
Multi-Agent Deep Reinforcement Learning for Solving

Large-scale Air Traffic Flow Management Problem: A

Time-Step Sequential Decision Approach

1st Yifan Tang

School of Aerospace, Transport and Manufacturing

Cranfield University

Bedford, United Kingdom

yifan.tang@cranfield.ac.uk

2nd Yan Xu

School of Aerospace, Transport and Manufacturing

Cranfield University

Bedford, United Kingdom

yanxu@cranfield.ac.uk

Abstract—In this paper, we focus on the demand-capacity bal-
ancing (DCB) problem in air traffic flow management, which is
considered as a fully cooperative multi-agent learning task. First,
a rule-based time-step environment is designed to mimic the DCB
process. In this environment, each agent ‘flight’ decides its action
at valid time steps. Three different rules are defined, based on
the remaining capacity and the number of cooperative flights in
each sector, to ease the learning process. Second, a multi-agent
reinforcement learning framework, built on the proximal policy
optimization (MAPPO), is proposed by using the parameter
sharing mechanism and the mean-field approximation method,
where an inherent feature of all other agents is extracted to
address the credit assignment problem. Moreover, a supervisor
integrated MAPPO framework is proposed, where a supervisor is
designed to generate supervised actions, in such a way to further
improve the learning performance. In the experiments, two per-
formance indices, Search Capability and Generalization Capability,
are considered. Both indices are assessed with the evaluation of
two toy cases and a real-world case study. Results suggest that, the
supervisor integrated MAPPO with supervised actions achieves
the best performance across the different cases; other proposed
methods also show some promising Search Capability, but only
prove an acceptable Generalization Capability in simpler cases
than the training cases.

Keywords—Air Traffic Flow Management; Demand-capacity
Balance; Multi-agent Reinforcement Learning; Proximal Policy
Optimization

I. INTRODUCTION

With the fast growing of air transportation in the last

decades, the imbalance of traffic demand and airspace ca-

pacity has been one of the bottlenecks of today’s air traffic

management (ATM) systems. The airspace has become more

congested, and as a consequence recent years often saw record-

breaking flight delays across the world. It was reported that in

2018 and 2019, 30.2 and 33.0 billion extra costs of flight delay

were incurred in the US [1]. Also in 2019, an average departure

delay of 13.1 min and 14 min were observed in Europe [2]

and China [3] respectively.

In response to this issue, the demand-capacity balancing

(DCB) problem has been widely studied for air traffic flow

management (ATFM) [4]. Following the pioneering work in

This work is funded by the SESAR Joint Undertaking under grant agreement
No.891965, as part of the European Unions Horizon 2020 research and
innovation programme: ISOBAR (artificial Intelligence to forecaSt meteO-
Based DCB imbAlances for netwoRk operations planning). The opinions
expressed herein reflect the authors view only. Under no circumstances shall
the SESAR Joint Undertaking be responsible for any use that may be made
of the information contained herein.

[5], different methodologies have been proposed such as the

single/multi-airport ground-holding problem and the rerouting

problem [6]. Bertsimas et al. [7] built a novel IP model to

solve the large-scale ATFM problem, seeking the optimal

combination of different strategies such as ground-holing,

rerouting, speed control. Based on this model, Xu et al.

[8] proposed a collaborative ATFM framework to complete

the traffic flow optimization and the airspace configuration

scheduling simultaneously.

In addition to the above exact search methods, different

heuristic and meta-heuristic methods have been explored [9].

Taylor et al. [10] considered the design variable as a chro-

mosome, and proposed an improved multi-objective genetic

algorithm for automatic design of ATFM strategies. Marina

[11] developed an airspace sectorization framework with ge-

netic algorithm and k-means clustering algorithm, aimed to

reduce the congestion of the airspace systems. Xiao et al. [12]

proposed a hybridized indirect and direct encoding genetic

algorithm for producing the ATFM solution.

Different from the above works formulating the DCB prob-

lem as an optimization problem, several studies have reformu-

lated the problem as a learning task. Based on the air traffic

simulator FACET [13], Kagan et al. [14] transferred the ATFM

problem as a multi-agent reinforcement learning (MARL) task,

where each individual ground location is defined as an agent,

and the action is the separation between aircraft. The ǫ-greedy

Q learning [15] method was utilized, and the trained model was

compared with the Monte Carlo estimation in two simulated

scenarios. Besides, a research team of the DART project

[16] [17] reformulated the DCB problem with ground-holding

strategy to a Markov Decision Process, where each flight is

defined as an agent, and the action is whether to impose

delay to a flight. Based on this formulation, different MARL

frameworks, i.e., the edge-based MARL method and the agent-

based MARL in [16], the hierarchical MARL framework in

[17], have been tested and evaluated in real-world large-scale

ATFM scenarios.

While numerous trails have been conducted using MARL

methods to solve the DCB problems, up to the best of

our knowledge, few discussion has been made towards the

generalization issue of those attempts. In other words, it is

not clear to us if the models trained with a specific ATFM

scenario can be applied to handle a completely new scenario.

As a result, in this paper, we aim to solve the DCB problem

978-1-6654-3420-1/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
/A

IA
A

 4
0
th

 D
ig

it
al

 A
v
io

n
ic

s
S

y
st

em
s

C
o
n
fe

re
n
ce

 (
D

A
S

C
)

| 9
7
8
-1

-6
6
5
4
-3

4
2
0
-1

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/D

A
S

C
5
2
5
9
5
.2

0
2
1
.9

5
9
4
3
2
9

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

li2106
Text Box
In: 2021 AIAA/IEEE 40th Digital Avionics Systems Conference (DASC), San Antonio, 3-7 October 2021DOI:10.1109/DASC52595.2021.9594329

li2106
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

with MARL method such that some of the complexity of the

problem can be addressed offline, i.e., in the learning phase.,

and also discuss the generalization issue in detail. The main

contributions are summarized as follows.

• The DCB problem is transformed into a rule-based time-

step environment, where each flight is to chronologically

select action “Holding” or “Departure” at each valid

time step. Three different rules are devised to filter the

candidate flights to ease the learning task.

