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Abstract— Popular semi-supervised medical image seg-
mentation networks often suffer from error supervision
from unlabeled data since they usually use consistency
learning under different data perturbations to regularize
model training. These networks ignore the relationship be-
tween labeled and unlabeled data, and only compute single
pixel-level consistency leading to uncertain prediction re-
sults. Besides, these networks often require a large number
of parameters since their backbone networks are designed
depending on supervised image segmentation tasks. More-
over, these networks often face a high over-fitting risk since
a small number of training samples are popular for semi-
supervised image segmentation. To address the above
problems, in this paper, we propose a novel adversarial self-
ensembling network using dynamic convolution (ASE-Net)
for semi-supervised medical image segmentation. First, we
use an adversarial consistency training strategy (ACTS)
that employs two discriminators based on consistency
learning to obtain prior relationships between labeled and
unlabeled data. The ACTS can simultaneously compute
pixel-level and image-level consistency of unlabeled data
under different data perturbations to improve the prediction
quality of labels. Second, we design a dynamic convolution-
based bidirectional attention component (DyBAC) that can
be embedded in any segmentation network, aiming at
adaptively adjusting the weights of ASE-Net based on the
structural information of input samples. This component
effectively improves the feature representation ability of
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ASE-Net and reduces the overfitting risk of the network.
The proposed ASE-Net has been extensively tested on
three publicly available datasets, and experiments indicate
that ASE-Net is superior to state-of-the-art networks, and
reduces computational costs and memory overhead. The
code is available at: https://github.com/SUST-reynole/ASE-
Net.

Index Terms— Semi-supervised learning, Medical image
segmentation, Dynamic convolution, Adversarial learning

I. INTRODUCTION

MEDICAL image segmentation plays a significant role
in computer-aided diagnosis and treatment research

since it can extract important organs or lesions in abnor-
mal images. In recent years, many supervised-learning based
encoder-decoder networks for medical image segmentation
have achieved remarkable results such as U-Net [1], U-
Net++ [2], H-DenseUNet [3], etc. However, the success of
these techniques relies heavily on a large amount of pixel-
level labeled data but it is usually very expensive to annotate
medical images in practice. One of the reasons is that medical
images usually show poor visual effects due to low contrast
and noise interference. Moreover, medical image annotation
requires much more professional knowledge than natural
images. Therefore, it is almost impossible to build a large
number of medical image datasets with high-precision labels.
Compared to supervised learning, semi-supervised learning is
a new learning paradigm to solve the problem of incomplete
supervision of data in weakly supervised learning [4]. It
mainly uses a small amount of labeled data and a large amount
of unlabeled data to achieve joint training. Obviously, semi-
supervised learning is of great importance and more in line
with the requirement of actual clinical scenes than supervised
learning in medical image segmentation.

The main semi-supervised medical image segmentation
methods can be roughly classified as consistency learn-
ing [5] [6] [7] [8] [9] [10], adversarial learning [11] [12] [13],
self-training [14] [15] [16], contrastive learning [17] [18] [19],
and collaborative training [20] [21]. In this paper, we focus
on consistency learning and adversarial learning. Consistency
learning usually employs consistency regularization with dif-
ferent perturbations to train a network. One of the most repre-
sentative methods is self-ensembling Mean Teacher (MT) [5],
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which utilizes perturbation-based consistency loss between
the self-ensembling teacher model and the student model on
unlabeled data, along with the supervised loss on labeled
data. Depending on MT, subsequently improved methods focus
on choosing different data perturbations as well as feature
perturbations to achieve performance gains. Precisely, the
quality of a segmentation network in generating consistent
pseudo labels determines the knowledge mining ability of
the network for unlabeled data. For adversarial learning, the
generative adversarial networks (GAN) [11] [12] [13] for
medical image segmentation mainly involve two subnetworks,
namely a discriminator and a generator. The discriminator aims
to identify whether the input samples are from the ground truth
or the generator. The generator aims the discriminator not to
be able to distinguish between the ground truth and the output
from the segmentation network. Once the discriminator cannot
determine where the input is from, the generative samples are
considered to be close enough to the ground truth. The two
networks update alternately and promote each other.

Albeit those methods mentioned above have achieved great
success, they still face the following challenges. First, in
consistency learning, a typical Mean Teacher method acquires
consistency loss only depending on different data perturba-
tions, which does not effectively exploit the prior relationship
between unlabeled and labeled data, resulting in slow feature
learning on unlabeled data and weak model generalization
ability. Second, in adversarial learning, popular methods only
employ a single segmentation network and a single discrimi-
nator network to mine the potential knowledge from unlabeled
data. Unfortunately, the two networks can often mislead each
other, leading to the problem of error accumulation during the
training process. Third, it is usually inappropriate for semi-
supervised methods to use directly a segmentation network
with fixed parameters from supervised learning. On the one
hand, the segmentation network with fixed parameters is better
to fit labeled data but has poor feature representation for
unlabeled data. On the other hand, different samples share the
same model weights in the networks with fixed parameters,
which easily causes network overfitting for small labeled
datasets, leading to poor quality of generating pseudo labels
for unlabeled data.

In order to solve the above problems, in this paper, we
propose a novel adversarial self-ensembling network using
dynamic convolution (ASE-Net) for semi-supervised medical
image segmentation. ASE-Net effectively exploits the prior
relationship between unlabeled and labeled data as well as
pixel-level and image-level consistency by using consistency
learning and adding two discriminator networks to an MT
framework. In addition, we propose a dynamic convolution-
based bidirectional attention component that can be easily
embedded in a segmentation network to avoid the overfitting
problem. The main contributions of this paper are summarized
as follows:

(1) We propose an adversarial consistency training strategy
(ACTS) using double discriminators. The first discriminator
learns the prior relationship between labeled and unlabeled
data and the second one learns the image-level consistency
of a segmentation network on the same data with different

data perturbations. Both discriminators aim to improve the
knowledge transfer ability of the segmentation network from
labeled data to unlabeled data.

(2) We design a dynamic convolution-based bidirectional
attention component (DyBAC), which can sufficiently mine
the prior knowledge of samples and dynamically adjust the
parameters of convolutional kernels depending on different
input samples. The DyBAC can effectively improve the feature
representation ability of our proposed network and avoid
network overfitting.

(3) We extensively validate the performance of the proposed
method in three challenging medical image segmentation
tasks, and the experiments demonstrate that the proposed
network is very competitive compared to the state-of-the-art
methods. It is worth mentioning that our proposed network is
a lightweight network that requires fewer parameters and has
a faster inference speed than comparative networks.

