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Abstract

This thesis considers the application of nonlinear control theory in two subjects 

pertinent to weapon applications. Initially, Section 2 considers the development of a 

simple nonlinear autopilot for a Laser Guided Bomb (LGB). Later a nonlinear 

autopilot design is developed using a Pulse-Width Modulated (PWM) controller 

derived from the method developed by Bemelli-Zazzera et al4. This is applied to an 

LGB utilising a “bang-bang” actuator, enabling the control surfaces to achieve a 

pseudo-proportional response. The PWM design stems from an equivalent Pulse- 

Amplitude Modulated controller, which required a design technique to be developed 

for a linear autopilot and, in addition, simulation of an electro-mechanical actuator. 

Simulation demonstrated that the PWM controller can achieve the desired response 

but the design must incorporate actuator dynamics.

Section 3 considers the use of nonlinear control theory to examine the nonlinear 

intercept equations using a Proportional Navigation (PN) guidance law. Using a 

simple heuristic example, PN is introduced and vector algebra used to develop a 

simple model of the intercept. The model is then used to illustrate the importance of 

the kinematic gain. Using the method pioneered by Ha et al16, Lyapunov theory is 

used to demonstrate that PN is a robust guidance law. Although generally derived 

assuming the target maintains rectilinear flight, Lyapunov theory is used to 

demonstrate interception is always possible provided the pursuer has sufficient 

manoeuvre advantage over the target. Noting that many missiles incorporate a
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directional warhead, Lyapunov theory is used to design a time-varying rate bias that 

controls the direction of approach to the target. Simulation demonstrates that the 

guidance requirements are indeed achieved by this law but additional effort is 

required by the control system.

In Section 3 it is demonstrated that the PN guidance law will always ensure an 

intercept, i.e. it does not by itself generate miss-distance. In the final part of Section 

3, using adjoint software designed by Zarchan42, it is demonstrated that miss- 

distance develops in practical systems as the result of sub-system dynamics.
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Notation

In general, notation is defined in the text throughout the thesis and listed here as a 

supplement to the main text. As the thesis is divided into two main sections, 

notation is similarly divided between the notation used in Sections 2 and 3.

Notation Used in Section 2

a Acceleration in body axes

e Error vector between Pulse-Width and Pulse-Amplitude control

h Sample period

/ Position of inertial measuring unit in body axes

n Yawing moment

nr Yawing moment derivative due to yaw rate, normalised by yaw

inertia, this is defined as:

nv Yawing moment derivative due to sideslip, normalised by yaw inertia,

this is defined as:
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n^ Yawing moment derivative due to rudder deflection, normalised by

yaw inertia, this is defined as:

p  Roll rate

q Pitch rate

r Yaw rate

r A,B Position vector of inertial measuring unit in body axes

t Time

u Single control input

u Input vector

v Sideslip velocity

y Velocity vector body axes

w Heave velocity

x  State vector

x, y, z Body fixed reference frame

y Sideforce

y r Sideforce derivative due to yaw rate normalised by weapon mass, this

is defined as:
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Sideforce derivative due to sideslip normalised by weapon mass, this 

is defined as:

Sideforce derivative due to rudder deflection normalised by weapon 

mass, this is defined as:

Measured state vector 

System matrix 

Input matrix 

Output matrix 

Feed forward matrix

State measurement matrix (Also used to denote norm of e in Section 

2.7.5)

Input measurement matrix (Also used to define the discrete form of 

the state transition matrix in Section 2.1.13 and the observer system 

matrix in Section 2.7.7.4)

Gain matrix (Also used to define the discrete form of the convolution 

integral in Sections 2.7.7.3)

Reduced order observer input matrix 

Actuator motor current 

Yaw inertia



Control surface rotational inertia

Input gain to autopilot

Accelerometer gain

Accelerometer gain

Actuator gear ratio

Actuator gain

Actuator motor constant

Feedback matrix in reduced order observer

Weapon mass (Also used to denoted output matrix in a reduced order 

observer Section 2.7.7.4)

Direction cosine matrix, space to velocity axis

Reduced order observer output matrix

Yawing moment derivative due to yaw rate, this is defined as:

N r = — pVSD2 dC'
4" a&)

Yawing moment derivative due to sideslip, this is defined as:

N̂ i pVSD̂ . ,p ^ L
' 2  dp V 

Yawing moment derivative due to rudder deflection, this is defined



R Actuator motor resistance

U Weapon forward velocity

T Reduced order observer measurement matrix

V_ Velocity vector in space axes

A

V_ Unit velocity vector in space axes

W Pulse weighting function

X_ Position vector

X_ Unit position vector

X, Y, Z Space axes (X, Y, Z* define a right-hand axes frame)

XT, Yt, Zt, Velocity axes

Yr Sideforce derivative due to yaw rate, this is defined as:

Yr = - p V S D dCr
* a ( f )

Yv Sideforce derivative due to sideslip, this is defined as:

Y v = l p V S ^ ,  P ~ -  
v 2 Bp V

Yg Sideforce derivative due to rudder deflection, this is defined as:

Yc = l p V 2S ^  
5 2 Bg

Unknown constant value

In a right hand axes frame, Z is positive down, hence height values are 
negative since the origin is defined in the plane of the target.
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Greek Symbols

j3 Sideslip angle

8 Pulse-width in Pulse-Width Modulation control

e Error vector due to pulse-translation in time

e p Component of sightline vector in pitch plane

£y Component of sightline vector in yaw plane

0 Euler angle in roll defining transformation from space to body axis

frame

6 State transition matrix in discrete form at \

0 A Current actuator position

6 D Demanded actuator position

6P Euler angle defining transformation from space axes frame of

reference to axis frame defined by the weapon velocity vector.

<7 Sightline angle in velocity axes.

T Pulse delay in Pulse-Width Modulation control

f  Pulse delay in Pulse-Width Modulation control relative to \

coAIP Actuator bandwidth

con Desired autopilot bandwidth

§ Sightline angle in velocity axes.

Sightline angle in velocity axes, corrected for body roll.
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y/p Euler angle defining transformation from space axes frame of

reference to axis frame defined by the weapon velocity vector, 

f  Rudder deflection

gA/P Desired autopilot damping ratio

gn Actuator damping ratio

A(h) Convolution integral in discrete form

O(70 State transition matrix in discrete form

0 ( 0  State transition matrix in continuous form

Q Angular rate vector in body axes

E Denotes h)

Modified convolution integral in discrete form (see text)

Subscripts

x, y, z Denote components in body fixed reference frame

B Component at weapon centre-of-gravity

E  Sightline error vector in velocity axes

M  Denotes amplitude of Pulse-Width Modulation control

P Weapon vector in space axes

REL Denotes movement of the inertial measuring unit relative to the

weapon centre of gravity 

S Sightline vector in space axes

T  Target position vector in space axes
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Sub-subscripts

d Demanded response

a Actual response

Notation Used in Section 3

r Range to target

r Position vector

t Time

V Velocity vector

y Relative deviation of missile and target from a collision course

A Acceleration

I Performance index (see text)

K Kinematic gain

T Total time of flight

V Velocity

V(t) Lyapunov function

Y Deviation from a collision course

Greek Symbols

a  Upper limit of target manoeuvre capability

P Arbitrary positive constant defined by geometric constraint on initial

conditions p e (0,1 -  p)

£ Small finite error in the impact conditions



7 Flightpath angle

n Proportional constant

e Angle of velocity vector relative to the sightline

p Missile velocity advantage, p = Vt /Vm

a Sightline angle

Sightline rate, <7

Sightline rate in vector format

<% Initial sightline rate in vector format

¥ Euler angle in yaw

Subscripts

b Denotes sightline angle bias term

c Denotes closing velocity

f Denotes final condition

m Denotes missile

r Denotes error in range

t Denotes target

D Denotes desired conditions at impact

7 Denotes error in flight path angle

Sub-Subscripts

0 Denotes initial conditions
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1. Thesis Overview

The work presented in this thesis was sponsored by Hunting Engineering Ltd and 

considers the use of nonlinear control theory in guided weapon applications. In 

particular, two subjects of particular relevance to weapon applications are 

considered.

The first of these, is the application of nonlinear control theory to the design of the 

missile autopilot. An autopilot can be considered as a closed loop within the main 

guidance loop, which is designed to implement the control demands of the guidance 

system. In many weapon systems this is implemented in the form of aerodynamic 

control; the control devices are lifting surfaces controlled by the autopilot to achieve 

the lateral acceleration demands of the guidance system. Typically this requires an 

inertial measuring unit (IMU) consisting of rate gyroscopes and accelerometers to 

provide rate feedback within the autopilot loop. An autopilot loop can of course be 

designed using conventional linear approaches to control theory; however, many 

weapon systems feature a nonlinear autopilot where control is achieved using 

nonlinear devices.

Section 2 considers the development of an autopilot intended for an application 

using “bang-bang” actuators. A literature survey was performed and found that the 

literature available was fairly limited. The majority of references considered space 

vehicle control using on-off thrusters. One of the main features of nonlinear control 

theory is that, despite extensive research, there are few underlying principles with
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which to replace linear control theory. As a result many of these examples were 

application specific and not readily adaptable to this particular problem. Bemelli- 

Zazzera et al4 have developed a generic technique that converts a Pulse-Amplitude 

Modulated (PAM) control system into an equivalent Pulse-Width Modulated (PWM) 

control system. This is a flexible technique that is only limited by the requirement 

that the control design is based upon an equivalent linear design.

Neglecting actuator dynamics, simulation was used to demonstrate that the 

technique of Bemelli-Zazzera et al4 could be used to control the airframe. After 

consideration of the actuator dynamics it was concluded that they must be 

considered during the design of the controller. However, there is no linear 

equivalent of a “bang-bang” actuator upon which to base the design of the control 

system. A linear equivalent was designed using a reduced order observer to estimate 

the actuator states and, hence, provide position feedback. Simulation was then used 

to demonstrate that this design could successfully control a “bang-bang” actuator to 

achieve a pseudo-proportional response.

The second subject to be examined was the use of Proportional Navigation (PN) in 

weapon guidance systems. A literature survey revealed that whilst there was a 

wealth of literature devoted to the study of PN, there remained a gap in the literature. 

Many weapon systems incorporate a warhead that is directional in nature and clearly 

there are performance benefits if the guidance system can be designed to tailor the 

conditions in the end-game. However, there was very little information available in
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the open literature concerning variants of PN that enabled the impact conditions to 

be controlled.

Section 3 considers the use of nonlinear control theory to investigate the behaviour 

of the nonlinear intercept equations. PN is initially studied using a simple linearised 

model of the intercept to establish the importance of the kinematic gain. Using 

Lyapunov’s direct method it is demonstrated that PN is exponentially stable, even in 

the presence of target manoeuvres, provided the pursuer has a significant manoeuvre 

advantage over the target.

The use of Lyapunov’s direct method is then extended to the problem of achieving 

directional control over the line of approach to the target. A time-varying rate bias is 

derived to alter the direction of approach, whilst maintaining stability in the sense of 

Lyapunov. It is further demonstrated that although the guidance law that results is 

no longer exponentially stable it remains asymptotically stable.

The terms in the time varying rate bias rely upon information derived from an on­

board Inertial Navigation System (INS) and an active missile seeker. A further 

development of this guidance law is proposed that is exclusively reliant upon seeker 

based information eliminating the requirement for the INS and an active seeker. 

Although the guidance law as derived is considered to have undesirable features it 

has been shown to perform well using six degree-of-freedom simulation.
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Simulation has shown that the guidance law can meet the demand of controlling the 

approach direction but that a performance penalty results. Depending upon the 

desired angle of approach this penalty is generally small. However, a performance 

index based upon the integral of the square of the lateral acceleration shows, in 

comparison with a conventional PN guidance law, a large increase in control effort.

Finally, having demonstrated using nonlinear control theory that the basic PN 

algorithm is robust, the effect of the simplifying assumptions used to derive the 

theory is addressed. Using adjoint simulation developed by Zarchan42 it is 

demonstrated that in practical systems a miss results due to the effect of sub-system 

dynamics and noise.
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2. Nonlinear Autopilot Design

2.1 Introduction

An autopilot may be defined as a closed loop system that is itself part of the 

guidance loop. However, not all missile designs require an autopilot, for instance 

many anti-tank weapons function quite satisfactorily without one. A missile control 

system that uses inertial instrument feedback to modify the airframe response to a 

control demand is generally referred to as an autopilot. These may be broadly 

categorised into autopilots that control the pitch and yaw planes, referred to as lateral 

autopilots, or autopilots that control the roll orientation of the weapon, i.e. roll 

autopilots.

Many of the current generation of guided weapon systems feature a nonlinear 

autopilot. Typical examples include the UK Mkl3/18 Paveway II Laser Guided 

Bomb (LGB), the Swedish Strix guided mortar round and the French Argole LGB. 

Future Precision Guided Munitions (PGM) are likely to continue this trend, since 

nonlinear systems offer the weapon designer packaging advantages, reduced cost 

and reduced complexity.

A nonlinear autopilot design poses a number of challenges for the control engineer. 

Although all systems exhibit some degree of nonlinearity, the nonlinear element of 

the autopilot means that linear approaches to control system design break down. 

Traditional methods such as Laplace transforms, frequency response plots, root locus 

analysis or even state-space analysis are thus no longer valid. Even though
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considerable research has been conducted in recent years the fact remains that there 

is no single control analysis approach with which to replace these techniques in 

nonlinear control design.

In this chapter the design of a nonlinear autopilot for an air launched PGM is 

considered. The system considered is an LGB, enhanced with an INS/GPS* 

guidance system. Rather than utilising a proportional actuator, the weapon is 

controlled by a simple “bang-bang” actuator.

This chapter describes an initial literature survey of related nonlinear control 

systems. In order to demonstrate that a nonlinear guidance system can be derived 

using INS/GPS guidance an “intuitive” design solution is presented based upon an 

existing seeker based guidance loop. Following on from this a sliding mode control 

design was considered but rejected as inappropriate due to its limitation to a single 

second order system. Using the data from the literature survey a number of potential 

design techniques for a nonlinear control system are considered and a design 

developed using the method of Bemelli-Zazzera et al4 is presented.

The method of Bemelli-Zazzera et al4 is a general-purpose technique in which a 

linear control system may be designed using the classical approach to control design; 

the system is then converted to work in a nonlinear manner. Initially this technique 

is applied to an autopilot design derived using state feedback but neglecting actuator 

dynamics. Further work demonstrates that the design must consider actuator

* An inertial navigation system coupled with a global position system receiver.
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dynamics and considers several solutions to enable actuator dynamics to be 

incorporated into the control loop. Finally, an Observer based Pulse-Width 

Modulated controller design is developed.

2.2 Literature Survey

Although many weapon systems feature a nonlinear autopilot, this is not reflected in 

the available literature. It is presumed that many of the techniques that have been 

developed remain either classified or proprietary and little data is available in open 

literature. Some studies carried out at Hunting Engineering Ltd (HEL) were 

available for reference but the majority of the open literature available relates to 

spacecraft using on-off thruster systems.

Slotine et al31 have produced a general reference work considering the application of 

nonlinear control theory. Although several techniques have been suggested for 

nonlinear systems, no universal techniques have yet been developed that can be used 

in the analysis of all nonlinear systems. The main techniques developed include 

phase-plane analysis, Lyapunov theory and the describing function.

Phase plane analysis is a graphical method of studying nonlinear system behaviour, 

however, the technique makes a number of assumptions and has certain limitations. 

The linear part of the plant is generally restricted to second order systems, higher 

order systems can be considered but interpretation of the result is difficult. It is 

further assumed that the parameters of the plant are stationary. General input signals 

cannot be handled; however, initial conditions are implicit within the method so it is
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possible to consider the effects of step, ramp or impulse inputs. The technique 

essentially involves solving the nonlinear second order equation graphically, rather 

than analytically, and the result is a family of state space trajectories in a two- 

dimensional plane, the phase plane.

Basic Lyapunov theory comprises the two methods introduced by Lyapunov, namely 

the direct and the indirect method. The indirect or linearisation method states that 

the stability properties of a nonlinear system in the close proximity of an equilibrium 

point are essentially the same as those of its linearised approximation. The direct 

method generalises the concept of a stable mechanical system; i.e. a mechanical 

system is stable if its total mechanical energy decreases all the time. In using the 

direct method the concept is to create a scalar energy-like function (the Lyapunov 

function) for the system and to demonstrate that it reduces with time. It is a 

powerful technique; the main limitation of the method is the difficulty in finding a 

suitable Lyapunov function for a given system.

Although the direct method was originally devised as a method of stability analysis 

it has found an important application in the design of nonlinear controllers. The 

technique involves constructing a Lyapunov function of the system states and 

designing a control law to force this function to decrease, thereby guaranteeing the 

stability of the system.

The final technique considered is the describing function. This approximates 

nonlinear systems using linear equivalents and then uses frequency domain
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techniques to analyse the results. The describing function technique is mainly used 

in the analysis of limit cycles but is also used in the analysis of subharmonic 

generation and system response to sinusoidal inputs. It is a technique that offers 

many advantages; the system order is not limited, it is similar to linear systems and, 

therefore, more intuitive for engineers to understand. It can accommodate many of 

the nonlinearities found in control systems. The main disadvantage of the technique 

is that it is an approximation and it can produce inaccurate predictions.

7QIn an internal HEL study Rogers considered the use of pulsed thrusters mounted at 

the centre-of-gravity of a surface-to-air missile. Initially using a scheme suggested 

by Zarchan42, Rogers29 implemented a thruster augmented autopilot where the 

thruster pulse was used to augment the acceleration demand from the guidance 

system eliminating any deficit in the achieved lateral acceleration. Somewhat 

surprisingly this scheme showed no benefit in terms of reduced miss-distance. Later 

Rogers used phase plane analysis by considering a single and double integration of 

the guidance error as the phase plane variables. Rogers postulates a switching line 

for the thrusters, which is intended to drive the error integral to zero. Using this 

scheme Rogers was able to demonstrate that a greatly reduced miss-distance results. 

The study illustrates that whilst nonlinear controls can be of benefit to the control 

designer, their implementation is often non-intuitive and that the design of the 

controller is critical in determining the success (or otherwise) of their 

implementation.
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A number of papers published by Thurman et al34’35 consider the use of pulsed 

thrusters for the control of spacecraft and illustrates the implementation of a 

nonlinear autopilot with examples of a course change correction and a planetary 

lander. A brief review of previous literature is also considered.

A great deal of the preceding literature assumes the use of continuously throttle-able 

or fixed thrust propulsion systems and attempts to find an optimal trajectory using 

linear approximations to the spacecraft dynamics. Another approach adopted is the 

use of phase plane analysis, coupled with detailed computer simulation to develop a 

phase-plane switching controller.

The approach adopted by Thurman et al34,35 is to modify the robust control approach 

originally developed by Corless8 and Leitman24. In this approach, the demanded 

thrust vector is considered to consist of three components, a feedback linearisation 

component, a feedback law and a compensation term. The compensation term is 

designed to accommodate errors introduced by the thruster mechanism using 

discrete thrusters and, also, nonlinear spacecraft dynamics. Lyapunov’s direct 

method is used to design a controller to implement the compensation term. The 

algorithm is developed from the analytical characterisation of the transient errors and 

includes the effects of limit cycles and dead band nonlinearities without the use of 

linearisation.

The first application considered was a Martian soft-lander. This included the 

implementation of a nonlinear autopilot to control re-entry and the final descent
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under a thruster system, with the system subject to navigation errors and drift 

following a parachute descent following re-entry.

Another example is the use of a nonlinear autopilot to control the attitude change of 

a rigid body using the Euler rotation theory. This approach is complicated by the 

dynamical coupling inherent in such an approach and previous applications have 

attempted to overcome this using low rotation rates, open loop implementation of a 

pre-computed angular acceleration profile or feedback linearisation. Control laws 

involving feedback linearisation are continuously time varying functions and with 

pulsed thrusters there is the added complication of developing a firing logic that 

implements the desired control input with acceptable accuracy. Thurman et al34,35 

demonstrate that this can be implemented using a nonlinear controller designed 

using the above technique and that by including the nonlinearities in the controller 

design a simple digital autopilot can be developed that does not require feedback 

linearisation or gain scheduling. Also demonstrated is that the effect of sampling 

rate on performance can be assessed to evaluate the robustness and performance of 

the digital implementation of the autopilot. Simulations are used to demonstrate that 

the required manoeuvres can be accomplished with precision and that the residual 

errors result from the navigation system not the control implementation.

The techniques developed by Thurman et al34,35 are useful in that the nonlinear 

element of the system is incorporated into the design of the controller thereby 

ensuring an acceptable performance. The principle disadvantage of the technique is 

that, like many nonlinear design methods, it is rather application specific and
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difficult to apply to other problems. Like most Lyapunov based methods it may also 

be difficult to find a suitable Lyapunov function for more general systems.

The describing function technique is used by Anthony et al1, for the nonlinear 

control analysis of a flexible spacecraft equipped with thrusters; in particular using 

the technique to analyse the effects of a pulse-modulated thruster in terms of its gain 

and phase for structural mode limit analysis. This is applied to a variety of pulse 

width control systems, including the Scmitt trigger, the Pulse-Width Pulse- 

Frequency Modulator, the Derived Rate modulator and a Pulse-Width Modulation 

technique. Noting that the describing function is a technique involving 

approximation the uncertainties are included as an uncertainty factor in the nonlinear 

control robustness analysis. Finally, the method is applied to a pulse-modulated 

control system of a satellite.

