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ABSTRACT
STPA is a hazard assessment technique that represents systems as hierarchical
control structures composed of feedback control loops. Existing computa-
tional support focuses on creating the diagrams that depict these hierarchies.
However, the elements in the loops and the signals exchanged must be
determined manually. This impedes safety assessment, thus reducing the
number of designs that can potentially be explored. Furthermore, the manual
approach does not guarantee the correct update of the architecture with
changes resulting from safety assessment, which can make the architecture
inconsistent with the safety assessment. To overcome these limitations, pro-
posed for the first time are two methods that automate the creation of: (1)
hierarchical control structures and (2) detailed control loops. The methods
create STPA models by analysing the architecture, which is modelled as a
graph. The concept is illustrated with a representative example of a wheel
brake system. The resulting models are compared with those obtained manu-
ally by the authors of STPA. The automation is shown to significantly reduce
the required time and effort. It was also found to ensure consistency among
the safety analysis and the architecture definition as it requires safety features
to be included in the architecture before being considered in STPA analysis.
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1. Introduction

Safety refers to the avoidance of catastrophic effects such as injuries, loss of
life and environmental damage. It is a crucial analytical element of systems
design, as it rules out those options that fulfil the design goals but do not
guarantee the elimination of behaviours that can lead to catastrophic effects.
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Safety is particularly important for civil aircraft where accidents could
result in many fatalities. This has motivated the establishment of regulatory
agencies, such as the European Aviation Safety Agency (EASA), which
define the minimum safety requirements aircraft must meet to obtain a cer-
tificate of airworthiness. Their efforts have succeeded in reducing the num-
ber of fatalities involving passenger and cargo operations of large
aeroplanes worldwide (European Aviation Safety Agency, 2020a). However,
the growing complexity of systems and the use of innovative solutions,
such as novel configurations and increasingly more electric aircraft, intro-
duce new challenges. Traditional safety methods might be insufficient for
complex systems and much of the past experience regarding safety might
not apply to the new designs (Leveson, 2012, pp. 3–6). Within this context,
the broader aim of this research is to facilitate the application of safety
methods that can improve the efficiency of the safety assessment process
of complex, innovative systems.

1.1. Hazard assessment and the system theoretic process
analysis STPA

Two standards, the ARP 4754A (S-18 Aircraft and Sys Dev and Safety
Assessment Committee, 2010) and ARP 4761 (S-18 Aircraft and Sys Dev and
Safety Assessment Committee, 1996), describe the safety assessment pro-
cess, which aims to show compliance with safety regulations such as
EASA’s CS-25 (European Aviation Safety Agency, 2020b). As defined by
these standards, Functional Hazard Assessment (FHA) is the stage in the
safety assessment process that identifies potential functional failures and
classifies the associated hazards. Hazard assessment is a part of the FHA
process where the system is examined to identify safety-related risks
(Federal Aviation Administration, 2000), which can be used to derive safety
requirements for the system.

Traditionally, hazard assessment revolves around the processes and
methods described in the ARP 4761 such as fault tree analysis (FTA) and
failure modes and effects criticality analysis (FMECA), and other trad-
itional methods such as event tree analysis (ETA) and hazard and oper-
ability analysis (HAZOP). According to Leveson et al. (2014), these
methods have been effective when applied to relatively simple electro-
mechanical designs, but they are no longer suitable for more complex
and software-intensive systems. This is because in complex systems acci-
dents may result from unsafe interactions among the components and
not just from component failures.
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To overcome these limitations, alternative hazard assessment methods
such as the System Theoretic Process Analysis STPA (Leveson, 2012) have
been proposed. As shown by a review by Patriarca et al. (2022), the method
has gained popularity in recent years, especially in the fields of aviation,
maritime and automotive, which account for the highest number of publi-
cations. STPA is based on STAMP, an accident model that is founded on
basic systems theory concepts (as opposed to traditional methods, which
are based on reliability theory) and includes additional causes for accidents
such as system design errors, human error and various types of systemic
accident causes (Leveson, 2004). Leveson and Thomas (2018) argue that
STPA hazard analysis can find the same failure scenarios found by trad-
itional analyses but also many more software-related and non-failure scen-
arios. Additionally, STPA is claimed to be less costly in terms of time and
resources than traditional methods (Leveson & Thomas, 2018). STPA-based
safety assessment (Leveson, 2012; Leveson & Thomas, 2018) consists of
four steps:

1. Define the purpose of the analysis identifying system-level hazards
(states that lead to a catastrophic effect) and constraints (system-level
requirements to prevent hazards).

2. Model the control structure, which is composed of feedback control
loops ordered by a decreasing level of control authority. The structure
includes controllers and controlled processes, which exchange control
actions, feedback signals and other inputs and outputs.

3. Examine the control structure to identify unsafe control actions,
which can lead to a hazard in a particular context, as they are not
provided, provided improperly, or with inadequate timing. Controller
constraints (safety requirements) are defined to prevent
such actions.

4. Examine detailed control loops to identify loss scenarios, such as
unsafe controller behaviour, inadequate feedback or component fail-
ures that can lead to unsafe control actions.

1.2. Existing STPA support methods and computation tools

A total of eleven state-of-the-art software tools that support STPA and two
methods, which use STPA to automate the generation of safety require-
ments, were reviewed. Table 1 summarises the results from the literature
review. It provides information about how the tools and the method sup-
port the STPA methodology based on three capabilities:
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� Diagrams & Tables refers to the ability of a tool to provide a user
interface to edit STPA analysis data, draw the control structure dia-
grams and edit tables such as the losses, hazards or unsafe control
actions tables.

� Traceability implies that the tool is able to automatically indicate
which elements, such as losses, hazards and unsafe control actions,
relate to others. Traceability is obtained by automatically following links
between elements, which are created manually by the analysts.

