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ABSTRACT

The developm ent of an optimising model predictive controller for dom estic storage 
radiators w as the ultimate goal of this research project. Neural networks are used  
to create empirical m odels that are used to predict the likely temperature response  
of a room to the charging of a storage radiator. The charging strategy can then be 
optimised based on the real-time price of electricity.

Neural network modelling is investigated by looking at the load forecasting 
problem. It is shown how accurate neural m odels can be created and 
demonstrated exactly how they process the data. Very specific rules are extracted 
from the neural network that can model the load to a reasonable accuracy.

An efficient optimisation technique is sought by optimising the charging of a 
dom estic hot water tank based on actual consumption data and the pool price of 
electricity. Initially genetic algorithms were tried but their w ea k n esses  are 
demonstrated. A stochastic hill climbing method w as found to be more suitable. 
Monetary saving of 40% over the existing E7 tariff w as common.

The modelling and optimisation are brought together in a storage radiator 
simulation. There are improvements in cost and electricity consumption over E7 
primarily due to the ability to look ahead and avoid overheating.

A prototype neural controller is developed and tested in a real house. The results 
are very encouraging.
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To my Grandparents



We've got to keep it tight 
at the back, pick up the  
spare man, use the width 
of the park and let the  
ball do the work. 
Hopefully, at the end of 
the ninety minutes we'll 
come away with some sort 
of result.
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Introduction

1.1 Reasons behind this Thesis

On the 13th September 1998, the UK electricity industry entered its final stage of de­

regulation by allowing domestic customers from four selected regions a free choice of 

supplier. If everything goes to plan then eventually every customer in the country will 

be able to buy electricity from any supplier, regardless of geographical location. It is 

envisaged that the increased competition between suppliers will lead to improved prod­

ucts and services being offered and a more efficient electricity industry.

Electricity ‘products’ are basically tariffs, contractual arrangements that set the price 

paid by the customer to the supplier. The actual price that suppliers pay generators 

varies half-hourly as determined by the market forces of supply and demand. This

1
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wholesale trading of electricity is supervised by the Pool, which sets the half-hourly 

prices for the day ahead.

In conventional free markets, the price consumers pay will reflect the production cost of 

the commodity involved. In the electricity market this is known as real-time or spot 

pricing [1,2,3,4], where the amount charged varies half-hourly in line with the ‘pool’ 

price. As the cost of sophisticated metering equipment continues to fall, the prospects 

are ever increasing that real-time pricing will become a viable domestic tariff.

With real-time pricing, customer savings will be made by switching load to the cheaper 

periods of the day. For certain time dependent usage such as cooking, lighting and 

television, this is impractical, whereas for domestic chores such as washing and vac­

uuming it is more of an inconvenience.

Thermal storage devices such as hot water tanks and storage radiators are an un- 

intrusive method of utilising cheap rate electricity, which can be stored for use at a later 

time. Such appliances already exist for time-of-use (ToU) tariffs such as Economy 7 

(E7), where a reduced unit price is offered for 7 hours during the night.

These off-peak ToU tariffs were introduced as pre-privatisation attempts at trying to 

level the demand and thus increasing the load factor. They are not satisfactory for sev­

eral reasons; from the suppliers’ point of view they have created a surge in demand at 

midnight as all the appliances are automatically activated. This causes several problems 

that the tariff was supposed to alleviate, not least of which is the subsequent Pool price 

increase resulting from the increased demand. For consumers, off-peak electric storage 

heating is expensive and does not always provide satisfactory thermal comfort require­

ments. This is because there is generally at least a 9-hour gap between the end of the 

charging period at 7 a.m. and the time when the warmth is required in the evening.

As a result of their limitations, storage radiators tend to be found in places where the 

low maintenance levels are an advantage or heat is required throughout the day, such as 

rented and sheltered accommodation. The storage radiator market is not expanding with 

most sales to existing users who require replacement units.



3

Storage radiators are potentially an excellent method of shifting load and utilising cheap 

rate electricity. The problem that they have is their inflexible control caused by the ToU 

tariffs within which they operate. Under real-time pricing the control would have to be 

more flexible, decisions being made on a daily basis when to charge the core. An auto­

matic controller is required that can determine a charging schedule that will provide the 

required thermal comfort at the cheapest cost. The work in this thesis is an investigation 

of a potential solution to this control and optimisation problem.

1.2 Nature of the Work

If the price and thermal requirements are known for the day ahead, determining a 

charging strategy over this horizon is an optimisation problem in deciding when to 

switch the heaters on and off. To evaluate the suitability of each potential solution, a 

thermal model is required that will mimic the system behaviour to predict the outcome 

of various strategies.

For hot water tanks, creating a mathematical model of their thermal behaviour is a sim­

ple procedure. To produce a controller, all that would be required is an efficient 

optimisation method and a means of receiving information on future price and demand 

requirements. It would be relatively easy to produce an off the shelf controller as tanks 

are mass-produced and will therefore all have the same thermal characteristics.

For storage radiators the optimisation is not so simple, as there is no ready thermal 

model of the room from which to evaluate the potential charging strategies. What is 

required is an ‘intelligent’ controller that can learn the thermal response of the actual 

room that the heater is in. Once this model is created it can be used for predictive con­

trol of the room temperature, with a charging strategy being determined that satisfies the 

required temperature profile whilst also attempting to minimise costs.

An artificial neural network is a modelling tool that can learn relationships between data 

without the need for any pre-defined model form. All that is required are previous ex­
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amples of the past performance. An evaluation of the potential for using neural networks 

for model predictive control of storage radiators is the ultimate goal of this research.

1.3 Chapter Contents

Chapter 2 introduces a particular type of neural network, the feedforward multi-layer 

perceptron (MLP). Neural modelling is a relatively new development and there are few 

(if any) reference sources1 that clearly illustrate all the issues involved in creating a good 

model, one reason being that their internal operation is generally poorly understood. For 

successful employment of neural networks and to avoid the many pitfalls, it is essential 

that they are used with care. Chapter 2 illustrates with examples how a MLP processes 

information and highlights some of the issues to be aware of.

In chapter 3 a MLP is used as a tool to help understand the factors that influence elec­

tricity consumption patterns for a large region. The purpose of this work was to become 

familiar with the capabilities of MLPs using real data, as the limitations of simulated 

data soon became evident. Factors that affect the total daily load over an eight-year 

period are initially investigated. This is achieved by improving the model by investi­

gating the evidence supplied by the errors. Once a satisfactory model is created the 

neural ‘black box’ is opened to determine how the data is being processed. By weight 

pruning, the model is simplified, meaningful information extracted and a simple set of 

rules created that describe the load behaviour. The model is then used as a one-day 

ahead predictor with subsequent analysis to highlight how improvements could be 

made. Finally, a single model is created and analysed for the half-hourly load over a 

one-year period.

In the storage heater controller, the neural model will be used as a basis for determining 

the suitability of potential heating strategies. Methods of searching for an optimum 

strategy are investigated in chapter 4. A genetic algorithm (GA) is a technique that has

1 See Appendix C for information sources that the author found particularly useful.
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gained recent popularity as a robust optimisation tool. In chapter 4 an empirical investi­

gation lead to the conclusion that they lack the ability to efficiently search out a global 

minimum and are not suitable as an optimisation method for the controller. A similar 

technique, random mutation hill climbing (RMHC), consistently outperformed GAs.

In chapter 5, simulated optimisation of a domestic hot water tank is performed. Data 

was available from a monitoring project that logged every water outlet in 100 houses 

every half-hour over one year. From this data, half-hourly hot water demand profiles 

were created. A mathematical model of a hot water tank and half-hourly ‘pool’ prices 

were used as a basis for optimising a daily charging schedule. The results were com­

pared with existing available charging profiles over which significant monetary savings 

of the order of 20-50% were made.

In chapter 6 a simulation of a heating controller is performed for a room with a storage 

radiator and a direct acting heater. The results show that a neural network was able to 

learn the thermal response of the room for half-an-hour ahead and use this for model 

predictive control 24 hours ahead. Comparisons with other available tariffs show the 

neural controller is far superior in maintaining thermal comfort levels.

Chapter 7 gives the results of the first prototype controller in a real room where the 

storage heater set points are determined every 15 minutes for 5 hours ahead. The results 

are very encouraging and show the concept can work in real life.

Chapter 8 is a short discussion of the experiences gained throughout this research pro­

gram, offering personal insights and thoughts on how industry can make the most of 

neural networks.

All the software used in the simulation work was programmed in Fortran 90 with the 

appendices containing edited versions of some of the code used. The code is included 

for reference purposes with the hope that it will be of benefit to those wishing to inves­

tigate neural networks and GAs.
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1.4 Contribution of this Thesis

1) It is shown how a non-stationary process can be modelled by neural networks 

without first having to adjust the data. This method is used to extract the growth 

in base load.

2) It is shown how neural network pruning can be used to decompose the load into 

components relating to specific factors.

3) It is shown how a neural network can be used to formulate a simple rule based 

system for load forecasting.

4) A single neural network model for all half-hours of the year is created. No evi­

dence has been found that this has been previously attempted.

5) Evidence of the gradual switching off of off-peak electric heating throughout 

April is identified.

6) Extensive empirical tests highlight how the mutation probability is critical for 

efficient GA performance in global optimisation. It is shown to be more impor­

tant than crossover.

7) A variation of the random mutation hill climbing optimisation algorithm is intro­

duced. This is termed multiple random mutation hill climbing and is more likely 

to escape from local minima during the search.

8) Using actual consumption data it was shown how cost savings of typically 40% 

could be made by optimising water heating based on real time pricing of elec­

tricity.

9) For the first reported time, a domestic electric storage heater was successfully 

operated under neural network control.
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1.5 Publications from this Thesis

Work from chapter 3 has resulted in two conference papers,

P.D. Brierley and WJ. Batty, “Electric Load Modelling with Neural Networks: an 

Insight into the Black Box,” Proceedings o f the 1997 International Conference on 

Neural Information Processing and Intelligent Information Systems, Dunedin, Novem­

ber 1997, vol. 2, pp. 1326-1329. ISBN 981-3083-63-8.

P.D. Brierley and W.J. Batty, “Neural Data Mining and Modelling for Electric Load 

Prediction,” in Engineering Benefits from Neural Networks, Proceedings o f the fourth 

International Conference on Engineering Applications o f Neural Networks, Gibraltar, 

June 1998, pp. 237-244. ISBN 951-97868-0-5.

Work from chapters 2 and 3 has been accepted for inclusion as a chapter of an edited 

book,

P.D. Brierley and W.J. Batty, “Data Mining with Neural Networks - an applied example 

in understanding electricity consumption patterns” - appearing as Chapter 12 in ‘Knowl­

edge discovery and data mining: theory and practice ’, edited by Professor Max Bramer, 

IEE publication, 1999.

Work based on chapter 5 has been accepted for publication in the journal Electrical 

Power Systems Research: “Genetic optimisation of domestic hot water supply based on 

real time pricing of electricity”.

It is intended to submit further journal papers based on work from chapters 6 and 7.
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1.6 Outcomes from this Thesis

As a direct result of the knowledge and experienced gained during this Engineering 

Doctorate research program, the author jointly formed NeuSolutions, which was incor­

porated as a limited company on 27th April 1999.

NeuSolutions
NeuSolutions Ltd.

34 Pontamman Road

Ammanford

Carmarthenshire

Wales

SA18 2HX

Tel: 01269 592612

Web: http://www.neusolutions.com

Email: info@neusolutions.com

http://www.neusolutions.com
mailto:info@neusolutions.com


Feedforward Neural Networks

2.1 What are Neural Networks?

In practical terms, artificial neural networks are essentially very simple computer pro­

grams that can automatically find non-linear relationships/patterns in data without any 

pre-defined model form or domain knowledge. They are definitely not, as many people 

new to the subject quite often assume, complex mathematical systems requiring a super 

computer to operate. Several types of neural networks exist, of which the most popular 

is the feedforward multi-layer perceptron (MLP) and the only type used in this research. 

Fig 2-1 (on page 11) shows the structure of a typical MLP.

MLPs consist of an input layer, one or more hidden layers and an output layer. Data is 

fed into the input layer and transformed by weights and neurons as it flows through the

9
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network. The network output is the resultant transformation that forms the relationship 

between the inputs (independent variables) and the output (dependent variable). In a 

feedforward network there are only weight connections in the forward direction. Net­

works with neurons who’s outputs can feedback into themselves or other neurons in the 

same or previous layers are known as recurrent neural networks. Fully connected means

all possible weight connections are present so strictly speaking there could be direct
/

connections between the inputs and the output neuron.

MLPs are trained to find a relationship by presenting the network with historical values 

of inputs and outputs. Training is the search for a set of weights that best match the 

inputs onto the output for the examples (training patterns) in the historical database. 

Training the network is thus an optimisation problem where the optimal solution lies 

somewhere in weight space.

There are numerous methods by which this optimisation can be performed, such as 

random walks [5] or genetic searches [6,7], but the most popular are based on gradient 

descent techniques of which there are numerous variations that have evolved from the 

original back propagation algorithm or generalised delta rule (see appendix A).

2.2 Why use Neural Networks?

The most common application is to train a neural network on historical data and then 

use this model to predict the outcome for new combinations of inputs. The hope is that 

the network has extracted a general relationship that holds for all combinations of in­

puts. There are generally two main types of problem MLPs are used to model, 

classification and regression. In classification problems the output will have one of two 

values, representing ‘belongs to the set’ and ‘does not belong to the set’ whereas in 

regression problems the output is a continuous variable.
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Fig 2-1 A fully connected feedforward multi-layer perceptron
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f(x)

Fig 2-2 Number processing within a network

Network output, f(x)= f,(x) + f2(x)

f,(x)= Ctanh(xA+B)
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2.3 How do Neural Networks Process Information?

Fig 2-2 (on page 11) shows a neural network with one input (x), one hidden layer con­

taining two neurons and one neuron in the output layer. An extra input known as a bias 

is created and has a constant value, which is 1 in this case. The bias has weight connec­

tions to all hidden neurons and there can also be a bias weight connection to the output 

neuron. Each input is connected to each hidden neuron by an associated weight. Each 

hidden neuron sums all the weighted inputs (the input multiplied by the connecting 

weight value, i.e. xA + IB) that feed into the neuron and passes this value through an 

‘activation’ or ‘squashing’ function. The result is then multiplied by another associated 

weight © and the network output is again the summation of all weighted inputs passed 

through the output neuron activation function.

Any function can act as the activation function but for gradient descent learning it must 

be continuously differentiable. Two popular sigmoidal shaped activation functions are 

the logistic and the hyperbolic tangent (tanh) as shown in Fig 2-3.

The non-linearity of these sigmoidal activation functions is what enables neural net­

works to solve non-linear problems. Fig 2-3 shows how they ‘squash’ the output 

between limits (0,1 logistic and -1,1 tanh). This is commonly used as an output activa­

tion function for classification problems as it acts as a decision boundary where a

logistic

f(x) =
0.5

f(X) 0.0

-0.5

linjear
f(x )|= x

-4 -3 -2 1 2 3 41 0

X

Fig 2-3 Common activation functions
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continuous valued input is classified as 0 or 1 (in the case of the logistic) with a region 

of doubt for any value in between. Because of this, the required output of the network 

must be appropriately scaled to lie within the limits of the associated output activation 

function.

For regression problems, the output activation is often the ‘identity’ or ‘linear’ function 

(Fig 2-3), as there is no real gain in the output non-linearity because any further trans­

formation could be achieved in previous layers. It can be seen how the sigmoidal 

functions have near linear regions, which enables them to be used to approximate linear 

problems. A network with no hidden layer and a linear output activation function be­

comes a linear regression model.

The output of the network in Fig 2-2 (on page 11), which has tanh and linear activation 

functions in the hidden and output layers respectively, is,

Network output = f,(x) + f2(x)

where,

f,(x) = Ctanh(xA+B)

and weights A, B and C that provide a good solution must be found for each neuron.

Fig 2-4 (on page 14) shows how a linear input can easily be transformed into a non­

linear output by mapping it onto sections of the tanh activation function. The impor­

tance of the bias input acting as a shift operator becomes evident.
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2

1 f1(x)= -1*tanh((0.5x)+0.5)

0

1

■2

■3

1 1■3 •2 0 2 3
X

Fig 2-4 //ow two neurons can transform a linear input into a complex non-linear output
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2.4 Things to be aware of....

2.4.1 Over-fitting and Generalisation

Given enough hidden neurons a neural network can map any function but there is the 

danger that the network has just learned to ‘memorise’ the data. Fig 2-5 shows 5 points 

that can be perfectly mapped by a neural network which it could be assumed has learned 

the relationship. This is not the case though, as is demonstrated when more data is 

shown and a noisy linear relationship becomes evident. This is what is known as ‘over­

fitting’ the training data [8]and the generalisation properties of the network become 

unreliable.

To create a model with good generalisation properties the training data needs to be 

plentiful and the number of hidden neurons should be restricted. Training with sparse 

data and adding hidden neurons until there is no error can give a mistaken sense of 

achievement.

6

4

2

0

■2

-4

■6 1 2 3 412 0•4 •3
X

Fig 2-5 An apparently perfect model with poor generalisation properties. A neural 
curve can befitted through the five larger squares but this relationship 
does not generalise for the remainder o f the data.



16

2.4.2 Extrapolation

Neural networks do not give an exact physical model but learn to represent the relation­

ship in terms of the activation functions of the neurons. Neural network models cannot 

extrapolate with any usefulness outside the domain of experience of the training data 

[9]. This is not a flaw specific to neural models, as any model that is not based on first 

principles cannot extrapolate with confidence into the unknown.

Fig 2-6 demonstrates this for the function y=2xM. Within the training range two hidden 

neurons can accurately mimic this polynomial but outside this range the neural repre­

sentation does not hold.

The manner with which sigmoidal neurons become saturated outside their training range 

has potential for stable neuro-control applications. Fig 2-6 also demonstrates the power 

of neural networks for mapping polynomial functions.

12 

10 

8

Y 6

4 

2 

0 

-2

Fig 2-6 Neural networks cannot extrapolate

y=A*[tanh(B+Cx)
+tanh(B-Cx)]+D>

training ran g e

neu ro n  2 • neu ron  1

- 2 - 1 0 1 2
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2.4.3 The Function being Minimised

Training a network involves the search for a set of weights that provides a good fit to 

the data, but what is a good solution? In order to gauge the ‘fitness’ of each potential 

solution some quantitative measure of the error must be made. The most common pro­

cedure is to search for the weight set that gives the minimum total squared errors [10,11] 

(or RMS error) over all the training cases, where the error is the difference between the 

network output and the required output. Other possibilities are the minimum total abso­

lute error [12] (MAE or L, norm) or the minimum total square root of the absolute error. 

Specifically,

RMSE =
(Actt - Predj)2 ^ |  Act,-Pred

m-------------------- MAE = —-----------------
n

where n is the number of training cases, Act is the actual value and Pred is the model 

value.

The choice made depends on the purpose of the model. Fig 2-7 (on page 18) demon­

strates this for a neural network with one hidden layer neuron. Minimising the RMS 

error drives the solution towards what may be three outliers and the final solution is 

neither here nor there. By minimising the absolute error there is less importance given to 

these three cases and they become easily identifiable.

A third option would be to define an acceptable error tolerance and the ‘fittest’ solution 

would be that which models the most training cases within this tolerance. The line in 

Fig 2-7 passing close to all but three of the points would be the optimal solution in this 

case, given a small error tolerance.
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min rms 
■ error

training
cases1

0

min absolute error

1 most cases within 
tolerance limits

0 11

X
Fig 2-7 Defining the network fitness function

For data mining problems the purpose should be to identify those cases that stand out 

from the rest with the objective of trying to understand why this is so and hence learning 

about the data. It can thus be seen how the choice of fitness function can effect the 

nature of this task.

2.4.4 Local Minima

An analogy to training a neural network (searching for the best weight set) is a kangaroo 

jumping around a mountain range [13]. The kangaroo is searching for the lowest point 

in the range and does so by jumping around to see if the place he lands in is lower than 

the place he started from. If he cannot jump very far then he might get stuck in the 

bottom of a local valley when a lower point actually exists in the next valley. This is 

what is known as a local minimum solution but in order to find the global minimum he 

needs the power to jump over the ridge between the two valleys and land at a lower 

point.

Training a neural network is a similar search procedure and most training algorithms do 

not guarantee the global solution. Fig 2-8 a) shows a neural network trapped in a local
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minimum. The required xy mapping is possible with four hidden neurons but the 

weights are such that small weight changes result in the overall ‘fitness’ function error 

increasing. Fig 2-8 b) shows the global solution that is possible but unlikely to develop 

from the situation in Fig 2-8 a).

2
network output

1

0

1

neural contributions
■2

0 0.5 1-0.51
X

a) local minimum

2

network 
output v1

0
neural
contributions1

2
0 0.5 1-0.5-1
X

b) global minimum 

Fig 2-8 Training algorithms can become trapped in sub-optimal solutions
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2.4.5 Data Encoding

The ability of a neural network to extract relationships in data depends on how the data 

is encoded to represent the values or features of the inputs. The neural network is only 

as good as the information it is given and failure to perform satisfactorily is often not 

that of the neural network but that of the modeller in understanding how networks proc­

ess the input data. Consider Fig 2-9 where a network with one hidden neuron is used to 

model the triangular xy mapping over the range x=0,360. Trying to map x directly onto 

y (linear encoding) with one hidden neuron is clearly impossible and would require at 

least two hidden neurons to get close. If the single input is encoded into two inputs that 

are the sine and cosine of x (in degrees) then a better result can be obtained but still only 

using one hidden neuron. These two encoding schemes will also give different extrapo­

lation results outside the 0-360 range. The linear encoding will give constant values as 

the input will map onto the ‘saturated’ flat parts of the activation function. The sine, 

cosine encoding scheme will result in repetitions of the output as x increases in steps of 

360.

required16
14

Y

linear

180 3600
X

Fig 2-9 Input encoding schemes giving different results for a single hidden neuron
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2.5 Chapter Summary

This brief introduction on MLPs has attempted to bring together and explain some of 

the most important aspects in neural network modelling. It has been outlined what a 

MLP is, what it can do, how it does it and what to be aware of.

Most of the points made become very obvious once it is understood how a MLP oper­

ates, an understanding which is required if the most is to be made of a neural network 

project. Successful use of neural networks is as much an art as a science with the art 

being in ensuring the MLP is given the best conditions for it to succeed.

It is a common misconception that because neural networks are often referred to as 

‘artificial intelligence’ that they are some sort of sophisticated mathematical tool. In 

reality this is not the case, they are merely another modelling technique that are elegant 

in their simplicity.

Chapter 3 is a worked example of how a MLP was used to look at a real problem.



3
Electric Load Modelling

3.1 The Data being Modelled

The purpose of this investigation is to understand what factors influence the electricity 

consumption of a region of the UK in order to create a robust model. Fig 3-1 to 3-3 (on 

page 23) show the data in question for the total daily load (throughout this work Toad’ 

refers to the total amount of energy consumed in a given period). Fig 3-4 (on page 24) 

shows typical half-hourly profiles for a week in summer and winter.
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Fig 3-1 shows that there is an annual cycle that peaks in the colder winters with the load 

in the warmer summers being almost half of this peak value. Fig 3-2 shows that there is 

also a weekly cycle with abnormal activity at Christmas. Fig 3-3 highlights this weekly 

cycle clearly showing that there is a reduced load demand at weekends. The difference 

between summer and winter half-hourly profiles is seen in Fig 3-4. In winter there is a 

large peak after midnight caused by an off-peak tariff that exists for electric storage 

heating, this peak being absent in summer. There is also a large evening peak in the 

winter whereas in the summer there are two smaller distinct evening peaks. The two 

summer peaks coincide with people returning from work (cooking) and dusk (when 

lights will be switched on). In the winter as the number of daylight hours reduces these 

two periods coincide to create one peak which is probably amplified through heating 

requirements.

Electricity consumption is a dynamic process depending on numerous independent and 

inter-related factors and a challenge for any modelling technique. Consumption patterns 

vary depending on the location as is shown in [14] where summer and winter weekly 

profiles are shown for several countries.

3.2 Why Forecast Electricity Demand?

In the long term, future trends in electricity consumption need to be forecast so that an 

energy policy can be formulated to ensure there will be enough generation plant avail­

able in the future to meet the projected requirement. In the medium term demand needs 

to be known so that required resources such as coal can be stockpiled. Short term load 

forecasting involves predicting electricity consumption hours to days ahead and is re­

quired to ensure an adequate electricity supply that is generated in an economical 

manner. The nature of load profiles (Fig 3-4, on page 24) means that certain plant may 

only be required to generate electricity periodically throughout the day so the prediction 

is required to formulate an operating schedule. The total cost of generation, and hence 

price, includes start up and shut down costs, which vary depending on the nature of the
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plant. For example, it is expensive to shut down nuclear reactors so their most economic 

operation is continuous generation. Coal powered steam turbines require several hours 

for preheating the boilers, so once fired they will want to operate for extended periods. 

Hydro-electric generators on the other hand can be fully operational in about 3 seconds, 

a feature that allows them to command a high price under certain conditions.

In England and Wales the wholesale trading of electricity is centrally controlled by the 

electricity Pool (see [15] for a detailed description of the UK electricity supply indus­

try). On a daily basis generators bid in prices at which they are willing to supply 

electricity for each half-hour of the next day. In order to minimise costs, an optimised 

unit commitment schedule [16] is calculated based on forecast demand and the bid 

prices. The bids are stacked starting with the cheapest until the forecast demand is met 

and the actual traded price for all generators to distributors is based on this marginal bid 

price. Thus, in theory, nuclear plant are likely to bid a minimal amount to ensure that 

they are selected to supply for all hours, but the actual amount they receive will be 

based on the system marginal price. The forecast is generally required at least 24 hours 

in advance so that generators can be informed of their required schedule.

In the shorter term, forecasts seconds to minutes ahead are required to keep the fre­

quency stable. This is particularly important during television commercial breaks when 

the switching on of kettles causes surges which have to be balanced by plant with fast 

reaction times.

With deregulation of the electricity industry, forecasting consumption is becoming more 

important at the utility level due to the complex nature of electricity trading. Reports on 

the potential energy savings that could be made by increasing the accuracy of the fore­

casts are limited [17,18,19,20].
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3.3 Previous Work

It was noted [21] that the volume of published papers in electric load forecasting is 

cyclical, with initial great interest gradually declining. Checking the dates from a recent 

review paper [14] would indicate that the current cycle peaked around 1993. There is no 

doubt that this current wave of interest is due to load forecasting being developed as 

another application area for the pattern matching abilities of neural networks. The work 

appears to have been initiated in 1990 [22,23] and commercial load forecasting software 

is now available and operational [24,25].

Early papers laid the groundwork and more recent papers tend to report on the results of 

various modifications. The models usually group input data by individual day types or 

weekdays and weekends [26,27,28,29,30] and divide data into seasons [28,31] or shorter 

periods. Holidays are often assumed to resemble weekends [27,32] or the data is ad­

justed [33,34] or removed [26]. In the literature growth is seldom mentioned 

[34,35,36,37,38,39] as the time period being investigated is often deemed too short for it 

to make any difference to the model. The common approach is to adjust the data to 

eliminate its effect, often by some assumed linear growth rate. The reasons stated for 

such decisions are frequently based on prior knowledge about the load profiles and 

probably due to experience of linear modelling techniques.

