’’ represents the dataset collected at
the second operation of the machine.

Learners

The base learners are the individual learners on which
the preprocessed datasets are trained. They are pre-
sented with images processed using the selected signal
processing transforms. Hence, creating the cyclic spec-
tral coherence model branch, spectral kurtosis model
branch, and bicoherence model branch of the ensemble.
Parameters such as the initial learning rate were set at
0.001 for each of the branches. Table 3 shows the struc-
ture of CNN-1, CNN-2, and CNN-3; with CNN-1
being the ‘‘convolutional neural network one,’’ CNN-2
the ‘‘convolutional neural network two,’’ and CNN-3 is
the ‘‘convolutional neural network three.’’

Some data augmentation techniques were implemen-
ted to improve the attribute of the data and also
increase the data size.57 These included safe image rota-
tion between – 20� and 20�. With the training dataset
being in the central position, vertical and horizontal
translation were implemented on them. This involve
images in the training set being moved down, up, left,
or right to overcome position bias. The vertical and
horizontal translations were set to 25 to 5 pixels. The

training duration of the model based on proposed
method was 13,680 s. This was carried out using
Intel(R) Core(TM) i7-8550U single CPU at 1.8GHz
and useable RAM size of 7.87GB.

Performance evaluation

To ascertain the performance of the proposed architec-
ture, different metrics were used. These include F1-
Score, accuracy, recall, precision, false-positive rate,
false-negative rate, Receiver operating characteristic
curve and Area Under the Curve. Mathematically,
these metrics are expressed in equations (11)–(16).

(1) The accuracy is the ratio of the number of cor-
rect predictions to the total number of predic-
tions. However, accuracy alone as a
performance metric is not to be relied on. This
is because when working with an imbalanced
dataset, even a model with zero predictability
could still give high accuracy. Accuracy is given
by equation (11); where ACC is accuracy, TN is
true negative, TP is true positive, FN is false
negative, and FP is false positive.

ACC=
TN + TP

TP +FN + TN + FP
(11)

(2) The recall is a metric that states the portion of
the actual positive samples that were correctly
identified. It shows the samples belonging to a
class that were correctly classified. It is given by
equation (12):

Recall=
TP

TP + FN
(12)

(3) Precision is a performance metric that defines
the ratio of correctly classified positive samples
to the number of samples that the network
labels as positive. It is given as equation (13):

Precision=
TP

TP + FP
(13)

(4) The false-positive rate is also known as the false
alarm rate. It gives the percentage of samples
predicted to belong to each class that are incor-
rectly classified. This metric is very important
because the cost of shutting down the machine
when the machine is not faulty can be very high.
It is expressed as FPR in equation (14):

FPR=
FP

TN+ FP
(14)

Table 2. Details of the training, validation, and testing vibration
dataset.

Set Images Runs S, LL & HL

Training 280 1 & 2 30–40 (LL–HL)
Validation 60 1 & 2 45 LL–50 HL
Testing 60 1 & 2 50 HL–50 LL

Table 3. Structure of the base learners.

Name CNN-1 CNN-2 CNN-3

Input 2243 2243 3 2243 2243 3 2243 2243 3
Conv_1 83 33 33 3 83 53 53 3 83 33 33 3
Maxpool_1 33 3 33 3 33 3
Conv_2 163 33 33 8 163 53 53 8 83 33 33 8
Maxpool_2 33 3 33 3 33 3
Conv_3 323 33 33 16 323 53 53 16 163 33 33 8
Maxpool_3 33 3 33 3 33 3
Conv_4 643 33 33 32 643 53 53 32 323 33 33 16
dropout 40 75 70
Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

SoftMax 1 1 1
Output 8 8 8
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(5) The false-negative rate is the percentage that all
the samples belonging to each class are incor-
rectly classified. Equation (15) gives the False
Negative Rate (FNR) as:

FNR=
FN

TP + FP
(15)

(6) The Receiver Operating Characteristic Curve
(ROC) is a metric which shows the performance
of each of the classification models at all the
classification thresholds. It demonstrates how

effectively a certain detector can separate
groups in a quantitative way.63 The ROC graph
plots the True Positive Rates against the False
Positive Rates.

