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Abstract: Composite materials are one of the primary structural components in most current trans-

portation applications, such as the aerospace industry. Composite material diagnostics is a promising

area in the fight against structural damage in aircraft and spaceships. Detection and diagnostic

technologies often provide analysts with a valuable and rapid mechanism to monitor the health

and safety of composite materials. Although many attempts have been made to develop damage

detection techniques and make operations more efficient, there is still a need to develop/improve

existing methods. Pulsed thermography (PT) technology was used in this study to obtain healthy

and defective data sets from custom-designed composite samples having similar dimensions but

different thicknesses (1.6 and 3.8). Ten carbon fibre-reinforced plastic (CFRP) panels were tested.

The samples were subjected to impact damage of various energy levels, ranging from 4 to 12 J. Two

different methods have been applied to detect and classify the damage to the composite structures.

The first applied method is the statistical analysis, where seven different statistical criteria have

been calculated. The final results have proved the possibility of detecting the damaged area in most

cases. However, for a more accurate detection technique, a machine learning method was applied to

thermal images; specifically, the Cube Support Vector Machine (SVM) algorithm was selected. The

prediction accuracy of the proposed classification models was calculated within a confusion matrix

based on the dataset patterns representing the healthy and defective areas. The classification results

ranged from 78.7% to 93.5%, and these promising results are paving the way to develop an automated

model to efficiently evaluate the damage to composite materials based on the non-distractive testing

(NDT) technique.

Keywords: composite materials; impact damage; damage diagnosis; infrared thermography; machine

learning; principal component thermography; pulsed phase thermography; thermographic images;

support vector machine

1. Introduction

In the aircraft sector, polymer matrix composites with reinforcements comprised
of carbon fibres, glass fibres, Kevlar, and other materials are commonly employed. For
example, carbon fibre-reinforced polymer (CFRP) was originally used in Boeing airplanes
in the 1950s [1]. When compared to other materials, the utilization of composite materials in
the aircraft industry has increased noticeably over time. The new Boeing 787 Dreamliner is
made up of more than half composite materials by weight [2]. Composite materials’ primary
advantages are their high specific strengths and stiffness [3]. Composite materials, for
example, are stronger and stiffer than aluminium, while being lighter. This weight reduction
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allows for increased passenger and freight capacity while using less fuel. Corrosion, as
well as many other highly reactive chemicals often utilized in aircraft applications, are
not a problem for composite materials [4]. Moreover, they are thermally durable and can
withstand exposure to extreme weather conditions, such as the vast temperature variations
encountered during airplane operations. Another significant benefit of composite materials
is their design flexibility. Composite constructions are produced in large single pieces and
then cut to their intended final shapes, obviating the need for drilling, bolting, and riveting,
which are usually used to assemble metallic structures [5,6].

Infrared thermography, often known as thermal imaging or just thermography, is
a non-destructive testing (NDT) technology that has attracted a lot of attention in the
last several decades for diagnostics and monitoring [3]. This is mostly due to the fact
that commercial infrared or thermal cameras, the primary tool for performing infrared
thermography, are constantly increasing in terms of sensitivity and spatial resolution, as
well as becoming faster and more affordable. Every year or so, a better camera may be
had for roughly the same price as the previous model from the previous year. The same
statement may be made about computers, which are needed for control, data processing,
and picture display, and which deliver more computational power at a cheaper price year
after year. As a result, the range of applications is broadening, from traditional building or
electronic component monitoring to more current applications such as artwork inspection
or composite materials inspection [7].

Péronnet et al. [8] explored the detection of flaws using an IRT approach. In this study,
two infrared thermographic techniques were performed on several types of composites
used in the aviation industry: lock-in thermography, and pulse thermography. Nonetheless,
testing was conducted on composites with both modest and large thicknesses. When
compared to other methods, lock-in thermography was found to have a greater level of
accuracy. However, this was ascribed to the wave propagation being optimized, allowing
for a better passage through the specimen under test. In addition, Montanini [9] employed
lock-in and pulse phase infrared thermography to quantify subsurface flaws in a Plexiglas
reference specimen. Thermal pictures captured at various frequencies (frequency domain)
were post-processed, and the thermal diffusivity of the material was directly measured.
Montanini believed the findings were encouraging and proposed active thermography
as a practical, quick, and powerful contactless NDT technology for detecting subsurface
faults [10].