In the example presented the describing function method is used to successfully 

predict the onset of a limit cycle due to a coupling of the control system with a 

structural response. The technique is then used to design a compensator to eliminate 

this limit cycle and to avoid the instability that may result. However, like the 

techniques described previously developed by Thurman et al34,35 this is rather 

application specific and difficult to apply to other problems.

Bemelli-Zazzera et al4 present a method to design a Pulse-Width Modulated (PWM) 

controller that is equivalent to an existing Pulse-Amplitude Modulated (PAM) 

controller. The technique is of some merit as it enables the PAM equivalent to be
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designed using a conventional linear approach and the design is later converted into 

a PWM system. The technique developed involves generating a PWM control input 

that is approximately equivalent to a PAM input by integrating the control response 

over a sample period. An optimum pulse delay is found which minimises the error 

in the dynamic response between the PAM and PWM equivalents. It is also 

demonstrated that if the optimum delay is achieved then the PWM system retains the 

stability characteristics of the PAM system. The use of the method is illustrated by 

two examples. The first example is a simple second order spring-mass damper and 

the second an antenna array mounted on a spacecraft controlled by thrusters and 

piezo-electric actuators.

Although this technique was developed for a thruster based application it is a 

general-purpose technique that may be applied to any system for which a PAM 

equivalent may be designed. The method is extremely simple to implement, as the 

pulse delay is a simple function of the state space system matrices and the sample 

rate.

The technique is further developed by Zimpfer et al43 who adapt the technique to 

consider large inputs using a pulse weighting function to modify the pulse delay. 

This results in an improvement in the dynamic response of the PWM system. The

9 0  91modified technique is then applied to a space based application. Ieko et al ’ also 

build upon this technique and refine it further with the implementation of a digital 

redesign of the PWM system.
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More recently Bemelli-Zazzera et al5 have considered a further refinement of the 

basic technique. Rather than considering a single PWM equivalent pulse within 

sample period, multiple PWM pulses are now proposed. Equivalence between the 

PAM and multiple PWM pulses is maintained by matching the systems state 

response at the end of the sample period. It is demonstrated that provided a 

sufficient number of sampling pulses is used the degree of approximation between 

the two systems can be as close as desired, even at low sample rates. The principal 

disadvantage of the new technique is that the implementation is not as straight 

forward as the previous technique, since the pulse delays are no longer a simple
f

function of the system matrices. The pulse delays must be found using an iterative 

procedure, although in the examples presented the solution converged within a few 

iterations.

2.3 Intuitive Guidance Design

In this section an “intuitive” design solution for a nonlinear autopilot/guidance 

system is derived by developing a guidance law that essentially imitates an existing 

seeker based guidance design. The design selected was the UK Mk 13/18 LGB 

shown in Figure 1.
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Figure 1 UK Mk 13/18 Laser Guided Bomb (Paveway II)

At the front of the weapon is the canard nose section incorporating an aero-stabilised 

seeker head and four cruciform canard control surfaces. Two “bang-bang” 

pneumatic actuators driven by either a hot or cold gas source control the canard 

control surfaces. The centre section is the UK 1000 lb. bomb and at the rear is an 

assembly incorporating four penknife-folding fins.

The guidance system is based around a four-quadrant laser seeker as shown in 

Figure 2, together with the canard pairs controlled by the guidance computer using 

seeker information. The seeker is gimballed in pitch and yaw and thus decoupled 

from the body dynamics and free to align itself with the local velocity vector. If the 

laser spot is detected in the upper quadrant the elevator canard pair are deflected in a 

positive sense as shown in Figure 2. Similarly if the laser spot is detected in the left- 

hand quadrant the rudder pair are deflected as shown in Figure 2. At the centre of 

the seeker is a dead band in which there is no demand from the control system. As 

the velocity vector diverges from the target sightline vector, the response of the 

control system is to deflect the canards such that the velocity vector returns to the 

sightline. The flight path to the target is thus approximately rectilinear with the
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weapon tending to lag below the sightline. There is a tendency for this guidance 

loop to cause the weapon to impact short of the desired target, which is corrected for 

by an empirical correction in the weapon aiming solution.

F o u r  Q u a d r a n t  
D e t e c t o r

L a s e r  S p o t  D e te c te d  in  U p p e r  Q u a d ra n t  L a s e r  S p o t  D e te c te d  in  L e f t-H a n d  Q u a d ra n t
G u id a n c e  C o m p u te r  D e f le c ts  E le v a to r  P a i r  G u id a n c e  C o m p u te r  D e f le c ts  R u d d e r  P a i r
o f  C a n a rd  o f C a n a r d

L e n s  P r i n c i p l e  
s ~ \  P l a n e

R e f l e c t e d  L a s e r  
E n e r g y

Figure 2 LGB Guidance Using Four Quadrant Detector

In order to derive the “intuitive” guidance design, the output from the INS/GPS is 

used to derive an artificial sightline vector. This is then transformed into a frame of 

reference defined by the current velocity vector and the unit error vector calculated. 

Noting that although the seeker is gimbaled, it is still coupled to the body in roll, the 

error vector is then rotated through the Euler angle in roll to define the vector in 

terms of its components in the pitch and yaw planes. The demanded control 

deflections are then derived based upon these components. This is now discussed in 

more detail in the following paragraphs.

There are three frames of reference used in the guidance design. The weapon 

position is defined in a right hand axes frame, with the origin fixed at the release 

point. Co-ordinates within this frame of reference are denoted by ( X  , Y , Z ). A
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velocity axes is defined by the instantaneous velocity vector; this is a right hand axis 

frame denoted by ( X T, YT, ZT). A transformation from space to velocity axis is 

defined by the Euler angles (y/p , 0P) as shown in Figure 4. Finally, a body fixed 

axis system is considered, a standard right hand axes frame with the transformation 

from space axes to body axes defined by the Euler angles (y/ , 6 , 0). The Euler 

angle y/ represents a positive rotation about the Z-axis, this is followed by a rotation 

0 about the transformed Y-axis and finally a positive rotation 0 about the 

transformed X axis completes the transform from space to body axes. A positive 

rotation is a clockwise rotation when viewed from the perspective of the negative 

axis looking to the positive axis.

2.3.1 Guidance Design

Figure 3 Weapon and Target Geometry in Space Axes

Firstly, considering the weapon and target geometry in space axes as shown in 

Figure 3. A right hand axes frame, centred at the release point defines the current 

weapon position in space. The current weapon velocity vector in space axes is
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denoted by the vector, V_p. The current position in space axes is denoted by the

vector, X_p , and the target position in space axes by the vector, X_T, closing the

vector loop the sightline vector in space axes is given by:

Z s  = X T- X p (1)

A A

Defining the unit vectors in space axes, X 5, and V_P, by:

X , .  Vp
X ,  = f= sT and V.  = f £ r (2)

x  — yI—s I I—/51

Figure 4 Transformation into Axis Defined by Velocity Vector

For now ignoring the roll axis, the velocity-based frame of reference is fixed with the 

x-axis aligned with the unit velocity vector. Denoting the unit velocity vector in 

space axes as:
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EP(i) 
V p (  2) 

3)
(3)

As shown in Figure 4 the transformation from the space reference frame to the 

velocity reference frame is described by the Euler angles, y/p , and, 6P, defined by:

6P = sin_1(-V „(3» (4)

y/P = tan-i rv P( 2 y
vKp(Dy

(5)

Hence, these two angles define a transformation matrix, M , from space to velocity 

axes given by:

M  =
cos(\j/p).cos(6p) sinty/jO.cos (6P) - s in  (6P) 

- s in  (y/p) cos (y/p) 0
cos(y/p).sin(0p) s i n ^ ) ^ ^ ^ )  cos (6P)

(6)

Using the transformation the sightline vector in the velocity frame of reference may 

be now be derived:

=M .X, (7)
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A

X_E T  “  1

Figure 5 Sightline Angles Relative to Velocity Vector

Denoting the unit sightline vector in velocity axes as:

£ * (0
t E(2)

K e (  3)

(8)

The sightline vector, shown in Figure 5, can be described by sightline angles defined

as:

<7 =  tan-i t112e(2) + X2e(3)
2Ce(1)

(9)

t , = tan-if 2U (3)
1 e(2)J

(10)
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Although an aero-stabilised seeker is decoupled from the body and aligned with the 

local velocity vector, it remains coupled to the body in roll. The sightline angle, § , 

is modified by the Euler angle in roll, 0 , to determine the sightline vector relative to 

the canard planes:

Finally, it is more convenient to express the error vector in terms of the components 

in the individual canard planes. Denoting the error in yaw by eY and the error in 

pitch by £P defined by:

to that which would be derived from the seeker. This may now be used as input to 

the weapon guidance computer. Hence, this signal can be used to modulate the 

input to the canards in order to successfully guide the weapon to the target. 

Denoting the threshold at which the canards are deflected by i, the canards are 

modulated as:

( i i )

eY = tan 1{tan(cr).cos(§/)} (12)

£p = tan ^tanOrXsind')} (13)

A sightline error vector has now been derived from the navigation system equivalent

\£y \<i,g = 0.0
(14)
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Where: g Demanded canard deflection in yaw.

?] Demanded canard deflection in pitch.

As with the seeker based guidance algorithm upon which this design is based, the 

guidance is essentially open loop. The canards are deflected so as to maintain the 

weapon along a rectilinear flight path to the target. As the velocity vector diverts 

from the sightline to the target, the canards are deflected to correct the flight path.

In order to demonstrate this as a viable guidance algorithm it has been incorporated 

into a six degree of freedom trajectory simulation code. A typical trajectory is 

presented in Figure 6 for a straight and level weapon release from 20,000 ft at Mach



0 2 4 6 8 10 0 10 20 30 40 50
Range (km) Time (s)

Time (s)

Figure 6 Typical Trajectory Using "Bang-Bang" Control System

Referring to Figure 6 the following points should be noted. First of all the flight 

path is very nearly rectilinear and is not energy efficient, therefore the impact 

velocity is compromised and ultimately range reduced. Secondly, the impact angle 

is relatively shallow, increasing the chance of ricochet or failure to penetrate a hard 

target. It would be advantageous for the weapon design to take advantage of the 

additional information from the navigation system in order to control both impact 

velocity and impact angle, together with a more energy efficient trajectory to 

maximise range. This could of course be accomplished by replacing the existing 

actuation system with a proportional actuator, thereby simplifying the autopilot 

design but this has significant cost implications. It would be of advantage to the 

weapon designer to be able to use an autopilot loop that incorporated the existing 

‘bang-bang5 actuator.
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One final point is worth noting, the system is almost exclusively reliant on position 

information. Position information would be available in a system that incorporated 

GPS, with the additional of a roll reference would be sufficient for this design to 

function. There is the potential therefore for a simplified guidance system to be 

proposed using GPS, with the inertial pack reduced to a single rate or position gyro. 

However, such a system would be vulnerable to GPS jamming/spoofing.

2.4 Linear Autopilot Design

2.4.1 Airframe Response

This section describes the design of a simple autopilot loop, around which the PWM 

control design is based. It is essentially a standard accelerometer/rate sensor based 

autopilot loop. A state space technique is applied that is used to select the 

accelerometer and rate gyro gains to achieve the required second order response in 

the control loop.

It is assumed that the weapon is axi-symmetric and there is no cross-coupling 

between the pitch and yaw planes. This is a reasonable assumption for small 

incidences (pitch incidences below 10°) and is characteristic of typical air-to-ground 

weapons. It is also assumed that a skid-to-tum autopilot is to be used and that based 

upon these assumptions the pitch and yaw planes may be considered separately.

It is further assumed that given the weapon is axi-symmetric the same autopilot 

design may be used in both planes. Using the assumption of small incidence angles
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the lateral response of the airframe be described by a pair of first order simultaneous 

differential equations:

M .ay =Yv.v + Yr.r + Y^.C 

I a s  = N,.v + N rj- + ! fc£

(16)

(17)

Noting Euler’s equation for a rotating body and dividing equation (16) by the 

weapon mass, M, and equation (17) by the weapon inertia, Izz, the airframe response 

to a control input may be expressed in state space form as:

V = y >  ( y r ~ u ) V
+

r1

r n„ nr r Lnc J
(18)

The output required is the achieved acceleration and hence the system measurement 

equation is:

a, = [y, yrTj+tvck (19)

For convenience equation (18) is written as:

x  = Ax+Bu (20)

And equation (19) as:

y = Cx + Du (21)
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2.4.2 Instrument Equation

An inertial measuring unit (IMU) comprising of three accelerometers and three rate 

gyroscopes is placed at a known location in the weapon. The position vector of the 

IMU in the body axis is denoted by r A/B as illustrated in Figure 7.

B o d y  A x i s

I n s t r u m e n t  
; P o s i t i o n

S p a c e  A x i s

Figure 7 Missile Instrument Position Relative to Weapon e.g. Position 

Denoting the angular rate vector in body axes by:

n  = (22)

The weapon velocity in body axes by:

v =
U
v
w

(23)
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The acceleration vector at the IMU is:

a a B + Q x r A/B + Q. x  (q  x  r A/B ) + 2Q x vREL + (24)

Where the subscript REL denotes the relative movement of the IMU with respect to 

the weapon e.g. Assuming a rigid structure, equation (24) reduces to:

Ql =  QlB —A/B ^  (0^£a/B ) (25)

Expanding equation (25):

a
ax + (q.lz -  r.ly )+ q.(p.ly -  q.lx )+ r.(p.lz -  r.lx ) 

a, + (r-lx ~ P-lz) -  pip-ly ~ q lx )+ r.{qlz -  r.ly ) 
az + (p.ly -  q.lx ) -  p.{p.lz -  r.lx ) -  q.{q.lz -  r.ly )

(26)

Generally the IMU is placed close to the weapon axis, hence I ~ 0, / ~ 0, hence:

a =
a x - q 2-lx ~ r2K
ay +r.lx + p.q.lx 

a z ~q- lx + P - r l x

(27)

Finally considering only the lateral plane, i.e. p = q = 0, the acceleration measured

by the accelerometer is:

a y =ay +r.lx (28)

Hence, the instrument measurement equation may be expressed as:
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a y (yv +lx.nv) (yr + ls.nr) V
+

1

+ w

r 0 1 r 0

c (29)

For convenience let this be denoted by:

z = E.x+ F.u (30)

2.4.3 Gain Selection

Figure 8 Autopilot Block Diagram

The autopilot design using state feedback is shown in Figure 8, noting that for the 

moment actuator dynamics have been ignored. The input is the demanded 

acceleration; the desired autopilot characteristics are determined by suitable 

selection of the gain matrix G. Overall unity gain for the autopilot is maintained by 

the gain K. The gain matrix G is defined as:

g  =  [k a  k b ]

Referring to Figure 8 the input to the airframe is given by:

(31)

u = K.ayd -  G.z (32)

Substituting for z from equation (30) and re-arranging gives:
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= {l+G .F)~\[K.ay i-G .E .x j (33)

Substituting equation (33) into equation (20) gives:

X  = (a -  B(l + G .F)'1 ,G .e)x + B.(\ + G.F)"' .K.afd (34)

Similarly for the output equation:

y = (C -D .( l + G.F)~l .GE)x+ D X l+ G .F y1 .K.ayj (35)

Considering some of the matrix terms separately:

And:

{l + G .FY1 = \ i  + [k a k g]
o

-1

- { 1+KA'{y%+ L-n^})

(36)

g .e  = [k a k g]
{yv+lx.nv) (yr + lx.nr) 

0 1

~ [Ka '(>’>• +L-nv) Ka ■ (yr + lx,nr) + Kg]

(37)

And for convenience let G.E = [k i K2 ]:

Noting that equation (36) is a scalar
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5.(1 + G .F)'1. G.E
1

i + KA-{y(+h-n()

Ki-y( K2-)’i 
Kv n; K2.n;

Which for convenience is re-written as:

B.(l + G .F)_1.G.E = K y ( K y <
K'2.n;

And hence the closed loop system matrix is:

A -  B.{\+ G.F) .G.E =

The characteristic equation is given by:

' y . - K - y ( y , - v - K - y (
n, -  K 'jir nr - K 2.n(

s.I -  (ri -  5.(1+G.F)~' .G.e) = 0

(38)

(39)

(40)

(41)

Expanding equation (41) results in a Laplace equation. Substituting the term a  for 

[n5.yv - nv.y ^  (this term is commonly used in autopilot design), results in:

■s2 + -  yv + K 2n ; -  nr )Ls +

{ u .n ^ -y r.nv + yv.nr +K't.{yr.n( ~U.n( - y ; j ir) - K 2xx) = 0
(42)

The autopilot design parameters are expressed in terms of the required second order 

response, i.e. to meet a desired characteristic equation in terms of the required 

bandwidth, 0)A/P, and damping ratio, qA/P. The desired characteristic equation is:
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S + 2  £ A/p6)AlpS + CQA / P (43)

Comparing equations (42) and (43) two simultaneous equations are obtained for K[ 

and K[ which are solved using an iterative procedure. Assuming some typical 

values for a missile taken from Gamell and East10, which are given in Table 1.

Table 1 Missile Characteristics

Derivative Value
yv -3
yr 0
yc 180
nv 1
nr -3
nt -500
U 500
lx 0.5

Substituting into equation (42) the following is obtained:

i 2 + (6+180^ ' + 500% ).s + (509 + 25,540^' + 500AT')

Noting that the term in So is dominated by K[ an approximate value is obtained 

from:

, - y r.nv +U.nv + yv.nr -(0
% ~

A/P

y; iir +U.n; - y rJi; 

And from the term in Si an initial estimate of K'2 is:

(44)

^  A / P ®  A/P  +  n r . y ^
2 — (45)
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A solution is then found by iterating using:

Hence, noting:

And:

K , - y r.nv+U.nv +yv.nr -<D2AIP-K '2.a 
y/..nr +U.n; - y r.n(

K, Ka (yv +lx.nv)
Ki

1+ KA '{y^+ K-n^  i + K A '{ y i+ h-n^)

__________ El__________

G'vH - ' O - ^ - U h - 'O

(47)

K, K2 ^ KA( y r +lx.n,)+KG

1 + +lx-nc)  ̂+ KA-{y;+h-n() (48)

=> Kc = Ki .(l + Ka,(y{ + lx.nf))- Ka.(yr + lt .nr)

The steady state autopilot gain should be unity hence:

0 = (a -  B.(1 + G.FY1 ,G.e )x + B.(l + G.f Y  .K.a
(49)

= >  X  = -(a -  B.(l + G.F)~1 .G .e}1 ,B.(l + G . f Y  ,K.ayi 

From the output equation:
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an = { c ~ D-(] + G- F)~'G-e }x+ D-(] + G- F)~'K.au

a
y a

aya
=  1 (50)

K =
- ( c - D ( 1  + G F ) " 1G £ ' ) ( a - . B ( 1 + G F ) " 1G £ ' ) b (1 + G F ) ~ 1 

+ d ( i + g f ) ~ '

This section has presented the derivation of the underlying theory behind a basic 

analytical technique to find the autopilot gains required to meet a given set of 

characteristics, expressed as the desired second order response. The use of this 

technique was confirmed using simulations in SIMULINK using the block diagram 

shown in Figure 9.

C ontro l D e m a n d  O utput

-H  tim e  | 
T im e V ectorC lock

A cce le ra tio n  O utput

x ' = Ax+Bu 
y =  Cx+DuA ccleration

D em an d
(m /s)

M atrix
G ain

A cce le ra tion
A irfram e

Inertial In strum en t (Input)
S ta te  O utput 

I Inertial In strum en t (S ta te  V ector)

Figure 9 Linear Autopilot Design Using State Feedback

Using MATLAB/SIMULINK the effect of instrument position was examined over 

the range ±0.5 m from the e.g., the desired autopilot characteristics being a 

bandwidth of 5 Hz and damping ratio of 0.7. The results are shown in Figures 10 to 

13.

53



Accelerometer Gain (State Space) Gyro Gain (State Space)
-3.5 -0.062

-0.064

-0.066

-4.5 -0.068

-0.07

-0.072

- 5.5 -0.074

-0.076

-0.078

-6.5 -0.08
-0.5 0.5 -0.5 0.5

Inst pos. rel. e.g. (m) Inst pos. rel. e.g. (m)

Figure 10 Accelerometer Gain as a Figure 11 Gyro Gain as a Function o f 
Function o f Instrument Position Instrument Position

Demand Gain (State Space) Autopilot Response to Step Input
- 1.25

- 1.3

- 1.35

- 1.4

- 1.45

- 1.5

- 1.55

- 1.6
-0.5 0.5

Inst pos. rel. e.g. (m)

% 0.4

<5 0.2
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Figure 12 Demand Gain as a Function o f Figure 13 Autopilot Response as a
Instrument Position Function o f the Instrument Position

As might be expected the accelerometer gain is sensitive to instrument position, KA 

nearly doubles as the instruments move over the range ±0.5 m. Kg and K are both 

less sensitive to instrument position. Referring now to Figure 13 it can be seen that 

the required second order response is obtained with an overshoot of 6.13% and the 

first peak occurs at 0.13 s, i.e. the system has achieved the required second order 

response. This was confirmed using MATLAB to find the eigenvalues of the 

characteristic equation.
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2.5 Actuator Model

All of the simulations involving an actuator assume a brushless DC motor so that 

simulations may be compared directly. This section first of all describes the 

development of a linear model of a conventional proportional actuator and the 

modification of this model to represent a “bang-bang” actuator. The impact of air 

loads is not considered in either case.