II. RELATED WORK

Semi-supervised medical image segmentation: To solve the
problem of lacking a large number of labeled data, researchers
proposed many semi-supervised learning methods for med-
ical image segmentation. Since traditional semi-supervised
medical image segmentation methods usually employ man-
ually designed shallow features with limited representation
ability, they cannot provide good segmentation results for
medical images with low contrast and serious noise interfer-
ence. Compared with those methods mentioned above, deep
learning-based semi-supervised methods can provide excel-
lent segmentation results since they have powerful feature
representation and modeling abilities [22]. Currently, popular
semi-supervised medical image segmentation methods often
use a regular encoder-decoder segmentation network as the
backbone [1] [2] [3] [23] [24] [25] [26]. Aiming to utilize
unlabeled data better, more methods focus on improvements
in learning strategies. In this paper, we focus on employing
consistency learning [27] and adversarial learning [28] to
improve network performance.

For consistency learning, the state-of-the-art technique is
Mean Teacher (MT) [5] [29], which performs consistency
learning under different data perturbations by accumulating
the weights of the student model. Specifically, the MT is first
conducted in the way of supervised learning on labeled data.
After that, the teacher model of MT is used to provide pseudo
labels for unlabeled data, and the prediction consistency of the
teacher and student model for unlabeled data is maintained
through different regularization methods. Finally, the student
model is updated through feedback on supervision and consis-
tency loss. Among them, the teacher model is the exponential
moving average (EMA) of the student model weights. This op-
eration enables the teacher model to accumulate continuously
the historical prediction information of unlabeled data. The
subsequent improvements [6] [7] [8] [9] [10] [30] use different
consistency regularization strategies to improve the prediction
quality of unlabeled data and avoid network overfitting.

For example, Li et al. [6] proposed a transformation-
consistent self-ensembling model (TCSM v2) to utilize ef-
fectively unlabeled data by introducing the regularization
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strategy of data transformation consistency. Chen et al. [8]
proposed a cross pseudo supervision (CPS) method based
on network perturbation to encourage the high consistency
between prediction results from two perturbed networks. How-
ever, calculating the consistency between two predictions of
unlabeled data may cause some unreliable guidance and thus
make the training unstable. In order to solve this problem,
Yu et al. [9] proposed an uncertainty-aware framework based
on the Mean Teacher structure (UA-MT), which makes the
student model gradually learn more reliable targets according
to uncertainty estimates after multiple forward propagations.
In order to reduce the time and memory overhead, Wu et
al. [31] proposed a mutual consistency network (MC-Net). The
network includes two decoders and expresses the difference
between the two predictions as model uncertainty information
to regularize model training, so as to improve the quality
of the pseudo labels. Liu et al. [32] proposed a perturbed
and strict mean teacher (PS-MT) framework to improve the
segmentation accuracy by adding an auxiliary teacher model,
designing different loss functions, and using different data
perturbation methods. In addition, Luo et al. [33] constructed a
dual-task consistency (DTC) regularization method by jointly
predicting the pixel-wise segmentation map and the geometry-
aware level set representation of targets. DTC focuses on task-
level consistency rather than data-level consistency.

Adversarial learning [11] [12] [28] [34] [35] [36] [37]
is a popular strategy for improving model robustness by
effectively mining potential knowledge from unlabeled data.
For example, Zhang et al. [12] proposed a deep adversarial
network (DAN) to improve the prediction quality of unlabeled
data. However, popular semi-supervised adversarial learning
methods [11] [12] [28] only contain a single generator and
a single discriminator, which may lead to low segmentation
accuracy due to over-reliance on the result of a single network.
Therefore, the knowledge obtained from a model with low
segmentation accuracy may produce misguidance during the
learning process on unlabeled data. To go a step further, some
improved methods [34] [35] [36] [37] give consideration to
both consistency learning and adversarial learning to improve
the learning ability of models.

Dynamic neural network: Traditional deep learning net-
works perform inference in a static manner, in other words, the
network parameters are fixed after training. For different input
samples, these static networks output different predictions us-
ing the same parameters combined with different inputs, which
leads to poor predictions for some complex input samples
due to weak feature representation ability. Contrary to static
networks, dynamic neural network [38] means that the network
structure [39], parameters [40], and features maps [41] [42]
change according to different inputs in the inference stage.
For example, in terms of dynamic feature networks based on
attention mechanisms, Gu et al. [42] demonstrated in detail
the effectiveness of attention mechanisms and achieved better
results in medical image segmentation. Therefore, the dynamic
neural network is more compatible with the human visual
system. In this paper, we focus on the study of convolution
neural networks with dynamic parameters.

The conditionally parameterized convolutions proposed by

Yang et al. [41] and the dynamic convolutional neural network
(CNN) proposed by Chen et al. [40] mainly dynamically
aggregate multiple groups of weights from different convo-
lutional kernels according to input images to achieve dynamic
convolution. However, both of them lead to a dramatic increase
in the number of parameters and only use the prior knowledge
of channels without considering spatial information of feature
maps. To solve the problem, Involution [43] and Decoupled
Dynamic Filter Networks (DDF) [44] propose the idea of
spatial specificity, which makes the values of convolutional
kernel parameters vary with the spatial location in a feature
map. Involution and DDF skillfully use the spatial prior knowl-
edge of samples to extract the spatial structure information of
images and therefore achieve good results. In contrast to the
above methods, Li et al. [45] introduced an omni-dimensional
dynamic convolution via a parallel strategy to learn more
flexible attention to improve the network performance. In
general, the dynamic convolution applies soft attention to
convolution kernels by adjusting network parameter values
depending on different inputs. Thus, dynamic CNNs can
effectively exploit the prior knowledge of samples to improve
feature representation.

Different from the above methods, first, considering the
MT framework, we extend an adversarial consistency training
strategy to a semi-supervised learning framework (ACTS),
which makes better use of the essential relationship be-
tween unlabeled and labeled data. Second, we propose a
dynamic convolution-based bidirectional attention component
(DyBAC), which aims to reduce the overfitting risk of the
network and to reduce the memory overhead while maintaining
the segmentation accuracy.

III. METHOD

In this paper, we propose an adversarial self-ensembling net-
work (ASE-Net) for semi-supervised medical image segmen-
tation. As shown in Fig. 1, our ASE-Net consists of segmen-
tation networks and discriminator networks. The segmentation
networks consist of a student model and a teacher model. The
student model has the same structure as the teacher model and
both of them are based on the encoder-decoder structure; the
difference is that the former is trained by the loss function
while the latter is the exponential moving average (EMA) of
the student model weights. The discriminator networks consist
of convolutional layers, the proposed DyBAC, and the global
average pooling, whose specific structure of our ASE-Net is
shown in Fig. 1.