A control unit is required to synchronize the energy source with the acquisition system,
and a computer system [11] can be used to display and/or process images. In the case
of active thermography, signal processing is frequently required to improve contrast and
quantification. In general, the reflection configuration is best suited to detect defects close
to the heated surface, whereas the transmission configuration allows for the detection of
defects close to the rear surface due to the spreading effect of the thermal front. Obviously,
the transmission approach is not always simple or feasible. Nonetheless, some specific
applications can be found. For example, if the part is hollow, it may be advantageous to
use internal stimulation with a liquid (water) or gas flow (air). Because of the delayed
arrival of the thermal perturbation, changes in flow temperature (hot to cold or the reverse)
allow the detection of abnormal variations in wall thickness or blocking passages in this
configuration. However, it should be noted that the defect depth cannot be estimated in
transmission mode because the heat front travels the same distance whether a defect is
present or not, and regardless of its depth [5].

Recently, thermal deep learning algorithms were used to examine and detect surface
and subsurface damage in composite materials [12]. Previous research has shown, however,
that traditional machine learning (ML) approaches, such as Support Vector Machine (SVM),
still require a pre-processing algorithm to properly handle real-world data in order to
overcome the trade-off between overall accuracy and generalization. With this in mind,
Erazo-Aux et al. proposed using cubic spine SVM to identify/classify damages in specifi-
cally manufactured composites with various health conditions [13]. In high-dimensional
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characteristic spaces, SVM is a useful tool for ML linear predictors. The high dimension-
ality of the feature space increases sample complexity and computational complexity. By
seeking “substantial margin” separators, the SVM algorithmic paradigm tackles the sample
complexity problem. If the entire set of cases is not only on the right side of the sepa-
rating hyperplane but also far away from it, a half-space separates a training set with a
substantial margin. Even though the dimensionality of the characteristic space is vast,
limiting the method to produce a significant margin separator could result in a low sample
complexity (and even an unlimited one). It should be emphasized that all aspects of the
SVM algorithms’ computing complexity, mathematical correlations, etc. are adequately
covered in the implementation [14,15]. Different linear and kernel functions (linear or
radial), constant widths (σ), and limiting terms (C) are commonly tested when training the
SVM model. In contrast to linear SVM models, cubic kernel functions are commonly used
in cubic SVM algorithms. This will result in increased classification accuracy in a shorter
computational time [16].

2. Tested Materials and Samples Features

Two distinct laminates were manufactured with 9 and 18 plies and a ply layup sim-
ilar to that found in a composite aircraft’s fuselage. The fibre was aligned along the
longer dimension of these laminates, which were cut into coupons with diameters of
100 × 150 mm. the coupons were affected using the American Society for Testing and
Materials (ASTM) testing process with varying energy levels to produce Barely Visible
Impact Damages (BVID).

• Laminate size: 100 × 150 mm
• Theoretical cured ply thickness: 0.18 mm
• Material: UD pre-preg material IMS-977-2.

Low-energy hits cause BVID, which have a dent depth of less than 0.3 mm. A steel
hemisphere impactor with a diameter of 13 mm was utilised to create the impact conditions.
The conditions listed in Table 1 were used to achieve the necessary impact energies. Two
coupons of same thickness were impacted with 8 J impacts to determine whether equivalent
damages were induced.

Table 1. Drop heights and impactor masses for impact testing.

Energy (J) Drop Height (mm) Total Impactor Mass (g)

2.5 200

1220
4 335

8 670

12 1000

20 918 2220

Table 2 shows the cured thickness of various coupons. The manufacturer’s theoretical
per-ply thickness is 0.175 mm. Due to manufacturing variances in coupons and the presence
of Foreign Object Defects (FOD) faults in the reference standard specimen, there is a small
variation in per-ply thickness. Figure 1 illustrates the thickness of the samples, which are
(1.65 mm) for the thin samples and (3.8 mm) for the thick samples. Moreover, Figure 1 also
shows the front and back faces as well. However, the proposed approach can be applied
on complex (actual) structure geometries. Instead of taking images from one side, images
can be taken from multiple sides and applied to the whole procedure (creating machine
learning models and getting the results) for each side.
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Table 2. Layup and thickness of coupons.