� Automation refers to additional support that automates any part of
the STPA process except for traceability (The right column of Table 1
also lists particular automated capabilities where applicable).

Table 1. Review of STPA methods.

Method
Diagrams &

Tables Traceability Automation

A-STPA Yes No No
(Abdulkhaleq, 2014)

XSTAMPP Yes No No
(SE-Stuttgart, 2019)

An STPA tool
(Thomas & Suo, 2015)

Yes No Context table, conflicts,
requirements

SAHRA Yes Yes No
(Krauss, Rejzek, Senn, et al., 2016)
(Krauss, Rejzek, Reif, et al., 2016)

Risk Management Studio Yes Yes List of control actions
(Risk Management Studio, 2019)
(Bj€ornsd�ottir & Rejzek, 2017)

STAMP Workbench Yes No No
(Information-technology Promotion
Agency, Japan, 2018)

Astah System Safety Yes No No
(Astah, 2021)

CAIRIS Yes Yes No
(Shamal Faily, 2021)

SafetyHAT Yes No No
(Volpe National Transportation
Systems Center, 2014)

Abdellatif and Holzapfel
(Abdellatif & Holzapfel, 2021)

Yes No Components in hierarchy,
some verification

WebSTAMP
(Souza, Pereira, et al., 2019)

Yes Yes Context table, guidewords
for scenarios

Method to Automate Generation of
Safety Requirements

No No Context table, conflicts,
requirements

(Thomas, 2013)
(Thomas & Leveson, 2013)

Rule-Based Approach for STPA
(Gurgel et al., 2015)

No No Context table, guidewords
for scenarios
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All the computational tools provide a user interface which users can
employ to create control loops and hierarchy diagrams, and populate tables
with losses, hazards and control actions among others. The methods (last
two rows of the table) are not computational tools and therefore do not
have a user interface.

The most common automation feature is traceability, which is explicitly
supported by SAHRA, Risk Management Studio and CAIRIS. SAHRA goes
beyond the standard tabular format and introduces mind maps, a directed
graph that enables traceability and presents elements such as losses, haz-
ards and unsafe control actions among others.

A greater degree of automation is provided by the method for auto-
mated generation of formal model-based safety requirements (Thomas,
2013; Thomas & Leveson, 2013) and An STPA Tool, as it implements such a
method. The method explains how to generate a list of potential hazardous
control actions by combining controllers, types of action, control actions
and contexts. Requirements are generated by determining the combina-
tions that prevent hazardous behaviour. This can be automated depending
on the availability of behavioural models. The method is also able to check
the lack of consistency which arises when both providing or not providing
an action within the same context is considered hazardous or when a
necessary function of the system results in a hazard.

Gurgel et al. (2015) extend the method by Thomas (2013) with a rule-
based approach that assists in the identification of hazardous contexts.
WebSTAMP is a web-based STPA tool that implements this approach.

The tool by Abdellatif and Holzapfel (2021), which links Simulink to
STPA, is the only one that automatically determines the components in the
STPA control hierarchy. However, it requires manual linking of the compo-
nents of the hierarchy. It also provides automated verification of missing
links (control or feedback) between controllers and controlled processes,
and sensor compatibility.

As the review shows (Table 1), the degree of automation provided by
the existing tools is generally low, especially regarding the creation of
STPA diagrams, which model the control hierarchy and control loops. This
can impact the total time required for STPA analysis, which is likely to
result in common problems such as safety assessment lagging behind
other aspects of the design (Delange & Feiler, 2014) and sometimes taking
place later on in the product development process after the design is
finalised (Mhenni et al., 2014). Manual application of safety methods is
susceptible to errors when extracting safety models from the system def-
inition, which has been found to bring unnecessary subjectivity and incon-
sistency to the analyses (Joshi et al., 2007). The lack of consistency
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between different design abstractions and outdated models as the design
progresses has been identified as one of the primary sources of inconsist-
ency in safety analyses (Papadopoulos et al., 2001). Errors when creating
STPA models and inconsistent design abstractions might lead to problems
such as missing or misplacing links or omitting elements in the control
hierarchies and loops.

To overcome the above-presented limitations, two novel methods have
been developed, enabling the automatic creation of STPA control hierar-
chies and control loops. The effect of such automation is twofold: it acceler-
ates the STPA process while ensuring its consistency with the evolving
system design. That is, safety can be performed concurrently with system
architecting. The scope of the research is restricted to the conceptual
design stage, which is critical in its impact on the whole product develop-
ment process. For example, safety deficiencies discovered at later design
stages might need to be corrected at the expense of performance or may
require substantial costly redesign.

The rest of the paper is organised as follows. The proposed methods are
presented in Section 2. Section 3 demonstrates the application of the pro-
posed approach to a representative use case and compares it to the man-
ual application of the method. Finally, conclusions are drawn and future
work is suggested in Section 4.

2. Proposed methods

This section describes two novel methods developed to support the
STPA hazard assessment process in the identification of unsafe control
actions and loss scenarios. Specifically, the methods enable for the first
time the automatic creation of the models required for steps 2, 3 and 4
of the STPA hazard assessment process (see Section 1.1.). The first
method automatically generates the high-level view of the hierarchical
control structures including all controllers. This is necessary to identify
unsafe control actions during Step 2 of STPA. The second method auto-
matically creates more detailed control loops, whose additional informa-
tion supports the identification of loss scenarios during Step 4 of STPA.
Both methods use the information in the (system) architecture to elabor-
ate such models, and therefore, the quality and level of detail of the
STPA analysis will be influenced by the quality and level of detail of the
architecture definition.
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2.1. Input to the methods, the logical view

The input to the methods is the logical view of the system, which is the
part of the architecture definition that displays the solutions and the way
they are interconnected. Solutions are the elements (such as parts, compo-
nents or subsystems) that perform (fulfil) the required functions of the sys-
tem (Guenov et al., 2020). As defined in the STPA methodology, certain
solutions have the role of controllers in the systems, whereas the rest cor-
respond to the controlled processes.