In our ASE-Net, we propose an adversarial consistency
training strategy (ACTS) based on the MT framework to
mine the prior knowledge from unlabeled data. We use two
discriminators of the same structure for different purposes. The
first discriminator learns the predicted quality consistency of
the segmentation network for unlabeled data as well as the
labeled data. The second discriminator learns the prediction
consistency of teacher and student networks using the same
inputs but under different perturbations. It is worth mentioning
that the input of our discriminator network is a concatenation
of the segmentation result after softmax and the original image,
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Fig. 1. The framework of the proposed ASE-Net. The ASE-Net consists of two main parts: the segmentation networks (left) and the discriminator
networks (right). The segmentation network is based on the encoder-decoder architecture. The right figure shows the detailed structure of the
discriminative network, where k, s, and p represent the kernel size, the stride, and the padding of convolutional kernels, respectively. The
discriminators are unnecessary in the inference stage.

rather than just the segmentation result. In this way, the
quality of the segmentation results can be further evaluated
by using the original image as a benchmark to discriminate
the matching relationship between the segmentation results
and the benchmark. In terms of network structure, we apply
DyBAC to replace all convolutional layers except the first
layer in segmentation networks and discriminator networks.
The DyBAC can improve the feature representation ability of
the network and reduces the risk of overfitting. In addition,
the segmentation networks and the discriminators are trained
alternately, and the discriminators are unnecessary in the
inference stage, which avoids additional computational costs.

A. Adversarial Consistency Learning
Although consistency learning and adversarial learning are

useful for semi-supervised image segmentation tasks, they still
have some limitations. First, regular semi-supervised image
segmentation networks usually use consistency strategies un-
der different perturbations to regularize the training of the
model. These networks often ignore the prior relationship be-
tween labeled and unlabeled data. Besides, they only calculate
pixel-level consistency for unlabeled data that may result in
uncertain prediction results. Second, the adversarial learning-
based approaches rely excessively on a single segmentation
network and a single discriminative network, easily causing
the problem of misguidance.

To address these problems, we propose a novel training
strategy. As shown in Fig.1, we add two discriminators, and
the two discriminators have the same structure but different
functions. The discriminator D1 learns the difference between

the output quality of labeled data and unlabeled data. The
discriminator D2 learns the difference between perturbed
data and unperturbed data in unlabeled data. Finally, through
the supervision loss Ls, the consistency loss Lsemi and the
adversarial loss (Lad1, Lad2) encourage the student network to
generate high-quality segmentation results on unlabeled data.
Actually, the roles of D2 and Lsemi, are complementary. The
consistency loss Lsemi is a pixel-level consistency among
individual samples, which pays more attention to feature map
details. Our D2 is mainly used for the image-level consistency
among perturbed and unperturbed data, which pays more
attention to feature map global information.

Specifically, we achieve adversarial consistency learning
through alternate training. First, we input medical images
into the segmentation networks to obtain the segmentation
prediction maps. Then, we concatenate the output feature maps
and the corresponding original images into the discriminator
networks. The discriminators mainly evaluate the quality of
the segmentation results, where 0 means the quality of the
segmentation result is poor and 1 means good. During the
training process of the segmentation network G, we encourage
the segmentation network to generate high-quality segmenta-
tion results for unlabeled data xu, aiming to ensure the results
are as close to 1 as possible. During the training process of
the discriminative networks, we encourage the discriminative
networks to discriminate against different inputs as much as
possible. Consequently, the optimization objective function of
the student network G and the two discriminative networks
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D1, D2 is defined as:

min
G

max
D1,D2

(LG(θ) + LD1
(θ) + LD2

(θ)), (1)

where θ represents the parameter to be optimized. Exactly,
the segmentation network and the discriminator networks are
trained alternately. The objective function of the segmentation
network, LG(θ) is defined as:

LG(θ) = Ls(ŷi, yi) + λ(Lsemi(ŷu, ŷema) + Lad1(D1(xu, ŷu), 1)

+Lad2(D2(xu, ŷu), 1)),
(2)

where Ls(·) represents supervision loss, Ls(·) = Lce(·) +
Ldice(·), Lce(·) is the cross-entropy loss and Ldice is Dice
loss. Lsemi(·) is MSEloss, and both Lad1(·) and Lad2(·) are
binary-class cross-entropy loss. yi is the label corresponding
to the input xi, and xu is unlabeled input data with data
perturbations via πi. πi denotes random Gaussian noise. ŷi
and ŷu are segmentation results on labeled and unlabeled
data, respectively. ŷema is the prediction result of the teacher
network and λ is the weighting coefficient. According to [6], λ
is a Gaussian ramp-up curve, λ = δe(−5(1−I)

2), and I denotes
the number of epochs.

At the early stage of the training network, the value of
λ is very small and the update of the network mainly re-
lies on supervision loss. Therefore, the network is trained
mainly depending on labeled data in the early stage of the
training network. As the training proceeds, the value of λ
continues to increase, and the network can obtain a reliable
segmentation result and generate targets for unlabeled data.
This is because other loss functions are in effect. Next, the
discriminator networks try their best to distinguish the output
of the segmentation network. The objective functions of the
discriminators D1 and D2 are defined as:

LD1
(θ) = Lad1(D1(xi, ŷi), 1) + Lad1(D1(xu, ŷu), 0), (3)

LD2
(θ) = Lad2(D2(xema, ŷema), 1) + Lad2(D2(xu, ŷu), 0),

(4)
where xi and xema represent labeled data and unlabeled
inputs, respectively.

The parameters of the teacher model are the EMA accu-
mulation of the parameters of the student model. The teacher
model retains the historical information of the student model
and can generate higher quality targets for unlabeled data.
Its effectiveness has been proved in [5] and [6], and the
parameters θ′t of the current teacher model are defined as:

θ′t = αθ′t−1 + (1− α)θt, (5)

where the parameters θ′t−1 is the historical accumulation of
the teacher model. θt is the weight of the student model. α is a
hyperparameter of the smoothing coefficient, and α determines
the dependency relationship between the teacher model and
the student model. According to [5] [6] [9] and experimental
experience, when the value of α is 0.999, the performance of
networks is the best.

In conclusion, the segmentation networks and the discrim-
inator networks play games against each other. When the
discriminator networks cannot distinguish the segmentation
result and ground truth, the segmentation networks have high
segmentation quality for labeled data, unlabeled data, and

data under different perturbations. This adversarial learning
approach can effectively utilize unlabeled data to improve the
quality of predicted pseudo labels.

B. Dynamic Convolution-based Bidirectional Attention
Component

Overfitting is a common problem in segmentation tasks. To
overcome this problem, many segmentation networks based on
semi-supervised learning employ different consistency regular-
ization strategies, such as data perturbation [5] [6], network
parameters perturbation [8] [46], and feature perturbation [10].
However, these perturbation-specific approaches are only valid
for specific tasks and it is usually very difficult to choose
effectively a uniform perturbation type for different tasks,
resulting in an unsatisfied segmentation effect. Moreover, since
these semi-supervised methods still use segmentation networks
with fixed convolutional kernels, their own structures have
potential risks of overfitting. Segmentation networks with fixed
parameter values are effective only on the premise that there is
a large amount of pixel-labeled data in the task, but in practice,
semi-supervised learning only involves a small amount of
labeled data and a large amount of unlabeled data. Therefore,
a semi-supervised segmentation network based on standard
convolution easily suffers from overfitting and has poor feature
representation ability.