Coupons Layup Cured Thickness in mm (Averaged) Per-Ply Thickness

Impact damage on thin coupons
[45/−45/90/0/90/0/90/−45/45]

(9 layers)
1.65 0.183

Impact damage on thick coupons
[45/−45/90/0/90/0/90/−45/45] s

(18 layers)
3.8 0.211

− −

− −

  
(Thickness of thin samples) (Thickness of thick samples) 

  
(Front side) (Back side) 

 

 

 

 

Figure 1. Samples feature.

3. Lab Components

This section will address the lab components used in the experiments, in addition to
the setup and configuration. The lab components are as follows:

• Infrared camera (FLIR X8502sc, Teledyne FLIR LLC, Wilsonville, OR, USA), see Table 3.
• Photographic/Power flashes (BALCAR, Inc. FX60, Teledyne FLIR LLC, Wilsonville,

OR, USA).
• Image acquisition software (FLIR ResearchIR Max 4, Teledyne FLIR LLC, Wilsonville,

OR, USA).
• Data/pulse generation synchronization (custom-built software/hardware).
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Table 3. Infrared camera specifications.

Sensor Image Resolution Dynamic Range Acquisition Frequency Spectral Range

InSb
CCD Matrix

[pixels]
1280 × 1024

used:
512 × 512

[bits]
14

[Hz]
0.0015 to 180 Programmable

50 and 85 during tests

[µm]
3.0 to 5.0

4. Pulsed Thermography (PT) Method for Image Capturing

During the heat pulse, and during cooling, the infrared camera recorded the thermal
evolution on the surface of the inspected CFRP sample for several seconds (about 19 to 20 s)
at 50 and 85 frames/s sampling rate. The experiments were carried out in two modes,
reflection and transmission, on two faces of the specimen (offering small defect depths
from the front face and deeper defect depths from the back face), and each sequence was
labelled and stored into its own file.

The data source location was as follows: Institution: Computer Vision and Systems
Laboratory at Laval University City/Town/Region: Quebec City/Quebec/North America
G1V 0A6 Country: Canada. Figure 2 shows the conducted experiments of a pulsed
thermographic in different modes.

μ

  
(Reflection mode) (Transmission mode) 

Figure 2. Methods for image capture.

5. Experimental Conduction

The experiments were conducted on 10 different samples, where the first five samples
represent the thin samples, while the other samples represent the thick samples. Based
on the pulsed thermography method, there are two modes reflection and transmission;
based on the reflection mode, 10 sequences were required for each of the thin and thick
samples, five images were taken from the front side and five images were taken from the
back side. Similarly, based on the transmission mode, five sequences were taken for each
of the thick and thin samples. This makes a total of 30 acquired sequences. The following
Table 4 summarizes the number of images taken according to the different modes of capture,
whether reflection or transmission, for both thin and thick samples.
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Table 4. Experiment conduction.

Type Capturing Mode * Images Frames Side
No. of Data
Sequences

Note

Samples

Thin
Reflection 10 × 1000

Front 5

1000 Frames per
sequence

Back 5

Transmission 5 × 1000

Thick
Reflection 10 × 1000

front 5

back 5

Transmission 5 × 2000 2000 per sequence

* The capturing method is based on pulsed thermography, which consists of two different modes.

6. Image Processing Methods

Two different methods of image processing have been adopted, and they are as follows:

6.1. Principal Component Thermography (PCT) * EOF = Empirical Orthogonal Function

PCT is based on singular value decomposition (SVD), which shows how underly-
ing patterns in a signal can be recovered by projecting the data onto a set of orthogonal
basis functions. One of the primary benefits of PCT is that it provides quantitative in-
formation about flaw depth. The differences in PPT and PCT results are minor and best
discerned through quantitative analysis. However, the PPT and PCT methods outperform
the average [17].

6.2. Pulsed Phase Thermography (PPT)

Pulse Phase Thermography (PPT) is a technology that combines the benefits of both
Modulated Thermography (MT) and Pulsed Thermography (PT). In MT, a single frequency
is introduced into the specimen and examined in the stationary regime, whereas in PT,
all of the responses are combined into a single transient signal [18]. PPT employs the PT
experimental process as well as the MT data analysis technique. It is based on the measured
thermal decay T(t) following pulse stimulation using the Discrete Fourier Transform (DFT).
The output is represented by a phase function [19,20].