(7) A closely related metric to the ROC graph is the
Area Under the Curve (AUC). AUC indicates
the ability of a classifier to avoid false classifica-
tion. It measures the whole two-dimensional
area underneath the ROC curve. The estimate
of the ROC curve and the AUC are presented
for the proposed method given in this article.

(8) The F1 score is the harmonic mean between the
precision and the recall.

F1 Score= 2 x
Precision x Recall

Precision + Recall
(16)

Results and discussions

The proposed method for gear multiple fault diagnosis
was developed from the use of extended feature sets on
gear residual signal. Different metrics have been defined
for the evaluation of the performance of the proposed
methodology. Figures 7(a), (b) and 8 show the confu-
sion matrixes of different CNN models using cyclic
spectral coherence inputs, spectral kurtosis maps, and
bicoherence maps respectively.

Taking Figure 7(a) (CNN-1), the column shows the
true class or output class, while the predicted class or
target class is represented by the rows. The diagonal
cells show the percentage and the number of correctly
classified gear conditions by the trained model. The sec-
ond cell on the diagonal shows that 60 observations
represent 12.5% of the 480 total test datasets used in
testing. These were classified as having chipped tooth
and eccentric faults in the spur 2 signal. The test

Figure 7. Confusion matrix of: (a) CNN-1 and (b) CNN-2.

Figure 8. Confusion matrix for CNN-3.
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accuracies of these models on the test dataset are shown
on the last cell on the far right of the confusion
matrixes.

The validation accuracy of the CNN-1, CNN-2, and
CNN-3 models trained independently, was found to be
98.54%, 94.58%, and 88.95%, respectively. While the
test accuracy of these models was 97.71% for CNN-1,
93.80% for CNN-2, and 86.90% for CNN-3. In the
CNN-1 model, the overall precision was 0.9775 and a
recall of 0.9771. The CNN-2 model produced a preci-
sion of 0.9390 and a recall of 0.9375, while the last
model, CNN-3 outputs a precision of 0.8710 and an
overall recall of 0.8688.

Considering the signals with case label spur 1, spur 2
where multiple faults is present, and spur 3 where a sin-
gle fault is present, the confusion matrix in Figure 7(a)
is used as a representative case for analysis of the single
and multiple faults misclassification. For the rows of
this confusion matrix, the predicted class, out of 62 spur
1 predictions, a precision of 96.8% was obtained, and
3.2% constituted the false positive rate. Similarly, out
of the 63 spur 2 predictions, 60 of them were true posi-
tives, while 3 were false positives – belonging to signals
with case label spur 3 and spur 5. Considering spur 3 on
the confusion matrix, there was a positive predictive
value of 100% and a false positive of 0%.

In the column of the confusion matrix, out of the
combined 120 spur 1 and spur 2 cases, CNN-1 indicated
a recall of 100%, while recording a 0% false negative
rate for the respective classes. Of the 60 spur 3 cases,
96.7% were correctly predicted to be spur 3 and 3.3%
were predicted to be spur 2. Hence, the reason for this
misclassification between signal with case label spur 3
and spur 2 can be attributed to spur 2 being a multiple
faulted signal consisting of a fault type present in the
signal case (spur 3) from the same gear. That is, the

signal spur 2 is made up of chipped tooth gear fault
and eccentric gear fault, while the signal with label spur
3 is made up of eccentric gear fault which has the same
physical principle as that of a constituent of spur 2.

