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Abstract: Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To
reduce the risk due to pilot error, autonomous landing systems can be used. Environmental distur-
bances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control
system is required to maintain the performance requirements during landing. The paper proposes
a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings.
Instead of conventional MPC plant model augmentation, the input and output weights are designed
in the frequency domain to meet the transient and steady-state performance requirements. Then, the
H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped
plant. This linear state-feedback control law is then used to solve an inverse optimization problem to
design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics
of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that
keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer
plus state feedback structure. This state estimator initializes the MPC problem at each time step.
The control law is successfully evaluated in a non-linear simulation environment under moderate
and severe wind downburst. It rejects unmeasured disturbances, has good transient performance,
provides an excellent stability margin, and enforces input constraints.

Keywords: autonomous landing; H∞ synthesis; MPC; UAV

1. Introduction

Over the past few decades, Unmanned Air Vehicles (UAVs) have gained popularity
in various applications, from military operations to public safety. Nowadays, UAVs can
perform commercial tasks such as image and data acquisition in disaster areas, commu-
nication delays, traffic surveillance, map building, search and rescue, and so on. With
the rise in popularity, the number of incidents involving UAVs has increased drastically
due to inexperienced operators. Most UAVs have autonomous take-off and cruise but
limited autonomous landing capabilities due to reliability issues and high risks [1]. In the
autonomous landing phase, the UAV performs many sensitive and vital tasks in different
environmental conditions. Therefore, the performance of UAVs must not fail in the presence
of external disturbances (e.g., crosswinds, fog).

The landing task has two phases, glide and flare maneuver. In the glide maneuver, the
UAV must descend along a predefined straight-line path in the longitudinal plane with a
fixed negative flight path angle between −3◦ to −4◦, toward the runway. Sometimes, the
glide maneuverability is performed in two steps. Initially, a higher decent angle is taken,
and a lower descent angle is attained in the latter step. When the UAV reaches around
25–30 m altitude, the flare maneuver is initiated. In this phase, the UAV is required to
reduce the descent rate and follow a curved path. It is necessary to bring the flight path
angle near zero for a smooth touchdown and the minimum impact on the landing gears.
Figure 1 illustrates the typical landing maneuver with the glide and flare path indication.
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Figure 1. Reference Glide and Flare Path.

For most UAV operations, a human is used to pilot the landing. It is usually done to
reduce the costs and complexity of the system and mitigate risks. Operational experience
has shown that most UAV disasters are due to human errors [2]. Furthermore, it takes
several hours of flight and significant financial investment to train a human pilot who can
handle these phases efficiently and safely. There are also severe restrictions on a human
pilot during flight operations; for example, he cannot land the UAV in adverse conditions
such as thick fog and high crosswind. Thus, equipping the UAV with the ability to perform
landing autonomously increases the system’s complexity but can potentially render more
versatile UAVs. It also can potentially reduce the long-term costs and risks involved in the
landing. Moreover, external disturbances, such as wind gusts, shear, and downbursts, can
be tackled more efficiently.

Classical control techniques are preferred for autonomous landing because of their
reliability and simplicity. However, usually these techniques often do not satisfy the
desired performance and robustness requirements. In recent years, with the developments
in the hardware and computing capacity, the difficulties in implementing modern control
techniques have been significantly reduced [3]. Therefore, the modern control techniques-
based flight control system has become a mature research area. Many methodologies,
from vision-based navigation to fuzzy logic control algorithms, have been implemented
by researchers to achieve safe and smooth landings. In [4], a model following a technique
based on Linear Quadratic Regulator (LQR) is given to track the glide and flare trajectory.

A flight algorithm for the autonomous landing of a UAV is proposed in [5]. Different
control loops are used to address the specific task separately, e.g., angle of sideslip control
or heading control. A multi-variable H∞ controller is designed for flare maneuverability. At
the top level, a non-linear guidance control law provides the 3D path following capability.
A control law is proposed in [6] for Autonomous Carrier Landing (ACL) system. The non-
linear landing model is transformed into a poly-topic model, and the arresting and ground
approach risks are proposed and integrated using KF. The risk-state MPC is presented
based on the landing risk gradient. In [7], a framework is proposed for landing in an
uncertain environment based on point cloud in a coarse to fine manner. It has four modules:
preprocessing point cloud, selection of course landing site, evaluation of fine terrain, and
optimal landing model. An ACL problem is solved in [8] with input constraints and
external disturbance. A relative motion model between the ideal glide path and the UAV is
established, and the wave disturbance to the carrier is considered an external disturbance. A
backstepping control law is proposed having input constraints, and the Lyapunov function
is used to prove the stability of the closed-loop system.
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In [9], deep-stall landing for the fixed wing UAV is proposed. The UAV is guided along
the predefined path and performs landing at low speed with good precision. The landing
control of high-speed UAV under wind interference is presented in [10]. Monte Carlo
simulations show the system’s robustness under wind disturbance. In [11], an automatic
landing technique is presented which uses an H2/H∞ technique along with a dynamic
inversion method. An optimal observer is considered to tackle sensor errors and other
disturbances. The design aims to develop a landing control system that not only cancels
the negative effects of sensor errors and disturbances but also gives a good result when
the number of states is more than the number of sensors. PID controllers (conventional
and fuzzy variant) are compared with the dynamic inversion concept in [12]. There are
three PID controllers for pitch, altitude, and velocity. Controllers are tested for gyro sensor
error and wind shear. Numerical simulations validate the results. In [1], a Sliding Mode
Control (SMC) technique is designed for autonomous landing. The landing maneuver is
divided into glide path capture and flare phase. A straight line and an exponential curve
specify both phases in longitudinal landing plane. The obtained controller is validated by
simulating the landing maneuver using a nonlinear model with a large offset in the initial
position from the reference landing trajectory. The results are compared with a conventional
PID controller.