Solutions exchange energy, matter and signal flows through their
input and output ports. These relations are referred to as flow relations.
Flow relations can be modelled as a directed graph (Guenov et al.,
2020). This graph can be used to determine which solutions are affected
by the flow originating at one solution or which solutions affect a par-
ticular solution. Relations of this kind are used within the context of
STPA to identify the flow exchange among controllers and processes. An
example of a logical flow view is shown in Figure 1, which illustrates the
architecture of a wheel brake system. The hydraulics, which provides the
power to the wheel brake, can be controlled either directly by the crew

Crew

Brake

Subsystem
Controller

Hydraulics Sensor

Wheel

Figure 1. Example of a logical flow view.
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or via a controller. The controller receives feedback from a sensor that
measures the status of the wheel.

Solutions can be formed by the aggregation of other solutions. For
example, several simple components might form a subsystem. These rela-
tions are referred to as hierarchical relations. Hierarchies can be modelled
as a tree — a directed acyclic graph. This graph can be used to determine
the subsystem a component belongs to or the actual components that
form a subsystem at the various levels of the hierarchy. Hierarchical rela-
tions provide a means of determining the position of the controllers in the
STPA hierarchical control structure. Figure 2 shows the same architecture as
in Figure 1 but emphasises how solutions are aggregated into subsystems.
In particular, the figure highlights that the controller, the hydraulics, and
the sensor are defined as children of the brake subsystem.

The methods were developed with the assumption that a logical view of
the system exists, as part of the system architecting process. The logical
view is used for defining the solutions (components) of the system and
their interrelations and is not tied to any particular analysis. In this research,
the input to the presented methods is an RFLP model of the architecture
defined according to the framework introduced in (Jimeno Altelarrea,
2021). The RFLP paradigm, based on the German Guideline Design method-
ology for Mechatronic Systems (VDI 2206, VDI Department of Product
Development and Mechatronics, 2004) assumes that systems architecting is
distributed over four notional domains: Requirements, Functional, Logical
and Physical. It must be noted that the proposed methods are not
restricted to the RFLP paradigm and should be easily adaptable to other
kinds of architectural representations, if they include equivalent concepts

Crew
Brake

Subsystem
Wheel

Controller Hydraulics Sensor

Figure 2. Example of a hierarchical view.
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to flow and hierarchical relations and provide a means to identify
controllers.

2.2. Creation of hierarchical control structures

The hierarchical control structure is a graph formed by controller nodes
and one or more process nodes at the bottom of the hierarchy. Each
controller solution in the logical view is mapped to a controller node in
the hierarchy, and the rest of the solutions are grouped into process
nodes. By default, only one process node is created in the presented
method for creating hierarchical control structures. However, the user
can specify more process nodes by indicating which solutions are to be
included. Solutions for which no process node is specified will be
grouped in the default node.

The method uses Algorithm 1 to create the hierarchy and add the
links from controller and non-controller solutions. Specifically, Algorithm
1 calls the function ADD-LINKS-FROM-CONTROLLER, which is described in
Algorithm 2, to create the links in the hierarchy, starting from or ending
at a controller j. The connections are determined by applying the fol-
lowing rules:

Algorithm 1: Creation of Hierarchical Control Structures
1 Function CREATE-CONTROL-HIERARCHY(logical-view, process-nodes)

Inputs :The logical view of the system (logical-view).
The desired grouping for process nodes (process-nodes).

Output :The hierarchical control structure (H) corresponding to logical-view

2 H ← new HIERARCHY()
3 for each κ ∈ GET-CONTROLLERS(logical-view)
4 ADD-LINKS-FROM-CONTROLLER(logical-view, process-nodes, H, κ)
5 end
6 for each σ ∈ GET-NON-CONTROLLERS(logical-view)
7 ADD-LINKS-FROM-NON-CONTROLLER(logical-view, process-nodes, H, σ)
8 end
9 return H

10 end

1. Traverse the logical view of the architecture starting from a port p in
controller j including every component that can be reached by fol-
lowing flow links in the direction of the flow. The traversal through a
particular link ends when a controller solution is found, immediately
after including such controller. This forms the set of components RIj

influenced by j.
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2. The controller solutions in RIj represent the set of controllers KIj
influenced by j.

3. A link in the hierarchical control structure is formed between the
nodes representing j and each controller ji in KIj , excluding the ini-
tial controller j. The type of the link is determined by comparing the
controllers’ position in the logical hierarchy:
� If j is higher than ji a link of type ‘ControlAction’ is added.
� If j is lower than ji a link of type ‘Feedback’ is added.
� Otherwise, the link is of type ‘SameLevelInputOutput’.
The initial port in the traversal p is associated with the link.

4. The non-controller solutions in RIj represent the set of non-controller
solutions SIj influenced by j.

5. If SIj 6¼ ;, which represents the case where non-controller solutions
are directly controlled by j, a link of type ‘ControlAction’ is added
between the node representing j and each process node pi that
includes a solution in SIj :

6. Traverse the logical view starting from p including every compo-
nent that can be reached by following flow links in the opposite
direction to the flow. The traversal through a particular link ends
when a controller solution is found, immediately after including
such controller. This forms the set of components RI0j that influ-
ence j.

7. The controller solutions in RI0j represent the set controllers KI0j that
influence j.

8. A link is formed in the hierarchical control structure between the
nodes representing j and each controller ji in KI0j : The type of
the link is determined by comparing the controllers’ position in the
logical hierarchy:
� If ji is higher than j a link of type ‘ControlAction’ is added.
� If ji is lower than j a link of type ‘Feedback’ is added.
� Otherwise, the link is of type ‘SameLevelInputOutput’.
The initial port in the traversal p is associated with the link.