To solve the above problems, we start from the data
itself and construct supervision information according to its
structure for unlabeled data. Specifically, we utilize dynamic
convolution to adjust adaptively a set of parameters for each
sample, which can make better use of the prior knowledge
while reducing the overfitting risk and improving the fea-
ture representation ability of our network. Furthermore, to
overcome the problems of low contrast and blurred edges in
medical images, we add spatial attention before using dynamic
convolution. As a result, the final values of convolutional
kernels are decided by the combination of spatial attention
and dynamic convolution. Therefore, the strategy is named
dynamic convolution-based bidirectional attention component
(DyBAC).

Specifically, the structure of DyBAC is shown in Fig. 2, for a
given input xin ∈ RC×H×W , where C represents the number
of input channels, and H and W represent the height and
width of the input feature maps. To enhance the significance
of important spatial positions, the input feature maps are first
proceeded by a spatial attention module. The specific operation
is shown in Fig. 2 (a). First, a 1 × 1 convolution is used in the
input feature maps for dimensionality reduction. Second, the
output tensor is normalized by a sigmoid activation function.
Finally, the obtained spatial attention weights are multiplied
by the input feature maps pixel by pixel to obtain the feature
maps x1 ∈ RC×H×W .

Next, we mainly introduce the generation process of dy-
namic convolution. Different from the attention mechanism in
SE-Net [47], we assign weights to convolutional kernels rather
than feature maps. First, through a global average pooling
layer, the feature map x1 is transformed to x2 ∈ RC×1×1,
then 1 × 1 convolution is used to reduce the dimension and
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Fig. 2. The structure of DyBAC. (a) Spatial attention, (b) Dynamic convolution. The dynamic convolutional kernels are generated mainly based on
the channel and spatial information of samples. For different input samples, the values of convolution kernel parameters change adaptively.

we get p ∈ RN×1×1 after a softmax activation function, where
N is the number of convolutional kernels and it is defined as
a hyperparameter in advance. N can be set according to the
specific task. In this paper, we empirically set N = 4. We
multiply the obtained coefficients p to N convolutional kernels
respectively and then sum the weights of N convolutional ker-
nels to generate a dynamic convolutional kernel. In this way,
we can obtain the most representative convolutional kernel
from N convolutional kernels through dynamic aggregation.
The weight w of the convolutional kernel is defined as:

w =

N∑
i=1

(pi · convi), (6)

where pi is the i-th coefficient of p, 0 ≤ pi ≤ 1,
∑N

i=1 pi = 1,
and convi is the weight of the i-th convolutional kernel. The
number of parameters of a standard dynamic convolution,
denoted by Qs, is defined as:

Qs = Cin ×N +N × Cin × Cout × k × k, (7)

where k × k is the size of the convolutional kernel, Cin and
Cout indicate the number of channels of the input and output
feature maps, respectively. Obviously, the number of parame-
ters is N times more than that of the vanilla convolution.

To reduce the number of parameters, we fully decouple
the spatial and channel correlations. Specifically, we define
N depthwise convolutions to extract each channel feature
and then use pointwise convolution to obtain the information
among different channels. We multiply the obtained attention
coefficient to the corresponding convolution kernel, and dy-
namically select a convolutional kernel for the final convo-
lution operation. The number of parameters of our proposed

dynamic convolution, denoted by Qo, is defined as:

Qo = Cin ×N +N × Cin × k × k + Cin × Cout. (8)

The ratio r of the number of parameters of our proposed
dynamic convolution to the standard convolution is:

r =
Cin ×N +N × Cin × k × k + Cin × Cout

Cout × Cin × k × k

=
N +N × k × k + Cout

Cout × k × k
≈ 40 + Cout

9× Cout
� 1.

(9)

In practical applications, the convolutional kernel size is
usually k = 3, the value of Cout is larger than 16, and
the number of predefined convolutions N is usually 4. Ob-
viously, compared with vanilla convolution and standard dy-
namic convolution, our DyBAC greatly reduces the number
of parameters. Specifically, our operation adaptively adjusts
the parameters of the convolutional kernel according to the
structure information of each sample, which is different from
the vanilla convolution that shares static parameters for all
samples.

IV. EXPERIMENTS

A. Dataset and Pre-processing

To evaluate our approach, we performed a full evaluation on
three different types of medical image datasets, liver Computed
Tomography (CT) scans [48], dermoscopy images [49], and
3D left atrium magnetic resonance (MR) image scans [50].

Liver segmentation CT dataset: In our experiment, we
use Liver Tumor Segmentation Challenge (LiTS) [48] as the
experimental dataset, which contains 131 labeled CT scans.
The size of each image is 512×512, and the pixel spacing
varied from 0.55 mm to 1 mm. The slice thickness varied
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from 0.55 mm to 6 mm. To enhance liver contrast and
remove interference, we truncate the intensity value of all
scans of [-200, 250] Hounsfield Unit (HU). To improve the
training efficiency, we resize the images to 256×256. In our
semi-supervised setting, we randomly select 121 cases as the
training set and the remaining 10 cases as the testing set. we
perform random data augmentation on the training set, such
as flipping, mirroring, and rotating. For better comparison, we
randomly select 10% (12 cases) and 20% (24 cases) of the
cases in the training set as labeled data, and the rest is used
as unlabeled data.

Skin lesion segmentation dermoscopy dataset: The der-
moscopy image dataset is from the 2018 International Skin
Imaging Collaboration (ISIC) skin lesion segmentation chal-
lenge [49]. The training set contains 2,594 images and the
validation set contains 100 images. The dataset has different
types of skin lesions as well as different resolutions. To
improve the computational efficiency of different models, we
resize all images to 256 × 192 as in [51]. To perform semi-
supervised learning, similarly, we randomly select 10% (259
images) and 20% (519 images) in the training set to be used as
labeled data and the rest as unlabeled data, respectively. In the
training phase, we perform online random data augmentation.

3D left atrium segmentation MR dataset: The left atrial
(LA) dataset [50] is from the 2018 Left Atrial Segmentation
Challenge and consists of 100 3D gadolinium-enhanced MR
images with a resolution of 0.625 × 0.625 × 0.625 mm³.
Following [9] [31] [33], we use 80 scans for training and 20
scans for validation. We adopt a common data preprocessing
scheme that randomly crops the left atrial data to the size of
112 × 112 × 80. In this experiment, 10% (8 scans) and 20%
(16 scans) are still used as labeled data, and the rest are used
as unlabeled data.