A hierarchical control structure for the autonomous landing is developed in [13].
Active disturbance rejection for attitude control, proportional guidance law for height
tracking, and PID is used for heading angle, flight path angle, and taxi control. Hardware-
In-the-Loop (HIL) simulation and field experiments are conducted to demonstrate the
performance of the entire test system and the proposed approach. An intelligent landing
system based on an Artificial Neural Network (ANN) is given in [2]. The weights
are searched using the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
algorithm. The ANN is used to control the pitching torque and thrust of the UAV to
obtain a smooth landing. The same algorithm is used in the case of high wind conditions.
All possible flight conditions must be considered in the training data for efficient training
of ANN. A fuzzy logic-based autonomous landing technique of UAV is proposed in [14].
Three fuzzy logic modules control the UAV’s speed, altitude global position (longitude-
latitude) against the runway. An SMC with a Cerebellar Model Articulation Controller
(CMAC) for the landing of a UAV is presented in [15]. The SMC’s parameters are adjusted
using a Genetic Algorithm, Chaotic Particle Swarm Optimization (CPSO), and Particle
Swarm Optimization (PSO). An intelligent landing scheme based on different CAMCs
is presented in [16]. The Lyapunov theory is used for stability analysis and adaptive
learning rules.

These techniques provide closed-loop performance, stability, and a certain degree
of robustness but generally do not handle the constraints. Some modifications, e.g.,
anti-windup schemes, can be introduced to handle the constraints on input saturation.
However, these make the design complicated (especially for multi-variable systems),
limited to a restricted class of constraints, and may yield reduced closed-loop perfor-
mance [17]. A more systematic way to handle the constraints is the Model Predictive
Control (MPC) strategy. At each time step, the MPC uses the current state’s information
and predicts the system’s evolution over a desired future horizon. Accordingly, the
MPC designs the best input control sequences resulting in constraint satisfaction and
the best performance. However, as mentioned in [18], it is more difficult to characterize
the MPC’s frequency-domain properties, robustness, and stability compared to many
other linear state feedback techniques; this reduces the transfer of MPC technique to
applications [19].

In the literature, [17,20,21], different techniques are presented for the selection
of the objective/cost function matrices (P, Q and R) of the linear MPC controller in
such a way that it behaves like any well-designed linear controller (e.g., H∞ controller
for our case) when the constraints are inactive. Hence, for any disturbance around
the equilibrium point for which the inputs and states remain within the admissible
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range, the closed-loop properties of the MPC match the H∞ synthesis. The advantage
of H∞-based MPC is that, contrary to H∞, the resulting technique can explicitly handle
the constraints during the transients along with the frequency domain properties of the
H∞ controller when the constraints are inactive. To obtain the cost function matrices,
which are based on H∞ controller, an LQR-based inverse optimization problem is
formulated and solved in this work. Now, one can design the cost function matrices
(P, Q and R) more sensibly.

Once the objective function has been designed, state information is required at each
time step. Like many other applications, the full state information for landing control is
unavailable. A state observer is required to initialize the prediction model. It is well-known
that the Kalman Filter (KF) can be used to estimate the state in a full state feedback system,
e.g., in Linear Quadratic Gaussian (LQG), which is the basis of MPC due to quadratic
objective function. The normalized coprime factor robust stabilization approach provides
a controller that can be written as plant observer form and have an optimized stability
margin [22].

Most UAVs accidents that occur during autonomous landing are due to severe weather
conditions. There are many natural uncertainties and disturbances such as wind gusts,
wind shear, sensor noise, parametric uncertainties, etc that a UAV must deal with during
a flight. In the worst-case scenario, the UAV might diverge from the reference path, e.g.,
in [23], where the path error reaches about 39 ft (approx. 12 m) and can result in a hard
landing or runway overrun.