9. The non-controller solutions in RI0j represent the set of non-controller
solutions SI0j that influence j.

10. If SI0j 6¼ ;, a link of type ‘Feedback’ is added between the node
representing j and each process node pi that includes a solution
in SI0j :

10 S. JIMENO ALTELARREA ET AL.



Algorithm 2: Creation of links from/to controllers
1 Function ADD-LINKS-FROM-CONTROLLER(logical-view, process-nodes, H, κ)

Inpus :The logical view of the system (logical-view).
The desired grouping for process nodes (process-nodes).
The hierarchical control structure (H).
A controller in the logical view (κ).

2 for each p ∈ GET-PORTS(κ)
3 ΣIκ

← TAVERSE-FLOW-WISE(logical-view, p) // Set of solutions
influenced by κ

4 KIκ
← GET-CONTROLLERS(ΣIκ

) // Controllers in ΣIκ

5 for each κi ∈ KIκ

6 if IS-HIGHER(logical-view, κ, κi) then
7 ADD-CONTROL-ACTION-LINK(H, κ, κi, p)
8 else if IS-LOWER(logical-view, κ, κi) then
9 ADD-FEEDBACK-LINK(H, κ, κi, p)

10 else
11 ADD-SAME-LEVEL-LINK(H, κ, κi, p)
12 end
13 end
14 SIκ

← ΣIκ
\ KIκ

// Non-controller solutions in ΣIκ

15 if SIκ
�= ∅ then

16 for each πi ∈ GET-PROCESS-NODES(SIκ
, process-nodes)

17 ADD-CONTROL-ACTION-LINK(H, κ, πi, p)
18 end
19 end

20 ΣI′
κ

← TAVERSE-COUNTER-FLOW-WISE(logical-view, p) // Set of
solutions that influence κ

21 KI′
κ

← GET-CONTROLLERS(ΣI′
κ
) // Controllers in ΣI′

κ

22 for each κi ∈ KI′
κ

23 if IS-HIGHER(logical-view, κi, κ) then
24 ADD-CONTROL-ACTION-LINK(H, κi, κ, p)
25 else if IS-LOWER(logical-view, κi, κ) then
26 ADD-FEEDBACK-LINK(H, κi, κ, p)
27 else
28 ADD-SAME-LEVEL-LINK(H, κi, κ, p)
29 end
30 end
31 SI′

κ
← ΣI′

κ
\ KI′

κ
// Non-controller in ΣI′

κ

32 if SI′
κ

�= ∅ then
33 for each πi ∈ GET-PROCESS-NODES(SIκ

, process-nodes)
34 ADD-CONTROL-ACTION-LINK(H, πi, κ, p)
35 end
36 end
37 end
38 end

The function ADD-LINKS-FROM-NON-CONTROLLER, described in Algorithm 3, cre-
ates the links in the hierarchy, starting from or ending at a process node
associated with a non-controller r. The connections are determined by
applying the following rules:
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1. Traverse the logical view of the architecture starting from a port p in solu-
tion r including every component that is directly linked to p by following
flow links in the direction of the flow. This forms the set of components
RIr influenced by r.

2. For each ri in RIr , a link is formed in the hierarchical control structure
between the process node that contains r and the process node that
contains ri. The link is of type ‘SameLevelInputOutput’. Duplicated
links are omitted.

3. Traverse the logical view starting from p including every component
that is directly linked to p by following flow links in the opposite dir-
ection to the flow. This forms the set of components RI0r that influ-
ence r.

4. For each ri in RI0r , a link is formed in the hierarchical control structure
between the process node that contains r and the process node that
contains ri. The link is of type ‘SameLevelInputOutput’. Duplicated
links are omitted.

Algorithm 3: Creation of links from/to non-controller solutions
1 Function ADD-LINKS-FROM-NON-CONTROLLER(logical-view, process-nodes, H, σ)

Inpus :The logical view of the system (logical-view).
The desired grouping for process nodes (process-nodes).
The hierarchical control structure (H).
A non-controller solution in the logical view (σ).

2 for each p ∈ GET-PORTS(σ)
3 σIσ

← TAVERSE-FLOW-WISE(logical-view, p) // Set of solutions
influenced by σ

4 for each πi ∈ GET-PROCESS-NODES(σIσ
, process-nodes)

5 ADD-SAME-LEVEL-LINK(H, σ, πi, p)
6 end

7 σI′
σ

← TAVERSE-COUNTER-FLOW-WISE(logical-view, p) // Set of
solutions that influence σ

8 for each πi ∈ GET-PROCESS-NODES(σI′
σ
, process-nodes)

9 ADD-SAME-LEVEL-LINK(H, πi, σ, p)
10 end
11 end
12 end

The analysis of the algorithm reveals that its asymptotic complexity is
OðPKLþ PSÞ, where PK is the number of ports that belong to controllers, L is
the number of links in the logical view (which represent the worst-case for
a traversal originating in one port), and PS is the number of ports that
belong to non-controllers. Provided that all ports are connected, the values
of PK, PS, and L might be of similar magnitude, which implies a running
time that increases quadratically with respect to the number of links in the
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logical view. This indicates that the worst-case asymptotic complexity
is OðL2Þ:

Figure 3 shows a simple example of a hierarchical control structure that
is automatically created from the logical view of the system. The control
hierarchy corresponds to the wheel brake system in Figure 1. The hierarchy
is composed of controllers (solutions highlighted in blue) and a process
node where the rest of the solutions are lumped together. Since the con-
troller is lower than the crew in the solution hierarchy, this node is also situ-
ated lower in the control hierarchy. The hierarchy shows how the crew
controls the process both directly and via the controller, which receives
feedback from the process.

2.3. Creation of detailed control loops

Creating a detailed control loop requires the identification of four sets of
components: the controller j, actuators RAj , sensors RSj and process solu-
tions RPj : Given a controller, the developed method can automatically iden-
tify the actuators, sensors and process solutions. The process consists of the
following steps:

1. Traverse the logical view starting from controller j including every
solution that can be reached by following flow links in the direction
of the flow. This forms the set of components RIj influenced by j.