Such assumptions based on human judgement are underestimating the capabilities of 

neural networks to indicate themselves how data should be modelled. Dividing up the 

data set reduces the amount of training information and inhibits a general analysis of 

long term trends. By including as inputs the relevant information why the data sets are 

different it is possible to create one model for all the data, this single model being easier 

to analyse and improve. There has been little reported work on improving and hence 

learning about systems by visualisation of trends in the model performance [40].

Many published papers show excellent results from systems tailored to individual re­

quirements and generally satisfy the needs of the users in the sense that they are at least 

as good as previous non-linear models. It is hard to see how future improvements will
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emerge if the technique is viewed as a black box that cannot explain how it did or did 

not arrive at a good solution.

In this work the approach is to use the neural network as a data-mining tool to try and 

discover exactly what influences the load profile. This is achieved by examining net­

work errors and finding reasons why they are such. In section 3.5 the total daily load is 

examined over an eight year period to learn about general trends. Section 3.6 demon­

strates problems with over-fitting and generalisation that can occur with an example 

from this real data. In section 3.7 the network is examined to discover just how the data 

is processed and a small set of rules is extracted that gives a reasonable model of the 

load over these eight years. Section 3.8 gives the results of a network used as a one day 

ahead predictor and compares errors to determine where improvements can be made. In 

section 3.9 the half-hourly load is examined over an eleven month period. Section 3.10 

shows how improvements can be made by using populations of models.

3.4 Network Used

A feed forward multi-layer perceptron trained by standard back propagation was used 

for the analysis. Details are given in the appendices. The fitness measure being evalu­

ated was the minimum RMS error over all the training examples but it would have been 

a simple task to use any other error measure. Network performance is reported as the 

mean absolute percentage error (MAPE) as it is frequently used in similar work, al­

though this was not the fitness function being minimised by the network training 

algorithm. The MAPE is only used as a yardstick to gauge model improvement and 

should never be used as a means of comparing various techniques on different data sets. 

For example, if a constant load was added to all the data (for instance if a factory with a 

constant demand was commissioned) then this would give the same model apart from 

the required constant term but the MAPE would be reduced. Different methods of re­

porting errors and comments are given in [14,21,41,42].
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3.5 Total Daily Load Model

Fig 3-1 (on page 23) shows the data being investigated, the total daily load over eight 

years (1986-1993) for a region with approximately 10% of the total UK demand. The 

load for each day will be the output of the MLP (the dependent variable) and the inputs 

are what are required to be found. Thus the data-mining problem is to establish what the 

factors are that determine the electric load.

Fig 3-3 (on page 24) shows that there appears to be a weekly pattern so this is the initial 

clue used. There are two commonly used methods of encoding what day of the week it 

is. Seven inputs could be created with the day in question having a value of ‘ 1’ and the 

remaining six days having a value of ‘O’, a system known as ‘flagging’. Alternatively 

the day could be transformed into an angle (in steps of lu ll)  and the sine and cosine of 

this angle applied as two inputs [43]. This second scheme was chosen, the consequences 

of which will become apparent later.

All 2,922 examples of the day/load relationship were used to train the neural network, 

the errors for which are shown in Fig 3-5 (on page 33). In Fig 3-5 to 3-14 the y-axis is 

the daily error in GWh and the caption identifies the added input and MAPE achieved.

An annual cycle in the errors is clearly evident from Fig 3-5, with overestimates in the 

summer and underestimates in the winter. Weather patterns follow an annual cycle so 

the average daily temperature was included as the second input, the errors for this net­

work being shown in Fig 3-6.

Including the average temperature significantly reduced the error but an annual cycle is 

still evident. The length of daylight is another factor that varies seasonally which would 

affect electricity demand due to lighting requirements. In the UK during the summer 

month of June sunset is around 8.30 p.m. whereas in December it is at 4 p.m. As light 

levels were not available a continuous term was required as an input that had an annual 

cycle. A simple number (1-365) is not sufficient for this as it places adjacent days (31st 

Dec., 1st Jan.) at opposite extremes. Taking the sine and cosine of the day of the year
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angle produces the required cyclical seasonal term. Fig 3-7 shows how this has extracted 

the seasonal variation.

What is evident now are bank holiday Mondays and Good Friday. There are generally 

six bank holidays each year which are public holidays, as is Good Friday. A flag was 

created for these days, excluding those in the Christmas period, which is evidently a 

more complex time and dealt with separately.

Fig 3-8 shows the errors when a flag to indicate the bank holiday is included as an input 

and a slow trend over the eight year period becomes clearer. This can be explained by 

growth for which a linearly increasing term (1-2,922) was included to represent this 

feature.

Fig 3-9 and 3-10 highlight the effect of the number of hidden neurons. In all previous 

cases and that of Fig 3-9 only 5 hidden neurons were used. Fig 3-10 has the same inputs 

as Fig 3-9 but with 10 hidden neurons. The overall error is significantly reduced but it is 

clear that this reduction is due to efforts by the extra neurons to improve the Christmas 

errors. This is a consequence of minimising the RMS error where outliers are given 

more significance. From a data mining approach the network with only 5 hidden neu­

rons is more informative.

In order to further examine the Christmas effect the errors were averaged over the eight 

years on a date basis, as shown in Fig 3-15 (on page 35). With 5 hidden neurons it can 

be seen how the Christmas error is reduced by lowering the whole period from mid 

November to early February by manipulating the seasonal inputs to show a reduced load 

over this period. With 10 hidden neurons there is more resolution available and the 

Christmas error can be significantly lowered with less interference in the adjoining days. 

The Christmas period is obviously special but training with this data without any inputs 

to represent the feature causes distortion of the network. The third case shown in Fig 

3-15 used 20 hidden neurons but only trained on patterns where the initial error was 

below the overall RMS error. Even with more hidden neurons there is little distortion 

and the residuals are clearly identified because they are never allowed to affect the 

training of the network. With this technique all patterns should first of all be presented
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for training before selective training begins to give them the opportunity to ‘stake their 

claim’.

The errors over the Christmas period were significant from the 22nd December to 4th 

January with peaks on the 26th December and the 1st January. Inputs were created for 

these dates where the magnitude of the input was related to the magnitude of the aver­

age error. These inputs can be considered to be the ‘degree of membership’ of 

Christmas, with the 26th December having a membership value of 1. The errors of the 

trained network are shown in Fig 3-11 (on page 34).

Fig 3-11 shows that there is residual on the 15th January 1987, highlighted in Fig 3-16 

(on page 35). Investigation showed that this error corresponded to a sudden cold front 

where the average temperature dropped to -10 degrees Celsius on that day. The model 

error indicates that more electricity is being consumed than would normally be ex­

pected. This could be expected, as off-peak heating systems will not anticipate the 

sudden drop and ancillary heating devices will be used to make up the required balance. 

Further examination revealed that other periods experiencing sudden changes in tem­

perature resulted in large model errors. A sharp drop in temperature in the middle of 

summer gave load predictions higher than actually experienced. This is because the 

uncharacteristically cold weather would normally warrant a higher daily load, but peo­

ple generally react to weather as opposed to anticipating change, thus there will always 

be a time delay. Conversely, sudden hot spells resulted in underestimations and there 

was a distinction between short-term gradual changes and sudden changes. The loads on 

very windy days were constantly underestimated probably because the wind chill factor 

can have the effect of reducing the apparent ambient temperature and buildings can 

become draughty, requiring more heating. Days following windy days were also under­

estimated, due again to the reactive nature of the system response. People feel the wind 

chill and adjust heating systems accordingly, requiring several days to restore normality.

To account for these findings maximum, minimum and average temperature and wind 

speed values were included for the day in question and the three previous days. The
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error was significantly reduced by these additional inputs as shown in Fig 3-12. For the 

obvious residual date now evident (October 16th 1987) it was found that:

‘On the 16th a violent storm with heavy rain brought chaos to southern England. The 

winds were probably the strongest for 250 years. Millions o f trees were uprooted or 

broken, many crashed into power lines....Some large areas were without electricity for 

up to a fortnight..... a mean hourly wind o f 72 knots was recorded just before a power 

failure stopped the recorder. ’

(Whittaker’s Almanac 1989)

Examining the dates giving the largest errors in Fig 3-12 revealed certain clusters. These 

are shown in Fig 3-17 (on page 36) where the errors are averaged over the eight years. 

Although the exact dates are not the same every year, four clusters of consistent overes­

timates are evident. Three of these were identified as Easter bank holiday weekend, 

August bank holiday weekend and the week of the bank holiday in late May (Whitsun­

tide, traditionally a school half-term holiday). The remaining anomaly was late July to 

early August which is when most schools have extended summer breaks.

Flags were created for the bank holiday weekends and Whitsuntide and a rising and 

falling linear term for the summer period, mimicking the nature of the error in Fig 3-17. 

Fig 3-13 (on page 34) shows the result of this trained network.

A causal model has been created that describes the load as a function of known events 

but there is obviously a limit to what information is available for a complete model of 

this type. Recent loads will contain information about local events that is captured in the 

load value and cannot be extracted otherwise. The final model (Fig 3-14, on page 34) 

shows this by also including yesterday’s load and the load on the same day the previous 

week as inputs giving a final MAPE of 1.06 over all the eight years. Caution should be 

used here as generally the errors are reduced but days or weeks after certain special days 

can give increased errors.



Da
ily

 
err

or
 (

GW
h)

 
oq*

 
Da

ily
 

err
or

 (
GW

h)
 

to
 

Da
ily

 
err

or
 (

G
W

h)

33

40 

30 

20 

10 

0 
-10 

-20 

-30

3-5 Day o f week MAPE=15.00 Fig 3-6 Average temperature MAPE =7.31

40 

30 

20 

10 

0 
-10 

-20 

-30
86 87 88 89 90 91 92 93 86 87 88 89 90 91 92 93

3-7 Seasonal term MAPE=5.28 Fig 3-8 Bank holidays MAPE=5.00

Q -20

86 87 88 89 90 91 92 93

Q -20

86 87 88 89 90 91 92 93

Fig 3-9 Growth term (5HID) MAPE=3.10 Fig 3-10 Growth term (10HID) MAPE=2.3 5



34

40 

30 

_  20 

o  10

s  0l _0)
* -1 0
03

Q -20 

-30
86 87 88 89 90 91 92 93 86 87 88 89 90 91 92 93

Fig 3-11 Christmas MAPE=2.18 Fig 3-12 Past weather MAPE-1.46

1 !
i

_ — j.

•15th Jan. 87 - se 5 Fig 3 -16

-------

i i i ...  J------- i------------- •------------- i-------------

30
16th Oct. storms

20

10

0

-20

<u
* -1 0  
to
Q -20

(0
o  -20

86 87 88 89 90 91 92 86 87 88 89 90 91 92 93

Fig 3-13 Other holiday effects MAPE=1.25 Fig 3-14 Previous loads MAPE= 1.06



10 neurons 
5 neurons 

20 neurons (S)

T 3

O)

03 03i- <1)O >
(D

= <D
03 i_  

T 3  <D

S> O

Nov D ec  Jan Feb

Fig 3-15 Averaged Christmas errors

O)
T3

c l  <D c  .
E >» 5
3  «

- 10 -

Q  CD

Average
Temperature Model

Error

-15
15-Jan-87

Days

Fig 3-16 The effect on the error resulting from a sudden coldfront



36

<1)>O
T 3 ^  <D >  
CD r n  2 ^  
<D (/>

TOr :  <d

<D D) >~< *0) 
TO

4
school
holidays

August
B H w /e

Whit week
3

Easter
BH w /e2

1

0

1

2

Fig 3-17 Averaged annual errors

130
Fri Dec 21st 90120

Fri Dec 22nd 89110
100 Tue Jan 2nd 89

90 Storms 
Oct 16th 87

~o
80

70

60
Oct 10th 8750

40
80 90 100 110 120 130

Actual Daily Load (GWh) 

Fig 3-18 Actual v modelled loads

Fig 3-18 was created from the model of Fig 3-13 (on page 34) and shows several residu­

als that can be easily explained. The underestimate on the 10th October could easily be a 

result of the network trying to reduce the error for the storms on the 17th October, one 

week later. The 2nd January ‘89 was a Tuesday but also a bank holiday. Generally New 

Year’s day is the bank holiday or the Monday if the 1st January falls at the weekend.
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Because the 1st January was a Monday an extra day’s holiday was given. Friday 22nd 

December ‘89 and 21st December ‘90 are special because they are the last full weekdays 

before Christmas Eve. The 21st December was not included in the Christmas period but 

in 1990 it was obviously taken as a holiday due to the fact that Christmas fell the fol­

lowing Tuesday (when else would the office party be held?). This was the only example 

of Christmas falling on a Tuesday in the eight cases.

3.6 Over-fitting and Generalisation

It is important that a trained neural network has the ability to generalise and not learn 

specific information in a ‘photographic memory’ type of manner. It must extract general 

relationships between data rather than specific relationships relating only to explicit 

data. The ability to learn specific information is known as over-fitting and can become a 

problem if too many hidden neurons are used, as illustrated by Fig 2-5 (on page 15).

Fig 3-19 (on page 38) illustrates a network that can learn to fit an erroneous datum into 

a model. The data is the total daily load values for a particular year of the model already 

created with one value being significantly changed to represent a residual or erroneous 

reading. For a perfect model all the points will lie on a straight line, the situation where 

the network correctly repeats all the loads. With 3 hidden neurons the erroneous point is 

easily identified as standing away from this line. When an extra neuron is added the 

network can fit the spurious point on this line without much distortion to the remaining 

points.

Fig 3-20 (on page 38) shows how the neural network has done this. A set of weights has 

been found that activate the extra neuron for the inputs of the erroneous day. For most 

other days the combination of weights and inputs are below the operational threshold of 

the activation function of this extra neuron (in other words it is saturated). This neuron 

is used to provide the additional load required to account for the error. For days around 

the erroneous day (day 14) this neuron is also active, inducing errors and thus poor 

generalisation to days that have similar input patterns.
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This is an extreme example as the induced error was rather large but it demonstrates that 

there is more gain in dedicating a neuron to correcting a single day than reducing the 

errors for the remaining 364 days. Without careful examination extreme erroneous 

readings could quite easily go unnoticed and liberally adding more hidden neurons does 

not necessarily lead to a better model.
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Three networks with 3, 8 and 15 hidden neurons were trained on the same year’s data 

giving MAPEs of 1.09%, 0.46% and 0.59% respectively. On this evidence the network 

with eight neurons appears superior. All weather inputs in this data were then replaced 

with the average days weather (the weather for each day of the year being the same) and 

passed through the trained networks. Fig 3-21 shows that for certain days the two larger 

networks do not give realistic predictions. The apparently most reliable network for 

generalisation being the one with three hidden neurons although it gave the largest 

MAPE.

What has happened is that specific groups of neurons are only active for local features in 

the data. This can be clearly seen for the network with 15 hidden neurons which during 

learning has associated the bank holidays with the actual weather patterns in order to 

give a good model fit. When the actual weather is replaced by the average weather the 

neurons cannot give a general solution. With only three hidden neurons all data is proc­

essed by the same core neurons which experience the full range of values and have the 

ability to generalise. This is an example of how the quest for a minimum error can have 

its pitfalls.
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Fig 3-21 Generalisation properties o f networks with 3, 8 and 15 neurons in the hidden layers. The 
network with the fewest hidden neurons gives the most realistic overall generalisation
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3.7 Rule Extraction

The model created in section 3.5 was arrived at by deducing reasons for the model 

errors. As these reasons were identified and encoded as network inputs, improvements 

were seen. The question now becomes ‘how is the neural network processing the data?’ 

We know the inputs make sense and that a neural network is a very simple number 

processing machine, so an explanation should be simple to find. Without explanations 

there will be continued distrust of neural networks.

Consider the neural network in Fig 2-1 (on page 11). The network output is simply the 

summation of a number of terms originating from each hidden neuron, which in turn 

have formed connections of varying strength to the inputs. This basic idea makes neural 

networks a powerful tool for analysing relationships in data. In its simplest form a neu­

ral network with two hidden neurons and a linear output neuron is decomposing the 

output into two components, the nature of which were investigated for the causal inputs 

identified (i.e. not including past loads).

It was found that one of the neurons was acting as a filter in that it only appeared to be 

processing day of the week information. This was obvious when the two components 

were viewed and confirmed by inspecting the weights feeding into these two neurons, 

with those weights connecting the day inputs with one of the hidden neurons being 

much larger than the remaining weights.

A new network was created with three hidden neurons, one neuron with weights re­

moved or ‘pruned’ so that it only processed ‘day’ inputs with the remaining two being 

fully connected. In a similar manner to before, one of the fully connected neurons acted 

as a filter in that the seasonal components feeding into this neuron were dominant. This 

process was continued and eventually all the inputs had been isolated and a network 

similar to that in Fig 3-22 (on page 41) was created.
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Fig 3-22 Schematic of the ‘pruned’ network

3.7.1 Day of the Week

The inclusion of a single neuron dealing only with day of the week inputs gave dispro­

portionately large errors for Mondays. Examination of the output of this neuron revealed 

that it was operating close to one extreme (+1) of the tanh activation function for week­

days and close to the other extreme (-1) for Sundays. The addition of a second, third and 

fourth ‘dedicated’ neuron improved the overall errors and reduced the errors for Mon­

days to the same level as for all other days.

Fig 3-23 (on page 42) shows how the final contribution for each day is the summation 

of the outputs of the four hidden ‘day’ neurons. One neuron gets close to the solution 

but the extra neurons are required to increase the resolution. The manner in which the 

day of the week input was encoded is directly related to the number of hidden neurons 

required. Fortunately, the daily load requirement follows a cyclical pattern over the 

week, which is suited to the sine-cosine input encoding. If, for example, Wednesday 

afternoon was a public holiday, the load would drop on Wednesday and more neurons 

would be required to model this effect as the continuity of the cycle would be broken. It 

would appear that a better encoding scheme for general cases if a continuous weekly
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cycle is not evident would be seven inputs as described previously which would only 

require one hidden neuron.

Fig 3-24 shows the first rule, the contribution to the load based solely on the day of the 

week.
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Fig 3-23 Four hidden neurons and their combined contribution to the network output
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Fig 3-24 Rule 1 - what day o f the week is it?
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3.7.2 Time of Year

The seasonal component of the load with the summer correction included is shown in 

Fig 3-25. Fig 3-26 (on page 44) shows how this was formed by the summation of four 

hidden neuron outputs. The sine, cosine encoding is the only practical method of repre­

senting this cyclical term as a network input.

The variation between summer and winter is similar in magnitude to the difference 

between Sunday and Thursday. The significance of the school holiday effect is also 

clearly evident. The overall nature of the curve closely resembles the patterns of sunset 

and sunrise times, with the nights drawing in quickly from September to December 

characterised by the steepness of the slope. From January to May the nights gradually 

get lighter as the sun re-enters the northern hemisphere. Fig 3-25 is the second rule.
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Fig 3-25 Rule 2- what day o f the year is it?
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Fig 3-26 How the seasonal term is formed by the summation offour curves

3.7.3 Growth

The linear input included to represent growth is transformed by four hidden neurons as 

shown in Fig 3-27 (on page 45). The nature of the curve follows the economic climate 

of the time with the UK recession starting in 1991 clearly reflected by a reduction in the 

demand for electricity.

A second method of calculating the growth was performed using weather correction. A 

network was trained for each individual year and then the weather inputs were replaced 

with the averaged eight year weather for each day. If the neural network generalises well 

this gives a weather corrected load or the load that would have occurred if the weather 

had been ‘average’. The weather corrected average annual daily load was then calcu­

lated for each year and assumed to occur at the median day of each year. Eight points 

resulted which were then curve fitted with a linear input neural network which was used 

to give a value for each day over the eight years. This weather corrected load resembled 

that of Fig 3-27.
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Fig 3-27 Rule 3 - what is the base load?

3.7.4 Weather Factors

By introducing a single dedicated neuron to process specific weather inputs as opposed 

to grouping all weather related inputs together, it was found that the increase in error 

was negligible. Furthermore, weight examination over several tests revealed consisten­

cies in weight ratios for the time lagged (previous day’s) weather inputs (Table 3-1 on 

page 46). Generally the lag coefficients are as expected, the importance declining with 

time. Average temperature is different with yesterday’s average temperature being 

slightly more important than today’s, which is not unexpected, as today’s average is not 

finalised until the end of the day when most electricity has already been consumed. 

What is surprising is that the average temperature two days ago is insignificant while 

that of three days ago is relatively important.
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Table 3-1 The relative importance o f past weather conditions

T (today) T-l (yesterday) T-2 T-3

max temp 1 0.59 0.43 0.29

min temp 1 0.19 - -

ave temp 1 1.08 - 0.63

wind speed 1 0.37 0.13 0.12

Because of the consistencies in weight values the data can be pre-processed to create a 

single valued input for each weather variable. Fig 3-28 (on page 47) shows these factors 

and the contribution to the load, where the temperature factors are in degrees and the 

wind speed in knots and are calculated from the coefficients in Table 3-1. The non- 

linearity of these curves illustrate the effect of the non-linear regression capabilities of 

neural networks.

The gradient of the maximum and average temperature curves imply that as the weather 

gets warmer, electricity consumption decreases. The minimum temperature curve gradi­

ent is opposite indicating that there is a load component that increases with increasing 

temperatures. This could be the effect of the limited air conditioning or refrigeration. 

The wind speed load component increases as it gets windier. Fig 3-29 (on page 47) 

shows the weather components of the load over the eight years.
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3.7.5 Holidays

Six holiday neurons were created for summer, Christmas, bank holidays and the special 

days around the bank holidays. No day could be a member of more than one holiday 

type. Fig 3-30 and Fig 3-31 show the corrections deduced by the neural network.
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Fig 3-31 Holiday corrections
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The Christmas corrections were based on observed errors from Fig 3-15 (on page 35) 

but improvements could be made after the anomalous days around Christmas (Fig 3-18 

on page 36) had been identified, as they will distort the average errors. This exemplifies 

how adding certain information reveals more detailed information that allows refine­

ment of the initial information - a circular process.

For the Easter weekend, ‘shoulder’ days were identified from the data that indicate an 

extended holiday period. This fits with observed behaviour as people take extra days as 

holiday to make the most of the two public holidays. The weekend was observed to 

have more of a holiday effect than the shoulder days which was reflected in the input 

encoding. Whitsun week and weekend were all classified as the same holiday group and 

thus will all have identical corrections.

In a fully connected network relationships with day of the week will also be formed, 

which will add to the accuracy. This is an example of why this drastically pruned net­

work will not be as good as a fully connected one, as it cannot extract features involving 

more than one input type. Only independent factors were used in the creation of this 

model, mainly to keep things simple and graphically observable. Inter-related factors 

were tested, the most important being relationships between day of the week and day of 

the year, and day of the year and growth. Fig 3-32 shows the actual load and the errors 

with the rule based predictions. Fig 3-33 shows the change in the cumulative error 

distribution caused by pruning the network.
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3.8 Model Comparisons

The fully connected model was used to give next day predictions using the previous 800 

days as a training set, with the weather for the prediction day being used retrospectively. 

A training set of 800 days was used to capture at least two years of examples for periods 

such as Christmas. An initial network was trained and used to predict the load for the 

next day’s previously unseen data. This data with the actual observed load was then 

added to the training set with the distant most day being removed. For each prediction 

the weights from the previous day’s network were used as a starting point and 10 epochs 

of training were allowed (an epoch is where all the patterns are presented once).

A network with 10 hidden neurons and inputs including yesterday’s and last week’s 

load gave a MAPE of 1.3% over the 5.8 years of predictions. Fig 3-34 shows the errors 

translated into an equivalent continuous error throughout the day. In context 60MW 

represents approximately 20 Watts per customer (not person) for the region (a light bulb 

is typically 60-100 Watts). Table 3-2 (on page 52) shows the errors analysed by day 

type for this prediction model, the fully connected model and the rule based model.
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Fig 3-34 Error distribution for one day ahead predictions
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Table 3-2 Model errors by day type -  mean absolute error (MAE) is given as an 
equivalent continuous daily error (MW)

fully connected rule based 

MAE

predicti

MAE

on model 

MAPE

Christmas 60 144 85 2.38

bank holidays 51 86 54 2.06

summer 28 47 31 1.13

non special weekends 41 51 39 1.26

non special weekdays 42 48 45 1.22

Christmas is the worst period to model but this would be expected as there is a limited 

number of examples available for training. The rule based and prediction model per­

formances are relatively poor which is not unexpected as there is no information relating 

the date to the day of the week for the rule based model and there are only two years of 

examples for the prediction model.

Bank holidays were generally underestimated in the prediction model but the overall 

MAE was comparable to the fully connected model. The period classified as summer 

holidays gave the best prediction results and were again close to the fully connected 

errors.

The errors for all non-special days would indicate that weekdays gave better results than 

weekends if the MAPE was used as the indicator, as reported in [44]. This is not the 

case though when the MAE is examined, a result that is due to the reduced weekend 

load. This highlights the fact that reporting percentages, although common practice, is 

really meaningless in electric load forecasting.
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This error analysis would indicate that for prediction purposes improvements would 

result for the non-special days if those days identified as holidays were omitted from the 

data set.

3.9 Half Hourly Model

For the half hourly model the data used ranged from 10th January to 6th December 

1994, giving 15,888 load values. This range was restricted only by the size of the spread 

sheet used for data pre-processing but conveniently missed the Christmas period. 

Hourly valued weather data was available for temperatures and wind speeds. The miss­

ing half hours were created by simply repeating the previous value. For descriptive 

purposes the hours range from 0.5 to 24. The energy consumed between midnight and 

00:30 is described as happening in hour 0.5. Similarly hour 13 is 12:30 to 13:00.

3.9.1 Initial Input Data

Based on the previous experience the initial time inputs for this model were created to 

represent:

hour of the day (sin, cos)

day of the week (sin, cos)

time of year (sin, cos)

growth (linear)

For temperatures and wind speeds the current value and moving averages [45] of the 

previous 5, 24 and 48 hours were used as inputs, the time length based on intuition 

rather than any scientific findings. By filtering in this way, as opposed to using time 

delays, fewer inputs are required and noise is suppressed. From a common sense point
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of view the load in any half hour will not depend on an exact temperature 48 hours 

previous, more a general underlying temperature.

Another term that was included in the initial model indicated whether it was Greenwich 

Mean Time (GMT) or British Summer Time (BST). This is an hour change that makes 

summer evenings lighter. A flag was used to indicate to which set each data point be­

longed.

3.9.2 Results

The errors of the initial network are shown in Fig 3-35 (on page 55). The four bank 

holiday Mondays along with Good Friday (April 1st) are clearly visible as being over­

estimated, meaning the load is lower than usual on these days. A flag was created as an 

input to indicate bank holidays.

Overestimates occur in the period October - March,

Fig 3-38 (on page 56) showing the hours at which the largest daily overestimates occur. 

It can be seen quite clearly that the model has problems with hour 24 from November - 

March and hour 1 in April and May. The change occurs distinctly on 27th March, which 

corresponds to the start of BST.