The main objective of this work is to design a robust control strategy for the au-
tonomous landing phase of UAVs under wind disturbances. We propose the H∞-based
model predictive control for the UAV during the landing phase. The controller’s per-
formance is evaluated against moderate and severe wind disturbance, and results are
compared with the benchmark study presented in [23].

The paper is organized as follows. In Section 2, the mathematical models for landing
trajectory, UAV and windshear are presented. In Section 4, the design steps for H∞-based
MPC are explained. The MPC is realized for the landing control of UAV in Section 4. The
results are discussed in Section 5 and conclusions are drawn in Section 6.

2. Mathematical Models of the System

In addition to a model of the UAV dynamics, a mathematical model of the landing
trajectory, as shown in Figure 1, is also necessary. It is the reference path that the
UAV will follow during landing. The performance of the UAV is affected by wind
disturbances, and a wind model is needed to calculate this effect. This section presents
the mathematical model of the landing trajectory, the non-linear and linear UAV, and the
wind-shear model.

2.1. Landing Trajectory Model

There are two phases in a typical landing: glide and flare. During the glide phase,
the UAV descends with the glide path angle of −3◦ to −4◦. When the UAV reaches an
altitude of about 30 m, the flare maneuverability is executed. The descent rate of the UAV
is decreased for a comfortable and smooth touchdown. For the glide phase (h ≥ h0, h0 is
the altitude at which the glide phase ends and flare begins), the reference altitude hr and
actual altitude h are:

ḣr = V0sinγr ≈ V0γr

ḣ = V0sinγ ≈ V0γ
(1)
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where γ = θ − α is the actual glide path angle of the UAV during the first phase of landing
and γr = θr − α is the reference glide path angle, θ is the pitch angle, α is the angle of
attack and V0 is the nominal flight speed of the UAV. Generally γr ≈ 30 hence the small
angle approximations are justified in Equation (1). The dynamics of the flare phase are
presented in detail in [11]. The altitude hr is an exponential decay function represented as
hr = h0 exp−t/τ, with τ is the time constant that define the exponential curve of flare. The
derivative of the above equation is:

ḣr = −
1
τ

h0 exp−t/τ = − 1
τ

hr. (2)

By using Equations (1) and (2), the reference pitch angle θr for both phases can be
determined:

θr ≈ α +
ḣr

V0
≈

α + γr, h ≥ h0,

α− 1
V0τ

hr, h < h0.
(3)

2.2. UAV Model

The UAV is assumed to be a rigid body in still air with decoupled lateral and longitu-
dinal dynamics. Since the landing is mostly a longitudinal process, only the longitudinal
dynamics are considered in this study. The longitudinal dynamics are given as follows [24]:

U̇ =−QW − g0sinθ +
Fx

m

Ẇ = QU + g0cosθ +
Fz

m
θ̇ = Q

Q̇ =
My

Jy

(4)

where U is the longitudinal body-axes velocity, W is the vertical body-axes velocity, θ is
the pitch, Q the is pitch rate, g0 is the gravitational acceleration, m is mass, and Jy is the
moment of inertia in the pitch of the UAV. Fx and Fz are the aerodynamic forces along the x-
and z-axis, respectively and My is the pitching moment about the y-axis. These forces and
moments are defined as:

Fx =
1
2

ρV2
0 SCx + T

Fz =
1
2

ρV2
0 SCz

My =
1
2

ρV2
0 Sc̄Cm

(5)

here V0 =
√

U2 + W2, ρ is air mass density, T is thrust, S is wing area and c̄ is mean
aerodynamic chord. In Equation (5), the aerodynamic coefficients can be defined as:

Cx = Cx0 + Cxα α + Cxδe
δe

Cz = Cz0 + Czα α + Czδe
δe

Cm = Cm0 + Cmα α + Cmδe
δe +

Cmq Qc̄
Vel

(6)

In this work, a medium-sized UAV is used as a test vehicle. The physical parameters
and aerodynamic coefficients of the test vehicle are given in Tables 1 and 2 respectively.
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Table 1. Physical Parameters of the Test Vehicle.

Parameter Value Description

m 350 kg Mass
Jy 300 kg·m2 Moment of inertia about y-axis
S 6.5 m2 Wing area
c̄ 6.6 m Mean aerodynamic chord

Table 2. Aerodynamic Coefficients of the Test Vehicle.