2. The set of solutions in RIj with a direct flow link from j corresponds
to RAj :

3. Traverse the logical view starting from controller j including every
solution that can be reached by following flow links in the opposite

Crew

Controller

Process

Figure 3. Example of a hierarchical control model.
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direction to the flow. This forms the set of components RI0j that influ-
ence j.

4. The set of solutions in RI0j with a direct flow link to j corresponds
to RSj :

5. Finally, use the following equation to obtain the set of process solu-
tions

RPj ¼ ðRIj \ RI0jÞ n ðRAj [ RSj [ jÞ
The union of the four sets forms the set of components in the loop

RLj ¼ RIj \ RI0j ¼ RPj [ RAj [ RSj [ j

In reality the analyst can also provide different values for RAj and RSj ,
which will override the values obtained automatically and remove compo-
nents from RPj as required. After the sets are identified, the method will
classify the links among the various items in the control loop according to
the links in the generic control loop provided in the STPA handbook
(Leveson & Thomas, 2018, pp. 44, 49). These links cover the most common
loss scenarios (unsafe controller behaviour, inadequate feedback and infor-
mation, issues involving the control path and scenarios related to the con-
trolled process). The method helps to produce the information required by
STPA’s Step 4 Identify Loss Scenarios with little input from the architect
(only the controller j).

In practice, some links do not fall under any of the categories proposed
in Leveson and Thomas (2018, pp. 44, 49) such as links from other compo-
nents (outside the loop) to sensors and actuators and between them. The
proposed algorithm does not discard any link a priori and allows the ana-
lysts to decide which links are relevant for them. Figure 4 displays the
extended generic control loop, which includes all possible kinds of links.
These links are tagged with a number corresponding to the description of
the links presented in Table 2. The latter contains the criteria employed for
link classification and marks the additional kinds of links with an asterisk
(�). A link is named using one of these two ways: (1) Destination Inputs
from Origin or (2) Origin Outputs to Destination, both of which indicate that
a link exists from Origin to Destination.

The analysis of the algorithm reveals that its asymptotic complexity is
OðLþ SÞ, where L is the number of links and S is the number of solutions
in the logical view. The first summand appears because there are two tra-
versals that will include every link in the architecture in the worst-case scen-
ario. The second summand appears because every solution might be
involved in the set operations. Set operations are performed with the help
of hash tables, which yield an average time O(1) to search for an element in
a set (Cormen et al., 2009). In the case of the architectures employed in this
research, where all ports are connected, the number of links is of similar
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magnitude to the number of ports and solutions. This brings the complexity
to linear O(L).

Figure 5 shows a simple example of the creation of a detailed control
loop, which corresponds to the solution labelled as ‘Controller’. It is created
from the logical view of the wheel braking system in Figure 1. All solutions
are classified according to their role in the control loop. RIj is composed of
the hydraulics, the wheel, the sensor and the controller. RAj contains the
hydraulics as they are the only component in RIj with a direct link from j.
RI0j is composed of the crew, the sensor, the wheel, the hydraulics and the
controller. RSj contains the sensor as it is the only component in RI0j with a
direct link to j. RPj corresponds to the wheel. The crew, which does not
belong to the loop, is included in the figure as a direct influence on
the controller.

3. Evaluation

Reported in this section are several studies which were performed to test
and evaluate the two novel methods. The section starts with a brief intro-
duction of AirCADia Architect, a prototype tool which incorporates the soft-
ware implementation of the proposed techniques. This is followed by the
description of the wheel brake use case (S-18 Aircraft and Sys Dev and
Safety Assessment Committee, 1996) employed to evaluate the methods.
Finally, the comparison between the automated and the manual applica-
tion of STPA is discussed.
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Figure 4. Links in the extended generic control loop.
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Table 2. Classification of control loop links.
Link type From To

(1) Controller Inputs
from Sensors

A sensor in the loop RSj Controller j

(2) Controller Inputs from
Higher-Level Controllers

A controller in RI0j n RLj with a
direct link to j and higher
than j in the
controller hierarchy

Controller j

(3) Controller Inputs from
Same-Level Controllers

A controller in RI0j n RLj with a
direct link to j and at the
same levels as j in the
controller hierarchy

Controller j

(4) Controller Inputs from
Other Process Solutions

Solutions in RI0j n RLj with a
direct link to j and that are
not controllers

Controller j

(5) Controller Outputs
to Actuators

Controller j An actuator in RAj

(6) Controller Outputs to
Higher-Level Controllers

Controller j A controller in RI0j n RLj with a
direct link to j and higher
than j in the
controller hierarchy

(7) Controller Outputs to
Same-Level Controllers

Controller j A controller in RI0j n RLj with a
direct link to j and at the
same levels as j in the
controller hierarchy

(8) Controller Outputs to Other
Process Solutions

Controller j A solution in RIj n RAj with a
direct link to j

(9) Actuators Inputs
from Sensors�

A sensor in the loop RSj An actuator in RAj

(10) Actuators Inputs from
Other Process Solutions�

A solution in RI0j n RLj with a
direct link to an actuator
in RAj

An actuator in RAj

(11) Actuators Inputs from
Other Controllers�

A controller in RI0j n RLj with a
direct link to an actuator in
RAj and that is not
a controller

An actuator in RAj

(12) Actuators Outputs to
Other Process Solutions�

An actuator in RAj A solution in RIj n RLj with a
direct link to an actuator in
RAj and that is not
a controller

(13) Actuators Outputs to
Other Controllers�

An actuator in RAj A controller in RIj n RLj with a
direct link to an actuator
in RAj

