
WISSENSCHAFTLICHE BEITRÄGE

https://doi.org/10.1007/s41449-022-00346-2
Z. Arb. Wiss.

Human-centred cyber secure software engineering

Karen Renaud1,2,3,4

Accepted: 10 November 2022
© The Author(s) 2022

Abstract
Software runs our modern day lives: our shopping, our transport and our medical devices. Hence, no citizen can escape
the consequences of poor software engineering. A closely-aligned concern, which also touches every aspect of our lives, is
cyber security. Software has to be developed with cybersecurity threats in mind, in order to design resistance and resilience
into the software, given that they are often rooted in malicious human behaviour. Both software engineering and cyber
security disciplines need to acknowledge and accommodate humans, not expect perfect performances. This is a position
paper, delineating the extent of the challenge posed by this reality, and suggesting ways for accommodating the influence
of human nature on secure software engineering.
Practical Relevance: Socio-technical systems are made up of people, processes and technology. All can fail or be subop-
timal. Software itself, being designed, developed and used by humans, is likely to malfunction. This could be caused by
human error, or by malice. This paper highlights this reality, taking a closer look at all of the possible sources of malfunc-
tioning technology. By doing so, I hope to infuse the management of socio-technical systems with an understanding and
acknowledgement of this reality.

Keywords Software Engineering · Cybersecurity · Human Factors

Cybersicherheit durch menschzentrierte Softwareentwicklung

Zusammenfassung
Software steuert unser modernes Leben: unsere Einkäufe, unsere Transportmittel und unsere medizinischen Geräte. Da-
her kann sich kein Bürger den Folgen schlechter Softwareentwicklung entziehen. Ein eng damit verbundenes Anliegen,
das auch jeden Aspekt unseres Lebens berührt, ist die Cybersicherheit, und Software muss unter Berücksichtigung von
Cybersicherheitsbedrohungen entwickelt werden, um Widerstandsfähigkeit in die Software zu integrieren. Sowohl Soft-
ware-Engineering als auch Cybersicherheitsdisziplinen sind für die Verwendung durch Menschen konzipiert, nicht für
unfehlbare Roboter. Dies ist ein Positionspapier, das das Ausmaß der Herausforderung beschreibt, die sich aus dieser Not-
wendigkeit ergibt, und Wege aufzeigt, wie dem Einfluss der menschlichen Natur auf cybersicheres Software-Engineering
Rechnung getragen werden kann.
Praktische Relevanz: Soziotechnische Systeme bestehen aus Menschen, Prozessen und Technologie. Alle können fehl-
schlagen oder suboptimal sein. Software selbst, die von Menschen entworfen, entwickelt und verwendet wird, weist
wahrscheinlich Fehlfunktionen auf. Dies kann durch menschliches Versagen oder durch Vorsatz verursacht werden. Die-
ses Papier beleuchtet diese Realität, indem es alle möglichen Ursachen für fehlerhafte Technologie genauer unter die
Lupe nimmt. Auf diese Weise hoffe ich, das Management soziotechnischer Systeme mit einem Verständnis und einer
Anerkennung dieser Realität zu erfüllen.

Schlüsselwörter Softwareentwicklung · Cybersicherheit · Menschliche Faktoren

� Prof. Dr. Karen Renaud
karen.renaud@strath.ac.uk

1 University of Strathclyde, Livingstone Tower,
26 Richmond Street, Glasgow, G1 1XH, UK

2 Rhodes University, Grahamstown, South Africa

3 University of South Africa, Pretoria, South Africa

4 Abertay University, Dundee, UK

K

https://doi.org/10.1007/s41449-022-00346-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s41449-022-00346-2&domain=pdf


Z. Arb. Wiss.

1 Introduction

Consider that every aspect of our lives is influenced by in-
visibly functioning software. For example, when we shop,
software runs the tills; it ensures that the temperature re-
mains constant, and so-called “smart” devices track our
movement through the store to identify the most effective
product placement strategies. Our hospitals use Internet-
connected devices to carry out tests, and our airplanes and
cars have embedded computers. Underlying all of this is
software, and such software is developed by software engi-
neers.

Software engineering is a challenging, complex and er-
ror-prone activity. Sometimes, flawed and/or insecure soft-
ware is produced (Clark 2021; Collins 2009). This has
been the case ever since the first software code was writ-
ten (Martin 2022). Why does this happen? IBM Software
Engineer Rupert Brooks wrote a book titled: “The Mythical
Man Month” to help those working in software engineering
to understand the human problems of this craft. He was
one of the first software engineers to draw attention to the
importance of human limitations and management and the
consequences of ignoring these.

When software has errors or vulnerabilities, it can lead
to widespread harms—and can even lead to loss of life.
The widespread 2017 WannaCry attack brought many of
the UK’s National Health System board to a near stand-
still, diverting funds to recovering from the attack, delay-
ing surgeries and other treatments. The 2021 Pipeline at-
tack disrupted the flow of critical petroleum products across
the East Coast of America1, and led to increased gasoline
prices. The consequences of these attacks are non-trivial.

This paper seeks to explore the extent of the problem,
and to provide suggestions for ameliorating the impact of
human fallibility on the software engineering process. The
following research questions will be addressed:

RQ1 How does human fallibility impact the secure software
development process?

RQ2 How can the impact of human fallibility be amelio-
rated during the secure software engineering process?

The next section will first introduce the core concepts of
“software engineering” and “cyber security”. Sect. 3 will
review related research about secure software engineering.
Sect. 4 then addresses RQ1, Sect. 5 considers RQ2, and
Sect. 6 concludes.

1 https://alec.org/article/colonial-pipeline-and-darkside-cyber-attacks-
have-real-world-consequences.

2 Definitions

Software engineering is defined by Humphrey (1988) as
“the disciplined application of engineering, scientific, and
mathematical principles and methods to the economical
production of quality software” (p. 82). The definition
makes it clear that the process is challenging, with many
opportunities for errors to introduce bugs into the software
system.

Zhang et al. (2005) points to the need for a focus on
usefulness, utility, and usability during the software engi-
neering process. Usefulness of a computer system is re-
lated to the extent to which it assists users in a achieving
their desired goals (Nielsen 1993). To deliver usefulness,
the system has to have the correct functionality built into it
(utility) (Grudin 1992) which allows users to achieve their
goals with effectiveness, efficiency and satisfaction (usabil-
ity) (ISO, in Bevan 2001).