Parameter Value Parameter Value

Cx0 −0.031 Cα
x −0.088

Cxδe
−0.01 Cδe

z −0.124
Cz0 −0.129 Cα

z −3.368
Cm0 0.003 Cα

m −0.4
Cmq −2.0 Cmδe

0.25

The non-linear model given in Equation (4) is linearized by numerically perturbing the
states and inputs about the operating point. The algorithm introduces a small perturbation
to the states and inputs, one at a time, measures the response of the system and computes
the state-spaces matrices. The longitudinal model has four states. However, the states can
be expanded to include x-horizontal distance and h-altitude of the UAV as:

ẋ = Ucosθ + Wsinθ,

ḣ = Usinθ −Wcosθ.
(7)

The non-linear model is trimmed for the conditions of U = 50 m/s, W = 3 m/s,
θ = 0.5 deg, Q = 0 deg/s, h = 300 m and initial position x = 0 m. The inputs to the system
is elevator deflection δe and thrust δth. The state-space model is written as follows:

ẋv = Avxv + Bvuv

yv = Cvxv
(8)

where xv = [u w θ q h x] is the perturbed state vector, uv = [δe δth] is the perturbed input
vector and yv = [u q θ h] is the perturbed output vector. Av, Bv and Cv are the state space
matrices of the vehicle model and are given in Appendix A.

2.3. Wind Shear Model

Wind shear is a rapid change in wind direction or speed over a short distance or time.
In the case of a macro-burst, the wind shear diameter is over 4 km, whereas a micro-burst
is smaller than 4 km. A micro-burst may last a few seconds, but its effects, such as variation
and extreme speed, can be very dangerous for UAVs.

Various models of micro-bursts have been developed. One is the vortex-ring model,
proposed by Wood and Woodfield [25]. The vortex ring induces the velocity wind, and
the micro-burst is represented by the two rings symmetrically to satisfy the boundary
conditions. One is called the primary vortex ring above the ground, and the other is of the
same strength below the ground and is called the imaginary vortex ring. Figure 2 illustrates
the vortex-ring model.
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Figure 2. Vortex-Ring Model [23].

Parameters rC, R, and Γ represent the radius of the finite core, and the radius of the
vortex-ring and vortex-ring model circulation, respectively. The primary ring’s centre
coordinates are X, Y, and H. Multiple pairs of the ring can enhance the accuracy of the wind
shear. A simplified vortex-ring down-burst model with two rings is presented in [23] and
is used in this work. We can take Y = 0 because only longitudinal dynamics are considered
in our study. If h and x are vertical and horizontal points of interest, respectively, then the
induced velocities are computed as follows:

x1 = x− X− R x2 = x− X + R

hp = h− H hm = h + H

r1p = x2
1 + h2

p r2p = x2
2 + h2

p (9)

r1m = x2
1 + h2

m r2m = x2
2 + h2

m

r0 = min{r1p, r2p} ζ = 1− exp−(r0/r2
c )

rxp =
√
(x− X)2 + h2

p + R2

rxm =
√
(x− X)2 + h2

m + R2

rhp =
[
(x− X)2 + h2

p + R2
]3/4

rhm =
[
(x− X)2 + h2

m + R2
]3/4

If r0 < ε, where ε is a small number that represents a point close to the ring filament,
then,

Wx = 0, Wh = 0
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Otherwise,

Wx =
1.182Γζ

2π

[
R

rxp

(
hp

r2p
−

hp

r1p

)
− R

rxm

(
hm

r2m
− hm

r1m

)]

Wh =
1.576Γζ

2π

 R
rhp

 x1

r3/4
1p

− x2

r3/4
2p

− R
rhm

(
x1

r3/4
1m

− x2

r3/4
2m

) (10)

where Wh and Wx are vertical and horizontal induced velocities, respectively. Two sets of
parameters are shown in Table 3, which are used to calculate Wh and Wx for simulations.
The first set of parameters represents a moderate down-burst and the second for severe
down-burst. It is assumed that the UAV encounters the down-burst at the altitude of 300 m.
Moderate and severe down-bursts are shown in Figure 3.

Table 3. Downburst Parameters for Two Rings

Parameter Moderate Severe Unit

Γ1 18,580 37,160 m2/s
R1 1676 1524 m
H1 610 610 m
Rc1 152 152 m
Γ2 11,148 26,013 m2/s
R2 1220 1067 m
H2 762 610 m
Rc2 152 91 m

(a) Moderate Downburst (b) Severe Downburst

Figure 3. Windshear Effects.

Simulation models of UAVs need to incorporate the above mathematical representation
of wind-shear effects. After embedding the wind-shear model in the Equations (4) and (7),
the UAVs model is as follows [23]:

U̇ =−QW − g0sinθ +
Fx

m
+ Ẇx

Ẇ = QU + g0cosθ +
Fz

m
+ Ẇh

ẋ = Ucosθ + Wsinθ + Wx

ḣ = Usinθ −Wcosθ + Wh

(11)
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3. H∞ Based MPC Framework

The H∞-based MPC methodology has the following design steps [26].

