
1 

Order picking performance improvement through 

storage location assignment: The case of a hardware 

wholesaler 

Zelin Liu  

Cranfield University, Cranfield, UK 

Chad Rapp 

Banner Solutions, US 

Jude Buquid 

Banner Solutions, US 

Emel Aktas (emel.aktas@cranfield.ac.uk) 

Cranfield University, Cranfield, UK 

Abstract 

Order picking is the most time-consuming, labour-intensive, and costly activity in 
picker-to-parts picking systems. The literature frequently minimises picking time but 
ignores the picking error, which affects picking efficiency and customer satisfaction. This 
paper to minimise picking time and picking error using multi-objective optimisation. 
Three storage location assignment policies, i.e., ABC-based, product-popularity-based 
(PPB) and product-relation-based (PRB), are deployed to minimise the picking time. PPB 
policy gave both the minimum picking time and picking error, with the trade-off between 
the two objectives presented in a Pareto frontier. Hence, the managers can determine a 
storage policy based on the optimisation results. 

Keywords: Multi-objective optimisation, Picking time and error, Warehouse operations 

Introduction 

In the warehouse operation, picking accounts for approximately 60% of the total 
operation time and 50% of the operation cost. While since 80% of the picking system is 
manual order picking, i.e., picker-to-parts system (Bartholdi & Hackman, 2019; De 
Koster et al., 2007; Tompkins et al., 2010), order picking is considered as the most 
expensive, time-consuming and labour-intensive activity in the warehouse. Meanwhile, 
as similar products are stored usually in proximity in the warehouse, workers may pick 
the wrong item due to akin product shape or item number and thus results in rework and 
return (Battini et al., 2015; Grosse et al., 2015). Hence, the picking time and the picking 
error are both critical performance indicators that should be considered to improve the 
order picking performance. 
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In the case company, since the products are stored randomly in the warehouse, the 
popular products are not in the close storage locations to the Input/Output (I/O) point (i.e., 
start and end point of picking), and hence the workers need to travel longer distances to 
pick orders. While for the probability of making a picking error, based on the conversation 
with the case warehouse manager, the workers glance at the item ID to identify an item 
and hence picking error occurs when items with similar IDs are placed in the same storage 
location. Further, due to the randomness of storage, many similar items can be placed in 
the same storage location and hence retrieving the wrong items is a frequent mistake for 
all workers during order picking. 

This paper deploys three storage location assignment (SLA) policies, i.e., ABC-based, 
product-popularity-based (PPB) and product-relation-based (PRB) SLA, to minimise the 
order picking time. The ABC-based SLA first classifies products to three classes, i.e., 
class A, B, and C, based on product popularity. Then, the close storage locations are 
assigned to class A, B and C in sequence. The PPB SLA allocates products based on 
product popularity, meaning the higher the product popularity, the closer the storage 
location to the I/O point. The PRB SLA assigns product based on both the product 
popularity and the sales relationship, meaning the products with higher popularity are 
assigned to close storage locations to the I/O point while the products that are usually sold 
together are assigned to the same storage location. Then, the SLA policy with the shortest 
picking time is further analysed to minimise the probability of making a picking error. 
 
Literature review 

Studies on order picking time minimisation mainly include the picking setup time, search 
and pick time, and the travelling time. The setup time refers to the time for order picking 
preparation on activities such as order batching or equipment initiation. The search and 
pick time is the time needed to identify and retrieve the item from the bins, while the 
travelling time, which accounts for more than 50% of the total picking time, is the time 
required to walk from one storage location to another during a picking task (De Koster et 
al., 2007; Tompkins et al., 2010; Van Gils et al., 2018; Zhang et al., 2017). 