7. Image Processing Results of the Pulsed Thermographic Based on Reflection Mode

In this section, the results of the image processing based on the above-mentioned
methods (PPT and PCT) are presented, where the final results proved that the tested samples
were exposed to damage to varying degrees. Moreover, some damages in the tested samples
could not be detected without image processing, which proves the importance of image
processing. Figure 3 demonstrates the benefits of image processing, whether PPT or PCT,
where the damage can be seen clearly compared to Figure 3a, which reflects the image
before exposure to heat. Also, in a three-dimensional image (Figure 4), the damage can be
seen clearly where the damage shapes an anomalous pattern on the surface of the 3D image.

Also, in the case of the thick samples, the results of the image processing prove the
possibility to detect the damage based on both methods (PPT and PCT), see Figure 5.
Furthermore, in the three-dimensional image (Figure 6), the damage can be seen clearly on
the surface of the samples after the exposure of the sample to heat.
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(a)  (b)  

  
(c)  (d)  

Figure 3. Images Processing Results, (a) raw thermogram corresponding to t = 0.8 s. (a) Cold image.

(b) Raw Image. (c) BCT Image. (d) PPT Image.

Figure 4. Three-dimensional image, corresponding to PPT.
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(a)  (b)  

  
(c)  (d)  

Figure 5. Images Processing Results. (a) Cold image. (b) Raw Image. (c) BCT Image. (d) PPT Image.

 

Figure 6. Three-dimensional image, corresponding to PPT.

8. Image Processing Results of Pulsed Thermographics Based on Transmission Mode

In this section, the focus will be on the results of the transmission mode instead of
the reflection mode (previous section). As shown in Figure 7, the results of the image
processing of the thin samples show internal damage on the surface of the tested samples,
contrary to the results of the reflection mode, which show details of the surface and shallow
damage. Moreover, in the three-dimensional image (Figure 8), the damage can be seen
clearly on the surface of the 3D image after processing.
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(a)  (b)  

(c)  (d)  

Figure 7. Image Processing Results. (a) Cold image. (b) Raw Image. (c) BCT Image. (d) PPT Image.

Figure 8. Three-dimensional image of the sample corresponding to PPT.

Another different sample (thick plate) has also been tested based on the transmission
mode, and the results show the existence of the damage on the plate surface. Figure 9
demonstrates the final result of the image processing. Also, Figure 10 (3D-image) shows
the abnormal pattern of the defective area in comparison to the healthy areas. In this case,
damage appears with lesser contrast compared to Figure 7, since the plates are thicker.
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(a)  (b)  

  
(c)  (d)  

 

Figure 9. Images Processing Results. (a) Cold image. (b) Raw Image. (c) BCT Image. (d) PPT Image.

 

 

Figure 10. 3D of the sample corresponding to PPT.

9. Image Analysis and Damage Detection

After experimenting using the pulsed thermographic method, the outputs of the image
processing based on PPT and PCT techniques, the following were observed:

• There is a discrepancy in the raw thermograms because of the different energies to
which the sample were exposed.

• Damage contrast varies according to the adopted configuration. i.e., reflection vs.
transmission modes, as it is proven that the transmission mode offers more details
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of internal damage, whilst reflection shows more detail on surface and near to the
surface damage.

• The clarity varies in terms of the capturing position in the event of reflection mode
or transmission mode. Figure 11 presents comparative results between reflection
(a and b) and transmission (c and d) mode.

 

 

  
(a)  (b)  

  
(c)  (d)  

Figure 11. Image Processing Results. (a) reflection mood. (b) reflection mode. (c) transmission mode.

(d) transmission mode.

9.1. Statistical Analysis Method Results

One of the methods applied in this study to detect the damaged area in aircraft com-
posite materials was statistical analysis because the thermal imaging technology produces
images that include numerical values that can be analyzed. These numerical values, in
turn, reflect the shape and structure of the surface that was captured. Therefore, based on
the statistical analysis method, it is possible to analyze the numerical values that reflect the
shape of the thermal images, and to define a standard values model that reflects the healthy
surface and consider any deviation from these values as an indicator of the damaged area.