(14) Sensors Inputs
from Actuators�

An actuator in RAj A sensor in RSj

(15) Sensors Inputs from Other
Process Solutions�

A solution in RI0j n RLj with a
direct link to a sensor in
RSj and that is not
a controller

A sensor in RSj

(16) Sensors Inputs from Other
Controllers�

A controller in RI0j n RLj with a
direct link to a sensor
in RSj

A sensor in RSj

(17) Sensors Outputs to Other
Process Solutions�

A sensor in RSj A solution in RIj n RLj with a
direct link to a sensor in
RSj and that is not
a controller

(18) Sensors Outputs to Other
Controllers�

A sensor in RSj A controller in RIj n RLj with a
direct link to a sensor
in RSj

(continued)
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3.1. Software prototype

AirCADia Architect (Guenov et al., 2020) is a research prototype tool for
rapid model-based system architecting and evaluation. It has been
extended for this research according to the object model proposed in
Jimeno Altelarrea (2021). The new capabilities include, among others, sup-
port for the STPA hazard assessment methods presented in this paper.
Additionally, AirCADia Architect allows the interactive explorations of the
resulting STPA models. Once a part of the model is selected, the related
parts and analysis results are highlighted.

3.2. Wheel brake system case study

The use case consists in the application of the two STPA methods to the
Wheel Brake System (WBS) example proposed in the ARP 4761 (S-18
Aircraft and Sys Dev and Safety Assessment Committee, 1996). This example
was employed in Leveson et al. (2014) to compare the manual application
of STPA to commonly used traditional methods. To facilitate comparison
with the results obtained by Leveson et al., the diagram, textual description
and assumptions regarding the WBS stated in (Leveson et al., 2014, pp.
68–72) are used to populate the logical view of the architecture in AirCADia
Architect. Although many STPA tools exist (see Section 1.2), none of these
fully automates the creation of hierarchies and detailed control loops.
Therefore, the comparison of the proposed methods with the manual
approach is considered a representative comparison of the existing tools.

Table 2. Continued.
Link type From To

(19) Process Inputs
from Actuators

An actuator in RAj A solution in RPj

(20) Process Inputs from Other
Process Solutions

A solution in RI0j n RLj with a
direct link to a solution in
RSj and that is not
a controller

A solution in RPj

(21) Process Inputs from Other
Controllers

A controller in RI0j n RLj with a
direct link to a solution
in RSj

A solution in RPj

(22) Process Outputs
to Sensors

A solution in RPj A sensor in RSj

(23) Process Outputs to Other
Process Solutions

A solution in RPj A solution in RIj n RLj with a
direct link to a solution in
RSj and that is not
a controller

(24) Process Outputs to Other
Controllers

A solution in RPj A controller in RIj n RLj with a
direct link to a solution
in RSj
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Figure 6 portrays the system implemented in AirCADia Architect. As
shown in the diagram the system has two hydraulic channels (green and
blue) capable of applying pressure on the brakes of the aircraft wheels. The
hydraulic part of the system is controlled by the Brake System Control Unit
(BSCU) and by the pedal’s mechanical input. The controller uses the manual
brake commands from the pedals as well as inputs from the rest of the air-
craft such as wheel speed or auto-brake mode. Apart from outputting con-
trol commands for various hydraulic valves, it also communicates its status
to the Brake System Annunciation. The annunciation informs the crew
about the state of the system so they can make the necessary decision to
control the WBS through manual brake (using pedals) or automatic brake
commands. More details about the system can be found in the original
report (Leveson et al., 2014). Some connections and components (such as
the autobrake), which were only implicit in the original diagram, but

Wheel

Hydraulics Sensor

Controller

Crew

Process Solutions

Actuators Sensors

Controller

Figure 5. Example of a detailed control loop.
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provided in the system’s description, have been made explicit in this imple-
mentation. This is because the tool and the methods require links to be
included explicitly to work properly.

3.2.1. Creation of hierarchical control structures
The first part of the evaluation focuses on the method to automatically cre-
ate the control hierarchies used for STPA analysis. Figure 7 shows the con-
trol hierarchy as automatically modelled by AirCADia Architect. The degree
of similarity with respect to the control hierarchy obtained by Leveson et al.
(2014, p. 28) is high regarding the components which are included and
their position in the hierarchy. In both cases, the crew is situated at the top
of the hierarchy. At an intermediate level, one can find the brake system
control unit’s (BSCU) controllers. Finally, the WBS hydraulics and wheel are
located at the bottom of the hierarchy. It must be noted that the wheel has
to be explicitly declared as a separate process node to make it appear as a
separate node in AirCADia Architect. There small difference arises because
the original hierarchy merges the two redundant control channels of the
BSCU, whereas the automated method considers them individually.

There are also differences regarding the order of controllers within the
BSCU. The original report omits the autobrake from the system diagram but

Figure 6. WBS systems architecture in AirCADia Architect.
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situates it at a higher level than the rest of the BSCU controllers in the hier-
archy. The autobrake had to be explicitly included in AirCADia Architect;
placing it within the BSCU at the same level seemed the most appropriate
option. As a result, the autobrake appears by default at the same level as
the rest of the BSCU controllers in Figure 7. The wheels and the WBS
hydraulics also appear at the same level in Figure 7. If desired, AirCADia
Architect allows to change the type of the links (such as the link between
the autobrake and the CMDs, or between the hydraulics and the wheel) to
obtain an order identical to the original hierarchy.

Unlike the original hierarchy, Figure 7 does not show the description of
the signals carried by the links, to avoid cluttering. Instead, this information
is presented in a more convenient tabular format in Table 3. The table
presents the comparison results regarding control commands (from a
higher to a lower level in the hierarchy) and same level links in the hier-
archy. The results show a considerable degree of similarity as the auto-
mated method discovers most of the signals and even some
additional ones.