This paper use SLA to minimise picking time. Product SLA is to allocate products to 
different storage locations in the warehouse. The common calculation is to use the 
distance travelled to calculate the picking travelling time while taking the order setup 
time, search and pick time as constant values (Van Gils et al., 2018). Since travelling time 
is a major part of picking time calculation, many studies focus on the picking travelling 
time. The studies are summarised in Table 1. Dijkstra & Roodbergen (2017) and Ene & 
Öztürk (2012) only consider the travelling time required under the class-based SLA 
policy. Similarly, Mantel et al. (2007) and Mirzaei et al. (2021) focus on the travelling 
time to minimise picking time under product relation-based SLA. Petersen et al. (2005) 
use Monte-Carlo simulation to analyse both the travelling time and search and pick time 
under several dedicated SLA policies based on product popularity, turnover, volume, pick 
density and cube-per-order index, while Kim & Smith (2012) include travelling time, 
search and pick time, setup time in picking time minimisation using a mixed integer 
programming (MIP) model. The logic using different SLA policies to minimise picking 
time is to allocate popular products to storage locations that require less time to visit. In 
this paper, since the search and pick time is insignificant compared to the travel time and 
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the setup time for the case company’s warehouse, it is not considered for picking time 
minimisation. 

 
Table 1 – Overview of papers deploying SLA to minimise picking time 

Paper Model SLA policy Travel 
time 

Search and 
pick time 

Setup 
time 

Dijkstra & 
Roodbergen 

(2017) 

Dynamic 
Programming 

Class-based ✓ 
 

  

Ene & Öztürk 
(2012) 

Integer 
Programming 

Class-based ✓ 
 

 
 

 
 

Kim & Smith 
(2012) 

Mixed Integer 
Programming 

Product-relation 
based 

✓ 
 

✓ 
 

✓ 
 

Mantel et al. 
(2007) 

Integer 
Programming 

Product-relation 
based 

✓ 
 

  

Mirzaei et al. 
(2021) 

Integer 
Programming 

Product-relation 
based 

✓ 
 

  

Petersen et al. 
(2005) 

Monte-Carlo 
Simulation 

Several dedicated 
storage policies 

✓ 
 

✓ 
 

 

This paper Multi-
objective 

Optimisation 

Product popularity 
based & Product-

relation based 

✓ 
 

 ✓ 
 

 
Studies on picking error are mostly qualitative. A picking error occurs when a wrong 

item or the wrong quantity of an item is retrieved from the storage locations. Manual 
order picking error occurs due to the storage methods, picking methods and other factors 
such as the picking environment (e.g., light and noise in the warehouse), the design of the 
picking list and the coordination among pickers (Burinskiene, 2010). Brynzer & 
Johansson (1995) identify that the picker reading error is the most common error in 
manual picking systems, while Grosse et al. (2015) study the impact of human factors in 
picking operation and also conclude the picking error is mainly resulted from the pickers’ 
cognitive errors, meaning the pickers read or process the wrong information and thus pick 
the wrong item. Hence, in general, human cognitive error is the most significant reason 
for picking errors in picker-to-parts storage systems. 

The use of technology to reduce picking errors is a popular research topic. Battini et al. 
(2015) compare five paperless picking systems, i.e., barcodes handheld, RFID tags 
handheld, voice picking, traditional pick-to-light and RFID pick-to-light system and 
conclude that paperless picking technology can help reduce the picking error while 
different systems perform better or worse under different warehouse storage policies. 
They conclude that the RFID and barcodes handheld devices and the voice picking system 
are more suitable for low-level picking while the RFID pick-to-light system is best for 
multilevel picking. Similarly, some scholars also study the RFID-based picking systems 
and smart trolleys to reduce the picking error (Poon et al., 2009; Sham et al., 2018). The 
logic of using the technology in picking is to facilitate workers in correctly identifying 
and picking the items required and hence reduce the chance of committing an error. Lee 
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et al. (2018) study the picking error under different picking policies. They find that using 
the strict order picking policy, where each picker handles one order at a time, will result 
in less picking error, whereas batch zone picking, where orders are picked in multiple 
zones simultaneously, and wave picking, where orders are separated into waves based on 
time or quantity, will increase the picking error. 