Based on the statistical analysis method that was followed in this study, seven statistical
criteria were applied; three of these criteria have been applied to calculate the range of
values using the maximum, minimum, and range of the numerical data, and the other four
criteria to calculate the pattern of the numerical values that are reflecting its properties, and
these values are: mean, mode, median, and the standard deviation (SD). The following
Table 5 summarizes the applied statical criteria.
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Table 5. Statistical Analysis criteria.

Statistical Criteria Purpose

To find the range of the numerical
values of the thermal images

Minimum To find the lowest value.
Maximum To find highest value.

Range The find the difference between the lowest and highest.

To find the pattern of the numerical
values of the thermal images

Mean To find the average.
Mode The find the most frequent value.

Median The find middle value
Standard deviation (SD) To measure how spread out the values are.

9.1.1. Statistical Analysis Results of Damage Detection on Thin Reflection Image Sample

In this type of thermographic image of thin samples captured based on the reflection
mode, the statistical analysis results showed the discrepancy in the final results between the
healthy surfaces and the defective surfaces in terms of range rather than in terms of pattern.
As shown in Table 6, the maximum value of the healthy surfaces was 26.4, while the value
of the damaged surfaces was 47.13. Likewise, the minimum value for the healthy surfaces
was 22.8, while the minimum value for the damaged surfaces was 16.4, and accordingly,
these values were reflected in the range criterion. On the other hand, concerning the pattern
of numerical values representing the image structure, the statistical analysis results showed
a great convergence that is difficult to rely on in distinguishing the healthy surfaces from
the damaged ones. Therefore, the statistical analysis method for this sort of thermal image
captured based on the reflection mode is an effective method. Figure 12a depicts the curve
of the statistical values of the healthy and damaged surfaces of the thin sample according
to the reflection method.

 
(a)  (b)  

 
(c)  (d)  

.

Figure 12. Statistical Analysis results. (a) Healthy thin vs. damaged area based on reflection mode.

(b) Healthy thick area vs. damaged area based on reflection mode. (c) Healthy thin area vs. damaged

area based on transmission mode. (d) Healthy thick area vs. damaged area based on transmission mode.
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Table 6. Statistical results for the thin samples based on the reflection mode (processed data).

Max Min Mean Range SD Median Mode

Healthy Area 26.400951 22.77375 23.4309016 3.627201 0.159332891 23.435305 23.417593
Damage Area 47.127533 16.40193 23.43215487 30.725603 0.164197367 23.435305 23.417593

9.1.2. Statistical Analysis Results of Damage Detection on a Thick Reflection Image Sample

With regard to the statistical analysis results for damage detection on thick samples
based on reflection mode, the final results showed the possibility of detecting damage on
the surfaces of the samples due to the variation in statistical criteria, whether in terms
of range or pattern. As shown in Table 7, the maximum value of the healthy area was
27.14, while the maximum value of the damaged area was 46.16, and the minimum values
were 23,43 and 20.28 for the healthy area and the damaged area, respectively. Therefore,
this difference between the maximum and minimum values was reflected in the value
of the range criterion. In addition, the values of the standard deviation and the mode
values were different, as shown in Table 7, and this difference in the values of the statistical
results enabled us to distinguish the damaged surfaces compared to the healthy surfaces.
Figure 12b visualizes the statistical results.

Table 7. Statistical results for thick samples based on reflection mode.

Max Min Mean Range St.D Median Mode

Healthy Area 27.139853 22.8459 24.0360048 4.293953 0.11344104 24.032011 24.014608
Damage Area 46.507 22.245995 24.0607763 24.261005 0.32171987 24.049404 23.699854

9.1.3. Statistical Analysis Results of Damage Detection on Thin Samples in Transmission

This section will discuss the statistical analysis results of the numerical values of
thermal images of thin samples captured based on the transmission mode. As shown in
Table 8, the discrepancy was evident in four statistical criteria, which are the maximum,
minimum, and range, as well as the standard deviation, which indicates the possibility of
detecting the damaged areas in this sample type based on the statistical analysis method
despite the convergence in the other statistical criteria, such as the (mode) value, where
the value approximated in the healthy and damaged areas statistically. However, due to
the significant difference in the maximum, minimum and range values, we were able to
distinguish the damaged areas from the healthy areas. Figure 12c illustrates the statistical
results of this case.