Figure 14 Block Diagram o f Actuator Module

Figure 14 shows a block diagram for a conventional actuator based upon a brushless 

DC motor. The voltage applied at the motor is:

v  = K„.(eD- e A) (51)

A counter e.m.f. is induced by the rotation of the motor and hence:

V = LR + K m .co (52)

The torque developed by the motor is thus:

(53)

Hence, the rotational acceleration of the actuator is:

55



Which can be re-written as a second order differential equation:

d 2eA K l deA k m.k p k m.k p

' dt2 R ' dt R ' A R ' D

Often a reduction gearbox may be added, this modifies the above equation by the 

gear ratio, KgB:

J.
d 20, K l  d$, K„.K
dt‘

'A _j_
- + ■

R dt R.KGB R.K,
-.6 , (56)

GB

Both of these equations can be used to define a second order transfer function which 

represents the actuator response i.e.:

e col
6 D s 2 +  2C „(D ns  +  a ) I

(57)

Or in State Space form:

---
---

1 i

0 i tb-
i

+
'  0  ■ e D

i--
--- <E

>:
i -C O 2n L ^ J CO1

-  n _

(58)

A “bang-bang” actuator is different in that there is no resolution of the achieved 

deflection and therefore no position feedback. Rather than apply a voltage to the 

motor proportional to the error, the maximum voltage is applied as a step input in 

response to a demand. The motor is then driven to the end stops and held there by
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the motor torque. Such a response is clearly nonlinear and nonlinear characteristics 

such as torque limiting, rate limiting and deflection limits must be included.

It should be noted that both models are essentially identical if the feedback loop is 

ignored, a simple actuator model was therefore developed that considered only the 

motor response. This could then be used in either case, with the feedback loop 

removed to model the “bang-bang” system.

Correctly modelling actuator nonlinearities is not a simple problem and as 

Thomasson33 notes modem control tools enable such nonlinearities to be modelled 

incorrectly all too easily. The method presented involves the recognition of the 

piecewise continuous nature of the problem and that the correct governing equations 

for each regime. Figure 15 illustrates the transition diagram for a second order 

response which may be described by a single set of differential equations.
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Figure 15 Transition Between Limits in Actuator Model

Thomasson33 assumes a proportional actuator with position feedback and considers 

the second order response in equation (58), hence the differential equations have 

therefore to be modified in order to model a “bang-bang” actuator. This is 

summarised in the Table 2.
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Table 2 Transition Between Regimes fo r  Nonlinear Actuator Systems

Path Transition Criterion Action
a Free to Positive Rate Limit Set input to acceleration 

integrator to 0.0.
b Positive Rate Limit to Free eA<o Set input to acceleration 

integrator to 0A
c Free to Negative Rate Limit 4  - Set input to acceleration 

integrator to 0.0

d Negative Rate Limit to Free eA>o Set input to acceleration 
integrator to 0A

e Positive Rate to Positive 
Deflection Limit

* e,ma Set input to acceleration 
integrator. Set input to rate 
integrator to 0.0. Reset rate 
integrator to 0.0.

f Negative Rate to Negative 
Deflection Limit

Set input to acceleration 
integrator. Set input to rate 
integrator to 0.0. Reset rate 
integrator to 0.0.

g Positive Deflection Limit to 
Free

eA<o Set input to acceleration 
integrator to 0A

h Negative Deflection Limit to 
Free

eA>o Set input to acceleration 
integrator to 0A

i Free to Positive Deflection 
Limit

Set input to rate integrator to 
0.0. Reset integrator to 0.0

j Free to Negative Deflection 
Limit

Set input to rate integrator to 
0.0. Reset integrator to 0.0

Figure 17 shows the implementation of this logic in a SIMULINK simulation; Figure 

16 shows the results of a simulation where the deflection demand is a sine wave of 

amplitude 15°. The simulation shows the effect of deflection and rate limiting are 

simulated in the correct manner.

59



A
ng

ul
ar

 A
cc

el
er

at
io

n 
(r

ad
/s

/s
)

0 .05

-0.05

- 0.1
100

Time (s)

co
4—*oQ)
Vf—
CD
O
O

4—»03
Z3

4—*O

co

0.05
CD

4—*
03
tr
v_
03
3  -0.05O)

<  -o ,

-10

-20
100100 0 5050

Time (s) Time (s)

 Demanded Deflection  Achieved Deflection

Figure 16 Effect o f Rate and Deflection Limits on Actuator Response
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Figure 17 Nonlinear Actuator Model
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Finally in developing a “bang-bang” actuator model it is recognised that this has 

three set positions, these being maximum positive deflection, zero and maximum 

negative deflection. Clearly the model above will simulate the upper and lower 

bounds but it will not model the zero deflection correctly. This was overcome by 

modelling the actuator as two separate motors with the upper limit of one being zero, 

with the other having the lower limit at zero. A fin controller was designed which 

flipped between the two models as this limit was encountered. The controller is 

shown in schematic form in Figure 18.

T o rg u e  & 
Inertial Load

Deflection & 
Limit Logic

R a te  & 
Limit LogicD em and

Fin
Logic

Controller

out_1

T o rg u e  & 
Inertial L o ad l

D eflection & 
Limit Logicl

R a te  & 
Limit Logicl

Figure 18 "Bang-Bang" Fin Controller

2.6 Sliding Control

The first technique considered was the use of Phase Plane analysis. This has been 

successfully used by Rogers et al in an autopilot design for a conventional air 

intercept missile augmented by pulsed thrusters at the centre of gravity (e.g.). The 

system utilises proportional navigation as the guidance system, Rogers performs a 

double integration of the error between the demanded lateral acceleration and the 

achieved acceleration. A simple switching line divides the two integral variables 

and as the error propagates in the phase plane the thrusters are pulsed to drive the
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error to zero. Rogers successfully demonstrates that this simple design is capable of 

drastically reducing miss distance in the end game.

Initially it was considered that this might be a technique that could possibly be used 

for a canard actuator system, using acceleration feedback from the IMU to define the 

switching line. Further investigation showed that this technique was impractical for 

this application. The simple design postulated by Rogers above simply considered 

the effect of thrusters mounted at the e.g. Application of the thruster thus directly 

affects the lateral acceleration with the disturbance in pitch rate compensated for by 

the rate feedback loop in the autopilot. In this application there is no autopilot and 

so the switching line concept used by Rogers is not applicable since it does not 

consider the yaw rate response of the airframe.

.... ...;..... 53
__

a n

Nt
switching Line 

ay —ay =-r
\

\ r

Figure 19 Switching Line Proposed fo r  "Bang-Bang " Control

A similar concept was advanced where the phase plane variables were the yaw rate 

and the error in the lateral lateral acceleration. A switching line was postulated, 

shown in Figure 19, in order to drive the error to zero. However, simulation using
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SIMULINK showed that this resulted in a large limit cycle with the weapon 

oscillating in pitch. Further refinements to the switching line could have reduced the 

limit cycle; however, the fact remains that the loop is dependent upon the open loop 

airframe response. The airframe bandwidth is low, the response lightly damped and 

the bandwidth is a function of Mach number, altitude and local temperature. In 

order to work satisfactorily this would require a great deal of a priori knowledge, 

additional instrumentation and produce a system whose performance would at best 

be marginal. It was therefore concluded that this technique is not readily applicable 

to this particular design problem.

2.7 Pulse-Width Modulation Control

As a numerical experiment the standard autopilot loop shown in Figure 8 was 

modified. Rather than the proportional input to the airframe demanded by the 

control system the airframe input was modulated to a fixed value (±10° Rudder); the 

sign of which was determined by the proportional input. Surprisingly for such a 

crude modification the autopilot loop worked well, a typical result is shown in 

Figure 20. Since it appeared that Pulse-Width Modulation (PWM) offered a simple 

means of controlling the nonlinear system this was considered further.

64



ffi 3

0.2 0 3 0.50.4
Time (s)

Figure 20 Autopilot Response to Simple PWM Input

The literature survey failed to find a single example where this has been used 

successfully in this particular application. Most of the available reference sources 

considered concentrated on spacecraft controlled by pulsed thrusters and many 

control designs were application specific. After considering a number of the 

literature sources the concept produced by Bemelli-Zazzera et al4 was selected for 

further study. The concept used considers a control system designed to use a 

conventional Pulse-Amplitude Modulated (PAM) input. This may of course be 

designed using a conventional linear design method. Bemelli-Zazzera et al4 develop 

the concept of an equivalent PWM input where both inputs are of equal area together 

with a pulse delay to minimise the error dynamics between the PWM and PAM 

inputs. This concept was further developed by Zimpfer et al43 introducing a 

weighting factor to compensate for large PAM inputs. Both concepts were further 

refined by Ieko et al20 who introduce the concept of a PWM design developed from a 

discrete time system.

The study concentrated on using the technique as originally developed by Bemelli- 

Zazzera et al4 and later introduced the refinements proposed by Zimpfer et al43.
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2.7.1 Pulse-Width Modulation Controller Design

The technique used in the controller design is based upon that originally developed 

by Bemelli-Zazzera et al4. However, the detail included in the paper was limited and 

the derivation presented here includes additional detail beyond that of the original 

paper. The design of the controller also includes the improvements suggested by 

Zimpfer et al43.

Assuming the state space equations in the standard format defined by Dutton et al9, 

i.e.:

x  = Ax + Bu (59)

y = Cx + Du (60)

The full solution of the state space variables as a function of time is:

t
-T).B.u(T).dT  (61)

o

And assuming a zero order hold the PAM response may be expressed by expressing 

the above equation in discrete form:

£*+1 = ®(h)xk + A(h)uk (62)

Where:
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A 2h2 3 / 3

o  (h) = eAk = I+ A h  +
21

+
3!

(63)

r Ah A h
I + —  + --------+ ...

2! 3!
Bh (64)

Introducing the notation W(h) where:

to 0+1)!

The discrete response can be written as:

x k+l = 0 ( h)xk + lP(/z)Z?Mjt/z (66)

C o n t r o l

P u l s e  P u l s e  
D e l a y  W i d t h

' W M

P A M

t+x t+x+S t+h t+h + x t+h+x+6 t+2h T i m e

Figure 21 Pulse-Amplitude Modulated and Equivalent Pulse-Width Modulated
Inputs

Referring now to Figure 21 and considering a single input to the system. In the 

PAM input the input, u, is held constant over the sample period, h. The design of 

the PWM controller seeks to find an equivalent PWM input that will minimise the 

error in the dynamic response by solving for the two unknowns i.e. the pulse width, 

5, and the delay from the sampling instant, x.
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Assuming that the pulse width is small, the state transition matrix can be expressed 

in discrete form as:

e~At = I -  AS (67)

Using this assumption and returning to the solution of the state space equations in 

the time domain it can be shown that the response to PWM input is:

Comparison of the two responses shows that there are no differences in the state 

transition matrix, however, there are major differences in the input term.

Considering now the steady state response to the PAM input. In the steady state:

There is no direct equivalent for the PWM input since the input cannot be constant 

over the sampling period, hence the state vector cannot be constant. It would 

desirable, however, if the average value of the state vector over the sampling period 

was to approach the steady state value of the equivalent PAM system. Over the 

sample period the average value of the state vector is:

(68)

* +i = xt = -A -'B u (69)

(70)

Evaluating the integral:
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x = - \ a ~1Bum8 (71)

Comparing the two responses it can be seen that the time averaged response of the 

PWM will be equivalent to the PAM system provided that the following condition is 

satisfied:

uh = um8 (72)

I.e. the time average response of the system to input, whether PWM or PAM, will be

the same regardless of the pulse delay provided the area of each pulse is equivalent.

Hence, the pulse duration can be simply derived by equating the area of the two 

pulses.

Now a pulse delay, t, is derived that minimises the error vector between the two 

inputs. Noting the above result the error vector may be written as:

e = [ ¥ ( h ) - e A(ĥ ']B uu 8  (73)

Which can be expressed as a series:

a'[c«+ 1).(* -  ry -  *q „ ,
g = ~ §  a + 1) i Bu" s  (74)

The error in the dynamic response is proportional to the integral of the error over the 

sampling period. To consider how the error is related to the pulse delay consider
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three values, x=0, x=h-8 and finally x=h/2. First of all considering a zero delay, the

error vector reduces to:

t r  (*•+!)!

Now considering x=h-S:

e- = ~ l  W  (76)

And further assuming that h » 8  this reduces to:

Now consider the pulse delayed to half the sampling period and further assume that 

h » x

g = ~ g  (i + l)!-------------------------------------------(78)

The results show that depending upon the pulse delay the error vector changes in 

sign from negative to positive and then becomes negative again. Therefore, there 

must exist a value for the delay that minimises the error vector. Bemelli-Zazzera et 

al4 suggest minimising the norm of the error vector but the paper is unclear as to the 

exact technique used. Two different approaches to deriving the value of x will now 

be presented and both reproduce the corresponding result found in the paper.
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Before considering the derivation of the delay the following notation is introduced:

h „
T =  — + T  

2
(79)

The magnitude of the error vector may be derived from:

(80)

To minimise the error requires E=0, introducing the notation from equation (79) 

above into equation (73) the following is obtained:

e = B u m 8 (81)

Assuming t is small and that:

e~Af ~ I - A . f (82)

For convenience, omitting the scalar term uMS equation (81) is reduced to the

vector equation:

e = er=h/2 + eAh/2A B f (83)

Hence, for E=0 the following is required:

e’.e = [e'.e\t, hl2+[(eAI"2 AB)',et, hn + l „ hn.eAhl1 A B ]f = 0 (84)
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And finally from equation (84) the value of x to minimise the error vector is found.

k'^L /,,2
[{eAhnA B ) ^ h n + £ I=in.eAhnAB\* = -T/ - 1” U!-------ihTTTTTl (85)

Bemelli-Zazzera et al4 introduce the notation:

e = eAm and S = *F(fc) (86)

And hence the error vector at half the sample period (neglecting the input term) 

becomes:

e,__h/1= (E -e )B  (87)

Equation (85) can be re-written as:

= B'.(E-0) .(Z-e}B
b \{0'A'{e  -  e]+  [e -  e } a .o).b

Now assuming that t is small and at x=h/2 the absolute value of the error varies 

approximately linearly with x, denoting the derivative with respect to x by /x the 

change in the error can be approximated by:

(e\e)M = ^ . e \ X hn\  + Z  (89)

° = ( M , L  « ( f + r ) + z  (90)
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Where Z is an unknown constant, eliminating the unknown constant Z the following 

is obtained:

(^ -f)T=fc/2 (91)

Which is the same result presented by Bemelli-Zazzera et al4, noting that:

(U’4 , L  „  = B '.[e " .A '.C E -e )+ (z-e ) '.A .e \B (92)

Equation (91) can be seen to produce an identical result to equation (88). Note that 

the delay produced by this technique is a constant that depends upon the system 

matrices A and B and on matrices E and 0, which depend only on h.

It can be seen that embodied in these equations is a basic technique for converting a 

PAM control system into a PWM control system. This has the advantage that 

conventional approaches to control design may be used and the design implemented 

in PWM form without the stability and dynamics of the control system being unduly 

affected. However, the technique is limited to considering small pulses only and is 

basically limited to pulses for which 8 < h -x. Zimpfer et al43 consider a refinement 

of the basic technique that improves the transient response and allows large 

amplitude control inputs.

2.7.2 Refinement of the Basic Technique

Zimpfer et al43 found that application of the basic technique provided a close match 

in the steady state response, however, the transient response was poorly matched.
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Equation (71) indicates that this results can be anticipated provided the PAM and 

PWM pulses are of equal area, the time average response of the two systems should 

be identical. The application of differing delays merely shifts the pulse in the system 

response in time.

C o nt r o l
Input

W . 5

t+h T i m et + x

Figure 22 Modified PWM Input Using Weighting Function

During the transient response Zimpfer et al43 found that large amplitude control 

inputs were required which dominated the system. Recognising that the basic 

technique provided a satisfactory response in the steady state condition Zimpfer et 

al43 considered a modification to the basic response as shown in Figure 22. Rather 

than simply delaying the pulse by a constant delay Zimpfer et al43 propose a 

weighting function to determine a new delay time. The weighting function, W, is a 

function of the pulse duration and modifies the delay to accommodate large control 

inputs. The new delay time can then be calculated using:

f  = z - W .8  (93)
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The basic strength of the technique proposed by Bemelli-Zazzera et al4 is that the 

delay function is a simple function of the system matrices and the sample period. 

This means that the delay may be calculated a priori and it would be ideal if W were 

a simple function that could be calculated in a similar manner. This is achieved by 

satisfying the boundary condition as the pulse duration, 8, approaches the sample 

period, h, the pulse delay, f , should approach zero.

f  = 0= T-W .h^>W  = T  (94)
h

The other boundary condition that as the pulse duration, 8, approaches zero, the 

pulse delay, f , should approach the nominal value, t, is simply achieved by the fact 

that the duration itself is zero.

2.7.3 Closed Loop Stability

In the closed loop the input into the airframe is given by equation (33), substituting 

into the discrete equation given in equation (66) the following is obtained:

X t+I = (o>(/() -  'V(h) ■ B ■ (1 + G ■ F)~‘ G ■ E ■ h)x k +

' ¥ { h ) B ( l  + G F ) ~ IK - a y i -h

Now applying the principle of equivalent area as demonstrated in equation (72), the 

PWM input to the airframe can be determined from equation (33) and substituted 

into equation (68) resulting in:
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XM  = (<D(h)- eA(',-t) B (l+ G  F Y l G E h)xt + 

e 'l<h-x> ■ B ■(! + G ■ F) ' K- a -hv ' y d

Now if the optimum delay is applied and the error vector minimised over the sample 

period the two inputs are approximately equivalent and it can be inferred that:

'¥(h).B.ii.h = eMl̂ ).B.u,n.d (97)

And applying the principle of equivalent area equation (97) can be written as:

'i‘(lt}B.h = eAii-’).B.h (98)

Comparing equations (95) and (96) and considering equation (98) the time-averaged 

response in the closed loop is the same for both PAM and PWM inputs and more

importantly the system matrices are equivalent. The stability of the PAM system is

maintained.

2.7.4 Example Calculation

Using the characteristics given in Table 3 the airframe system is described by:

-0.5588 -323.247' 
0.3158 -1.2616

+
'4.8472'
855041

c

a =[-0.5588 o] + [4.8472]f

Assuming a sample rate of 10 Hz, lF(h) and eAU2 are:
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'0.9955 -1.6051"
,6 = eAh'2 -

'0.9959 -1.6082"
0.0016 0.9920 0.0016 0.9924

Using equation (88) f  = -4.73xl0'6 and hence t-0.005 s . The weighting factor is 

therefore, W=0.5005.

2.7.5 Effect of Pulse Delay on the E rro r Vector

This section will consider the effect of the pulse delay, t, on the error vector. The 

case chosen for study was a canard controlled glide bomb whose characteristics are:

Table 3 Characteristics o f Canard Controlled Glide Bomb

Derivative Value
yv -0.5588
yr 0.0
yc 4.8472
nv 0.3158
nr -1.2616
nC 85.5041
U 323.247

The standard system matrices were used for an airframe response, equation (18).

Figures 23 to 29 show the effect of the sample rate upon the error vector; some 

conclusions are immediately apparent. As the sample period increases so does the 

norm of the error vector. Hence, for low sample rates it is vital to find an accurate 

value for the pulse delay. For very low sample rates, the assumptions implicit in the 

derivation of the error vector are breaking down. As these breakdown, there are 

multiple solutions for the pulse delay and in some cases would result in equation 

(88) choosing a pulse delay that results in a maximum error in the dynamic response.
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For this example 10 Hz is approximately the lowest sample rate that may be 

tolerated.

Note also that since equation (80) involves a square root there are two solutions for 

the magnitude of the error vector, E, and that E can clearly be approximated as a 

straight line even for small sample rates. This observation suggests that a third 

technique may be possible for estimating the pulse delay by exploiting this linear 

behaviour. At high sample rates the linear behaviour of the magnitude of the error 

vector extends over a greater region of the pulse. Note that the norm of the error 

vector is a parabolic function of x, hence the assumption of a linear relationship is 

only valid provided f  is indeed small. It is apparent that for high sample rates, t  , 

is indeed small, however, for low sample rates this is clearly inappropriate. A linear 

relationship using the magnitude of the error vector may work better in these cases.
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Figure 23 Error as a Function o f Pulse Delay -1000 Hz Sample Rate
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2.7.6 Autopilot Response Neglecting Actuator Dynamics

The linear autopilot design discussed in section 2.4 assumes that the actuator 

dynamics can be neglected. This section now examines the use of the PWM design 

technique in an autopilot loop but neglecting actuator dynamics. Also examined are 

the relative merits between the use of the original Bemelli-Zazzera et al4 scheme and 

the improvements introduced by Zimpfer et al43. The weapon characteristics 

assumed are given in Table 3.

As shown in Figure 30 a PAM simulation was created in SIMULINK, where the 

input to the airframe, the rudder demand, was sampled using a zero order hold. 

Similarly Figure 31 shows the block diagram for a second simulation, that
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4  *1*considered the basic Bemelli-Zazzera et al scheme and the final simulation 

incorporated the improvements suggested by Zimpfer et al43. A MATLAB script file 

was created to calculate the pulse delay and weighting factor as a function of the 

airframe characteristics and sample rate. As none of the intrinsic functions in 

SIMULINK leant themselves readily to the PWM controller a MATLAB function 

was created for this purpose.
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Figure 30 PAM Autopilot
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Figure 31 PWM Autopilot - Bemelli-Zazzera Scheme

t A block diagram is not presented since the diagram is essentially the same as 
Figure 31. The two simulations differ only in the MATLAB function used.
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Referring to Figure 32 it can be seen that in the steady state both of the PWM 

schemes match the PAM response extremely well. However, the original Bemelli- 

Zazzera et al4 scheme does not match the dynamic response well and the Zimpfer et 

al43 scheme is clearly superior in this respect. Figure 33 shows that as might be 

expected the response will become unstable if the sample rate is too low but Figure 

34 shows that the autopilot bandwidth and sample rates can be closely matched and 

a stable response is still obtained.