In general, studies on the picking error are mostly focused on the impact of human 
factors and the use of technology to reduce the error. As most picking error studies are 
qualitative, the mathematical model to incorporate the picking error into order picking 
optimisation is rarely constructed. 
 
Methodology 

Three SLA policies, namely, ABC-based, PPB, and PRB SLA policies, are deployed in 
one of the warehouses of the case company to minimise the picking time. Then, a multi-
objective optimisation on the picking time and the picking error score minimisation is 
conducted for the storage scenario with the shortest picking time.  

A 3D matrix is created where the number of rows and number of columns are the 
warehouse length and width (147 feet X 155 feet) while the number of layers is the 
maximum number of levels for a storage shelf i.e., nine layers. Hence, the matrix is 147 
x 155 x 9 in rows, columns, and layers. The matrix is binary where 0s are the aisles and 
the 1s are the storage racks.  

Next, four SLA models, i.e., base case storage, ABC-based storage, PPB storage and 
PRB storage are formulated and the horizontal and vertical travelling time to pick an order 
is calculated. The ABC-based SLA first categorise products based on the product hits and 
thus the space required by each class of SKUs are determined. Class A accounts for 60% 
of hits and 13% of SKUs, the next 25% hits with approximately 20% of SKUs are Class 
B and the rest SKUs are class C. Then, the storage locations are assigned to each class 
one at a time from the closest storage location to the farthest to the I/O point. 

The PPB SLA model assigns products based on the product hits, meaning the higher 
the product hits, the closer the products to the I/O point. The products are allocated to the 
sorted storage locations, ensuring the popular products are assigned to closer storage 
locations to the I/O point. Under this policy, each product has an exact storage location. 
Hence, the routing distances and travelling time between any two products and between 
a product to or from the I/O point are obtained. 

The PRB SLA model identifies the product pairwise sales relationship through 
analysing customer order data and then assigns the SKUs using a similar logic to 
Integrated Cluster Assignment (ICA) proposed by Mirzaei et al. (2021), where product 
sales affinity and product popularity are considered simultaneously for SLA. The logic is 
as follows. First, count the number of orders between two products and on a product and 
thus the number of supports i.e., number of evidence selling a pair of products together 
and the confidence i.e., number of supports divided by the number of orders on an item 
in the pair are calculated. The assignment starts from the product with the highest hits and 
then search the product sales relationship for the SKU that have sales relationship with 
the pair and assign the pair of products together when there is enough space in a storage 
location. Otherwise, assign the next product with the highest hits and follow the same 
logic described above. Hence, the products with high hits are assigned to closer storage 
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location to the I/O point and the products that are usually sold together are arranged in 
the same storage location. 

The horizontal travelling distance to pick an order for all SLA models are calculated 
using the same routing logic as follows. The picker starts and ends each order picking at 
the I/O point. The items are picked in sequence according to the horizontal travelling 
distance to the I/O point, meaning items stored in nearer storage locations are picked first 
and vice versa for items stored in farther storage locations to the I/O point.  

The distance between any two points in the matrix is calculated using the Breadth-first 
search (BFS) algorithm, a graph searching algorithm starting from the end node and 
exploring all neighbouring nodes one step at a time, providing a guaranteed best solution 
(Rakhee & Srinivas, 2016). The algorithm ensures the pickers cannot walk through the 
storage racks and can only travel in the aisle space, i.e., the 0s in the matrix.  

Then, based on the company’s expert judgment on the horizontal and vertical walking 
speed, the horizontal and vertical travelling time is calculated by dividing the horizontal 
and vertical distance by the walking speed respectively. Then, the picking time results are 
calculated and compared with the base case using historical data. Finally, the SLA policy 
with the shortest picking time is selected to minimise the probability of making a picking 
error. The rest of this section presents the math model with the notations in Table 2. 