Fig 3-39 (on page 56) shows a typical winter day for this model and it can be seen that 

hour 24 is a cardinal point [46] and thus important in load forecasts. What is happening 

is that there is a sudden surge in consumption in hour 0.5 caused by a tariff that exists 

which automatically switches water heating and storage radiator circuits on for seven 

hours during the night. There are over 1 million customers on this tariff of which 80% 

are on a fixed clock time switching mechanism explaining why there is a difference 

between GMT and BST. The remaining 20% are radio tele-switch controlled.
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Fig 3-35 Errors with only weather and time as inputs MAPE=2.9%
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Fig 3-36 Errors with weather, time, holidays, tariffs and daylight as inputs MAPE=1.8%
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Fig 3-37 Errors with weather, time, holidays, tariffs, daylight and previous loads as inputs
MAPE=1.4%
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Fig 3-39 The off peak tariff is the reason why the errors occur

From Fig 3-39 it can be seen why the neural model has problems. The model inputs are 

generally smooth and continuous and so are fitting a smooth continuous curve through 

the data. There is a discontinuity in the load at midnight with the surge due to the off- 

peak tariff. The neural model has compensated for this effect by rounding off this dis­

continuity so that a smooth curve can be fitted, resulting in the overestimates for hour 

24. A similar effect is seen in Fig 2-9 (on page 20). The opposite effect can be seen at
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hour 7 when the heating and water charging circuits are automatically switched off. A 

discontinuity is also seen at hour 3 that corresponds to a similar tariff switching on at 

2:30 a.m. In order to model the effects on the load due to the tariffs it is necessary to 

create an input that indicates the hours for which the tariffs are in operation. Flags were 

created for each tariff.

Fig 3-40 shows the two largest daily overestimates on the improved model, showing 

that the problems with hour 24 have been eliminated (exactly how this is achieved is 

demonstrated later). What is now evident are problems that correspond to lighting up 

times in the dusk period [47].

With experience gained from how the neural model reacted to the surges due to tariffs, it 

is assumed that the new overestimates are caused by lighting surges. Data on effective 

illumination [48] was unavailable so a day/night indicator was used, the transitions 

being sunrise and sunset times. An input to represent the dusk period used the half hours 

before and after sunset as the cut off points.

Fig 3-40 also reveals a cluster around hour 8 in August, which corresponds to school 

summer holidays and is explained if fewer people are getting up at this time, resulting in 

reduced demand. This cluster supports the findings in the daily load model that identi­

fied a summer anomaly, but in the half hourly case the anomalies extend further into 

August and early September.
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Fig 3-40 The two largest daily overestimates on the improved model now highlight 

lighting up time
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Further inputs were created for the Easter weekend and Whitsun week. It was evident 

that the effect of bank holidays extended to around 6 a.m. the following morning, which 

makes sense if people on night shifts take this period as their holiday. This is clearly 

shown in Fig 3-41 with the model overestimating the early morning load. Errors the day 

after holidays were also identified in [33,49].

4 off peak period

- S r -  (
holiday*

7 hour

- model

2

actual

Sunday Monday Tuesday W ednesday

Fig 3-41 August bank holiday period modelled only with one indicator that Monday was a holiday. 
Reduced load requirement on Sunday and the early hours o f Tuesday is very evident.

Fig 3-36 (on page 55) shows the errors of the model modified thus far. Further investi­

gation revealed reasons for some remaining anomalies.

The overestimates in early May occur the morning after the bank holiday in the two half 

hours following the new cut off of the bank holiday indicator (6 a.m. on Tuesday), 

suggesting the influence of the bank holiday extends an extra hour in this case. There is 

also consistent reduced load in the working hours of this day, confirming that many 

people will take it as a day’s holiday to make the most of the long weekend. The over­

estimates at the end of August occur the evening before and the late morning following 

the bank holiday. The big dip towards the end of May is actually the week before the 

bank holiday, indicating that in the run up to the holiday period more electricity than 

usual could be being consumed, possibly due to increased industrial output. Another

i
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likely reason is that the model is compensating so that the errors during Whitsun are 

reduced.

At lighting up time the day the clocks changed on Sunday 23rd October the model 

seems to be an hour early in its predictions (Fig 3-42). This would be the result if the 

clocks for street lighting that came on with time switches were not adjusted until the 

Monday. A second suggestion might be a kind of ‘jet lag’ effect where people have not 

adjusted to the extra hour change. Another possibility that cannot be discounted is that 

the data has somehow been adjusted to account for the extra hour so that the data base 

will still have 24 hours in this day (how the data was dealt with is unknown). The over­

estimates that occur when BST starts on Sunday 27th March are in the early hours of the 

following Monday morning, especially around dawn (Fig 3-43, on page 60).
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Fig 3-42 An anomaly the day the clocks change
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Fig 3-43 More anomalies the day the clocks change back

The overestimates in February occur in the late morning of the 15th. On the previous 

evening blizzards swept across Britain bringing many areas to a stand still, so presuma­

bly people were turning up late to work the following day, thus reducing the load (Fig 

3-44).
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Fig 3-44 Reduced load because o f severe weather conditions
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There is a period at the end of September where there are hardly any load overestimates. 

Examination of the weather conditions revealed that this was peculiar in that the tem­

perature stayed almost constant at 11 degrees Celsius for three days, both day and night.

The greatest anomaly is the second half of April when there are large underestimates. 

They all occur in the off-peak tariff hours which gives a clue as to their cause. What is 

thought to be happening is that people are gradually switching their night-time storage 

radiators off throughout April, as the weather gets warmer. The model can deal with 

them being all on or all off but struggles unless it knows exactly how many are on or 

off.

It would be expected that there should be similar problems in October as heaters are 

switched on again, which is slightly evident but not as extreme as in April. This can be 

explained by people’s tolerance to put up with overheating but not under heating. In 

October all heating will probably be switched on at the first cold spell, and then left on 

knowing that it could always be cold again tomorrow. In April, as it gets warmer, heat­

ers will be turned off gradually over a period of a few weeks as people get around to it. 

The problem of modelling April was also encountered in [39,47], where the data was for 

Ireland, a country with similar climate, tariffs and probably even a greater proportion of 

storage radiators. A possible explanation given by the authors was that the errors were 

due to the hour change occurring in this bi-monthly model (March - April).

3.9.3 Past Loads

Thus far no previous load values were included in the model and the MAPE was around 

1.8%. Past loads were deliberately overlooked as it was desired to identify and explain 

what causes the load to be what it is, not how the model responds to good initial guesses 

of what the load might be. A causal model as opposed to a time series model was re­

quired.
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The situation in April is an example of how including past loads might help if causal 

information is unavailable. The load is determined by variables such as weather, not 

past loads, which is to say the load depends on the underlying conditions, not what 

previous loads were. But since previous loads are a consequence of previous underlying 

conditions, they will contain information about near past conditions that may not be 

available in raw data form.

In [50] a feature selection algorithm showed that the previous half-hour load and the 

load at the same time a week before were the most important input variables, with the 

load at the same time yesterday also being important, a finding that is not unsurprising. 

Loads for the same half-hour the day and week before were included as inputs to the 

model, the resulting errors shown in Fig 3-37 (on page 55). The previous half-hour’s 

load was not included as this would have to be based on predictions in a 24 hour ahead 

forecaster (even though forecast temperatures would have to be used). Fig 3-37 shows 

how the problems with April disappear and the MAPE is now around 1.4%. Comparing 

Fig 3-36 and Fig 3-37, the main improvements gained by including past loads are 

clearly in the transition periods of April and October, with no significant visible im­

provement in other months. What can also be seen is that although the overall error is 

reduced some periods are markedly worse. These stand out clearly and there will be 

reasons for the errors due to the fact that the period 24 hours or 1 week previous was a 

special event.

3.9.4 How the Model is Working

By including previous loads as inputs improvements were seen in the off-peak load in 

the transition period of March to April. By re-setting all the binary flags so that no 

events occur and passing these new patterns through the trained weights, it is possible to 

visualise what is happening. Fig 3-45 shows this for a winter day for the two cases with 

and without previous loads included in the input data.
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Fig 3-45 How the network models the off peak period in February

It can be seen that the model with no previous loads fits a smooth underlying load 

whereas when previous loads are included there is an influence of past values in the 

early hours. The ‘no loads’ curve can be thought of as the model’s estimation of what 

the load would have been if the off-peak tariff did not exist (although the whole profile 

would change if these tariffs did not exist). Comparing Fig 3-45 with Fig 3-39 (on page 

56) it is evident how the improved models using the binary flag deal with the disconti­

nuity and improve the predictions for the cardinal point.

3.9.5 Extracting the Growth

The linear growth term was pruned from all hidden neurons and connected to its own 

dedicated neurons in an attempt to extract the growth. Fig 3-46 shows the resultant base 

load for 1994 following the same trend as the base load extracted for the previous eight 

years in the daily model.
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Fig 3-46 The extracted growth for the daily ( ‘86- ‘93) and half-hourly ( ‘94) models

3.10 Populations of Models

When creating the models it was noted that identical models with an identical number of 

hidden neurons always converged close to a certain value, the only difference being the 

random starting values given to the weights. It could be assumed that the models were 

almost identical, but this was not the case if viewed on a half-hourly scale. As there is 

noise that will exist in the loads due to unpredictable random effects and an incomplete 

set of variables for the inputs (the model will always be to some degree ill-posed), the 

neural fit has relaxed constraints and the model will describe a path through the noisy 

data. There are many paths that can be made through noisy data that give similar errors 

and always limits on the accuracy that can be achieved, assuming the number of hidden 

neurons is limited.

The choice then is which model to choose? For any given point the average of two 

Table 3-3 Improved performance is seen by averaging several seemingly identical networks

1 2 tllillllif 4 5 Ave

RMSE 63.75 65.80 63.91 64.26 64.36 59.50

MAPE 1.42 1.46 1.43 1.44 1.43 1.30
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predictions will always be better than the worst, unless both are the same. Carrying this 

idea forward then as more models are created the better and more robust should the 

averaged performance be. Five identically created models were trained, with results 

shown in Table 3-3.

The overall errors of the averaged model outputs are a significant improvement on any 

particular individual model. Creating populations of models was a technique used in 

[51] but in this case each model (inputs and topology) was different. This was done to 

overcome the uncertainty of what inputs and connections were relevant.

3.11 Traditional Load Forecasting Methods

The main objective of this chapter was to investigate how neural networks operate, 

using some ‘real’ load data to achieve this. Although the majority of papers on load 

forecasting published since 1992 are neural network based, in practice, more traditional 

techniques still predominate. The progression to neural network models is gradually 

taking place [24] as the technology becomes more accessible [25] and operators familiar 

with the issues involved.

In [52] a review of five widely applied (at the time) short term load forecasting tech­

niques is presented, these being:

1) Multiple linear regression

2) Stochastic time series

3) General exponential smoothing

4) State space and Kalman filter

5) Knowledge based approach
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In [53] the model types described are categorised into two basic classes each with sub- 

types:

1) Time of day

• summation of explicit time function models

• spectral decomposition models

2) Dynamic

• ARMA models

• State-space models

Several techniques are presented in [54] and also in [18] which includes descriptions 

and experiences of operational systems. Comparisons between various techniques are 

relatively common [52,55]. In [56] Box-Jenkins models are compared with neural net­

works, with the conclusion being made that;

'Neural networks appear to be a future alternative to Box & Jenkins forecasting in all 

circumstances, and i f  they are not already so it is only due to the lack o f a definitive 

identification procedure'.

Similarly in [57] the following described the practical experience with using neural 

network forecasting in Florida;

“..gives robust and more accurate forecasts and allows greater adaptability to sudden 

climatic changes compared with statistical methods.”

In [20] it was reported that in a survey of electric utilities, 16 state that the use of neural 

networks significantly reduced errors in daily electric load demand forecasts, while only 

3 found otherwise.
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It is clear that neural networks can give better results than other techniques, but why 

should this be so? In the following sections two of these techniques are described in an 

attempt to answer this question. For a more detailed descriptions of these and other 

forecasting techniques see [58].

3.11.1 Multiple Linear Regression

In multiple linear regression (MLR or multivariate regression) load forecasting 

[59,60,61], a simple linear model is formed from causal (or explanatory) factors that 

influence the load such as temperatures and day of the week. In essence the load is 

represented as a linear combination of these causal factors. This model has the general 

form:

Load = b0 + bjjc, + b -pc2 +....... + bk*k + e5

where jc, to xk are the independent causal variables, to bk their respective regression 

coefficients and e the error term. The regression coefficients are typically found using 

the least square estimation technique [52].

This model is the same as that of a neural network in its most simple form i.e. with no 

hidden neurons (or 1 linear hidden neuron) and a single linear output neuron. The inputs 

are xx to xk with bj to bk the respective weights and b0 the bias.

The addition of non-linear hidden neurons enables neural networks to perform multiple 

non-linear regression. As has been shown in this chapter, pruning the network can be 

performed so that hidden neurons only process specific causal inputs. This results in a 

model of the form:

Load = b0 + 4>i(xj) + <|>2(x2) +.......+ ^ k  + e>

where xl to xk are the independent causal variables and <|)1 to <|>k their respective non­

linear functions. These non-linear functions are formed by the linear addition of one or
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more activation functions (depending on the number of hidden neurons given to each 

input), the exact form of which is determined by training the network.

It is therefore no surprise that neural networks can never give worse results than multi­

ple linear regression models as they have the capacity to perform linear regression 

themselves if a linear hidden neuron is used.

3.11.2 Stochastic Time Series

The time series approach [62,63,64] to load forecasting was the most widely discussed 

method prior to neural networks.

The simplest form is an autoregressive (AR) model, where the load is expressed as a 

linear addition of terms relating to its previous values. This is similar to multiple linear 

regression except that the causal variables become time lagged values of the load, hence 

the name autoregression. The order, k, of an AR model depends on the oldest previous 

value that is regressed on;

Load(t) = b0 + bxload(t-i) + b 2load(t-2) + ....... + b Joadft-k) + et

Moving average (MA) models are similar to AR models but the load is expressed in 

terms of previous error values:

Load(t) = b0 + b xe(t-l) +b  2e(t-2 )+ ........+ Ke(t-k) + et

By effectively coupling AR and MA models the popular autoregressive/moving average 

(ARMA) model is created.

ARMA models are only useful for modelling stationary processes. In practical terms2 a 

stationary process is one where the mean (stationary in the mean) or variance (stationary 

in the variance) do not change with time. As was seen in this chapter, a long-term trend 

existed in the load data due to system growth, resulting in a non-stationary series. In

2 See [64] pg 26 for a formal definition of stationarity.
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order to deal with a non-stationary series, it must first be transformed into a more sta­

tionary series by using a differencing process.

The first difference, X’„ of a series X is:

X’lt = Xt - X t,

With the second difference, X’2, being:

X’2t = Xt- X t.2

A second order difference is first differences of first differences.

This differencing can be incorporated in the ARMA process, resulting in an autoregres­

sive integrated-moving average (ARIMA) model (the ‘integrated’ referring to the 

differencing process). George Box and Gwilym Jenkins [64] have extensively studied 

ARIMA models and their names (Box & Jenkins) are synonymous with the general 

ARIMA time series model.

The three processes of ARIMA models can all be applied to the inputs of a neural net­

work.

1) Autoregression involves including previous loads as inputs

2) Including the errors as inputs during training could incorporate the Moving 

Average. These error inputs would be the current model error for the specific 

time lags on which the error is being regressed. The error inputs for any particu­

lar pattern would thus be continually evolving from epoch to epoch as errors are 

reduced due to the learning. In prediction mode the model would be limited as to 

how far ahead it could forecast because certain time lagged errors would have to 

be known so that they could be used as inputs to the neural network. For exam­

ple, in half-hourly modelling, if errors at the same hour the day before and a 

week before were used as inputs, predictions would be limited to 24 hours ahead.
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3) A technique was developed in this chapter (see Fig 3-27) that could extract growth 

in the load which makes the differencing to produce a stationary series unneces­

sary.

3.12 Practical Load Forecasting

In practice, operational forecasting models are as much of an art as a science, with 

honest accounts of what actually happens seldom being reported due to commercial 

sensitivities.

In [65] the forecasting system used at British Gas to predict hourly and daily gas re­

quirement in Great Britain is described. The basic Box-Jenkins model is used but only 

after a large amount of data pre-processing. National average temperatures and wind 

speeds are used in the forecasts, which are created from a weighted average of values 

from 8 weather stations around the country. The weightings are related to the relative 

quantity of gas sold around each station. If no forecast is available (for predictions over 

three days ahead) then a seasonal normal temperature is used. When only maximum and 

minimum daily temperature forecasts are available then the average daily temperature 

used is just the average of this maximum and minimum.

The data is also adjusted before it goes into the model. ‘The first involves modifying the 

temperatures above 14 °C to account for the decrease in response o f the demand series

to similar changes in temperature below 14 °C The second modification made to the

raw data is to take account o f holiday periods.... the demand on each o f these days being 

multiplied by the holiday factor before modelling commences ’. Because their model can 

only have one input (temperature), the demand is adjusted for wind speed effects. There 

is a 1% increased adjustment of demand for every 2.5 knots increase in wind speed 

between 8 and 15 knots and a 2.8% increase for wind speeds 15 knots and above.

The result of the model is about a 5% accuracy in June and 1.5% accuracy in February. 

It was noted that the worst forecasts occur at weekends so ‘To avoid this problem the
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logarithm o f  the demand series is taken before modelling. ....The use o f ‘log ’ models in 

the winter period, however, makes the forecasts worse \

Another method used by Company A3 is to split the load into cooling and heating re­

gimes. This is chosen to be 18.3°C and is supposed to represent the temperature above 

which air conditioning will be used as opposed to heating. It is known that the actual 

value varies with time of day and season of year but this value is used because it seems 

to work. Although it appears as though it is a scientifically derived temperature it is only 

used because 18.3°C = 65°F -  a nice round number!

Company B divides its load into day and night with 7 seasons and 5 temperature bands. 

An additional temperature variable is created to include ‘ cooling power o f the wind" for 

temperatures below this magic 18.3°C. An effective temperature is also created based on 

weighted average temperatures for the day in question and the three previous days. The 

weights are simply 1, 1/2 ,1/4 and 1/8.

At Company C two models are used to give two predictions. The final decision is then 

made by an experienced operator who will generally choose his own figure. In this 

instance it would be interesting to see the results if the operator made his decision first.

3.13 Chapter Summary

In this chapter a MLP has been employed as a tool to help bring meaning to a large 

amount of data.

A common approach is to use other statistical tools, such as cross-correlation, to find 

possible relationships between the inputs and output in order to identify relevant inputs. 

Many published papers include all possible information and hope that the MLP will sort 

out the numbers for itself. In this chapter we have used the MLP as a tool itself in order 

to identify relationships in data. The reasoning is that if MLPs can produce non-linear 

models then why use other linear based techniques in order to identify inputs.
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In academia there is an obsession with statistical measures in order to gauge the per­

formance of a model. As has been shown in the real data used, statistical anomalies 

often have reasons, and determining these reasons is much more beneficial in real situa­

tions than quoting significance measures. The disadvantage is that it requires a little 

more work.

In this chapter several new ideas have been introduced which it is hoped will help ad­

vance the understanding of neural networks and the load forecasting problem. The 

approach was to challenge the common misconception of neural networks that they are 

‘black boxes’ that have no explanation of what they do. This ‘black box’ idea does not 

make sense knowing the simple processing that goes on within the neurons. Under­

standing what goes on is just a matter of investigation.

3 These are from the authors personal ‘in trust’ communications with several companies.



Genetic Inspired Optimisation

4.1 What are Genetic Algorithms?

Genetic algorithms (GAs) are directed random search techniques used to look for pa­

rameters that provide a good solution to a problem. Essentially they are nothing more 

than educated guessing. The ‘education’ comes from knowing the suitability of previous 

candidate solutions and the ‘guessing’ comes from combining the fitter attempts in 

order to evolve an improved solution.

For example, the back propagation algorithm is a gradient based method for finding a 

weight set for a MLP that best maps the inputs onto the output, a search that can also be 

performed by GAs [7]. The optimisation problem of interest in this work is finding a 

schedule for electrically charging storage devices (hot water tanks and storage radiators)

73
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over a 24 hour period, given that electricity prices vary half-hourly. A solution is sought 

that minimises electricity costs whilst satisfying the hot water or thermal comfort re­

quirements.

4.2 How do GAs Work?

The inspiration for GAs came from nature and survival of the fittest. In a population, 

each individual has a set of characteristics that determine how well suited it is to the 

environment. Survival of the fittest implies that the ‘fitter’ individuals are more likely to 

survive and have a greater chance of passing their ‘good’ features to the next generation. 

In sexual reproduction, if the best features of each parent are inherited by their off­

spring, a new individual will be created that should have an improved probability of 

survival. This is the process of evolution.

In nature the ‘blueprint’ of individuals is contained within their DNA. The DNA can be 

thought of as a string of genes, with each gene or combination of genes representing a 

particular feature. Reproduction is the ‘crossover’ of two DNA strings to produce a new 

blueprint that has genes from both parents. Mutation can also occur where a particular 

gene is not an exact copy of either parent.

In genetic algorithm terms, a candidate solution is often referred to as a chromosome or 

string, which is a sequence of encoded numbers. This is commonly referred to as a bit 

string if the numbers are binary encoded.

The process involved in GA optimisation problems is based on that of natural evolution 

and broadly works as follows,

1. Randomly generate an initial population of potential solutions.

2. Evaluate the suitability or ‘fitness’ of each solution.

3. Select two solutions biased in favour of fitness.
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4. Crossover the solutions at a random point on the string to produce two new solutions.

5. Mutate the new solutions based on a mutation probability.

6. Goto 2.

4.3 The GA Operators

Selection, crossover and mutation are the basic operators involved in GAs. How these 

and other factors can affect the operation of GAs will be demonstrated by means of 

several examples and experimental observations.

Consider the popular board game ‘Mastermind’ where a player has to determine a hid­

den sequence of colours starting from an initial random guess. This initial guess is 

scored with a black marker for each colour in the correct position and a white marker for 

a correct colour but in the wrong position. Further guesses are made and scored until the 

correct sequence is determined or a given number of attempts have been made. In this 

game the correct solution evolves from the more suitable of all previous attempts, with 

clues from unsuitable candidate solutions also being part of the deduction process. This 

is a type of ‘blind’ optimisation problem where no information is available on what 

makes a good solution, only information on how good solutions are.

Given a few initial guesses the player will select high scoring attempts and perform 

crossover to see if this results in an improvement. New colours will almost certainly 

have to be mutated into the ‘educated guesses’ in the attempt to find the correct se­

quence.

Fig 4-1 demonstrates how these three operators work considering a scoring scheme 

where a point is scored only for a number in the correct position.

The GA search procedure is very easy to understand and implement, with nature pro­

viding ready examples of exactly how things could be done.
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Fig 4-1 An example of how the required solution evolves using the selection, crossover and mutation
operators

4.4 Implementation

4.4.1 Encoding

In optimisation problems a set of parameters is sought that will give the best solution to 

a particular problem. In order to implement a GA these parameters must be encoded into 

a string so that crossover and mutation can be applied. Binary encodings are the most 

common, due to the fact that Holland used them in his early pioneering work [66]. In 

DNA base 4 encoding is used, as the building blocks of DNA can take on 4 values, 

translated as A, C, G, or T.

Any base can be used, as it is just a different method of encoding the same information, 

but the lower the base the longer the string will be. For example, if a number is sought 

between 0 and 255 then this can be encoded as a binary string of length 8, a base 4
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Table 4-1 Representations o f the base 10 numbers 0 and 255 in different bases

: Y*;base.2^J 
^length=8f/

base 4 ■ 
|4eng1tli=4<

. base 10 
vlbngth=3

'* - base;l 6 V ^base 256/ 
lengtK=l.

00000000 0000 000 00 0
11111111 3333 255 FF or |15|15| |255|

string of length 4, a base 16 string of length 2 or a base 256 string of length 1, as shown 

in Table 4-1.

It is clear that the importance of the operators will change depending on the base used. 

In base 2, the two given strings contain all the information required to derive any num­

ber between 0-255 by crossover alone. In base 16, two strings can at most lead to only 4 

different numbers by crossover alone, mutation being required to introduce new infor­

mation. In base 256 crossover cannot occur, mutation being the only operator that can 

introduce new numbers and finding a specific number becomes a pure random search.

In choosing an encoding scheme the nature of the problem will play a major role. If 

many real valued numbers are required in a solution then binary encoding becomes 

impractical as the string length increases. In [67] a method of selective genome growth 

is proposed that helps solve the problem of choosing how to represent a genetic algo­

rithm.

4.4.2 Population Size

The population size is the number of candidate solutions in any one generation. In natu­

ral evolution the total population size is governed by what is sustainable by the 

environment and similarly in GAs the larger the population size the more computation­

ally intensive (in terms of memory requirement) is the search.

In nature, the bigger the gene pool the more diverse is the genetic make up of the popu­

lation with many individuals each with their own set of characteristics that enable them
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to survive. One advantage of this diversity is that there will be no dominant gene that, 

for instance, may be susceptible to a particular disease and result in the elimination of 

the whole species. In the bird family, sub-species have evolved with dominant charac­

teristics that allow them to survive their local conditions and in effect are sub-optimal 

solutions in the search for a global ‘super-bird’. With large populations it can be seen 

how the search for the global optimal solution can be a slow (if not never-ending) proc­

ess.

If the population size is small (e.g. a pride of lions), then a strong individual quickly 

becomes dominant and the diversity of the gene pool is restricted. The result is that 

good individuals (local optima) are quickly created but the dominance of particular 

genes restricts the search space. The chance of evolving the ultimate ‘super-lion(ess)’ 

(global optimum) is severely limited and would depend on mutation introducing new 

genes to diversify the search.

As new solutions are generated it is common to keep the population size constant by 

eliminating individuals (or letting them die), although this does not have to be the case. 

Ideas for the selection procedure for elimination are plentiful in nature. For example, 

each generation could be completely replaced by its offspring, or as a new offspring is 

created it could be accepted or rejected depending on its fitness. The advantage comput­

ers have over nature is that good individuals do not have to die and can be retained for 

indefinite reproduction. The retention of certain fit individuals is known as ‘elitism’.

4.4.3 Selection

This is the procedure for choosing individuals (parents) on which to perform crossover 

in order to create new solutions. The idea is that the ‘fitter’ individuals are more promi­

nent in the selection process, with the hope that the offspring they create will be even 

fitter still.



Two commonly used procedures are ‘roulette wheel’ and ‘tournament’ selection. In 

roulette wheel, each individual is assigned a slice of a wheel, the size of the slice being 

proportional to the fitness of the individual. The wheel is then spun and the individual 

opposite the marker becomes one of the parents. In tournament selection several indi­

viduals are chosen at random and the fittest becomes one of the parents.

4.4.4 Crossover

Along with mutation, crossover is the operator that creates new candidate solutions. A 

position is randomly chosen on the string and the two parents are ‘crossed over’ at this 

point to create two new solutions. Multiple point crossover is where this occurs at sev­

eral points along the string. A crossover probability (Pc) is often given which enables a 

chance that the parents descend into the next generation unchanged.

4.4.5 Mutation

After crossover, each bit of the string has the potential to mutate, based on a mutation 

probability (Pm). In binary encoding mutation involves the flipping of a bit from 0 to 1 

or vice versa.