1. Design the input and output weights (W1 and W2) for the model to meet the desired
closed-loop specifications. It is the basic step of the H∞ loop shape design procedure
as explained in [27].

2. Synthesize the H∞ compensator. It has an observer-based state feedback structure.
As a result, we have controller matrix K and observer matrix H, which are used to
calculate the state matrix to initialize the prediction model at each time step.

3. By using the controller matrix K, from Step 2, formulate and solve an inverse opti-
mization problem to design cost function matrices P, Q, and R.

4. Solve the MPC problem at each time step using the cost function matrices designed in
step 3.

This methodology inherits the transient response, reference tracking, disturbance
rejection, and stability margin of the H∞ controller in the region where the constraints are
inactive. As the observer is designed by H∞ synthesis, it does not require additional tuning.
The H∞ loop shaping control methodology of [28] in which the controller can be realized
as an observer plus a state feedback control law is given in the next subsection.

3.1. H∞ Loop Shaping Design using Observer Structure

In general, H∞ controllers do not have an explicit structure [29]. However, the normal-
ized coprime factor robust stabilization method provides a controller that can be written in
the form of a plant observer [30]. The resulting controller can be written as an exact plant
observer and state feedback:

˙̂xs = As x̂s + Hs(Cs x̂s − ys) + Bsus

us = Ks x̂s,
(12)

where As, Bs, and Cs are the state-space realizations of the shaped plant, x̂s is the observer
state vector, us is the input, and ys is the output vector of the shaped plant, and

Hs = − ZsCT
s

Ks = − BT
s

[
I − γ−2 I − γ−2XsZs

]−1
Xs

(13)

where Zs and Xs are the solutions of the following algebraic Riccati equations,

AsZs + Zs AT
s − ZsCT

s CsZs + BsBT
s = 0

AT
s Xs + Xs As − XsBsBT

s Xs + CT
s Cs = 0 .

(14)

The maximum stability margin is calculated with εmax = 1
γmin

, where γmin =√
1 + ρ(XsZs). where ρ is the maximum eigenvalue of matrix XsZs. If γmin < 4 the

design is usually considered successful. The design steps for obtaining Ks and Hs are
explained in the next subsections.

3.2. Design of H∞ Controller

The linear model Gv : C 7→ C2×4 is used to describe the design methodology. To meet
the desired specification following pre- and post-compensators are selected,

W1 = diag
(

3(s + 1)
s

,
(s + 1)

s

)
(15)

W2 = diag
(

1, 1.5,
(s + 0.01)

s
,

1.2(s + 0.01)
s

)
(16)
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The resulting shaped plant is obtained as:

Gsp = W1 Gv W2 (17)

After including the weights, the state dimensions of the shaped plant have been in-
creased. The state-space matrices As, Bs and Cs of the shaped plant are given in Appendix B.
Following the procedure of H∞ loop shaping control, as explained in Section 3.1, the con-
troller Ks and observer Hs are synthesized and given in Appendix B. The normalized
coprime factor robust optimization gives γ = 2.81 < 4, which meets the desired criteria.
The singular values of the plant (vehicle model), shaped plant and shaped plant with
controller are shown in Figure 4.

The designed controller Ks is used to formulate and solve the inverse optimization
problem which is explained in the next subsection.

Figure 4. Singular Values.

3.3. Inverse Optimal Problem

The optimal control theory uses the linear quadratic regulator (LQR) to find the infinite
horizon full-state feedback control law for both continuous and discrete LTI systems. The
formulation for the shaped discrete-time LTI system is,

xk+1 = Asxk + Bsuk (18)

which minimizes the objective function

J =
∞

∑
k=0

[
xk
uk

]T[ Qs 0
0 Rs

][
xk
uk

]
. (19)
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The optimal feedback control is

uk = −KLQRxk, (20)

where,

KLQR = (BT
s PsBs + Rs)

−1BT
s Ps As (21)

Here, Ps is the unique positive semi-definite solution of the discrete-time algebraic
Riccati equation (DARE) given as:

AT
s Ps As − Ps − (AT

s PsBs)(BT
s PsBs + Rs)

−1BT
s Ps As + Qs = 0 (22)

where, Qs is semi-positive definite and Rs is a positive-definite matrix. Now, if this problem
is solved in the reverse order by assuming that we have an optimal feedback controller
KLQR and our objective is to find the cost function matrices for the shaped plant. The
methods for solving this problem are explained in the coming subsection.