• An MARL framework and its variants are proposed based

on the proximal policy optimization method. The ideas of

supervised learning are also integrated to further improve

the learning performance.

• The Generalization Capability and the Search Capability

of the proposed approach are evaluated, via using the

trained model/policy to directly tackle two toy cases with

different flight population size, as well as a new real-

world scenario.

The remainder of this paper is structured as follows: Section

II describes the rule-based time-step environment and the

formulated Markov Decision Process. Section III gives a brief

introduction to reinforcement learning background considered

in this work. Section IV presents the proposed MARL frame-

works, including the baseline MAPPO method, and supervisor

integrated MAPPO methods. The learning performances are

assessed and compared with standard solutions in Section V.

Section VI summarizes the present work and envisions our

future work.

II. ATFM PROBLEM REFORMULATION

In this section, a rule-based time-step environment is in-

troduced to mimic the conventional ATFM decision making

process, which is further formulated as a partially observable

Markov Decision Process (MDP).

A. Time-step Environment

Given a set of flights f ∈ F , a set of sectors j ∈ J ,

a set of time steps t ∈ T , a set of time periods τ ∈ Γ,

and sector capacity at each time period cτj , the initial flight

plan FPf of flight f can be represented as a combination

of crossing sectors and their corresponding scheduled arrival

times. The objective of the considered ATFM problem (with

ground-holding strategy) is to minimize the total ground delay

while resolving any hotspot where the traffic demand is higher

than the sector capacity during any period of time.

This particular problem can be reformulated in a way that,

at every single time step elapsed from the beginning to the end

of the time horizon, each valid flight that has been planned to

take off, needs to decide chronologically whether to hold or

depart now. Thus, the objective is to have as few hold actions as

possible for every flight, whereas no hotspots will be incurred.

A framework for building such environment is shown in

Fig. 1. The Flight Plan Database and the whole airspace sectors

are initialized using the original flight plans and an empty

airspace respectively. At time step t, each flight f on the

ground with a scheduled departure time df ≤ t+ 1 is defined

as a candidate flight. Then, a rule-based decision mechanism,

including Departure, Holding and Cooperation, is designed to

select the action of that candidate flight.

• Holding: When it foresees that its departure must cause a

hotspot by reviewing the remaining available capacity of

each sector appearing in its flight plan, the flight prefers

to hold, which means that the ground delay increases by

one time step;

• Departure: When the remaining capacity of each sector

appearing in the flight plan is larger than the number of

cooperative flights (i.e., all candidate flights planned to

enter the same sector in the same time period), the flight

prefers to depart.

• Cooperation: When the remaining capacity of any sector

appearing in the flight plan is less than the number

of cooperative flights, the Cooperation rule is activated,

meaning that the associated flights need to cooperate to

decide their joint actions.

Fig. 1: Framework of rule-based time-step environment.

After performing the aforementioned mechanism, all candi-

date flights selecting Departure at time step t will enter their

first sector at the next time step t + 1. Their corresponding

flight plans are added to the whole airspace to update the Entry

Count and the remaining capacity of each sector at different

time periods. Besides, the candidate flights with action Holding

still maintain as the candidates for the next time step, and their

flight plans stored in the Flight Plan Database are updated by

adding one time step to the scheduled arrival time of each

sector.

B. Partially Observable MDP

The above environment can be modelled as a partially

observable Markov Decision Process G = (N,S,A,P,R, γ),
where N is the number of agents, S is the set of states, A is the

joint action space, P is the transformation probability, R is the

reward functions, and γ is the reward discount. The definitions

of these elements in this environment are summarized as

follows.

• Agent: To ease the problem’s complexity, only candidate

flights performing the Cooperation rule at time step t
are defined as agents Agt = {Agit|i = 1, ..., Nt}. Con-

sidering the varying size of candidate flights at different

time steps, the number of agents Nt is also changing over

time. Also, the agents in Cooperation are considered to be

homogeneous, aiming to experience the least delay while

solving the hotspots cooperatively.

• State: The local state sit of each agent Agit at time step t
includes the corresponding flight plan stored in the Flight

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

Plan Database, the number of ground delay the flight

has taken, the remaining capacity of each sector, and the

number of cooperative flights in each sector. Meanwhile,

the joint state of all other agents at the same time step

is denoted as s−i
t = {sjt |j = 1, ..., i − 1, i + 1, ..., Nt}.

With a partial observed MDP, each agent has no direct

observation of other agents. The structure of state sit is

depicted as shown in Fig. 2, where Nj is the maximum

number of sectors. Only the crossed sectors by the agent

have values subject to update, whereas the values for other

sectors are fixed to 0.

Fig. 2: Structure of the state matrix.

• Action: At time step t, each agent Agit has two action

choices ait ∈ {0, 1}. If ait = 0, the agent takes the Holding

action, and one time step is added to its ground delay as

well as the scheduled arrival time of each sector in its

flight plan. If ait = 1, the agent chooses departure action,

and the corresponding flight plan is activated to update the

whole airspace. The joint action of all agents at current

time step is represented as at = {ait|i = 1, ..., Nt}.

• Reward: The reward definition consists of two parts, an

instant reward and a common reward. At each time step

t, agent Agit gets an instant reward rt,iins with regard to its

action ait and the current joint action at.

rt,iins = α1 × (1− ait)
︸ ︷︷ ︸

delay reward

+α2 × ait ×Overload(at)
︸ ︷︷ ︸

overload reward

(1)

where α1 and α2 are two negative coefficients. The delay

reward depends on its own action, while the overload

reward is calculated based on the overload increase caused

by the joint action. The overload during the whole periods

is defined as the summary of the excess part when the

Entry Count is larger than the capacity of sector j during

time period τ . Once all the flights have departed, a final

common reward rcom is calculated as:

rcom = α3 ×Overloadfinal × eDelayaverage (2)

where α3 is a negative coefficient; the average delay is the

value of total delay divided by the number of all flights.

The common reward is added to all agents stored. Thus,

the final reward of agent Agit at time step t is computed

as the sum of rt,iins + rcom.

• State transition probability: The state transition proba-

bility p(st+1|st,at) for joint state st is deterministic

assuming no stochastic events. In other words, given a

joint action at, the joint state st+1 transited from the

previous state st is known in the current environment.