Secure software engineering is even more challenging,
given that the developer has to anticipate attack vectors,
and foil the efforts of a globally distributed and innovative
cyber criminals. Even if the software has been rigorously
tested and is error free and usable, that does not mean that
it cannot be compromised by cyber criminals in the fu-
ture. Previously unknown so-called “zero-day” vulnerabili-
ties are continuously discovered and exploited by hackers.
If software starts to behave erratically, it could be due to er-
rors but also reflect an intrusion by cyber criminals exploit-
ing a vulnerability (Peisert et al. 2021; Zetter 2014). The
widespread 2017 WannaCry and Stuxnet attacks exploited
this kind of newly-discovered vulnerability (Mohurle and
Patil 2017; Langner 2011).

Storey et al. (2020) argue that there is a need for research
that aims to understand the human and social aspects of
software development practice. Without this understanding,
and targeted interventions that build on this, flawed software
systems will result, systems will fail, and cyber criminals
will compromise software systems.

3 Related research

To consider the current state of play, a search of the re-
search literature was carried out, using the keyword: secure
and “software engineering”. Papers returned by Google
Scholar and Scopus were filtered to ensure that only those
addressing the research question were retained for analysis
(66 papers). Thematic analysis was used to extract themes
and to group papers into these themes. The following theses
emerged:

K

https://alec.org/article/colonial-pipeline-and-darkside-cyber-attacks-have-real-world-consequences
https://alec.org/article/colonial-pipeline-and-darkside-cyber-attacks-have-real-world-consequences


Z. Arb. Wiss.

1. Software Design and Implementation:
a. The need for better techniques for formulating de-

sirable security properties (Devanbu and Stubblebine
2000). This might include the use of security patterns
(Van Niekerk and Futcher 2015).

b. Developers needing to be trained to engage in secure
software engineering and to detect vulnerabilities in
their software (Braz et al. 2021; Essafi et al. 2006;
Walden and Shumba 2006; Jayalath et al. 2020; Kan-
niah and Mahrin 2016; Arora et al. 2021; Stamat and
Humphries 2009; Hein and Saiedian 2009).

c. The need for security to be part of the software en-
gineering process from design through to implemen-
tation is highlighted (Mouratidis et al. 2005; Mellado
et al. 2007; McGraw 2004; Devanbu and Stubblebine
2000; Moyón et al. 2020; Kreitz 2019).

d. The need for empirical research in secure software en-
gineering (Cruzes and ben Othmane 2017).

2. Software Deployment
a. The need to pay attention to secure configuration of

software systems (Sayagh et al. 2018), which the au-
thors contend does not receive as much attention as it
should.

3. Software Maintenance and Evolution:
a. A particular challenge is long-term maintenance of

software systems, which becomes difficult because
of “imprecise, incomplete and arbitrary documen-
tation” [p. 320] (Villarroel et al. 2005). Devanbu
and Stubblebine (2000) calls for the development of
“automated, robust, flexible infra-structures for post-
deployment system administration” [p. 225].

b. The need to ensure that systems remain secure as they
evolve over time (Felderer et al. 2014).

4. Mentioning user issues:
a. Software Engineers:

i. The cognitive demand on software engineers devel-
oping secure software is overwhelming (Apvrille and
Pourzandi 2005; Giorgini et al. 2005; Mellado et al.
2007; Miller et al. 2013).
ii. Most research focuses on the technical aspects
of software engineering, neglecting human factors
(Storey et al. 2020) e.g., Khan et al. (2022).
iii. Importance of collaboration and team dynamics
highlighted: (Arora et al. 2021), and of the need for
communication between stakeholders during the de-
velopment process (Kanniah and Mahrin 2016).

b. End Users: Need to consider the impact of security
measures on end users (Flechais et al. 2003).

It is clear from this review that not much attention has
been paid to the impact of the human factor in secure soft-
ware engineering beyond pointing out that the entire pro-
cess is challenging. Certainly, there is no explicit review on

the impact of the human factor in the software engineering
process.

We now proceed to address the two research questions.

4 How our humanity influences secure
software engineering

Whenever humans are involved in any process, errors are
certain to occur (Reason 1990; Adams and Sasse 1999) and
sometimes bad actors will behave maliciously and compro-
mise the system’s functioning (De Cremer 2009). The es-
tablished fields of medicine and civil engineering (±1960)
have long acknowledged this reality (Berry 2022; Gawande
2010; Xie and Qu 2018; Whittle and Ritchie 2000). Human
tendencies to make mistakes and to act maliciously can also
compromise the software engineering process. Yet, for most
of the history of software engineering, this human “factor”
has been neglected (Sutcliffe 1997; Storey et al. 2020).

This section addresses the first research question: How
do human factors impact the secure software development
process?

To answer this question, we now consider the full range
of different stakeholders (developer, managers, deployers,
end users), and the impact of human factors in each different
case.

4.1 Software developers

The software developer is at the core of the software engi-
neering process, and the impact of their humanity has not
received very much attention from researchers. To frame
our discussion, we considered two lenses: personality and
human needs.

In considering the first lens, we discovered that a num-
ber of studies had investigated the types of personalities of
people who go into a career of software engineering. How-
ever, Cruz et al. (2015) found that “the evidence is weak
and in many cases inconclusive” [p. 108]. Hence, instead
of looking at personality, let us consider how a software
engineering career satisfies the human needs of software de-
velopers: mastery, autonomy and relatedness (Ajzen 1991),
and how their humanity influences the satisfaction of these.
It is worth noting that the same approach could be used for
the other stakeholders. However, the primary focus here is
on software developers.

Mastery/Competence Software engineering is a career that
requires continuous learning, is creative and immensely sat-
isfying when the project has been completed and the prod-
uct prepared for deployment. Software developers, as keen
problem solvers, enjoy putting pieces of code together to
produce a working piece of software (Wynekoop and Walz

K



Z. Arb. Wiss.

2000; Groeneveld et al. 2020). Brooks (1975) says: “The
programmer, like the poet, works only slightly removed from
pure thought-stuff” (p. 7).

Russo et al. (2022) find that software engineers have
a higher need for cognition than the general public. The
software engineer might be the adult who used to love to
build lego as a child (Bialski 2017). Certainly, Stoilescu
and Egodawatte (2010) explain that successful profession-
als enjoying “playing” with computers. As such, the soft-
ware developer career is almost custom built to satisfy these
individuals’ needs for mastery.