B. Experimental settings and evaluation indicators

All the networks in our experiments are implemented on
a server with NVIDIA GeForce RTX 3090 24GB, Ubuntu
18.04, and PyTorch 1.7. We choose Adam to optimize the
segmentation model. The initial learning rate is 1×10−3. The
SGD algorithm with a momentum of 0.9 is used to optimize
the discriminator networks. The initial learning rate is 0.01,
and the weight decay is 0.0001.

For the liver CT dataset, we use Dice per case score (DI)
and average symmetric surface distance (ASD) to evaluate
the liver segmentation results based on the 3D volume [48].
For the dermoscopy image dataset, we use Dice coefficient
(DI), Jaccard index (JA), Pixelwise Accuracy (AC), Sensitivity
(SE), and Specificity (SP) to evaluate the segmentation results
according to [6]. For the 3D MR left atrial dataset, we use DI,
JA, 95% Hausdorff distance (95HD), and ASD to evaluate the
segmentation results. The values of DI, JA, AC, SE, and SP are
in the range of 0 to 1. Therefore, better segmentation results
imply higher values of DI, JA, AC, SE, and SP as well as
lower values of 95HD and ASD. These evaluation indicators
are defined as:

DI =
2TP

FP + 2TP + FN
, (10)

JA =
TP

TP + FN + FP
, (11)

AC =
TP + TN

TP + FP + TN + FN
, (12)

SE =
TP

TP + FN
, (13)

SP =
TN

TN + FP
, (14)

where TP , TN , FP and FN indicate the number of true
positives, true negatives, false positives, and false negatives,
respectively.

HD = max

{
max

sA∈S(A)
d(sA, S(B)), max

sB∈S(B)
d(sB , S(A))

}
,

(15)

ASD =

∑
sA∈S(A)

d(sA, S(B)) +
∑

sB∈S(B)

d(sB , S(A))

|S(A)|+ |S(B)|
, (16)

where A and B denote the ground truth and the segmen-
tation result, respectively. S(A) and S(B) denote the set
of surface voxels corresponding to A and B respectively,
and d(sB , S(A)) = min

sA∈S(A)
||sB − sA|| denotes the shortest

Euclidean distance of the voxel sB to the set S(A). Similarly,
d(sA, S(B)) = min

sB∈S(B)
||sA − sB || denotes the shortest

Euclidean distance of the voxel sA to the set S(B). In
addition, the 95HD is defined as the 95th quantile of Hausdorff
distances (HD) instead of the maximum.

C. Ablation studies
In this paper, we focus on two contributions, ACTS and

DyBAC. We use the semi-supervised method MT [5] as
the baseline and U-Net [1], U-Net++ [2] and V-Net [25]
as the backbone of the segmentation network, respectively.
We perform ablation experiments on three datasets including
the LiTS [48], the dermoscopy images [49], and the 3D left
atrial [50]. Note that the DyBAC is extended to a 3D version
of DyBAC when the proposed ASE-Net is used for the 3D
left atrial segmentation. To demonstrate the effectiveness of
the adversarial consistency learning, we validate two of the
discriminators separately.

As shown in Table I, the ablation experiment is performed
on the LiTS liver testing set, and the training set is divided into
10% labeled (12 cases) and 90% unlabeled (109 cases). We
use U-Net [1] as the backbone network for liver segmentation,
and the results in Table I demonstrate the effectiveness of
our contributions. The semi-supervised adversarial learning
method using a single segmentation network and a single
discriminator obtains a lower DI of 92.11% compared to
other semi-supervised methods. Compared to the supervised
U-Net, the semi-supervised method MT gets an improvement
(4.22% for DI) and our proposed ASE-Net improves by 5.95%,
benefiting from the MT framework that provides pseudo labels
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TABLE I
COMPARISON OF ABLATION EXPERIMENTS ON THE LITS-LIVER

TESTING SET BY UTILIZING 10% LABELED DATA OF THE TRAINING SET.
THE BEST VALUES ARE IN BOLD.

Method Labeled/Unlabeled MT D1 D2 DyBAC DI(%)↑

Supervised+U-Net 12/0 88.17
Supervised+U-Net 12/0 X 89.65

Semi-supervised+U-Net 12/109 X 92.11
Semi-supervised+U-Net 12/109 X 92.39
Semi-supervised+U-Net 12/109 X X 93.11
Semi-supervised+U-Net 12/109 X X 93.14
Semi-supervised+U-Net 12/109 X X 93.36
Semi-supervised+U-Net 12/109 X X X 93.39
Semi-supervised+U-Net 12/109 X X X X 94.12

1.0

0.8

0.6

0.4

0.2

0.0

U-Net layer1 layer3 layer4layer2 Ground Truthlayer5 Prediction

layer1 layer3 layer4layer2 Ground Truthlayer5U-Net+DyBAC Prediction

U-Net layer1 layer3 layer4layer2 Ground Truthlayer5 Prediction

U-Net+DyBAC layer1 layer3 layer4layer2 Ground Truthlayer5 Prediction

Fig. 3. Visualization of the feature heat maps for each convolutional
layer in the encoding phase. The first and third rows are feature heat
maps of U-Net employing the standard convolution, and the second
and fourth rows are feature heat maps of U-Net employing DyBAC.
The encoding of U-Net has five stages, and we replace the convolution
after the first layer with the proposed dynamic convolution-based bi-
directional attention component (DyBAC). From left to right, the feature
maps are shown from shallow to deep layers respectively, and different
colors indicate different spatial weights.

for the student model through the teacher model, which can
better utilize the unlabeled data and effectively improve the
performance of the network. To demonstrate the effectiveness
of the proposed ASE-Net, we add the proposed discrimi-
nators D1, D2, and dynamic convolution-based bidirectional
attention component (DyBAC) to MT, respectively. It can be
seen that the discriminators D1, D2 and DyBAC achieve the
increase of DI by 0.72%, 0.75%, and 0.97% based on MT.

In addition, as shown in Fig. 3, we visualize the feature heat
maps generated by the standard convolution and the proposed
DyBAC. The first and third rows are feature heat maps
of U-Net employing standard convolution, and the second
and fourth rows are feature heat maps of U-Net employing
DyBAC. The encoding of U-Net has five stages, and we
replaced all the convolution layers except for the first layer
with the proposed DyBAC. From left to right, the feature
maps are shown from shallow to deep layers respectively, and
different colors indicate different spatial attention weights. It
can be seen that our proposed DyBAC can effectively improve
the liver segmentation in medical images.

As shown in Table II, the ablation experiment is performed
on the dermoscopy image validation set, and the training set
is divided into 20% labeled (519 images) and 80% unlabeled
(2075 images). We use U-Net++ [2] as the backbone network

TABLE II
COMPARISON OF ABLATION EXPERIMENTS ON THE DERMOSCOPY

IMAGE VALIDATION SET UTILIZING DIFFERENT PROPORTIONS OF

LABELED DATA FROM THE TRAINING SET. THE BEST VALUES ARE IN

BOLD.