 
Table 2 – Notations of the mathematical model 𝐾 The set of storage locations in the 

warehouse 
𝐼𝐷𝑖  SKU 𝑖 ID number 𝐼 The set of SKUs stored in the 

warehouse 
𝑟𝑖 The total storage space 

required by SKU 𝑖 𝑂 The set of customer orders 𝑇𝑆𝑘 The picking setup time for 
storage 𝑘 𝑘 The storage location indexes (𝑘 ∈  𝐾) 𝑇𝑉𝑘 The vertical travelling time to 
storage 𝑘 Decision Variables 𝑖, 𝑗 The SKU indexes (𝑖, 𝑗 ∈  𝐼) 𝑥𝑖,𝑘 = 1 if SKU 𝑖 is assigned to 
storage k and 0 otherwise 𝑜 The order serial number (𝑜 ∈  𝑂) 𝑦𝑜,𝑘 = 1 if order 𝑜 require picking 
in storage 𝑘 and 0 otherwise 𝐶𝑎𝑘 The maximum space capacity of 

storage 𝑘 
𝑆𝑖 The item similarity score of 

SKU 𝑖 calculated after 𝑥𝑖,𝑘 are 
found 𝑐𝑜,𝑖  Parameter equal to 1 if SKU 𝑖 is in 

order 𝑜 and 0 otherwise 
𝑇𝐻𝑜 The horizontal routing time to 

finish picking order 𝑜 
     
The mathematical model is formulated as follows. 
 Min ∑  𝑜∈𝑂 ∑  𝑘∈𝐾 (𝑇𝑆𝑘 + 𝑇𝑉𝑘)𝑦𝑜,𝑘 + ∑  𝑜∈𝑂 𝑇𝐻𝑜 (1) Min ∑  𝑜∈𝑂 ∑  𝑖∈𝐼 𝑐𝑜,𝑖𝑆𝑖 (2) 

    Subject to: 
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𝑦𝑜,𝑘 = 𝑚𝑖𝑛 (∑  𝑖∈𝐼 𝑐𝑜,𝑖𝑥𝑖,𝑘 , 1) , ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾 (3) ∑  𝑖∈𝐼 𝑥𝑖,𝑘𝑟𝑖 ≤ 𝐶𝑎𝑘 , ∀𝑘 ∈ 𝐾 (4) ∑  𝑖∈𝐼 𝑟𝑖 ≤ ∑  𝑘∈𝐾 𝐶𝑎𝑘 (5) ∑  𝑘∈𝐾 𝑥𝑖,𝑘 = 1, ∀𝑖 ∈ 𝐼 (6) 𝑆𝑖 = ℎ(𝑥𝑖,𝑘 , 𝐼𝐷𝑖 , 𝐼𝐷𝑗), ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝐼 (7) 𝑇𝐻𝑜 = 𝑓(𝑥𝑖,𝑘 , 𝑐𝑜,𝑖), ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 (8) 𝑆𝑖 ∈ 𝑍∗, 𝑇𝐻𝑜 > 0, 𝑥𝑖,𝑘 , 𝑦𝑜,𝑘 ∈ {0,1}, ∀𝑜 ∈ 𝑂, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 (9) 
 
The Objective statement in Equation 1 minimises the total picking time including 

picking setup time, vertical travelling time, and horizontal travelling time. The picking 
setup time and vertical travelling time are multiplied by the 0-1 variable 𝑦𝑜,𝑘 denoting 
whether order 𝑜 requires a visit to storage location 𝑘.  

The Objective statement in Equation 2 minimises the probability of making a picking 
error. The 𝑆𝑖 is the number of similar items to SKU 𝑖 while 𝑐𝑜,𝑖  denotes whether the SKU 𝑖 is picked in order 𝑜. The total picking error score is the summation of all items from all 
orders on unit picking error score. Hence, the higher the popularity of an SKU and the 
higher the number of similar items to an SKU in a storage location, the higher the picking 
error score. 