Yet, there are also challenges. Brooks (1975) explains
that the need for perfect performance is one of the most
difficult for humans to adapt to. Computer code does not
tolerate any imperfections, so programmers have to get used
to going over their code repeatedly in order to arrive at that
level of perfection which is required.

Errors in software code are colloquially referred to as
“bugs”. This term was coined by Grace Hopper, a United
States Navy rear admiral. She found an insect (termed
a bug) in a computer, which was interfering with its func-
tioning. She promptly pasted it into the log book, where
it remains for posterity. Ever since, programmers have re-
ferred to software errors as ‘bugs’ and their elimination as
‘debugging’. Brian Kernigan2, one of the early giants of
the software engineering field, said: “Debugging is twice as
hard as writing the code in the first place”. Debugging is the
price programmers play for experiencing the pleasure of the
creative programming process. Programmers who possess
the ability to persevere and detect these bugs (Stolee et al.
2011) will achieve the level of mastery that is required, and
are likely to remain in software engineering.

The testing phase is undertaken by others, and is try-
ing for the programmer. He/she has spent countless hours
developing the software and debugging it. Such personal
investment makes him/her feel a sense of ownership: their
code is “their” thought-child (as described by Brooks). That
being so, it is hard for them not to feel defensive when
a tester uncovers errors. It points to the programmer’s fail-
ure and can be perceived as an attack. Often, programmers
are under tremendous pressure from their managers to pro-
duce the software to unrealistic deadlines. In these cases,
testing may be seen as a luxury. If it is done, many errors
are likely to be uncovered. This is an unwanted outcome
for any software developer.

The (recent) mandate to code securely challenges their
sense of mastery. Arvind Krishna, CEO of IBM3 said that:
“Cybersecurity is the issue of the decade. I think that is the
single biggest issue we all are going to face”. While he was

2 https://slidetodoc.com/debugging-is-twice-as-hard-as-writing-the/.
3 https://www.wsj.com/articles/roundtable-the-cio-in-an-age-of-
disruption-11649066400?mod=djemCybersecruityPro&tpl=cy.

talking about the role of the chief information officer, this
applies equally to the software engineer. The need to de-
velop secure software is relatively recent and many who
have been in the industry for some years will not have been
trained to do this.

Even if software developers master the complex software
development process, the need to develop secure software
might well not come as easily. Developing secure software
requires developers to anticipate vulnerabilities, which re-
quires something of a different mindset (Harvey et al. 2016).
Anu et al. (2020) suggest that in many cases vulnerabili-
ties that are exploited by hackers can be traced to the same
handful of programmer errors. It might be that traditional
software engineering training has not yet incorporated suffi-
cient training in preventing vulnerabilities, as highlighted in
the previous section. In this case, their perceived mastery is
illusory—something Johari calls an “unknown, unknown”
(Shenton 2007).

In relatively rare cases, software engineers might be-
have maliciously, for a variety of reasons (Warkentin and
Willison 2009). They might insert so-called “malware” into
software, which can be exploited at will (Wu 2020). On the
other hand, sometimes software developers can be pres-
sured by their managers into inserting “back doors” to ease
subsequent access (Osterweil 2016). If they have not had
ethical training, or feel unable to resist for fear of losing
their jobs, the resulting software is inherently insecure and
will permit intrusions.

Software is routinely tested to ensure that it delivers
the required functionality, and is usable by its target user
group. It is also often tested for known top security risk
vulnerabilities4, so-called penetration testing. However, an
oft-neglected kind of testing is to reveal deliberately-intro-
duced malware (Agrawal et al. 2010).

Hence, software engineers seem to satisfy their mastery
needs in their careers, but sometimes find such satisfaction
frustrated by the intensely demanding expectation of near
perfection in their discipline, and the need to code defen-
sively to prevent breaches by cyber criminals.

Autonomy With respect to autonomy, it is harder for soft-
ware engineers to satisfy this need. The programmer does
not set his/her own objectives, goals or the technologies
and tools to be used. The creativity they so revel in is actu-
ally severely constrained. Programmers are similar to actors
and actresses—they are the visible agents, but others set the
scene and finely choreograph their actions. Brooks (1975)
points out how painful this dependence is for the creative
programmer, driving towards mastery of their field, espe-
cially when requirements are poorly defined or unrealistic.

4 https://owasp.org/www-project-top-ten/.

K

https://slidetodoc.com/debugging-is-twice-as-hard-as-writing-the/
https://www.wsj.com/articles/roundtable-the-cio-in-an-age-of-disruption-11649066400?mod=djemCybersecruityPro&tpl=cy
https://www.wsj.com/articles/roundtable-the-cio-in-an-age-of-disruption-11649066400?mod=djemCybersecruityPro&tpl=cy
https://owasp.org/www-project-top-ten/


Z. Arb. Wiss.

The other challenge to deal with is continuously chang-
ing requirements. Such changes are unpleasant and not ea-
gerly anticipated (Harker et al. 1993). The software engi-
neer has to learn to tolerate uncertainty, and to not have their
need for autonomy satisfied (Kalliamvakou et al. 2017).
This is difficult for most humans, and many people become
burnt out as a consequence of long-term uncertainty (Kuhn
et al. 2009). Such burn out can lead to widespread nega-
tive outcomes for the software developer and organisation
(Nesher Shoshan and Sonnentag 2020).

Relatedness This term is defined by Merriam-Webster as
“having close harmonic connection—used of tones, chords,
or tonalities”. In essence, people need to spend quality time
with other people—especially their loved ones and friends
(McLeod 2007). Yet, the software engineering career is
characterised by overwork and burnout (Afzal 2016). This
will prevent them from spending time with others and from
being able to relax when they do.

There is a myth that suggests that software developers
are anti-social and uncommunicative—and this argument
could be used to argue that it is acceptable for software de-
velopers to work excessive hours alone staring at a screen.
That this is indeed a myth is highlighted by Chattopadhyay
et al. (2021), who found that developers would use vlogs to
challenge the misconceptions and stereotypes around their
identities. Indeed, as Rodeghero et al. (2021) show, devel-
opers have a keen sense of their need to be socially con-
nected to their colleagues and programmers with greater
openness perform better in their jobs (Salleh et al. 2014;
Rehman et al. 2012). If they do not get this, they will ex-
perience feelings of vulnerability (Hawkley and Cacioppo
2010), which will impact social cohesion and information
sharing between employees (Searle and Renaud 2023).