However, for the local state of each agent, the transition

probability is stochastic considering that each agent has

no information of other agents’ actions.

Based on the above description, the objective of minimising

Ground Delay and the constraint of Hotspot Resolution for the

ATFM problem will be reformulated as the partially observable

MDP, aimed to achieve the maximum total reward shown as

max
∑

t

∑

i

(rt,iins + rcom) (3)

which is expected to be solved by the reinforcement learning

methods in this paper.

III. REINFORCEMENT LEARNING BACKGROUND

This section gives a brief introduction to the proximal policy

optimization (PPO) method, and then reviews some relevant

approaches of multi-agent reinforcement learning used in this

paper.

A. Proximal Policy Optimization

The policy gradient methods update the policy parameters

by solving an estimated objective function with the stochastic

gradient ascend algorithm. The general formulation of the

estimated function is:

ĝ = Êt[▽logπθ(at|st)Ât] (4)

where, Êt[.] means the average value over a batch of samples;

πθ(at|st) is the policy; Ât is the estimated advantage value;

st, at are the state and action sampled from the memory;. To

limit the divergence between the new policy and the old policy,

a clipped surrogate objective function is proposed in the PPO

method [18],

LCLIP
θ = Êt[min(rt(θ)Ât,F

CLIP (rt(θ), ǫ)Ât)] (5)

where, rt(θ) = πθ(at|st)/πθold(at|st) is the ratio of action

probability obtained by the new policy and the old policy; θ
and θold are the trainable hyperparameters for the new and old

policy respectively; ǫ ∈ [0, 1] is the clipping parameter; the

clipping function in PPO is defined as Eq. (6).

FCLIP (rt(θ), ǫ) =

1− ǫ rt(θ) < 1− ǫ
1 + ǫ rt(θ) > 1 + ǫ
rt(θ) otherwise

(6)

However, the work in [19] proved that the PPO method

fails in restricting the probability ratio rt(θ) within the clipped

range [1 − ǫ, 1 + ǫ] strictly for some tasks. To address this

limitation, a clipping function with a rollback function is

proposed in [19]:

FRB(rt(θ), ǫ, β)

=

− βrt(θ) + (1 + β)(1− ǫ) rt(θ) ≤ 1− ǫ

− βrt(θ) + (1 + β)(1 + ǫ) rt(θ) ≥ 1 + ǫ

rt(θ) otherwise

(7)

where, β is a positive constant parameter determining the effect

of the rollback. Different from the clipping function in Eq. (6),

the rollback function generates a negative feedback when rt(θ)
locates outside the range [1−ǫ, 1+ǫ], which is more promising

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

to weaken the feedback derived from the objective function

LCLIP
θ . The reformulated surrogate objective function LRB

θ is

considered in this paper.

LRB
θ = Êt[min(rt(θ)Ât,F

RB(rt(θ), ǫ, β)Ât)] (8)

B. Multi-agent Reinforcement Learning

Given the fact that the direct interactions between agents and

the environment coexist with the potential interactions among

agents, multi-agent reinforcement learning is faced with sev-

eral challenges, such as non-stationary and credit assignment

[20]. To this end, some approaches including communication

[21], value function or task decomposition [22] and mean-filed

regime [23], have been explored and applied in different fields

and tasks.

The ideas of parameter sharing and mean-field regime are

briefly introduced as follows.

• Parameter Sharing: In the parameter sharing approach,

all homogeneous agents share a common policy, which

allows the policy to be trained with the experience of all

agents simultaneously [24]. For each agent, the shared

policy provides the action according to its own observa-

tion, which maintains the exploration capability.

• Mean-field Regime: For a discrete action space, the

dimension of joint action increases exponentially with

regard to the number of agents, which makes the Curse of

Dimensionality more serious. To tackle the scalability and

the credit assignment issues caused by this problem, the

mean-field regime mechanism simplifies the interactions

of each agent with other agents by some mean-field

quantities, such as the average action [25], the empirical

distribution of other agents’ states [26].

Following these ideas, the existing PPO method will be

further extended to multi-agent PPO, as discussed below.

IV. MULTI-AGENT PROXIMAL POLICY OPTIMIZATION

To tackle the cooperative multi-agent task presented in

section II, a baseline multi-agent proximal policy optimization

(MAPPO) method is discussed. Then, the principle of super-

vised learning is incorporated to form a supervisor integrated

MAPPO so as to improve the training performance.

A. Baseline MAPPO

Inspired from the parameter sharing and mean-field regime

mechanisms, a baseline MAPPO is proposed by extending

the conventional PPO framework to a multi-agent version,

where several adaptations are included to fit the features of

the environment.

Considering the varying agent size in the rule-based time-

step environment, a common actor πθ(·) and a common critic

Vω(·) for state-value are both shared across all agents, which

makes the proposed method applicable to different ATFM

scenarios with different flight plans. Besides, to ease the credit

assignment problem among agents, a mean state feature φ(s−i
t)

is used to indicate the implicit interaction between the agent

Agit and all other agents Ag−i
t = {Agjt |j = 1, ..., i − 1, i +

1, ...Nt} at the same time step. The mean state feature φ(s−i
t)

is extracted by a Recurrent Neural Network (RNN), and is

integrated in the actor and the critic, whose structures are both

depicted in Fig. 3.

Fig. 3: Structure of the actor and critic network.

The only difference between the actor and the critic is

the output layer, where the Soft-max layer is applied in the

actor πθ(·|s
i
t, s

−i
t) to calculate the probability of each action

(Holding and Departure), whereas a linear layer is used in

critic Vω(s
i
t, s

−i
t) to obtain the sate value. Using this structure,

the state value and the action of agent Agit are produced

taking into account the implicit interaction with other agents

as expected. To enable the trade-off between exploration and

exploitation, the action ait of each agent is selected by the

ε-greedy strategy:

ait =

∼ πθ(·|s
i
t, s

−i
t) µ ≥ ε+

(1− ε)Ic
Im

argmax(πθ(·|s
i
t, s

−i
t)) otherwise

(9)

where, µ ∈ [0, 1] is generated randomly for each agent at

each episode and at each time step; ε is the initial greedy

coefficient; Ic ∈ [0, Im] is the current iteration; Im is the

defined maximum iteration. When the random number is larger

than the modified greedy coefficient ε + (1−ε)Ic
Im

, the action

ait of agent Agit is sampled based on the action probability

πθ(·|s
i
t, s

−i
t); otherwise, the action is set as the one with the

maximum probability.