4.5 Experiments with GAs

4.5.1 Chinese Hat Optimisation Problem

To empirically evaluate the importance of the various parameters and techniques in 

GAs, several optimisation tests were performed. The code used is based on that in Ap­

pendix D. The experiments used tournament selection and a constant population size 

with the offspring replacing the parents every generation.
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Table 4-2 An example o f how the fitness o f the solutions to the Chinese Hat problem are evaluatedfor a 
string length o f  8. Each bit value in a solution is multiplied by the value in the same position in the 
scoring template and the total fitness is the square o f the sum o f all the bit scores. Each bit can have a 
value o f I o r—I

Scoring Template 4 3 2 1 -1 -2 -3 -4

Candidate Solution 1 7 7 -7 7 -7 -7 7 -7
Bit by bit Score 1 4 3 -2 1 1 2 -3 4

Total Score 1 = 102= 100

Candidate Solution 2 -7 -7 -7 -7 7 7 7 7
Bit by bit Score 2 -4 -3 -2 -1 -1 -2 -3 -4

Total Score 2 = (-20)2 = 400

The fitness evaluation function (fitness landscape, scoring template) of candidate solu­

tions for the first optimisation problem examined is shown in Table 4-2. For reference 

purposes this problem has been named the Chinese Hat because the scoring template 

diverges linearly outwards from the centre. There are two possible solutions for maxi­

mum fitness, one of which is shown by candidate solution 2, the other is the inverse of 

this where all the bits flip. The total number of candidate solutions is 2(stnnglength).

In the experiments, tests for each particular parameter setting were repeated to conver­

gence 200 times to determine the average number of generations required to find the 

solution. Each subsequent trial differed by randomly generating a new initial population. 

After each crossover, mutation was only allowed on one randomly selected bit and 

whether it occurred depended on Pm.

4.5.2 Results

The results of varying the GA parameters for the Chinese Hat optimisation problem are 

shown in Fig 4-2 to Fig 4-8. All comments and discussion related to each figure are 

included below that figure.
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Fig 4-2 The effects o f  Pm and the selection procedure

By increasing the number of candidates (competitors) in the tournament for parenthood 
the number of generations required to convergence reduces. This would indicate that 
little diversity in the gene pool is required for this particular problem. There is also an 
optimum Pm around 0.5. With a higher mutation probability the number of generations 
starts to increase, although this becomes less significant as the selection procedure is 
made more competitive. In Fig 4-2, Pc = 1.
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Fig 4-3 Elitism

The introduction of an elitist strategy, where the best individual is always retained, 
shows significant improvements in performance but only for the higher mutation rates, 
indicating the solution is evolved from mutation of this ‘best’ individual.
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Fig 4-4 Population size

As would be expected, the larger the population size the fewer generations are required 
as the search space is increased. The highest rates of gain are seen by increasing the 
population size to 20, but even after this consistent reduction still occurs, as shown in 
Fig 4-5.
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Fig 4-5 Population size

A close up of Fig 4-4 shows consistent improvement in performance with increasing 
population size.
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Fig 4-6 Function evaluations

In serial computing it is not the number of generations that is important but the number 
of function evaluations. That is, how many solutions must be evaluated before the opti­
mum is reached, or roughly the number of generations multiplied by the population size. 
This gives an indication of the computing power (or time) required to solve the problem, 
assuming that evaluating the cost of each solution is a significant portion of the whole 
process. Fig 4-6 is the same data as that of the elitist tests in Fig 4-4, but with the num­
ber of evaluations also shown. It can be seen that for the given parameters, a population 
size of 6 is the most economical. After this the number of evaluations increases linearly 
with population size.
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Fig 4-7 The effect o f  crossover and mutation probabilities for a population size o f 6

Thus far crossover has occurred in every reproduction. By introducing a crossover 
probability, the relative importance of crossover and mutation can be examined. This is 
shown for the most efficient population size of 6 and crossover probabilities of 0, 0.5 
and 1. What is seen is that the optimisation procedure for this small population relies 
solely on mutation with the crossover probability having a negligible effect.
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Fig 4-8 The effect o f crossover and mutation probabilities for a population size o f 30

With a larger population size increasing the crossover probability does improve the 
performance. Fig 4-8 is generated by the same procedure as Fig 4-7 but with a popula­
tion size of 30. It can be seen with this larger population size there is an optimal Pm but 
improvements are also made by increasing Pc. What Fig 4-7 and Fig 4-8 show is not 
unexpected and is reflected in nature in that small populations rely on mutation for 
diversity whereas in larger populations it is a combination of crossover and mutation.



The experiments on this simple optimisation problem have illustrated that selecting the 

correct parameters is very important in genetic algorithms. What is also very evident is 

that there are definite relationships between all the parameters showing that fine-tuning 

is required to increase the speed to success, or reduce the chance of failure. The tech­

nique always managed to solve the problem, but how does it compare with other hill- 

climbing methods?

4.5.3 Other Iterated Hill-Climbing Methods

Other optimisation methods exist of which three were used for comparison with the GA. 

The following descriptions of these techniques are reproduced from [68].

4.5.3.1 Steepest-Ascent Hill Climbing (SAHC)

1. Choose a string at random. Call this string current-hilltop.

2. Going from left to right, systematically flip each bit in the string, recording the 

fitness of the resulting strings.

3. If any of the resulting strings give a fitness increase, then set current-hilltop to 

the resulting string giving the highest fitness increase (ties are decided at ran­

dom).

4. If there is no fitness increase, then save current-hilltop and goto step 1. Other­

wise goto step 2 with the new current-hilltop.

5. When a set number of function evaluations have been performed (here, each bit 

flip in step 2 is followed by a function evaluation), return the highest hilltop that 

was found.
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4.5.3.2 Next-Ascent Hill Climbing (NAHC)

1. Choose a string at random. Call this string current-hilltop.

2. For i from 1 to / (where / is the length of the string), flip bit i; if this results in a

fitness increase, keep the new string, otherwise flip bit i back. As soon as a fit­

ness increase is found, set current-hilltop to that increased fitness string without 

evaluating any more bit flips of the original string. Go to step 2 with the new 

current-hilltop, but continue mutating the new string starting immediately after 

the bit position at which the previous fitness increase was found.

3. If no increase in fitness were found, save the current-hilltop and goto step 1.

4. When a set number of function evaluations has been performed, return the high­

est hilltop that was found.

4.5.3.3 Random-Mutation Hill Climbing (RMHC)

1. Choose a string at random. Call this string current-hilltop.

2. Choose a bit at random to flip. If the flip leads to an equal or higher fitness, then

set current-hilltop to the resulting string.

3. Goto step 2 until an optimum string has been found or until a maximum number 

of evaluations has been performed.

4. Return the current value of current-hilltop.

1000 trials of each of these three algorithms were performed on the Chinese Hat prob­

lem for a string length of 50. The average number of evaluations, given in Table 4-3, 

shows that a GA is not the best method of solving this particular problem. In fact NAHC
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Table 4-3 The average number offunction evaluations over 1000 trials for the Chinese Hat problem
with a string length o f 50

■ .NAHC. • ,^1)esTGfe
1082 48.6 190 650 430

always reaches a global solution by traversing the string just once because the Chinese 

Hat is a smooth function when traversed from left to right.

The best GA based performance had a population size of 6 with a randomly selected 

gene being mutated with a probability of 0.5. With these parameters it was shown that 

crossover had a very limited effect (Fig 4-7, on page 84). As mutation appears to be the 

dominant process a variation of RMHC we called multiple random mutation hill climb­

ing (MRMHC) was tried on the Chinese Hat function. This is basically RMHC but with 

each gene having a mutation probability as opposed to one randomly selected gene 

being mutated. Another way of describing MRMHC is a GA with a population size of 1 

and the mutated offspring only surviving if it is as good as or better than the parent.

Fig 4-9 (on page 88) shows the average performance of MRMHC over 1000 tests with 

varying mutation probabilities and string lengths. The circled points represent the opti­

mum mutation probabilities for the various string lengths with a pattern emerging that a 

Pm of (1/string length) appears to be the optimum. On average this is equivalent to 1 bit 

change per mutation which is an unsurprising result. Any less than this and some 

evaluations will be wasted as there will be no change, any more and there will be prob­

lems in fitting the last bit into position as there is a higher probability that more than one 

bit will be changed at once. The best performance with MRMHC for a string length of 

50 was 430 evaluations, which occurred with Pm at just over 1/50 or 0.02.

The optimum mutation rate for MRMHC is on average 1 bit change per string, which is 

almost similar to RMHC, in which only one bit change per string is permitted. Similar 

results would be expected but it is noted that MRMHC requires over twice as many 

evaluations as RMHC. Why should this be so?
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Fig 4-9 The effect o f mutation probability and string length for 
Multiple Random Mutation Hill Climbing optimisation

If there is only one bit flip that is required to reach the optimum then RMHC should find 

this in an average number of evaluations equivalent to the string length. In MRMHC it 

is possible that in three consecutive evaluations the number of bit flips is 0,1 and 2, 

giving an average of 1. An evaluation with 0 flips is wasted and because only one bit 

requires correction, two bit flips will never find the optimum. It can thus be hypothe­

sised why MRMHC gives a worse performance than RMHC for this particular problem.

4.5.4 Royal Road Functions

So what kind of problems will GAs be superior at solving than other search techniques?

The Schema Theorem and Building Block Hypothesis [66, 69] play on the idea that 

solutions are made up of short blocks of fit schema that use crossover to build up these 

schema into desirable solutions. A set of functions known as the ‘Royal Roads’ [68, 70, 

71, 72] were developed that provide a fitness landscape designed specifically to be 

easily solvable by GAs if they did work in this building block manner. As described by 

the developers (Mitchell et al.), ‘given the building block hypothesis, one might expect



89

Table 4-4 The Royal Road (R,) fitness function. A bit string o f  length 64 contains 8 short schema that 
are the building blocks o f the optimal schema. The wildcard '*' represents a 0 or 1 (or ‘do not care). 
The fitness o f  each candidate solution increases with the number o f these building blocks present.

11111111 ******** ******** ******** ******** ******** ******** ******** Schema 1 = 8
* * * * * * * * 11111111 ******** ******** ******** ******** ******** ******** Schema 2 = 8
******** ******** 11111111 ******** ******** ******** ******** ******** Schema 3 = 8
******** ******** ******** 11111111 ******** ******** ******** ******** Schema 4 = 8
******** ******** ******** ******** 11111111 ******** ******** ******** Schema 5 = 8
******** ******** ******** ******** ******** 11111111 ******** ******** Schema 6 = 8
******** ******** ******** ******** ******** ******** 11111111 ******** Schema 7 = 8
******** ******** ******** ******** ******** ******** ******** 11111111 Schema 7 = 8

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 Schema Opt = 64

11111111 11110011 01110011 11111111 11111111 00000001 11110010 11111111 e.g. Score = 32

that the building block structure o f R] will lay out a “royal road" for the GA to follow 

to the optimal string \ Table 4-4 shows one of these Royal Road functions, R,.

In their analysis, Mitchell et al. used a GA with a population size of 128, single point 

crossover with Pc fixed at 0.7 and Pm at 0.005, full details are given in [68]. Over 200 

runs the mean number of GA function evaluations was 61,334, an order of 10 times 

higher than RMHC (6,179). NAHC and SAHC never reached the optimum solution, 

which is not unexpected given the nature of the fitness landscape.

In section 4.5.2 the importance of the GA parameters was demonstrated, although only 

on a simple smooth function that proved easier to solve by other methods. The Royal 

Road problem was investigated in the same manner to determine if the nature of the 

problem affected the relationship between the parameters.

Initial tests were performed to see if the results of Mitchell et al. could be replicated and 

also to examine the effect of varying the GA parameters. Mutation probabilities between 

0.002 (0.13 in 64) and 0.05 (3.2 in 64) were tested for crossover probabilities between 0 

and 1 inclusive. Each set of parameters was repeated to convergence 20 times and the 

mean value recorded. Tournament selection was used where each parent was the best of 

5 randomly chosen candidates. The results are shown in Fig 4-10.
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Fig 4-10 The effect of the mutation probability for four crossover probabilities (0,0.1,0.7,1) on the 
Royal Roads (Rj) landscape. Each point is the average over 20 tests with a population size o f 128. 
Mitchell et al. used a mutation probability o f 0.005 (0.33 in 64) and crossover probability o f 0.7 that 
gave a mean o f61,334function evaluations to convergence over 200 tests.

The results of Mitchell et al. were easily replicated even though a different selection 

procedure was used. By increasing Pm to 0.02 (1.3 in 64) the number of evaluations was 

reduced to around 14,000, a factor of 4 improvement and only twice as many as RMHC. 

With this mutation probability the function could be optimised in 28,000 evaluations 

without using crossover at all, half as many as the evidently poorly tuned GA of 

Mitchell et al. With no crossover, each offspring is a mutation of a parent chosen due to 

its fitness.

It has been demonstrated that a GA with no crossover can outperform a poorly tuned 

GA on a fitness landscape purposely designed to suit the crossover operator. If it can be 

discovered what determines a good mutation probability with no crossover then this 

should be generally applicable when crossover is applied.

With no crossover, the relationship between the mutation probability and selection 

procedure was examined. In previous tests on the R, landscape tournament selection 

was used where each parent was the fittest of 5 randomly selected candidates. The num­

ber of candidates was varied along with Pm, as shown in Fig 4-11 (on page 91). What is 

clear is that the less stringent the selection, the tighter the band is for an acceptable 

value of Pm.
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Fig 4-11 The relationship between the mutation probability and the number o f contestants in 
tournament selection (2,3,4, and 5). The crossover probability is 0 and the population size 
is 128. The mean o f 20 trials was recorded.

For each selection policy there is also an upper mutation probability past which the 

required evaluations increase exponentially; the more stringent the selection then the 

higher is this upper limit.

The objective of this exercise was to discover what determines a good mutation prob­

ability, which has been shown for Rj to also depend on the selection procedure used, 

becoming more important the weaker the selection procedure. There is a definite lower 

limit around 0.005 or 0.33 in 64.

In order to determine a desirable mutation rate the effect of the population size must 

also be investigated. Fig 4-12 (on page 92) shows that given a near optimal Pm (0.01) 

there is little sensitivity to population size, but as Pm increases so does the sensitivity to 

population size.

The conclusion reached thus far is that the mutation probability is the most important 

GA parameter in solving the Rj landscape. There is also much evidence (and common 

sense) to suggest that the optimum mutation probability is related in some way to the 

string length. In order to test this theory MRMHC (a GA with no crossover and popula­

tion size 1 with the new solution being retained if it is better than or equal to the parent)
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Fig 4-12 The effect o f the mutation probability and the population size (10,40,128). In these cases 
the Pc ~ 0 and the number o f candidate parents is 5.
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Fig 4-13 The effect o f the mutation probability on MRMHC, averaged over 200 tests. The optimum
is (1.2/64).

was used to solve three versions of Rl5 with string lengths of 64, 128 and 256. The 

results in Fig 4-13 show that the longer the string the more sensitive is the search to Pm 

(the y-axis scale in Fig 4-13 is different for each population size). The optimum value of 

Pm was observed to be about (1.2/string length). The question to be investigated now is 

what is special about this mutation rate?
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In their work, Mitchell et al. analysed the RMHC algorithm with a simple derivation 

based on probability that gave the expected number of function evaluations to solve R,.

Consider R, as in Table 4-4. In each schema of length 8 the number of possible combi­

nations is 28. If one and only one bit is changed in each evaluation then the chance of 

this bit being in a specific schema is 1/8, since there are 8 schemas in total. Thus the 

chance of randomly creating a particular schema is once every 28 x 8 evaluations. Ini­

tially there are eight schemas to choose from so the chance of creating any schema is 

once in every 28 x 8/8 evaluations. Once one schema is found the chance of finding a 

further schema decreases to 7/8 of that of finding the first since 1 in 8 bit changes are 

likely to be wasted changing the already discovered schema. The number of evaluations 

required to find this second schema thus increases to 8/7 that required to find the first. 

The expected number of evaluations to find a single schema is in fact slightly more than 

28 and as determined by a Markov-chain analysis it is 301.2 [68]. The expected number 

of evaluations to solve the problem is thus,

1 1 1  1 1 1 1 301.2x8x -  + — + -  + -  + — + -  + — + -  
.8 7 6 5 4 3 2 1

i
st discovered schema 8th

Tests were performed for RMHC that tracked the creation of the schema in the solution 

in order to confirm the theoretical performance. Table 4-5 shows the results averaged 

over 1000 trials which almost mirror the theoretical expectations.
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Table 4-5 The theoretical and experimental (averaged over 1000 trials) number o f evaluations to 
discover each subsequent schema for Rj using RMHC. The total theoretical evaluations = 6,549, experi­
mental = 6,542 and Mitchell et a l = 6,179.

schema ' 1 *'*' • 2 ®SPt ‘ ‘ '5 : ‘ I1IIS ISflfS 8
theoretical
evaluations 301.2 344.6 401.6 481.9 602.4 803.2 1204.8 2409.6

experimental
evaluations 284 355 384 508 622 797 1182 2410

RMHC has been shown to behave as the probability theory predicted. In GAs the theory 

of how they behave remains a theory, with little experimental evidence to try to observe 

their actual behaviour.

Tests were performed using GAs on the Rj landscape that tracked the formation of the 

schema. The trials were performed 500 times with the maximum number of generations 

set at 800. The maximum, minimum and average fitness of the population were re­

corded at each generation and averaged for the trials that had not converged. Initially the 

crossover rate was set at 0.7, population size 128 and the number of competitors in the 

tournament was 5. Three mutation rates were used, 0.33/64, 1.3/64 and 2.7/64. The 

results are shown in Fig 4-14 to Fig 4-17.

tn<n
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coU—* 
TO 
=3 
Q . O 
CL
E3
E
c

0.005 (0

0.02 (1.3/64)

0.042 (2.7/64)

0 100 200 300 400 500 600 700 800
G enerations

Fig 4-14 The effect o f the mutation rate on the minimum population fitness

The lower the mutation rate the fitter is the worst individual in the population. Note that 
in all cases the minimum fitness reaches a plateau and only for the middle mutation rate 
of 1.3/64 do all the trials converge.



95

0.005 (0.33/64)(/></)0)c& 48 0.02(1.3/64)L i.
Co

zs
CloD_
a>

0.042 (2.7/64)

o>
2a)
5

Generations

Fig 4-15 The effect o f the mutation rate on the average population fitness

It can be seen how the rise in average population fitness is initially high for all cases. 
The best average population is with the lowest mutation rate, but this does not find the 
global solution in all cases.

0.005 (0.33/64)0.02 (1.3/64)

0.042 (2.7/64)
il 48 
|  40

Generations

Fig 4-16 The effect o f the mutation rate on the maximum population fitness

Note that the high mutation rate generally limits the maximum population fitness to 6 
schema (a fitness of 48). This is because schema are destroyed as new ones are created.
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Fig 4-17 The number o f converged trials at each generation for the three mutation rates

Quite clearly from a pure optimisation perspective, where the goal is to find the global 
solution, the mutation rate of 1.3/64 is superior in all respects, as shown by Fig 4-17.

Fig 4-18 to Fig 4-21 show the effect of the crossover probability for the near optimum 
mutation rate of 1/64. It can be seen that increasing Pc only improves the speed to con­
vergence, with no other effect on the behaviour of the GA, as identified by all the lines 
converging to the same fitness value. In all cases every trial converged, even with Pc~0. 
The conclusion drawn is that mutation is the most important operator for this particular 
problem.
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Fig 4-18 The effect o f Pc on the minimum fitness
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Fig 4-19 The effect o f Pc on the average fitness
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Fig 4-20 The effect o f Pc on the maximum fitness
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Fig 4-21 The number o f converged trials at each generation for the three crossover probabilities

4.6 Chapter Summary

The work in this chapter has been an empirical investigation of parameters that affect 

GA performance. As commented in [73], "there is a growing realisation that results 

obtained empirically are no less valuable than theoretical results'.

What has been concluded is summed up in [74], ‘From a function optimization point o f 

view, GAs frequently don’t exhibit a killer “instinct” in the sense that, although they 

rapidly locate the region in which a global optimum exists, they don’t locate the opti­

mum with similar speed.

This ‘killer instinct’ has been shown to be dependent on the mutation rate, which is 

critical for efficient GA performance in global optimisation. In humans, characteristics 

of individuals that enable them to stand out from the norm are often a result of mutation. 

This is exemplified by Veikko Hakulinen, a Finnish cross-country skier who won med­

als in the 50k, 30k, 15k and 4x10k relay at the 1956 winter Olympics. On medical 

examination it was found that he had an excessive red blood cell count that enabled him 

to take in more oxygen and not become out of breath. This was caused by a genetic 

defect with a probability of occurring equal to that of picking a specific light bulb with 

all the light bulbs on earth to choose from.
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There has been much theoretical academic work in trying to improve the efficiency of 

GAs by optimising parameter settings. In other work, previously claimed ‘good’ settings 

are taken and used on totally unrelated problems. If GAs are to be used for function 

optimisation then a thorough investigation of the parameters is required.

It must be remembered that ‘Genetic algorithms are NOT function optimizers’ [74] and 

thatr other techniques do exist, that, although they do not sound as interesting, may be 

more appropriate for solving a particular class of problem. Optimising a system where 

there is no information on the dynamics (‘black box optimisation’) is essentially a di­

rected random search, with the direction being guided by the strategy used. The purpose 

of these strategies is to guide the search to increase the probability that in time, a solu­

tion will be found. As was demonstrated (see Table 4-5), on average over many trials, 

random mutation hill climbing behaves exactly as a Markov chain analysis predicts. Nix 

and Vose [75] performed a similar Markov chain analysis for a simple genetic algorithm 

and claim that Hf the finite population is sufficiently large, we can accurately predict the 

convergence behaviour o f a real GA\

Along with GA’s, simulated annealing [76] is another popular strategy for ‘black box’ 

optimisation that is inspired by nature. This is based around the fact that close tempera­

ture control must be maintained when cooling liquids into solids in order to attain a 

specific lattice structure. The most energy efficient lattice structure is obtained by very 

slow cooling and sometimes slight heating. This is reflected in the optimisation by only 

applying slight random perturbations and limiting the ‘temperature gradient’ (the 

amount of improvement allowed in new solutions). Successive solutions are also al­

lowed to be ‘hotter’ (or worse) than previous attempts.

Many other optimisation strategies exist [77], including and tabu search [78] and branch 

and bound [79] (branch and bound methods are not strictly black box since they rely 

explicitly on the cost structure of partial solutions [80]).

In conclusion fo r any algorithm, any elevated performance over one class o f problems 

is offset by performance over another class' [80].



100

In chapter 5 a variation of RMHC is used for the optimisation of a domestic hot water 

tank based on real-time pricing of electricity.



Domestic Hot Water Optimisation

5.1 Introduction

The objective of this thesis is to develop control strategies for electric thermal storage 

(ETS) systems under real-time pricing tariffs. The ETS devices under consideration are 

domestic hot water tanks and storage radiators. In the previous chapters the tools that 

are to be employed were investigated and chapters 5,6 and 7 evaluate the effectiveness 

of these tools in both simulation and actuality.

In this chapter the charging schedule for a hot water tank is optimised. Computer simu­

lations using actual consumption data compare the real costs of an optimised schedule 

and existing charging schedules. Eleven houses are simulated for one month.

101



102

In chapter 6 the controller for a storage radiator is simulated. This uses a similar optimi­

sation method to that used for the hot water tank, but introduces neural networks as a 

means of creating a thermal model from which to evaluate the candidate charging 

schedules. A ten week simulation compares the performance of the learning-optimised 

strategies to that of existing control options.

Finally in chapter 7, a storage radiator in a real room is controlled using a neural model 

predictive controller. Data was recorded for five months and an empirical neural thermal 

model of the room created. This model was then used to determine control set points 

five hours in advance to track a given room temperature profile, but with no optimisa­

tion. The controller was in continuous operation for 2 weeks.

Optimising ETS devices has been widely studied from various perspectives. In [81] the 

approach taken is to centrally control the water heating of blocks of houses, the main 

objective being to reduce peak load, a utility benefit. In [82] storage radiators are opti­

mised for cost and comfort but using time-of-use (ToU) tariffs, genetic algorithms and a 

resistance-capacitance (RC) building thermal model.

Neural networks have also been used to model building energy consumption [83,84]. In 

[85] a recurrent neural network was used to model a creche with a heated floor. The 

objective here was to optimise the start-up time so as to minimise energy consumption. 

A particularly ambitious project for using neural networks for domestic control is out­

lined in [86], where a house has been ‘computerised’. Optimising the heating control is 

being attempted in simulation [87] but the initial work only used neural networks to 

predict occupancy with a RC model used to predict the building response. The planning 

horizon is 120 minutes.

Model predictive control using neural network empirical models rather than first princi­

ple models has been attempted in simulation mainly for the chemical process industries

[88,89].



103

Any controller that is developed will ultimately rely on communication so that it can 

receive price and weather information. There will also be the need for half-hourly me­

tering if real-time tariffs are to be introduced. Such technology is already available and 

under trial in domestic houses [90]. Actual experiments in the logistics and hardware 

requirements of real-time control for thermal storage have been performed as far back as 

1989 [91,92].

This thesis is concerned with the development of control technology that is required to 

make real-time pricing feasible. An analysis of such tariffs is not given but sources for 

reference are [1,2,3,4,93,94,95,96,97]. What has to be considered is that using a predic­

tion of the next day’s demand sets the daily pool price. If this demand has the potential 

to adapt to the set price then the initial forecast is wrong. Will this have the desired 

effect of flattening the demand profile?

5.2 Model to be Optimised

Fig 5-1 shows the water heating system to be optimised. For each half-hour period there 

is a demand (litres) and price (pence/kWh), profiles of which are given at midnight for 

the following 24 hours. The criterion to be satisfied is that the demanded water (in the 

24 hours following midnight) must be supplied at a set temperature in the cheapest 

manner. Two heating elements exist, one in the storage tank (element 1) and one at the 

outlet (element 2). The latter is to ensure adequate supply temperature (Trequired) and can 

be supplied with warm water from the storage tank via tap 1 or ambient water from the 

mains via tap 2. For a 24-hour period of known demand and price, the challenge is to 

determine for each half-hour the water source (tapl/tap2) and the state of heating ele­

ment 1 (on/off) that will give the cheapest cost. Heating element 2 is not controlled but 

delivers the required amount of energy to maintain the delivered water at T ^ ^ .
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Fig 5-1 Schematic o f the hot water system

For each half-hour two decisions have to be made,

1. If there is demand then shall the source be tap 1 or tap 2?

2. Shall the tank be charged by activating element 1 ?

There are thus two options for each decision. If water is consumed in all of the 48 peri­

ods during a day then there are 2(48x2) potential solutions, of which the cheapest is 

sought, as depicted by Table 5-1.

Table 5-1 The control sequence to be optimised for the water-heating model

time slot 1 time slot 2 :: time slot 48

decision 1 decision 2 decision 1 decision 2 - decision 1 decision 2

Source? Charge? Source? Charge? Source? Charge?

tap 1 ? yes ? tap 1 ? yes? :: tap 1 ? yes ?

or or or or or or.

tap 2? no? tap 2 ? no? tap 2? no ?
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5.3 Simulated Water Heating Model

A simplified computer model of Fig 5-1 was created to determine the fitness of each 

candidate solution, which is the total cost over the 24 hour period (see appendix E for an 

example of the code used). The process was continuous in that the final tank tempera­

ture (time slot 48) was used as the starting temperature for the following day. The 

absolute accuracy of the model compared with a real hot water tank is not vital since the 

comparative costs of the existing schedules are being simulated from the same model. 