At first glance it would appear that the Zimpfer et al43 scheme produces an overshoot 

in the response in the steady state. However, integrating over the pulse width shows 

that the area under each pulse is the same in both cases, the result predicted by
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equation (72). The graphs may appear misleading because of the output rate 

obtained from MATLAB.

Since these results show the superiority of the Zimpfer et al43 scheme this was

preferred in subsequent simulations.

2.7.7 Autopilot Response Including Actuator Dynamics

2.7.7.1 Pulse-Wave Form

In order to examine the steady state a PAM input in considered in the steady state, 

i.e. x  = 0, the input to achieve a desired steady state deflection may be found using:

sample period of 0.1s this results in a nominal pulse delay of 0.0516s and a 

weighting factor of 0.5159. Assuming that the maximum canard deflection is 10° 

and a second order actuator response, Figure 35 shows the response of an actuator to 

a pulse input demand.

(99)

Using the airframe characteristics given in Table 3 the deflection required to achieve 

a nominal 5 m.s'2 lateral acceleration is thus 1.85°. Assuming a relatively long
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Figure 35 Effect o f Actuator Bandwidth Upon Pulse Wave Form

Figure 35 clearly shows that even if the actuator bandwidth is very high (50 Hz or 

more) the response of the actuator is insufficient to replicate the pulse demand 

without a significant distortion of the pulse wave form and some phase shift. Note 

this is at a relatively slow sample rate (10 Hz) and a typical actuator bandwidth for a 

missile application is of the order of 10-25 Hz.

To examine the impact of actuator dynamics, the autopilot model shown in Figure 

31 was modified to include a second order actuator model. The modified block 

diagram is shown in Figure 36. An actuator bandwidth of 25 Hz was selected as this 

is typical of high bandwidth missile actuators. A range of acceleration demands was 

considered in the range 110 m.s'2 and a typical result is shown in Figure 37 It can
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be seen that the response trails the error by about 10-11% and when examined across 

the range of demands it was found that the trailing error is approximately a fixed 

percentage of the demand. It is therefore concluded that the error is due to the 

effects of actuator dynamics, which distort the pulse waveform and do not achieve 

the required equivalent pulse area.

It is noted that these simulations considered a low sampling rate and even with a 

high performance actuator system the actuator dynamics result in an error in the 

autopilot response. Most guidance systems are in fact relatively robust to such errors 

but the main focus of this autopilot was to achieve a reasonable response using an 

existing “bang-bang” actuator. It is clear therefore that in order to implement a 

PWM autopilot design, the actuator dynamics must be included in the design of the 

control loop.
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2.1 J 32 Trapezoidal Wave Form

The idealised waveform for a PWM is rectangular, since the technique used was 

originally developed for a system incorporating thrusters. These are essentially on- 

off devices whose rise time is small enough to be neglected, whereas the actuator 

response includes both the initial rise time and a decay time. Hence, in order to 

incorporate actuator dynamics in the control design consideration was given to 

extending the technique by incorporating these effects.
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Figure 38 Typical "Bang-Bang" Actuator Response

Figure 38 shows a typical response for a “bang-bang” actuator. An analytical 

solution of the response to a step input is possible but results in an equation of the 

form:

eA(t) = av t + a2{ \ - e - ‘h ‘) (100)

It is not straightforward to solve this equation to find an analytical solution for the 

rise time ti. Instead the pulse waveform is approximated by a trapezoidal waveform 

and a value for the rise and decay periods was found using simulations in 

MATLAB/SIMULINK. This work indicated that this assumption introduced a small 

error in the modelling of the actuator dynamics, numerical simulations indicated this 

was of the order of 5-6% in the rise time. Given that the error introduced was
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comparatively small and the calculation procedure greatly simplified it was 

concluded this was a suitable approximation to use in modifying the formulation of 

the demand pulse.

Co nt r o l
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Um
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Figure 39 PWM Using Trapezoidal Waveform

Figure 39 shows the trapezoidal waveform assumed for the actuator response, using 

the principle of equivalent area:

u.h = um.tl + um.t2 (101)

Assuming the rise and decay time, ti, to be constant:

t7 = -— .h - t . (102)
IL.

Noting that the forced response is:

n

A(h) = J  0(2 -  x).B .u(x).dx  (103)
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Integrating over the pulse period the following is obtained:

A (h) = em -x\B .u m{ t ,+ t2) (104)

Which is similar to the result previously obtained where um.S was the pulse area. 

This result indicates that the previous results obtained for the pulse delay and the 

weighting factor are still valid. Hence, using the rise time it is simple to modify the 

basic pulse system to use a trapezoidal pulse.

Before resorting to simulation of a PWM autopilot, the response of the actuator to a 

repeating sequence was examined. Using data supplied by Litton25, a simulation 

was created in SIMULINK to examine the actuator response to a repeating sequence. 

As shown in Figure 40, this showed that for modest sample rates the ability of the 

actuator to reproduce the desired waveform was diminished and at low sample rates 

the actuator can no longer follow the input. At this point the actuator is totally out 

of phase with the input and clearly the system is unstable. It was found that 

relatively large sample periods were required (around 0.2 s or more) or the actuator 

response was unable to reproduce the desired waveform.
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A simulation was created in SIMULINK using a trapezoidal waveform for the PWM 

input to the actuator. In order to cope with the low sample rate dictated by the 

requirement for the actuator to be capable of following the desired wave form the 

autopilot bandwidth was progressively reduced until finally it was less than 0.5 Hz, 

Figure 41 shows a typical response.
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Clearly the response is unsatisfactory with a large overshoot and what appears to be 

a limit cycle about the desired value of 10 ms‘2. To some extent this may result from 

the assumption that the pulse period is small, which is clearly breaking down. It was 

noted earlier that for large sample periods the pulse delay could be significantly in 

error. It is also likely that the phase shift introduced by the actuator is to some 

extent responsible.

Another factor is the assumption used in deriving the technique, the smallest pulse 

width that can result is double the rise and decay time i.e. t2 is zero. With a small 

PAM pulse an error is introduced where the PWM pulse can have a larger pulse area. 

Smaller pulse-widths could be used but this adds the added complication of the 

pulse shape. Since the actuator has not yet hit the end stops with small pulses, the
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actuator must first stop and then reverse its direction of travel. An analytical 

solution for this situation is of course possible but the design procedure is becoming 

ever more complex and reliant upon a priori knowledge.

2.1,13  Translating Pulses in Time

As noted above there is a lower limit on the pulse area introduced by the assumption 

of a trapezoidal pulse waveform. This will of course introduce an error for small 

pulses as the principle of equivalent area is violated. Simply neglecting small pulses 

also introduces an error, primarily because the principle of equivalent area is once 

again violated but also because this places a lower limit on the autopilot response 

below which the control loop cannot respond.

Consideration was therefore given to introducing the concept of translating pulses in 

time. The concept being that where the PAM pulse was too small to be considered 

within one sample period it was neglected and compensated for in the next sample 

period.

Equation (62) shows the state space equation in discrete form and can be re-written 

as:

x M = F .xk +G.ut (105)

Next in the sequence:
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*»+2 = f -*m  + G « t+1 = F 2x k +F.G.uk + Gm m  (106)

Assuming that the PAM amplitude in sequence k was small and neglected, an error 

of F.G.uk is induced in the state vector for the next sequence. Now further assume

the input is modified in sequence k+1 such that the error introduced by neglecting

the earlier input is compensated for. Denoting the modified input by [w*+i] the

response is now

*k+2 = F2x k +G.[ut+l]m (107)

And the error vector between the desired and achieved response is:

e = F.G.uk + G.uk+l -  G.[uk+l]m (108)

The concept is to minimise the error by choosing a suitable value for [w*+1] by

minimising the norm of the error vector. A minimum is found by differentiating the

norm with respect to [m*+i] . It can be shown that:

<9(V e) '
-A -U jL  = 0 = -(F .G ) .G.uk -  G'.G.uk+l

k+l\m (109)
-  G'.F.G.uk -  G'.G.«t+l + 2G'.G.[«t+1]m

Differentiating again:

—p —r r  = 2G'.G (110)
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Which is a positive scalar value and hence equation (109) represents a minimum. 

Noting that G’.G and (F.G)'.G and G'.(F.G) are scalars, equation (109) can be re­

written as:

r _ (F.G) .G + G/.(F.G)
L—£ + —k + l "F *-tr2 G'.G (111)

Examining the above result it is plain that the effect of delaying the pulse in time can 

be compensated for by multiplying by a constant scalar factor. Using the airframe 

characteristics given in Table 3 the size of this factor was calculated using 

MATLAB and is shown in Figure 42 below.
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Figure 42 Compensation Factor fo r  Pulse Translation in Time

For small sample periods the factor rises quickly to a value of around 2.8 and then 

drops to a small value. It can therefore be seen that for sample periods beyond 0.15 s 

a geometric series will be established where the input will converge to a small value. 

Beyond this point the concept of translating the pulse from one sample period to the 

next can no longer compensate the error vector. It is likely that the system will 

become unstable long before this point is reached since the effect of translating the
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pulse in time is to effectively introduce a phase shift. At this point the problem of 

closed loop stability has not been considered. In a feedback loop, if a small control 

pulse, uk, is neglected then the subsequent pulse, uk+l, is in part due to the error 

introduced.

After considering both the modification to a trapezoidal pulse and modification to 

compensate for small pulses it was therefore concluded that the actuator dynamics 

must be included in the design of the control algorithm.

2.7.7.4 PWM Fin Controller Design

First of all consider the state space equation for a “bang-bang” actuator and for the 

moment ignore the nonlinearities:

" 0 1 '  0  '

1 
1 

<J
~\

. 
<J

~\
 

I 
J

A =
0

k 2m

R J .
, B = K 2m 

-R J -
9 X  = , x = Ax + Bu (112)

The eigenvalues of the system equation are 

reversed [o l ] .

0
RJ

, or if the state variables are

In both cases the system has a pole in the right hand side of the imaginary axis and is 

therefore unstable. This could of course have been anticipated since the block 

diagram in Figure 17 shows that the system has two integrating poles and without 

position feedback is unstable. In a conventional system a resolver would be used to
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provide position feedback and so it was proposed to use an Observer to estimate the 

system states, including the actuator states and then to use state feedback to close the 

loop around the actuator making the system stable. Including the MU*, actuator 

and airframe dynamics in the state equation results in the following system:

A =

~yv (yr - u ) 0
“  0 "

nv nr 0 nc 0
0 0 1 0 , B = Km

0 0 Km 0 R.J
0R.J

(113a)

C =
(y, + / ,.« ,)  (y ,+ lx.nr) 0 (y( + lx.n( ) 

0 1 0  0
, D = [0] 113b)

Using the values given in Table 3 the controllability and observability of this system 

was examined using MATLAB. The system was both controllable and observable 

with one important exception. If the following condition is satisfied:

}V
lx = (114)

nC

The system is unobservable, this position is known as the centre of percussion and a 

missile designer will typically try to place the IMU as close as possible to this 

position, precisely because at this point the instruments do not detect the forces and 

moments induced by a control deflection. In order for the fin states to be 

observable, the instruments must be placed at some other location than the centre of 

percussion.

* Inertial Measuring Unit
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Figure 43 General Form o f a State Space Observer

The general form of the Observer used is illustrated in Figure 43; an observer system 

matrix is defined to have the property:

F  = A -G .C  (115)

Where G is the observer gain matrix. The design procedure of Dutton et al9 was 

adopted; this selects suitable eigenvalues for the observer state matrix to achieve the 

desired dynamic performance of the observer. Equation (115) was then used to 

derive the gain matrix G to satisfy the design equation for the observer.

Using the values given in Table 3, the poles of the system are at (-0.91±10.10 i, 0, 

1). Since the fastest pole in the system was at -0.9 the locations of the observer 

poles were placed at approximately -9 , allowing suitable separation of the poles of 

the observer from the poles of the system and the autopilot loop. Moving the poles 

further to the left would be undesirable since this would start to come into conflict 

with the poles of the inertial instruments. MATLAB incorporates a function, the

M a n t

x  =  A x + B u
w

y =  C x + D u—
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“place” function that enables the design of a suitable observer system matrix by 

specifying the desired location of the poles. This function does not allow the 

placement of poles at the same location and so the poles were specified as [-9.1, -9.3, 

-9.5, -9.6].

Figure 44 shows the design of an autopilot loop that incorporates such an observer to 

provide state feedback. The error between the desired position and the estimate of 

the achieved position is used to provide voltage input to the actuator motor via a 

proportional gain, KP. The use of an observer fulfils a similar function to that of a 

resolver allowing a “bang-bang” actuator to be controlled in a proportional manner.
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Figure 44 Actuator Feedback using a Linear Observer

Using the characteristics given in Table 3, an assumption of an autopilot bandwidth 

of 1 Hz and a proportional gain on the actuator, KP, of 315 a series of simulations 

were performed. Figure 45 shows the observer response to a step input demand of 5
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2m.s' . It can be seen that the sideslip velocity and yaw rate estimates quickly 

converge, whilst the actuator position and actuator rate converge more slowly. 

Nevertheless the estimated position is suitable for providing feedback and a stable 

system results. Nevertheless this design is not entirely efficient. There are two 

direct measurements of the system states provided by the IMU and it would be more 

computationally efficient to use these states in a reduced order observer.

■8 0.5 ~o

0 2 4 6

£  6 
£  4
CO 

?  2
§  o

I -
-4

0 2 4 6
Time (s) Time (s)

— -0.5

£  0.5

10 0 5 10
Time (s) Time (s)

 Estimated S ta te  True State

Figure 45 Observer Performance

The block diagram for a reduced order observer is given in Figure 46.
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Figure 46 General Arrangement o f a State Space Reduced Order Observer 

The equations of the reduced order observer are:

z = L.z + G.u + H .y , x = M .y  + N .z , z = T.x  (116)

As the system being observed has 4 states and 2 outputs, z is a [2 x 1] column

vector, L a [2 x 2] matrix, G a [1 x 2] matrix, H a [2 x 2] matrix, M and N are [4 x 2]

matrices and T a [2 x 4] matrix. The design equations are:

T .A - L .T  - H .C  = 0 (117)

And

[m  n ] =
C
T

-i
(118)

For the moment let the matrices T and H be denoted by:
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T =

Similarly denoting the system matrices by:

\ t■Ml T112 T13 T 114 , H = X Hn
T_ 21 T1 22 T23 T24.

7 Hn

---1

(119)

A =

A 2 0 A 4

A i A 2 0 A 4
0 0 A 3 0

0 0 A 4 0

, C =
C C 0 c'■'11 12 u 14
0 C22 0 0

(120)

For convenience write the state estimator equation in modal form, denoting the L 

matrix as:

L =
el 0 
0 e„

(121)

Expanding equation (117) 8 simultaneous equations in 12 unknowns are obtained. 

This gives some freedom in the design of T and H.

(Ai — ei)'Tn + A2l.T12 = Hn .Cn 

A 2 • ̂ 11 (A 2 — ei )• -̂ 12 = ^11 • Q 2 ^12 •

(A 3 — e\ )• -A A 3 • -̂ 14 = 0

A 4 • -̂11 ■*" A 4 ' ̂ 12 _ ei • ̂ 14 = .̂ 11 * Q 4

(122)

(123)

(124)

(125)

Due to the manner in which the system matrices have been formulated the 

simultaneous equations for the second rows in T and H are formulated in an
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identical manner to those above with the row indices in T, L and H changed from 1 

to 2. For convenience let Ti3 = T23=l and Hi2 = H22 = 1 and the above equations 

may now be solved for the matrices T and H.

M and N are now calculated using equation (118). Although this solution is 

convenient since it permits a computationally efficient means of calculating the 

observer matrices it does introduce a constraint. If the eigenvalues for L are placed 

in the same position both rows of T become identical. M and N can no longer be 

found since the right hand side of equation (118) becomes singular.

Finally G is calculated using:

G = T.B  (126)

The eigenvalues chosen for L were [-10, -11], since this was suitably removed from 

the system poles but avoided placing the observer poles too close to the other system 

poles such as those of the IMU. The design technique was implemented in 

MATLAB to solve for the system matrices and a simulation created in SIMULINK. 

Superficially the block diagram is identical to Figure 44 but differs in that a reduced 

order observer is substituted for the full order observer.

The results of repeating the earlier simulations using the reduced order observer are 

shown in Figure 47. It can be seen that the same result is obtained in a 

computationally efficient manner using the reduced order observer. Subsequent 

simulation used the reduced order observer exclusively.
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Figure 47 Reduced Order Observer Performance

So far, the simulation using an observer to provide position feedback considered a 

linear system. Essentially what has been derived is a fin controller to provide motor 

input in a proportional manner. A “bang-bang” actuator is somewhat different in 

that the input required is simply an up/down or neutral command. The next stage of 

the algorithm design was to derive a PAM system from this linear equivalent and 

hence to derive the PWM input required by the “bang-bang” actuator.
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Figure 49 PWM Autopilot Block Diagram

Figure 48 shows the block diagram for a PAM autopilot design, whilst Figure 49 

shows the block diagram for the equivalent PWM system. Both designs are similar 

to the previous block diagrams, the PAM design incorporating a zero order hold 

sampling device and the PWM design incorporates the MATLAB function described 

previously. The PWM design used the scheme proposed by Zimpfer et al43.
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2.7.7.5 Simulation Results
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Figures 50 through 52 show the PAM and PWM responses to a 5 m.s’2 acceleration 

demand, assuming a 2.5 FIz autopilot bandwidth for a variety of sample rates. As 

the sample rate reduces, the overshoot in the achieved acceleration becomes more 

pronounced, primarily as a result of the phase shift induced by the low sampling 

rate. It can be readily observed that the PAM and PWM responses are essentially the 

same and that the system achieves the design objective of producing a PWM design 

equivalent to a PAM design.
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Figures 53 through 58 show that the overshoot can be reduced by a comparatively 

modest reduction in the autopilot bandwidth to 2.0 Hz. The figures also show that 

low sample rates can be achieved and a satisfactory response still results. This is
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primarily as a result of the inherent robustness in the autopilot design using both 

acceleration and rate feedback but also serves to demonstrate that the inherent 

robustness of the linear design is incorporated into the nonlinear design. At sample 

rates below 10 Hz the response for both systems becomes unstable, once again the 

behaviour of the PWM and PAM designs is very similar,
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Figures 59 and 60 show the input to the actuator in the PAM and PWM designs for 

sample rates of 100 Hz and 40 Hz. The main effect of the sample rate appears to be 

destabilising primarily as a result of the phase shift introduced by sampling. With 

the lower sample rate, the system input to the actuator takes much longer to decay in 

comparison with higher sample rates, over twice as long in this particular example.
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Finally Figures 61 through 65 show the effect of various acceleration demands 

between 10 and 30 m.s ' for a sample rate of 40 FIz and an autopilot bandwidth of 2 

Hz. As the maximum deflection is limited to 10° the system could be expected to 

saturate at demands in excess of 27 m.s 2. The response of both autopilots remains 

approximately the same for modest to large acceleration demands. As the system is 

nearly saturated by acceleration demands in the region of 27 m.s 2 the response of 

both systems remains essential the same, although there is a tendency for the 

overshoot in the PWM system to be slightly less than for the PAM system. This is 

probably due to the fact that the input to the actuator is constant over a sample 

period in the PAM system and so the actuator is in constant motion. However, in 

the PWM system the actuator is driven cyclically and so achieves a slightly smaller 

deflection as illustrated in Figures 64 and 65.
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2.8 Conclusions

The first section of this document demonstrates that existing weapon systems can be 

enhanced by the use of INS/GPS navigation systems to be enable an all-weather 

day/night capability. An intuitive guidance design has been demonstrated to be able 

to enhance these legacy weapons. However, the design example presented retains 

many of the limitations of the existing system including undesirable features such as 

reduced impact velocity and a tendency to impact short of the designated target.

Consideration was given to the use of phase-plane analysis to design a nonlinear 

control system using “bang-bang” actuator controls. However, this technique proved 

to be unsatisfactory, since it relies entirely on the open loop response of the airframe 

to control input. As the system is required to consider a wide range of possible 

Mach numbers and altitudes this is clearly undesirable since the aerodynamic 

derivatives will vary tremendously. Also relying on the open loop airframe response 

is unsatisfactory since the airframe bandwidth tends to be low and therefore the 

response is sluggish. A further consideration is the potential requirement to reduce 

incidence at impact (a critical factor in the attack of hard targets), since the open 

loop response typically takes 2-3 s to allow incidence to decay, requiring guidance 

be shut down at some considerable distance from the target.

A PWM design technique proposed by Bemelli-Zazzera et al4 was considered and 

demonstrated to be a suitable technique for designing a PWM autopilot design. 

Later improvements suggested by Zimpfer et al43 were considered and demonstrated
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to improve the match between the dynamic response of the PAM and PWM control 

systems.