Solution of Inverse Optimal Problem

The basic aim is to find the cost function matrices (Ps, Qs, and Rs). The inverse optimal
problem is formulated with Equations (21) and (22) by taking KLQR = Ks. The resulting
equations become as follows:

AT
s Ps As − Ps − (AT

s PsBs)Ks + Qs = 0

BT
s Ps As − (BT

s PsBs + Rs)Ks = 0
(23)

In Equation (23), there are two equations and three unknowns (Ps, Qs and Rs). Ref-
erence [26] gives an analytical solution to the above problem by taking Rs = I. It may
yield numerically ill-conditioned cost function matrices, which result in an ill-conditioned
real-time optimization problem. An LMIs-based solution to this problem is presented
in [31]. An additional criterion is defined such that the optimal solution must reduce the
condition number of the cost function matrices. The LMIs-based optimization problem for
the discrete-time system is defined as follows:

(Q̂s, R̂s, P̂s, α̂) = arg min
Qs ,Rs ,Ps ,α

α2, such that

Ps ≥ 0

AT
s Ps As − Ps − (AT

s PsBs)Ks + Qs = 0

BT
s Ps As − (BT

s PsBs + Rs)Ks = 0

I ≤
[

Qs 0
0 Rs

]
≤ αI

(24)

The LMI optimization problem (24) can be solve efficiently using the SeDuMi [32]
package with the YALMIP modelling toolbox [33] in MATLAB 2016. The optimal estimated
cost function matrices are given in Appendix B. In contrast to the standard procedure
for selecting cost function matrices, where usually diagonal terms are used based on
performance, here we have an off-diagonal term. Now, these matrices are used for the
realization of the MPC.

4. MPC Realization

MPC is a feedback control methodology in which an optimization problem is solved
online. At each time step, the optimization algorithm computes the control input sequence
over a finite-time horizon that minimizes the objective function subject to constraints on
input, output, and/or state. The first element of the sequence is applied to the system
on that sample time, and the process is repeated on every sampling step in a recursive,
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receding horizon manner. (The subscript “s” is ignored in the rest of the work since we are
designing MPC for a shaped system.)

The MPC control methodology is based on the following steps.

1. A prediction model of the UAV,

xk+1 = Axk + Buk

yk = Cxk
(25)

where xk is the state of the plant, uk is the control input of the system and yk is the
output of the system at time kT, where T is the sample time.

2. An objective function,

J(u) = xT
N PxN +

N−1

∑
k=1

xT
k Qxk + uT

k Ruk (26)

The matrices P > 0, Q > 0, and R > 0 are designed to meet the desired performance
requirements, and N is the prediction horizon.

3. The inequality constraints,

vmin ≤ vk ≤ vmax, (27)

here, vk are the constraint inputs, outputs and/or states and vmin and vmax are maxi-
mum and minimum limits on constraints.

4. An optimization algorithm to minimize the objective function.

The MPC is realized for the shaped model having input constraints [−25◦, 25◦], and
[0, 100%] for elevator deflection and percentage thrust, respectively. The dense approach
presented in [34] is used for the given LTI systems. The cost function and prediction model
with prediction horizon N can be written as follows:

J(x, x0) =xT
0 Qx0 +


x1
x2
...
xN−1
xN



T 
Q 0 0 · · · 0
0 Q 0 · · · 0
...

...
. . .

...
...

0 · · · 0 Q 0
0 0 · · · 0 P


︸ ︷︷ ︸

Q̄


x1
x2
...
xN−1
xN



+


u0
u1
...
uN−1


T 

R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


︸ ︷︷ ︸

R̄


u0
u1
...
uN−1




x1
x2
...
xN

 =


A
A2

...
AN


︸ ︷︷ ︸

T̄

x0 +


B 0 · · · 0
AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B


︸ ︷︷ ︸

S̄


u0
u1
...
xN−1
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J(z, x0) = xT
0 Qx0 + (T̄x0 + S̄z)TQ̄(T̄x0 + S̄z) + zT R̄z

=
1
2

zT 2(R̄ + S̄TQ̄S̄)︸ ︷︷ ︸
H

z + xT
0 2T̄TQ̄S̄︸ ︷︷ ︸

F

z

=
1
2

zT Hz + xT
0 Fz

where z is the input vector. As we are designing the control system for the shaped plant, it
is necessary to convert the input constraint limits from uv to us. The constraints matrices
for the shaped plant are as follows:


Cw1Bw1 0 · · · 0
Cw1 Aw1Bw1 Cw1Bw1 · · · 0
...

...
. . .

...
Cw1 AN−1

w1 Bw1 Cw1 AN−2
w1 Bw1 · · · Bw1


︸ ︷︷ ︸

G


u0
u1
...
xN−1

 ≤


umax
umax
...
umax

−


Cw1 Aw1
Cw1 A2

w1
...
Cw1 AN

w1


︸ ︷︷ ︸

S

xw1

The interior point method minimizes the above cost function along with constraints at
each time step. The detailed results are presented and discussed in the next section.