Several assumptions and rules were made to simplify the model,

1) No heat loss from the tank.

2) Complete mixing of water in the tank so it is always at a uniform temperature.

3) All demand is given instantaneously at the start of each half-hour, charging 

commencing on the recalculated tank temperature.

4) Charging stops when the tank water reaches the set point (demanded) tempera­

ture (70° C).

5) All water being delivered is topped up to the set point temperature by the direct 

acting electrical element (element 2) costing whatever the price is in that specific 

half-hour.

6) In the simulations for the existing charging profiles (E7 and E10) all the water 

was delivered from the tank via tap 1 and extra heat was added from heating 

element 2 if it was below the required temperature.

The E7 charging profile used is 00:00-07:00. The E10 profile is 02:30-07:00, 12:30- 

15:00 and 19:00-21:30. Element 1 was set at 2kW. Although heating element 2 is gen­

erally not present in domestic tanks it is required so that a fair comparison can be made 

between the charging schedules, as it ensures all schedules deliver water at the required 

temperature so that comfort is guaranteed.
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5.4 Data Used

The data (purchased commercially) used in these simulations originated from 100 

houses monitored over the course of a year. Each water outlet was logged every half-an- 

hour and from this all hot water outlets were grouped to find the total hot water demand 

in each half-hour period. There was no indication in the data of how the water was 

actually heated. Eleven houses were randomly chosen for simulations, which were 

performed for November 1994, with the corresponding actual pool selling price (PSP) 

used to calculate the cost.

Fig 5-2 shows actual hot water consumption and PSP over four days for a particular 

house. It can be seen that there are small price peaks just after midnight caused by the 

surges due to the existing E7 and E10 tariffs. This is even more pronounced on Saturday 

when the early morning price is almost as high as the maximum price for that day. The 

difference between weekdays and weekends can also be seen, with the weekend price 

generally lower because of reduced overall demand. The high peak on Thursday occurs 

at evening meal time and is a result of increased domestic heating, lighting and cooking 

electricity consumption. The water consumption tends to be concentrated between 8am 

and 10am that can be a period of high price. The consumption pattern on Sunday is 

spread throughout the day, highlighting how usage is related to lifestyle.
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Fig 5-2 Actual pool price and hot water consumption from a random house for four days in
November 1994

 hot water (litres/10)
pool price (ji>ence/kWh)
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Fig 5-3 The November daily averaged price and consumption for the same house

Fig 5-3 shows the average daily consumption profile for the same house throughout 

November and the corresponding average price. The morning water consumption is 

emphasised (hours 6-10), as are the early evening and midnight peaks in pool price.

These two figures show that although on the average things look predictable, on a day- 

to-day level there is much variation and potential for customised control strategies.

5.5 Optimisation Procedure

The optimisation technique used was based on random mutation hill climbing, as de­

scribed in section 4.5.3.3 on page 86. As well as proving superior in performance to 

GAs it is also more desirable from a controller memory standpoint as only two solutions 

have to be stored, as opposed to many if GAs were used.

In the original version of RMHC only one bit change is allowed between successive 

potential solutions, which means that it is unlikely to escape from any local minima. 

Three bit changes were introduced to overcome this potential problem. Introducing 

more than one bit change also has the effect of speeding up the process. This is because 

if there is no demand in any particular half-hour then the choice of tap 1 or tap 2 is
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irrelevant and a bit flip will make no change to the solution. Pre-processing the string to 

eliminate redundant bits would reduce the search space but require more processing 

power.

In any stochastic (i.e. having an element of chance) search procedure, there is no guar­

antee that the global optimum solution will be found. Once a solution had been given 

adequate time to reach a steady value, it was found more beneficial to restart the search 

as opposed to continue searching from the current position. In the optimisation the 

search was repeated three times with the best overall solution used. Each search con­

sisted of 2,000 evaluations, with the whole process taking about 7 seconds on a PI33 to 

optimise all 30 days.

The hot water tank is an example of a system where one change can have a profound 

effect on the outcome. If the tank is at its maximum temperature then the thermostat in 

the model will ensure that no more heating is allowed, regardless of the control signal to 

the element. For instance, if there is no demand all control signals for heating the tank 

would be ignored once it was at its maximum temperature. A change early in the day 

could result in a previously ignored signal becoming active. This makes the search more 

random rather than gradient based. To overcome this, all signals indicating that the tank 

should be charged were reversed if the tank was already at its maximum temperature.

The initial starting point can affect the search procedure, especially if there is low de­

mand throughout the day. To capture this possibility the initial guess is ‘do not charge 

the tank at all’, for which the associated cost will be that of using direct acting heating to 

satisfy the requirement. This is often the cheapest solution if there is low demand as it 

saves heating the tank and having excess hot water at the end of the day.

5.6 Profiling Usage Patterns

In the optimisation process the actual half-hourly consumption data was used. In reality, 

the controller will have to use estimated values on which to base the optimisation. This
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could be done via a keypad, with the occupants entering times at which they are likely 

to take showers, baths or use washing machines. An alternative method is to use past 

consumption patterns to make educated guesses as to a likely profile for the following 

day.

If consumption is to be predicted based on previous occurrences, it has to be assumed 

that there is some cyclical pattern involved. This is likely to be a predominant daily 

cycle with an underlying weekly cycle, which life generally revolves around.

A simple method of predicting consumption is to take an average value of volumes that 

occurred in the same half-hour of previous weeks. The method actually employed was 

to use a neural network to create a curve fit with daily and weekly components. This 

was achieved by having inputs representing hour-of-the-day and day-of-the-week, ap­

propriately coded as sines and cosines in order to achieve the cyclic pattern. Each 

unique combination of inputs thus had four output values for the four weeks of data 

available, an ill-posed problem. This has the effect of basically averaging the consump­

tion but fitting a generally smooth curve through the data, achieved by limiting the 

number of hidden neurons. 15 hidden neurons were used in this case.

The resultant profiles were used to optimise the heating system and the costs calculated 

by then using the actual consumption patterns. Because only four weeks of data were 

used the actual consumption figures for any half-hour contribute to the predicted profile. 

A more realistic test would be to use a running profile and use it for the week ahead, 

with the prediction day’s data not being involved in creating the profile.

5.7 Results

Consumption data from 11 houses for November 1994 was simulated for boiler sizes of 

10 to 1000 litres. Costs for E7, E10 and direct acting only heating strategies were also 

recorded. The results are shown Fig 5-4 to Fig 5-14. The actual demands in b) are trun­

cated at 20 litres and the x-axis in a) starts at 10 litres.
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5.8 Discussion of Results

5.8.1 Does Water Storage Save Money ?

If storage tanks did not exist then the water must be heated on demand at the cost of the 

current pool price. The cost of this option is shown in Fig 5-4 a) to Fig 5-14 a) by the 

straight line labelled ‘direct’.

In all cases the E7 and the optimised charging schedules are cheaper or as cheap as 

direct acting heating. E10 is generally cheaper but depends on the tank size and demand 

levels. House 2 shows that for a very low demand excessive charging with large tanks is 

wasteful.

5.8.2 How did the Profiling Perform ?

Two methods of optimisation were performed. The first was to use a predicted 

‘ Opt(profiley daily demand and the second was to use the actual ‘Opt (actual) ’ demand. 

After the optimised schedules were derived the costs were then calculated based on the 

actual demand.

Fig 5-4 a) to Fig 5-14 a) show that using the profiled demand compares very favourably 

to using the actual demand. Generally as the tanks get larger the actual demand is re­

quired to give a cheaper solution. This is because the more continuous nature of the 

profiled patterns will result in the tanks being over charged at times of low demand. 

This cannot be avoided as there is more storage capacity and hence increased energy 

consumption.

In the case of house 6 the profiled optimisation costs were cheaper than the actual opti­

misation costs for tank sizes of 200 to 400 litres. This means that the optimisation 

procedure did not perform satisfactorily when using the real data. By looking at the 

demand profile for week 1 (Fig 5-9 b) it can be seen that water is only consumed in 

about 5 half hours of the day, immediately making 44% of the search space redundant.
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By using the profiled consumption there is predicted demand in most half-hours, which 

assists the search procedure. For instances similar to this the search space could be 

severely reduced by eliminating the redundant bits.

The individual profiles in Fig 5-4 b) to Fig 5-14 b) show a wide variation from house to 

house and there is no ‘typical’ profile. The profiles are similar to a smoothed time- 

averaged demand, and in all cases the total profiled demand was within 5% of the actual 

total demand.

It might be suggested that ‘group’ profiles could be created for specific users, which 

would alleviate the need to measure actual consumption. The groups might be related to 

the number of residents, but as Fig 5-15 shows there is no obvious relationship between 

the number of residents and average daily consumption.
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Fig 5-15 Mean daily hot water consumption related to the number o f residents
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5.8.3 How Much Money could be Saved?

Fig 5-16 shows the percentage cost savings over E7 for the 11 houses. The data is from 

the optimisation results using the profiled consumption patterns, which is close to what 

could be achieved in reality. For most houses savings of between 20-40% are possible 

for tank sizes between 50 and 250 litres. If it is assumed hot water accounts for 40%

[81,90] of the domestic electricity bill then this relates to savings in the range 8-16%. 

Existing domestic tank capacities are within the range 100-250 litres.
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Fig 5-16 For tank capacities between 50-250 litres the optimised schedules show consistent savings
between 20-40% compared with E7.

5.8.4 Why is the Optimised Schedule Sometimes Worse?

For tank capacities over 300 litres the relative performance of the optimised schedules 

degrade compared with E7. For house 2, which has very low consumption, this decline
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starts at 150 litres (Fig 5-16). E7 is outperforming the optimised schedule, so why did 

the optimiser not arrive at a schedule similar to E7?

The reason for this is the balance between tank size, consumption and the optimisation 

process. In the system used the optimisation window was 24 hours and the schedule was 

calculated once per day. With larger tanks better performance will be achieved by in­

creasing the optimisation window. A tank of 600 litres can typically hold enough hot 

water for three days consumption. An optimal 24 hour schedule will probably not in­

volve charging the tank as it can be wasteful because of excess heating that is not 

required within that 24 hour period. Similarly for low demand a shorter window or 

continuous optimisation would result in improved performance.

Fig 5-17 shows the relationship between the mean daily water consumption and the tank 

size resulting in the cheapest cost for the E7 and optimised schedules. The optimised 

schedules are a significant improvement and suggest a range within currently available 

tank sizes.

It is interesting to note that the optimum E7 tank size has 5 times the capacity of the 

average daily requirement. By keeping a large volume of hot water the daily tempera-
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Fig 5-17 Optimum tank sizes
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ture reduction is small, so less input will be required by element 2. Introducing time 

dependent heat losses into the model would give a more realistic situation. In reality the 

system behaviour is not like that of the model, as water is not always delivered at the 

required temperature.

5.8.5 How is the Optimisation Working

Fig 5-18 compares an optimised solution with the E7 situation, showing how the tank 

temperatures and cumulative daily costs vary for a case with a 200-litre tank.

It can be seen that for the E7 schedule the tank is charged to full capacity starting at 

midnight. The tank does not require a full 7 hours charge, typically only 2 or 3 hours are 

required before it reaches the set point temperature. Examination reveals that the differ­

ence in cost occurs in the way the tank is charged over this night time period. The 

optimised solution delays charging in order to miss the peak prices that occur after 

midnight. Ironically these prices are a result of the night time tariffs being introduced, as 

there is a surge in demand at midnight when appliances are switched on. This is seen 

consistently for all three days. Days 1 and 2 show that the relatively low demand en­

ables a reduced temperature in the water tank. Rather than heat a full tank of water it is
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Fig 5-18 Comparison o f an E7 and optimised solution over 3 days
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more economical to part heat it and then just top up the demand to the required tem­

perature with direct heating. On day 3 the optimised schedule is roughly half the cost of 

the E7 schedule but has warmer water in the tank at the end of the day even though it 

started colder.

5.8.6 Local Minima

An example of how a search can become trapped in a sub-optimal solution is demon­

strated by Fig 5-19. Two charging schedules are shown (schedule 1 and 2) with their 

resultant cost and tank temperature profiles. The only difference in the two solutions is 

the hours at which the tank is charged, schedule 1 being charged in time slots 8,9,10 and 

11 while schedule 2 is charged in slots 1,7,8 and 9. The tap source was identical for both 

solutions. When this particular day was optimised in isolation these two solutions were 

constantly found, but schedule 2 would never be reduced to schedule 1. In order to 

achieve schedule 1 the search would have to be restarted.

What can be seen is that for any improvement more than one bit flip in the charging 

schedule is required. Four charging periods appear to be required but one bit flip will 

result in 3 or 5 charging periods. In order to keep four periods but redistribute the times, 

two bit flips are required, one to destroy and one to create. To jump directly from 

schedule 2 to 1 requires 4 bit flips to simultaneously flip periods 1,7,10 and 11, which is 

why it never occurred as only 3 flips were allowed. With four bit flips allowed the 

chance of jumping from schedule 2 to 1 is less than 1 in over 80 million, assuming the 

string is not reduced in length from 96 bits.

No intermediate solution is possible because of the demand in time slot 4. This illus­

trates the benefit in frequently restarting the stochastic search as opposed to continuing 

the search from a local minimum and also having the possibility of more than one bit 

flip between solutions.

What is interesting in these optimised schedules is that although both have a full tank of 

hot water available for the demand in time slot 15, cold water from tap 2 is selected and
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the hot water saved for the higher level of demand in slot 16. Once the tank is almost 

emptied (due to the demand at time slot 16) it is not recharged because there are no 

further cheap periods of which to take advantage.
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5.9 Chapter Summary

The simulations have demonstrated the potential for large improvement in water heating 

strategies based on real consumption data and prices. Saving of the order of 40% were 

not untypical, which would reduce the cost of electricity supply to domestic customers 

by 16%, based on water heating being 40% of the total consumption [81,90]. There are 

no technological barriers to implementing such a control scheme.



6
Storage Radiator Controller Simulation

6.1 What are Storage Radiators ?

A storage radiator (also commonly known as a storage heater) is essentially a brick that 

is electrically heated during the night and dissipates the stored heat gradually throughout 

the day. The idea is that the thermal storage capacity of the bricks is utilised to shift 

electrical heating load in order to help increase the load factor.

Fig 6-1 shows a cross section through a typical radiator. An electrical heating element is 

encased within the bricks and is used to heat up this ‘core’. Surrounding the core is 

thermal insulation that helps retain the heat. The core contains channels through which 

air circulates by natural convection, heating up the room.

129
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Fig 6-1 A cross section through a basic storage radiator

There are two manually operated controllers on the basic radiator. The first controls the 

energy input and adjusts the thermostat regulating the core maximum temperature. The 

second controls the heat output and adjusts the damper position, regulating the amount 

of air that is allowed to circulate through the core. The radiators (and water heaters) are 

hard-wired to a separate electrical circuit, which is activated from the electricity meter 

by a time clock or radio tele-switch.

In order to improve their controllability, fan storage radiators were developed. These 

have a high level of insulation to minimise heat loss, and an electric fan that can be 

activated to force air through the core when heat is required. The air gap in the core is 

designed so that this forced convection is required to extract the heat. This is done by 

having an inverted ‘u’ shaped air passage.
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6.2 Room Thermal Model

In order to simulate the heating controller, a thermal model of a room is required which 

the neural network has to attempt to emulate. The neural model is then used to evaluate 

heating strategies, of which an optimum is sought. The thermal model is derived from 

first principles and attempts to emulate the response of a real system.

An explicit finite difference method was used to create the thermal model. This is a 

nodal approach that calculates temperatures at nodes within building elements (walls, 

core etc.) at discrete time intervals, which was every 5 seconds in this particular simula­

tion. Heat transfer within the elements is by conduction, with convection taking place at 

the element surfaces. Each wall can be given different thermal properties and exterior air 

temperatures. Wind speed and outside air temperature were the only weather variables 

required, as solar gains were ignored. Every 5 seconds the net energy input into the 

room is calculated and the room air temperature updated. Appendix F gives more details 

of how the storage radiator was simulated and code for a room with a storage fan heater.

The simulated room had a 2kW storage radiator and a lkW direct acting heater. The 

direct acting heater was only allowed to operate at times when there was a required 

internal temperature. The storage heater had a thermostat that stopped charging if the 

core temperature was above 700 °C. The room dimensions were 4 x 5 x 2.5 metres high, 

with 50% of the wall area exterior, 10% of this glazed. There were 0.1 air changes per 

hour with the outside air. Data on the room conditions was recorded at the end of every 

half-hour.

The exact details of the room configuration are not important and do not have to reflect 

any ‘typical’ type of room that the heater will be placed in. What is being investigated is 

if the neural network can learn the behaviour of the given room, whatever its properties.
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6.3 Neural Network Emulator

The purpose of the neural network is to generate an empirical model that will emulate 

the behaviour of the theoretical model. The objective is to be able to predict what the 

room temperature will be in half-an-hour, given the current conditions and the heat 

inputs in that half-hour. The heat inputs can then be optimised so that the required tem­

perature is satisfied in the cheapest manner.

The neural model was created by reducing the heat transfer process into three distinct 

parts. Fig 6-2 is a schematic of the process and Fig 6-3 the neural emulator created.

Network 1 predicts the next inner core temperature (TCin+1) given the current core 

condition (TCin, TCout) and the storage charge occurring in that time slot 

(SHcharge+1).

Network 2 predicts the next outer core temperature given current core conditions, the 

room temperature and the previously predicted next inner core temperature.

Network 3 predicts the next room temperature given the current and predicted core 

states, the direct acting input (DAcharge+1) and historical weather temperatures for the 

previous 12 hours.

Networks 1 and 2 had two hidden neurons and network 3 had three. Hyperbolic tangent 

(tanh) and linear neurons were used in the hidden and output layers respectively, and all 

data scaled to lie in the range [-1,1]. Any network output outside this range was 

rounded to -1 or 1, effectively using an activation function known as softmax.

The time step of the neural model is half-an-hour. Starting at midnight, two charge 

values for the storage and the direct acting heaters are fed into the emulator and the 

thermal changes predicted. The time step is advanced and the predicted state is fed-back 

to become the current state. This process is repeated for all 48 time steps so the emulator 

can predict the room temperature response to the given 24 hour charging schedule, but 

based on a single model predicting half-an-hour ahead.
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Fig 6-2 Schematic o f the heat transfer boundaries in the model
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Fig 6-3 The neural emulation o f the theoretical model for predicting the room temperature in half-an- 
hour, given the storage and direct acting energy inputs

TCout = core outer surface temperature 
Troom = room temperature 
SHcharge = energy to storage heater

TCin = core inner surface temperature
Toutside = outside temperature
DAcharge =energy to room by direct acting heater



134

In the neural emulator, outside weather temperatures are required for the 12 hours pre­

vious to the current time slot under consideration. In the simulations retrospective actual 

temperatures are used, although in reality these would have to also be predicted.

6.4 Optimisation Procedure

The neural emulator was used to evaluate proposed daily schedules of half-hourly 

charges for the storage and direct acting heaters. A schedule consists of a string of 48 or 

96 numbers, depending on the optimisation used. The evaluation was equated in terms 

of cost, calculated by using the pool price.

Occupancy profiles were created giving the hours at which set point temperatures are 

required. Both the occupancy times anfl set point temperature values were varied so as 

to create a diverse range of conditions for the neural network to learn. If no set point 

was given (room unoccupied) then the temperature could behave in any manner, but a 

condition was given that the direct acting heater could not be on in these periods.

To compare the neural controller performance with existing heating strategies on a like- 

for-like basis, it was a requirement that the schedules must attempt to satisfy the room 

temperature set points given by the daily profile. This was the reason for including the 

direct acting heater, which operates only when there is occupancy in order to make up 

any shortfall in temperature.

In each half-hour there is a storage heater electrical charge and a direct acting electrical 

charge. In the theoretical model these are either 2 kW (storage) or 1 kW (direct). Be­

cause the thermostats can operate every 5 seconds, the recorded value at the end of each 

half-hour was equivalent to a continuous charging at a fixed percentage of full power. 

The load inputs to the neural emulator are thus real numbers, equivalent to the percent­

age of full power that should be utilised.
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In order to implement this in the optimisation procedure, the string representation has to 

be changed. The control actions, previously represented by a bit at a particular location 

on a string, are no longer binary choices. Each action can now be any real number be­

tween 0 and 100, so the string could be real valued with a mutation being the random 

generation of a new real number as opposed to a bit flip. From the experience gained in 

chapter 5, a random number of mutations (between 3 and 10) were allowed between 

each evaluation.

The primary optimisation task is to track the given temperature profile. The ability to 

give the heaters variable charge levels (although constant in each half-hour period) 

means that there is an infinite number of solutions to this problem. Because heat can be 

stored and the price varies every half-hour, each solution will have a different associated 

cost, the one giving the lowest being sought. This is a difficult optimisation problem and 

attempting to find the global solution would be a futile task. What is required is a 

method that can give a reasonable solution.

To reduce the search space the storage heater loads were limited to 5 discrete values 

equivalent to 0, 0.5, 1, 1.5 and 2 kW. This is more realistic to how a real controller 

would operate by activating a set of four 0.5kW elements. It also has the advantage over 

using continuous real numbers in that a random real mutation is unlikely to set the 

charge to zero, or ‘off, whereas there is a 1 in 5 chance with the discrete coding.

As there is no control of the storage radiator output, the optimisation is simpler than that 

of the hot water system in chapter 5 as no decision has to be made as to the source of the 

heat. If a storage fan heater were simulated then the decision to switch the fan on would 

be equivalent to taking hot water from the tank.

Because the set point temperature has to be satisfied then only the storage heater charge 

needs to be optimised. If the storage schedule does not meet the required set point in any 

particular time slot, the direct acting heater is activated by incrementing the emulator 

load from 0 to lkW until it is predicted that the set point will be achieved. A storage
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schedule will thus automatically have an associated direct acting cost, giving the total 

cost for that solution.

By optimising for minimum cost, a likely solution is never to charge the core. To pre­

vent this scenario, a high penalty cost was added to the total cost if there was under 

heating at times when set points were required. Because of this it was necessary for the 

initial starting schedule to include a high degree of charging. If the initial solution was 

not to charge then there would be a high penalty cost due to the under heating. If ran­

dom mutations did not instantly eliminate under heating in at least one time slot, then 

the same penalty cost would still be incurred as well as an added cost due to the charg­

ing, thus increasing the overall cost. The search procedure would thus never advance.

6.5 Simulation Procedure

Two simulations were performed in the optimisation. One was for a situation where the 

thermostat switches on the radiator core and direct acting heater were operational when 

the optimised storage schedule was passed through the building model (NNopt). The 

model then automatically activates the direct acting heater when required, giving a 

similar control scheme to existing strategies.

The second simulation (NN) was performed where both direct acting and storage 

charges were simultaneously optimised (using a real valued string of length 96) to 

maximise the comfort satisfaction. The cost function being minimised was thus the total 

absolute error, where the error is the difference between the required set point and the 

model prediction. The optimised solution was fine tuned by adjusting the direct acting 

charge so that the set points were satisfied, and the schedule then passed through the 

building model with no thermostat switches. This was performed to provide a yardstick 

from which the effectiveness of the cost optimisation could be assessed and to test the 

accuracy of the emulator predictions.
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E7, E10 and direct acting only performances were also evaluated. In these cases the 

control rule was given that the direct acting heater would switch on if at any time during 

the occupancy periods the room temperature was below the set point, and switch off 

again once the set point was exceeded. During non-occupancy periods the direct acting 

heater was switched off. For the simulation with only a direct acting heater, the element 

size was increased to 2 kW to prevent under heating.

The controller was simulated for 72 days starting from 1st January using weather data 

from Kew. The neural networks need some initial data on which to train, so 3 days on 

an E7 charging profile were simulated and used to create this initial database.

Fig 6-4 is a representation of how the simulation proceeded. From the database of actual 

past behaviour, training patterns were created and the three networks trained. The net­

works were then were used as an emulator to evaluate candidate charging schedules, 

which, had been suggested by the optimisation process. Once a solution had been ob­

tained, the charge levels were then applied to the theoretical model and this ‘actual’ 

behaviour recorded and added to the database. The process was then repeated for the 

next day.

actual behaviour
24hr weather 
profile predicted behaviour

24 hr room profile

pool prices

update
database

train
neural
networks

pass
schedule
through
theoretical
model

optimise
schedule
using
neural
emulator

Fig 6-4 A schematic o f how the simulations were performed
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In re-training the networks, the previous weights were used and given 25 epochs train­

ing on the patterns in the updated database. The optimisation was allowed to proceed for 

800 function evaluations, which took considerably longer than the network training, 

although still only in the order of 10’s of seconds.

6.6 Results

6.6.1 Did the Controller Work ?

Without analysing the results too deeply, did the controller generally achieve a satis­

factory performance in terms of temperature control -  or basically, ‘did it work? The 

results of simulation NN, where there is no thermostatic control, is shown in Fig 6-5. 

The differences between the predicted and achieved temperatures are shown chronologi­

cally over the 72 days.

It can be seen that eventually, after some initially large errors, the achieved temperatures 

consistently fall well within 1 °C of the predictions. For building thermal control this is 

within acceptable limits and it can thus be stated that in simulation the model predictive 

controller does work.

4
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1

0
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■3
Simulation Day

Fig 6-5 Half-hourly errors over the 72 day simulation. The error is the difference 
between the emulated and achieved temperatures.
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6.6.2 Why do the Large Initial Errors Occur ?

From Fig 6-5 it is observed that early in the simulation there are days when the errors 

are relatively large, indicated by A, B and C. A close examination of the data, shown in 

Fig 6-6, reveals why these errors occur.

Large errors occur on day A, the first day that the controller is used. The three previous 

day’s data were used for training, which originated from an E7 charging schedule. Dur­

ing these three days, the core temperature never falls below a certain value and the data 

would be scaled between these current limits of experience. The emulator core tem­

perature will never fall below its previous minimum whatever the charge, due to the fact 

that all predictions fed back have to lie within the scaled range [-1,1]. There can thus be 

a solution with no storage charge but a heat input equivalent to the core being at the 

previous minimum. This is what has happened on day A, with the actual response of the 

core temperature to no charging falling below what the network predicted. As a result 

the room is under heated.

The same effect is repeated for day C. There is no occupancy during this day so there 

will be no storage charge. The core is already at the minimum temperature previously 

experienced at the start of this day, which the emulator guarantees will not to be sur­

passed. Also at the start of this day the room temperature is close to its lowest ever value 

and the emulator again has restricted the predicted temperatures to lie within current 

experience. This is why the predicted temperature for day C is almost constant at its 

previous minimum. Once the new data has been added to the database the limits change, 

as can be seen for the following day.

For day B the direct acting charge is at a higher level than had previously occurred. Any 

charge level above that previously experienced will not have the corresponding increase 

in effect. This is due to the saturation of the tanh activation function that limits extrapo­

lation. When the optimised charge is then applied, overheating occurs. This shows an 

inefficiency of the optimisation process, as the direct acting input could have been
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predicted)

outside
tem perature

core
tem perature

ftftllh l i  III kW direct

error
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3 days E7

Fig 6-6 Investigating why the early errors occur

reduced giving the same comfort for less cost. The fine tuning did not correct this as it 

only adjusted the direct acting heat input upwards.