After some consideration it was concluded that the design of a PWM autopilot must 

consider the effect of actuator dynamics since these can dominate the response. This 

complicates the design since a “bang-bang” controller is essentially an open loop 

device and, therefore, there is no linear equivalent upon which to base the PAM and 

PWM designs.

The use of an observer to provide state feedback and hence close the control loop 

around the actuator was considered and shown to be a suitable technique but with 

some limitations. In a departure from current design practise, the inertial 

instruments must be placed at a different location from the centre of percussion in 

order for the fin state variables to be observable.

It has also been demonstrated that a reduced order observer design is possible which 

reduces the computational overhead of the design. Using a reduced order observer a 

fin controller design can be generated that can control a “bang-bang” actuator to 

achieve a proportional response.

Using the observer based fin controller a number of simulations have demonstrated 

that the PWM design technique proposed by Bemelli-Zazzera et al4 and later 

improved by Zimpfer et al43 is a robust technique and that the PWM response closely 

matches the PAM response. Both responses remain essentially the same even when
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saturation is approached and very low sample rates may be achieved and a stable 

response will still result.

Using this technique it is concluded that the proportional response required by a 

guidance system to optimise impact parameters can be achieved using the existing 

“bang-bang” actuator system. This will, however, require inertial instruments but 

this is not considered a large overhead since these are required by the INS system.
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3. Precision Guidance and Impact Control

3.1 Introduction

This section considers the guidance aspects of an air launched Precision Guided 

Munition (PGM) for the attack of fixed and moving targets. Initially techniques are 

considered for the simple interception of the desired target and later the modification 

of these techniques to tailor the impact conditions to meet specific performance 

criteria.

Obviously the principle objective of any guidance system is to ensure that the 

successful interception of the target, however, this is not the only objective. In the 

engagement of a hard target, such as a command bunker, the weapon is required to 

impact at a steep angle with aerodynamic incidence at a minimum. This reduces the 

possibility of ricochet and avoids the phenomenon known as “slap down”, where the 

weapon impacts tail first. The latter can be a significant problem for penetrating 

warheads, since it can result in a split warhead casing thereby drastically reducing 

weapon effectiveness. Conversely, infrastructure targets, such as bridges, are best 

engaged with a shallow angle of impact, thereby concentrating blast effects with the 

target. Many missile warheads are directional and the guidance system must ensure 

that the target is engaged within the optimum parameters of the warhead. Examples 

of such warheads include the shaped charge and the continuous rod.

The origin of air-launched guided weapons is a great deal older than many people 

would imagine; indeed the very first experiments took place before the First World
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War. However, practical guided weapons did not emerge until the Second World 

War and included among the first examples was the German Hs 293 Glider Bomb; 

further details may be obtained from Benecke and Quick . This was a 1000 lb. class 

weapon with a range of over 7.5 miles and employed a form of guidance known as 

Command to Line of Sight (CLOS). As shown in Figure 66, the concept behind 

CLOS is extremely simple and essentially involves constraining the missile flight 

path such that the missile always appears to lie on a path connecting an observer and 

the intended target. The simplicity of the technique has ensured that it has 

continued to be used extensively in guided weapons.

Target

L auncher  R a nge

Figure 66 Command to Line o f Sight Guidance

Although CLOS is widely used in missile applications it has a number of 

disadvantages. One of the main operational disadvantages is that it requires the 

launch vehicle to maintain a line of sight to the target. This not only exposes the 

launch vehicle to hostile action but damage incurred by the launch vehicle may also 

preclude a successful engagement.
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The technique also imposes a number of constraints on the weapon that can limit the 

kinematic engagement zone. To illustrate this latter point, consider the curvature of 

the missile trajectory shown in Figure 66. During the flyout the missile maintains its 

position along the sightline by generating an acceleration normal to its flight path. 

However, it is apparent that the instantaneous velocity vector of the missile is, in 

general, not directed along the line of sight and, furthermore, toward the end of the 

engagement this angular offset can be quite large. Hence, toward the end of the 

engagement the increasing angular offset reduces the ability of the missile 

acceleration to change the sightline leading to increased control demands. Noting 

the comments above concerning the desirability of controlling the terminal phase of 

the engagement it can be seen that CLOS is unsuitable for this application. 

Fortunately there exists another simple and effective guidance law - Proportional 

Navigation. This section considers the use of Proportional Navigation (PN) 

guidance and its variants as a guidance strategy for an air launched PGM suitable for 

the attack of ground targets.

Initially a literature survey was undertaken and identified there is extensive coverage 

of the basic theory underpinning PN in open literature. What is perhaps surprising is 

that the coverage of variants of PN, such as angular impact control, is less extensive.

Following on from the literature survey variants of PN that enable control of the 

impact parameters was identified. These were then studied using a Lyapunov 

technique to establish the asymptotic stability of the control law and to indicate the 

constraints on the launch parameters to establish a successful intercept. Although a
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useful technique, the Lyapunov method is not suited to establishing the full range of 

conditions under which an intercept is achievable. Hence, in addition to the use of 

the Lyapunov method, performance was assessed using six degree-of-freedom 

simulations.

3.2 Literature Survey

3.2.1 Introduction

There is extensive coverage of the study of PN in the literature and no study of the 

subject could hope to be completely comprehensive. The available literature falls 

into a number of broad categories, including qualitative analysis of PN, linearisation 

of the nonlinear intercept equations, the application of optimal control schemes, as 

well as general reference works that consider the fundamentals of the guidance 

strategies.

The basic equations of motion governing PN are highly nonlinear and unsuitable for 

an analytical solution but many authors attempt to derive such a solution through the 

use of linearising assumptions. These techniques have limited application due to the 

assumptions involved but nevertheless offer a useful insight into the use of PN. In a 

similar vein, many authors use qualitative methods to assess PN that are useful in 

establishing the launch requirements for a successful intercept.

Exo-atmospheric interception of ballistic missile targets is an interesting application 

of PN that poses many challenges for the control engineer. The very nature of such 

intercepts requires the use of divert thrusters by the pursuer and therefore the control
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effort expended is of great concern. Fuel required for divert is at a premium and any 

method to reduce the control effort results in considerable benefits for the weapon 

design. As a result this particular problem has been singled out for considerable 

attention in recent years, much of the research concentrating on the use of optimal 

control methods to minimise control effort.

Finally, many authors report the development of variants of PN guidance laws. This 

includes the use of state estimators to estimate target motion in augmented PN, 

variations concerning the direction of the applied acceleration in ideal, true and pure 

PN, and biased PN in which an angular rate bias is added to the sightline rate.

3.2.2 General References

Gamell and East10 have produced a general reference work that considers many of 

the fundamental features of guided weapon control systems. This includes target 

tracking systems, servo-control mechanisms, missile instruments, aerodynamic 

transfer functions, autopilot design, CLOS guidance, seekers and proportional 

navigation. A simple analogy is used to introduce the concept behind Proportional 

Navigation and to explore the effect of the kinematic gain. Assuming that the target 

and missile maintain an essentially straight-line course in the final stages of the 

intercept a simple mathematical model of the intercept is derived using small 

perturbations about the constant bearing trajectory. This is then used to identify 

optimum values for the kinematic gain, to show the effect of a heading error, the 

effect of evasive manoeuvres by the target, angular noise in the seeker head and glint 

(an apparent shift in the radar centre of a target). It is also shown that in the terminal
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part of the engagement many homing systems can become unstable, although in a 

well designed system the effects of such instability has a limited effect upon the miss 

distance. Also introduced, is a variant of PN known as acceleration vectored 

navigation. This includes a component of the acceleration demand that is related to 

the sightline angle, which compensates for errors due to the axial component of the 

missile acceleration resulting from the propulsion system. Finally, the integrated 

form of PN is introduced in which the feedback term is the sightline angle rather 

than the sightline rate.

Zarchan42 is acknowledged as an expert in this field and has published a number of 

papers on this subject. This is a useful reference that covers many aspects of the 

field. Initially, Zarchan42 introduces the concept of PN and then develops a 

simplified engagement simulation for further insight into its effectiveness as a 

guidance strategy. More detailed simulations show that these simple models are 

accurate indicators of the system performance, in spite of the simplicity of the closed 

form solutions derived. The method of adjoints is introduced; a technique that has 

been used by many authors to establish the performance of PN and its derivatives. 

Also introduced is the concept of augmented proportional navigation, in which 

estimates of the target motion are used to compensate for the destabilising effect of 

evasive manoeuvres. The subject of noise and its effect upon the guidance system is 

covered extensively and methods to establish accurate estimates of miss distances 

are introduced. Later chapters discuss Kalman filters and other forms of tactical 

guidance such as Lambert guidance and gravity turn manoeuvres for strategic 

missiles.
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9ftRogers considers the use of PN for an air-launched inertially guided missile for the

9ftattack of ground targets. Using vector algebra, Rogers derives the rate of change 

of the sightline as a function of the relative motions of target and missile. This 

expression is then used to demonstrate that a normal acceleration by the missile can 

be used to change the sightline rate. Using simplifying assumptions of a stationary 

target and a constant missile speed optimal control theory is used to derive an

9ftoptimal value for the kinematic gain. Rogers also derives a variant of proportional 

navigation that can be used to approach the target along a predefined approach

9ftvector. Finally, Rogers considers an alternative method of gravity compensation 

that steers the missile onto a ballistic interception trajectory.

3.2.3 Classification of Proportional Navigation

Due to its importance as a guidance law, considerable effort has been expended in 

the analytical study of PN. However, such analysis has been hampered by the highly 

nonlinear nature of the intercept equation, even if the analysis is simplified by 

constraining the intercept to lie within a plane. Attempts to solve the PN equations 

have concentrated on two separate approaches, the main difference between these 

approaches being in the formulation of the guidance demand. In Pure PN (PPN), the 

acceleration demand is formulated normal to the pursuer velocity vector, whereas in 

True PN (TPN), the acceleration demand is formulated normal to the instantaneous 

line of sight. A further variation of TPN is the so-called Generalised TPN, in which 

the acceleration vector is not normal to the line of sight but has a fixed angle relative 

to it. Depending on the nature of the intercept, these subtle definitions in the 

formulation of PN can have a significant effect.
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3 0Shukla and Mahapatra consider a review of the existing literature and compare 

PPN, TPN and GTPN. It is noted that PPN has only been solved in a closed form for 

the interception of a non-manoeuvring target with a fixed and discrete value of the 

kinematic gain. This is represented by the special case when the kinematic gain is 

either unity or two. These values are not particularly useful; a value of unity is 

equivalent to CLOS guidance, where it is known that excessive guidance demands 

can result in the terminal stages of the intercept. A value of two results in an 

intercept, where the pursuer maintains a constant acceleration throughout the 

intercept; hardly an optimal solution. On the other hand TPN is mathematically 

tractable and it is noted that several papers have been published containing solutions 

of the TPN problem. Similarly GTPN was introduced as a technique for solving the 

PN equations and since GTPN is a generalisation of TPN, the same techniques used 

to solve GTPN can be extended to solve TPN. However, since the technique for 

solving GTPN involves a change of variable, it is less useful for obtaining a 

meaningful physical insight into PN. In the special case of a tail chase, it is 

demonstrated that there is little to choose between the two forms of PN, since for a 

given kinematic gain both require a similar amount of control effort. However, as 

the line of sight diverges from the tail chase, TPN requires an ever-greater control 

effort. In the example contained in the paper, TPN requires a control effort some 

27% greater than PPN when the sightline is at 60° from the tail chase. Using PPN 

an intercept is always possible except for one definite direction and then only when 

the kinematic gain is less than two; a value that would be unusually low. Therefore, 

in general, this is not a practical limitation. TPN on the other hand can only achieve 

a successful intercept provided certain constraints on the initial geometry are
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imposed. In PPN, the lateral acceleration is a decreasing function of the time to go 

provided the pursuer has a speed advantage and a suitably high kinematic gain. 

Once again for practical systems this is not a meaningful limitation, whereas with 

TPN the boundedness of the acceleration demands is a function of the initial 

geometry. It is demonstrated that PPN is more robust and requires less control effort 

than TPN.

3.2.4 Pure Proportional Navigation

Guelman13,14,15 appears to have been one of the first authors to consider a qualitative 

approach to studying PPN and has published a number of papers on the subject. 

Previous researchers had tended to approach the subject by the use of simplifying 

assumptions. These reduce the nonlinear differential equations that describe the 

pursuit of the target into a linear differential equation solvable in a closed form. 

These were generally limited in application and were often limited to the terminal 

phases of the engagement. Guelman13,14,15 successfully demonstrated that qualitative 

methods could be used to obtain a general solution of a planar pursuit of a target. 

Initially he considered the special case of a non-manoeuvring target and 

demonstrated that a missile would always reach the target, with the exception of a 

finite number of initial conditions. Furthermore, he demonstrated that the missile 

would always arrive at the target travelling along a straight line, the angle of which 

was determined by the initial conditions. The boundedness of the rate of change of 

the sightline was established and the initial conditions under which the rate of 

change was diminishing at the end of the engagement were identified. This 

technique was later extended to a manoeuvring target, where the concept of dividing
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the plane of pursuit into classes of sectors defined by the relative motion of the 

missile and target was introduced. This enabled the conditions to be established, 

under which the missile would reach the target for any given initial state. This work 

also enabled the boundaries of missile acceleration to be established based upon 

cases where the missile lay in pre-assigned regions of the pursuit plane. A later 

paper extends this work for more general cases.

Ha et al16 introduce the concept of a Lyapunov like function for the qualitative study 

of PPN, although they neglect to demonstrate that the function they suggest is a 

Lyapunov function. Nevertheless the method they suggest appears to be extremely 

powerful and is used to demonstrate that a short-range homing missile can always 

intercept a target manoeuvring randomly with time varying normal acceleration 

provided the kinematic gain is large enough. Song et al32 use this concept further in 

the analysis of PPN guidance in three-dimensional space.

Ghawghawe and Ghose11 examined the use of the Lyapunov technique to determine 

the capture zones for a missile but found that the method demarcates a small element 

of the capture region. This is perhaps understandable since many different 

Lyapunov functions are possible and no single function can be considered valid over 

the entire region. It is noted in the earlier paper, Ha et al16, that some of the 

conditions imposed by the function they suggest are quite weak and that capture can 

still occur outside of the region suggested. Instead the method pioneered by 

Guelman13,14,15 is extended to derive representative conditions for capture, which can 

demarcate almost the whole of the capture region. It is demonstrated that a time
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varying target manoeuvre changes the capture region but does not reduce it 

drastically and that the worst case capture region is that defined by a constant target 

manoeuvre at the extreme of the manoeuvre envelope. Some bounds on missile 

acceleration are also obtained for a limited subset of regions of the engagement 

plane.

3.2.5 True Proportional Navigation

Murtaugh and Criel were one of the first authors in the open literature to propose 

PN in the TPN form. In this paper, the application of TPN for the exo-atmospheric 

interception of a satellite is considered, although the guidance theory presented is in 

effect generic and can be applied to the interception of a non-manoeuvring airborne 

target. Murtaugh and Criel first present the basic theory of proportional navigation, 

then derive the equations of motion for an intercept using TPN. This is underpinned 

by an example using a space vehicle with an infinitely variable rocket motor and an 

attitude control system to orientate the thrust axis. Further variants of PN are also 

introduced, firstly, Biased PN (BPN) is considered, in which a constant rate bias is 

added to the sightline rate. Also considered is PN with a dead band at low sightline 

rates. Using the intercept equation, the effect of the kinematic gain is considered 

and it is demonstrated that for a kinematic gain less than two, the sightline rate and 

acceleration demand tend to infinity as time to go diminishes. A singular solution 

results for a kinematic gain equal to two and this represents an intercept with a 

constant acceleration demand. A kinematic gain between two and three results in 

the sightline rate tending toward infinity as time to go diminishes. However, for 

values in excess of three the equations are well behaved and the sightline rate and
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acceleration demands remain bounded throughout the engagement. In the proposed 

BPN scheme acceleration demands are commanded only when the sightline rate 

exceeds some positive bias value. The effect of the bias rate is to null the system 

response at low sightline rates, removing the tendency of the system to respond to 

noise signals. The bias term also reduces the sightline rate and, hence, the 

commanded acceleration is smaller. However, the reduction in the control effort for 

a given sightline rate requires a greater overall control effort, since the sightline rate 

continues to grow and larger demands result. Although in the example quoted BPN 

required a greater propellant mass than TPN, the required throttle range of the rocket 

motor was reduced. PN with a dead space is essentially identical to TPN unless the 

sightline rate falls below the threshold value. In the absence of control effort once 

the sightline rate is reduced below this value, the sightline rate will continue to grow 

once more and drift back outside of the dead band. This in turn will cause the 

control system to respond and drives the sightline rate back into the dead band. 

Thus it can be seen that a limit cycle is produced with the sightline rate oscillating 

about zero. Once again due to the cyclical nature and the lack of response at low 

sightline rates, a greater overall control effort is required in comparison with TPN. 

However, the additional control effort is smaller than with BPN and the throttle 

range is further reduced.

Yuan and Chem give a brief literature review of TPN and its solutions. The work 

first introduced by Murtaugh and Criel26 is introduced and the qualitative approach 

used by Guelman13,14,15 to study TPN is described. It is noted that Guelman13,14,15 

obtained a closed form solution of the TPN intercept equation through the use of
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certain simplifying assumptions. A refinement of Guelman13,14,15’s solution was then 

obtained by Yuan and Chem38 that eliminated many of these assumptions. In this 

paper a further variation of the formulation of PN is proposed, Ideal PN (IPN), in 

which the commanded acceleration is applied in a direction normal to the relative 

velocity vector and it’s magnitude is a function of the sightline rate and the closing 

velocity. This proposed scheme is, in effect, a variation upon GTPN in which the 

bias angle of the acceleration demand varies with the relative velocity vector. A 

closed form solution is presented for both manoeuvring and non-manoeuvring 

targets, the impact on the capture area considered, as well as the overall control 

effort required. The main drawback of TPN is that the forward velocity varies as a 

function of time. In the proposed scheme, this drawback is eliminated. As a result 

IPN has many of the features of PPN but can easily be obtained in a closed form 

solution. In a later paper Yuan and Hsu40 present a closed form solution of GTPN 

for a manoeuvring target and examine the characteristics of GTPN such as the 

capture zone and the control energy cost function. As may be expected it is 

demonstrated that target manoeuvres reduce the capture zone and increase the cost 

function. Yuan and Hsu39 further refine this solution and demonstrate that TPN is 

an optimal form of GTPN.

3.2.6 Augmented Proportional Navigation

Zarchan42 considers a further variant of PN, known as Augmented PN, in which 

knowledge of the target behaviour is used to enhance the guidance law. In 

augmented PN, the commanded acceleration is not only a function of the sightline 

rate but also includes a term related to the target acceleration. Gamell and East10

131



and Zarchan42 both demonstrate that a timely target acceleration can result in a large 

miss distance. Introducing the concept of the Zero Effort Miss (ZEM) Zarchan42 

develops the concept behind Augmented PN using a simplified heuristic argument. 

Zarchan42 then introduces an example using the adjoint technique and demonstrates 

that Augmented PN can result in small miss-distances, reduced overall control effort 

and that, under certain circumstances, Augmented PN is an optimal control law. 

However, when a lag is introduced into the system the performance advantage of 

Augmented PN is reduced and, whilst Augmented PN has the advantage in short 

range engagements, PN has the advantage for longer-range engagements.

Ha et al16 study a similar guidance law, where the target acceleration is modified by 

the sightline angle. Using the modified law Ha et al16 demonstrate through 

simulation that the guidance demands are reduced in comparison with PPN. 

Assuming a scale factor error in the measurement of the target acceleration the 

effects of estimation accuracy are explored. This demonstrates that errors in the 

estimation can have a significant effect upon the guidance algorithm. The authors 

conclude that in addition to stochastic study of the target acceleration estimate, a 

deterministic estimation method needs to be explored.

3.2.7 Biased Proportional Navigation

As noted above, Murtaugh and Criel26 considered the use of BPN for the exo- 

atmospheric interception of a satellite target. In this case, the bias return resulted in 

a greater overall control demand but reduced the throttle range of the divert motor.
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In a later paper, Brainin and McGhee6 consider a similar problem, the exo- 

atmospheric interception of a target moving with a constant acceleration. It is noted 

that in an earlier paper by Ho et al17 had demonstrated that under certain conditions 

PN was an optimum guidance law provided both the interceptor and target had 

perfect knowledge of the dynamic states and strategy of both participants. Brainin 

and McGhee6 demonstrate that when the interceptor knowledge of the target is 

reduced then PN is no longer optimal but that this could be improved with the 

addition of a correctly formulated rate bias term. The case considered is limited to a 

fixed target acceleration and it is further assumed that the interceptor has knowledge 

of the target capabilities. Hence, the interceptor can use this additional information 

to calculate a suitable rate bias term. The performance index chosen was the integral 

of the acceleration demand, since this is directly related to the divert propellant 

consumed and propellant mass is at a premium for this type of interceptor. After 

consideration of the equations of motion a nonlinear equation is solved numerically 

to find the optimum value of the rate bias. It is found that for values of the 

kinematic gain greater than four, the bias term asymptotically approaches a value 

defined by a simple function of the kinematic gain. In the case where the target 

manoeuvre capability is unknown a partially biased PN law is proposed where the 

bias term is a function of the time to go, the initial sightline rate and the initial 

sightline acceleration. A further simplification of this law is proposed where only 

the initial sightline rate is used to formulate the bias term. Although this latter 

scheme is less efficient, it is demonstrated to be more efficient than PN alone. Note 

that this result appears to contradict the earlier result reported by Murtaugh and
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26Criel , however, they did not consider a manoeuvring target, neither did they 

consider the formulation of the bias term as an optimal control problem.

o n

Shukla and Mahapatra also present an analytical study of the optimisation of the 

rate bias term, resulting in a similar conclusion that the rate bias term can improve 

the efficiency of BPN over PN alone. It is demonstrated that BPN has greater 

control efficiency for a range of target manoeuvres and in the presence of higher 

target accelerations. The optimum bias is derived from a simple algebraic equation, 

obtained using the assumption of small perturbations about a collision course. In the 

special case of a kinematic gain equal to 3, an optimum value for a collision course, 

the bias term is explicitly obtained from a simple quadratic equation. The benefits 

of BPN are demonstrated for a tactical air-to-air missile and for an exo-atmospheric 

interception. In the latter case, it is demonstrated that a significant reduction in 

divert propellant can result from the use of an optimal BPN scheme.