Table 8. Statistical results for thin sample based on transmission mode row thermograms.

Max Min Mean Range St.D Median Mode

Healthy Area 27.092142 23.435305 23.8835772 3.656837 0.08099473 23.892551 23.892551
Damage Area 45.158165 20.281637 23.1229073 24.876528 1.05067575 23.752516 23.892551

9.1.4. Statistical Analysis Results of Damage Detection on a Thick Transmission
Image Sample

In the case of thermal images of thick samples that were captured based on the
transmission mode, the statistical analysis results were disappointing, as there was no
apparent difference in the values of the statistical criteria, neither in terms of range nor in
terms of pattern, where the statistical results of the numerical data of the thermal images of
the healthy and damaged areas were very close, as shown in Figure 12d. Therefore, it is
impossible to rely on this analysis method to detect the damage in the thermal images of
thick samples captured in the transmission mode.
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In general, the damage detection on aircraft composite materials based on the statistical
analysis method for the thermal images, whether for thin or thick surfaces, based on the
reflection mode or transmission mode, is an effective method in most cases, except for the
last case. Therefore, the statistical analysis method for damage detection in thin or thick
samples can be adopted based on reflection and transmission modes, but only for thin
samples. Table 9 summarizes the final statistical results.

Table 9. Statistical results for thick sample based on transmission mode.

Max Min Mean Range St.D Median Mode

Healthy Area 27.219231 23.417593 24.0912467 3.801638 0.1076612 24.08416 24.08416
Damage Area 27.219231 23.311132 23.9873066 3.908099 0.14929551 23.997196 24.032011

9.2. Machine Learning Detection Method Results

Certain factors can play an essential role in the classification result in terms of proba-
bility of prediction accuracy, such as sample thickness and the position in which the data
was captured.

In this study, a machine learning method was adopted to detect damage in thermal
images of the composite components taken based on the pulsed thermography (PT) method.
To apply the machine learning method, three main elements are required: the datasets,
the features, and the algorithm required for the purpose of distinguishing between the
healthy area and the damaged area. The captured thermogram sequences shown in Table 10
represent the datasets that were trained by machine learning while the properties of the
thermal images are represented by the numerical values which reflect the image structure
based on the PT method and that will be the features of the datasets.

Table 10. Datasets categories representing thermal image frames.

Cases (Samples × Frames) Total Frames Response/Label

Health area (Dataset 1–2)
3 × 1000
1 × 2000

5000 Frames 0

Damage area (Dataset 3–4)
9 × 1000
3 × 2000

15,000 Frames 1

Total Trained Frames 20,000 Frames

Finally, the last step is to select the algorithm for predicting the defective area compared
to the healthy area. In previous research, several algorithms that separate healthy samples
from damaged samples were evaluated, and the Support Vector Machine (SVM) algorithm
was identified as the algorithm that provided the highest predictive accuracy 97% [5].
The ideal number of images to have a reliable performance of accuracy is around several
thousand images (more or less), according to what was previously evaluated [13], the
datasets were normalized for the purpose of applying the machine learning method, as
shown in the following table.

As shown in Table 10, 3000 frames have been selected to represent healthy thermal
images of thin and thick samples that were captured using two different modes, the first
round using the reflection method and the second round using the transmission method.
For the healthy thick samples, 2000 frames representing the characteristics of the thermal
images using the reflection technique have been captured. Finally, all these datasets were
labelled with the number (0), which indicates the characteristics of the healthy samples.

For damaged area, a total of 15,000 frames were generated, where 9000 frames were
generated for thin and thick samples using the two different methods (reflection and
transmission). Furthermore, only 6000 frames that reflect the characteristics of the thermal
images of thick samples collected by the transmission method were generated and uploaded
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within the training session. Accordingly, the total sum of all healthy and defective samples
was 20,000 frames.

Table 11 summarizes the number of observations loaded in MATLAB and their associ-
ated features.

Table 11. Data features and number of observations.