The initially large errors occur due to the constraints placed on the emulator to prevent it 

from extrapolating (by using the softmax output function). If these constraints had not 

been set (by having a linear output function) then similar results would have been ex­

pected if the model had used the full range of the tanh activation function. This would 

ensure that any fed-back input outside current experience would be in the saturated 

regions and thus automatically set at either -1 or 1.
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The neural network learns the room characteristics within its current limits of experi­

ence almost immediately. Errors occur when these limits are exceeded but once the full 

range of data has been experienced the performance is satisfactory.

6.6.3 Performance of the 1-step-ahead Predictor as a Recursive 
48-step-ahead Predictor

The neural emulator was created in such a way so that there were predictions used 

within the current time step to estimate the room temperature -  or a prediction based on 

predictions. These predictions were then fed-back to be used as inputs for a further 47 

time steps through the day. This deliberately created ‘worst case scenario’ has the po­

tential for multiple error accumulation and therefore should rigorously test the accuracy 

of the emulator models.

Fig 6-7 shows how the prediction errors accumulate throughout the day. The initial one 

step ahead error for hour 0.5, where the exact previous conditions are known, is around 

0.07 °C. This immediately doubles for the next time step but gradually levels off at 0.4 

°C around time step 20 (hour 10). The sharp jump at hour 7 is due to the occupancy

0.45 

0.40 

o  0.350
t r  0.30 
2
111 0.25
(1)
1  0.20 o  (/)
§  0.15

ro 0.10 a>
2  0.05

0.00
0.5 2 4 6 8 10 12 14 16 18 20 22 24

Hour of Day

Fig 6-7 The absolute error o f the emulator for each time step averaged over the 72
days

♦  ♦  ♦
♦  * ♦  ♦
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patterns consistently requiring a set point temperature for the start of the day. This will 

result in direct acting heaters being switched on, giving a large change in room tem­

perature and the potential for larger errors.

Averaged over time it can be seen that there is a gradual deterioration in performance up 

to hour 10 and then a relatively constant error for the remainder of the day. It could 

easily be assumed from these results that the errors of each individual day will follow a 

similar pattern, with errors gradually accumulating as the fed back predictions become 

gradually worse.

A closer inspection of the actual daily errors shown in Fig 6-6 and in more detail for a 

different period in Fig 6-8 reveals this is not the case. For day 50 (Fig 6-8) when there is 

no occupancy and thus no heating, there is a general drift in the error up to a point, but 

even here it starts to improve in the later stages of the day.

6.6.4 Comparison with other Heating Strategies

To assess the relative performance of the model predictive controller the simulations 

were repeated for E7, E10 and a direct acting (DA) only charging schedule. The results 

are shown in Table 6-1.

The comfort optimised (NN) neuro-controller is almost twice as expensive as all the 

other heating strategies, although its actual energy consumption is comparable to E7 and 

E10. This is unsurprising, as its only objective is to satisfy the demand without any cost 

considerations. This demonstrates how electric heating can be very expensive if not 

efficiently regulated.



D
ir

ec
t 

Ac
tin

g 
H

ea
te

r
E

m
ul

at
or

 
Er

ro
r 

(°C
) 

ch
ar

ge
 

le
ve

l 
(k

W
)

143

V

r

600

500

400

300

200

44 45 46 47 48 49 50 51 52 53

Simulation Day

Fig 6-8 The actual daily errors do not follow the time averaged pattern o f Fig 6-7

Core 
T

em
perature 

(°C
)



144

The cost optimised solution (NNopt) is 5.5% cheaper than E7 and uses 27% less elec­

tricity. This imbalance in the cost savings is in part due to the fact that there were some 

high pool prices. The peak pool price was 70p/kWh whereas the mean price of the 

cheapest 90% of half-hours was only 1.5p/kWh. For NNopt, 34% of the direct acting 

cost was accumulated in only 4% of the time that the direct acting heater was opera­

tional.

The improvement brought by the controller is in its ability to accurately regulate the 

temperature. In E7 there is excessive overheating of effectively 2.29 °C for a continuous 

period of 10 days, with E10 being worse. The neuro-controller has weather information 

for the day ahead so it can set the loads at a level so that overheating will not occur. 

Overheating does occur for 21 slots out of a possible 1,383, due to set points of 16 °C 

being given, the cooling rate being too low for the temperature to fall enough in the time 

specified.

Table 6-1 The relative performances o f 5 heating strategies

I I M i ■

COST (£)

Storage 30.99 6.70 12.17

p i

MM
II
I!
i l 17.16

Direct 4.55 9.37 4.83 1 3.01 21.86

TOTAL 35.54 16.07 17.00 20.17 21.86

CONSUMPTION (k m )  

Storage • 986 429 959
It

I': 1097

~ -- 104 341 104 | aB M M 622

TOTAL 1090 770 1063 1| 1159 622
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The most energy efficient solution is direct acting only, as energy is not wasted heating 

periods that do not require a set point. The neuro-optimised solution (NNopt) is 23% 

less efficient than direct acting but 26% cheaper.

6.7 Emulator Improvements

The neural emulator created was a 1-step-ahead predictor that used its own predictions 

to extrapolate to 48 time steps ahead. At each time step the only information it receives 

that is not predicted directly from the starting conditions is the outside temperature, for 

which actual values are used. By feeding back the predictions to advance a time step 

there is thus no new information being introduced apart from potential errors.

A better approach would be to have 48 networks, each trained to predict the temperature 

for a given time step ahead. The inputs would be the initial starting conditions and the 

weather and loads that had occurred up to that time step. Intermediate temperatures are 

thus not introduced as they do not need to be known for the current prediction.

By taking the average temperature from a population of models for each time step (see 

section 3.10 on page 61), the accuracy would be further improved.

The potential effect on the error of ‘wrong’ temperature predictions needs to be quanti­

fied. It is hypothesised that this will only be important when there are sudden 

unpredicted cold fronts and the model underestimates the heating requirement.

6.8 Chapter Summary

The simulations performed in this chapter have demonstrated that theoretically neural 

networks could work as model predictive controllers of domestic storage heating. The 

main benefit over existing systems is anticipating when overheating will occur and 

reducing the charge appropriately.



7
Real Neural Storage Radiator Control

7.1 Background

The simulation results from the previous chapter indicate that neural networks could be 

used to improve storage radiator control. Computer simulations can significantly reduce 

the development time of new products, but more practical problems may only come to 

light once working prototypes are developed. The development and results from a pro­

totype of what is believed to be the world’s first neural network controlled domestic 

storage radiator are reported in this chapter.

The room being controlled was on the first floor of an occupied two-bedroom property 

located close to Bedford town centre. A plan of the first floor and photograph of the 

exterior are shown in Fig 7-1 and Fig 7-2.

146
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Tout,

15 mins

Troom
/  /

Tcore

bedroom

Tcore+2° r*....

5 hrs

O drier
stairs

adjoining property

Fig 7-1 A Plan of the first floor and schematic o f the control scheme

' ’ * -

Fig 7-2 A photograph of the exterior o f the house identifying the room under control
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The house is a converted nursery that was constructed around the turn of the century. 

The walls are solid 9-inch thick brick and there is a large glass skylight above the stairs. 

The room being monitored was the spare bedroom which was used as a study and had a 

1.7kW storage radiator initially on E7, as did the bedroom. Below the study is a liv­

ing/kitchen area with a storage-fan-convector heater on E7. Below the bedroom is the 

bathroom. On the landing of the stairs was a clothes drier that was used from time to 

time with and without an extraction hose venting through the skylight.

Temperatures logged were ambient, room (x2), storage heater core, storage heater air 

outlet and a desk lamp temperature. This lamp temperature was included as a potential 

means of identifying occupancy and thus heat gains from computer equipment, lighting 

and body heat. Logging commenced on 25th September 1997 and continued in 15- 

minute intervals until 14th May 1998. The neural controller was in operation from the 

25th February with the period 17th -  30th March being the final ‘de-bugged’ version.

Fig 7-3 shows the ambient, core and room temperatures for November, when the heater 

was being charged on an E7 schedule. It can be seen how adjusting the input charge 

setting changes the maximum allowable core temperature. The reliance of the room 

temperature on ambient is evident, with there being little time delay between the under­

lying room temperature and ambient. This would suggest that the house is relatively 

lightweight. The responsiveness to the core temperature can also be seen, with the 

maximum room temperature occurring at 7:00 am when the core is hottest, confirming 

how the existing heater does not give the heat when it is required.

Fig 7-4 shows the whole heating season. The charge was initially set on E7 and then 

varied by disconnecting it from the off-peak circuit and controlling it by means of a 

timer plug. This change was introduced so that a diverse range of data could be col­

lected. Several periods were included when the heater was switched off and the core 

allowed to drop to room temperature. This gave data at the lower extreme and an indi­

cation of the rate of heat loss of the core at different temperatures. A second reason for 

switching off the heater can be seen by the relatively high room temperature that was 

being maintained.
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Fig 7-4 Room, core and ambient temperatures for the whole heating season
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The heating season in which the work was undertaken was unusually warm. Because it 

was the last winter of the project, in order to gather data, the heating had to be on when 

normally it would not have been. The following are press releases from the Met. Office 

describing the weather at the time,

ENGLAND 1997: TURNED OUT WARM AGAIN - This year has been the third warm­
est in England since records began over 300 years ago. August in 1997 was the second 
warmest on record, and February and March were both particularly warm months over 
England.

SCORCHING START TO 1998 - The first six months o f 1998 have been easily the 
warmest first half o f a year globally since reliable records began in 1860. Provisional 
observations analysedjointly by The Met. Office and the University o f East Anglia show 
that the temperature averaged over January - June 1998 has been some 0.6° C greater 
than the average climate (calculated from the period 1961-1990). Each individual 
month in 1998 so far has been the warmest such month on record. Furthermore, the 
twelve month period July 1997 to June 1998 (with an anomaly o f 0.56° C) has been very 
much warmer than any other 12 month period not influenced by the current El Nino.

Not surprisingly, by tomorrow (Friday) morning April 1998 will be the wettest April 
this century.

7.2 Data Analysis

Data from September to February was analysed in order to create a fixed model that 

would be placed in the controller.

The simulations in the previous chapter used electrical charge as the control variable. In 

the practical tests only temperatures were measured, so the control decision is to pre­

determine a future core temperature that will track a future set point temperature. The 

control variable is thus the core temperature.

The control horizon in the simulations was up to 24 hours and depended on knowing 

future ambient temperatures, which were used retrospectively. In reality a weather 

forecast is required, the only option available for the prototype being an ‘educated 

guess’ (using a neural forecast), which limited the prediction horizon that could be used.
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The importance of ambient temperature to the system determines how far ahead it 

would be reasonable to model, knowing that ambient predictions are likely to be poor. 

Several neural networks were trained to model a future room temperature given the 

current core, room and ambient temperatures. Both the intervening core and ambient 

temperatures were included and then only the intervening core temperatures. This was 

done in order to quantify the importance of the ambient temperature. In the neural net­

works it was found that one neuron was sufficient to model the system. A nai've 

prediction, which simply says that the future temperature will be the same as the current 

temperature, was also made. This is the worst case model and should always be used for 

evaluating neural models to ensure that they are doing more than simply repeating the 

last known value. The results are shown in Fig 7-5.

The intervening core and ambient temperatures determine the major heat transfer proc­

esses into the room and will thus influence the future room temperature. By including 

both of these in the model the rms error for a 15 hour horizon was 1.07 °C, compared

3.0

naive

2.5

2.0 naive during 
neural control

intervening cc 
temperatures onlyOO

1.5
<1)
in

1.0
intervening core and 
ambienl temperaturesactual during 

neural control
0.5

0.0
16148 10 1260 2 4

Prediction horizon (hours)

Fig 7-5 Neural model errors for predicting future room temperatures. Inputs are the current core, room 
and ambient temperatures and intervening ambient and/or core temperatures. A naive 
prediction assumes that the future room temperature will be the same as the current. The data 
used is for the period September-February.
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O O
with 1.71 C by only including the core temperatures and 2.63 C for a naive prediction. 

The longer the prediction horizon the more important it becomes to know the ambient 

temperatures, although just knowing the core temperatures is still a significant im­

provement over a naive prediction. These results show that a network with a single 

hidden neuron gives a reasonable model and suggest that linear regression might work 

just as well. A prediction horizon of 5 hours was chosen, for which the difference in rms 

errors between knowing and not knowing the intervening ambient temperatures was
O

0.23 C for the data set analysed.

If a building is left for long enough then the room temperature will reach thermal 

equilibrium with its surroundings. It is thus not necessary to know the current room 

temperature if a long enough prediction horizon is being used. Two models were 

created, one included the previous 20 hours core and ambient temperatures but not the 

initial temperature 20 hours ago, while the other included the past 5 hours core and 

ambient temperatures but also the initial room temperature, as was used in the 

controller. The errors of these models are shown in Fig 7-6.

The rms error for model 1 is at a level that is only marginally better than a naive predic­

tion. This might have been be discarded as poor but a close analysis of the errors gives 

some meaningful information.

The model indicates that something different is occurring at the end of October and 

December, shown by the constant bias from zero error. The last few days in October 

saw the first cold front, as can be seen from the ambient temperature of Fig 7-4. The 

downstairs heater had a controller that would keep the room at a set temperature by 

activating either the fan to release stored heat or the convector, which was available 24- 

hours. During this period this control was set so that there was a constant heat output 

throughout the day in order to keep off the chill. Normally this was only activated dur­

ing occupancy. The effect of this on the room above is that there is an increased level of 

heat input through the floor, which changes the model and is why the errors are seen to 

be constantly underestimating the room temperature. This extra heat input to the room
O

can be seen to equate to 3-4 C.
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Fig 7-6 Not including the current temperature in the model gives a worse error but anomalies are easier 
to spot

At the end of December the house was unoccupied and the downstairs heating switched
O

off. Model 1 clearly identifies the change by showing that the room is about 4 C cooler 

than is expected, the missing heat input from the room below. Model 2 does pick up 

some change during this period with the errors being constantly positive, but what is 

more noticeable is the reduced noise level in the errors. This is due to the house being 

empty and identifies that there will be noise in the data caused by the occupant’s be­

haviour.

The information extracted parallels with the causal model created for electrical load 

modelling in chapter 2. Including the existing temperature has the same effect as in­

cluding previous loads, giving a better model by introducing a good initial guess. This 

can give a good model, but as has been demonstrated, causal models can reveal a lot of 

information even though the errors are worse. What they do is give clues as to how the 

model could be improved, which in this case would be to include as inputs the tem­

perature of the room below and all other events that cause heat fluctuations, or ‘noise’.
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Examples of temperature fluctuations in the test room that are caused by events other 

than heater or ambient temperatures are shown in Fig 7-7. The 11 day period shown 

includes 3 days when the house was unoccupied, seen to be a time when the room tem­

perature is well behaved. Occupancy can be seen to introduce a certain amount of noise, 

with the periods when the drier was on being clearly identified as spikes.

These ‘spikes’ are short-term energy inputs that do not affect the background tempera­

ture in the long run, and as such are considered to be noise. If the current temperature 

happened to be during one of these brief anomalies then errors would be introduced in 

the model as this would not represent the ‘real’ background temperature. In an attempt 

to filter out this noise and give a more stable longer term temperature, the three preced­

ing as well as the current room temperature were included in the model. From this an 

effective time averaged current temperature will be calculated, with the resulting model 

showing a reduced level of noise in the errors.

20

drier

test
room

oo

2<1)
Q .EQh-

ambient

31st 2nd 3rd 4th 6th 7th29th 30th 1st 5th28th
-10

FebruaryJanuary

Fig 7-7 An example o f occupancy creating 'noise’ that the network does not have causal information to 
model. The unoccupied period can be seen to be ‘noise ’free.
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Fig 7-8 An example o f temperature fluctuations in the downstairs room

Fig 7-8 shows an example of the temperature fluctuations that occur in the room below 

that will be transmitted into the test room through the floor and by natural air circula­

tion. Short-term temperature increases in the late evening due to cooking and heater fan 

activation are very evident as is the underlying E7 room heating. These fluctuations will 

affect the test room temperature and are reasons why the noise is present in the model 

errors.

7.3 Neural Controller

In the prototype controller it was considered ambitious to attempt both predictive con­

trol and optimisation in the first instance. The only objective required was to track a 

given temperature by implementing control set points of the core temperature deter­

mined 5 hours previous. This was implemented by using the neural emulator as shown 

in Fig 7-9 and Fig 7-1.
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Fig 7-9 The neural emulator createdfor the heater control. Every 15 minutes a new core temperature for 
5 hours time is calculated (Tcore+20) by finding such a temperature that minimises the error between the 
set point and the model prediction. There are upper and lower bounds on this core temperature deter­
mined by what it is physically possible to achieve from its previous state. Once a core temperature is 
determined it is added to a stack and the controller acts as a thermostat switch that tries to achieve the 
core temperature at the top o f the stack (Tcore+1). Once a core temperature is determined and enters the 
stack it cannot be adjusted.
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The emulator consisted of 6 neural networks. Five of these were to predict the ambient 

temperature 1,2,3,4 and 5 hours ahead. These predictions were then used by the main 

network to determine the required core temperature.

The network inputs to predict the ambient temperature were the previous 24 hours tem­

peratures along with the hour of the day. The output was the temperature either 1,2,3,4 

or 5 hours ahead. Including the hour of the day, coded as a sine and cosine, improved 

the model performance by giving some reference as to when the turning points would 

occur. Each network weights were trained individually, not as a single network with 5 

outputs.

The network weights were calculated off line and then implemented in the controller 

with no further training. Fig 7-10 shows the errors of the created emulator on the train-
O

ing data, showing the created model predicting a temperature within 1 C in 81% of

The controller hardware was an IAC600 donated by Satchwell Controls with the soft­

ware custom written Visual Basic. As different temperature sensors to the data logger 

were used some calibration was required which is a possible source of error.

cases.
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Model 2 - used in the actual 
controller to set core temperatures 
5 hours in advance r RMSE = 0.86 °C 
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Fig 7-10 The errors on the training data for the model implemented in the controller
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Fig 7-11 shows the results over two periods in March, indicating how the set point was 

continuously varied. Because storage radiators have a slow response the set point cannot 

always be achieved. The reported error is thus the difference between the model predic­

tion and the achieved temperatures.

O
The rms error over the final two week period 17th-30th March was 1.06 C with a naive

O
prediction error being 1.57 C. How these relate to the training data is shown in Fig 7-5 

(on page 151). Because there is set point temperature control the naive prediction is 

better than on the training data when there was no temperature control. This is because 

temperatures are more constant and thus likely to be the same 5 hours ahead. The actual 

rms error is slightly less than would have been expected if no intervening ambient tem­

peratures were used. This would suggest that the temperature predictions were poor, as 

was later confirmed.

The errors can be seen to be constantly underestimated, which is probably due to a slight 

calibration error. If this was not the case and they had a mean error of zero then the rms

actual and predicted room temperatures25

20

set point

ambientC L

model error

29th16th9th

March 98

Fig 7-11 The results o f the neuro-controiled storage radiator. The ‘de-bugged' controller operated con­
stantly for two weeks from the 17th March.
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error would be significantly reduced.

Fig 7-12 shows the bedroom temperature over the same period as for the neuro-control. 

The room is smaller but has an identical heater operating on E7 and is thus useful to 

gauge what the uncontrolled test room response might have been. Daily temperature
O

swings of up to 4 C are common, which would have been even greater in a larger room 

with more exterior wall area. It is also noticeable that the room is at its coldest in the 

late evening when warmth will be desired. The control achieved by the neuro-controller 

can thus be considered a success.

26
bedroo 
on E7c25

24
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20

19
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17
27th22nd 23rd21st 24th 25th19th 26th17th 18th 20th16th

16
March

Fig 7-12 The bedroom temperatures over the same period as fo r the neuro-control with an identical
heater operating on an E7 charging schedule

7.4 Chapter Summary

This chapter has reported the results of a prototype neuro-controller for a storage radia­

tor. Important lessons have been learnt that would not be evident in simulation, namely 

the introduction of noise caused by occupants and the importance of heat gains through 

floors.



Project Overview

8.1 About this Chapter

The New Product Development Department of Eastern Electricity sponsored this re­

search project to develop an intelligent controller for storage radiators. Soon after 

commencement the decision was taken to close the department, ending any interest they 

had in the research and in any future development of a product.

This chapter summarises the key stages of the work, giving recommendations of how 

the results might be of use to Eastern. The most important offering that can probably be 

given is a description of how this neural network project evolved over the four years, 

highlighting important lessons that were learnt. This will hopefully be of use to others 

embarking on similar work.

160
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8.2 Load Forecasting

The load forecasting techniques developed should be of interest to Eastern as electricity 

trading in the free market will require accurate predictions to cut costs and stay ahead of 

the competition. Initially, all Eastern wanted to know from their data was a growth trend 

over the years, which was achieved, with much more besides.

Compared with existing commercial products the techniques developed deal with 

growth and holiday periods in much more detail. The reported results, although not 

directly comparable, appear superior.

American utilities are investing heavily in neural forecasting techniques, with invest­

ments in commercial software of up to $100,000 [98] resulting in improved forecasting 

accuracy [19,20] and financial savings. With such large amounts of money being paid 

for a technology in its infancy there is potential for developing commercial software, 

which would be very easy to accomplish.

8.3 Water Optimisation

The results from the simulations showed that savings were made by avoiding the mid­

night price peaks, caused by the E7 surge. This can be achieved by utilising the radio 

tele-switch control of off-peak heating systems. This option has not been utilised by 

Eastern until very recently, with switching occurring at the same times every day. Al­

though it is in the tariff contract that times can be varied, the reasons for not exercising 

this control option appears to be a fear of upsetting customers. If this is the case then it 

was an expensive investment installing the tele-switches in the first place. Complaints 

from customers since the switching times were varied have been very few.
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8.4 Intelligent Heating Control

Development of a commercial product for domestic storage radiator control is not an 

immediate necessity, as other technologies have to fall in place to provide the infra­

structure required. These include half-hourly meters, real time tariffs and 

communication channels for weather and pool price data. The last four years has seen 

exponential growth in telecommunication and microchip technologies including the 

internet and the use of home PC’s. What was probably considered a fantasy product four 

years ago is now very much achievable at ever decreasing costs.

It would be advisable for anyone wanting to develop the idea to start in commercial 

buildings, where the potential of large savings might encourage the initial investment 

costs. Any heating system could be optimised by learning the building characteristics, it 

does not have to be limited to storage radiators.

It is only a matter of time before the ‘smart house’ becomes a reality and there is the 

opportunity for money to be made.

8.5 Experiences of Pursuing a Neural Network Project

At the start of this research it has to be said that neither I, or anyone involved with the 

project really new what a neural network was, apart from it was something that could 

learn things. As a result, there was a lot of time wasted and things were probably done 

the hard way. The following is a list of key points that directly influenced the research.

1) A lot of early time was wasted trying to read ‘introductory’ textbooks and journal 

papers. The best and quickest way to find out what neural networks are is to have it 

explained.
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2) During a visit to the DTI Neural Awareness Campaign I was informed that there was 

an abundance of ‘free’ neural simulators on the internet. One was downloaded (SNNS) 

and basically played with for a while.

3) A chance meeting with a fellow student who was having problems coding her own 

neural network (and seeking my advice!) introduced me to the idea that neural networks 

were not very difficult to create.

4) The development of my own code in a suitable language. Fortran 90 was chosen 

because it is simple to follow and has many intrinsic matrix multiplication functions, 

which is all neural networks are.

5) The decision to switch from a UNIX system to PC’s made the coding much more 

portable and it could be done at home.

6) Realising that to simulate all the various components of a controller, the whole sys­

tem would have to be coded, unless a tool like MATLAB was used. It was decided that 

using custom code is much better for research purposes as you can control exactly what 

is happening and are not reliant on someone else’s algorithms. Initially a building ther­

mal analysis package was used but it was soon realised that this could not be interfaced 

with a controller.

7) It was soon evident that no real understanding of how neural networks really work 

could be achieved by using simulated data, as they contained no noise. The event that 

redirected the whole research focus was the analysis of the ‘real’ electrical load data.

8) A neural model was created for the load data and presented to Eastern. It was then 

that a quite reasonable question was asked, ‘how do your network weights relate to my 

linear regression weights’. This was not the type of question people are supposed to ask 

as a neural network is a black box, isn’t it? It was then realised that there must be some 

meaning in the weights, only no one had really bothered investigating this before.
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9) It was then realised that neural networks are non-linear regression and definitely NOT 

artificial intelligence.

8.6 Cost Analysis

Because this research has been mainly computer based the equipment costs have been 

minimal. The ‘extra unavoidable’ costs required were £300 for a Fortran90 compiler for 

PC’s and roughly £200 for wiring and thermocouples for the controller. This works out 

at around £2.50 per week. Neural network projects can be very cheap, the major invest­

ment required is in human resources.

8.7 The Future

Once the hard work of the first application is overcome, further applications can be 

achieved almost instantly. The possibilities are then just a matter of a creative imagina­

tion and inquisitive mind.
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Appendix A

Back Propagation Weight Update Rule

£  neurons

This idea was first described in [99] and popularised by [100].

Consider the network above, with one layer of hidden neurons and one output neuron. 

When an input vector is propagated through the network, for the current set of weights 

there is an output ‘Pred’. The objective of supervised training is to adjust the weights so 

that the difference between the network output ‘Pred’ and the required output ‘Req’ is 

reduced. This requires an algorithm that reduces the absolute error, which is the same as 

reducing the squared error, where,

Network Error = Pred-Req

= E (1)
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2
The algorithm should adjust the weights such that E is minimised. Back-propagation is 

such an algorithm that performs a gradient descent minimisation of E2.

In order to minimise E2, its sensitivity to each of the weights must be calculated. In
•  ♦ 2other words, we need to know what effect changing each of the weights will have on E . 

If this is known then the weights can be adjusted in the direction that reduces the 

absolute error.

The notation for the following description of the back-propagation rule is based on the 

diagram below,

summation function activation function

O, w1B
o,
O W »Bv-/ n

L -

/(

t—
<

o,

neuron B

The dashed line represents a neuron B, which can be either a hidden or the output 

neuron. The outputs of ‘n’ neurons (Oi...On) in the preceding layer provide the inputs to 

neuron B. If neuron B is in the hidden layer then this is simply the input vector.

These outputs are multiplied by the respective weights (WiB...WnB), where WnB is the 

weight connecting neuron n to neuron B. The summation function adds together all 

these products to provide the input, Ib, that is processed by the activation function /()  ° f  

neuron B. / (  Ib) is the output, Ob, of neuron B.

For the purpose of this illustration, let neuron 1 be called neuron A and then consider 

the weight Wab connecting the two neurons.