5. Results and Discussion

The proposed control law is implemented in a non-linear simulation environment to
validate the designed algorithm. The simulation was conducted for two different scenarios.
In the first case, the design is tested for the reference tracking in an ideal environment and
the second case illustrates the disturbance rejection property of the design. The windshear
effects given in Section 2.3 are used as external disturbances, and results are compared to
the study presented in [23].

5.1. Case 1

In the first case, the linear model of the UAV given in Equation (8) is used to ensure that
it follows the reference trajectory under ideal conditions. The altitude error is minimized by
elevator deflection and thrust demand. Figure 5a shows that the actual path closely follows
the reference path. The result also indicates that the angle of attack, pitch, and flight path
angle have be smoother, as shown in Figure 5b. The Figure 5c,d shows the elevator and
thrust demand respectively.

5.2. Case 2

In second case, we assessed the design algorithm under moderate and severe winds-
hear. The UAV encounters the wind at the start of the glide slope and its effects last until
the flare ends. It is assumed that initial altitude of the UAV is 300 m and the flare phase
begins at an altitude of 30 m. In Equation (11), winds-shear components were introduced
into the dynamic equations of the UAV. The equation shows that altitude depends on U, W,
θ, and Wh. The wind shear component Wh is a disturbance input that cannot be controlled,
however the controller can compensate for the wind shear effects using U, W, and θ. The
controller dynamically adjusts θ and hence γ to keep the UAV on the desired path. Contrary
to the ideal case, it is not required to maintain a constant angle of attack α in the presence
of the wind shear.
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(a) Altitude Level
(b) Angle of Attack (α), Glide Path Angle (γ)

and Pitch Angle (θ)

Figure 5. Cont.

(c) Elevator Deflection (d) Thrust Demand

Figure 5. Case 1: No Wind Effect.

Figure 6a shows that the headwind increase during the first 20 s and the UAV has
increased the longitudinal velocity component to compensate its effects. Figure 6b shows
that the angle of attack also increases in response to the vertical wind component. As a
result, the altitude and velocity return to the desired level with little deviation as shown
in Figure 6c,d respectively. After 20 s, the headwind effects start to weaken and the
angle of attack decreases to maintain the desired altitude. The UAV starts encountering
a tailwind after 50 s which increases the longitudinal velocity and decreases the angle of
attack. The controller reduces the velocity and increases the angle of attack by manipulating
the thrust demand and elevator deflection. The flare phase begins after 90 s when the
tailwind gradually loses its effects. Figure 5a show that the UAV follows the reference
trajectory closely during both glide and flare phases and performs a smooth touchdown.
The displacements of the elevator and throttle actuators remain within limits and are
shown in Figure 6e,f. The controller is also tested under a severe downburst. The results in
Figure 7 are similar to the moderate downburst case, but their magnitudes are greater. The
UAV closely follows the reference trajectory and the elevator deflection angle and throttle
position remain within limits.
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(a) Altitude Level
(b) Angle of Attack (α), Flight Path Angle (γ) and

Pitch Angle (θ)

(c) Deviation between Actual Path and Reference Path (d) Velocity Deviation from Trim Value

(e) Elevator Deflection (f) Thrust Setting

Figure 6. Case 2: Moderate Downburst.
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(a) Altitude Level
(b) Angle of Attack (α), Flight Path Angle (γ) and

Pitch Angle (θ)

(c) Deviation between Actual Path and Reference Path (d) Velocity Deviation from Trim Value

(e) Elevator Deflection (f) Thrust Setting

Figure 7. Case 2: Severe Downburst.
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The proposed control methodology is compared with the study reported in [23]. Note
that our UAV is different from the system in [23]. For a fair comparison, the wind load on
both vehicles is calculated, and the controller performance is assessed under the severe
downburst effects. The wind load Fwind, on the air vehicle is calculated by:

Fwind =
1
2

ρVwindSCL (28)

where ρ represents the air density, Vwind is the wind velocity, S is the wing reference area,
and CL is the lift coefficient. The acceleration azw, due to wind load is defined as:

azw =
Fwind

m
(29)

As shown in the Table 4, the vehicle acceleration (azw) due to wind load is nearly the
same for both systems. The controller did not react properly in the reference study, which
worsened the situation. Contrary to this, our proposed controller reacts efficiently and
cancels the wind effect significantly. Figure 8 shows the vehicle acceleration az throughout
the landing trajectory.

(a) For Moderate Downburst (b) For Severe Downburst

Figure 8. Body Acceleration along z-axis.

Table 4. Comparison of Test Vehicle with Reference.