For each agent Agit, the critic is parameterized as the

function Vω(s
i
t, s

−i
t), where ω is the trainable hyperparameter.

Its advantage value Âi
t is calculated by the truncated version

of generalized advantage estimation equation [27]:

Âi
t = δit + (γλ)δit+1 + ...+ (γλ)T δit+1 ≈ δit (10)

where δit is calculated as (rt,iins+rcom)+γVωold
(sit+1, s

−i
t+1)−

Vωold
(sit, s

−i
t); ωold is the parameter of the old critic. In

practical implementation, all agents data are stored in an

universal memory M. Thus, the surrogate objective function

calculated based on a sampled batch is expressed as:

LRB
θ = Êt[min(rit(θ)Â

i
t,F

RB(rit(θ), ǫ, β)Â
i
t)]

≈ Êt[min(rit(θ)δ
i
t,F

RB(rit(θ), ǫ, β)δ
i
t]

(11)

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

where, rit(θ) = πθ(a
i
t|s

i
t, s

−i
t)/πθold(a

i
t|s

i
t, s

−i
t). The common

actor is updated by maximizing the surrogate objective func-

tion, as follows.

∆θ = ▽θL
RB
θ (12)

Algorithm 1: Baseline MAPPO

Initialize common critic πθ and common actor Vω ;

Initialize the old critic πθold ← πθ, and the old critic

Vωold
← Vω ;

Initialize a memory buffer M;

for iteration Ic = 1, ..., Im do

Reset the environment;

Get the initial state of each agent;

for time step t = 1, ..., T in an episode do

Get action {ait}
i=1,..,Nt by Eq. (9) with the old

actor πθold(·|s
i
t, s

−i
t);

Perform at;

Get rt,iins, sit+1, s−i
t+1;

Store (sit, s
i
t, a

i
t, r

t,i
ins, s

i
t+1, s

i
t+1)) in M

end

Calculate the common reward rcom as Eq. (2);

Store the common reward to M;

Get advantage value {Âi
t}

i=1,...,Nt

t=1,...,T by Eq. (10) ;

Compute {yit = Âi
t + Vωold

(sit, s
−i
t)}i=1,...,Nt

t=1,...,T ;

for k = 1, ...,K do

for j = 1, ..., J do

Sample a minibatch from the memory M;

Calculate LRB
θ by Eq. (11);

Calculate Lω by Eq. (13);

Update θ using ∆θ = ▽θL
RB
θ by Adam;

Update ω using ∆ω = −▽ω Lω by Adam;

end

end

Update πθold ← πθ, and Vωold
← Vω ;

Empty the memory buffer M;

end

Besides, the conventional citric update procedure in PPO is

applied to modify the common critic in the baseline MAPPO

method. The critic loss is also calculated based on the sampled

batch from the common memory M, shown as:

Lω = MSE(yit, Vω(s
i
t, s

−i
t)) (13)

where, MSE is the mean square error function; yit = Âi
t +

Vωold
(sit, s

−i
t). The common critic is updated by minimizing

the critic loss, where the critic parameter is update as below.

∆ω = −▽ω Lω (14)

The overall pseudo code of baseline MAPPO is detailed in

Algorithm 1, and more details are presented as follows.

The algorithm starts from initialization including the com-

mon critic πθ, the common actor Vω , the old actor πθold ,

the old critic Vωold
, and an empty memory buffer. In the

data collection procedure, the action ait of each agent Agit
is determined by the old actor πθold(a

i
t|s

i
t, s

−i
t) and the ε-

greedy strategy. After performing the current joint action at,

the environment is updated, and outputs the instant reward

riins, and the state information (e.g., sit+1, and s−i
t+1). The

information of different agents is stored in the memory buffer

M as a whole.

Based on the data stored in M, the final common reward

rcom, and the estimated advantage value Âi
t are calculated

based on Eq. (2) and Eq. (10) respectively. Given the total

epoch K, and the size of minibatch B, the max update

iterations J in each epoch is determined by the total sample

size NM in the memory, i.e., J = NM/B. During the

iteration, a mini-batch is sampled from the memory to calculate

the surrogate objective LRB
θ and the critic loss Lω , which are

both used for updating their hyperparameters by the Adaptive

Moment Estimation (Adam) method [28]. After K epochs, the

old actor πθold and the old critic Vωold
are updated to new πθ

and Vω . After that, the memory buffer M is emptied for the

next iteration.

B. Supervisor Integrated MAPPO

In the rule-based time-step environment, the Departure rule

and Holding rule act as a supervisor for the relevant candidate

flights. Different from these deterministic rules, the candidate

flights in Cooperation need to decide their actions with the

reinforcement learning method, where the joint action at time

step t may cause a hotspot. Such joint action is not expected,

and may cause a waste of time on searching the infeasible

action space.

Inspired by the supervised reinforcement learning approach

[29], a supervisor integrated MAPPO (S-MAPPO) is proposed,

where a supervisor is designed for Cooperation to improve

the scalability and the learning performance. In this paper, the

supervisor aims to transfer the initial joint action at = {ait|i =
1, ..., Nt} to the supervised one sat = {sait|i = 1, ..., Nt} by

considering their effects on the future sectors.

The framework of the supervisor is shown in Fig. 4. At

each time step, the supervisor gets the state value Vω(s
i
t, s

−i
t)

of each agent Agit, and rank all agents by the descend order of

the state value. Then the action ait of each agent is checked in

sequence: if the action ait = 1 causes a hotspot by considering

the states of all agents, the action will be modified to Holding,

denoted as sait = 0; otherwise, the supervised action remains

constant as the initial action, i.e., sait = sit. As a result, the

supervised joint action is predicted to cause no hotspots.

The supervised action is applied from two aspects, a direct

method (S-MAPPO-1) and an indirect method (S-MAPPO-2).