Constraint 3 means if SKU 𝑖 is not assigned to storage 𝑘 (𝑥𝑖,𝑘= 0) or if order 𝑜 does not 
require SKU 𝑖 (𝑐𝑜,𝑖  = 0), the picker will not visit the storage 𝑘 (𝑦𝑜,𝑘= 0). Constraint 4 
means the storage capacity of storage location 𝑘 should not be exceeded. Constraint 5 
means the total storage space in the warehouse should be able to accommodate the total 
space required by all the SKUs. Constraint 6 ensures each SKU can only be assigned to 
one storage location. Constraint 7 and Constraint 8 denotes the item similarity score 𝑆𝑖 
and the horizontal routing time 𝑇𝐻𝑜 are functions of decision variable 𝑥𝑖,𝑘 respectively. 
The functions are case specific and depend on the method to calculate the probability of 
making picking error and the horizontal routing time.  

 
Findings and discussions 

The order picking time for all SLA models are calculated (Figure 1). The base case annual 
picking time is 1729 hours while the ABC-based, PPB and PRB SLA annual picking time 
are 1059, 726 and 925 hours respectively. 

The red bars represent the ABC-based SLA. Overall, the ABC-based SLA shows 
roughly 39% of picking time reduction compared to the base case. The logic of picking 
time reduction is to first classify items based on the product hits and hence the popular 
products are stored in closer storage area to the I/O point while also allowing the items to 
be stored randomly inside a class, better utilising the storage space compared to the 
product PPB SLA policy. Though the ABC-based storage generally requires more time 
to finish picking an order, the storage space utilisation is higher than that of the PPB and 
PRB storage. This is because the products have the flexibility to be stored in any open 
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storage locations under random storage or in their corresponding classes under ABC-
storage. 

The green bars are the PPB SLA monthly order picking times. This SLA policy 
demonstrates approximately 58% of time reduction compared to the base case. It places 
popular items to close storage locations to the I/O point, reducing the walking distance to 
retrieve popular products and thus reduce the picking time.  

The grey bars demonstrate the PRB SLA picking time. It has approximately 46% of 
time reduction compared to the base case. This SLA policy considers the product hits 
while it also takes the product sales relationship into account (i.e., assigning products to 
the same storage location if they frequently appear together in the orders). Hence, product 
with high hits will be placed at closer storage locations to the I/O point and the product 
usually sold together will be placed in the same storage locations, reducing the time to 
retrieve popular items and the routing distance to pick an order. 

 
Figure 1 - Picking time comparison 

 

Overall, PPB SLA performs the best, i.e., 58% of time reduction in the case warehouse. 
It arranges the products based on the product popularity and hence, the higher the hits a 
product has, the closer the storage location to the I/O point. Based on picking time 
minimisation results, the PPB SLA has the highest picking time reduction percentage 
compared to the other SLA polices for the case company’s warehouse and hence this 
policy is further studied for the picking error score minimisation. 

In the case warehouse, the PPB and PRB SLA demonstrate 58% and 46% of picking 
time reduction compared to the base case respectively. This is because the product sales 
relationship is not strong for the case company, for instance, the most supported product 
pair has 369 orders requesting the item pair together while the two SKUs are requested 
564 and 447 times individually. Hence, the PRB SLA is not performing better than the 
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PPB SLA in terms of picking time. The PRB SLA logic is based on the integrated cluster 
assignment (ICA) proposed by (Mirzaei et al., 2021), where the proposed SLA model 
shows a higher time reduction percentage i.e., up to 40% compared to the class-based 
SLA and FTB SLA. They explain this is because the product affinity is high in their case 
study while in case of low product affinity and low turnover of SKUs, the PRB SLA will 
not demonstrate any advantages in picking time over other SLA policies, implying the 
product affinity in order data has a significant impact on the PRB SLA order picking time. 
Generally, the higher the product affinity, the more benefit the PRB SLA will demonstrate 
over other SLA policies (Li et al., 2016). 