The approximation used for the weight change is given by the delta rule,

WAB(new) =  WAB(old) " ^
<?E:

(2)
AB
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where n is the learning rate parameter, which determines the rate of learning and

2
is the sensitivity of the error, E , to the weight Wab and determines the direction of 

search in weight space for the new weight Wab as illustrated in the figure below.

is +ve

is -ve

min ■
increase required  ̂j ̂  decrease required

Weight value WAB

From the chain rule,

dE2 _  dE2 dIB

and
x=l

dl B   x=n

AB AB

_ <?(OaWab)

X=2

<?W
+ x=«

a b a b

=  O a (4)
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since the rest of the inputs to neuron B have no dependency on the weight Wab- 

Thus from (3) and (4), (2) becomes,

input, Ib, o f unit B and on the input signal Oa.

There are two possible situations,

1. B is the output neuron.

2. B is a hidden neuron.

Considering the first case:

Since B is the output neuron, the change in the squared error due to an adjustment of 

Wab is simply the change in the squared error of the output of B.

Wab (new) -  WAB(old) (5)

2
and the weight change of Wab depends on the sensitivity of the squared error, E , to the

5e2 = <9(pred-Req)2

dE = 2(Pred-Req)dIB
<?Pred
<?IB

<?/(!„)

= 2E/'(Ib)

combining (5) with (6) we get,

WAB(new) “  WAB(old) - ^ Oa 2eZ  (Ib)

the rule for modifying the weights when neuron B is an output neuron.
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If the output activation function, f  (•), is the logistic function then,

f(x) =     = (l + e 'xY 1 (8)
l + e -

differentiating (8) by its argument x

f \ x)  =  - i ( i + e - ) - 2. - i ( e ^ )  =  - — — y- (9)
(l + e )

But,

f(x) =   - (10)
l + e

/(*)

inserting (11) into (9) gives

f \ x )  = (1-/(*)) /  1m  / c/wr 

/ ( * )  x  ( ! - / ( * ) )  (12)

similarly for the tanh function,

f \x )  = ( l- /(x )2)

or for the linear (identity) function, 

f \ x )  = 1
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This gives,

W AB(new) WAB(oid) - 11 0 A 2E Ob (1-Ob) (logistic)

W,AB(new) WAB(oId) " ^ O a  2E ( 1 - O b 2) (tanh)

WAB(new) W AB(old) " ^ Oa 2E (linear)

Considering the second case:

B is a hidden unit.

dE  _ dE d I0 d 0 B
d IB d I0 dO B d IB

(13)

where the subscript, o, represents the output neuron.

d 0 B _ d  f  (IB) _ p  y  ^
d  I d l

(14)

d l pO
o _

d  o , d  O,
(15)

where p is an index that ranges over all the neurons including neuron B that provide 

input signals to the output neuron. Expanding the right hand side of equation (15),

ẐOpWpo
^BO +  P

p*B
^XOpW,pO

d  O, d  O,
= W,BO (16)

since the weights of the other neurons ,Wpo (p^B) have no dependency on Ob- 

Inserting (14) and (16) into (13),
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I f 1  = f f 1  WB0/ ' ( / . )  07)
<?IB &lo

d E 2 dE?Thus is now expressed as a function o f  , calculated as in (6).
d I B ^1q

The complete rule for modifying the weight Wab between a neuron A sending a signal 

to a neuron B is,

dE}
WAB(new) =  W a B(oIcI) " ^  O a  (18)

where,

dE_
B

= 2 E /0 (Ib) -Ib is the output neuron (19)
dE

d E 2 d E 2
WB0 f h ' (I b ) -Ib is a hidden neuron (20)

* IB

where f o(0) an d f i,C) are the output and hidden activation functions respectively.
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Example

Tanh

s

n
P
u

Network
Output

h
l3

[wo,]
[wo2J

Network Output = [Tanh(IT .W I)]. WO

let HIP = [Tanh(IT.WI)]T - the outputs of the hidden neurons

ERROR = (Network Output - Required Output)

LR = learning rate

The weight updates become,

linear output neuron

WO = WO - ( LR x ERROR x HID) (21)

local gradient input signal

tanh hidden neuron

WI = WI - { LR X [ERROR x WO x (1- HID2) ] . IT }T (22)

local gradient input signal
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Equations 21 and 22 show that the weight change is an input signal multiplied by a local 

gradient. This gives a direction that also has magnitude dependent on the magnitude of 

the error. If the direction is taken with no magnitude then all changes will be of equal 

size which will depend on the learning rate.

There are many algorithms that have evolved from the original algorithm with the aim 

to increase up the learning speed. These are summarised in [101].

The algorithm above is a simplified version in that there is only one output neuron. In 

the original algorithm more than one output is allowed and the gradient descent 

minimises the total squared error of all the outputs. With only one output this reduces to 

minimising the error.



Appendix B

MLP Code

The following source code is for a multilayer perceptron trained with the original back 

propagation algorithm. The weights are updated after the presentation of each pattern. 

The hidden neurons have tanh activation functions and there is one output neuron that 

has a linear activation function. Hidden and output layer bias inputs of 1 are created. 

There are two individual learning rates for each layer of weights. The patterns are 

presented in a random order and an epoch said to have occurred when as many patterns 

have been presented as there are in the training set. On completion of each epoch it is 

decided whether to accept the new weights depending if the cost function has been 

lowered. This procedure could be done after each pattern presentation rather than after 

each epoch.

The code is written in Fortran 90 as it has convenient matrix multiplication routines. All 

undeclared variables are real unless the variable name begins with the letters I-N in 

which case the are integers. The routine for setting the random seed is specific to the 

ftn90 compiler for PC’s by NAG/Salford software, otherwise it should work on any 

Fortran 90 compiler. In the code anything following a 7 ’ is a comment.
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The code starts here
PROGRAM Neural_Simulator 
11 coded in Fortran 90 by Philip Brierley

!! declare arrays !!
REAL,ALLOCATABLE:: DATA(:,:),TRAININP(:,:),TRAINOUT(:) 
REAL,ALLOCATABLE:: WIH(:,:),WHO(:),HVAL(:)
REAL,ALLOCATABLE:: WIHBEST(:,:),WHOBEST(:) 
REAL,ALLOCATABLE:: INPUTS_THIS_PAT(:),DUMMY1(:,:),DUMMY2(:,:)

!! define some constants which can be varied!!
NO_OF_EPOCHS=10000 !number o f epochs
NHIDDEN=5 !number o f hidden neurons
ALR=0.1 ! learning rate fo r input-hidden weights
BLR=0.01 ! learning rate fo r  hidden-output weights

!! open pattern file  !!
OPEN(UNIT=10,FILE='A VE.PAT',STATUS-OLD')
READ( 10,*)NP ATS,INPUTS 
NOUTPUTS=l

!! number the neurons !! 
NHIDDEN=NHIDDEN+1 
NDU=INPUTS+N OUTPUTS 
INPPB=INPUTS+1 
NHS=INPPB+1 
NHF=INPPB+NHIDDEN 
NOS=NHF+l

!! set the array dimensions !! 
ALLOCATE(DATA(NPATS,NDU)) 
ALLOCATE(TRAININP(NPATS,INPPB)) 
ALLOCATE(TRAINOUT(NPATS))
ALLOC ATE(WIH(INPPB,NHS :NHF)) 
ALLOCATE(WIHBEST(INPPB,NHS:NHF» 
ALLOCATE(WHO(NHS:NHF)) 
ALLOCATE(WHOBEST(NHS:NHF)) 
ALLOCATE(HVAL(NHS:NHF)) 
ALLOCATE(INPUTS_THIS_PAT(INPPB)) 
ALLOC ATE(DUMMY 1 (1 ,NHS:NHF)) 
ALLOCATE(DUMMY2(INPPB, 1))

!! read patterns from f i l e !!
DO I=1,NPATS
READ( 10,*)(DATA(I,K),K=1,NDU)
ENDDO
CLOSE(IO)

!! create training inputs and outputs !! 
TRAININPC, 1 :INPUTS)=DATA(:, 1 :INPUTS) 
TRAININP(:,INPPB)=1 
TRAIN OUT(:)=D ATA(: ,NDU) 
DEALLOCATE(DATA)

!read no. o f patterns, no. o f  inputs 
! number o f outputs (fixed)

! accounts fo r  bias to output 
!Number Data Units 
UNPut Plus Bias 
!Number Hidden Start 
!Number Hidden Finish 
!Number Output Start

!raw data readfrom file  
!input patterns 
loutput
!input-hidden weights 
!best weights 
!hidden-output weights 
Jbest weights 
Ihidden neuron outputs 
Ipattern being presented 
! dummy matrix 
! dummy matrix

!create input bias

!the array *data ’ is no longer required
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!! generate initial random weights !! 
CALL DATE_TIME_SEED@

DO K=NHS,NHF 
WHO(K)=((RANDOM0-0.5)*2)/10 

DO J=1,INPPB 
WIH(J,K)=((RANDOM()-0.5)*2)/10 

ENDDO 
ENDDO

Iset seed for random number generator

Igenerate initial weights 

Igenerate initial weights

WIHBEST=WIH 
WHOBEST=WHO 
RMSEBEST=100000000

/  record o f best weights so far  
! record o f best weights so far  
I the best rms error, initially set high

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!! THE TRAINING STARTS HERE !!!!!!!!!! 
m m m ttm nm nnm nm ttm tti!!!!!!!!!!!!!

PRINT *,'epochs rms_error' !print to screen

DO M= 1 ,NO_OF_EPOCHS

DO I=1,NPATS

U select a pattern at random !! 
IPAT_NUM=NINT(RANDOM()* (NPATS-1))+1 
INPUTS_THIS_PAT(:)=TRAININP(ipat_num,:) 
OUTPUT_THIS_PAT=TRAINOUT(ipat_num)

/ /  calculate the network output!!
HVAL=MATMUL(TRANSPOSE(WIH),INPUTS_THIS_PAT) 
HVAL=TANH(HVAL)
HVAL(NHF)=1
OUTPRED=SUM(WHO*HVAL)
ER_THIS_PAT=(OUTPRED-OUTPUT_THIS_PAT)

!! change weight hidden - output!! 
WHO=WHO-(BLR*HVAL*ER_THIS_PAT)

!! change weight input-hidden !! 
DUMMY2(:,1)=TRAININP(IPAT_NUM,:)
DUMMY 1(1, :)=ER_THIS_PAT* WHO*( 1 -(HVAL* *2.00)) 
WIH=WIH-(MATMUL(DUMMY2,DUMMY 1 )* ALR)

ENDDO !! (I) one more epoch done

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! evaluate fitness* o f ofthe network after each epoch !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! inputs x weights 
! tanh activation function1 
! acts as output bias 
! model output 
! model error

SQERROR=0 
DO J=l,NPATS

INPUTS_THIS_PAT(:)=TRAININP(J,:)

!! in this case the fitness function is the squared errors

1 If the argument o f the intrinsic Tanh function gets too large then floating point overflow will occur. An 
alternative method is to code using DO Loops and only use the tanh function if the argument, x <20 and 
x>-20. If jc<-20,tanh(jc)=-1, Ifjc>20,tanh(*)=l else tanh(x)=TANH(x).
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OUTPUT_THIS_PAT=TRAINOUT(J)
HVAL=TANH(MATMUL(TRANSPOSE(WIH),INPUTS_THIS_PAT))
HVAL(NHF)=1
OUTPRED=SUM(WHO*HVAL) 
ER_THIS_PAT=(OUTPRED-OUTPUT_THIS_PAT) 
SQERROR=SQERROR+(ER_THIS_P AT* *2)

ENDDO !(J)

RMSE=SQRT(SQERROR/NPATS)

IF (RMSE<RMSEBEST) THEN 
WIHBEST=WIH 
WHOBEST=WHO 
RMSEBEST=RMSE

ELSE
WIH=WIHBEST 
WHO=WHOBEST

ENDIF

!! print errors to screen !!
PRINT *,M,RMSEBEST

ENDDO //  (M) after all the epochs have been done !!

END PROGRAM NeuralSimulator
The code finishes here

11 root o f the mean squared error

! if  the rms error has improved then 
! keep the new weights

! else if  it has increased then 
I go back to the old weights

The following is the contents of the demonstration pattern file called ‘ave.pat’. The 

output is the average of the 3 inputs. The first line is the number of patterns and the 

number of inputs.

patterns, inputs

5,3

0.1,0.3,0,0.133 < pattern 1

0.2,0.01,0.2,0.137 

0.6,0.3,0.3,0.400 

0.2,0.05,0.2,0.150 

0.3,0.2,0.1,0.200 <-------  pattern 5

ou tpu t

input 3

wih
nhs

who

nos
out

inppb

The neuron numbering convention



Appendix C

More on MLPs

This Appendix is included to provide more information for those embarking on a 

project involving multilayer perceptrons. It attempts to answer, in no particular order, 

some of the questions that are likely to be asked and other advice that it would have 

been helpful to know at the onset of this project.

Reference Sources 

Books

Good reference books for those wanting to use MLPs to solve practical problems are 

few and far between. I found the following some of the better ones if you are an 

engineer and not a computer scientist.
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Simon Haykin, Neural Networks -  A Comprehensive Foundation, 1994, Macmillan 

College Publishing Company.

This book is described by the title. The first impression is that it looks quite daunting 

but chapter 6 on MLPs is quite readable.

Kevin Swingler, Applying Neural Networks -  A Practical Guide, 1996, Academic Press 

Limited.

This is a valiant attempt to fill the gap of neural network books that can be read by non­

rocket scientists who only want to understand and apply the techniques. Comes with a 

disc of software, which I cannot comment on because I did not use it.

DTI, Neural Computing, Learning Solutions -  Best Practice Guidelines for Developing 

Neural Computing Applications

These guidelines were part of a 3 year neural network awareness campaign run by the 

DTI. They are specifically aimed at industry and contain many examples of practical 

applications. The campaign has finished but further information contact the Electronics 

and Engineering Division, Department of Trade and Industry, 151 Buckingham Palace 

Road, London SW1W 9SS. Contact names were Ray Browne and Bob Wiggins.

The Web

There is a vast amount of information on the World Wide Web concerning neural 

networks. The following site at Pacific Northwest Laboratories has links to research 

groups and companies around the world involved in neural networks,

http://www.emsl.pnl.gov:2080/proj/neuron/neural/gateway/ (Oct 98)

http://www.emsl.pnl.gov:2080/proj/neuron/neural/gateway/
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Another useful source of information is at the IEEE, 

http://www.ewh.ieee.org/tc/nnc/ (Oct 98)

There is a frequently asked questions list (FAQ’s) at, 

ftp://ftp.sas.com/pub/neural/FAQ.html (Oct 98) 

and a newsgroup at, 

news:comp.ai.neural-nets (Oct 98)

always check the FAQ list for the answer to your question before posting it to the 

newsgroup. A word of caution, do not always take as gospel replies you get from the 

newsgroup.

Papers

There are many journal and conference papers on neural networks -  many of them 

unreadable to mere mortals. If they are unintelligible then the chances are they are of no 

practical use. Trying to understand theory from papers is not a good place to start if you 

are new to the subject, and just because work is published does not mean that it is good.

Many practical applications of neural networks exist in non-neural network based 

journals and conferences. The chances are that no application is completely new and 

papers describing experiences with similar applications can provide some good ideas.

An example for the electricity industry,

‘Neural networks, fuzzy logic and genetic algorithms in the electricity supply industry -  

Models and Applications,’ Report of the UNIPEDE CORECH Working Group, June 

1996, Eng. Int. Syst., September 1997, vol. 5, no. 3, pp. 127-155.

http://www.ewh.ieee.org/tc/nnc/
ftp://ftp.sas.com/pub/neural/FAQ.html
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Experts

It was not until several months into this project that I found out what a neural network 

really was. Introductory texts like to talk about the brain, artificial intelligence and 

consciousness, which is useless and often confusing information if all you want to know 

is how they work in practice.

If there had been access to an expert who could clearly explain everything and give 

good advice, then the time taken to complete this research would have probably been 

reduced by about 2 years. Saying this though, because there was no subjective 

suggestions of what could and could not be achieved, new ideas, explanations, view - 

points and solutions were explored with little regard for past paradigms.

I would recommend to anyone embarking on a neural network project to seek 

‘impartial’ advice from an expert, although good ones are few and far between. Do not 

think buying a piece of neural software is the end of the story.

How Many Hidden Neurons should be used?

MLPs can have many hidden layers with many neurons in each layer. Bigger is not 

necessarily better. Advice claiming to recommend the optimal number of hidden 

neurons based on network parameters such as the number of weights or training patterns 

is basically rubbish. As has been shown in Chapters 2 and 3 it depends on the 

complexity of the problem and how the data is encoded.

The technique developed in this thesis is to restrict the network by using a small number 

of hidden neurons and take clues from the errors as to how it can be improved. As the 

number of hidden neurons is increased the cost function (usually rms error) will 

decrease and then probably plateau or start to rise as more hidden neurons are added. It 

rises due to inefficiencies in the training algorithms that have problems setting weights 

to zero if they are not required.
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A common approach to improving a model is to add more hidden neurons. Looking at 

the input data and how it is encoded will often be more worthwhile.

What about Train and Test Sets?

A common technique used to create a model that can generalise is to divide the data into 

a training and test set. The test set is used as some unseen examples on which the 

performance of the network can judged. It is usual practice to train until the error on the 

test set starts to rise (known as early stopping), at which point the model is losing its 

generalisation properties. Such techniques were not used in this thesis for several 

reasons,

1) Data is a scarce resource so as much as possible should be used. If the task is data 

mining then why throw some away?

2) Networks cannot extrapolate, so all the test set data must be carefully chosen to lie 

within the training ranges. A common mistake in load forecasting is to train on one 

year’s data and use the next year as a test set. This is likely to give a poor model due 

to growth. Similarly one month might be used for training with the next for testing. 

Seasonal drift is likely to mean that new extremes of temperature are experienced.

3) A network trained on all the data can be retrospectively divided into a training and 

test set showing almost perfect generalisation properties. This set of weights does 

exist but would not be found by early stopping. Which set of weights is best?

4) If a network is poor at generalisation then there is some underlying reason such as 

too many hidden neurons, bad data or an incomplete or poor specification of the 

problem. The model will automatically be better at generalisation if such reasons are 

sought and rectified.
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Why Scale the Training Data?

Theoretically, input data does not need to be scaled as it is fed directly into a weight that 

will change the value anyway. Output data needs to be scaled to within the limits of the 

output activation function, which are [0,1] for the logistic and [-1,1] for the hyperbolic 

tangent.

In practice data is scaled to speed up the training process. For efficient gradient descent 

it is important that the initial input to each neuron falls on the ‘steep’ part of the 

activation function, an input value around zero being required for the tanh and logistic 

functions. This means that the sum of all the input signals multiplied by their respective 

weights should be around zero. By scaling inputs to lie within the same range (maybe 

0,1 or -1,1) and having small random weights (say +/- 0.1) then the chances are that this 

will be the case.

If the input to a neuron fall on its ‘flat’ portion then there is little gradient information 

and learning will be slow or ‘stuck’. This is likely to occur if, for example, a particular 

raw input has a value 10,000 whereas the others lie in the range (1,10).

Which Activation Functions are Best?

The two common sigmoidal functions, the logistic and hyperbolic tangent, are identical 

apart from being biased and re-scaled. As these are the transformations that the neural 

network performs anyway there is no difference in obtainable accuracy by using one 

function or the other. What has been found is that the tanh function generally requires 

less iterations than the logistic to attain this given accuracy, as was also found in this 

work. It is also found [102] that other asymmetric functions generally perform better 

than non-symmetric functions, an asymmetric function being one where,

f ( - x )  = - f ( x )

which the tanh function is.
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I suspect this is to do with the outputs of asymmetric functions potentially being in a 

(+/-) range (see previous section for why this will speed up training).

What Learning Rates should be used?

This is a matter of trial and error. Generally there is no ‘best’ learning rate, but the rate 

should generally decrease as learning proceeds. There are algorithms where each weight 

also has its own adaptive learning rate (delta-bar-delta) but these are often more 

computationally expensive for little if any speed increase. Neurons in the output layer 

tend to have larger local gradients than those in the hidden layer, so a lower learning is 

often used for weights closer to the output of the network.

Why Shuffle the Pattern Presentation Order?

If the last pattern in an epoch is a residual then the ‘good work’ in adjusting the weights 

will always be undone by this last pattern before the error is reported at the end of every 

epoch. By randomising the pattern presentation order this will not always happen and 

the learning speed will be increased. In my code the patterns are randomly selected and 

each pattern is not guaranteed to appear every epoch. This significantly improved the 

speed of the program, as the time taken to shuffle the pattern order was longer than the 

actual calculation of the weight changes.

How Many Outputs should there be?

Just one.

There are many examples of neural networks with lots of outputs. Why?



194

The only reason appears to be because it seems to work quite well, which is not 

unsurprising if enough hidden neurons are used. It is not surprising that such 

complicated networks are treated as black boxes.

The standard algorithm minimises the rms error over all outputs, so a particular output 

which has a certain amount of noise or erroneous readings can affect the performance of 

other outputs. Why use one network with 10 outputs when 10 networks with one output 

each will give a much better performance.

This is a common mistake in classification tasks, where often there are several outputs 

each relating to a certain classification. For example, a set of inputs might be medical 

symptoms and four outputs could be dead, dying, very ill or not ill. It would be better to 

have four networks with one output each, representing dead/(not)dead, 

dying/(not)dying, very ill/(not)very ill and not ill/(not)not ill.
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Genetic Algorithm Code

The following code is included as a demonstration of a genetic algorithm optimisation 

procedure. The subroutine CALCSUITABILITY determines the ‘performance’ of each 

candidate solution on which the tournament selection procedure is based in the 

subroutine BREED. In this particular example the more identical adjacent bits in the 

string the better the suitability. Each bit can have values of 0,1,2 or 3.

The code starts here
PROGRAM Genetic
Hcoded in Fortran 90 by Philip Brierley

11 declare arrays !!
INTEGER,ALLOCATABLE:: PARENT(:,:),SUITABILITY(:)
INTEGER:: STRINGSIZE,POPSIZE,GENERATIONS,CONTESTANTS 
COMMON STRINGSIZE,POPSIZE

!! set up some user defined parameters !!
GENERATIONS=1000 ! number o f generations before stopping
POPSIZE=20 Inumber o f strings in each generation
STRINGSIZE=3 0 /  number o f bits in each string
CONTESTANTS=3 Ino of contestants in tournament selection
PROB_MUT=0.01 !mutation probability
PROB_CROSS=0.8 /  crossover probability
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!! set the array dimensions !!
ALLOCATE(PARENT(POPSIZE,STRINGSIZE))
ALLOCATE(SUITABILITY(POPSIZE)) /  ’fitness' of each parent

CALL CLEAR_SCREEN@
CALL DATE_TIME_SEED@

!! generate an initial population !!
DO I=l,POPSIZE 
DO J= 1 ,STRINGSIZE
PARENT(I,J)=NINT(RANDOM()*3) !create a string ofO's, 1 % 2 ’s and3 ’s
ENDDO
ENDDO

!! start the process !!
DO 1=1,GENERATIONS

!! suitability of each individual string !!
CALL CALCSUITABILITY(PARENT,SUITABILITY)

/ /  print status worst,best,average !!
PRINT *,I, MINVAL(SUITABILITY), MAXVAL(SUITABILITY), SUM(SUITABILITY)/POPSIZE 

!! create new generation !!
CALL BREED(SUITABILITY,PARENT,PROB_CROSS,PROB_MUT,CONTESTANTS)

ENDDO 1(1)

!! this is the end !!

STOP
END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

SUBROUTINE CALCSUITABILITY(PARENT,SUITABILITY)

INTEGER:: STRINGSIZE,POPSIZE
INTEGER:: PARENT(POPSIZE,STRINGSIZE),SUITABILITY(POPSIZE)

COMMON STRINGSIZE,POPSIZE

SUITABILITY=0

DO I=l,POPSIZE 
DO J=1,STRINGSIZE-1

IF (PARENT(I, J)=PARENT(I, J+1)) THEN
SUITABILITY(I)=SUITABILITY(I)+1 / based on adjacent bits being the same
ENDIF 

ENDDO !(J)
ENDDO !(I)

END SUBROUTINE CALCSUITABILITY
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SUBROUTINE BREED(SUITABILITY,PARENT,PROB_CROSS,PROB_MUT,CONTESTANTS)

INTEGER:: POPSIZE,STRINGSIZE,CONTESTANTS 
INTEGER:: PARENT(POPSIZE,STRINGSIZE)
INTEGER:: SON(POPSIZE,STRINGSIZE) In ext generation
INTEGER:: POTENTIAL_DAD(CONTESTANTS) !potential parents
INTEGER:: DAD(2,STRINGSIZE) 'array for 2 chosen parents
INTEGER:: SUITABILITY(POPSIZE)

COMMON STRINGSIZE,POPSIZE

DO 1=1 ,POPSIZE leach mating results in only 1 offspring

I! choose two parents I!
DO J=l,2

DO K= 1 CONTESTANTS !randomly select contestants
POTENTIAL_DAD(K)=NINT(RANDOM0*(POPSIZE-l))+l
ENDDO !(K)

DAD(J,:)=PARENT(POTENTIAL_DAD(l),:) .'first assumes the throne
I WINNER=SUITABILITY (POTENTIAL_DAD( 1))

DO M=2,CONTESTANTS / tournament begins
IF (SUITABILITY(POTENTIAL_DAD(M))>IWINNER) THEN 
DAD(J, :)=PARENT(POTENTIAL_DAD(M),:) 
IWINNER=SUITABILITY(POTENTIAL_DAD(M))
ENDIF 
ENDDO !(M)

ENDDO !(J) '.twoparents chosen

I! create an offspring I!
IF (RANDOM()<PROB_CROSS) THEN '.probability o f crossover

ICROSSPOS=NINT(RANDOM0*(STRINGSIZE-2))+l 
SON(1,1 :ICROSSPOS)=DAD( 1,1 :ICROSSPOS)
SON(I,ICROSSPOS+l:STRINGSIZE)=DAD(2,ICROSSPOS+l :STRINGSIZE)

ELSE
SON(I,:)=DAD(l,:) lone parent replicates into next generation

ENDIF

'.'.mutate the offspring !.'
DO N= 1 ,STRINGSIZE

IF (RANDOM()<PROB_MUT) THEN '.probability o f mutation
SON(I,N)=NINT(RANDOM0*3) 'mutate
ENDIF 

ENDDO !(N)

ENDDO !(I)

PARENT=SON I the offspring become the next generation

END SUBROUTINE BREED

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The code finishes here
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Water Optimisation Code

This code was used in chapter 5 to optimise the charging of a storage heater. The 

optimisation process used was based on random mutation hill climbing.