Both algorithms are presented in Algorithm 2.

• S-MAPPO-1: In the direct method, the supervised action

is performed instead of the initial action in the environ-

ment, i.e., ait ← sait. Consequently, no hotspots exist,

and the reward is only associated with the ground delay.

Besides, the training becomes easier, due to a narrowed

action space for searching compared with the action space

in the baseline MAPPO.

• S-MAPPO-2: In the indirect method, the initial action

is performed in the environment. During the training

process, and a new surrogate objective function Lnew
θ is

designed [30]:

Lnew
θ = (1− δ)LRB

θ + (−δ)Lce(πθ, sat) (15)

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Schematic of the role of Supervisor.

where Lce(πθ, sat) is the cross entropy loss (shown as

Eq. (IV-B)) of the supervised learning task, which aims to

minimize the difference between the initial actions and the

supervised actions; δ is the weight parameter to trade off

the reinforcement learning and the supervised learning.

Lce(πθ, sat) = Ê[−sait · log(πθ)

+ (1− sait) · log(1− πθ)]
(16)

As a result, the actor is updated as below.

∆θ = ▽θL
new
θ (17)

V. EXPERIMENTS AND DISCUSSIONS

This section presents the experiments in which training and

evaluation are performed using the proposed approach, with

respect to a group of toy cases and a real-world large-scale case

study. Results are analysed in terms of the search capability

and generalization capability.

A. Experimental setup

Three categories of experimental settings are given below:

Hyperparamter: During training and evaluation, several hy-

perparameters are set as constant values, including the delay

reward coefficient α1 = −0.5, the overload reward coefficient

α2 = −0.5, the clipping parameter ǫ = 0.2, the rollback

coefficient β = 0.3, the initial greedy coefficient ε = 0.1, the

weight δ = 0.5, the reward discount γ = 0.95, and the size of

minibatch B = 20. The common reward coefficient α3 is set

dynamically according to the buffer size Nb, i.e., α3 = − 1
Nb

.

For the toy case with 300 flights, the maximum training

iteration Im is set as 5000 for all three methods. Besides,

for the toy case with 3000 flights and the real-world case

study, the baseline MAPPO and S-MAPPO-2 are performed

with Im = 2000, considering their large action space; and S-

MAPPO-1 works with Im = 200 due to a narrowed action

space.

Performance: The performance is assessed from two aspects:

• Search Capability: the capability of the proposed methods

to handle different DCB scenarios.

• Generalization Capability: the capability of a pre-trained

policy to handle a new DCB scenario.

Evaluation Framework: To assess the above two perfor-

mance indices, two different evaluation frameworks are pro-

posed as shown in Fig. 5, where the solid line represents

framework 1 (EF1), and the dashed line is framework 2 (EF2).

• In EF1, the new scenario is evaluated by the pre-trained

policy with action ait = argmax(πθ(·|s
i
t, s

−i
t)). The

Algorithm 2: Supervisor Integrated MAPPO

Initialize common critic πθ and common actor Vω ;

Initialize the old critic πθold ← πθ, and the old critic

Vωold
← Vω ;

Initialize a memory buffer M;

for iteration Ic = 1, ..., Im do

Reset the environment;

Get the initial state of each agent;

for time step t = 1, ..., T in an episode do

Get action {ait}
i=1,..,Nt by Eq. (9) with the old

actor πθold(·|s
i
t, s

−i
t);

Get supervised action sat;

if S-MAPPO-1 then
at ← sat

end

Perform at;

Get rt,iins, sit+1, s−i
t+1;

Store (sit, s
i
t, a

i
t, sa

i
t, r

t,i
ins, s

i
t+1, s

i
t+1) in M

end

Calculate the common reward rcom as Eq. (2);

Store the common reward to M;

Get advantage value {Âi
t}

i=1,...,Nt

t=1,...,T by Eq. (10) ;

Compute {yit = Âi
t + Vωold

(sit, s
−i
t)}i=1,...,Nt

t=1,...,T ;

for k = 1, ...,K do

for j = 1, ..., J do

Sample a minibatch from the memory M;

Get critic loss Lω of minibatch by Eq. (13);

if S-MAPPO-1 then

∆θ = ▽θL
RB
θ ;

else if S-MAPPO-2 then

∆θ = ▽θL
new
θ ;

Update θ using ∆θ by Adam;

Update ω using ∆ω = −▽ω Lω by Adam;

end

end

Update πθold ← πθ, and Vωold
← Vω ;

Empty the memory buffer M
end

results are collected regardless of hotspots resolved or

not. Considering the deterministic action performed, the

statistic results, i.e., the average delay (AveD), the remain-

ing overload (LefO), and the number of flights delayed

(NumFD), are obtained after preforming EF1 for only

one time.

• In EF2, the action ait is sampled based on the action

probabilities πθ(·|s
i
t, s

−i
t). If the hotspot is not solved,

or the iteration count is smaller than the threshold (10),

the environment is updated with the solved scenario (i.e.,

the updated flight plans), and the evaluation is performed

once again. Considering the stochastic actions in this

framework, the average statistic results (i.e., AveD, LefO,

and NumFD) are obtained after performing EF2 by 10

runs for each scenario.

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Two evaluation frameworks: EF1 and EF2.

B. Toy Case

1) Case with 300 flights: This case generates flight plans

within 16 sectors, during the 72 time periods. The time step

(minute) size is also 72, and an identical capacity is shared by

all sectors during the whole time periods.

Firstly, the baseline MAPPO, and two supervisor integrated

MAPPO methods are pre-trained on the training case, where a

set of initial flight plans FPA is generated randomly with 27

initial overloads and an identical capacity 4. The overall return

during the training process is shown in Fig. 6. The training

results indicate that, all three MAPPO methods can converge

to a stable overall return within a given number of training

episodes. S-MAPPO-1 outperforms the baseline MAPPO and

S-MAPPO-2 in terms of the final return.

Four evaluation cases are designed to test the performance

of the three pre-trained policies. The first three evaluation cases

are to test the Generalization Capability, while the last one is

to access the Search Capability. Specifically,

0 1000 2000 3000 4000 5000
Episode

800

700

600

500

400

300

200

100

0

Re
tu
rn

S-MAPPO-1
S-MAPPO-2
MAPPO

Fig. 6: Overall return during training on case C-4-47.