Cases Data Group Features Observations

Healthy Area Datasets 1–2
1024 features
768 features

745,472
430,080

Damage Area Datasets 3–4
1024 features
768 features

2,236,416
1,290,240

As shown in the above table, in the case of healthy samples, the number of observations
for the first dataset is 745,472, with 1024 features. Regarding the second dataset, the total
number of observations reached 430,080, including 768 features. Regarding the third and
fourth datasets, which represent defective samples whether thin or thick, the number of
observations reached 2,236,416 and 1,290,240 samples, respectively. The number of features
for these observations was 1024 and 768 for the third and fourth datasets, respectively

Based on the training sessions for the datasets, models 1 and 2 were generated based
on the results of the Cubic SVM algorithm, and test models 3 and 4 have been exported to
test new datasets and ensure the effectiveness of the machine learning method in detecting
damage in composite components based on thermographic image processing and the
machine learning classification method.

After the data was normalized, it was trained by the classification app in MATLAB,
and the Cubic SVM was selected, which was evaluated and proven effective in a previous
study with samples that were exposed to artificial damage, while in this study, the samples
were exposed to real damage, and the results of the prediction accuracy will be discussed in
detail in the following subsections. Table 12 summarizes the characteristics of the machine
learning models.

Table 12. Machine learning modelling.

Model Datasets Classes Observations

Trained Models
Model 1 Datasets 1 and 3 2 15,120
Model 2 Datasets 2 and 4 2 18,480

Test Model
Model 3 Generated without its

trained data as a test model
Cubic SVM Algorithm New datasets

Model 4

9.2.1. Damage Detection Results of Thin Reflection Image Sample

In reflection mode, the accuracy of prediction in detecting damaged reached 93%,
with 189 misclassifications for thin samples. Figure 13 shows the features’ patterns of the
thermal images, and the healthy area versus the damaged area. The confusion matrix
also shows the final results of prediction accuracy, where the accuracy of predicting a
damaged area against a healthy area according to the true positive ratio (TPR) was 93.5%,
with a false-negative ratio (FNR) rate of 6.5%, while the accuracy of determining the
defective area based on the TPR was 94.4%, and the FNR was 5.6%. Overall, this high
rate of detection accuracy proves the effectiveness of this method in detecting damage
on the composite components of aircraft based on the pulsed thermography method and
the machine learning classification technique, which paves the way toward building an
automated approach to damage detection based on non-destructive testing (NDT). Table 13
summarizes the classification results.
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(a)  (b)  

 

(c)  

Figure 13. Classification results and confusion matrix for thin samples based on reflection mode.

(a) Feature patterns of classification results of the cubic SVM model (Observation 485 vs. Feature 368).

(b) Feature patterns of classification results of the cubic SVM model (Observation 1 vs. Feature 926).

(c) Confusion matrix.

Table 13. Classification results for thin samples based on reflection mode.

Classification Results

Accuracy 93.5%
Total misclassification cost 189

Prediction speed ~3100 obs/s
Training time 8.8344 s

9.2.2. Damage Detection Results of Thick Samples in Reflection Mode

Regarding the prediction accuracy for detecting the damaged area in the thick samples
according to the reflection method, the accuracy of the detection, in general, was globally
82.1%. Figure 14 depicts the characteristic patterns of the thermal images that were captured.
As shown in the confusion matrix, the true positive ratio (TPR) and the false-negative ratio
reached 82.2% and 17.8%respectively, and the total misclassification cost was 521. The final
results of the training session are presented in Table 14.
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(a)  (b)  

 
(c)  

Figure 14. Classification results and confusion matrix for thick samples based on reflection mode.

(a) Feature patterns of classification results of the cubic SVM model (observation 519 vs. feature 871).

(b) Features patterns of classification results of the cubic SVM model (observation 1 vs. feature 317).

(c) Confusion matrix.

Table 14. Classification results for thick samples based on reflection mode.