Method Labeled/Unlabeled MT D1 D2 DyBAC DI(%)↑

Supervised+U-Net++ 2594/0 87.67
Supervised+U-Net++ 2594/0 X 88.45
Supervised+U-Net++ 519/0 84.36

Semi-supervised+U-Net++ 519/2075 X 85.83
Semi-supervised+U-Net++ 519/2075 X X 86.41
Semi-supervised+U-Net++ 519/2075 X X 86.36
Semi-supervised+U-Net++ 519/2075 X X 86.34
Semi-supervised+U-Net++ 519/2075 X X X X 87.21
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Fig. 4. The learning curves on the dermoscopy image training and
validation sets by utilizing 2,594 labeled data, the blue and red curves
represent U-Net++ employing DyBAC and the gray and yellow curves
represent U-Net++ employing the standard convolution. (a)The accu-
racy curve of training and validation sets on the dermoscopy image
dataset and (b)The loss curve of training and validation sets on the
dermoscopy image dataset.

for skin lesion segmentation and the results are in Table II.
The supervised U-Net++ obtains 84.36% of DI, while the
semi-supervised method MT obtains 85.83% of DI. It can be
seen that the DI of our proposed discriminators D1, D2, and
DyBAC are 0.58%, 0.53%, and 0.51% higher, respectively,
compared to the baseline MT. Moreover, Fig. 4 shows the
Dice values and loss curves for U-Net++ and U-Net++ with
DyBAC on the training and validation sets under the condition
of using 2,594 labeled data. To make an effective analysis, we
do not use the semi-supervised regularization strategy during
the process of experiments. As shown in Fig. 4, after the 40th
epochs, the loss curve on the validation set of U-Net++ shows
a large oscillation, which makes it difficult to converge, and the
corresponding validation Dice curve is also suffered a drop. In
contrast, by adding the DyBAC to U-Net++, the new loss curve
becomes relatively stable, and the validation Dice curve has
an upward trend. Therefore, the proposed DyBAC can reduce
overfitting risk for small datasets.

In addition, we extend the proposed ASE-Net to the 3D
MR left atrium image segmentation task. We use V-Net [25]
as the backbone of the segmentation network. The ablation
experiments are performed on the 10% labeled and 90%
unlabeled of the training set. As shown in Table III, the
semi-supervised adversarial learning method using a single
segmentation network and a single discriminator achieves the
lowest 76.15% of DI, while the supervised V-Net achieves
79.99% of DI and the MT method achieves 84.24% of DI.
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TABLE III
COMPARISON OF ABLATION EXPERIMENTS ON THE LEFT ATRIUM

VALIDATION SET BY UTILIZING 10% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD.

Method Labeled/Unlabeled MT D1 D2 DyBAC DI(%)↑

Supervised+V-Net 8/0 79.99
Semi-supervised+V-Net 8/72 X 76.15
Semi-supervised+V-Net 8/72 X 84.24
Semi-supervised+V-Net 8/72 X X 85.82
Semi-supervised+V-Net 8/72 X X 86.17
Semi-supervised+V-Net 8/72 X X 85.75
Semi-supervised+V-Net 8/72 X X X 86.94
Semi-supervised+V-Net 8/72 X X X X 87.83

TABLE IV
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LITS-LIVER TESTING SET BY UTILIZING

10% LABELED DATA OF TRAINING SET. THE BACKBONE NETWORK OF

ALL EVALUATED METHODS IS U-NET. THE BEST VALUES ARE IN BOLD.

LiTS-Liver (10% labeled / 90% unlabeled)

Method Labeled/Unlabeled DI (%)↑ Imp. ASD (mm)↓ Imp.

U-Net [1] 121/0 96.57 – 2.19 –
U-Net [1] 12/0 88.17 – 6.89 –
DAN [12] 12/109 92.18 4.01 4.64 2.25
MT [5] 12/109 92.39 4.22 3.85 3.04
UA-MT [9] 12/109 93.14 4.97 4.22 2.67
TCSM v2 [6] 12/109 93.22 5.05 3.91 2.98
CPS [8] 12/109 93.31 5.14 3.83 3.06
DTC [33] 12/109 93.67 5.50 3.64 3.25
MC-Net [31] 12/109 93.62 5.45 3.72 3.17

ASE-Net 12/109 94.12 5.95 3.51 3.38

Based on MT, our proposed discriminators D1, D2, and
DyBAC improve the DI values by 1.58%, 1.93% and 1.51%,
respectively.

Overall, the additional discriminator D1 allows the network
to obtain effectively the prior relationship between unlabeled
data and labeled data. The additional discriminator D2 enables
the network to learn effectively the prediction consistency
when performing different perturbations on the same input,
which further increases the consistency constraint based on
MT. The proposed DyBAC effectively enhances the network
for image feature representation and improves the segmenta-
tion accuracy.

D. Comparative experiments on different datasets
In order to verify the effectiveness of our proposed

method, we compare with supervised methods U-Net [1], U-
Net++ [2], and V-Net [25] as well as seven state-of-the-art
semi-supervised methods DAN [12], MT [5], UA-MT [9],
TCSM v2 [6], CPS [8], DTC [33], and MC-Net [31] on
three publicly available datasets, LiTS [48], ISIC dermoscopy
image dataset [49], and 3D MR Left atrial dataset [50].
In addition, for the semi-supervised experimental setup, we
perform comparison experiments on 10% labeled and 90%
unlabeled, as well as 20% labeled and 80% unlabeled of
training sets, respectively.

TABLE V
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LITS-LIVER TEST DATASET BY

UTILIZING 20% LABELED DATA OF TRAIN DATASET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS U-NET. THE BEST VALUES

ARE IN BOLD.

LiTS-Liver (20% labeled / 80% unlabeled)

Method Labeled/Unlabeled DI (%)↑ Imp. ASD (mm)↓ Imp.

U-Net [1] 24/0 89.05 – 6.36 –
DAN [12] 24/97 93.01 3.96 3.98 2.38
MT [5] 24/97 93.42 4.37 3.64 2.72
UA-MT [9] 24/97 93.71 4.66 3.75 2.61
TCSM v2 [6] 24/97 94.30 5.25 3.35 3.01
CPS [8] 24/97 94.23 5.18 3.46 2.90
DTC [33] 24/97 94.36 5.31 3.38 2.98
MC-Net [31] 24/97 94.58 5.53 3.21 3.15

ASE-Net 24/97 95.07 6.02 3.04 3.32

CT liver segmentation: For a fair comparison, we use U-
Net as the backbone network for all methods in the liver
segmentation task. Table IV shows the comparison results
of different methods on the LiTS-liver testing set under the
condition of utilizing 10% labeled data. It can be seen that
DAN [12] improves DI by 4.01% and ASD by 2.25mm
compared to U-Net [1] under the condition of utilizing the
same proportion of labeled data. This shows that DAN can
effectively use unlabeled data to obtain better segmentation
results by using adversarial training methods. MT [5] and
its improved methods UA-MT [9], TCSM V2 [6], CPS [8],
DTC [33], and MC-Net [31] also show some advantages
compared to DAN, which indicates that the consistency regu-
larization methods further enhance the utilization of unlabeled
data. The proposed ASE-Net reaches 94.12% of Dice and
3.51mm of ASD. Compared to the supervised method, our
method records improvements of 5.95% for DI and 3.38 mm
for ASD. Compared with the latest semi-supervised method
MC-Net [31], our method offers improved performance by
0.5% for DI and 0.21 mm for ASD.