• C-3-84: 84 initial overloads exist in the initial flight plans

FPA with an identical capacity 3.

• C-5-8: 8 initial overloads occur in FPA with capacity 5;

• C-4-14: A new set of initial flight plans FPB is generated,

leading to 14 initial overloads with capacity 4;

• C-4-27: The training case is applied.

The evaluation results of the pre-trained MARL policies

are summarized in Table I. The results of CASA are also

included for comparison. The bold results are the best one

TABLE I: Evaluation results on toy cases with 300 flights.

Case Method CASA
MAPPO S-MAPPO-1 S-MAPPO-2

EF1 EF2 EF1 EF2 EF1 EF2

C-3-84

AveD 1.783 0.507 1.422 0.52 0.52 4.877 4.078

LefO 0 18 5.5 0 0 15 13.2

NumFD 255 92 137.9 87 87 79 81.2

C-5-8

AveD 0.128 0.04 0.043 0.033 0.037 0.037 0.037

LefO 0 1 0 0 0 0 0

NumFD 73 10 11.4 8 8 11 11

C-4-14

AveD 0.24 0.04 0.069 0.06 0.06 0.043 0.047

LefO 0 7 1.3 0 0 6 5.9

NumFD 100 10 16.3 16 16 9 9.5

C-4-27

AveD 0.473 0.137 0.186 0.11 0.11 0.197 0.197

LefO 0 0 0.3 0 0 0 0

NumFD 178 33 39.8 27 27 33 33

among the four methods. For all cases, S-MAPPO-1 obtains

the best resolutions with a smaller average delay and a smaller

number of flights delayed.

By comparing the results of the training case C-4-27, all

methods successfully resolve the hotspots with both evaluation

frameworks after training in most times, which indicates a

reasonable Search Capability.

For the case C-3-84 with EF1, the ratio (around 20%) of

the remaining overload to the initial overload in the baseline

MAPPO and S-MAPPO-2 is larger than that (about 10%)

in case C-5-8. Also, both methods solve the new scenario

C-4-14, remaining about 50% of the initial overload. These

comparisons demonstrate that, the pre-trained MAPPO and

S-MAPPO-2 have a better Generalization Capability in the

same flight plans with a simpler DCB problem. However, S-

MAPPO-1 can solve the former three evaluation cases with

all hotspots eliminated and a smaller average delay. Thus,

the supervisor integrated MAPPO performing the supervised

action has the best Generalization Capability among all three

MARL methods. Another important fact is that, all methods

have a better generalization under EF2 than EF1 in most times,

in terms of the average delay and the left overload.

Figs. 8.(a)-(d) summarize the ratio of demand to capacity

(D2R) in each sector before and after running each method.

In these figures, all ratio values are shown in the ascending

order, and the value on x-axis indicates the relative location of

each ratio among all ratio values. Comparing the initial D2R

values, all methods can reduce the number of sectors whose

D2R > 1, which proves the effectiveness in hotspot resolution.

2) Case with 3000 flights: A more complex toy case is

designed to test the performance in large-scale DCB problem.

In this case, 3000 flight plans are generated with 1440 time

steps (minutes), 72 time periods, and a constant capacity 23.

A set of flight plans are generated with initial overload 177

for training, denoted as case C-23-177. The training curves

shown in Fig. 7 indicate that S-MAPPO-1 still has the best

training performance. Though the overall returns obtained by

MAPPO and S-MAPPO-2 are both increasing, the fluctuation

is larger than that of S-MAPPO-1. Besides, another evaluation

case C-23-153 is defined with a new set of flight plans causing

153 initial overloads.

The comparison results in Table II show that, S-MAPPO-

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

0 250 500 750 1000 1250 1500 1750 2000
Episode

50

40

30

20

10

0
Re

tu
rn

S-MAPPO-1
S-MAPPO-2
MAPPO

Fig. 7: Overall return during training on case C-23-177.

1 has the best evaluation results among the four methods,

considering the remaining overload and the average delay. In

C-23-177, the Search Capability is proved, as all methods can

resolve the hotspots in most times (shown as 8 (e)), and have

a better resolution with fewer flights delayed and a smaller

average delay, both about 10% of those obtained by CASA.

However, the pre-trained MAAPO and S-MAPPO-2 have a

poor Generalization Capability, as they fail to solve C-23-153

in both evaluation frameworks, as shown with the D2R values

in Fig. 8 (f).

TABLE II: Evaluation results on toy case with 3000 flights.

Case Method CASA
MAPPO S-MAPPO-1 S-MAPPO-2

EF1 EF2 EF1 EF2 EF1 EF2

C-23-177

AveD 13.514 1.273 1.280 1.257 1.257 1.423 1.423

LefO 0 0 0.9 0 0 1 1

NumFD 2122 212 214 212 212 213 213

C-23-153

AveD 5.708 1.129 1.250 1.327 1.327 1.147 1.223

LefO 0 19 8.8 0 0 9 9.4

NumFD 1877 199 212.8 222 222 208 213.2

To sum up, the comparison results in both toy cases indicate

that all methods have promising Search Capability in different

cases. S-MAPPO-1 has the best Generalization Capability in

all tested cases, while MAPPO and S-MAPPO-2 only have an

acceptable Generalization Capability in a simpler case with

the same flight plans as used in training case.

C. Real-world Case Study

A real-world large-scale case study is performed based

on the 24-hour traffic data on a typical day in February

2017, collected from the EUROCONTROL Demand and Data

Repository v2 (DDR2) database. The scenario is focused on

the French and Spain airspace, where 8153 flights are selected

with 356 sectors in total. In this study, each sector is assumed

to have a constant capacity during the 1440 time steps. The

capacities are defined by narrowing the historical capacity in

the database with coefficient ψ ∈ [0, 1], due to the fact that

the selected flights are a subset of all flights crossing these

sectors.

Three different cases are designed by using different nar-

rowing coefficients to generate different capacities.