3.2.8 Impact with Angular Constraints

As noted in the introduction, there are often additional constraints applied to the 

guidance system other than the obvious requirement of hitting the target. An angular 

constraint is often applied to ensure that a weapon does not ricochet from a hard 

target or encounter an effect known as “slap down”. The latter occurs when the 

weapon impacts with a high angle of attack and as a result a tail-first impact results. 

This results in an enormous turning moment and a violent side impact results. This 

can split the warhead casing, a particular problem with cast bombs, result in a fuze 

failure or simply failure to penetrate the target.
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In addition to these concerns there are target effects to be considered. The attack of 

hard targets is generally best achieved with impact at a high angle to minimise the 

penetration requirement, a typical such target being a command bunker. Conversely 

other hard targets can require a shallow impact angle to achieve the same effect; an 

example of such a target would be a tunnel complex fitted with armoured blast 

doors. Many infrastructure targets, such as bridges, require a shallow angle of 

impact thereby concentrating the blast effects of the warhead within the target.

It is also noted that the effects of many warheads are directional in nature. Shaped 

charge warheads designed for the defeat of armour require impact at zero angle of 

attack to be effective. These warheads are also more effective when engaging the 

thinner turret armour, thereby imposing an additional angular requirement. A 

number of anti-armour weapons have been deployed using an EFP (Explosively 

Formed Projectile) warhead that can impose similar constraints on impact. Large 

shaped charges are also being deployed for the attack of hard targets, in this 

application a large pre-cursor shaped charge warhead makes the initial penetration, 

which is then followed by the main hard target penetrator warhead.

Noting that the desire to impose an angular constraint upon impact is driven by the 

features of many weapon systems, it was surprising to find that coverage of the 

subject in the open literature was limited. Although undoubtedly much of the 

research remains either classified or commercially sensitive, PN has nevertheless 

been the subject of extensive coverage in open literature.

135



Kim and Grider22, in what appears to be pioneering research in to this subject, 

consider a terminal guidance system for a re-entry vehicle with a constraint on the 

attitude at impact. The guidance algorithm is formulated as a state space problem 

using state space feedback, with optimal control theory used to derive the feedback 

matrix. In this formulation, the guidance algorithm is divided between state 

estimation and the optimal control problem, although the state estimation procedure 

is the subject of a separate paper. Initially, the intercept equations are expressed in a 

nonlinear form as a function of the miss distance and the attitude angle. These are 

then linearised around the operating point and the optimal control problem is 

formulated using a performance index derived from the miss distance, impact angle 

and overall control effort. Solving the Riccati equation a linear function of the state 

variables is used to formulate the feedback matrix and simulation used to assess the 

performance of this control law. It was found that without a constraint on the 

control input the algorithm could successfully achieve the guidance requirements in 

terms of miss distance and angular constraint. However, the required control effort 

was excessive and with a constraint applied the guidance algorithm became 

unsatisfactory. It is also noted that the algorithm is particularly sensitive to errors in 

the estimation of the time to go. Reformulating the problem as a more conventional 

PN problem using the sightline rate was more successful.

York and Pastrick37 consider a similar problem, namely the attack of armoured 

targets using anti-armour weapons; in this example a high angle of impact is

required to engage the thinner turret armour. The paper is an extension of the work

22of Kim and Grider and considers the effect of the autopilot lag and the angle of
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attack of the missile upon the guidance solution. In the revised formulation, the lag 

is included in the formulation of the guidance algorithm. As the autopilot 

bandwidth becomes infinite, the solution tends toward the solution derived earlier by 

Kim and Grider and at low autopilot bandwidths, the control algorithm can become 

unstable. The practical implementation of the control law was briefly investigated to 

examine whether the states could be established from physically realisable 

measurements, with a linear function approximating the feedback gains. It was 

found that performance was sensitive to the error introduced by the linear function 

and even with an increasing number of breakpoints there was no improvement. 

Noting that the angle of attack is an important factor in the terminal part of the 

engagement, a reformulation of the control law including the angle of attack is 

presented. However, the control law that results does not readily lend itself to a 

closed form solution and is not considered further. Finally, the control law was 

reformulated to impose an angular constraint at impact. Through suitable choice of 

the weighting factors in the performance index it is asserted that the control law can 

achieve any arbitrarily demanded impact angle, however, although some results are 

presented the technique used to select the weighting factors is not reported.

ORAs noted above, Rogers presents a PN variant in which the target approach 

direction can be specified. As originally formulated the control law is designed so 

that an inertially guided missile is able to approach a target from any given bearing. 

However, since the approach direction is specified as a unit vector in space axes, the 

technique can equally well be applied to control the attitude angle at impact. The 

technique requires knowledge of both the sightline vector and the relative velocity
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vector and so assumes that an Inertial Navigation System (INS) is present. This is 

typically available on the latest class of weapons but older weapons may use an 

autopilot based upon displacement gyroscope technology.

Kim et al23 propose a BPN guidance law for an impact with angular constraint that 

utilises a time varying rate bias to achieve the desired impact angle. The algorithm 

was derived using the Lyapunov technique pioneered by Ha et al16 and is developed 

as a generic technique with a wide variety of applications. Among the applications 

proposed include heavyweight torpedoes and anti-tank weapons. As formulated the 

guidance law does not require a time-to-go estimation, although a time-to-go 

estimation is in fact implicit in the formulation of the bias term. Also as the 

nonlinear intercept dynamics are implicit in the scheme, some guidelines are 

proposed as to the release parameters required to ensure a successful intercept. 

Noting the comments of Ghawghawe and Ghose11 these are likely to be conservative 

and will not fully delineate the capture zone. The size of the capture zone is 

examined using simulation and is demonstrated to be considerably larger than using

the scheme proposed by Kim and Grider22. However, such an assertion should be

22treat with caution as Kim and Grider ’s scheme was sensitive to errors in the time- 

to-go estimation and the simulations used by Kim et al use an approximate value 

for time-to-go. It is also noted during the simulations a successful intercept with 

angular constraint could still be achieved even when some of the assumptions used 

in deriving the guidance law are violated. These results indicate that while the 

Lyapunov technique is useful as an analysis tool, it’s ability to establish performance 

parameters are perhaps exaggerated by the authors. Assuming a collision course and
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small angle approximations the optimality of the proposed guidance law is examined 

and an indication of the optimal values of the kinematic gain and the weighting 

factor for the rate bias term are obtained. The authors suggest that the system 

requires an active seeker in conjunction with a weapon INS for the implementation 

of the control law. However, further consideration of the control law as part of this 

study has shown that the control law can be implemented with just the weapon 

seeker and a relatively simple autopilot using displacement gyroscopes.

3.2.9 Effect of Target Motion

Zarchan41 considers the effect of weaving targets on miss distance for a generic PN 

guidance law. Weave manoeuvres are a common countermeasure to PN guidance, 

since it is known that periodic manoeuvres can induce large miss-distances. 

Previous results indicating that the missile will always intercept the target had been 

derived on the basis that both the airframe and autopilot responses were zero lag. 

These assumptions are broadly applicable through much of the engagement but 

break down in the terminal phase. Assuming a simplified single time constant 

model of a PN guidance system, Zarchan41 obtains closed form solutions for miss- 

distance as a function of the effective navigation ratio, guidance system time 

constant and the weave manoeuvre in terms of the magnitude and frequency of the 

weaving motion. Noting that the simple model of a single time constant 

underestimates the miss distance a higher order system is used to develop normalised 

miss distance design curves using normalisation factors from the simple simulations. 

As in previous work it is demonstrated that the manoeuvre advantage of the pursuer 

is a key factor in determining system performance. It is noted that many of the
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insights obtained from the simpler model also apply in the higher order model and 

both models can be used to improve overall system performance.

18 19Hough ’ has studied the use of optimal control and nonlinear estimation 

techniques for the interception of non-manoeuvring targets subject to aerodynamic 

drag and a ballistic missile target under acceleration during the boost phase. The 

main focus of Hough18,19’s research is orientated toward the interception of ballistic 

missile targets using a small Kinetic Kill Vehicle (KKV). As a KKV relies upon 

kinetic energy as the defeat mechanism, the guidance system is required to ensure 

extremely small distances in what is an extremely challenging interception problem. 

The first paper considers the implementation of simple, yet accurate optimal 

guidance and estimation algorithms. An optimal guidance algorithm is developed 

using the calculus of variations, initially assuming that there is three axis control of 

the acceleration command and later assuming two axis control using divert thrusters. 

An Extended Kalman (EKF) is developed, based upon the relative equations of 

motion of the interceptor and target and theoretical limits on miss-distance are 

assessed. This approach is extended in the second paper to include the effects of 

target motion.

3.2.10 Optimal Control

As noted previously many authors have used optimal control techniques in the study 

of various aspects of the guidance problem. In a brief paper Nazaroff27 considers an 

optimal terminal guidance law using optimal control theory. Using the relative 

equations of motion simplified using small angle assumptions, a performance index
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is formulated using the miss distance and the control effort. Using the Algebraic 

Matrix Riccati Equation (AMRE) an optimal control law is derived. This is then 

simplified for implementation in an airborne application.

19Glizer considers the closed-form solution of planar interceptions with prescribed 

end conditions using a performance index derived from the time of capture penalised 

by the control input. An optimal control solution is obtained by solving the 

nonlinear intercept equation involving elliptic integrals.

Ben-Asher and Yaesh2 note that in recent years ideas from linear quadratic 

optimisation theory have been extensively applied in guidance problems. This 

reference introduces new guidance laws based upon one-sided optimisation theory 

and differential game theory. Initially, the classic problems in guidance theory are 

assessed using LQ methods and later more complex problems are examined 

including the effects of sub-system dynamics and manoeuvring targets. Also 

included are approaches to robust design using EL methods.

3.3 Proportional Navigation

Proportional Navigation (PN) was apparently known to German scientists and 

engineers at Peenemunde but was not used in a weapon application during World 

War n. In parallel, PN was studied in the US under a naval programme that resulted 

in the Lark surface-to-air missile (SAM), one of the first practical systems. Initially 

it was derived using heuristic arguments and later subjected to more rigorous 

mathematical examination.
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Figure 67 Collision Course at Intercept

The fundamental principle behind PN is not a new idea and in fact has nautical 

origins. Before embarking on a rigorous mathematical demonstration of PN it is 

useful to illustrate the intercept problem by means of a simple example. Consider 

the planar engagement shown in Figure 67 in which the missile and target are 

travelling at constant speed toward an intercept at point I. Next consider equal 

intervals of time At and the sightline from the missile to the target. It is clear that at 

each time interval the intercept triangle is similar, each successive sightline is 

parallel to the original sightline and, hence, the sight line angle remains constant. 

Clearly if the sightline does not rotate then the missile and target are on a collision 

course. This principle was well known to mariners, if the bearing to an approaching 

ship remained constant then avoiding action had to be taken. PN turns this principle 

on its head and attempts to force the sightline rate to zero by changing course in 

proportion to the rate of change of the sightline angle i.e.
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\jr = K.co, (127)

Where K is a constant known as the kinematic gain. Further insight can be gained 

by considering the very simple planar mathematical model of the intercept developed 

by Rogers28.

Figure 68 General Intercept Geometry

Referring to Figure 68, the position of the missile and target are denoted in a fixed 

frame of reference by two position vectors fm and rt respectively. Their velocities 

are given by:

v  =  r  v  =  rvm ' m •> yt 't (128)

The sightline vector and it’s rate of change are therefore:

r, =rt ~ rm, rs =vt -v„ (129)
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If rs is entirely in the direction rs then an intercept is inevitable, however, any

component normal to the sightline will cause a miss. The normal component is 

equivalent to a rotation of the sightline given by:

a , (130)
r • rs s

Assuming that the target is moving with a constant velocity, i.e. vt = 0, the sightline 

rate obtained by differentiating equation (130) is:

^ dal)
r r r rs s s s

Equation (131) demonstrates that the sightline rate can be modified by the missile 

acceleration. As noted in equation (127), in PN this is equivalent to:

V„ = K a sx(vm- v t) (132)

Hence, equation (131) becomes:

(133)
r • rs s

In the closing stages of the intercept, the flight-path is virtually rectilinear, then:

r  • ( v  —  V  )■ i - 1 " J t )  ^ T _ t (134)
rs -rs
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Le. the time of flight remaining. Hence, equation (133) reduces to:

(135)

Which has the solution:

(136)

Where cd0 is the initial sightline rate.

Referring to equation (136) it can be seen that the sightline rate reduces to zero 

provided the kinematic gain is greater than two.

The choice of the kinematic gain, K, depends on a number of factors. However, a 

simple example of a procedure for selection of the kinematic gain may be obtained 

using a performance index derived from the integral of the missile acceleration. 

Such a performance index could be:

possible to demonstrate approximations for the optimum value of the kinematic 

gain. A stationary target is assumed and the missile velocity remains constant

T

(137)
0

Using the sightline history developed from the equations developed by Rogers28, it is
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throughout the engagement. Using equation (132) and noting that the vectors are 

orthogonal, equation (137) can be re-written as:

i  = K X j a . a ,
o

Using equation (136) and integrating results in:

j  K 2vla>2J  
2 K - 3

Differentiating with respect to K and equating to zero results in:

(138)

(139)

dl  2 Kv2m(olT
dK 2 K - 3

1 —
K

2 K - 3
= 0 (140)

Which has the solutions, K  = 0 and K  = 3 . Noting that equation (136) indicates that 

K >  2 solution K  =0  is rejected. Differentiating equation (140) results in:

d 2I
dK :

=  v i ( o l T \

4 K
2 K - 3  (2 K -3 )7

1 —
2 K

2 K - 3
+

2 K
2 K - 3

2 K
2 K - 3  (2 K -3 )7

(141)

Substituting K = 3 into equation (141) results in:

d 2I  
dK2

(142)
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Hence, it has been shown for the particular case under consideration K  = 3 

minimises the acceleration demands of the pursuer.

1 0 0  m / s1 0 0 0  m

K  =  2 . 5 - 5

T a r g e t 1000 m

1 0 0  m / sT a r g e t

y  = 0 - 9 0 °

1000 m

Figure 69 Initial Geometry Assumed in Simulations

Equation (136) may also be used to demonstrate the effect of the kinematic gain 

upon the commanded acceleration. Assuming a non-dimensional time base, t / T , 

and an initial missile/target geometry as shown in Figure 69, Figure 70 shows the 

commanded acceleration as a function of time. Note that a kinematic gain of 2 

corresponds to the case where the missile maintains a constant acceleration 

throughout the engagement. Note also that a large kinematic gain has the effect of a 

large initial acceleration but that demands reduce throughout the engagement such 

that at the end of the engagement a reduced acceleration demand results. Integration 

of the acceleration time profile confirms that the performance index in equation

(137) is at a minimum when the kinematic gain is 3. A similar procedure can be 

used to demonstrate the effect of an initial heading error as shown in Figure 71. As 

might be expected the larger the initial heading error the greater the commanded 

acceleration. However, for larger heading errors the increment in acceleration
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demand diminishes since the initial sightline rate is related to the sine of the heading

error.

Effect of N avigation C onstan t

Figure 70 Effect o f Kinematic Gain Upon Commanded Acceleration

il H eading  =  5?

JH eading =  40 c

te ad in g  =  3 0 c

jUtearlinffj

Effect of Initial H eading Error

Figure 71 Effect o f an Initial Heading Error Upon Commanded Acceleration 

3.4 Linearisation About a Collision Course

The previous example shows how with a few simplifying assumptions a simple 

mathematical model of the PN intercept equations may be constructed. One of the
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simplest techniques used by many authors is to linearise the equations of motion 

about a constant bearing trajectory i.e. a collision course. The method presented 

here is that of Ben-Asher and Yaesh2.

I

Line of Sight

Y.O)

Initial M iss i l e  
Posit ion

Initial Target  
P osit ion

Figure 72 Two-Dimensional Engagement Geometry for  Linearisation

It is assumed that the motion is constrained to a single plane and the speeds of the 

missile and target remain constant. It is further assumed that the trajectories of both 

missile and target may be linearised about a collision triangle as shown in Figure 72 

above. The condition for a collision course requires that:

V„sin(y„o)-V,sin(y,o) = 0 (143)

The nominal closing velocity is given by:

Vc = - r  = Vm cos(y„o) -  V, cos(y,o) (144)

And, hence, the nominal time of flight is:
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(145)

Denoting the relative separation of the missile and target by y (t) , i.e.:

y(t) = Yt{ t )-Ym(t) (146)

The relative separation of the missile and target may be defined as a differential 

equation:

= V, sin(y,0 +y,(r))-Vm sin(y^ + ym{t))

Using small angle approximations and equation (143) this may be simplified to:

y(t) = f l( t ) - U ‘) = V, coS(r,0 )r, (t) -  Vm cos(y^ )ym (t) (148)

Denoting the sightline angle by a(t) and assuming without loss of generality that 

o(0) = 0 . Once again using the small angle assumption the sightline angle is 

defined by:

° «  = T r 0  (149)

Hence, differentiating equation (149) with respect to time, the following equation for 

the sightline rate is obtained:
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y(.i) m
(150)

Figure 73 shows a simplified block diagram of a generic guidance system using the 

linearising assumptions. In this example, the relative acceleration between the 

missile and target is integrated twice to obtain the relative position, which at the end 

of the flight is of course the miss-distance. Using equation (149) the small angle 

assumption is used to yield an approximation of the sight-line angle. Differentiation 

of the sightline angle yields the sightline rate that is processed by the guidance 

system into an acceleration demand. The flight control system implements the 

guidance demand.

M i s s  =  y ( f / )

S e e k e r

a(f)

A f t )

M iss i l e  
A u t o p i l o t

G u i d a n c e
S y s t e m

N o i s e
Fi l ter

K. V,

r ( t )

I n t e r c e p t o r
A c c e l e r a t i o n

Figure 73 Simplified Block Diagram of  PN Simulation 

3.5 Integrated Proportional Navigation

One of the main advantages of PN is that it can be implemented in an integrated 

form and the two forms of PN are equivalent. This is particularly useful in weapons
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where the inertial instruments are in the form of displacement gyroscopes and the 

guidance demand is formulated as an Euler angle demand. The equivalence of the 

two forms of PN is shown easily with a simple example.

Integrated PN uses a guidance law of the form:

y J t )  = K{ym(t) -a( t ) )  (151)

^  M i s s  =  y
N o i s e
Fi l terS e e k e r

ct(0
r ( t )

M i s s i l e  G u i d a n c e
A u t o p i l o t  S y s t e m

Figure 74 Simplified Block Diagram for Integrated PN

Figure 74 above shows a simplified block diagram of a generic guidance system 

using integrated PN. Comparing Figures 73 and 74 it can be seen that the guidance 

loop now contains one integration rather than a double integration following by a 

differentiation. Hence, at a superficial level the two forms of PN are in fact 

equivalent. In practise, problems can occur in matching the seeker characteristics to 

the inertial instrument characteristics.
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3.6 Lyapunov Stability

3.6.1 Proportional Navigation Against a Randomly Manoeuvring Target

A previous section has shown via a simple linearised example that the kinematic 

gain is a vital factor in the optimality of PN. However, the utility of this example is 

fairly limited since once the linearising assumptions are violated then the system 

becomes sub-optimal.

Ha et al16 introduce the use of Lyapunov methods to directly examine the stability of 

PN. The method is of some benefit since it may be applied directly to the nonlinear 

equations governing the intercept dynamics. Its principle disadvantage is that many 

Lyapunov functions are possible and the technique does not necessarily fully 

delineate the capture region.

The basic method of Ha et al16 has been examined and expanded. Expanding this 

technique further, the method of Kim et al23 in constraining the impact angle has 

been revisited.
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Figure 75 Simplified Intercept Geometry

In order to demonstrate the method a number of simplifying assumptions have been 

made. Figure 75 shows the basic intercept geometry for a planar interception of the 

target by the missile. Constraining the intercept in a single plane, both target and 

interceptor move at constant speed. The interception may be described using the 

following nonlinear equations:

j,(f):= A,(t)/V, , ym(t)=A,(t )/vm (152)

Kt) = V„ (p cos0,(f)-cos0m(,)) (153)

> ( , ) <r(t) = Vm (p sin6t( t) -sin6m{t)) (154)

Where 6t , 6m and p are defined by:

0,(O=y,(O-<K'). p  = v , /vm (iss)
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Assuming that the missile acceleration response is instantaneous, i.e. neglecting the 

autopilot and airframe responses, and assuming the missile acceleration is normal to 

the velocity vector and varies according to:

K ( t )  = K-Vm-o(t) (156)

Implicit in equation (156) is the assumption that the interceptor is significantly faster 

than the target i.e.:

Vm» V t (157)

Equation (157) simply indicates that the interceptor velocity dominates the closing 

velocity. It is assumed that the target will manoeuvre in an unknown manner but 

that the target acceleration is a continuous function of time and is upper bounded by 

a known value, a .