Among the single models, the CNN-3 model had the
lowest overall effectiveness. A reason for this is the
presence of spurious peaks which may not be related to
the fault may appear as quadratic phase coupling. Also,
the choice of the number of samples to constitute a seg-
ment can limit the accuracy. CNN-1 showed the best
performance amongst the single models. This is because
the cyclic spectral coherence provides a comparative
advantage in analyzing signatures with non-linearity,
non-stationarity and non-gaussianity.9

Figure 9(a) shows the confusion matrix of the pro-
posed method using multiclass SVM as meta learner.
Based on the proposed approach, the performance of
the trained model was also evaluated using the same
performance metrics as those of the individual models.
The overall test accuracy of the proposed model
BECNN-SVM was 99.40%, the overall precision and
the overall recall were 0.9939 and 0.9938 respectively.
However, to examine the performance of the proposed
model using a meta learner that operates on another
algorithm, the decision tree was used as an alternative
meta learner to obtain the so-called BECNN-DT.
Figure 9(b) represents a confusion matrix that has a
decision tree as the meta learner. This alternative model
had an overall test accuracy of 97.90%, the overall pre-
cision was 0.9792, and the overall recall was 0.9798.

Taking signals with case label spur 1, spur 2 and spur
3 in the confusion matrix of the proposed model
BECNN-SVM in Figure 9(a). It indicates that for spur
1, there was 0% false positive rate and false negative
rate. That is, while the gear was predicted by the model
to be spur 2, it was actually of that case label.

Figure 9. Proposed model’s confusion matrix: (a) BECNN-SVM and (b) BECNN-DT.
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Although, there was 1.6% false positive rate and 0%
false negative rate for spur 2, the proposed model pre-
dicted 0% false positive rate and 1.7% false negative
rate for spur 3. It can be observed that among the mod-
els’ confusion matrixes, the proposed ensemble model
BECNN-SVM, returned the lowest misclassification
rates.

As one of the common methods to estimate the
detection performance of the models, the ROC curves
for CNN-1, CNN-2, CNN-3, BECNN-DT, and the
proposed model, are shown in Figures 10 and 11 of this
article. During the comparison of the ROC curves of
different tests, the worst curve lies closer to the diagonal
while the best curve lies closer to the top left corner of
the curve.63 Hence, taking the ROC curves in Figure
10(a) to (c), it was observed that while CNN-1’s ROC
curve lies closest to the top left corner, spur 1 in the
same figure showed the best performance with AUC of

1. On the other hand, the presented single models
achieved the best performance for mean AUC of 0.9975
with spur 7 and worst performance with spur 8 having a
mean AUC of 0.9804.

Figure 11(a) shows the ROC curve for the proposed
model (BECNN-SVM). It has the overall best perfor-
mance across all classes and models with an AUC of 1.
Figure 11(b), a comparative model, indicates a ROC
curve that is not as good as that of the BECNN-SVM
with an AUC less than 1 amongst the classes.

A variety of deep ensemble learning has been pro-
posed for gear diagnosis in literature. The overall accu-
racy of these methods is shown in Table 4 for
comparison with our results.

The average accuracy of all the models in Table 4
was 95.96% compared to 99.40% obtained using the
proposed approach. This implies that on the average,
our method outperformed these approaches by 3.44%.

Figure 10. Receiver characteristic curve of: (a) CNN-1, (b) CNN-2 and (c) CNN-3.

Figure 11. Receiver characteristic curve of: (a) The proposed model BECNN-SVM and(b) BECNN-DT.
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Conclusion

An approach for multiple fault diagnosis of gears was
implemented in this research. Three signal processing
techniques were utilized in preprocessing gear residual
signals for intelligent diagnosis of gear faults. Being
simpler and straightforward, the deep blending ensem-
ble learning method was developed for gear diagnosis.
BECNN-SVM showed increased overall effectiveness
when compared with the best individual models and
state-of-the-art methods. The complementary nature of
the transforms entailed that the approach is flexible to
new faults scenario input to the system. For instance,
while the training was based on 30–40 Hz speed and
low-high load conditions, testing of the models’ overall
effectiveness was based on 50 Hz speed and low-high
load conditions.
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