Figure 2 demonstrates the Pareto front of the picking time and picking error score 
minimisation. The top left point is the PPB SLA picking error score minimisation starting 
point i.e., the picking time minimisation results using PPB SLA policy. The starting point 
annual picking time is 726 hours, and the annual picking error score is 17,873. Then, the 
picking error is minimised in a sequence from the SKU with the highest annual bin hits. 
The big gap between the starting point and the next point is due to moving a top 3 popular 
item to another storage location and hence the picking time increases around 6 hours to 
732 hours and the picking error score is reduced to 14959. This process is repeated one 
item at a time until the total picking error score is 0, i.e., the ending point in Figure 2 
where the picking time is 755 hours.  

 
Figure 2 - Pareto front of picking time and picking error minimisation 

 

In the case warehouse, if picking error score minimisation is not implemented, the PPB 
picking error score will be higher than that of the base case. While if we move from the 
starting point to the 10th point in Figure 2, meaning ten SKUs are moved to their upper 
storage locations, the PPB picking error score (8,781) will be lower than that of the base 
case (9,034). Hence, the trade-off here is the increment of picking time and the reduction 
of the picking error score for PPB SLA. Based on the Pareto front graph (Figure 2), it is 
implied that the time increment is not as significant as the picking error decrement under 
PPB SLA, meaning a 4% increase in total picking time can eliminate the similarity-based 
picking error probability entirely under the PPB SLA. 
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The picking error score is only measured when items with similar IDs are placed in the 
same storage location and the popular SKUs i.e., SKUs with higher hits will have higher 
picking error score compared to the less popular SKUs when the number of similar items 
in a storage location are the same for these two SKUs. Since the picking error 
minimisation is conducted by moving one item in the similar item pair to the storage 
location one level above, moving popular items will reduce more picking error score 
compared to the less popular items. In this case, the first point of the Pareto front (Figure 
4.5) have higher impact on picking time increment compared to the following points. The 
picking error score is minimised one at a time from the SKU with the highest bin hits to 
the SKU with the lowest bin hits. Since the first SKU is more frequently ordered by 
customers, the picking time increment moving a popular item is higher than that of the 
less popular items. 
 
Conclusion 

This paper aims at minimising the picking time and the probability of making a picking 
error to improve the order picking performance. Three SLA policies, i.e., ABC-based, 
PPB and PRB SLA, are deployed to minimise the order picking time, and the results are 
compared with the base case picking time. Then, the SLA policy with the shortest picking 
time, i.e., PPB SLA in the case study, is studied to minimise the picking error score. 
Overall, this paper fills the literature gap by proposing a multi-objective optimisation 
model to minimise both the picking time and the probability of making a picking error in 
multilevel order picking systems. 
    This paper measures the picking performance based on picking time and the probability 
of making a picking error. Future research can include other metrics such as ergonomic 
factors, storage utilisation rate, or the flexibility of the storage system. Moreover, for 
product affinity analysis, the product relationships are mainly concluded from the 
customer order data. However, assigning products usually ordered together may not be 
feasible in practice. Hence, using data-driven methods considering criteria such as 
product size, shape, weight, and mechanical property to classify and assign products to 
storage locations in a warehouse is a promising future research avenue. 
 
References 
Bartholdi, J. J., & Hackman, S. T. (2019). Warehouse & Distribution Science: Release 0.98.1. Atlanta. 

Available at: https://www.warehouse-science.com/ 
Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different 

paperless picking systems. Industrial Management & Data Systems, 115(3), 483–503. 
https://doi.org/10.1108/IMDS-10-2014-0314 

Brynzer, H., & Johansson, M. (1995). Design and performance of kitting and order picking systems. 
International Journal of Production Economics, 41, 115–125. https://doi.org/10.1016/0925-
5273(95)00083-6 

Burinskiene, A. (2010). Order picking process at warehouses. International Journal of Logistics Systems 

and Management - Int J Logist Syst Manag, 6. https://doi.org/10.1504/IJLSM.2010.030958 
De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: 

A literature review. European Journal of Operational Research, 182(2), 481–501. 
https://doi.org/10.1016/j.ejor.2006.07.009 

Dijkstra, A. S., & Roodbergen, K. J. (2017). Exact route-length formulas and a storage location 
assignment heuristic for picker-to-parts warehouses. Transportation Research Part E: Logistics 

and Transportation Review, 22. 