K M |^ a  (158)

Finally, it is assumed that at the start of homing, the intercept geometry is subject to 

the following constraints:

|p •sin0,(o)-sin0m(o)| < p, |6»m(°j| < V 2 (159)

Where ft is a positive constant, p  e  (0,1 -  p ) .
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This condition is actually quite a weak constraint, it simply implies that the target is 

within the field of view of most practical seekers and that at the start of homing the 

missile is heading toward the target. Applying this constraint to an air-to-ground 

weapon system is not particularly onerous; however, this may be of some concern for 

an air-to-air missile. In the latter situation, the missile may be launched under 

inertial guidance toward an off-bore-sight target and obviously these constraints may 

well be violated.

Noting the range rate equation, equation (153), it is assumed for now that equations 

(152) to (154) are satisfied if:

|p • sin0f(f)-  sin0m(t)| < , t0 < t < t{ (160)

Where tx e (0,°°).

I

This implies that:

M * ) |< s in _1(p + /?) (161)

This can be proven by first of all considering from equation (160) that:

|sin0m(f)|< p  + /3 < l (162)

Defining the sets , Q2 by:
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= {0 g R : |0| < sin-1(p + /?)} (163a)

Q2 = |0 e R : |0 -7r| < sin_1(p + /?)} (163b)

Solving equation (160) for 6m(t) gives:

6m(t)e  u Q2, t0 < t < (164)

However, these results together with the initial condition defined by equation (159) 

implies that:

O j t0 )e n t (165)

Noting that the sets , f l2 are not path connected and that 0m(f) is continuous in 

t , hence:

6 j t ) e  n , ,  t„ < (< r ,  (166)

This with equation (160) implies that:

|sin0m(O| < £  + p-|sin0,(O| (167)

Also, since 0m(t)e Q ,  t0 < t < tx, it is noted that:

cos0m(/)>O (168)

This with equation (167) implies that:



cosem(t) > + p • |sin0t(f)jp

This together with equation (153) implies that:

Kt) <Vm ( p -  cos0, (f) -  -Jl -  {6 + p  ■ |sin 0,0)|}2

Defining f ( o )  as:

f ( e ) =  p c o s e + p  •|sin 0|}2

Differentiating with respect to 6 the following is obtained:

/ '( # )  = -p -s in  0 +
p  cos 0-(j3 + p-|sin0|) 

^1-1)3+ p | sm0|}2

/ '( 0 )  = 0 has the solutions:

sin0 = , cos0 =„
1 - p  \

1-
1 - p  ,

Differentiating equation (172) with respect to 0 results in:

(169)

(170)

(171)

(172)

(173)
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f ( e ) = - p  ■ cose p - M - ( P  + p - M )
•y/l-{j8 + p |s in 0 |} 2 

p 2 • cos20
H— I =

<Jl-{j3 + p-\sinO\}2 

p 2 • cos2Q (fi + p - Jsin^l)2 

^/l-{/3 + p-|sin0|}2

Substituting the solution given in equation (173) results in:

r(e)=-p-

= > / '( 0 )<O

i -
Vi

+  (i + p )-
p  )

2
1 - P ) 2 '

U - p )J 1 & - P ) J

■X (175)

Assuming that the constraint implied by equation (160) to be correct, the solution of 

equation (172) represents a maximum value and, therefore, using equation (170) the 

upper bounds on range rate may be expressed as:

(176)

It is now assumed that:

K ( 0 | ^ s u r 1(p + /)) 

Furthermore, it is also assumed for now that:

(177)
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f(t) <  -v . ■ J ( \ - p J - p 2 , t „ < t < t 2 (178)

Where t2e (0,°°). Noting that a constraint on the initial conditions is imposed and 

defined by equation (159) it holds that at t0:

r{0)<-Vm^ { \ - p f - p 2 (179)

Now if equation (178) is invalid, this with the continuity of r implies that there 

exists a time t3 e t2 such that:

r(t) < ~Vm ■ - J ( l - p J - p 2 , (180a)

Kh) = -V . • J i l - p f - p 2 (180b)

However, as the result of equation (177) it is noted that:

cos0„(f)>V1-(p  + (3)2 (181)

A candidate Lyapunov function is suggested as:

V( t ) =} / ( r ( t ) ( t ( t ) y  (182)

Differentiating with respect to time results in:

v ( t ) =  r(f) • p(f) ■ [r(r)' )+ r{t)-<j(f)] (183)

Similarly, differentiating equation (154) with respect to time results in:
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r(t)-cf{t) = -2r(t)-&(t)+ At cos0f( t ) - A m(t)-cos6m(t) (184)

Noting equation (156) these two results may be combined resulting in:

v ( t ) = v m r(t) cr(t)2 { -p -cos0 ,(« )+ (l-^)-cos0„(r)}+
r(t)' a(t)' At (t)- cos 0t (t )

Lyapunov stability implies that V(t)<0,  t0 <t <tx. Applying this constraint to the

above equation and re-arranging implies the kinematic gain must satisfy the 

following inequality:

Noting that a constraint upon cos0m(t) is indicated by equation (181), that the target 

manoeuvre capability is upper bounded by the limit a  and a constraint on r is 

indicated by equation (176); assuming for now that the assumption implied by 

equation (160) to be true. Substituting these values into equation (186) the lower 

bounds on the kinematic gain to ensure our candidate function is a Lyapunov 

function is defined by:

Considering the term in the right hand bracket and noting that, the upper and lower 

bounds can be expressed as:

K  -cos9m(t)> ------+'  V K,.<x(0
(186)

(187)
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J8 = 0
^1- p ^ 2

v1 + P ;
<1, P = i - p ^ ( i - p Y 2 <1 (188)

Differentiating this term with respect to P indicates the term is monotonic 

p  e (0,1 -  p ) . Hence, it is noted that:

' i - p + ^ 12
V1 +P + P ;

<1, P s  (0,1 -  p) (189)

Hence, equation (187) can be written in a more convenient form as:

. P + <*-r(0 ) / P-V-  

t ] i - ( p  + p ) 2
(190)

Substituting into equation (185) the upper limit on the rate of change of the 

Lyapunov function may be defined as:

(191)

This result implies that:

v < t r < - p 'v - • + v(o y f i - P V y / / - (192)

Noting equations (154) and (159) it is observed that:

v ( ° r - p y s <0 (193)

162



Therefore it follows from equation (192) that:

\p - sin6t( t) -  sinQm(t] < , t0 < t < t 3 (194)

Hence, using the result obtained previously it follows that:

r(t)<-VmS ~ p f - P \ t 0 < t< t ,  (195)

This result contradicts equation (180b), which is itself contradictory to the initial 

assumption and hence equation (178) holds. Hence, it is also concluded that the 

assumption implied in equation (160) also holds.

Returning now to equation (192). This indicates that provided the kinematic gain 

satisfies the constraint in equation (186) then proportional navigation against a 

randomly manoeuvring target is Lyapunov stable and, furthermore, is exponentially 

stable and, therefore, asymptotically stable. It is therefore concluded that although 

the basic PN guidance law is generally formulated assuming that the target maintains 

a rectilinear flight, it remains a robust and stable guidance algorithm in the presence 

of target manoeuvres. Hence, intrinsically the PN algorithm itself does not generate 

a miss-distance, in effect a zero lag PN system will always result in zero miss- 

distance as shown in the simple example from the previous section.

In practical systems, miss-distance results from a number of the simplifying 

assumptions that were made in order to examine the basic properties of PN itself. 

One of these assumptions is that the effect of the autopilot and airframe responses of
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the missile can be neglected. Throughout much of the engagement this assumption 

does not introduce a significant error. However, in the final stages of the 

engagement this assumption breaks down, as their time constant becomes 

significant. This is considered further in a later section.

3.6.2 Impact With Angular Constraint

The previous section has considered the stability of the conventional PPN guidance 

algorithm against a manoeuvring target. This section will now consider an extension 

of this guidance law to tailor the engagement to meet an angular constraint at 

impact. In order to simplify the development of the algorithm it is initially assumed 

that the target does not manoeuvre and both missile and target maintain a constant 

velocity.

It is assumed that the impact angle requirement will be achieved using a time- 

varying rate bias, noting that Murtaugh and Criel indicate that a rate bias can be 

used to shape a trajectory. Ignoring for the moment the formation of the rate bias 

term it is assumed that the acceleration demand is formulated according to:

Am( t ) = K V m {<j(t)-cb(t)) (196)

Where 6 b(t) is a time varying rate bias term.

Before considering the development of the algorithm, assuming that y t and y D are 

given let the desired sightline angle, a D, be a solution of the trigonometric equation:
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P sin(y, - t r D)-s in (y D -(T „) = 0 (197)

Subject to the constraint that:

lrD- e D\ < / 4

Expanding equation (197) and re-arranging leads to the following expression:

<7 = tan 1
p sin y t -  sm y D

(198)
p  cos y t -  cos y D

V  /

Which has a unique solution with the trivial exception of the indeterminate form:

p sin y t -  sin y D = 0  a  p  cos y t -  cos y D = 0  (199)

Next assuming that y t and o D are given, it is trivial to demonstrate that there is a 

single unique solution, y *, of equation (197). In this case o D acts as a common 

phase angle and so without loss of generality it may be assumed that <rD = 0 . 

Noting that with the applied constraint sin/* is monotonic, hence, there must be a 

single unique solution for y*.

As in the previous case it is assumed that the initial geometry satisfies the following 

constraint:

((P sin 0, (0) -  sin 6m (o))2 +rj(aD-  a (o ) f  Y 2 < P (200)
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Where 77 is a positive constant and <rD defines the desired approach angle.

Noting that equation (200) is a subset of the condition implied by equation (159) it 

is assumed for now that equation (160) remains valid leading to the upper limit on 

the range rate implied by equation (176). A candidate Lyapunov function is 

suggested as:

V{t) = ̂ {(r{t) + 7?V„2(<td -<t(0)2) (201)

Equation (200) may now be expressed as:

V ( 0 ) < W ^ p 2 (202)

Differentiating V(t) with respect to t implies results in:

V(t) = vm-r(t)-<i{tf{-p  cos 9, (f)+ (l -  K  )cos 0m (f)}

+ K V m-6 t ( t ) cosem(t)r(t)<?(t)  (203)

In order to ensure Lyapunov stability the guidance must ensure that V (/)<0, 

tQ <t <tx, noting that Vm-r(t)-<j(t)2 > 0 , this can be achieved if the following 

inequalities are satisfied:

-  p  cos0f (7)+ (l -  K )cosQm (t) < 0 (204a)
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K Vm <j (t) cosQm(t)'r(t) a ( t ) -
(204b)

Re-arranging equation (204a) implies the following constraint on the kinematic 

gain:

^  cose M
cos e m(t)

Applying the earlier constraint identified by equation (181) implies a lower limit on 

the kinematic gain of:

K >  1+ - = = £ =  (206)
Vi - ( p + P f

For small values of this is a weak constraint since, as shown earlier, the kinematic 

gain must be greater than 2  or the acceleration demands grow according to a power 

law. Thus in most practical applications this constraint will be satisfied. However,

as » ( l - p ) ,  + p )2 -» 0  and /£ —> . Nevertheless this condition

represents the extreme edge of the boundary defined by equation (200) and for 

smaller values of , K  rapidly reduces below 2.

It is more difficult to define a condition that ensures the second inequality is 

satisfied since the sightline rate may be either positive or negative. However, the 

effect of this term can be removed if the sightline bias rate is formulated as:
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Applying this constraint ensures that the requirement to control attitude does not 

affect the rate of change of V(t) and the previous constraint ensures that V (/) < 0, 

tQ< t< t l . Hence, the time derivative of V(t) < 0 may now be expressed as:

V(t) = Vm r(t) d ( t f { - p c o s e , { t ) + { l - K ) c o s 0 M  (208)

Hence, it has been shown that V(t) is a Lyapunov function; this together with 

equation (202) can be used to prove by contradiction that equation (160) remains 

valid. In the previous example for a manoeuvring target it was trivial to show that 

V(f) was a logarithmic function, indicating both exponential and asymptotic 

stability. Lyapunov stability by itself does not automatically imply asymptotic 

stability and the modifications to the suggested Lyapunov function mean that it is no 

longer possible to re-arrange V(t) into a convenient logarithmic form. The proof of 

asymptotic stability is more complex in this example.

Before proceeding to the proof of asymptotic stability, the following lemmas, Buck7, 

are introduced:

Lemma 1. If / ( / )  is bounded and monotone over the open interval a<t<b 

then lim,_^ f ( t )  and lim,_^ f ( t )  exists.
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Lemma 2. Let f ( t )>  0 and g(/)> 0 over the open interval a < t < b  and let 

lim ^fc / (t)/g(t) = L , where 0 < L < oo. Then the integrals:

b b

a a

are either both convergent or both divergent.

Ideally, asymptotic stability would imply that the guidance algorithm fulfils the 

requirements of minimising the miss distance and ensuring that the weapon 

approaches along the desired trajectory path. This implies that there is a finite time 

of impact, tf  , where:

Where e r and ey represent small finite errors in the guidance solution at impact.

Considering first of all the range equation, equation (176), it is assumed that there 

exists a finite time, t 'f , such that:

If equation (209) does not hold, noting equation (176), there exists a limit 8 > 0 

such that:

limf̂  r{t) = 0 and r(t)> 0 , t e  (o,ff )/ ^ (209)
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r(t) > 8 ,  0 < t < t , where t = r(o)/vm -̂ /(l — p )2 -  f i 2 (210)

Integrating equation (176) over the interval (o,f) it holds that r(f)< 0 , which 

contradicts the above result and hence the earlier assumption, equation (160), is true. 

In order to prove that the impact angle approaches the desired impact angle it is 

necessary to consider two cases:

Case 1. limf̂  a(t)  exists and is finite.

Case 2. lim,_^ <7(t) does not exist or is infinite.

First of all considering Case 1, noting the range rate equation, equation (153), it is 

obvious that:

r (0 < -V m(l + p ) (211)

Integrating equation (211) over noting the definition of p , the following is

obtained:

Noting that:

0 < r ( 0 < ( y m+ y , ) . ( 4 - r ) (212)

t j
limf .., I 7--------------r - r - ------ d x  = oo , .  f  G (o, t'f )’ l^ + v M t ' - T T  ’ 5
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Implies that the following improper integral is divergent:

lim, ,, f (213)
'  r, HT)

If the assumption that l i m ^  a(t) exists and is finite is correct, then these results

together with the fact that that V(t) has been shown to be a Lyapunov function, 

Lemma 1 implies that lim,_^ r-d(t)  exists and is finite. This together with equation

(154) implies that limf_^ ym (t) exists and is finite. Denoting these limits by:

l i m b e r {t)=a0, y„l(t)=y0 (214)

The existence of lim ^  a (t) implies that the following improper integral exists and is 

finite:

i

limMI, a ( t ) -o (0 )  = limI J  6(x)dx
0

Vm • (p sin(y, -  a(x)) -  s in (y jx )  -  c(x)))
= limt .t' ---------------------------  dx

M,/ I r{x)

(215)

Defining the functions:

f h \ - v m -(psin(y, -cx(f))-sin(ym(t)-a(t)))
r(t)

S(‘) = 4 x  (216b)r{t)
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Let lim,-,,; [psin(y( -o ( t ] ) - s \n (ym(t)-o(t))} = L , with 0 <L<  oo. Lemma 2 and 

equation (213) implies that the following improper integral is divergent:

(217)

However, this contradicts equation (215) and hence L cannot lie in the interval 

( 0 , ° o )  and by a similar argument cannot lie in the interval ( - ° o , o ) .  Hence it is 

concluded that 1^ 0 , which can be written as:

[p sin(y, -  a(f)) -  sin(ym(t) -  o(t))] 

= P sin(y, - C 0)~  sin(y0 - o 0) = 0
(218)

The rate of change of the missile flight path may be expressed as:

y 4 . ( 0tm y

= K - { a ( t ) - a b{t))

(P s in (r,- a i f ) ) - sin(rm(t)-<r(f)))

= K -V . -
r(t)

t?-(cr0 -<r(t))

(219)

Hence, the existence of lim ,^ ym(V) implies that the following improper integral

exists and is finite:
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I

linW , 7„ (f)~Ym (°) = Urn,-*} J f m ( t ) / t
0t

(psin(r, -<7(r) ) - sin(y (r) - <r(t)))- (220)
= lim, , K V m rj (aD -a ( t ) ) /K -  cos((ym ))) d t

r(r)

Hence, using the same argument used to prove equation (218), it follows that:

lim,
(p sm(y, -  <t(t)) -  Sin(ym ( t ) -  t7(r)))-‘ 
?7 • (<7d -<y(t))/K ■ cos((rra(T)-(j(T)))

= 0 (221)

Which implies that cr0 = <rD and, hence, since it has been shown that equation (218) 

has a single unique solution, it follows that 70 = yD.

Turning now to Case 2, it is trivial to demonstrate that a(t)  is bounded and not 

infinite. It has been demonstrated that the suggested Lyapunov function, which is a 

quadratic function of <r(t), is stable in the sense of Lyapunov. Hence, if <7 (t) were 

unbounded, there would exist a time, t6, where:

V (O >V (0) (222)

But the function suggested is a Lyapunov function and, hence, it has the property of 

being negative semi-definite, which is contradictory to equation (222). Hence, cr(t) 

is bounded over (o, t'f ). A  constant, t7, is chosen such that:

0 < r( t )<£, t e  (it7, t 'f ), t7 e  (o ,^ )
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If <J(t) does not exist it is asserted that there must exist a series of maxima

and minima, x i , where Tf e (t7,t'f ) such that:

<7(*)><7(;y), <t(t0)>c7(t1) if y > x  and x ,y  e 

a(x)<a{y ) ,  c ( t1)<  <j(t2) if y > jc and x , y e  (tv t2)

a(x)>a(y) ,  ct(ti.)> c j(ti.+1) if and x , y e  (T„Ti+1)

a ( x ) ^ a ( y ) 9 a(Ti+1)< a (r i+2) if and x ,y e  (rm ,Ti+2)

Otherwise the boundedness and monotone nature of a (t) would guarantee that 

limf_^ o(t)  does exist. As each point represents either a maxima or minima,

crfo) = 0 , and:

V(r , )= ^ tTV > -(aD-<r(t)f (223)

Noting that v ( t )<0  it is obvious that:

V(t,)>V(tw ) (224)

And, hence, noting that a{xi ) is either a maxima or a minima:

(<jD -  <y(r, )) • (<TD -  (t(tw )) < 0 (225)
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The continuity of <7 (t) implies there must exist a time, Af, where 

Af e  (t (. , T i+1) c  (f7 , ̂ ) such that:

<j M  = Od (226)

In addition, the following condition must apply to the sightline rate:

(227)

Hence, it follows from equations (154), (226) and (227) that:

Noting that there is a unique solution, y *, of equation (197), the constraint imposed 

by equation (200), then the continuity of 0(t) implies that:

{/„ (A-) -  7o }■ {/„, ( ,̂+i ) -  r D 0 (229)

The continuity of ym(f) implies that there exists a time, gn where 

^ (A; , A/+i ) c  (f7, ̂ ) such that:

YmfcihYD  (230)

Hence, in both cases 1 and 2 the guidance law guarantees that the impact angle is 

asymptotic toward the desired values. It is therefore concluded that the guidance law
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with the imposition of an angular constraint is both Lyapunov and asymptotically 

stable.

3.6.3 Further Development of the Guidance Law

The guidance law as currently formulated requires knowledge of the missile speed 

and attitude, the range to the target and the target’s speed and attitude. An Inertial 

Navigation System (INS) can provide details of the missile’s speed and attitude, 

whilst an active seeker can provide measurements of the range and bearing of the 

target. Target velocity and attitude may be estimated using a tracking system based 

on measurements from the INS and seeker. Such information should be available in 

a modem guided missile.

In cases where the missile has a large speed advantage over the target or where a 

static target is engaged, it can be assumed that the sightline equation, equation 

(154), reduces to:

And hence, substituting equation (231) into equation (207), the acceleration demand 

may be formulated as:

(231)

K-sin2Q (t)m
(232)
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Utilising the fact that PN may be implemented in an integrated form, equation (232) 

can be re-written in an integrated form as:

Intuitively on inspection, equations (232) and (233) do not look to be a suitable 

formulation of a guidance law. Whilst they may be mathematically valid it could be 

expected that in a typical engagement that 0m(t) may become zero and a singularity 

may result. Also, as shown in the previous section, the guidance law is 

asymptotically stable and, hence, as t —> tf ,o (t)^> o D and an indeterminate form

would result. However, when this guidance law was implemented in a six degree-of- 

freedom trajectory simulation program it was found that it was surprisingly stable 

and well-behaved. Clearly more work is required to understand the behaviour of this 

development of the guidance law.

3.6.4 Simulation Results

The guidance laws as presented so far have considered a simple case where the target 

and missile maintain constant speeds and motion is constrained to a single plane. In 

order to assess the guidance laws in a practical application, the guidance laws were 

implemented in a six-degree of freedom trajectory simulation program. An existing 

Hunting Engineering Ltd (HEL) trajectory simulation program was modified to 

simulate guided trajectories for a typical air launched guided weapon. The 

simulations considered a guided mission with the target placed at the nominal

K-sin2Qm( t)
(233)
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ballistic impact point. Release conditions were straight and level flight from an 

altitude of 20,000 ft, Mach 0.85.