Classification Results

Accuracy 82.1%
Total misclassification cost 521

Prediction speed ~2800 obs/s
Training time 9.8159 s

9.2.3. Damage Detection Results of Thin Samples in Transmission Mode

Moving on to the results that represent the damage detection for the thin samples
in transmission, the overall prediction accuracy was 79.4%, the total cost of the misclas-
sification was 462, and, in more detail, based on the confusion matrix, the true positive
ratio percentage in determining the defective area was 82.6%, meaning that only 17.4%
represents the true negative ratio percentage, which means that 17.4% of the defective
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surfaces were incorrectly classified as a healthy area. In general, the overall accuracy rate,
which is 79.4%, is considered a high percentage that can be relied upon. Table 15 and
Figure 15 summarize the final results of the machine learning method in this case.

Table 15. Classification results for thin samples based on transmission mode.

Classification Raults

Accuracy 79.4%
Total misclassification cost 462

Prediction speed ~3700 obs/s
Training time 5.9488 s

  
(a)  (b)  

 
(c)  

Figure 15. Classification results and confusion matrix for thin samples based on transmission mode.

(a) Features patterns of classification results of the cubic SVM model (observation 1 vs. feature 2).

(b) Features patterns of classification results of the cubic SVM model (observation 38 vs. feature 120).

(c) Confusion matrix.

9.2.4. Damage Detection Results of Thick Samples in Transmission Mode

Regarding the results of predicting the damaged area in the thick samples whose
thermal images were taken based on the transmission method, the overall prediction
accuracy was 78.7%. The following confusion matrix summarizes the ratios of true positive
and true negative, where the TPR reached 85.5% in terms of detecting the damaged area,
and the FNR percentage was only 14.5%, while the total misclassification cost was 477. The
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overall accuracy percentage, in this case, was the lowest percentage among other cases, but
78.7% is a good percentage that can be relied upon for detecting the damaged area in the
thick composite components based on the transmission method. Table 16 and Figure 16
conclude the final outcomes of the machine learning analysis.

Table 16. Classification results for thick samples based on transmission mode.

Classification Results

Accuracy 78.7%
Total misclassification cost 477

Prediction speed ~3100 obs/s
Training time 7.8478 s

(a)  (b)  

(c)  

 

Figure 16. Classification results and confusion matrix for thick samples based on transmission mode.

(a) Features patterns of classification results of the cubic SVM model (observation 172 vs. feature 298).

(b) Features patterns of classification results of cubic SVM model (observation 144 vs. feature 755).

(c) Confusion matrix.

To improve the accuracy classification, especially on the thick samples, the number of
the images should be increased by at least by 30%.
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In general, and based on the obtained results, implementing the machine learning
method to detect damaged areas, whether on the thin or thick samples and whether ac-
cording to the reflection or transmission methods, is a very effective method. As presented
in this section, the result ranged from 78.7% to 93.5%; the variation between these two
numbers is due to the capturing mode in which the thermal sequences were taken, in
addition to the thickness of the samples used in this study, where the thickness of the
samples plays a vital role in the success of the machine learning classification. Therefore,
the degrees of classification varied according to the thickness of the samples.

10. Conclusions

In conclusion, due to the proliferation usage of composite materials in the field of
transportation, especially in aviation, the safety and quality of these materials are essential
to preserving human life. Consequently, the need to develop an effective damage detection
method is essential. In this study, non-destructive testing technology has been used to
detect defects in composite materials, where the pulsed thermography method was used
to identify defects in carbon fiber samples used in this experiment. The images were
then processed using PPT and PCT techniques. The statistical analysis method utilizing
processed data was used first, and the statistical analysis results show that it is an effective
method in most cases, except for the last point, which is the thick samples in the transmis-
sion mode. Machine learning (Support Vector Machine) was then implemented to detect
damaged areas by training significant datasets, obtained from the conducted experiment.
It was observed that the presence of defects in the tested samples could be predicted in
different proportions according to the thickness of the samples and the approach used (i.e.,
reflection method or transmission mode). Moreover, the defect detection results in the
samples ranged from 78.7 to 93.5%, depending on the classification of the machine learning
analysis results. In this study, the reflection mode was more reliable because the crack in
the samples was on the surface.

For future work, an automated damage detection model will be developed to increase
the effectiveness of this proposed approach. This development will be done by utilizing
the data (thermal images) of the actual structure captured by the drone. The data are
transmitted and analyzed simultaneously to have a report showing the health of the
inspected craft. Furthermore, testing geometry variation of samples to find the classification
percentage would be a valuable future work.
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