Summary It is clear that software developers’ jobs are un-
likely to satisfy their human needs. In this situation, they
will not perform optimally and if they become burnt out
many negative consequences will occur, which will affect
their ability to produce bug free and secure code. Managers
can alleviate the issues mentioned in this Section if they are
aware of them.

4.2 Managers

Inadequate management and a lack of resources can be the
cause of software development failures (Oz 1994; Aeon
et al. 2021; Linberg 1999). It is also the case that many
of those who manage software engineering teams do not
have much technical expertise themselves (Dzuiba 2010;
Kalliamvakou et al. 2017). Hence, they fail to understand
the complexity of the software development process and
produce unrealistic schedules (Linberg 1999).

Kalliamvakou et al. (2017) provides an extensive list of
attributes of great managers of software developers. These
include building a team culture, fostering communication
and being available to team members. In terms of effec-
tive management, Wang and Lai (2001) point to the crucial
nature of requirements management, one of the key respon-
sibilities of managers. Wang and Lai explain that whereas
changing requirements are a fact of life, the changes have
to be managed (Bhatti et al. 2010), not merely passed down
to developers.

Assal and Chiasson (2019) find that security-related soft-
ware development issues often stem from a lack of orga-
nizational or process support in terms of incorporating se-
curity info software development tasks. This is something
managers ought to provide, but it seems that they do not do
this.

Given the need for software developers to know how to
develop secure software, it is also the responsibility of the
manager to ensure that they get the necessary training to
help them to develop these skills. Making them aware of
their lack of knowledge in this area is a clear management
responsibility, because an appreciation of the lack of ex-
pertise in this area is the first step towards a willingness to
having their code tested to uncover vulnerabilities (How-
ard and Lipner 2006). This allows “unknown unknown” to
become a “known unknown”.

Afzal (2016) argues that many developers do not leave
their jobs, but rather leave bad managers. This points to
the crucial role of management in the software engineering
process.

4.3 Deployers

Given the opportunity for error during every stage of the
software development process, there is a very high likeli-
hood of hidden bugs remaining in software after deploy-
ment. Those who deploy software should have a rigorous
maintenance process in place. As users report issues, these
can then be addressed.

However, some errors are intermittent and hard to prove.
When software produces anomalous outcomes, it is often
the case that the first reaction is denial or to blame the op-
erator (Clark 2021). Indeed, the latest manifestation of this
kind of denial occurred in the Post Office case in the UK
(Renaud et al. 2021a). Over the course of two decades, the
Horizon software rolled out by the UK’s Post Office gener-
ated phantom transactions, and the Post Office unquestion-
ably jumped to the conclusion that reported shortfalls were
due to fraud (Wallis 2021). Over 700 innocent post mas-
ters were prosecuted, some were incarcerated, and many
lost their livelihoods. The Post Office steadfastly refused to
consider the fact that their software might be malfunction-
ing, which was indeed the case.

K



Z. Arb. Wiss.

There is often naïvety amongst those who deploy soft-
ware without understanding the mechanisms of software
engineering. Many believe that software always works cor-
rectly (Crown Prosecution Service 2017; UCL Laws 2021),
perhaps because the alternative is unpalatable and would
complicate their lives and jobs. Even so, the human fac-
tor influencing the development of software should be ac-
knowledged so that a measure of realism is injected into
the deployment process.

4.4 End users

In 1999, Adams and Sasse wrote a seminal paper titled
“Users are not the Enemy”. This paper played a crucial
role in introducing the need to acknowledge the role of
humans in cyber security to industry and academia. These
authors are psychologists. Even so, both software engineers
and cyber security researchers benefited from collaborations
with psychologists since Adams and Sasse highlighted the
need to accommodate the human in cybersecurity.

Even so, many still refer to the human as the “weakest
link” two decades later. Zimmermann and Renaud (2019)
demonstrate that this attitude is not merely anecdotal, but
is entrenched—almost an unquestioned stereotype. In fact,
while humans do indeed make errors, and sometimes be-
have insecurely, Fig. 1 shows the wide range of sources of
issues that can cause an adverse software-related incident.

Fig. 1 Summary of Human Factors affecting Software Engineering (Upper row is reflects unintentional, while the lower is intentionally malicious)
Abb. 1 Zusammenfassung menschlicher Faktoren, die sich auf die Softwareentwicklung auswirken (obere Reihe spiegelt unbeabsichtigt wider,
während die untere absichtlich böswillig ist)

Humans sometimes make errors that subvert security
measures. Moustafa et al. (2021) enumerate a number of
these, which include poor password management, overshar-
ing, being deceived by social engineers not updating soft-
ware on their devices. Much of this is due to a lack of
awareness, but also because users do not have the tools that
could help to eliminate these behaviours, most of which
are purely coping strategies. For example, password man-
agers alleviate password memorial loads, and consequently
improve password strength. However, they have not really
diffused through the population (Alkaldi and Renaud 2022)
and few organisations provide these to their employees.
There are also tools to help people to spot Phishing mes-
sages more effectively, but these, too, are not widely used by
organisations. A focus on the supporting rather than blam-
ing is likely to reduce insecure behaviours (Renaud et al.
2021b).

An overview of the literature dealing with the impact of
human nature on the secure software engineering process
is provided in Table 1 in the Appendix, and in Fig. 1.

5 Implications for practice & research

Fig. 2 depicts all the roles and considerations that come
into play in the human-centred cyber secure software engi-
neering process.

K



Z. Arb. Wiss.

Fig. 2 Human-Centred Cyber
Secure Software Engineering
Triangle
Abb. 2 Menschenzentrierte
Cybersicherheit Software-Engi-
neering-Dreieck

Now, we address the second research question: “How
can the impact of human fallibility be ameliorated during
the secure software engineering process?”

5.1 Practical implications

There are some practical implications if we are to engender
the production of secure software systems:

1. Managers should:
a. ensure that software engineers are supported in their

need to develop mastery as much as possible, since
this appears to be the need that this discipline is par-
ticularly suited to satisfy.

b. Software engineers ought to be trained not merely to
secure the system against known threats, but also to
anticipate vulnerabilities that could be exploited, and
then to actively prevent these.

c. Support the engineers in crafting systems that accom-
modate human tendencies to make mistakes. Given
them time to allocate to usability and security-related
activities.

d. Do not pressure developer to the extent that they are
unable accommodate human fallibility and malice.