The guidance laws implemented were standard PN, equation (156), an augmented 

PN guidance law to control impact angle, equation (196), and, finally, the modified 

guidance law described in the previous section, equation (232). In order, to compare 

the various guidance laws a performance index is defined as:

I = ] A 2m(r)dT(234)
0
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Figure 76 Guided Trajectories Using Various PN Guidance Laws (75° Impact
Angle)
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Figure 77 Control Response to Various PN Guidance Laws (75° Impact Angle)

Figures 76 and 77 show the results of simulations with conventional PN and the 

biased PN algorithms. The introduction of the impact angle requirement results in a 

small performance penalty, a modest reduction in the impact velocity. However, the 

biased PN guidance laws result in a significantly greater control effort, which is 

reflected in the performance index, Figure 82. Nevertheless it should be noted that 

the performance index defined by equation (234) has the effect of emphasising the 

control effort, since it is a function of the square of the lateral acceleration. Bearing 

in mind the comments in the previous section, it is noted that there is no evidence of 

any problems with the guidance algorithm resulting in an indeterminate form. 

Furthermore, it is also noted that the performance of the modified bias PN is 

virtually identical to that of the original algorithm.
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Figure 79 Control Response to Various PN Guidance Laws (90° Impact Angle)

Figures 78 and 79 show the results of simulations with an impact angle demand of 

90°, i.e. a vertical impact. In comparison with the previous result, impact velocity is 

only slightly reduced but there is a large increase in the overall control effort.
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Figure 81 Control Response to Various PN Guidance Laws (20° Impact Angle)

These simulations were repeated with impact angle demands of 20°, the results are 

shown in Figures 80 and 81. In this case the impact velocity is significantly 

reduced. This result might be expected since the shallow angle demand effectively
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means that the weapon must maintain a shallow glide angle in the terminal phase. 

This is inefficient since it requires the weapon to maintain an aerodynamic incidence 

to generate lift, which in turn increases drag. This is reflected in the performance 

index, which shows that these simulations resulted in the highest control effort.
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Figure 82 Control Effort fo r  Various PN Guidance Laws

Referring to Figure 77, it is noted that the conventional PN algorithm results in a 

nominal impact angle of approximately 50°. Noting Figure 82, it is apparent that a 

comparatively modest impact angle change requires a substantial additional control 

effort. This has performance implications in that the extra control effort results in 

additional drag and reduces range performance.

However, the impact on range performance should be traded against the additional 

performance benefits for the weapon. Using a conventional PN algorithm, the 

impact angle conditions are a function of the initial conditions at release and the
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kinematic gain, Guelman13,14,15. This requires the weapon to be released under 

specific conditions to meet the impact angle criteria and reduces the operational 

flexibility of the weapon. There are various weapons currently in service that permit 

various guidance modes that allow some control over the impact conditions but these 

weapons still dictate the conditions under which they must be released to ensure a 

successful engagement. As noted previously, many weapon systems have warheads 

that are directional in nature, the ability to precisely control the impact conditions 

has significant benefits.

3.6.5 Miss Distance

The previous sections have demonstrated that the PN algorithm itself is inherently 

robust. Although the algorithm is generally derived with the assumption that the 

target maintains a rectilinear path, it has been shown that provided the pursuer has 

sufficient manoeuvre advantage then zero miss-distance will result. This has been 

developed further and an algorithm has been developed that results in zero miss- 

distance along a demanded direction of approach. However, as noted previously, 

miss-distance is a feature of practical systems as the result of lags within the control 

loop. This is a subject that has received considerable attention within the literature 

and so will not be considered in detail within this work. Some details are included 

based upon the work of Zarchan42 and Gamell and East10.

The approach adopted in both cases is to consider small perturbations about a 

constant bearing trajectory. Zarchan42 uses an adjoint technique to solve the 

resulting set of equations; this enables miss-distance performance to be evaluated as
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a function of flight time and has the additional benefit that many inputs can be 

considered in a single computer run. Zarchan42 also provides Matlab software to 

solve the equations that result and some examples of this are used to illustrate this 

section. Gamell and East10’s approach is similar but differs in the technique used to 

solve the linearised intercept equations. A summary of the linearised PN equations 

is given earlier in this document.

The principal sources of miss-distance in practical systems includes:

a. Sub-System Dynamics. In deriving the model of the PN algorithm used in 

the preceding section it is assumed that the response of the various elements within 

the system was instantaneous. This is a reasonable assumption in most cases but 

breaks down in the end-game. In most tactical missile systems the acceleration 

demand is achieved using normal force generated by the lifting surfaces. Inherent in 

this system is a lag between the input from the control system, generally 

aerodynamic surfaces, and the achievement of the acceleration demand. The control 

surfaces themselves are driven by servos that may exhibit rate or acceleration limits. 

Finally, feedback of the airframe response is achieved via inertial instruments that 

have their own response characteristics. Figure 83 shows the miss-distance as a 

function of time to go where the sub-system dynamics are represented by a first 

order lag with a time constant of Is.
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b. Target Lateral Manoeuvres. As shown earlier, provided the pursuer has a 

significant manoeuvre advantage then the PN algorithm remains robust. However, 

in cases where a very small miss-distance is required or where the pursuer does not 

enjoy a significant manoeuvre advantage then target manoeuvres will defeat PN. In 

addition, as a result of the sub-system dynamics if the target manoeuvres a finite 

time before impact then the system cannot respond in a timely manner and a miss 

results. Figure 84 shows the miss-distance as a function of time-to-go as the result 

of a 3 ‘g’ target manoeuvre. The sub-system dynamics are represented by a first 

order lag with a time constant of Is.

c. Angular Noise. The missile seeker deri ves a sightline rate measurement that 

is corrupted by noise. Zarchan42 notes that noise results in a miss-distance that is 

proportional to the closing velocity, the square root of the power spectral density of 

the noise and inversely proportional to the dominant lag in the sub-system dynamics. 

Poor damping of the dominant response also has a catastrophic effect due to the 

effects of noise.

185



3.7 Conclusions

A literature survey has been conducted and indicates that there is a wealth of 

literature devoted to the study of Proportional Navigation. However, there appears 

to be a gap in the literature concerning the development of guidance laws to meet 

impact angle criteria. This is perhaps surprising since many warheads are 

directional in nature and the ability to tailor the terminal stages of an engagement to 

optimise warhead performance is an obvious requirement. The gap in the literature 

is possibly due to the requirements of commercial or military confidentiality.

A simple mathematical model of PN has been presented and used to illustrate the 

importance of the kinematic gain. Using this simple model the optimality of PN has 

been examined and an optimum value of the kinematic gain derived for a simple 

engagement model. Simulations using the model confirm that the control effort is 

minimised with a gain of 3.

The linearised PN intercept equations have been used to demonstrate by analogy that 

both PN and integrated PN algorithms are equivalent.

Using the method pioneered by Ha et al16, Lyapunov methods have been used to 

examine the stability of the PN intercept equation. Although PN is usually derived 

based upon the assumption of a non-manoeuvring target it is demonstrated that 

provided the kinematic gain is large enough PN remains an asymptotically stable 

algorithm. Effectively, provided the missile has a significant manoeuvre advantage 

over the target, PN guarantees that the missile will hit the intended target.
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The method is then applied to the problem first studied by Kim et al23 and extended 

to show that Lyapunov methods may be used to modify the PN algorithm to meet 

certain performance criteria. In this case, a time varying rate bias is defined to meet 

impact angle criteria.

It has been claimed that the Lyapunov method may be used to delineate the capture 

region for the algorithm. However, it is considered that this over emphasises the use 

of Lyapunov methods, since the method is only valid over the region in which the 

suggested Lyapunov function remains valid. No single Lyapunov function has been 

suggested that is suitable for the entire capture region and it is noted that there are 

some constraints, albeit weak constraints, on the initial conditions. As noted by 

other authors, most notably Ghawghawe and Ghose11, the capture zone defined by 

these constraints nevertheless may delineate only a small part of the capture zone.

Lyapunov methods have been used to demonstrate that the PN algorithm is 

asymptotically stable i.e. the basic algorithm itself does not result in a miss-distance. 

Miss-distance is demonstrated to result from a number of factors, principally sub­

system dynamics and noise. As a result of these factors, a timely target manoeuvre 

can be used to increase miss-distance or even defeat PN.

A further refinement of the guidance law to control impact angle has been suggested, 

although it is recognised that the law suggested may have undesirable features. 

However, it has been found by simulation that the law appears to be relatively 

robust.
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The guidance laws have been implemented in a six degree-of-freedom trajectory 

simulation program. Simulation has shown that the modified guidance laws require 

a greater control effort. The effect of the guidance law on the impact velocity is a 

function of the impact angle demand. As might be expected shallow impact angles 

have a large penalty on velocity, whereas the penalty with higher impact angles is 

negligible.
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4. Final Conclusions

The studies underpinning this thesis have focused upon the application of nonlinear 

control theories in the design of control systems for weapon applications. It is clear 

that nonlinear systems can offer significant advantages in terms of reducing cost and 

complexity.

As an example consider the design of the Paveway IILGB, noting that the principles 

behind the guidance system are described in Section 2.3. The weapon does not use a 

conventional lateral autopilot but relies upon an open loop strategy with the control 

surfaces modulated by the signal from the laser seeker. A conventional lateral 

autopilot requires inertial instruments for rate feedback, resolvers on the control 

actuators for position feedback and a guidance computer to formulate the guidance 

demand. Inertial instruments must be initialised before release, which places a 

requirement on the release aircraft to supply power and a datalink. The strategy 

behind the Paveway II guidance system eliminates the need for a complex interface 

with the aircraft, eliminates the inertial instruments and resolvers (which typically 

represent a significant element of the unit cost) and a much simpler guidance 

computer is required. Hence, the design adopted is simpler and cheaper but, as 

shown in Figure 6, a performance penalty results.

As the systems under study were nonlinear, traditional linear approaches to control 

system design were inappropriate. Indeed, the major hurdle to the use of nonlinear 

systems is that, despite extensive research, there is no single analysis technique that
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has been developed to replace traditional linear approaches to control system design. 

As a result, design techniques are often developed for specific applications and it is 

difficult to apply them to other problems. The main techniques used in nonlinear 

control design include phase plane analysis, Lyapunov theory and the describing 

function.

An example of an original application specific design is given in Section 2.3.1. This 

seeks to mimic the operation of the Paveway II system but uses positional 

information rather than seeker output to modulate the control surfaces. The design 

was successfully implemented in a six degree-of-freedom trajectory simulation 

program, showing that positional information, such as that from INS/GPS, could be 

used to successfully guide the weapon. However, the performance limitations of the 

existing design were retained. The remainder of Section 2 considers the design of a 

nonlinear autopilot to remove these deficiencies. The aim of the autopilot design 

was to control a weapon employing “bang-bang” actuators to achieve a pseudo­

proportional response.

Phase-plane analysis was considered first, since a lateral autopilot was developed by

29  29Rogers using this technique. Rogers considered a conventional lateral autopilot 

augmented by pulsed thrusters at the centre-of-gravity and demonstrated that phase 

plane analysis could be used to design a controller for the thruster system. Initially,

42a technique suggested by Zarchan was considered and found to be unsatisfactory. 

However, the phase-plane design demonstrated a performance improvement. This 

illustrates a common problem in nonlinear systems, in that the advantages and
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disadvantages of controller designs are often non-intuitive and the design has a 

major impact on the success, or otherwise, of the system.

However, attempting to use phase plane analysis to design a suitable nonlinear 

controller proved to be somewhat of a “blind alley”. A number of designs were 

postulated and all proved to be unsatisfactory. It was concluded that the lack of 

success stemmed from the dependence of the designs upon the open loop response of 

the airframe. The bandwidth of the airframe response is low and the response varies 

widely as a function of Mach number and altitude. Indeed, the main driver behind 

the development of lateral autopilots was to overcome the unsatisfactory response of 

typical weapon airframes. Hence, it was concluded that this was an unsatisfactory 

approach for this particular problem.

After conducting a number of numerical experiments using a lateral autopilot loop it 

was concluded that a Pulse-Width Modulated (PWM) control scheme offered a 

potential solution. A literature survey was conducted and identified a number of 

PWM approaches to nonlinear autopilot design. However, many of these related to 

spacecraft design and considered pulsed thrusters; it appears that there is a gap in the 

literature relating to techniques used in weapon systems. As noted above, many of 

the techniques identified proved to be application specific and difficult to adapt to

this particular problem. Nevertheless the method of Bemelli-Zazzera et al4 was
/

identified as a generic technique that could be applied to a wide range of problems. 

The details of the scheme included in the original paper were limited and it was 

necessary to perform some original work to reproduce the results suggested by
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Bemelli-Zazzera et al4. It was demonstrated that the technique proposed could 

indeed offer a solution and, furthermore, the improvements suggested by Zimpfer et 

al43 enhanced the controller design.

The main limitation of the Bemelli-Zazzera et al4 design technique is that it requires 

a linear equivalent upon which to base the PWM controller. After considering the 

response of the “bang-bang” actuator it was concluded that actuator dynamics must 

be included in the design. This complicates the design of the controller, since the 

actuator is nonlinear by nature and there was no equivalent linear design. An 

observer was proposed as a solution to provide state feedback to linearise the 

response of the actuator. Using simulation this was demonstrated to result in a 

satisfactory response but the technique had some limitations. The technique requires 

that inertial instruments are not located at the centre of percussion, otherwise the fin 

state variables are unobservable.

Simulation was used to demonstrate that the PWM controller design was robust over 

a range of sample rates, autopilot bandwidths and guidance demands. A satisfactory 

response was achieved even when the system approached saturation and low sample 

rates could be tolerated.

Section 3 considered the use of nonlinear control theory in assessing guidance laws 

in weapon applications. A literature survey identified that, whilst there is a wealth 

of technical literature devoted to the study of Proportional Navigation (PN), there 

appears to be a gap in certain areas of the literature. It is noted that many of the
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warheads fitted in weapon systems are directional in nature and that performance of 

weapon systems would be enhanced if the weapon can control the direction of 

approach to the intended target. However, it was found that there was little 

information in the literature related to guidance laws of this nature.

A simple model of the intercept originally developed by Rogers was presented and 

later used to demonstrate the optimality of PN. Using a simple linearised model of 

the intercept it was demonstrated that the optimum value for the kinematic gain is 3. 

Later using the linearised approach to the intercept suggested by Ben-Asher and 

Yaesh2, it is demonstrated by analogy that both PN and its integrated form are 

equivalent.

Ha et al16 pioneered the use of Lyapunov methods to examine the stability of the PN 

intercept equations. Although the PN intercept equations are generally formulated 

around the assumption of a non-manoeuvring target it is demonstrated that provided 

the kinematic gain is large enough and the missile has sufficient manoeuvre 

advantage PN will ensure that the missile will hit the intended target. Ha et al16 

describe their technique as using a Lyapunov like function and derive conditions on 

the kinematic gain based on inspection of the suggested Lyapunov function. In this 

thesis this technique is expanded upon and using the rate of change of the Lyapunov 

function, conditions on the kinematic gain are derived to ensure that it remains a 

positive definite function.
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Kim et al23 expanded on the technique proposed by Ha et al16 and showed that 

Lyapunov methods can be used to modify the PN equations to control the direction 

of approach to the target. This results in a time varying rate bias that modifies the 

flight path to ensure the target is approached at the defined angle. Once again Kim

23et al defined the constraints on the kinematic gain from inspection of the suggested 

Lyapunov function. This was expanded in this thesis by considering the rate of 

change of the Lyapunov function and deriving a constraint on the kinematic gain 

and rate bias to ensure the Lyapunov function remains positive definite.

Further refinements to the guidance law of Kim et al were developed, which, 

although mathematically correct, were perceived to have undesirable features. These 

refinements eliminated the need for an active seeker, which should reduce cost. 

When implemented in a six degree-of-freedom simulation, it was found that the 

proposed refinements resulted in a satisfactory intercept. Nevertheless it is 

concluded that the proposed guidance law requires further work to ensure that it is a 

viable algorithm for a weapon application.

After defining a performance index and comparing against a PN baseline it was 

concluded that modified guidance laws required considerably more control effort to 

meet the angular constraint applied at impact. This did not have a major impact on 

impact velocity in most of the high impact angle simulations. However, if a shallow 

angle of impact was demanded the performance penalty was significant due to 

gravitational effects.
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1 f\ O'XBoth Ha et al and Kim et al suggest that their Lyapunov technique could be used 

to delineate the capture zone of the proposed guidance laws. After considering the 

use of Lyapunov methods this was concluded to be an inappropriate use of the 

technique. Lyapunov methods by their very nature include a measure of “trial and 

error” and even if a suggested Lyapunov function proves to be unsatisfactory it does 

not mean that the system is unstable. Several authors note that the technique 

delineates a small part of the capture zone and it is impossible to demonstrate that a 

particular Lyapunov function would remain valid over the entire capture region. 

Indeed, both Ha et al and Kim et al demonstrate successful simulations of 

interceptions when their suggested constraints on the initial conditions are violated. 

It is concluded that a combination of simulation and other techniques is a more 

suitable approach.
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5. Recommendations for Further Work

Section 2 considers the use of a reduced order observer to provide position feedback 

in a PWM autopilot. It would be a useful extension of this work to examine the 

noise budget in a typical weapon application to confirm that these states could be 

recovered in a practical application. A related topic of further research would be to 

examine the use of a Kalman filter in a similar application.

The guidance system is based upon an INS coupled with a GPS receiver. An 

obvious topic of further research would be to examine the error propagation in such 

a system and the effect upon guidance stability. In particular, the guidance system 

requires knowledge of the roll orientation and it has been suggested that guidance 

could be achieved using a GPS receiver and a roll gyro only. In an air-launched 

weapon, transfer alignment is of particular importance.

The guidance work in this thesis did not consider the effect of the weapon seeker 

upon the guidance algorithm. As noted by Gamell and East10 and Zarchan42, sub­

system dynamics have a major impact upon miss-distance. It would be useful to 

extend the work in this thesis to include the effects of sub-system dynamics in order 

to assess their impact on guidance stability.

The technique developed by Bemelli-Zazzera et al4 is a general-purpose technique 

that has the potential to be used in a number of applications. A useful extension of
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this thesis would be to apply this technique to other nonlinear devices including 

impulse thrusters, thrusters and pulsed thrusters.

The simulation of the nonlinear autopilot design presented in this thesis has been 

conducted for a limited range of conditions and the simulations assume that the 

aerodynamic derivatives remain constant. It would be useful to examine the 

performance of the autopilot across a broad range of conditions by the use of six 

degree-of-freedom simulation.

A design procedure has been developed for the linear autopilot using a conventional 

design process derived using a state-space approach. In the design process a number 

of simplifying assumptions were made. An improved autopilot design could 

consider nonlinear effects, for example including the effects of cross-coupling.

In this thesis the actuator model is derived from a simulation of a brushless DC 

motor. Many of the older generations of weapon use a pneumatic system and it 

would be useful to extend the work to consider different actuator types.

Ieko et al21 present a further refinement of the basic technique of Bemelli-Zazzera et 

al4. It has not been possible within the scope of this study to examine their work in 

detail. Future work may benefit from examining the refinements proposed by Ieko et 

al21.
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Similarly, Bemelli-Zazzera et al5 propose a further refinement by the incorporation 

of multiple PWM pulses per sample period. Using this refinement it is possible to 

achieve a much better approximation of the linear PAM design but the procedure for 

calculating the pulse waveform is more complicated. Future work could consider the 

improvement in the dynamic response weighed against the increased computational 

overhead.

In this thesis, the basic technique of Bemelli-Zazzera et al4 is extended to consider a 

trapezoidal waveform and the resulting formulation is identical to the original. This 

tends to suggest that provided the integral of the area under the pulse is the same; the 

technique can be used to find the optimum pulse delay. Le. it is possible to extend 

the technique for any arbitrary pulse waveform. Further work could consider how 

the technique might be applied to arbitrary inputs to test this hypothesis.

The greatest challenge to a missile designer is the short-range engagement using an

air-to-air missile of a crossing target. In these circumstances, acceleration vectored

28navigation offers some advantages over conventional PN. In addition, Rogers 

proposes an alternative to the guidance law of Kim et al23 that enables control over 

the direction of approach. Finally, augmented PN is a further variant of the 

conventional PN algorithm that is important in missile applications. Further work 

could consider the use of Lyapunov theory to examine the stability of these guidance 

laws using the techniques originally developed by Ha et al16. Similarly, these 

techniques could be extended to consider other forms of guidance such as CLOS.
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It is noted that the six degree-of-freedom simulations indicate that the time varying 

biased PN guidance law derived from Lyapunov theory results in considerable 

additional control effort. Optimal control theory may be of some benefit in reducing 

the control effort noting that both Shukla and Mahapatra30 and Brainin and McGhee6 

demonstrate that with biased PN the control effort can be reduced. Hence, it may be 

of benefit for future work to consider the use of optimal control theory to further 

develop the guidance law.

A further development of the guidance law is proposed in this thesis for the attack of 

fixed or slowly moving targets. The proposed law is of some advantage in that it 

lends itself to a guidance system based upon information from passive seekers. 

However, it is recognised that the law has some undesirable features and the 

possibility remains that it may result in an indeterminate form. Simulation using 

this guidance law indicates that despite these concerns the law has proven to be 

robust. Further work could consider the stability of this proposed guidance law.
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