 
 
 
 

10 
 
 
 
 

Ene, S., & Öztürk, N. (2012). Storage location assignment and order picking optimization in the 
automotive industry. The International Journal of Advanced Manufacturing Technology, 60(5–
8), 787–797. https://doi.org/10.1007/s00170-011-3593-y 

Grosse, E. H., Glock, C. H., Jaber, M. Y., & Neumann, W. P. (2015). Incorporating human factors in 
order picking planning models: Framework and research opportunities. International Journal of 

Production Research, 53(3), 695–717. https://doi.org/10.1080/00207543.2014.919424 
Kim, B. S., & Smith, J. S. (2012). Slotting methodology using correlated improvement for a zone-based 

carton picking distribution system. Computers & Industrial Engineering, 62(1), 286–295. 
https://doi.org/10.1016/j.cie.2011.09.016 

Lee, C. K. M., Lv, Y., Ng, K. K. H., Ho, W., & Choy, K. L. (2018). Design and application of Internet of 
things-based warehouse management system for smart logistics. International Journal of 

Production Research, 56(8), 2753–2768. https://doi.org/10.1080/00207543.2017.1394592 
Li, J., Moghaddam, M., & Nof, S. Y. (2016). Dynamic storage assignment with product affinity and ABC 

classification—A case study. The International Journal of Advanced Manufacturing Technology, 
84(9–12), 2179–2194. https://doi.org/10.1007/s00170-015-7806-7 

Mantel, R. J., Schuur, P. C., & Heragu, S. S. (2007). Order oriented slotting: A new assignment strategy 
for warehouses. European J. of Industrial Engineering, 1(3), 301. 
https://doi.org/10.1504/EJIE.2007.014689 

Mirzaei, M., Zaerpour, N., & de Koster, R. (2021). The impact of integrated cluster-based storage 
allocation on parts-to-picker warehouse performance. Transportation Research Part E: Logistics 

and Transportation Review, 146, 102207. https://doi.org/10.1016/j.tre.2020.102207 
Petersen, C. G., Siu, C., & Heiser, D. R. (2005). Improving order picking performance utilizing slotting 

and golden zone storage. International Journal of Operations & Production Management, 
25(10), 997–1012. https://doi.org/10.1108/01443570510619491 

Poon, T. C., Choy, K. L., Chow, H. K. H., Lau, H. C. W., Chan, F. T. S., & Ho, K. C. (2009). A RFID 
case-based logistics resource management system for managing order-picking operations in 
warehouses. Expert Systems with Applications, 36(4), 8277–8301. 
https://doi.org/10.1016/j.eswa.2008.10.011 

Rakhee, & Srinivas, M. B. (2016). Cluster Based Energy Efficient Routing Protocol Using ANT Colony 
Optimization and Breadth First Search. Procedia Computer Science, 89, 124–133. 
https://doi.org/10.1016/j.procs.2016.06.019 

Sham, R., Wahab, S. N., & Hussin, A. A. A. (2018). Smart Trolley Apps: A Solution to Reduce Picking 
Error. International Journal of Supply Chain Management, 7(5), 9. 

Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities Planning (4th edn). 
John Wiley & Sons. 

Van Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. M. (2018). Designing efficient order picking 
systems by combining planning problems: State-of-the-art classification and review. European 

Journal of Operational Research, 267(1), 1–15. https://doi.org/10.1016/j.ejor.2017.09.002 
Zhang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and sequencing problem 

with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 
271–284. https://doi.org/10.1016/j.apm.2016.12.012 

 


	Abstract