2. Deployers should:
a. test software regularly to ensure that newly emergent

vulnerabilities are addressed,
b. be realistic in accepting that software is seldom per-

fect and considering this possibility before blaming
end users when anomalous outcomes occur.

5.2 Research implications

There are many avenues for research in this area. Three
urgently need attention:

1. Software developers need to be supported more effec-
tively in developing secure software, as highlighted in
the research (Sect. 3), and in order to satisfy their per-
sonal mastery needs. This is a challenging area because
the goalposts change all the time as new exploits emerge,
and developers are under pressure to complete the. prod-
uct so that it can be deployed as soon as possible. This
reality should be built into the training programmes and
also into their delivery milestones. Developing tools to
support managers would be helpful. Both training and
tools would be fruitful avenues for future research.

2. There is a naivety amongst the general public about the
complexity of software development and the challenges
of keeping software running correctly and without being
compromised. In order to inject a measure of realism into
expectations of software, there is a need to develop a pub-
lic relations campaign and some short courses for those
in other walks of life to help them to develop an appre-
ciation of the complexities of software engineering. This
requires a rigorous research endeavour from communica-
tions researchers.

3. There is a need to change the industry mindset away from
“user as problem”. This has occurred in other more ma-
ture fields such as safety (Dekker 2018) and medicine
(Berry 2022). Those doing research in the software engi-
neering domain have a role to play in adapting the lessons
from these fields for the software engineering discipline.

K



Z. Arb. Wiss.

6 Conclusions

The software engineering field is huge and enjoys attention
from many researchers. The cyber security field, too, is ex-
tensive. Here, I have sought to provide an overview of the
human-related aspects of the secure software engineering
domain. The biggest lessons I would like readers to take
away are the following: (1) wherever humans are involved
in any endeavour, it benefits us to learn from those who
understand human nature best: psychologists. We should
not expect perfect performance from any human, and ac-
commodate that in our expectations of human stakeholders
in the software engineering domain. (2) No one benefits
if a profession is shrouded in mystery. During the pan-
demic, everyone became familiar with terms such as coron-
avirus, spike protein and cytokine storm. This new familiar-
ity helped public health officials to communicate with the

Table 1 Secure Software Development Issues
Tab. 1 Probleme bei der sicheren Softwareentwicklung

Plan Analyse Design Develop Test Deploy Maintain

Programmers Not recruiting
enough coders
(Lehtinen
et al. 2014)

Not under-
standing
deployment
context &
constraints
(Dyson and
Longshaw
2004)

Staff Inexperi-
ence (Shahzad
et al. 2011)
Not understand-
ing how the soft-
ware interacts
with existing
systems (Bosch
2010)

Lack of Coopera-
tion (Lehtinen et al.
2014)
Insecure coding (Du
and Mathur 1998)
Tradeoffs between
reuse and redevel-
opment (Basili and
Perricone 1984)

Inadequate
test cases
(Meenakshi
et al. 2014)
Not un-
derstand-
ing users
(Borenstein
1991)

No audit
trail or er-
ror logging
(Ko et al.
2007)

–

Project
Managers

Flawed Plan-
ning (Pinto
2013)
Underestimating
the amount of
time needed
for planning
(Brooks 1975)

– – Weak Task Back-
log (Lehtinen et al.
2014)
Poor monitoring
(Brooks 1975)
Underestimating
effort (Gray et al.
1999)

Lack of
Resources
(Lehtinen
et al. 2014)
Shortening
testing time
(Westland
2002)

Optimism
Bias &
Over-
promising
(Pinto
2013)

–

Deployer – Immature
Require-
ments
(Shahzad
et al. 2011)

Creeping user
requirements
(Harker et al.
1993)

– Pressure for
Deployment
(Pinto 2013;
Jones 1993)

Poor
Train-
ing (Wallis
2021)

Blaming
users for
errors (Clark
2021)

Security Not integrat-
ing security
throughout
the life cycle
(Khan et al.
2021; Moura-
tidis et al.
2005)

Incomplete
Security Re-
quirements
(Sultan et al.
2008)

Not designing for
security (Sultan
et al. 2008)

Implementation
Errors (Sultan et al.
2008)
Trying to bolt secu-
rity on after develop-
ment (Pearlson and
Huang 2022)

Inadequate
Testing (Sul-
tan et al.
2008)

Architectural
security
flaws
(Abeyrathna
et al.
2020)

Not staying
on top of
new threats
(Bernsmed
et al. 2022;
Devanbu and
Stubblebine
2000)

general public. The software engineering profession should
start helping the public to understand the complexity of
their profession too. If they do, everyone will benefit.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

7 Appendix

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Z. Arb. Wiss.

Funding Open access funding provided by University of Strathclyde.

References

Abeyrathna A, Samarage C, Dahanayake B, Wijesiriwardana C,
Wimalaratne P (2020) A security specific knowledge modelling
approach for secure software engineering. J Natl Sci Found Sri
lanka 48:1

Adams A, Sasse MA (1999) Users are not the enemy. Commun ACM
42(12):40–46

Aeon B, Faber A, Panaccio A (2021) Does time management work? A
meta-analysis. Plos One 16(1):e245066

Afzal R (2016) 6 reasons, software developers quit your company.
https://www.linkedin.com/pulse/6-reasons-your-software-
developers-quit-company-raheel-afzal/. Accessed 20 Dec 2022

Agrawal H, Alberi J, Bahler L, Conner W, Micallef J, Virodov A,
Shane RS (2010) Preventing insider malware threats using pro-
gram analysis techniques. In: 2010-MILCOM Military Commu-
nications Conference. IEEE, Piscataway, pp 936–941

Ajzen I (1991) The theory of planned behavior. Organ Behav Hum
Decis Process 50(2):179–211

Alkaldi N, Renaud K (2022) MIGRANT: modeling smartphone pass-
word manager adoption using migration theory. Data Base Adv
Inf Syst 53(2):63–95. https://doi.org/10.1145/3533692.3533698

Anu V, Sultana KZ, Samanthula BK (2020) A human error based ap-
proach to understanding programmer-induced software vulnera-
bilities. In: 2020 IEEE International Symposium on Software Re-
liability Engineering Workshops (ISSREW). IEEE, Piscataway,
pp 49–54

Apvrille A, Pourzandi M (2005) Secure software development by ex-
ample. IEEE Secur Privacy 3(4):10–17