Nevertheless, there are some differences regarding which elements are
identified by the creation algorithm as process nodes (every component
that is not a controller). This includes the hydraulics and wheels, as in the
original hierarchy, but also the aircraft and some BSCU components such as
the monitors. This fact explains why the algorithm includes an additional
command from the autobrake to the process, which corresponds to the

Figure 7. Control hierarchy obtained by AirCADia Architect.
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flow link between the autobrake and the 2 MONs. It also explains why
‘Touchdown’ and ‘Rejected take-off’ are not identified as command links.
This is because both signals come from the process node, which is situated
lower in the hierarchy, as opposed to the original hierarchy that depicts
these links as downward links.

The fact that the STPA method considers the two CMD individually leads
to the identification of two additional commands between CMDs (‘Brake
Command’ and ‘Anti-skid Command’) not considered in the original ana-
lysis. This link between CMDs is found by traversing the hydraulics up to
the wheel and coming back via the wheel speed feedback signal. The con-
sideration of independent CMDs also leads to the double discovery of
many of the command and feedback links, which has been indicated as (x2)
in both Tables 3 and 4.

Table 4 presents the feedback signals in the control hierarchy (from a
lower to a higher level). The explanations for discrepancies in the case of
control commands are also applicable to feedback signals. All feedback sig-
nals in the original report are found by the method except the ‘Wheel
Speed’ feedback signal from the hydraulic controller to the autobrake,
which is found from the wheel to the autobrake instead. This is because
the autobrake is not included in the original diagram of the architecture
and neither are all of its inputs and outputs explained in the textual
description of the system. Table 4 shows the two missing signals from
Table 3, ‘Touchdown’ and ‘Rejected take-off’, which are identified as feed-
back. A few additional feedback signals are identified by the automated
methods, namely ‘Fault detected’, ‘Manual brake’, ‘Validity signal’, and
‘Electrical power’. Perhaps these links were neglected or not considered
relevant for the hierarchy in the original report (Leveson et al., 2014).

Table 3. Control commands in the control hierarchy.
From To Original signals AirCADia signals

Crew BSCU Power on/off Power on/off
Crew Autobrake Arm and Set Arm and Set

Disarm Disarm
Crew Hydraulic Controller Brake (pedal) Brake 1 & 2 (x2)
Crew WBS Hydraulics Brake (pedal) Brake 1 & 2
Autobrake Hydraulic Controller Brake command Control command (x2)

Process Node – Control command
Hydraulic Controller WBS Hydraulics Open/Close green valve –

Green position command Brake command
Open/Close blue valve Anti-skid command

Hydraulic Controller Hydraulic Controller – Brake command (x2)
– Anti-skid command (x2)

WBS Hydraulics Wheels Braking Force Braking Force (x2)
Wheels WBS Hydraulics – Wheel Speed
Aircraft Autobrake Touchdown –

Rejected take-off –
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3.2.2. Creation of detailed control loops
The second part of the STPA support evaluation focuses on the method to
model automatically detailed control loops for STPA analysis. The crew was
the chosen controller for the evaluation control loop, the brake pedals were
identified as the actuators and the annunciation system is the ‘sensor’ pro-
viding feedback to the crew. The controller process is the wheel brake sys-
tem, including the hydraulic controller and the hydraulics. Table 5 presents
the comparison of the links obtained by both the original manual analysis
(Leveson et al., 2014, p. 38) and the automated analysis by the methods
proposed in this research. There is a high similarity regarding the compo-
nents which belong to each part of the loop, namely the controller, actua-
tors, sensors and controlled process.

The original loop is less detailed than the one provided in this research
because of two reasons. The first one is because it did not provide any
description for the links starting from or ending in the WBS. The second
reason is that it does not distinguish between any of the two pedals or
redundancies in the WBS. Because of this lack of detail, Table 5 shows a
number of links that are not included in the original analysis. These links
include ‘Process Inputs From Actuators’, ‘Process Inputs From Other Process
Solutions’, ‘Process Outputs To Sensors’, and the second link in ‘Controller
Outputs To Actuators’. There are, however, a few links under the category
‘Controller Inputs From Other Process Solutions’ that appear in the original
loop, but have not been identified by the proposed algorithm. This is
because these links were not included in the diagram or the textual
description of the architecture in the original document (Leveson
et al., 2014).

Table 4. Feedback signals in the control hierarchy.
From To Original signals AirCADia signals

Autobrake Crew Activated status Activated status
Armed status Armed status
Programmed deceleration Programmed deceleration
– Fault detected

Hydraulic controller Crew Fault detected Fault detected (x2)
WBS Hydraulics Crew Braking mode Braking mode
Process Crew – Fault detected
Hydraulic controller Autobrake Manual braking status Manual braking status

Wheel speed –
Wheels Autobrake – Wheel speed
Process Autobrake – Touchdown

– Rejected take-off
Wheels Hydraulic controller Wheel speed Wheel speed
Process Hydraulic controller – Manual brake (x2)

– Validity signal (x2)
– Electrical power (x2)
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3.2.3. Discussion of results
The comparison shows that the presented novel methods can reproduce
the results obtained by manual application of the STPA methodology by
Leveson et al. (2014). In fact, the methods are able to find additional links
between elements, especially in the control loop. The automated approach
was able to obtain this information and present diagrams and tables with
link information with no or little input from the user. For example, in the
case of the hierarchy, it was only necessary to indicate that the wheel
belongs to its own process node. For the control loop, the crew was
selected as the controller, while the pedals were selected as the actuators
and the annunciation system as the sensor.

To compare the time and effort required by the manual and automated
approaches, it is assumed that the process that converts the architecture
into a graphical STPA model occurs in two steps. First, the architecture is
analysed to determine which components to include and how to link them.