Table V shows the experimental results with 20% labeled
and 80% unlabeled conditions, and we can see that our ASE-
Net improves 6.02% for DI and 3.32mm for ASD compared
to the supervised learning method. Moreover, the experimental
results of the proposed ASE-Net under the condition of 20%
labeled data are much closer to those of U-Net using 100% la-
beled data. It can be demonstrated that our ASE-Net effectively
utilizes the advantages of consistency learning and adversarial
learning, which can further improve the performance of our
network.

In addition, Fig. 5 shows the visualization results of different
methods under the condition of 10% labeled data, where
the green indicates the ground truth, the red indicates the
segmentation result and the yellow indicates the overlap of
the segmentation result, and the ground truth. Therefore, fewer
green and red regions, and more yellow regions represent
better segmentation results. The last column in Fig. 5 shows
the segmentation results provided by our ASE-Net, it is clear

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3225687

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022

DANInput MT UA-MT TCSM_v2 CPSSupervised DTC MC-Net Our

Fig. 5. Visualization result of different methods on the LiTS testing set by utilizing 10% labeled data of training set. Green is the ground truth, red is
the segmentation result, and yellow is the overlap region of the segmentation result and ground truth. Therefore, fewer green and red regions imply
better segmentation results.

TABLE VI
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE DERMOSCOPY IMAGE VALIDATION SET

BY UTILIZING 10% LABELED DATA OF THE TRAINING SET. THE

BACKBONE NETWORK OF ALL EVALUATED METHODS IS U-NET++. THE

BEST VALUES ARE IN BOLD.

Skin lesion (10% labeled / 90% unlabeled )

Method Labeled/Unlabeled DI(%)↑ JA(%)↑ SE(%)↑ AC(%)↑ SP(%)↑

U-Net++ [2] 2594/0 87.67 80.06 90.65 93.29 96.78
U-Net++ [2] 259/0 82.57 73.55 88.31 91.01 93.76
DAN [12] 259/2335 84.26 75.15 87.23 91.97 95.75
MT [5] 259/2335 84.58 76.54 87.25 92.02 95.69
UA-MT [9] 259/2335 84.80 78.02 88.63 91.94 95.82
TCSM v2 [6] 259/2335 84.71 75.55 90.22 91.92 95.77
CPS [8] 259/2335 84.72 76.81 86.87 91.87 95.42
DTC [33] 259/2335 84.56 76.33 87.19 91.79 95.54
MC-Net [31] 259/2335 84.81 76.64 87.41 91.91 95.97

ASE-Net 259/2335 85.19 78.80 90.38 92.40 96.15

that our ASE-Net provides better segmentation results than
other methods used for comparison.

Skin lesion segmentation: To validate further our proposed
ASE-Net, we conducted sufficient experiments on the ISIC
dataset. We use U-Net++ [2] as the backbone network for all
semi-supervised methods, and we also perform quantitative
comparisons using 10% and 20% labeled data, respectively.
Table VI shows the segmentation results for the validation set
under the condition of 10% labeled data of the training set.
Using the same number of labeled data, our method shows
an overall improvement compared to the supervised method
(2.62% for DI, 5.25% for JA, 2.07% for SE, 1.39% for AC,
2.39% for SP). Our method also shows some improvement
compared to state-of-the-art semi-supervised methods. More-
over, Table VII shows the results of our ASE-Net compared
with other methods under 20% labeled data condition, and it
can be seen that our method obtains the highest DI of 87.21%,
JA of 79.25%, SE of 91.15% and AC of 93.09%. Therefore,

TABLE VII
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE DERMOSCOPY IMAGE VALIDATION SET

BY UTILIZING 20% LABELED DATA OF THE TRAINING SET. THE

BACKBONE NETWORK OF ALL EVALUATED METHODS IS U-NET++. THE

BEST VALUES ARE IN BOLD.

Skin lesion (20% labeled / 80% unlabeled )

Method Labeled/Unlabeled DI(%)↑ JA(%)↑ SE(%)↑ AC(%)↑ SP(%)↑

U-Net++ [2] 519/0 84.36 75.64 88.83 92.15 94.95
DAN [12] 519/2075 85.41 77.16 89.69 92.16 95.01
MT [5] 519/2075 85.83 77.48 89.97 92.57 94.46
UA-MT [9] 519/2075 86.19 78.06 90.94 92.71 94.49
TCSM v2 [6] 519/2075 86.16 77.98 91.07 92.56 94.26
CPS [8] 519/2075 86.34 78.17 90.57 92.72 94.78
DTC [33] 519/2075 85.91 77.63 90.24 92.79 94.40
MC-Net [31] 519/2075 86.37 78.11 90.85 92.61 94.64

ASE-Net 519/2075 87.21 79.25 91.15 93.09 94.52

our ASE-Net can effectively utilize the prior relationship
between unlabeled and labeled data and possesses a better
feature representation ability.

Fig. 6 shows some of the visualization results of the
validation set under the condition of 20% labeled data of
the skin lesions dataset. We can see that the comparative
methods only provide rough boundaries but our ASE-Net
obtains high-quality segmentation results with smooth bound-
aries compared to other methods. One of the main reasons is
that the two additional discriminator networks generate addi-
tional supervised information for the segmentation network
by learning the matching relationship between the original
image and segmentation results. It can be further analyzed
to demonstrate that the discriminator networks are very sen-
sitive to the boundaries of segmentation results. The main
reason is that the segmentation network can roughly predict
the location of targets, but the prediction of boundaries is
not fine enough. Therefore, the discriminator networks make
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Fig. 6. Visualization result of different methods on the dermoscopy image validation set by utilizing 20% labeled data of training set.

TABLE VIII
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LEFT ATRIUM VALIDATION SET BY

UTILIZING 10% LABELED DATA OF TRAINING SET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS V-NET. THE BEST VALUES

ARE IN BOLD.

left atrium (10% labeled / 90% unlabeled )

method Labeled/Unlabeled DI(%) JA(%)↑ 95HD(mm)↓ ASD(mm)↓

V-Net [25] 80/0 91.14 83.82 5.75 1.52
V-Net [25] 8/0 79.99 68.12 21.11 5.48
DAN [12] 8/72 75.11 63.47 19.03 3.57
MT [5] 8/72 84.24 73.26 19.41 2.71
UA-MT [9] 8/72 84.25 73.48 13.84 3.36
TCSM V2 [6] 8/72 84.21 73.19 19.56 3.07
CPS [8] 8/72 84.09 73.17 22.55 2.41
DTC [33] 8/72 86.57 76.55 14.47 3.74
MC-Net [31] 8/72 87.71 78.31 9.36 2.18

ASE-Net 8/72 87.83 78.45 9.86 2.17

the segmentation network generate high-quality segmentation
results with smooth boundaries by continuously feeding back
the segmentation network’s prediction quality on boundaries.