Arora V, Vargas EL, Aniche M, van Deursen A (2021) Secure software
engineering in the financial services: a practitioners’ perspective.
arXiv. https://doi.org/10.48550/arXiv.2104.03476

Assal H, Chiasson S (2019) ‘Think secure from the beginning’ A sur-
vey with software developers. In: Proceedings of the 2019 CHI
conference on human factors in computing systems, pp 1–13

Basili VR, Perricone BT (1984) Software errors and complexity: an
empirical investigation. Commun ACM 27(1):42–52

Bernsmed K, Cruzes DS, Jaatun MG, Iovan M (2022) Adopting threat
modelling in agile software development projects. J Syst Softw
183:111090

Berry P (2022) Necessary scars. CRC Press, Boca Raton
Bevan N (2001) International standards for HCI and usability. Int J

Hum Comput Stud 55(4):533–552
Bhatti MW, Hayat F, Ehsan N, Ishaque A, Ahmed S, Mirza E (2010)

October. A methodology to manage the changing requirements
of a software project. In: 2010 International conference on com-
puter information systems and industrial management applica-
tions (CISIM). IEEE, Piscataway, pp 319–322

Bialski P (2017) I am not a hacker. https://www.alexandria.unisg.ch/
260938/. Accessed 6 Dec 2022

Borenstein NS (1991) Programming as if people mattered. Princeton
University Press, Princeton

Bosch J (2010) Architecture challenges for software ecosystems. In:
Proceedings of the fourth European conference on software ar-
chitecture: companion volume, pp 93–95

Braz L, Fregnan E, Çalikli G, Bacchelli A (2021) Why don’t develop-
ers detect improper input validation? In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE,
Piscataway, pp 499–511

Brooks R (1975) The mythical man month. Addison Wesley, Boston
Chattopadhyay S, Ford D, Zimmermann T (2021) Developers who

vlog: dismantling stereotypes through community and identity.
Proc Acm Human-computer Interact 5(CSCW2):1–33

Clark M (2021) Bad software sent postal workers to jail, because
no one wanted to admit it could be wrong. https://www.theverge.

com/2021/4/23/22399721/uk-post-office-software-bug-criminal-
convictions-overturned. Accessed 13 Feb 2022

Collins T (2009) Twenty five years of government IT project failure.
https://www.computerweekly.com/news/1280091277/Twenty-
five-years-of-government-IT-project-failure. Accessed 13 Feb
2022

Crown Prosecution Service (2017) Computer records evidence. https://
www.cps.gov.uk/legal-guidance/computer-records-evidence. Ac-
cessed 13 Feb 2021

Cruz S, da Silva FQ, Capretz LF (2015) Forty years of research on per-
sonality in software engineering: a mapping study. Comput Hu-
man Behav 46:94–113

Cruzes DS, ben Othmane L (2017) Threats to validity in empirical soft-
ware security research. In: Empirical research for software secu-
rity. CRC Press, Boca Raton, pp 275–300

De Cremer D (2009) On understanding the human nature of good and
bad behavior in business: a behavioral ethics approach. ERIM re-
port series reference, vol EIA-2009-041-ORG

Dekker S (2018) Just culture: restoring trust and accountability in your
organization. CRC press, Boca Raton

Devanbu PT, Stubblebine S (2000) Software engineering for security:
a roadmap. In: Proceedings of the Conference on the Future of
Software Engineering, pp 227–239

Du W, Mathur AP (1998) Categorization of software errors that led to
security breaches. In: 21st National Information Systems Security
Conference, pp 392–407

Dyson Paul, Longshaw Andrew (2004) Architecting enterprise solu-
tions: patterns for high-capability internet-based systems. John
Wiley & Sons

Dzuiba T (2010) Why engineers hop jobs. http://widgetsandshit.
com/teddziuba/2010/05/why-engineers-hop-jobs.html. Accessed
6 Dec 2022

Essafi M, Labed L, Ghezala HB (2006) Addressing software applica-
tion security issues. In: 10th WSEAS International Conference on
COMPUTERS (CSCC ’06)

Felderer M, Katt B, Kalb P, Jürjens J, Ochoa M, Paci F, Breu R (2014)
Evolution of security engineering artifacts: a state of the art sur-
vey. Int J Secur Softw Eng (ijsse) 5(4):48–98

Flechais I, Sasse MA, Hailes SM (2003) Bringing security home: a pro-
cess for developing secure and usable systems. In: Proceedings of
the 2003 workshop on New security paradigms, pp 49–57

Giorgini P, Massacci F, Mylopoulos J, Zannone N (2005) Modeling
security requirements through ownership, permission and dele-
gation. In: 13th IEEE International Conference on Requirements
Engineering (RE’05). IEEE, Piscataway, pp 167–176

Gray AR, MacDonell SG, Shepperd MJ (1999) Factors systematically
associated with errors in subjective estimates of software develop-
ment effort: the stability of expert judgment. In: Proceedings Sixth
International Software Metrics Symposium (Cat. No. PR00403).
IEEE, Piscataway, pp 216–227

Groeneveld W, Jacobs H, Vennekens J, Aerts K (2020) Non-cogni-
tive abilities of exceptional software engineers: a Delphi study. In:
Zhang J, Sherriff M, Heckman S, Monge A, Cutter P (eds) Pro-
ceedings of the 51st ACM Technical Symposium on Computer
Science Education. ACM, New York, pp 1096–1102 https://doi.
org/10.1145/3328778.3366811

Grudin J (1992) Utility and usability: research issues and development
contexts. Interact Comput 4(2):209–217

Gawande A (2010) The checklist manifesto. Picadur, New York
Harker SD, Eason KD, Dobson JE (1993) January. The change and

evolution of requirements as a challenge to the practice of soft-
ware engineering. In: Proceedings of the IEEE International
Symposium on Requirements Engineering. IEEE, Piscataway,
pp 266–272

Harvey I, Bolgan S, Mosca D, McLean C, Rusconi E (2016) System-
izers are better code-breakers: self-reported systemizing predicts
code-breaking performance in expert hackers and naïve partici-