Code starts here
PROGRAM WaterOptimisation

INTEGER :: current_position(96),hilltop(96),descision(2)
REA1 :: pool_price(48),demand(48)
CHARACTER (LEN=20) dftiame

COMMON initial_tanktemp,tanktemp_max,coldwater_temp,rating,tanksize,heap
COMMON descision,current_position, demand, pooljprice, hilltop, cheapest

!!! set the random number generator seed to computer internal clock !!!
CALL DATE_TIME_SEED@

!!! define some constants !!! 
tanksize=50 
rating=2 
iflips=3
initial_tanktemp=5 
tanktemp_max=70 
coldwater_temp=5
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/  hot water storage tank size (litres)
! electric heating element size (kW)
! number of bits flipped each iteration 
! the starting temperature o f the water in the tank 
! the maximum temperature allowed by the tank thermostat 
! the ambient temperature o f cold tap water
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hcap=4.2 ! specific heat capacity o f water
iterations=3000 ! number o f function evaluations

!!! get the file with consumption and pool price data III 
0PEN(UNIT=10,FILE=‘data.dat’ .STATUS-old')

III read in the pool price and consumption data !!!
DO I = 1,48
READ(10,*) pool_price(i),demand(i)
ENDDO
CLOSE(IO)

U! set the initial cheapest solution to a high number !!! 
cheapest=10000

!!! generate an initial solution III
current_position(:)=0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! the process starts here III 
n n t m m n n n m m n r t n t f

DO I =1,iterations

DO J = 1 ,iflips ! repeat until the set number o f bits have been flipped
iflip_bit = (RANDOM()*96-1)+1 / randomly select a bit to flip
current_position(iflip_bit) = (current_position(iflip_bit)-1 )**2 / 0’s to 1 % Vs to 0 ’s
ENDDO

CALL CALCCOST() ! calculate the cost o f the new solution

current_position(:)=hilltop(:) /  set the current solution to the current hilltop

ENDDO

I!!!!I!!!!!!!!!!I!!!!!!!!!!!!!!!!!!!!
!!! this is the end of the process!!! 
m m t m n m m m m m n m t t m

PRINT *,cheapest

STOP
END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE CALCCOST()

INTEGER:: descision(2),current_position(96),hilltop(96)
REAL:: demand(48),pool_price(48),needed

COMMON initial_tanktemp,tanktemp_max,coldwater_temp,rating,tanksize,heap 
COMMON descision,current_position, demand, pool_price, hilltop, cheapest

treq=tanktemp_max /  required water temperature set to tank thermostat temperature
tanktemp=initial_tanktemp ! initial tank condition
cost=0 ! a running cost
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L= 1 ! marks position along the solution string

!!! repeat for 48 half hours !!!
DO I =1,48

!!! descision(l) =1 then use tank water descision(l) =0 then use cold water 
!!! descision(2) =1 then charge tank descision(2) =0 then don *t charge tank

DO K =1,2 /  read in two descisions for this half hour
descision(K)=current_position(L) ! read in descision from solution string
L=L+1 / advance the marker one step along the solution string
ENDDO

needed = demand(I) /  required hot water this half hour
price = pool_price(I) /  pool price this half hour

!!! decision(l) which water source?
IF (needed > 0) THEN ! if  there is demand then:

IF (descision(l)==0) THEN I use direct
cost=cost+(((treq-coldwater_temp)*hcap*needed)/3600)*price
ELSE /  use tank water with direct to ensure treq maintained

IF (needed<tanksize) THEN
cost=cost+(((treq-tanktemp)*hcap*needed)/3600)*price
tanktemp=(coldwater_temp*(needed/tanksize))+(tanktemp*(tanksize-needed)/tanksize)
ELSE
extral=(((treq-tanktemp)*hcap*tanksize)/3600)*price
extra2=((treq-coldwater_temp)*hcap*(needed-tanksize)/3600)*price
cost=cost+extra 1 +extra2
tanktemp=coldwater_temp
ENDIF

ENDIF
ENDIF

!!! this bit is the constraint which adjusts the solution so that a descision to charge 
!!! the tank cannot occur if  the tank temperature is already at a maximum
IF (descision(2)=l .and. tanktemp=treq) THEN
current_position(L-1 )=0
descision(2)=0
ENDIF

11! descision(2) charge the tank 
IF (descision(2)=l) then
amaxinput=(treq-tanktemp)*tanksize*hcap / maximum possible energy input (kJ) 
pmax=(amaxinput/3600)*price 1 maximum possible cost
actinput=rating*60*30 / possible energy input
pact=(actinput/3600)* price 1 possible cost

IF (pact>pmax) then 1 heat up water to limiting temperature
pact=pmax
tanktemp=treq
ELSE / or calculate the new tank temperature
tanktemp=tanktemp+(actinput/(hcap*tanksize))
ENDIF

cost=cost+pact /  add the charging cost to the total 
ENDIF
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ENDDO !!! 48 half hours completed

IF ( cost<=cheapest) THEN 
cheapest=cost
hilltop(:)=currentjposition(:)
ENDIF

END SUBROUTINE CALCCOST 
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! i

The code finishes here
!!!!!! contents o f data file *data'dat’ !!!!

pool price (pence/kWhr) 
demand (litres)

hour (reference only)

V V V

0.96 0 0.5 4.26 0 8.5
0.96 0 1 4.28 10 9
1 0 1.5 4.1 10 9.5
1.89 0 2 4.11 7 10
1.89 0 2.5 4.1 0 10.5
1.89 0 3 .4.09 0 11
1.89 0 3.5 4.09 0 11.5
1 0 4 3.24 8 12
0.96 0 4.5 3.23 7 12.5
0.96 0 5 3.21 35 13
0.99 0 5.5 3.19 5 13.5
1 80 6 2.85 16 14
1 3 6.5 2.84 6 14.5
1.85 0 7 3.18 0 15
3.05 24 7.5 2.84 7 15.5
4.07 4 8 2.84 0 16

2.85 0 16.5
3.19 8 17
3.4 7 17.5
3.43 7 18
4.62 7 18.5
5.07 6 19
5.04 24 19.5
4.52 18 20
3.38 7 20.5
2.36 6 21
2.17 5 21.5
2.1 6 22
1.85 5 22.5
1.85 5 23
1.85 6 23.5
1 9 24



Appendix F

Storage Heater Thermal Model Code

The thermal model of a room and heaters was created by using an explicit finite 

difference method [103], This is a nodal approach that calculates temperatures at 

nodes within walls at discrete time intervals (every 5 seconds in this case), with 

convective heat transfer taking place at the wall surfaces. Each wall can be given 

different thermal properties and exterior air temperatures, which are read in from a 

data file. Wind speed as well as temperature effects the external wall heat transfer and 

is read in from a weather file. In this model solar gains are ignored.

There are two heaters in this model, a direct acting heater and a storage fan heater. 

The direct acting heater inputs are simply an energy input into the room air. The 

representation of the storage fan heater is as shown in the diagram.
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Room Temp

node temps

fan simulated by 
increasing air change 
rate through air gap

storage
heater
core

air
gap

Charge

heat transfer to room air 
by natural convection 
through air gap

The code starts here
PROGRAM Building_Model

11!11!111!111!!!!!!!!111!!111!!!!111!!111!111!!!!111!!!!!!11!111!!!!llllll!111!!!!111!!!!111!!!11!111!!! 
la program for transient conduction through walls using explicit finite difference methodfor 
lone dimensional heat transfer
Iroom temperature calculated,node 1 is outside surface, node(Wnodes) is inside surface 
Istorage fan heater modelled 
!by Philip Brierley
u m m m t u m t t t t i m m t m m m m m t t i m n u M t t i t t f t t t i t t t t t t m t t t n i m t n u m t n m n i

11 declare arrays
CHARACTER (LEN=80) CHKFILE,Fname 
CHARACTER (LEN=20) headl,head2

11 wall arrays
REAL,ALLOCATABLE:: Tout(:),Wtnow(:,:),Wtnext(:,:),Wpl(:),Wml(:) 
REAL,ALLOCATABLE:: Wthick(:),Wdx(:),Wk(:),Wdens(:),Warea(:),Q(:,:) 
REAL,ALLOCATABLE:: Wcp(:),Walpha(:),Wfo(:),Hin(:),Hout(:),BIin(:),BIout(:)

1! storage heater arrays
REAL,ALLOCATABLE:: Ctnow(:),Ctnext(:),Cpl(:),Cml(:) 
REAL,ALLOCATABLE:: Itnow(:),Itnext(:),Ipl(:),Iml(:)

1! insulation propeties o f storage heater, declared because insulation begins with I  
REAL:: Ik,Idx,Icp,Ithick,Idens,Ialpha,Ifo

INTEGER:: Walls,dTIME,Steps,HrsDone,x,Graphics,DaysDone,WTF 
INTEGER:: Wnodes,Cnodes,Inodes

INTEGER (KIND=2) ERRORCODE 
INTEGER (KIND=3) BUFFER

HUH! 111!! 111!!!!!!!!!!!!!!!!!
adjustable variables 11! 

111!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Days= 10 I!days to simulate
dTIME=5 lltime steps (seconds)
Racph=. I 1 Iroom air changes per hour with outside air
DAH_rating=3000 1! rating o f direct acting heater (Watts)
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Shrating=3000 !element rating (Watts)
Rlength=4 ! Iroom length
Rwidth=5 ! Iroom width
Rheight=2.5 !! room height
XtemalwallPC=50 llpercent of wall area that is external (including windows)
WindowPC=10 !! percent o f external wall area that is glazed
Wnodes=5 !Iwall nodes
Walls=3 !Iwall types (external, internal, ceiling)
Cnodes=10 H nodes in storage heater core
Inodes=10 !Inodes in storage heater insulation
Sharea=0.6 Hstorage heater surface area
Shgap=0.1 Hair gap thickness between storage heater core and insulation
ACPMfanon=10 Hair changes per minute in storage heater air gap with fan on
ACPMfanoff=l Hair changes per minute in storage heater air gap with fan off

!! allocate arrays
III vectors for node temperatures in Walls
ALLOCATE(Wtnow(Walls, Wnodes)) !! current node temperatures
ALLOCATE(Wtnext(Walls,Wnodes)) !! next node temperatures

III dummy vectors for offset Wnodes for matrix multiplication 
ALLOCATE(Wp 1(1:Wnodes-1)) !! node +1
ALLOCATE(Wm 1 (2: Wnodes)) !! node -1

III array containing wall exterior temperatures 
ALLOCATE(T out(W alls))

III other properties 
ALLOCATE(Wthick(Walls)) 
ALLOCATE(Wdx(Walls)) 
ALLOCATE(Wk(Walls)) 
ALLOCATE(Wdens(Walls)) 
ALLOCATE(Warea(WalIs)) 
ALLOCATE(Wcp(Walls)) 
ALLOCATE(Walpha(Walls)) 
ALLOCATE(Wfo(Walls)) 
ALLOCATE(Hin(Walls)) 
ALLOCATE(Hout(Walls» 
ALLOCATE(BIin(WalIs)) 
ALLOCATE(BIout(Walls)) 
ALLOC ATE(Q(Walls,2))

III storage heater arrays
ALLOCATE(Ctnow(Cnodes))
ALLOCATE(Ctnext(Cnodes))
ALLOCATE(Itnow(Inodes))
ALLOCATE(Itnext(Inodes))

III storage heater dummy vectors 
ALLOC ATE(Cp 1(1 :Cnodes-l)) 
ALLOCATE(Cml(2:Cnodes)) 
ALLOCATE(Ipl(l :Inodes-l)) 
ALLOCATE(Iml(2:Inodes))

I wall thicknesses
I distance between wall nodes
Iwall thermal conductivities
Iwall densities
Iwall areas
Iwall heat capacities
Iwall thermal diffusivities
Iwall Fourier number
Iconvection coefficient
Iconvection coefficient
IBiot number of inner wall suface
IBiot number of outer wall surface
I heat contribution from each wall

I current core node temperatures 
Inext core node temperatures 
!current insulation node temperatures 
Inext insulation node temperatures

Icore next node 
Icore previous node 
I insolation next node 
!insolation previous node

////////////////////////////////
!!! properties o f each wall III 
I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
Warea_tot=2* Rheight* (Rlength+Rwidth) / /  total wall area

!!! wall I , external wall!!!
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Wthick(l)=0.23 Iwall thickness (m)
Wk(l )=0.7 I thermal conductivity (  W/m deg C )
Wdens(l)=1700 I density (kg/mA3)
Wcp( 1)=800 !specific heat capacity (J/kg deg C.)
Warea( 1 )=Warea_tot* (XtemalwallPC/100)* ((100-WindowPC)/100) !surface area

III wall 1, internal walls III
Wthick(2)=0.12 Iwall thickness (m)
Wk(2)=0.7 Ithermal conductivity (  W/m deg C.)
Wdens(2)=1700 /density (kg/mA3)
Wcp(2)=800 !specific heat capacity (J/kg deg C.)
Warea(2)=Warea_tot* ((100-XtemalwallPC)/100) !surface area

!!! wall 3, ceiling !!!
Wthick(3)=0.2
Wk(3)=0.04
Wdens(3)=12
Wcp(3)=840
Warea(3)=Rlength*Rwidth

Iwall thickness (m)
Ithermal conductivity (  W/m deg C.)  
!density (kg/mA3)
!specific heat capacity (J/kg deg C.)
!surface area

!!! window properties !!!
WINuval=5.4 /  W/m A2 Deg. C (4mm thick window)
WINarea=Warea_tot*(XtemalwallPC/100)*((WindowPC)/100) Iwindow area

!!! general properties !!!! 
Wdx=Wthick/( Wnodes-1) 
Walpha=Wk/(Wdens* WCp) 
Wfo=Walpha*dTIME/(Wdx* *2)

!distance between nodes 
Ithermal diffusivity 
!Fourier number

!!! AIR PROPERTIES !!! 
Rvol=Rlength*Rwidth*Rheight 
Rmassair= 1.2*Rvol 
AirCp=1004

Ivolume of room 
lair mass
lair specific heat capacity

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
Ill STORAGE HEATER PROPERTIES III 
m u m m m n tm m m ttm m m n n ! ! ! ! ! !

Ill CORE III 
Ccp=942 
Cthick=0.07 
Cdx=Cthick/(Cnodes-1)
Ck=2
Cdens=4000
Calpha=Ck/(Cdens*CCp) 
Cfo=Calpha*dTIME/(Cdx* *2)

/specific heat capacity 
Ithickness (m)
!distance between nodes 
Ithermal conductivity 
Idensity
Ithermal diffusivity 
!Fourier number

III INSULATION III
Icp=1000
Ithick=0.15
Idx=Ithick/(Inodes-1)
lk=0.1
Idens=200
Ialpha=Ik/(Idens*ICp) 
Ifo=Ialpha*dTIME/(Idx* *2)

III AIRGAP III 
SHvol=SHarea*SHgap 
SHmassair= 1.2* SHvol

!specific heat capacity 
Ithickness
!distance between nodes 
Ithermal conductivity 
Idensity
Ithermal diffusivity 
I Fourier number

Ivolume of air in air gap 
I mass o f air in air gap
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HUM!!!!!!!!!!!!!!!!!!!!!!!!!
!!!! set initial conditions !!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!! Walls !!!
Wtnow(:,:)=290 !all Walls initially 17 deg C.
Troom=293 !initial room air temperature 20 deg C.

Mstorage heater !!!
Ctnow(:)=290 icore initially 17 deg C.
Itnow(:)=290 !insulation initially 17 deg C.
Tairgap=293 !initial storage heater air gap temperature

!!! set outside temps and windspeeds !!!
OPEN(UNIT=10,FILE='WEATH85.pat',STATUS-OLD')
READ( 10,*) CHKFILE !column headings
READ(10,*) Tout(l), Windspeed,hr_of_day Head current outside temp and windspeed
READ(10,*) Toutl HR, Windspeed 1 HR Iread next hours outside temp and windspeed

dTout 1 =(Tout 1HR-T out( 1)) * dTIME/3600 Itemperature increment
Tout( 1 )=Tout( 1 )-dTout 1 !rewind temperature 1 step
dWindspeed=(WindspeedlHR-Windspeed)*dTIME/3600 !windspeed increment 
Windspeed=Windspeed-dWindspeed Irewind windspeed 1 step

Tout(2)=293 iwall 2 exterior temp set constant
TOUT(3)=273 !0 degin space above ceiling

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! check for stability !!!!!
/////////////////////////////
PRINT*,'Stability assessment'
DO 1=1, WALLS

IF (Wfo(I)>0.25) THEN ! actually 0.5 for 1 dimensional case but safety factor introduced 
PRINT *,'Unstable, reduce time step'
STOP
ENDIF

ENDDO

!!!!!!!!!!!!!!!!!!!!!!!!
!!! write result file !!!
!!!!!!!!!!!!!!!!!!!!!!!
PRINT *,'write results file? (l=yes 0=no)'
READ *,WTF 
IF (W TF=1) THEN

2 PRINT *,'filename?'
READ *,Fname 
CALL UPCASE@(Fname)
CALL APPEND_STRING@(FNAME,'.RES') !fUe called fname.res ’
OPEN(UNIT=20,FILE=FNAME,STATUS=rNEW',ERR=2)

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! Graphics mode, plots profiles to screen !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PRINT *,'plot results to screen? (l=yes 0=no)'
READ *,Graphics

IF (Graphics=l) THEN 
head 1-21 degC'



head2-0 deg C' 
call vga@
ICOL=2 
ICOLOUTl=15 
ICOLOUT2=14

ELSE
call text_mode@

ENDIF

Steps=Days*24*60*60/dTIME 
HrsDone=0 
DaysDone=0
M=0 Htour counter
N=0 !day counter
TermHeight=l/ (((670.656*(Rheight**6.0)) + (120.43*(Rheight**8.7))) ** (1.0/6.0)) 
Iwall characteristic height

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!! THIS IS THE START!!!!

DO 1=1,Steps !in steps given by dTIME

Tout(l)=Tout(l)+dToutl !increment outside temperature
Windspeed=Windspeed+dWindspeed !increment windspeed

HHHHHcalculate surface heat transfer coefficients !!!!
!! convection from ceiling internal surface (wall 3)
Hin (3)=0.6* ((abs(Wtnow(3,Wnodes)-Troom))/(Rheight**2))**0.2

!! convection from ceiling external surface 
Hout(3)=1.63*(abs(Wtnow(3,Wnodes)-Troom))**(0.333)

!! convection from internal surface o f room walls (wall 1 and wall 2) !!
Hin( 1:2)=TermHeight+( 1.23 *((abs(Wtnow( 1:2, Wnodes)-Troom))* *(0.333)))

!! convection from external surface o f interior walls 
Hout(2)=TermHeight+( 1.23* ((abs(Wtnow(2,l)-Tout(2))) **(0.333)))

!! convection from external surface o f exterior wall 
Hout(l)=5.8+(4.1 * Windspeed)

BIout=hout* Wdx/Wk 
BIin=hin*Wdx/Wk

!!! assumed values for core and insulation !!!
Hcore=2 !core heat transfer coefficient (only 1 surface exposed)
Hinsin=2 Hnsulation inner
Hinsout=2 Hnsulation outer
BIcore=Hcore* Cdx/Ck
BIoutins=Hinsout*Idx/Ik
BIinins=Hinsin*Idx/Ik

!!!!!!!!!!!!!!
!!! Walls !!
!!!!!!!!!!!!!

DO j= 1, Walls iperform for each wall

!room temperature line colour (changes daily) 
!outside temperature white 
Iroom temperature yellow
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Wpl=Wtnow(j,2:Wnodes) !dummy matrix
Wm 1 = Wtnow(j, 1: Wnodes-1) Idummy matrix

!!! internal nodes !!!
Wtnext(j,2:Wnodes-1) = Wfo(j)*(Wpl(2:Wnodes-I)+Wml(2:Wnodes-I)) + ((l-(2*WfoG)))* Wtnow(j,2:Wnodes-I)) 

!!! node on outside o f wall!!!
Wtnext(j,l)=(2*WfoG)*( Wpl(l)+(BIoutG)*ToutG)))) + ( (1 -(2 * WfoG))-(2 * B IoutG)* WfoG))) * Wtno wG, 1))

/ / /  node on inside of wall!!!
WtnextG,Wnodes)=(2*Wfo0)*( Wml(Wnodes)+(BIinG)*Troom))) + ( (l-(2*WfoG))- 
(2*BIinG)*WfoG)))*WtnowG,Wnodes))

ENDDO !Q=1,walls)

!!! work out heat input to room from each wall!!!

!!! calculate heat inputs over time period for present and next !!!
!!! inner wall temperatures and average HI
Q(:, 1 )=Hin(:)* Warea(:)* (Wtnow(: ,Wnodes)-Troom)* dTIME
Q(:,2)=Hin(:)*Warea(:)*(Wtaext(:,Wnodes)-Troom)*dTIME
Qtot_Walls=SUM( (Q(:,l)+Q(:,2))/2 )

Wtnow=Wtnext Iwall node temperatures advance

!!! window !!!
Qwin=WINuval* WINarea* (T out( 1 )-Troom)* dTIME

!!! energy changes due to ventilation with outside air !!!
MassXchange=Racph*Rmassair*dTIME/3600
Qvent=AIRcp*MassXchange*(Tout(l)-Troom)

/ / /  direct acting heater input on timer and thermostat switch !!
HI can use this to switch direct acting heater on at various times H!
IF (Troom<(20+273) .AND. hr_of_day >8 .AND. hr_of_day<12) THEN
Qdah=dah_rating*dTIME
ELSE
Qdah=0
ENDIF

H! storage heater H!
IF (Daysdone<90 .or. Daysdone >270) then luse in winter
IF (hr_of_day < 7 .and. Ctnow(l)<(700+273)) then !E7 charging and 700 deg C. max temp
SHpower=SHrating
ELSE
SHpower=0
ENDIF
ELSE
SHpower=0
ENDIF

FLUX=SHpower/SHarea 

UIcore!I!
Cp 1 =Ctnow(2 :Cnodes) !dummy matrix
Cm 1 =Ctnow( 1 :Cnodes-1) Idummy matrix

H! internal core nodes HI
Ctnext(2:Cnodes-1 )=Cfo*( Cpl(2:Cnodes-l)+Cml(2:Cnodes-l)) + ( (l-(2*Cfo))*Ctnow(2:Cnodes-l)) 

HIcore node next to heating element H!
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Ctnext(l)=2*Cfo*(FLUX*(Cdx/Ck)+ Ctnow(2)) + (Ctnow(l)*(l-(2*Cfo)))

!iIcore node next to air gap !!!
Ctnext(Cnodes)=(2* Cfo* ( C tnow (C nodes-l) +  (BICORE*Tairgap))) +  ((l-(2*C fo) -(2* BICORE* Cfo))
* C tnow (C nodes))

/ / /  insulation !!!
Ip 1 =Itnow(2:Inodes) !dummy matrix
Im 1 =Itnow( 1 :Inodes-1) !dummy matrix

lliinternal insulation nodes!!!
Itnext(2:Inodes-l)=Ifo*( Ipl(2:Inodes-l)+Iml(2:Inodes-l) )+( (l-(2*Ifo))*Itnow(2:Inodes-l) ) 

!!Hnsulation node on air gap side!!!
Itnext( 1 )=(2*Ifo*(Ipl(l)+(B IoutIN S*T airgap))) +  ( (l-(2*Ifo)-(2*B IoutIN S*Ifo)) * I tn o w (l))

!!! insulation node on room side !!!
Itnext(Inodes)=(2*Ifo*( Im l(Inodes)+(BIinINS*Troom ))) +  (  (l-(2*Ifo)-& &
&&(2* B linIN  S * Ifo))* Itnow (Inodes))

!!!work out heat input to airgap from core and insulation, calculate heat inputs over !!! 
Hltime period for present and next temperatures and take an average !!!
Qcore 1 = HCORE* SHarea* (Ctno w(Cnodes)-Tairgap)* dTIME
Qcore2=HCORE*SHarea*(Ctnext(Cnodes)-Tairgap)*dTIME
Qcore=(Qcore 1 +Qcore2)/2
Qins 1 =HinSIN* SHarea* (Itnow( 1)-Tairgap)* dTIME
Qins2=HinSin*SHarea*(Itnext(l)-Tairgap)*dTIME
Qins=(Qins l+Qins2)/2
Qshgap=Qins+Qcore

HHnew airgap temperature!!!
Tairgap=Tairgap+((Qshgap/AIRcp)/SHmassair)

!!! sh contribution to room via convection from casing
Qshouterl=HinSout*SHarea*(Itnow(Cnodes)-Troom)*dTIME
Qshouter2=HinSout*SHarea*(Itnext(Cnodes)-Troom)*dTIME
Qshouter=((Qshouterl+Qshoutei2)/2)*2 !! only half heater modelled

Itnow=Itnext !advance insolation node temperatures
Ctnow=Ctnext !advance core node temperatures

!!! energy change due to exchange with storage heater air !!!
IF (hr_of_day > 17  .and. Troom < (273+20) ) then
ACPM=ACPMfanon
ELSE
ACPM=ACPMfanofF
ENDIF

shMassXchange=ACPM*SHmassair*dTIME/60
Qventsh=AirCp*shMassXchange*(Tairgap-Troom)*2
Tairgap=Tairgap-((Qventsh/AIRcp)/SHmassair)

!!! calculate new room temperature !!!
Qtot=Qwin+Qtot_Walls+Qvent+Qdah+Qshouter+Qventsh !total heat input
Troom=Troom+((qtot/AIRcp)/Rmassair) !new room temperature

M=M+1 !counts time until an hour is completed

IF (M*dTIME =  60*60) THEN !do the following every hour
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IF (Graphics=l) THEN
IF (HrsDone<200) THEN
X=HrsDone
ELSE
CALL GET_SCREEN_BLOCK@(0,0,200,479,buffer)
CALL CLEAR_SCREEN_AREA@(200,0,200,450,0)
CALL RESTORE_SCREEN_BLOCK@(-1,0,BUFFER,0,ERROR_CODE) 
CALL RETURN_STORAGE@(BUFFER)
X=200
ENDIF

CALL PLOTDOT(x,Troom,ICOL)
CALL PLOTDOT(x,Tout( 1 ),ICOLOUT 1)
twenty 1=294
zero=273
CALL PLOTDOT(x,twenty 1 ,ICOLOUT 1)
CALL PLOTDOT(x,zero,ICOLOUT2)
CALL DRAW_TEXT@(headl ,240,79,3)
CALL DRAW_TEXT@(head2,240,290,3)

ENDIF

21 format(i4,lx,f4.1,f6.1,lx,f6.1)
IF (WTF==1) write(20,21) DaysDone,hr_of_day,Tout(l)-273,Troom-273

READ( 10,*) Toutl HR, WindspeedlHR,hr 1HR 
dToutl =(Tout 1 HR-Tout( 1 ))*dTIME/3600 
dWindspeed=(WindspeedlHR-Windspeed)*dTIME/3600

IF (hrlhr==0) then
hr_of_day=23
ELSE
hr_of_day=hr 1 HR-1 
ENDIF

HrsDone=HrsDone+1
M=0 !reset hour counter after every hour

ENDIF

N=N+1 I day counter
IF (N* dTIME =  60*60*24) THEN 

IF (ICOL =  8) THEN 
ICOL=2

ELSE
ICOL=ICOL+l

ENDIF

DaysDone=DaysDone+1 
N=0

IF (Graphics ==0) print *,DaysDone
ENDIF 

ENDDO !(I=1,steps)

!!/this is the end

CONTAINS
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
SUBROUTINE PLOTDOT(X,Y,ICOL)
INTEGER X,ICOL,yyy 
REAL Y,YY

YY=((((y-273)*10)*(-l))+300)
yyy=NINT(YY)
CALL SET_PIXEL@(X,yyy,ICOL)
END SUBROUTINE PLOTDOT 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
SUBROUTINE PLOTLINE(X)
INTEGER X
CALL DRAW_LINE@(X,0,X,400,3)
END SUBROUTINE PLOTLINE 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

END PROGRAM Building_Model
The code finishes here
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Fig F-l An example o f the output from the code showing room temperature with and without a
storage-fan heater on an E7 charging schedule
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