MR Left atrium segmentation: In order to demonstrate the
effectiveness of the proposed ASE-Net in 3D medical image
segmentation tasks, we extend the application of ASE-Net to
the 3D left atrium for experiments. We perform quantitative
comparisons using 10% and 20% labeled data, respectively.
All the comparison methods in the experiment employ V-
Net [25] as the backbone. The specific experimental results
are shown in Tables VIII and IX. It can be seen that our
ASE-Net obtains a higher Dice value of 87.83% than other
semi-supervised methods under the condition of 10% labeled
data. However, our ASE-Net achieves a slightly lower value
of DI (0.05%) than the latest MC-Net [31] under the condition
of 20% labeled data as shown in Table IX. One of the
main reasons is that MC-Net [31] employs a double-decoder
architecture containing more parameters (12.35 M) than our
ASE-Net (3.92 M) to improve the segmentation accuracy. Fig.
7 shows the segmentation results on the left atrium dataset
with the latest methods DTC [33] and MC-Net [31] under
10% labeled and 20% labeled data, respectively. It is clear
that our results are closer to the ground truth.

In general, our ASE-Net can effectively combine con-

TABLE IX
QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND OTHER

COMPARISON METHODS ON THE LEFT ATRIUM VALIDATION SET BY

UTILIZING 20% LABELED DATA OF TRAINING SET. THE BACKBONE

NETWORK OF ALL EVALUATED METHODS IS V-NET. THE BEST VALUES

ARE IN BOLD.

left atrium (20% labeled / 80% unlabeled )

method Labeled/Unlabeled DI(%)↑ JA(%)↑ 95HD(mm)↓ ASD(mm)↓

V-Net [25] 16/0 86.03 76.06 14.26 3.51
DAN [12] 16/64 87.52 78.29 9.01 2.42
MT [5] 16/64 88.42 79.45 13.07 2.73
UA-MT [9] 16/64 88.88 80.21 7.32 2.26
TCSM V2 [6] 16/64 86.26 76.56 9.67 2.35
CPS [8] 16/64 87.87 78.61 12.87 2.16
DTC [33] 16/64 89.42 80.98 7.32 2.10
MC-Net [31] 16/64 90.34 82.48 6.00 1.77

ASE-Net 16/64 90.29 82.76 7.18 1.64

Ground Truth OursDTC MC-Net
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Fig. 7. Visualization result of different methods on the left atrium
validation set by utilizing 10% and 20% of the labeled data in the training
set, respectively.

sistency and adversarial learning to make the segmentation
network learn consistently for both labeled and unlabeled data.
In addition, the proposed two discriminators can effectively
learn the segmentation difference between labeled data and
unlabeled data, the segmentation difference between perturbed
data and unperturbed data. Furthermore, the obtained differ-
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TABLE X
COMPARISON OF THE EFFICIENCY OF DIFFERENT NETWORKS, THE

BEST VALUES ARE IN BOLD.

Model Operations (GFLOPs) Parameters (M) Model Size (MB)

U-Net [1] 65.39 34.52 131.82

ASE-Net(U-Net) 9.26 5.18 21.11

U-Net++ [2] 49.95 11.79 45.08

ASE-Net(U-Net++) 25.34 4.92 19.79

V-Net [25] 46.94 9.44 36.11

ASE-Net(V-Net) 22.97 3.92 15.75

ence is used to update the segmentation network for achieving
better segmentation results.

V. DISCUSSION

A. Model-size Comparison
Table X shows the comparison of parameters, floating point

operations (FLOPs), and model size of different networks
in the inference phase. Since our proposed discriminator
networks are only used in the training phase, we only test
the efficiency of the segmentation network. Specifically, we
replace the standard convolution of the segmentation net-
work with a dynamic convolution-based bidirectional attention
component (DyBAC) while the first layer is excluded. The
computational cost of the 2D networks is estimated with an
input size of 1 × 256 × 256, and the computational cost of
the 3D networks is evaluated with an input size of 112 ×
112 × 80. It can be seen that when the backbone network
adopts U-Net [1], the number of parameters of ASE-Net is
only 15.0% of the original U-Net. When the backbone network
is U-Net++ [2] with dense skip-connection, the number of
parameters of ASE-Net is only 41.7% of the original U-Net++.
When the backbone network is V-Net [25], the number of
parameters of ASE-Net is only 41.5% of the original V-Net.
Obviously, our ASE-Net significantly reduces the number of
parameters and computational costs.

B. Statistical analysis

TABLE XI
STATISTICAL SIGNIFICANCE OF THE PROPOSED ASE-NET AND

BASELINE MT METHODS ON DIFFERENT DATASETS

Datasets-Labeled
Dice (%)

p valueMT ASE-Net (our)

LiTS (10%) 92.39 94.12 0.011

LiTS (20%) 93.42 95.07 0.0091

Skin lesion (10%) 84.58 85.19 0.021

Skin lesion (20%) 85.83 87.21 0.0074

Since the statistical significance of an algorithm can indicate
that the differences observed in experiments are real but not
accidental, we perform the paired t-test with α = 0.05 on

the LiTS [48] and the dermoscopy image [49] datasets. As
shown in Table XI, we mainly conducted the one-tailed test
by Dice metric and calculated the p value between MT [5]
and our ASE-Net. We find that the p value is less than 0.05.
Generally, if p < 0.05, then there is a significant difference.
Therefore, through the above analysis, it can be concluded that
the proposed ASE-Net is statistically significant.

VI. CONCLUSION

In this work, we have proposed ASE-Net for semi-
supervised medical image segmentation. First, the proposed
ACTS effectively combines adversarial learning and consis-
tency learning, using adversarial training to maximize con-
sistency learning. This allows the network to learn quickly
the prior relationship between unlabeled and labeled data, and
further mines the potential knowledge existing in unlabeled
data. Then, our proposed DyBAC adaptively adjusts the pa-
rameter values of convolutional kernels according to input
samples, which not only effectively avoids network overfitting
and improves the feature representation ability of the network
but also reduces the memory overhead. Experiments on three
publicly available benchmark datasets demonstrate that our
proposed ASE-Net outperforms state-of-the-art methods and
provides an effective solution for semi-supervised medical
image segmentation, significantly reducing network overfitting
risk and uncertainty prediction in consistency learning.
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