K

https://www.linkedin.com/pulse/6-reasons-your-software-developers-quit-company-raheel-afzal/
https://www.linkedin.com/pulse/6-reasons-your-software-developers-quit-company-raheel-afzal/
https://doi.org/10.1145/3533692.3533698
https://doi.org/10.48550/arXiv.2104.03476
https://www.alexandria.unisg.ch/260938/
https://www.alexandria.unisg.ch/260938/
https://www.theverge.com/2021/4/23/22399721/uk-post-office-software-bug-criminal-convictions-overturned
https://www.theverge.com/2021/4/23/22399721/uk-post-office-software-bug-criminal-convictions-overturned
https://www.theverge.com/2021/4/23/22399721/uk-post-office-software-bug-criminal-convictions-overturned
https://www.computerweekly.com/news/1280091277/Twenty-five-years-of-government-IT-project-failure
https://www.computerweekly.com/news/1280091277/Twenty-five-years-of-government-IT-project-failure
https://www.cps.gov.uk/legal-guidance/computer-records-evidence
https://www.cps.gov.uk/legal-guidance/computer-records-evidence
http://widgetsandshit.com/teddziuba/2010/05/why-engineers-hop-jobs.html
http://widgetsandshit.com/teddziuba/2010/05/why-engineers-hop-jobs.html
https://doi.org/10.1145/3328778.3366811
https://doi.org/10.1145/3328778.3366811


Z. Arb. Wiss.

pants. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2016.
00229 (Paper 229)

Hawkley LC, Cacioppo JT (2010) Loneliness matters: a theoretical and
empirical review of consequences and mechanisms. Ann Behav
Med 40(2):218–227

Hein D, Saiedian H (2009) Secure software engineering: learning from
the past to address future challenges. Inf Secur Journal: A Glob
Perspect 18(1):8–25

Howard M, Lipner S (2006) The security development lifecycle. DuD.
https://doi.org/10.1007/s11623-010-0021-7

Humphrey WS (1988, April) The software engineering process: defi-
nition and scope. In Proceedings of the 4th international software
process workshop on Representing and enacting the software pro-
cess, pp 82–83

Jayalath LM, Dharshana KAC, Rathnayake RMTP (2020) Towards
secure software engineering. South asian Res J Eng Technol
2(6):45–53

Jones C (1993) Sick software. Computerworld 27(50):115
Kalliamvakou E, Bird C, Zimmermann T, Begel A, DeLine R, Ger-

man DM (2017) What makes a great manager of software engi-
neers? Ieee Trans Softw Eng 45(1):87–106

Kanniah SL, Mahrin MN (2016) A review on factors influencing im-
plementation of secure software development processes. J Com-
put Syst Eng 10(8):3022–3029

Khan RA, Khan SU, Khan HU, Ilyas M (2021) Systematic mapping
study on security approaches in secure software engineering.
IEEE Access 9:19139–19160

Khan RA, Khan SU, Khan HU, Ilyas M (2022) Systematic literature
review on security risks and its practices in secure software devel-
opment. IEEE Access 10:5456–5481

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated
software development teams. In: 29th International Conference on
Software Engineering (ICSE’07). IEEE, Piscataway, pp 344–353

Kreitz M (2019) Security by design in software engineering. Acm Sig-
soft Softw Eng Notes 44(3):23–23

Kuhn G, Goldberg R, Compton S (2009) Tolerance for uncertainty,
burnout, and satisfaction with the career of emergency medicine.
Ann Emerg Med 54(1):106–113

Langner R (2011) Stuxnet: dissecting a cyberwarfare weapon. IEEE
Secur Privacy 9(3):49–51

UCL Laws (2021) Justice for sub-postmasters in the post office case.
https://www.youtube.com/watch?v=Qk_P8AHaf24. Accessed 7
Sept 2021

Lehtinen TO, Mäntylä MV, Vanhanen J, Itkonen J, Lassenius C (2014)
Perceived causes of software project failures—an analysis of their
relationships. Inf Softw Technol 56(6):623–643

Linberg KR (1999) Software developer perceptions about software
project failure: a case study. J Syst Softw 49(2–3):177–192

Martin D (2022) 11 of the most costly software errors in history.
https://raygun.com/blog/costly-software-errors-history/. Ac-
cessed 6 Dec 2022

McGraw G (2004) Software security. IEEE Secur Privacy 2(2):80–83
McLeod S (2007) Maslow’s hierarchy of needs. Simply Psychol

1:1–18
Meenakshi D, Naik JS, Reddy MR (2014) Software testing techniques

in software development life cycle. Int J Comput Sci Inf Technol
5:3729–3731

Mellado D, Fernández-Medina E, Piattini M (2007) A common crite-
ria based security requirements engineering process for the devel-
opment of secure information systems. Comput Stand Interfaces
29(2):244–253

Miller S, Appleby S, Garibaldi JM, Aickelin U (2013) Towards a more
systematic approach to secure systems design and analysis. Int J
Secur Softw Eng (ijsse) 4(1):11–30

Mohurle S, Patil M (2017) A brief study of WannacCry threat: Ran-
somware attack 2017. Int J Adv Res Comput Sci 8(5):1938–1940

Mouratidis H, Giorgini P, Manson G (2005) When security meets soft-
ware engineering: a case of modelling secure information sys-
tems. Inf Syst 30(8):609–629

Moustafa AA, Bello A, Maurushat A (2021) The role of user behaviour
in improving cyber security management. Front Psychol. https://
doi.org/10.3389/fpsyg.2021.561011

Moyón F, Méndez D, Beckers K, Klepper S (2020) How to integrate se-
curity compliance requirements with agile software engineering at
scale? In: International Conference on Product-Focused Software
Process Improvement. Springer, Cham, pp 69–87

Nesher Shoshan H, Sonnentag S (2020) The effects of employee
burnout on customers: an experimental approach. Work Stress
34(2):127–147

Nielsen J (1993) Usability engineering. AP Professional, New York
Osterweil LJ (2016) Be prepared. Acm Sigsoft Softw Eng Notes

41(5):4–5
Oz E (1994) When professional standards are lax: The CONFIRM fail-

ure and its lessons. Commun ACM 37(10):29–43
Pearlson K, Huang K (2022) Design for cybersecurity from the start.