Parameter Reference Vehicle [23] Test Vehicle Unit

Mass 73,482 350 kg
Wing reference area 201.6 6.5 m2

Wind velocity 23 23 m/s
Wind load 63,988 268.19 N
azw(wind) 0.871 0.766 m/s2

az(controller) 2.1 0.00627 m/s2

6. Conclusions

A different approach for the landing fixed-wing UAVs is presented in this paper. Glide
and flare reference trajectories are predefined and the UAV is forced to follow the altitude
of the reference trajectory. First, the model is robustly stabilized using the normalized
coprime factorization method and the controller Ks and observer Hs are obtained. Then, the
LQR-based inverse optimal problem is formulated and solved to design the cost function
matrices, which are further utilized to realize MPC. The designed MPC inherits the small-
signal properties (stability margin and closed-loop performance) of the H∞ controller,
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when the constraints are inactive (i.e., perturbation around equilibrium points that keep
the system within saturation limits). Various scenarios are simulated and studied. The
results demonstrate the proposed techniques’ effectiveness and correctness even under
moderate and severe wind shear effects. A qualitative analysis is also performed to compare
the results with the benchmark work. The landing results demonstrated a significant
improvement.
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have read and agreed to the published version of the manuscript.
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Appendix A. State Space Matrices of Test Vehicle

The state space matrices from Equation (8) for the test vehicle Av, Bv and Cv are given
below:

Av =



−0.0399 −0.0541 −0.1710 −0.0524 0 0
−0.2783 −1.9805 −0.0045 0.8727 0 0
0 0 0 1 0 0
1.1360 −18.3577 0 −1.9144 0 0
0.0087 −1 0.8737 0 0 0
1 0.0087 0.0295 0 0 0



Bv =

[
−0.0050 −0.0598 0 9.9890 0 0
0.0143 0 0 0 0 0

]T

Cv =


1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0


Appendix B. State Space, Controller and Observer Matrices of Shaped Plant

The state space matrices (As, Bs and Cs), controller gain (Ks), observer gain (Hs) and
MPC cost function matrices (Ps, Qs and Rs) for the shaped plant as as follows:

As =



0.9992 −0.0008 −0.0034 −0.0011 0 −0.0010 0.0014
−0.0052 0.9586 −0.0000 0.0168 0 0.0026 0
0.0002 −0.0036 1.0000 0.0196 0 0.0099 0
0.0224 −0.3508 −0.0000 0.9594 0 0.9800 0
0.0002 −0.0196 0.0175 0 1 0.0001 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Bs =

[
−0.0041 0.0105 0.0397 3.9596 0.0002 0.0800 0
0.0058 0 0 0.0001 0 0 0.0800

]T

Cs =


20 0 0 0 0 0 0
0 0 0 20 0 0 0
0 0 2 0 0 0 0
0 0 0 0 100 0 0
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Ks =

[
0.0244 −0.56 1.0539 0.2459 1.1537 0.2479 0.0001
19.1416 −12.125 20.0018 0.0215 32.2626 0.0026 0.2311

]

Hs =


−2.54×10−9 −2.37×10−8 −3.68×10−8 −1.21×10−6 −2.54×10−10 −2.50×10−8 −6.22×10−8

4.24×10−6 −3.79×10−5 −5.84×10−5 −1.91×10−3 −3.65×10−7 −3.95×10−5 −1.57×10−8

−2.21×10−7 1.99×10−6 3.06e×10−6 1.00×10−4 1.91×10−8 2.07×10−6 1.07×10−8

1.79×10−9 −1.60×10−8 −2.46×10−8 −8.07×10−7 −1.54×10−10 −1.67×10−8 5.31×10−11


T

Ps = 108 ×



2.5343 −0.2893 0.0596 0.0056 1.0865 0.0113 −0.1385
−0.2893 2.3353 −1.5603 −0.0701 −1.2734 0.0421 −0.0069
0.0596 −1.5603 3.0612 0.1503 3.0576 −0.1907 0.0417
0.0056 −0.0701 0.1503 0.0405 0.1650 −0.0587 −0.0005
1.0865 −1.2734 3.0576 0.1650 5.7402 0.0968 −0.0025
0.0113 0.0421 −0.1907 −0.0587 0.0968 2.9988 −0.0008
−0.1385 −0.0069 0.0417 −0.0005 −0.0025 −0.0008 0.0105



Qs = 108 ×



0.0687 −0.0253 0.0667 0.0098 0.1241 0.0018 −0.0029
−0.0253 0.3092 −0.3552 −0.0868 −0.3736 −0.0166 −0.0006
0.0667 −0.3552 0.7049 0.1409 0.8329 −0.0052 0.0004
0.0098 −0.0868 0.1409 0.0390 0.1578 −0.0005 −0.0009
0.1241 −0.3736 0.8329 0.1578 1.0808 0.0022 −0.0001
0.0018 −0.0166 −0.0052 −0.0005 0.0022 0.1176 −0.0000
−0.0029 −0.0006 0.0004 −0.0009 −0.0001 −0.0000 0.0004



Rs = 104 ×
[

0.0932 −0.0002
−0.0002 1.6236

]
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