• C-74: 74 initial overloads exists by using a medium

coefficient, i.e., ψ = 1/1.5. This case is applied for both

pre-training and evaluation;

• C-35: A simpler evaluation case with 35 initial overloads

is designed by using a larger narrowing coefficient.

• C-145: With a smaller coefficient, less capacity is defined

for each sector, resulting in a more complex evaluation

case with 145 initial overload.

TABLE III: Evaluation results on real-world case study.

Case Method CASA
MAPPO S-MAPPO-1 S-MAPPO-2

EF1 EF2 EF1 EF2 EF1 EF2

C-74

AveD 0.810 0.125 0.126 0.124 0.124 0.148 0.132

LefO 0 0 0 0 0 0 0.02

NumFD 473 129 129 127 127 138 132.4

C-35

AveD 0.188 0.036 0.038 0.040 0.040 0.040 0.040

LefO 0 4 2.3 0 0 1 0.5

NumFD 270 54 57.5 57 57 59 59.6

C-145

AveD 2.986 0.341 0.431 0.450 0.450 7.336 0.474

LefO 0 16 14.9 0 0 5 2.3

NumFD 917 221 242.6 244 244 490 243.5

Fig. 9 shows the training process of overall return by

three MARL methods. The evaluation results are compared

in Table III. Compared with CASA, MPPO, S-MAPPO-1,

and S-MAPPO-2 obtain better results in all cases, with a

smaller average delay and a smaller number of flights delayed.

Besides, the Search Capacity is proved in the training case, as

MAPPO and S-MAPPO-2 successfully solve the case C-74

under both evaluation frameworks, and S-MAPPO-1 can solve

the same case with fewer average delay and number of flights

delayed. Meanwhile, S-MAPPO-1 has the best Generalization

Capability in the simpler case C-35 and the more complex case

C-145. Even though MAPPO and S-MAPPO-2 have better

results in EF2 in C-35 and C-145, they fail to resolve all the

hotspots under both evaluation frameworks.

In Fig. 8 (j)-(l), the ratios of flights with delays 0 ∼ 20 min,

20 ∼ 40 min, 40 ∼ 60 min, and over 60 min, to the size of all

delayed flights are shown respectively for different methods.

After running methods under different evaluation frameworks,

over 60% of flights in C-145 and C-145, and all flights in C-

35, take only delays less than 20 min. For the most complex

case C-145, around 20% of delayed flights have over 60 min

delays in S-MAPPO-2 under EF2, larger than other MARL

methods.

In conclusion, S-MAPPO-1 has a better performance in real-

world large-scale case study, which is probably attributed to

the supervised actions performed. MAPPO and S-MAPPO-2

have an acceptable Search Capability, while the Generalization

Capability is poor, as they are unable to resolve the hotspots

in new cases.

VI. CONCLUSION

In this study, we introduced MARL frameworks to solve the

DCB problem with ground-delay strategy. The DCB problem

is first simulated in a rule-based time-step environment, where

three rules, Holding, Departure, and Cooperation, are designed

to select a subset of flights to decide their actions cooperatively,

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200
Sorted operating sectors

0.0

0.5

1.0

1.5

2.0

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(a) D2R in C-3-84

0 200 400 600 800 1000 1200
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(b) D2R in C-5-8

0 200 400 600 800 1000 1200
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(c) D2R in C-4-14

0 200 400 600 800 1000 1200
Sorted operating sectors

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(d) D2R in C-4-27

0 200 400 600 800 1000 1200
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(e) D2R in C-23-177

0 200 400 600 800 1000 1200
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(f) D2R in C-23-153

12000 14000 16000 18000 20000 22000 24000 26000 28000
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(g) D2R in C-74

12000 14000 16000 18000 20000 22000 24000 26000 28000
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(h) D2R in C-35

12000 14000 16000 18000 20000 22000 24000 26000 28000
Sorted operating sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ra
tio

 o
f d

em
an

d
an

d
ca

pa
ci

ty

Initial
CASA
MAPPO-EF1
MAPPO-EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(i) D2R in C-145

[0,20] [20,40] [40,60] > 60
Delay time range

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

CASA
MAPPO_EF1
MAPPO_EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(j) Delay in C-74

[0,20] [20,40] [40,60] > 60
Delay time range

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

CASA
MAPPO_EF1
MAPPO_EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(k) Delay in C-35

[0,20] [20,40] [40,60] > 60
Delay time range

0.0

0.2

0.4

0.6

0.8

Ra
tio

CASA
MAPPO_EF1
MAPPO_EF2
S-MAPPO-1-EF1
S-MAPPO-1-EF2
S-MAPPO-2-EF1
S-MAPPO-2-EF2

(l) Delay in C-145

Fig. 8: Evaluation results for different cases, in terms of demand-capacity ratio before and after running the proposed MARL

methods, along with the distribution of required flight delays.

0 250 500 750 1000 1250 1500 1750 2000
Episode

30

25

20

15

10

5

0

Re
tu
rn

S-MAPPO-1
S-MAPPO-2
MAPPO

Fig. 9: Overall return during training on real-world case.

in order to minimize the final average delay and to solve the

hotspots. Based on the PPO framework, the baseline MAPPO

and supervisor integrated MAPPO methods (S-MAPP-1, S-

MAPPO-2) are developed by parameter sharing, mean-filed

regime, and supervised learning. The evaluation results in two

toy cases and a large-scale real-world ATFM case demonstrate

that, all proposed MARL methods have great Search Capacity,

which means they can handle different DCB scenarios after

being trained with a specific one. Besides, S-MAPPO-1 has a

better Generalization Capacity, as the pre-trained policy can be

applied directly to solve different cases. However, MAPPO and

S-MAPPO-2 only have an acceptable Generalization Capacity

in a simpler case.

Some further research are envisioned in our future work.

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

The sparse state will be reshaped to enable the pre-trained

policy to be used directly in different DCB scenarios with

different sector numbers. Rerouting and dynamic airspace

sectorisation will be explored. More real-world large-scale

DCB scenarios can be designed to justify the Search Capacity

and the Generalization Capacity of the proposed approach.

Some promising methods in MARL such as communication

and credit assignment will be also investigated.