MIT Sloan Manage Rev 63(2):73–77
Peisert S, Schneier B, Okhravi H, Massacci F, Benzel T, Landwehr C,

Mannan M, Mirkovic J, Prakash A (2021) Perspectives on the So-
larWinds incident. IEEE Secur Privacy 19(2):7–13

Pinto JK (2013) Lies, damned lies, and project plans: recurring hu-
man errors that can ruin the project planning process. Bus Horiz
56(5):643–653

Reason J (1990) Human error. Cambridge University Press, Cambridge
Rehman M, Mahmood AK, Salleh R, Amin A (2012) Mapping job

requirements of software engineers to Big Five Personality Traits.
In: 2012 International Conference on Computer & Information
Science (ICCIS). IEEE, Piscataway, pp 1115–1122 https://doi.
org/10.1109/ICCISci.2012.6297193

Renaud K, Bongiovanni I, Wilford S, Irons A (2021a) PRECEPT-4-
justice: a bias-neutralising framework for digital forensics inves-
tigations. Sci Justice 61(5):477–492

Renaud K, Musarurwa A, Zimmermann V (2021b) February. Contem-
plating blame in cyber security. In: ICCWS 2021 16th Interna-
tional Conference on Cyber Warfare and Security, pp 309–317

Rodeghero P, Zimmermann T, Houck B, Ford D (2021) Please turn
your cameras on: remote onboarding of software developers dur-
ing a pandemic. In: 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, Piscataway, pp 41–50

Russo D, Masegosa AR, Stol K-J (2022) From anecdote to evidence:
the relationship between personality and need for cognition of de-
velopers. Empir Softw Eng 27(3):1–29

Salleh N, Mendes E, Grundy J (2014) Investigating the effects of per-
sonality traits on pair programming in a higher education setting
through a family of experiments. Empir Softw Eng 19:714–752.
https://doi.org/10.1007/s10664-012-9238-4

Sayagh M, Kerzazi N, Adams B, Petrillo F (2018) Software configu-
ration engineering in practice interviews, survey, and systematic
literature review. Ieee Trans Softw Eng 46(6):646–673

Searle R, Renaud K (2023) Trust and vulnerability in the cybersecurity
context. HICSS, Hawaii, 2023

Shahzad B, Al-Ohali Y, Abdullah A (2011) Trivial model for mitiga-
tion of risks in software development life cycle. Int J Phys Sci
6(8):2072–2082

Shenton AK (2007) Viewing information needs through a Johari
Window. Ref Serv Rev 35(3):487–496. https://doi.org/10.1108/
00907320710774337

Stamat ML, Humphries JW (2009) Training¤ education: putting
secure software engineering back in the classroom. In: Proceed-
ings of the 14th Western Canadian Conference on Computing
Education, pp 116–123

Stoilescu D, Egodawatte G (2010) Gender differences in the use of
computers, programming, and peer interactions in computer sci-
ence classrooms. Comput Sci Educ 20(4):283–300

K

https://doi.org/10.3389/fnhum.2016.00229
https://doi.org/10.3389/fnhum.2016.00229
https://doi.org/10.1007/s11623-010-0021-7
https://www.youtube.com/watch?v=Qk_P8AHaf24
https://raygun.com/blog/costly-software-errors-history/
https://doi.org/10.3389/fpsyg.2021.561011
https://doi.org/10.3389/fpsyg.2021.561011
https://doi.org/10.1109/ICCISci.2012.6297193
https://doi.org/10.1109/ICCISci.2012.6297193
https://doi.org/10.1007/s10664-012-9238-4
https://doi.org/10.1108/00907320710774337
https://doi.org/10.1108/00907320710774337


Z. Arb. Wiss.

Stolee KT, Elbaum S, Sarma A (2011) End-user programmers and
their communities: An artifact-based analysis. In: 2011 Interna-
tional Symposium on Empirical Software Engineering and Mea-
surement. IEEE, Piscataway, pp 147–156

Storey MA, Ernst NA, Williams C, Kalliamvakou E (2020) The who,
what, how of software engineering research: a socio-technical
framework. Empir Softw Eng 25(5):4097–4129

Sultan K, En-Nouaary A, Hamou-Lhadj A (2008) Catalog of metrics
for assessing security risks of software throughout the software
development life cycle. In: 2008 International Conference on In-
formation Security and Assurance (isa 2008). IEEE, Piscataway,
pp 461–465

Sutcliffe A (1997) Task-related information analysis. Int J Hum Com-
put Stud 47(2):223–257

Van Niekerk J, Futcher L (2015) The use of software design patterns
to teach secure software design: an integrated approach. In: IFIP
World Conference on Information Security Education. Springer,
Cham, pp 75–83

Villarroel R, Fernández-Medina E, Piattini M (2005) Secure informa-
tion systems development—a survey and comparison. Comput
Secur 24(4):308–321

Walden J, Shumba R (2006) Integrating secure development practices
into a software engineering course. In: 2006 Annual Conference
& Exposition, pp 11–792

Wallis N (2021) The great post office scandal. Bath Publishing, Bath
Wang Q, Lai X (2001) December. Requirements management for the

incremental development model. In: Proceedings Second Asia-

Pacific Conference on Quality Software. IEEE, Piscataway, pp
295–301

Warkentin M, Willison R (2009) Behavioral and policy issues in in-
formation systems security: the insider threat. Eur J Inf Syst
18(2):101–105

Westland JC (2002) The cost of errors in software development: evi-
dence from industry. J Syst Softw 62(1):1–9

Whittle B, Ritchie J (2000) Prescription for murder: The true story of
Harold Shipman. Warner, London

Wu J (2020) Preface. In: Cyberspace mimic defense. Springer, Basel,
pp v–xi

Wynekoop JL, Walz DB (2000) Investigating traits of top performing
software developers. Inf Technol People 13(3):186–195. https://
doi.org/10.1108/09593840010377626

Xie L, Qu Z (2018) On civil engineering disasters and their mitigation.
Earthq Eng Eng Vib 17(1):1–10

Zetter K (2014) Countdown to zero day: Stuxnet and the launch of the
world’s first digital weapon. Broadway Books, New York

Zhang P, Carey J, Te’eni D, Tremaine M (2005) Integrating human-
computer interaction development into the systems development
life cycle: a methodology. CAIS 15(1):29

Zimmermann V, Renaud K (2019) Moving from a “human-as-prob-
lem” to a “human-as-solution” cybersecurity mindset. Int J Hum
Comput Stud 131:169–187

K

https://doi.org/10.1108/09593840010377626
https://doi.org/10.1108/09593840010377626

	Human-centred cyber secure software engineering
	Abstract
	Zusammenfassung
	Introduction
	Definitions
	Related research
	How our humanity influences secure software engineering
	Software developers
	Managers
	Deployers
	End users

	Implications for practice & research
	Practical implications
	Research implications

	Conclusions
	Appendix
	References