Table 5. Signals in the crew control loop.
From To Original signals AirCADia signals

Controller Inputs from Sensors
Annunciation Crew Fault Detected Fault Detected
Annunciation Crew Braking mode –
Annunciation Crew Autobrake activated Autobrake activated
Annunciation Crew Autobrake armed Autobrake armed
Annunciation Crew Autobrake deccel. rate Autobrake deccel. rate
Controller Inputs from Other Process Solutions
Unspecified Crew Various signals –
Controller Outputs to Actuators
Crew Pedals Left Seat Manual Braking Manual Braking
Crew Pedals Right Seat Manual Braking Manual Braking
Process Inputs from Actuators
Pedals Left Seat Blue Metre Valve – Mechanical Position
Pedals Right Seat Blue Metre Valve – Mechanical Position
Pedals Left Seat CMD1 – Brake Command
Pedals Right Seat CMD1 – Brake Command
Pedals Left Seat MON1 – Brake Command
Pedals Right Seat MON1 – Brake Command
Pedals Left Seat CMD2 – Brake Command
Pedals Right Seat CMD2 – Brake Command
Pedals Left Seat MON2 – Brake Command
Pedals Right Seat MON2 – Brake Command
Process Inputs from Other Process Solutions
PSU CMD1 – Electrical Output
PSU MON1 – Electrical Output
PSU CMD2 – Electrical Output
PSU MON2 – Electrical Output
PSU Validity Monitor – Electrical Output
PSU Validity Monitor – Electrical Output
Process Outputs to Sensors
Aircraft AutoBrake – Touch Down Signal
Aircraft AutoBrake – Rejected Take-Off Signal
Validity Monitor Annunciation – Fault Signal
Spring Loaded Selector Annunciation – Braking Mode Signal
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Second, the elements of the graphical model (such as nodes and links) are
created and drawn on screen. The second step is assumed to be the same
in both cases.

It is difficult to formalise the manual approach to analyse its asymptotic
complexity. However, the difference regarding running time is clear. The
execution time of the automated methods is in the order of milliseconds
on a standard PC (including the debugger overhead), while the manual pro-
cess rehearsed by the authors takes at least several minutes. This is an indi-
cation that the time difference between the manual and the automated
approaches will be many orders of magnitude larger as the architecture
complexity increases. If the preparation of the inputs (in this case the
logical view) is too time consuming, it might offset the benefits of the auto-
mation. However, as explained in Section 2.1, it is reasonable to assume
that a logical view of the system exists, as a result of the system architect-
ing process. That is, the logical view is not created specifically for the STPA
analysis. It can be used for other kinds of analysis such as sizing and per-
formance and, therefore, the cost of creating it is spread out. Additionally,
the presented methods ensure that the STPA analysis is updated at a low
cost as the design advances.

Some minor discrepancies resulted from the differences between the
manual and automated approaches (e.g. grouping of redundant solutions
in the BSCU) and from the lack of consistency between the models pre-
sented in the original report by Leveson et al. (2014). As explained earlier in
this section, the manual approach merged the redundant solutions in the
BSCU in one single node in the STPA models whereas the automated
method kept them separate. Although the manual approach enables add-
itional functionality such as merging redundant components, it can also be
a source of inconsistency as explained next. Considering the use case, the
original diagram of the system did not include the autobrake or any of its
links, but the textual description of the system did. Other links, such as the
BSCU power on/off are only mentioned implicitly in the description.
Furthermore, Leveson et al. (2014) included a link between the BSCU con-
troller and the autobrake in the control hierarchy that is not present neither
in the diagram nor in the description of the system. This is a good example
of how the manual application can be a source of error and inconsistency,
both between system definition models (textual and diagram) and between
definition and STPA analysis. That is, if the STPA analysis is performed exclu-
sively with the information from the description of the system it will not be
possible to reproduce the results from Leveson et al. (2014) as the link
between the BSCU controller and the autobrake is missing. Furthermore,
other teams working on the system will not be aware of the existence of
the link and be able to include it in their analysis. By contrast, the presented
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methods ensure that the architecture is updated prior to obtaining the
desired safety results, as safety results only change when the architecture is
changed. If another team analysed the safety or any other characteristic of
the architecture, they would be aware of the extra link, as it would have
been necessarily included in the architecture.

4. Summary and conclusions

A review of the current state-of-the-art computational support methods for
the creation of STPA models identified two main limitations: a significant
amount of time required to create the models manually and the difficulty
of ensuring consistency with the evolving architecture definition.

To overcome these limitations, two novel methods enabling the auto-
matic creation of STPA models are proposed. The methods use the logical
view of the systems architecture as input. The graphs formed by the hier-
archical and flow relations in the logical view are utilised by the methods
to create both hierarchical control structures and detailed control loops.
These are used during STPA to determine unsafe control actions, loss scen-
arios and to derive safety requirements.

The proposed methods were implemented within a prototype object-ori-
ented software, AirCADia Architect, to be tested and evaluated. The meth-
ods were applied to a wheel brake system use case that was previously
used to compare the manual application of the STPA methodology to other
hazard assessment methods. The results were compared with those pro-
vided by the manual application of STPA (Leveson et al., 2014). The com-
parison indicates that the proposed methods produce models that are
almost identical to those obtained manually. Minor discrepancies were
observed due to a different grouping of redundant solutions and an incon-
sistent system description. It was also demonstrated that the automatic pro-
cess is orders of magnitude faster and requires less manual input. The
automated approach was also found to ensure better consistency among
the safety analysis and the architecture definition as it requires safety fea-
tures to be included in the architecture definition prior to being considered
in STPA analysis. In a wider context, this is seen as a step towards a more
effective design for safety (DfS) process.

Future work, especially from an industrial perspective, will focus on
exploring ways for efficient validation and verification of the presented
methods. Another research avenue is the seamless integration with STPA
methods and tools that automate other parts of the process, such as the
method to automate the generation of formal model-based safety require-
ments (Thomas, 2013), or traditional safety methods such as FHA to utilise
existing knowledge about functional hazards.
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