REFERENCES

[1] FAA, “Cost of delay estimates,” Jul. 2020, accessed April 16,
2021. [Online]. Available: https://www.faa.gov/data research/aviation
data statistics/media/cost delay estimates.pdf

[2] C. Eurocontrol, “Coda digest all-causes delay and cancellations to air
transport in europe annual report for 2019,” 2019.

[3] Civil Aviation Administration of China, “Statistical Bulletin of Civil
Aviation Industry Development in 2019,” China Civil Aviation Annual

Report, pp. 35–45, 2019.

[4] D. Bertsimas and S. S. Patterson, “The air traffic flow management
problem with enroute capacities,” Operations research, vol. 46, no. 3,
pp. 406–422, 1998.

[5] A. R. Odoni, “The flow management problem in air traffic control,” in
Flow control of congested networks. Springer, 1987, pp. 269–288.

[6] A. Agustı́n, A. Alonso-Ayuso, L. F. Escudero, C. Pizarro et al., “Mathe-
matical optimization models for air traffic flow management: A review,”
2010.

[7] D. Bertsimas, G. Lulli, and A. Odoni, “An integer optimization approach
to large-scale air traffic flow management,” Operations research, vol. 59,
no. 1, pp. 211–227, 2011.

[8] Y. Xu, X. Prats, and D. Delahaye, “Synchronised demand-capacity
balancing in collaborative air traffic flow management,” Transportation

Research Part C: Emerging Technologies, vol. 114, pp. 359–376, 2020.

[9] K. Ng, C. K. Lee, F. T. Chan, and Y. Lv, “Review on meta-heuristics
approaches for airside operation research,” Applied Soft Computing,
vol. 66, pp. 104–133, 2018.

[10] C. Taylor, T. Masek, and C. Wanke, “Designing traffic flow management
strategies using multiobjective genetic algorithms,” Journal of Guidance,

Control, and Dynamics, vol. 38, no. 10, pp. 1922–1934, 2015.

[11] M. Sergeeva, “Automated airspace sectorization by genetic algorithm,”
Ph.D. dissertation, Université Paul Sabatier (Toulouse 3), 2017.

[12] M. Xiao, K. Cai, and H. A. Abbass, “Hybridized encoding for evolution-
ary multi-objective optimization of air traffic network flow: A case study
on china,” Transportation Research Part E: Logistics and Transportation

Review, vol. 115, pp. 35–55, 2018.

[13] K. D. Bilimoria, B. Sridhar, S. R. Grabbe, G. B. Chatterji, and K. S.
Sheth, “Facet: Future atm concepts evaluation tool,” Air Traffic Control

Quarterly, vol. 9, no. 1, pp. 1–20, 2001.

[14] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow
management,” in Proceedings of the 6th international joint conference

on Autonomous agents and multiagent systems, 2007, pp. 1–8.

[15] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[16] C. Spatharis, T. Kravaris, G. A. Vouros, K. Blekas, G. Chalkiadakis,
J. M. C. Garcia, and E. C. Fernandez, “Multiagent reinforcement learning
methods to resolve demand capacity balance problems,” in Proceedings

of the 10th Hellenic Conference on Artificial Intelligence, 2018, pp. 1–9.

[17] C. Spatharis, A. Bastas, T. Kravaris, K. Blekas, G. A. Vouros, and J. M.
Cordero, “Hierarchical multiagent reinforcement learning schemes for
air traffic management,” Neural Computing and Applications, pp. 1–13,
2021.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[19] Y. Wang, H. He, and X. Tan, “Truly proximal policy optimization,” in
Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 113–122.

[20] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-

Agent Systems, vol. 33, no. 6, pp. 750–797, 2019.

[21] S. Omidshafiei, D.-K. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato,
M. Campbell, and J. P. How, “Learning to teach in cooperative multiagent
reinforcement learning,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6128–6136.

[22] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, and H. Zha, “Cm3:
Cooperative multi-goal multi-stage multi-agent reinforcement learning,”
arXiv preprint arXiv:1809.05188, 2018.

[23] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” arXiv preprint

arXiv:1911.10635, 2019.
[24] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent

control using deep reinforcement learning,” in International Conference

on Autonomous Agents and Multiagent Systems. Springer, 2017, pp.
66–83.

[25] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean
field multi-agent reinforcement learning,” in International Conference

on Machine Learning. PMLR, 2018, pp. 5571–5580.
[26] J. Arabneydi and A. Mahajan, “Team optimal control of coupled sub-

systems with mean-field sharing,” in 53rd IEEE Conference on Decision

and Control. IEEE, 2014, pp. 1669–1674.
[27] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-

dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] D.-C. Juan and D. Marculescu, “Power-aware performance increase via
core/uncore reinforcement control for chip-multiprocessors,” in Proceed-

ings of the 2012 ACM/IEEE international symposium on Low power

electronics and design, 2012, pp. 97–102.
[30] L. Wang, W. Zhang, X. He, and H. Zha, “Supervised reinforcement

learning with recurrent neural network for dynamic treatment recom-
mendation,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2018, pp. 2447–
2456.

AUTHOR BIOGRAPHIES

Mr Yifan Tang is currently a PhD candidate in Aerospace at Cranfield
University. He received his M.Sc. and B.Eng. in Aeronautical & Astronautical
Science & Technology from Beijing Institute of Technology. His main research
interests include air traffic flow management, meta-heuristic optimization in-
tegrated with artificial intelligence. Email address: yifan.tang@cranfield.ac.uk

Dr Yan Xu is a Lecturer in ATM/CNS with the Centre for Autonomous
and Cyber-Physical Systems in the School of Aerospace, Transport and
Manufacturing at Cranfield University. He received his Ph.D. in Aerospace
Science and Technology from the Technical University of Catalonia, and
received his M.Sc. and B.Eng. in Traffic Engineering from Nanjing University
of Aeronautics and Astronautics. His main research interests include air traffic
flow and capacity management, ATM/UTM and Urban Air Mobility. Email
address: yanxu@cranfield.ac.uk

Authorized licensed use limited to: Cranfield University. Downloaded on April 10,2022 at 06:08:39 UTC from IEEE Xplore. Restrictions apply.

